Sample records for stage iii multiple

  1. Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function

    ClinicalTrials.gov

    2013-01-04

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  2. AR-42 in Treating Patients With Advanced or Relapsed Multiple Myeloma, Chronic Lymphocytic Leukemia, or Lymphoma

    ClinicalTrials.gov

    2017-02-21

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  3. Bortezomib and Filgrastim in Promoting Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2017-05-23

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  4. Plerixafor and Filgrastim For Mobilization of Donor Peripheral Blood Stem Cells Before A Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2017-06-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  5. Massage Therapy Given by Caregiver in Treating Quality of Life of Young Patients Undergoing Treatment for Cancer

    ClinicalTrials.gov

    2018-05-24

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Mantle Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Noncontiguous Stage II Mantle Cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  6. Palifermin in Preventing Chronic Graft-Versus-Host Disease in Patients Who Have Undergone Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2014-02-19

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  7. Internet-Based Program With or Without Telephone-Based Problem-Solving Training in Helping Long-Term Survivors of Hematopoietic Stem Cell Transplant Cope With Late Complications

    ClinicalTrials.gov

    2012-03-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Cancer Survivor; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Depression; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fatigue; Long-term Effects Secondary to Cancer Therapy in Adults; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Psychosocial Effects of Cancer and Its Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  8. Autologous Stem Cell Transplant Followed By Maintenance Therapy in Treating Elderly Patients With Multiple Myeloma

    ClinicalTrials.gov

    2018-02-27

    Extramedullary Plasmacytoma; Isolated Plasmacytoma of Bone; Light Chain Deposition Disease; Primary Systemic Amyloidosis; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma

  9. Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer

    ClinicalTrials.gov

    2017-04-10

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hematopoietic/Lymphoid Cancer; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  10. Deferasirox for Treating Patients Who Have Undergone Allogeneic Stem Cell Transplant and Have Iron Overload

    ClinicalTrials.gov

    2017-11-07

    Iron Overload; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma

  11. Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2017-04-20

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma

  12. Veliparib, Capecitabine, and Temozolomide in Patients With Advanced, Metastatic, and Recurrent Neuroendocrine Tumor

    ClinicalTrials.gov

    2017-09-26

    Functional Pancreatic Neuroendocrine Tumor; Malignant Somatostatinoma; Merkel Cell Carcinoma; Metastatic Adrenal Gland Pheochromocytoma; Metastatic Carcinoid Tumor; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine Neoplasia Type 2A; Multiple Endocrine Neoplasia Type 2B; Neuroendocrine Neoplasm; Non-Functional Pancreatic Neuroendocrine Tumor; Pancreatic Glucagonoma; Pancreatic Insulinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adrenal Gland Pheochromocytoma; Recurrent Merkel Cell Carcinoma; Somatostatin-Producing Neuroendocrine Tumor; Stage III Adrenal Cortex Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IIIA Merkel Cell Carcinoma; Stage IIIB Merkel Cell Carcinoma; Stage IV Adrenal Cortex Carcinoma; Stage IV Merkel Cell Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Thymic Carcinoid Tumor; VIP-Producing Neuroendocrine Tumor; Well Differentiated Adrenal Cortex Carcinoma; Zollinger Ellison Syndrome

  13. Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease (GVHD) After Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-01-24

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, Breakpoint Cluster Region-abl Translocation (BCR-ABL) Negative; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Gastrointestinal Complications; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Childhood Rhabdomyosarcoma; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma

  14. Deferasirox in Treating Iron Overload Caused By Blood Transfusions in Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2017-12-22

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelofibrosis; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenstrom Macroglobulinemia

  15. Infection Prophylaxis and Management in Treating Cytomegalovirus (CMV) Infection in Patients With Hematologic Malignancies Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2015-06-03

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia

  16. Management of non-traumatic avascular necrosis of the femoral head-a comparative analysis of the outcome of multiple small diameter drilling and core decompression with fibular grafting.

    PubMed

    Mohanty, S P; Singh, K A; Kundangar, R; Shankar, V

    2017-04-01

    The purpose of this study was to compare the clinical and radiological outcomes of multiple small diameter drilling and core decompression with fibular strut grafting in the management of non-traumatic avascular necrosis (AVN) of the femoral head. Outcomes of patients with AVN treated by multiple small diameter drilling (group 1) were compared retrospectively with patients treated by core decompression and fibular grafting (group 2). Harris hip score (HHS) was used to assess the clinical status pre- and postoperatively. Modified Ficat and Arlet classification was used to assess the radiological stage pre- and postoperatively. Forty-six patients (68 hips) were included in this study. Group 1 consisted of 33 hips, and group 2 consisted of 35 hips. In stages I and IIB, there was no statistically significant difference in the final HHS between the two groups. However, in stages IIA and III, hips in group 2 had a better final HHS (P < 0.05). In terms of radiographic progression, there was no statistical difference between hips in stages I, IIA and stage IIB. However, in stage III, hips belonging to group 2 had better results (P < 0.05). Kaplan-Meier survivorship analysis showed better outcome in group 2 in stage III (P < 0.05). Hips with AVN in the precollapse stage can be salvaged by core decompression with or without fibular grafting. Multiple small diameter drilling is relatively simple and carries less morbidity and hence preferred in stages I and II. However, in stage III disease, core decompression with fibular strut grafting gives better results.

  17. Cognitive-Behavioral Intervention for Worry, Uncertainty, and Insomnia for Cancer Survivors

    ClinicalTrials.gov

    2017-04-04

    Anxiety Disorder; Worry; Uncertainty; Sleep Disorders; Insomnia; Fatigue; Pain; Depression; Cognitive-behavioral Therapy; Psychological Intervention; Esophageal Cancer; Pancreatic Cancer; Leukemia; Lung Cancer; Multiple Myeloma; Ovarian Neoplasm; Stage III or IV Cervical or Uterine Cancer; Stage IIIB, IIIC, or IV Breast Cancer; Glioblastoma Multiforme; Relapsed Lymphoma; Stage III or IV Colorectal Cancer; Stage IIIC or IV Melanoma

  18. Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-05-16

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Lymphocyte Predominant Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Isolated Plasmacytoma of Bone; Monoclonal Gammopathy of Undetermined Significance; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  19. Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-03-05

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma

  20. Tacrolimus and Mycophenolate Mofetil in Preventing Graft-Versus-Host Disease in Patients Who Have Undergone Total-Body Irradiation With or Without Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-12-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  1. Are the results of multiple drilling and alendronate for osteonecrosis of the femoral head better than those of multiple drilling? A pilot study.

    PubMed

    Kang, Pengde; Pei, Fuxing; Shen, Bin; Zhou, Zongke; Yang, Jing

    2012-01-01

    The treatment of osteonecrosis of the femoral head (ONFH) remains controversial. A recently proposed treatment is multiple drilling core decompression combined with systemic alendronate as a femoral head-preserving procedure for ONFH. However, it is not known whether alendronate enhances the risk of collapse. We wondered whether the combined procedure could delay or prevent progression of ONFH compared to multiple drilling alone. Patients with early-stage ONFH were randomly assigned to be treated with either multiple drilling combined with alendronate (47 patients, 67 hips) or multiple drilling alone (46 patients, 60 hips). We defined failure as the need for THA or a Harris score less than 70. The minimum follow-up was 48 months for the 77 patients completing the protocol. After a minimum 4-year follow-up, 91% (40/44) of patients with Stage II disease and 62% (8/13) of patients with Stage III disease had not required THA in alendronate group, compared to 79% (31/39) of patients with Stage II disease and 46% (6/13) of patients with Stage III disease had not required THA in control group (P=0.12, P=0.047, respectively). Small or medium and central lesions had a better successful rate in both groups. Risk factors did not seem to affect the clinical successful rate of this procedure. Multiple small-diameter drilling core decompression combined with systemic alendronate administration can reduce pain and delay progression of early-stage ONFH. Even in Ficat IIA and III hips, some benefit was obtained from this approach at least delay in the need for THA. Copyright © 2011. Published by Elsevier SAS.

  2. Flavopiridol in Treating Patients With Relapsed or Refractory Lymphoma or Multiple Myeloma

    ClinicalTrials.gov

    2016-06-27

    Adult Lymphocyte Depletion Hodgkin Lymphoma; Adult Lymphocyte Predominant Hodgkin Lymphoma; Adult Mixed Cellularity Hodgkin Lymphoma; Adult Nodular Sclerosis Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Waldenström Macroglobulinemia

  3. Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

    ClinicalTrials.gov

    2017-04-17

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Lymphoma; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  4. Ipilimumab After Allogeneic Stem Cell Transplant in Treating Patients With Persistent or Progressive Cancer

    ClinicalTrials.gov

    2013-03-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Myelodysplastic Syndromes; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Disseminated Neuroblastoma; Malignant Neoplasm; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Mixed Germ Cell Tumor; Ovarian Monodermal and Highly Specialized Teratoma; Ovarian Polyembryoma; Ovarian Yolk Sac Tumor; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Seminoma; Testicular Choriocarcinoma and Teratoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Seminoma; Testicular Embryonal Carcinoma and Teratoma; Testicular Embryonal Carcinoma and Teratoma With Seminoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma and Yolk Sac Tumor With Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor; Testicular Yolk Sac Tumor and Teratoma; Testicular Yolk Sac Tumor and Teratoma With Seminoma

  5. The Development of Ciprofloxacin Resistance in Pseudomonas aeruginosa Involves Multiple Response Stages and Multiple Proteins ▿ † ‡

    PubMed Central

    Su, Hsun-Cheng; Ramkissoon, Kevin; Doolittle, Janet; Clark, Martha; Khatun, Jainab; Secrest, Ashley; Wolfgang, Matthew C.; Giddings, Morgan C.

    2010-01-01

    Microbes have developed resistance to nearly every antibiotic, yet the steps leading to drug resistance remain unclear. Here we report a multistage process by which Pseudomonas aeruginosa acquires drug resistance following exposure to ciprofloxacin at levels ranging from 0.5× to 8× the initial MIC. In stage I, susceptible cells are killed en masse by the exposure. In stage II, a small, slow to nongrowing population survives antibiotic exposure that does not exhibit significantly increased resistance according to the MIC measure. In stage III, exhibited at 0.5× to 4× the MIC, a growing population emerges to reconstitute the population, and these cells display heritable increases in drug resistance of up to 50 times the original level. We studied the stage III cells by proteomic methods to uncover differences in the regulatory pathways that are involved in this phenotype, revealing upregulation of phosphorylation on two proteins, succinate-semialdehyde dehydrogenase (SSADH) and methylmalonate-semialdehyde dehydrogenase (MMSADH), and also revealing upregulation of a highly conserved protein of unknown function. Transposon disruption in the encoding genes for each of these targets substantially dampened the ability of cells to develop the stage III phenotype. Considering these results in combination with computational models of resistance and genomic sequencing results, we postulate that stage III heritable resistance develops from a combination of both genomic mutations and modulation of one or more preexisting cellular pathways. PMID:20696867

  6. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development.

    PubMed

    Lu, Cecilia S; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-09-26

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.

  7. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development

    PubMed Central

    Lu, Cecilia S.; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-01-01

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins. PMID:25135978

  8. Stem cell implantation for osteonecrosis of the femoral head.

    PubMed

    Lim, Young Wook; Kim, Yong Sik; Lee, Jong Wook; Kwon, Soon Yong

    2013-11-15

    What is the most effective treatment for the early stages of osteonecrosis of the femoral head? We assessed multiple drilling and stem cell implantation to treat the early stages of osteonecrosis of the femoral head. We report the clinical and radiological results of stem cell implantation and core decompression. In total, 128 patients (190 hips) who had undergone surgery were divided into two groups based on which treatment they had received: (1) multiple drilling and stem cell implantation or (2) core decompression, curettage and a bone graft. The clinical and radiographic results of the two groups were compared. At 5-year follow-up, in the stem cell implantation group, 64.3% (27/42) of the patients with Stage IIa disease, 56.7% (21/37) of the patients with Stage IIb disease and 42.9% (21/49) of the patients with Stage III disease had undergone no additional surgery. In the conventional core decompression group, 64.3% (9/14) of the patients with Stage IIa disease, 55.6% (5/9) of the patients with Stage IIb disease and 37.5% (3/8) of the patients with Stage III disease had undergone no additional surgery. Success rates were higher in patients with Ficat Stage I or II lesions than in those with Stage III lesions. There were no statistically significant differences between the groups in terms of success rate or in the clinical and radiographic results of the two methods. Essentially the same results were found with stem cell implantation as with the conventional method of core decompression.

  9. Bryostatin and Vincristine in B-Cell Malignancies

    ClinicalTrials.gov

    2013-01-10

    Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Multiple Myeloma

  10. [Analysis of optimal plan of multiple acupuncture manipulations for shoulder pain after stroke at different stages].

    PubMed

    Chen, Dachun; Gao, Jianyu; Chen, Lu; Hao, Zhuanzhuan; Fan, Gangqi

    2015-12-01

    To observe the effects between acupuncture combined with rehabilitation and simple rehabilitation for shoulder pain after stroke, and to select the best plan of acupuncture manipulations at different stages by orthogonal design. Ninety patients were treated with comprehensive rehabilitation, and nine cases without acupuncture were arranged into a control group. Eighty-one patients of orthogonal design were applied by acupuncture with the same acupoints and course. The VAS score and its weighted value were regarded as the observation indices,and the effects between the acupuncture group and the control group were compared. The optimal plans of acupuncture manipulations of the early stage and the later stage were chosen after the first course treatment and the third course treatment separately. The acupuncture depth (factor A:A: shallow depth less than 25 mm, A(II): modest depth 25-40 mm, A(III): deep depth 40-50 mm), the acupuncture angle (factor B:B(I): perpendicular insertion, B(II): horizontal insertion, B(III): oblique insertion), needle manipulated frequency (factor C: C(I): zero time, C(II): one time, C(III): three times) and needle retained time(factor D:D(I):20 min, D(II): 30 min, D(III): 60 min) were studied. The differences among all factors and the diversity among major factors at different stages were analyzed. (1) Acupuncture combined with rehabilitation at the early and the later stage acquired better improvement than simple rehabilitation (all P < 0.01). (2) The optimal acupuncture manipulation plan at the early stage was A(III) B(III) C(I) D(I), which was deep acupuncture and oblique insertion for 20 min with zero-time manipulation; the optimal acupuncture manipulation plan at the later stage was A(III) B(III) C(III) D(I), which was deep acupuncture and oblique insertion for 20 min with three-time manipulation. (3) There was significance for acupuncture depth and angle at the early stage (both P < 0.01) and there was significance for insertion depth, acupuncture angle and manipulating frequency at the later stage (all P < 0.05). (4) At the early stage, the insertion depth was statistically significant between A(I) and A(II), A(I) and A(III), A(II) and A(III) (P < 0.05, P < 0.01), and the statistical significance was existed between B(I) and B(III) (P < 0.01). At the later stage, the insertion depth was statistically significant between A(I) and A(III), A(III) and A(II), A(I) and A(II) (P < 0.05, P < 0.01), and the statistical significance was existed between C(I) and C(III), C(II) and C(III) (P < 0.05). Acupuncture combined with rehabilitation acquire apparent effect for shoulder pain after stroke. At the early stage,the optimal plan is deep and oblique insertion for 20 min with zero-time manipulation. At the later stage, the best plan is deep and oblique insertion for 20 min with 3-time manipulation.

  11. Fludarabine Phosphate, Melphalan, Total-Body Irradiation, Donor Stem Cell Transplant in Treating Patients With Hematologic Cancer or Bone Marrow Failure Disorders

    ClinicalTrials.gov

    2017-11-29

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fanconi Anemia; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  12. Alemtuzumab, Fludarabine Phosphate, and Low-Dose Total Body Irradiation Before Donor Stem Cell Transplantation in Treating Patients With Hematological Malignancies

    ClinicalTrials.gov

    2018-05-24

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenström Macroglobulinemia

  13. A Pilot Study to Evaluate the Co-Infusion of Ex Vivo Expanded Cord Blood Cells With an Unmanipulated Cord Blood Unit in Patients Undergoing Cord Blood Transplant for Hematologic Malignancies

    ClinicalTrials.gov

    2015-02-10

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  14. Analysis of Prognostic Factors and Patterns of Recurrence in Patients With Pathologic Stage III Endometrial Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Samir; Portelance, Lorraine; Gilbert, Lucy

    2007-08-01

    Purpose: To retrospectively assess prognostic factors and patterns of recurrence in patients with pathologic Stage III endometrial cancer. Methods and Materials: Between 1989 and 2003, 107 patients with pathologic International Federation of Gynecology and Obstetrics Stage III endometrial adenocarcinoma confined to the pelvis were treated at our institution. Adjuvant radiotherapy (RT) was delivered to 68 patients (64%). The influence of multiple patient- and treatment-related factors on pelvic and distant control and overall survival (OS) was evaluated. Results: Median follow-up for patients at risk was 41 months. Five-year actuarial OS was significantly improved in patients treated with adjuvant RT (68%) comparedmore » with those with resection alone (50%; p = 0.029). Age, histology, grade, uterine serosal invasion, adnexal involvement, number of extrauterine sites, and treatment with adjuvant RT predicted for improved survival in univariate analysis. Multivariate analysis revealed that grade, uterine serosal invasion, and treatment with adjuvant RT were independent predictors of survival. Five-year actuarial pelvic control was improved significantly with the delivery of adjuvant RT (74% vs. 49%; p = 0.011). Depth of myometrial invasion and treatment with adjuvant RT were independent predictors of pelvic control in multivariate analysis. Conclusions: Multiple prognostic factors predicting for the outcome of pathologic Stage III endometrial cancer patients were identified in this analysis. In particular, delivery of adjuvant RT seems to be a significant independent predictor for improved survival and pelvic control, suggesting that pelvic RT should be routinely considered in the management of these patients.« less

  15. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhimin; Tan, Hongqi; Liu, Yingdong; Li, Chao

    2018-03-01

    The Lala Fe-Cu deposit is one of the largest iron oxide-copper-gold (IOCG) deposits in the Kangdian copper belt, southwest China. The paragenetic sequence of the Lala deposit includes six hydrothermal stages: pre-ore pervasive Na alteration (I); magnetite stage with K-feldspar and apatite (II); polymetallic disseminated/massive magnetite-sulfide stage (III); banded magnetite-sulfide stage (IV); sulfide vein stage (V); and late quartz-carbonate vein stage (VI). Fifteen molybdenite separates from stages III to VI were analyzed for Re-Os dating. Our new Re-Os data, together with previous studies, identify four distinct hydrothermal events at the Lala deposit. Molybdenite from the stage III disseminated to massive chalcopyrite-magnetite ores yielded a weighted average Re-Os age of 1306 ± 8 Ma (MSWD = 1.1, n = 6) which represents the timing of main ore formation. Molybdenite from the stage IV-banded magnetite-chalcopyrite ores yielded a weighted average Re-Os age of 1086 ± 8 Ma (MSWD = 2.2, n = 7), i.e., a second ore-forming event. Molybdenite from the stage V sulfide veins yielded a weighted average Re-Os age of 988 ± 8 Ma (MSWD = 1.3, n = 7) which represents the timing of a third hydrothermal event. Molybdenite from the quartz-carbonate veins (stage VI) yielded a weighted average Re-Os age at 835 ± 4 Ma (MSWD = 0.66, n = 10) and documented the timing of a late hydrothermal event. Our results indicate that the Lala deposit formed during multiple, protracted mineralization events over several hundred million years. The first three Mesoproterozoic mineralization events are coeval with intra-continental rifting (breakup of the supercontinent Nuna) and share a temporal link to other IOCG-style deposits within the Kangdian Copper Belt, and the last Neoproterozoic hydrothermal event is coeval with the Sibao orogeny which culminated with the amalgamation of the Yangtze Block with the Cathaysia Block at 860-815 Ma.

  16. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients.

    PubMed

    Dienstmann, Rodrigo; Salazar, Ramon; Tabernero, Josep

    2015-06-01

    For more than three decades, postoperative chemotherapy-initially fluoropyrimidines and more recently combinations with oxaliplatin-has reduced the risk of tumor recurrence and improved survival for patients with resected colon cancer. Although universally recommended for patients with stage III disease, there is no consensus about the survival benefit of postoperative chemotherapy in stage II colon cancer. The most recent adjuvant clinical trials have not shown any value for adding targeted agents, namely bevacizumab and cetuximab, to standard chemotherapies in stage III disease, despite improved outcomes in the metastatic setting. However, biomarker analyses of multiple studies strongly support the feasibility of refining risk stratification in colon cancer by factoring in molecular characteristics with pathologic tumor staging. In stage II disease, for example, microsatellite instability supports observation after surgery. Furthermore, the value of BRAF or KRAS mutations as additional risk factors in stage III disease is greater when microsatellite status and tumor location are taken into account. Validated predictive markers of adjuvant chemotherapy benefit for stage II or III colon cancer are lacking, but intensive research is ongoing. Recent advances in understanding the biologic hallmarks and drivers of early-stage disease as well as the micrometastatic environment are expected to translate into therapeutic strategies tailored to select patients. This review focuses on the pathologic, molecular, and gene expression characterizations of early-stage colon cancer; new insights into prognostication; and emerging predictive biomarkers that could ultimately help define the optimal adjuvant treatments for patients in routine clinical practice. © 2015 by American Society of Clinical Oncology.

  17. Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-02-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Renal Cell Carcinoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  18. An important discovery on combination of irreversible electroporation and allogeneic natural killer cell immunotherapy for unresectable pancreatic cancer

    PubMed Central

    Liang, Shuzhen; Wang, Xiaohua; Liang, Yinqing; Zhang, Mingjie; Chen, Jibing; Niu, Lizhi; Xu, Kecheng

    2017-01-01

    Purpose To study the safety and clinical efficacy on combination of irreversible electroporation and allogeneic natural killer cell therapy for treating Stage III/IV pancreatic cancer, evaluating median progression free survival (PFS), and overall survival (OS). Results Adverse events of all patients were limited to grades 1 and 2, including local (mainly tussis 13.4%, nausea and emesis 7.1%, pain of puncture point 29.6% and duodenum and gastric retention 4.3%) and systemic (mainly fatigue 22.3%, fever 31.6%, and transient reduction of intraoperative blood pressure 25.1% and white cell count reduction 18.3%) reactions, fever was the most frequent. The serum amylase level at 24 h and 7 d after IRE was not significantly changed compared to those before IRE (P > 0.05). CA19–9 value was lower in IRE-NK group than in IRE at 1 month after treatment (P < 0.05). After a median follow-up of 7.4 months (3.6–11.2 months): in stage III group, median PFS was higher in IRE-NK group (9.3 months) than in IRE group (8.1 months, P = 0.0465), median OS was higher in IRE-NK (13.2 months) than in IRE (11.4 months, P = 0.0411), and median PFS was higher in who received multiple NK than single NK (9.8 months vs.8.1 months, P = 0.0423, respectively), median OS who received multiple NK was higher than single NK (13.9 months vs.12.3 months, P = 0.0524, respectively), the RR in IRE-NK (63.2%) was higher than in IRE (50.0%, P < 0.05); in stage IV group, median OS was higher in IRE-NK (9.8 months) than in IRE (8.7 months, P = 0.0397), the DCR in IRE-NK (66.7%) was higher than in IRE (42.9%, P < 0.05). Materials and Methods Between July 2016 and May 2017, we enrolled 71 patients who met the enrollment criteria. The patients were divided into stage III (32 patients, 17 patients received only IRE and 15 patients received IRE-NK (Irreversible electroporation- natural killer): 8 patients underwent a course of NK and 7 patients underwent ≥ 3 courses) and stage IV (39 patients, 22 patients received only IRE and 17 patients received IRE-NK: 9 patients underwent a course of NK and 8 patients underwent ≥ 3 courses). The safety and short-term effects were evaluated firstly, then the median PFS, median OS, response rate (RR) and disease control rate (DCR) were assessed. Conclusions Combination of irreversible electroporation and allogeneic natural killer cell immunotherapy significantly increased median PFS and median OS in stage III pancreatic cancer and extended the median OS of stage IV pancreatic cancer. Multiple allogeneic natural killer cells infusion was associated with better prognosis to stage III pancreatic cancer. PMID:29254205

  19. Investigations in the possibility of early detection of colorectal cancer by gas chromatography/triple-quadrupole mass spectrometry

    PubMed Central

    Kawana, Shuichi; Unno, Yumi; Sakai, Takero; Okamoto, Koji; Yamada, Yasuhide; Sudo, Kazuki; Yamaji, Taiki; Saito, Yutaka; Kanemitsu, Yukihide; Okita, Natsuko Tsuda; Saito, Hiroshi; Tsugane, Shoichiro; Azuma, Takeshi; Ojima, Noriyuki; Yoshida, Masaru

    2017-01-01

    In developed countries, the number of patients with colorectal cancer has been increasing, and colorectal cancer is one of the most common causes of cancer death. To improve the quality of life of colorectal cancer patients, it is necessary to establish novel screening methods that would allow early detection of colorectal cancer. We performed metabolome analysis of a plasma sample set from 282 stage 0/I/II colorectal cancer patients and 291 healthy volunteers using gas chromatography/triple-quadrupole mass spectrometry in an attempt to identify metabolite biomarkers of stage 0/I/II colorectal cancer. The colorectal cancer patients included patients with stage 0 (N=79), I (N=80), and II (N=123) in whom invasion and metastasis were absent. Our analytical system detected 64 metabolites in the plasma samples, and the levels of 29 metabolites differed significantly (Bonferroni-corrected p=0.000781) between the patients and healthy volunteers. Based on these results, a multiple logistic regression analysis of various metabolite biomarkers was carried out, and a stage 0/I/II colorectal cancer prediction model was established. The area under the curve, sensitivity, and specificity values of this model for detecting stage 0/I/II colorectal cancer were 0.996, 99.3%, and 93.8%, respectively. The model's sensitivity and specificity values for each disease stage were >90%, and surprisingly, its sensitivity for stage 0, specificity for stage 0, and sensitivity for stage II disease were all 100%. Our predictive model can aid early detection of colorectal cancer and has potential as a novel screening test for cases of colorectal cancer that do not involve lymph node or distant metastasis. PMID:28179577

  20. Investigations in the possibility of early detection of colorectal cancer by gas chromatography/triple-quadrupole mass spectrometry.

    PubMed

    Nishiumi, Shin; Kobayashi, Takashi; Kawana, Shuichi; Unno, Yumi; Sakai, Takero; Okamoto, Koji; Yamada, Yasuhide; Sudo, Kazuki; Yamaji, Taiki; Saito, Yutaka; Kanemitsu, Yukihide; Okita, Natsuko Tsuda; Saito, Hiroshi; Tsugane, Shoichiro; Azuma, Takeshi; Ojima, Noriyuki; Yoshida, Masaru

    2017-03-07

    In developed countries, the number of patients with colorectal cancer has been increasing, and colorectal cancer is one of the most common causes of cancer death. To improve the quality of life of colorectal cancer patients, it is necessary to establish novel screening methods that would allow early detection of colorectal cancer. We performed metabolome analysis of a plasma sample set from 282 stage 0/I/II colorectal cancer patients and 291 healthy volunteers using gas chromatography/triple-quadrupole mass spectrometry in an attempt to identify metabolite biomarkers of stage 0/I/II colorectal cancer. The colorectal cancer patients included patients with stage 0 (N=79), I (N=80), and II (N=123) in whom invasion and metastasis were absent. Our analytical system detected 64 metabolites in the plasma samples, and the levels of 29 metabolites differed significantly (Bonferroni-corrected p=0.000781) between the patients and healthy volunteers. Based on these results, a multiple logistic regression analysis of various metabolite biomarkers was carried out, and a stage 0/I/II colorectal cancer prediction model was established. The area under the curve, sensitivity, and specificity values of this model for detecting stage 0/I/II colorectal cancer were 0.996, 99.3%, and 93.8%, respectively. The model's sensitivity and specificity values for each disease stage were >90%, and surprisingly, its sensitivity for stage 0, specificity for stage 0, and sensitivity for stage II disease were all 100%. Our predictive model can aid early detection of colorectal cancer and has potential as a novel screening test for cases of colorectal cancer that do not involve lymph node or distant metastasis.

  1. Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; AIDS-related Peripheral/Systemic Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  2. Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma

    ClinicalTrials.gov

    2017-10-23

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia

  3. [Clinical patterns and stages of multiple organ failure in the elderly].

    PubMed

    Wang, S

    1990-05-01

    Multiple organ failure in the elderly (MOFE) is a new clinical syndrome different from multiple organ failure (MOF) caused by trauma occurring most often in young and mid-aged persons. The authors retrospectively analysed 158 cases of MOFE hospitalized in the past 12 years and commented on its definition, diagnostic criteria, clinical patterns and stages. The suggested definition of MOFE is the sequential 2 or more organs failure within a short period in the elderly patients (greater than or equal to 60 years old) with multiple organ chronic diseases in the presence of aging of organs and age-related malfunction. The most common precipitating factors are pulmonary infections and acute attack of chronic cardiac, cerebral and renal diseases. The interval between failures of various organs is mostly less than 10 days and seldom longer than 1 month. MOFE has 3 different patterns: rapid pattern with single phase; delayed pattern with two phases and recurrent pattern with multiple phase. In the last pattern the patients suffer from multiple attacks of multiple organ failure. It is only seen in MOFE, but not in MOF. The presentation of this particular pattern is related to the following facts: (1). A few organs or only the heart and lungs are involved. (2) Kidney, brain and hemopoietic system etc. usually with poor prognosis are not involved. (3) The age of patients are relatively younger. (4) More resuscitation experiences have been accumulated and better resuscitation measures are available. The clinical course of MOFE can be divided into 3 stages: prefailure stage (stage I), failure compensations stage (stage II) and decompensation stage (stage III).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Lenalidomide Maintenance Therapy After High Dose BEAM With or Without Rituximab

    ClinicalTrials.gov

    2018-01-13

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  5. Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  6. Acceptance and Commitment Therapy in Improving Well-Being in Patients With Stage III-IV Cancer and Their Partners

    ClinicalTrials.gov

    2018-02-06

    Malignant Female Reproductive System Neoplasm; Malignant Hepatobiliary Neoplasm; Partner; Stage III Breast Cancer; Stage III Cervical Cancer; Stage III Colorectal Cancer; Stage III Lung Cancer; Stage III Prostate Cancer; Stage III Skin Melanoma; Stage III Uterine Corpus Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Lung Carcinoma; Stage IIIA Skin Melanoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Lung Carcinoma; Stage IIIB Skin Melanoma; Stage IIIB Uterine Corpus Cancer; Stage IIIC Breast Cancer; Stage IIIC Colorectal Cancer; Stage IIIC Skin Melanoma; Stage IIIC Uterine Corpus Cancer; Stage IV Breast Cancer; Stage IV Cervical Cancer; Stage IV Colorectal Cancer; Stage IV Lung Cancer; Stage IV Prostate Cancer; Stage IV Skin Melanoma; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVA Colorectal Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Cervical Cancer; Stage IVB Colorectal Cancer; Stage IVB Uterine Corpus Cancer

  7. Stereotactic Radiosurgery Using CyberKnife in Treating Women With Advanced or Recurrent Gynecological Malignancies

    ClinicalTrials.gov

    2013-09-27

    Fallopian Tube Cancer; Ovarian Sarcoma; Ovarian Stromal Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Uterine Sarcoma; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IV Endometrial Carcinoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Uterine Sarcoma; Stage IV Vulvar Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer

  8. PXD101 and 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2013-05-15

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  9. Radiation Therapy With or Without Cisplatin in Treating Patients With Stage III-IV Squamous Cell Carcinoma of the Head and Neck Who Have Undergone Surgery

    ClinicalTrials.gov

    2017-12-07

    Head and Neck Squamous Cell Carcinoma; Laryngeal Squamous Cell Carcinoma, Spindle Cell Variant; Stage III Hypopharyngeal Squamous Cell Carcinoma; Stage III Laryngeal Squamous Cell Carcinoma; Stage III Laryngeal Verrucous Carcinoma; Stage III Oral Cavity Squamous Cell Carcinoma; Stage III Oral Cavity Verrucous Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Hypopharyngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Verrucous Carcinoma; Stage IVA Oral Cavity Squamous Cell Carcinoma; Stage IVA Oral Cavity Verrucous Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma

  10. Prognosis was not deteriorated by multiple primary cancers in esophageal cancer patients treated by radiotherapy

    PubMed Central

    Shirai, Katsuyuki; Tamaki, Yoshio; Kitamoto, Yoshizumi; Murata, Kazutoshi; Satoh, Yumi; Higuchi, Keiko; Ishikawa, Hitoshi; Nonaka, Tetsuo; Takahashi, Takeo; Nakano, Takashi

    2013-01-01

    Esophageal cancer patients are often associated with multiple primary cancers (MPC). The aim of this study is to evaluate the effect of MPC on prognosis in esophageal cancer patients treated by radiotherapy. Between 2001 and 2008, esophageal cancer patients treated by definitive radiotherapy at Gunma Cancer Center were retrospectively reviewed. Exclusion criteria were preoperative or postoperative radiotherapy, palliative radiotherapy, follow-up of <6 months, radiation dose of <50 Gy and no information on MPC. We analyzed 167 esophageal cancer patients and 56 (33.5%) were associated with MPC. Gastric cancer was the most frequent tumor (38.2%), followed by head and neck cancer (26.5%). Median follow-up time was 31.5 months (range 6.1–87.3 months). Patients with MPC included more stage I/II esophageal cancer than those without MPC (66.1% vs. 36.9%, P < 0.01). The 5-year overall survival rate for esophageal cancer with MPC was relatively better than those without MPC (46.1% vs. 26.7%), although the difference did not reach statistical significance in univariate analysis (P = 0.09). Stage I/II esophageal cancer patients had a significantly better overall survival than stage III/IV patients (P < 0.01). Among esophageal cancer patients with MPC, there was no difference in overall survival between antecedent and synchronous cancer (P = 0.59). Our study indicated that the prognosis of esophageal cancer patients treated by radiotherapy was primarily determined by the clinical stage itself, but not the presence of MPC. PMID:23381956

  11. Unbiased estimation in seamless phase II/III trials with unequal treatment effect variances and hypothesis-driven selection rules.

    PubMed

    Robertson, David S; Prevost, A Toby; Bowden, Jack

    2016-09-30

    Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform confirmatory analysis within a single trial. However, combining the data from both stages in the final analysis can induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased estimator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  12. Alvespimycin Hydrochloride in Treating Patients With Metastatic or Unresectable Solid Tumors

    ClinicalTrials.gov

    2013-04-09

    Male Breast Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Gastric Cancer; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Melanoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Ovarian Epithelial Cancer; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Colon Cancer; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Gastric Cancer; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Melanoma; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Melanoma; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Ovarian Epithelial Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  13. Evaluation of Revised International Staging System (R-ISS) for transplant-eligible multiple myeloma patients.

    PubMed

    González-Calle, Verónica; Slack, Abigail; Keane, Niamh; Luft, Susan; Pearce, Kathryn E; Ketterling, Rhett P; Jain, Tania; Chirackal, Sintosebastian; Reeder, Craig; Mikhael, Joseph; Noel, Pierre; Mayo, Angela; Adams, Roberta H; Ahmann, Gregory; Braggio, Esteban; Stewart, A Keith; Bergsagel, P Leif; Van Wier, Scott A; Fonseca, Rafael

    2018-04-06

    The International Myeloma Working Group has proposed the Revised International Staging System (R-ISS) for risk stratification of multiple myeloma (MM) patients. There are a limited number of studies that have validated this risk model in the autologous stem cell transplant (ASCT) setting. In this retrospective study, we evaluated the applicability and value for predicting survival of the R-ISS model in 134 MM patients treated with new agents and ASCT at the Mayo Clinic in Arizona and the University Hospital of Salamanca in Spain. The patients were reclassified at diagnosis according to the R-ISS: 44 patients (33%) had stage I, 75 (56%) had stage II, and 15 (11%) had stage III. After a median follow-up of 60 months, R-ISS assessed at diagnosis was an independent predictor for overall survival (OS) after ASCT, with median OS not reached, 111 and 37 months for R-ISS I, II and III, respectively (P < 0.001). We also found that patients belonging to R-ISS II and having high-risk chromosomal abnormalities (CA) had a significant shorter median OS than those with R-ISS II without CA: 70 vs. 111 months, respectively. Therefore, this study lends further support for the R-ISS as a reliable prognostic tool for estimating survival in transplant myeloma patients and suggests the importance of high-risk CA in the R-ISS II group.

  14. Genetic Testing Plus Irinotecan in Treating Patients With Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2013-01-23

    AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific

  15. Erlotinib Hydrochloride and Radiation Therapy in Stage III-IV Squamous Cell Cancer of the Head and Neck

    ClinicalTrials.gov

    2012-10-30

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  16. Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu

    ClinicalTrials.gov

    2013-02-27

    Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Skin Metastases; Small Intestine Adenocarcinoma; Somatostatinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Adrenocortical Carcinoma; Stage III Bladder Cancer; Stage III Cervical Cancer; Stage III Colon Cancer; Stage III Endometrial Carcinoma; Stage III Esophageal Cancer; Stage III Follicular Thyroid Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Pancreatic Cancer; Stage III Papillary Thyroid Cancer; Stage III Prostate Cancer; Stage III Rectal Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Anal Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Anal Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Adrenocortical Carcinoma; Stage IV Anal Cancer; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Gastric Cancer; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Papillary Thyroid Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Urethral Cancer Associated With Invasive Bladder Cancer; WDHA Syndrome

  17. Self-Advocacy Serious Game in Advanced Cancer

    ClinicalTrials.gov

    2018-04-05

    Ovarian Cancer Stage III; Ovarian Cancer Stage IV; Breast Cancer Stage IV; Cervical Cancer Stage IIIB; Cervical Cancer Stage IVA; Cervical Cancer Stage IVB; Endometrial Cancer Stage III; Endometrial Cancer Stage IV; Vulvar Cancer, Stage III; Vulvar Cancer, Stage IV; Vaginal Cancer Stage III; Vaginal Cancer Stage IVA; Vaginal Cancer Stage IVB

  18. RO4929097 and Capecitabine in Treating Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2014-11-06

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; HER2-negative Breast Cancer; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Male Breast Cancer; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Rectal Cancer; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Colon Cancer; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Rectal Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Rectal Cancer; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  19. Cost analysis of surgically treated pressure sores stage III and IV.

    PubMed

    Filius, A; Damen, T H C; Schuijer-Maaskant, K P; Polinder, S; Hovius, S E R; Walbeehm, E T

    2013-11-01

    Health-care costs associated with pressure sores are significant and their financial burden is likely to increase even further. The aim of this study was to analyse the direct medical costs of hospital care for surgical treatment of pressure sores stage III and IV. We performed a retrospective chart study of patients who were surgically treated for stage III and IV pressure sores between 2007 and 2010. Volumes of health-care use were obtained for all patients and direct medical costs were subsequently calculated. In addition, we evaluated the effect of location and number of pressure sores on total costs. A total of 52 cases were identified. Average direct medical costs in hospital were €20,957 for the surgical treatment of pressure sores stage III or IV; average direct medical costs for patients with one pressure sore on an extremity (group 1, n = 5) were €30,286, €10,113 for patients with one pressure sore on the trunk (group 2, n = 32) and €40,882 for patients with multiple pressure sores (group 3, n = 15). The additional costs for patients in group 1 and group 3 compared to group 2 were primarily due to longer hospitalisation. The average direct medical costs for surgical treatment of pressure sores stage III and IV were high. Large differences in costs were related to the location and number of pressure sores. Insight into the distribution of these costs allows identification of high-risk patients and enables the development of specific cost-reducing measures. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Erlotinib and Cetuximab With or Without Bevacizumab in Treating Patients With Metastatic or Unresectable Kidney, Colorectal, Head and Neck, Pancreatic, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2014-06-10

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Colon Cancer; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  1. Cisplatin and Radiation Therapy With or Without Erlotinib Hydrochloride in Treating Patients With Stage III or Stage IV Head and Neck Cancer

    ClinicalTrials.gov

    2013-05-08

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx

  2. Rituximab and Oblimersen in Treating Patients With Stage II, Stage III, or Stage IV Follicular Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-01-04

    Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma

  3. Radiation Therapy With Cisplatin, Docetaxel, or Cetuximab After Surgery in Treating Patients With Stage III-IV Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2017-05-18

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  4. Vaccine Therapy in Treating Patients With Colorectal, Stomach, or Pancreatic Cancer

    ClinicalTrials.gov

    2017-07-28

    Recurrent Colon Cancer; Recurrent Gastric Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer

  5. Bevacizumab, Fluorouracil, and Hydroxyurea Plus Radiation Therapy in Treating Patients With Advanced Head and Neck Cancer

    ClinicalTrials.gov

    2013-02-06

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  6. A Type III Protein Arginine Methyltransferase from the Protozoan Parasite Trypanosoma brucei*

    PubMed Central

    Fisk, John C.; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G.; Read, Laurie K.

    2009-01-01

    Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle. PMID:19254949

  7. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei.

    PubMed

    Fisk, John C; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G; Read, Laurie K

    2009-04-24

    Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle.

  8. Cabozantinib-s-malate and Nivolumab With or Without Ipilimumab in Treating Patients With Metastatic Genitourinary Tumors

    ClinicalTrials.gov

    2018-04-02

    Clear Cell Renal Cell Carcinoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Penile Carcinoma; Renal Pelvis Urothelial Carcinoma; Squamous Cell Carcinoma of the Penis; Stage III Bladder Adenocarcinoma AJCC v6 and v7; Stage III Bladder Squamous Cell Carcinoma AJCC v6 and v7; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Penile Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IIIa Penile Cancer AJCC v7; Stage IIIb Penile Cancer AJCC v7; Stage IV Bladder Adenocarcinoma AJCC v7; Stage IV Bladder Squamous Cell Carcinoma AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Penile Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma

  9. Blood Sample Markers of Reproductive Hormones in Assessing Ovarian Reserve in Younger Patients With Newly Diagnosed Lymphomas

    ClinicalTrials.gov

    2018-03-02

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  10. Cetuximab and Radiation Therapy in Treating Patients With Stage III-IV Head and Neck Cancer

    ClinicalTrials.gov

    2017-11-15

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Tongue Cancer

  11. Gefitinib and Radiation Therapy With or Without Cisplatin in Treating Patients With Stage III or Stage IV Head and Neck Cancer

    ClinicalTrials.gov

    2013-01-24

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx

  12. A Validated Prediction Model for Overall Survival From Stage III Non-Small Cell Lung Cancer: Toward Survival Prediction for Individual Patients.

    PubMed

    Oberije, Cary; De Ruysscher, Dirk; Houben, Ruud; van de Heuvel, Michel; Uyterlinde, Wilma; Deasy, Joseph O; Belderbos, Jose; Dingemans, Anne-Marie C; Rimner, Andreas; Din, Shaun; Lambin, Philippe

    2015-07-15

    Although patients with stage III non-small cell lung cancer (NSCLC) are homogeneous according to the TNM staging system, they form a heterogeneous group, which is reflected in the survival outcome. The increasing amount of information for an individual patient and the growing number of treatment options facilitate personalized treatment, but they also complicate treatment decision making. Decision support systems (DSS), which provide individualized prognostic information, can overcome this but are currently lacking. A DSS for stage III NSCLC requires the development and integration of multiple models. The current study takes the first step in this process by developing and validating a model that can provide physicians with a survival probability for an individual NSCLC patient. Data from 548 patients with stage III NSCLC were available to enable the development of a prediction model, using stratified Cox regression. Variables were selected by using a bootstrap procedure. Performance of the model was expressed as the c statistic, assessed internally and on 2 external data sets (n=174 and n=130). The final multivariate model, stratified for treatment, consisted of age, gender, World Health Organization performance status, overall treatment time, equivalent radiation dose, number of positive lymph node stations, and gross tumor volume. The bootstrapped c statistic was 0.62. The model could identify risk groups in external data sets. Nomograms were constructed to predict an individual patient's survival probability (www.predictcancer.org). The data set can be downloaded at https://www.cancerdata.org/10.1016/j.ijrobp.2015.02.048. The prediction model for overall survival of patients with stage III NSCLC highlights the importance of combining patient, clinical, and treatment variables. Nomograms were developed and validated. This tool could be used as a first building block for a decision support system. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Fosaprepitant Dimeglumine, Palonosetron Hydrochloride, and Dexamethasone in Preventing Nausea and Vomiting Caused by Cisplatin in Patients With Stage III or Stage IV Head and Neck Cancer Undergoing Chemotherapy and Radiation Therapy

    ClinicalTrials.gov

    2017-04-13

    Nausea and Vomiting; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx

  14. Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2015-06-30

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult Hepatocellular Carcinoma; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Adult Solid Neoplasm; Adult T Acute Lymphoblastic Leukemia; Advanced Adult Hepatocellular Carcinoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Localized Non-Resectable Adult Liver Carcinoma; Localized Resectable Adult Liver Carcinoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Progressive Hairy Cell Leukemia Initial Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Liver Carcinoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides and Sezary Syndrome; Stage IIIB Mycosis Fungoides and Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides and Sezary Syndrome; Stage IVB Mycosis Fungoides and Sezary Syndrome; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenstrom Macroglobulinemia

  15. Temsirolimus and Vinorelbine Ditartrate in Treating Patients With Unresectable or Metastatic Solid Tumors

    ClinicalTrials.gov

    2016-06-09

    Extensive Stage Small Cell Lung Cancer; Hereditary Paraganglioma; Male Breast Cancer; Malignant Paraganglioma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pheochromocytoma; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Small Cell Lung Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Regional Pheochromocytoma; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage III Uterine Sarcoma; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Endometrial Carcinoma; Stage IV Neuroendocrine Carcinoma of the Skin; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Thyroid Gland Medullary Carcinoma

  16. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    ClinicalTrials.gov

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  17. Lenalidomide and Combination Chemotherapy (DA-EPOCH-R) in Treating Patients With MYC-Associated B-Cell Lymphomas

    ClinicalTrials.gov

    2017-09-28

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  18. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2012-07-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Small Lymphocytic Lymphoma

  19. Lenalidomide And Rituximab as Maintenance Therapy in Treating Patients With B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-11-25

    Adult Non-Hodgkin Lymphoma; Adult Grade III Lymphomatoid Granulomatosis; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  20. IGFBP-2 Vaccine and Combination Chemotherapy in Treating Patients With Stage III-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer Undergoing Surgery

    ClinicalTrials.gov

    2018-05-01

    Stage III Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  1. Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2015-08-12

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  2. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by CART19

    ClinicalTrials.gov

    2016-01-26

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  3. Prognostic factors in multiple myeloma: selection using Cox's proportional hazard model.

    PubMed

    Pasqualetti, P; Collacciani, A; Maccarone, C; Casale, R

    1996-01-01

    The pretreatment characteristics of 210 patients with multiple myeloma, observed between 1980 and 1994, were evaluated as potential prognostic factors for survival. Multivariate analysis according to Cox's proportional hazard model identified in the 160 dead patients with myeloma, among 26 different single prognostic variables, the following factors in order of importance: beta 2-microglobulin; bone marrow plasma cell percentage, hemoglobinemia, degree of lytic bone lesions, serum creatinine, and serum albumin. By analysis of these variables a prognostic index (PI), that considers the regression coefficients derived by Cox's model of all significant factors, was obtained. Using this it was possible to separate the whole patient group into three stages: stage I (PI < 1.485, 67 patients), stage II (PI: 1.485-2.090, 76 patients), and stage III (PI > 2.090, 67 patients), with a median survivals of 68, 36 and 13 months (P < 0.0001), respectively. Also the responses to therapy (P < 0.0001) and the survival curves (P < 0.00001) presented significant differences among the three subgroups. Knowledge of these factors could be of value in predicting prognosis and in planning therapy in patients with multiple myeloma.

  4. Health Care Coach Support in Reducing Acute Care Use and Cost in Patients With Cancer

    ClinicalTrials.gov

    2017-05-12

    Acute Myeloid Leukemia; Brain Glioblastoma; Estrogen Receptor Negative; Extensive Stage Small Cell Lung Carcinoma; Head and Neck Carcinoma; HER2/Neu Negative; Hormone-Resistant Prostate Cancer; Limited Stage Small Cell Lung Carcinoma; Myelodysplastic Syndrome; Progesterone Receptor Negative; Progressive Disease; Recurrent Carcinoma; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage IIA Pancreatic Cancer; Stage IIA Rectal Cancer; Stage IIB Pancreatic Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage III Colon Cancer; Stage III Esophageal Cancer; Stage III Gastric Cancer; Stage III Non-Small Cell Lung Cancer; Stage III Ovarian Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Skin Melanoma; Stage IIIA Colon Cancer; Stage IIIA Esophageal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Colon Cancer; Stage IIIB Esophageal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Colon Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Bone Sarcoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IV Soft Tissue Sarcoma; Stage IVA Bone Sarcoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Bone Sarcoma; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Triple-Negative Breast Carcinoma

  5. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group

    PubMed Central

    Palumbo, Antonio; Avet-Loiseau, Hervé; Oliva, Stefania; Lokhorst, Henk M.; Goldschmidt, Hartmut; Rosinol, Laura; Richardson, Paul; Caltagirone, Simona; Lahuerta, Juan José; Facon, Thierry; Bringhen, Sara; Gay, Francesca; Attal, Michel; Passera, Roberto; Spencer, Andrew; Offidani, Massimo; Kumar, Shaji; Musto, Pellegrino; Lonial, Sagar; Petrucci, Maria T.; Orlowski, Robert Z.; Zamagni, Elena; Morgan, Gareth; Dimopoulos, Meletios A.; Durie, Brian G.M.; Anderson, Kenneth C.; Sonneveld, Pieter; San Miguel, Jésus; Cavo, Michele; Rajkumar, S. Vincent; Moreau, Philippe

    2015-01-01

    Purpose The clinical outcome of multiple myeloma (MM) is heterogeneous. A simple and reliable tool is needed to stratify patients with MM. We combined the International Staging System (ISS) with chromosomal abnormalities (CA) detected by interphase fluorescent in situ hybridization after CD138 plasma cell purification and serum lactate dehydrogenase (LDH) to evaluate their prognostic value in newly diagnosed MM (NDMM). Patients and Methods Clinical and laboratory data from 4,445 patients with NDMM enrolled onto 11 international trials were pooled together. The K-adaptive partitioning algorithm was used to define the most appropriate subgroups with homogeneous survival. Results ISS, CA, and LDH data were simultaneously available in 3,060 of 4,445 patients. We defined the following three groups: revised ISS (R-ISS) I (n = 871), including ISS stage I (serum β2-microglobulin level < 3.5 mg/L and serum albumin level ≥ 3.5 g/dL), no high-risk CA [del(17p) and/or t(4;14) and/or t(14;16)], and normal LDH level (less than the upper limit of normal range); R-ISS III (n = 295), including ISS stage III (serum β2-microglobulin level > 5.5 mg/L) and high-risk CA or high LDH level; and R-ISS II (n = 1,894), including all the other possible combinations. At a median follow-up of 46 months, the 5-year OS rate was 82% in the R-ISS I, 62% in the R-ISS II, and 40% in the R-ISS III groups; the 5-year PFS rates were 55%, 36%, and 24%, respectively. Conclusion The R-ISS is a simple and powerful prognostic staging system, and we recommend its use in future clinical studies to stratify patients with NDMM effectively with respect to the relative risk to their survival. PMID:26240224

  6. Active Surveillance, Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients With Germ Cell Tumors

    ClinicalTrials.gov

    2017-06-02

    Adult Germ Cell Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Germ Cell Tumor; Extragonadal Embryonal Carcinoma; Grade 2 Immature Ovarian Teratoma; Grade 3 Immature Ovarian Teratoma; Malignant Germ Cell Tumor; Stage I Ovarian Choriocarcinoma; Stage I Ovarian Embryonal Carcinoma; Stage I Ovarian Teratoma; Stage I Ovarian Yolk Sac Tumor; Stage I Testicular Choriocarcinoma; Stage I Testicular Embryonal Carcinoma; Stage I Testicular Yolk Sac Tumor; Stage II Ovarian Choriocarcinoma; Stage II Ovarian Embryonal Carcinoma; Stage II Ovarian Yolk Sac Tumor; Stage II Testicular Choriocarcinoma; Stage II Testicular Embryonal Carcinoma; Stage II Testicular Yolk Sac Tumor; Stage III Ovarian Choriocarcinoma; Stage III Ovarian Embryonal Carcinoma; Stage III Ovarian Yolk Sac Tumor; Stage III Testicular Choriocarcinoma; Stage III Testicular Embryonal Carcinoma; Stage III Testicular Yolk Sac Tumor; Stage IV Ovarian Choriocarcinoma; Stage IV Ovarian Embryonal Carcinoma; Stage IV Ovarian Yolk Sac Tumor; Testicular Mixed Choriocarcinoma and Embryonal Carcinoma; Testicular Mixed Choriocarcinoma and Teratoma; Testicular Mixed Choriocarcinoma and Yolk Sac Tumor

  7. Selenomethionine in Reducing Mucositis in Patients With Locally Advanced Head and Neck Cancer Who Are Receiving Cisplatin and Radiation Therapy

    ClinicalTrials.gov

    2014-08-08

    Chemotherapeutic Agent Toxicity; Mucositis; Radiation Toxicity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Xerostomia

  8. Genetically Engineered Lymphocyte Therapy in Treating Patients With Lymphoma That is Resistant or Refractory to Chemotherapy

    ClinicalTrials.gov

    2015-09-27

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  9. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by Tandem CAR T Cells Targeting CD19 and CD20

    ClinicalTrials.gov

    2017-03-26

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  10. Competitive Transfer of αCD19-TCRz-CD28 and αCD19-TCRz-CD137 CAR-T Cells for B-cell Leukemia/Lymphoma

    ClinicalTrials.gov

    2017-03-14

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  11. CART19 to Treat B-Cell Leukemia or Lymphoma That Are Resistant or Refractory to Chemotherapy

    ClinicalTrials.gov

    2017-11-07

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  12. Comparison of masticatory performance and tongue pressure between children and young adults.

    PubMed

    Fujita, Yuko; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi

    2018-04-01

    The aims of the present study were to evaluate whether there are significant differences in masticatory performance by gender and dental stage. We also determined the factors directly associated with the masticatory performance in children, and those directly associated with masticatory performance in young adults. The study included 180 subjects, ranging in age from 6 to 12 years or 20 to 33 years. The subjects were divided into three groups according to the Hellman developmental stage (III A, III B, or VA); the groups were the subdivided according to gender. The body mass index (BMI), maximum tongue pressure, and sum of decayed, missing, and filled teeth (DMFT) were determined in all subjects. To investigate masticatory performance, the total number and maximum projected area of chewed particles of the jelly materials were measured. Masticatory performance had the highest values at Stage VA in both males and females. Regarding the maximum tongue pressure in females, Stage III B had the highest value of all stages. Multiple regression analysis showed that masticatory performance was associated with DMFT index, maximum tongue pressure, and BMI in children. Among young adults, masticatory performance was associated with DMFT index and maximum tongue pressure. Better masticatory performance is directly associated with better dental status, a higher BMI, and tongue pressure in schoolchildren. Additionally, masticatory performance was well-correlated with tongue pressure in young adults, although maximum tongue pressure reached its peak before Stage VA in females. We suggest that females need training with respect to tongue pressure, by the mixed dentition stage.

  13. The Applicability of the International Staging System in Chinese Patients with Multiple Myeloma Receiving Bortezomib or Thalidomide-Based Regimens as Induction Therapy: A Multicenter Analysis

    PubMed Central

    Lu, Jing; Lu, Jin; Liu, Aijun; Fu, Weijun; Du, Juan; Huang, Xiaojun; Chen, Wenming; Hou, Jian

    2015-01-01

    The International Staging System (ISS) is the most important prognostic system for multiple myeloma (MM). It was identified in the era of conventional agents. The outcome of MM has significantly changed by novel agents. Thus the applicability of ISS system in the era of novel agents in Chinese patients needs to be demonstrated. We retrospectively analyzed the clinical outcomes and prognostic significance of ISS system in 1016 patients with newly diagnosed multiple myeloma in Chinese patients between 2008 and 2012, who received bortezomib- or thalidomide-based regimens as first-line therapy. The median overall survival (OS) of patients for ISS stages I/II/III was not reached/55.4 months/41.7 months (p < 0.001), and the median progression-free survival (PFS) was 30/29.5/25 months (p = 0.072), respectively. Statistically significant difference in survival was confirmed among three ISS stages in thalidomide-based group, but not between ISS stages I and II in bortezomib-based group. These findings suggest that ISS system can predict the survival in the era of novel agents in Chinese MM patients, and bortezomib may have the potential to partially overcome adverse effect of risk factors on survival, especially in higher stage of ISS system. PMID:26640799

  14. Pembrolizumab and XL888 in Patients With Advanced Gastrointestinal Cancer

    ClinicalTrials.gov

    2018-04-11

    Adenocarcinoma of the Gastroesophageal Junction; Colorectal Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Non-Resectable Hepatocellular Carcinoma; Recurrent Cholangiocarcinoma; Recurrent Colorectal Carcinoma; Recurrent Gastric Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Pancreatic Carcinoma; Recurrent Small Intestinal Carcinoma; Small Intestinal Adenocarcinoma; Stage III Colorectal Cancer; Stage III Gastric Cancer; Stage III Hepatocellular Carcinoma; Stage III Pancreatic Cancer; Stage III Small Intestinal Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Hepatocellular Carcinoma; Stage IIIA Small Intestinal Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Hepatocellular Carcinoma; Stage IIIB Small Intestinal Cancer; Stage IIIC Gastric Cancer; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Hepatocellular Carcinoma; Stage IV Pancreatic Cancer; Stage IV Small Intestinal Cancer; Stage IVA Colorectal Cancer; Stage IVA Hepatocellular Carcinoma; Stage IVA Pancreatic Cancer; Stage IVB Colorectal Cancer; Stage IVB Hepatocellular Carcinoma; Stage IVB Pancreatic Cancer; Unresectable Pancreatic Carcinoma; Unresectable Small Intestinal Carcinoma

  15. Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas

    ClinicalTrials.gov

    2015-04-28

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Epstein-Barr Virus Infection; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  16. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by Tandem CAR T Cells Targeting CD19 and CD22

    ClinicalTrials.gov

    2017-06-10

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-Cell Chronic Lymphocytic Leukemia in Relapse (Diagnosis); Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  17. Rituximab in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-09-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenström Macroglobulinemia

  18. Ganetespib Window of Opportunity Study in Head and Neck Cancers

    ClinicalTrials.gov

    2016-07-22

    Stage I Hypopharyngeal Squamous Cell Carcinoma; Stage I Laryngeal Squamous Cell Carcinoma; Stage I Oral Cavity Squamous Cell Carcinoma; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Hypopharyngeal Squamous Cell Carcinoma; Stage II Laryngeal Squamous Cell Carcinoma; Stage II Oral Cavity Squamous Cell Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Hypopharyngeal Squamous Cell Carcinoma; Stage III Laryngeal Squamous Cell Carcinoma; Stage III Oral Cavity Squamous Cell Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Hypopharyngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Squamous Cell Carcinoma; Stage IVA Oral Cavity Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma

  19. Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer

    ClinicalTrials.gov

    2014-04-21

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Malignant Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineocytoma; Malignant Neoplasm; Meningeal Melanocytoma; Radiation Toxicity; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  20. Paclitaxel and Carboplatin Before Radiation Therapy With Paclitaxel in Treating HPV-Positive Patients With Stage III-IV Oropharynx, Hypopharynx, or Larynx Cancer

    ClinicalTrials.gov

    2017-04-19

    Human Papilloma Virus Infection; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Larynx

  1. Parenteral Nutrition for Patients Treated for Locally Advanced Inoperable Tumors of the Head and Neck

    ClinicalTrials.gov

    2018-03-28

    Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Laryngeal Squamous Cell Carcinoma Stage III; Laryngeal Squamous Cell Carcinoma Stage IV; Oropharyngeal Squamous Cell Carcinoma Stage III; Oropharyngeal Squamous Cell Carcinoma Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV; Locally Advanced Malignant Neoplasm

  2. Administration of adjuvant chemotherapy for stage II-III colon cancer patients: An European population-based study.

    PubMed

    Babaei, Masoud; Balavarca, Yesilda; Jansen, Lina; Lemmens, Valery; van Erning, Felice N; van Eycken, Liesbet; Vaes, Evelien; Sjövall, Annika; Glimelius, Bengt; Ulrich, Cornelia M; Schrotz-King, Petra; Brenner, Hermann

    2018-04-01

    The advantage of adjuvant chemotherapy (ACT) for treating Stage III colon cancer patients is well established and widely accepted. However, many patients with Stage III colon cancer do not receive ACT. Moreover, there are controversies around the effectiveness of ACT for Stage II patients. We investigated the administration of ACT and its association with overall survival in resected Stage II (overall and stratified by low-/high-risk) and Stage III colon cancer patients in three European countries including The Netherlands (2009-2014), Belgium (2009-2013) and Sweden (2009-2014). Hazard ratios (HR) for death were obtained by Cox regression models adjusted for potential confounders. A total of 60244 resected colon cancer patients with pathological Stages II and III were analyzed. A small proportion (range 9-24%) of Stage II and over half (range 55-68%) of Stage III patients received ACT. Administration of ACT in Stages II and III tumors decreased with higher age of patients. Administration of ACT was significantly associated with higher overall survival in high-risk Stage II patients (in The Netherlands (HR; 95%CI = 0.82 (0.67-0.99), Belgium (0.73; 0.59-0.90) and Sweden (0.58; 0.44-0.75)), and in Stage III patients (in The Netherlands (0.47; 0.43-0.50), Belgium (0.46; 0.41-0.50) and Sweden (0.48; 0.43-0.54)). In Stage III, results were consistent across subgroups including elderly patients. Our results show an association of ACT with higher survival among Stage III and high-risk Stage II colon cancer patients. Further investigations are needed on the selection criteria of Stages II and III colon cancer patients for ACT. © 2017 UICC.

  3. Effects of Swallowing Exercises on Patients Undergoing Radiation Treatment for Head and Neck Cancer

    ClinicalTrials.gov

    2017-05-25

    Head and Neck Cancer; Stage I Hypopharyngeal Cancer; Stage I Laryngeal Cancer; Stage I Oropharyngeal Cancer; Stage II Hypopharyngeal Cancer; Stage II Laryngeal Cancer; Stage II Oropharyngeal Cancer; Stage III Hypopharyngeal Cancer; Stage III Laryngeal Cancer; Stage III Oropharyngeal Cancer; Stage IV Hypopharyngeal Cancer; Stage IV Laryngeal Cancer; Stage IV Oropharyngeal Cancer

  4. Intratumoral PV701 in Treating Patients With Advanced or Recurrent Unresectable Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-23

    Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberije, Cary, E-mail: cary.oberije@maastro.nl; De Ruysscher, Dirk; Universitaire Ziekenhuizen Leuven, KU Leuven

    Purpose: Although patients with stage III non-small cell lung cancer (NSCLC) are homogeneous according to the TNM staging system, they form a heterogeneous group, which is reflected in the survival outcome. The increasing amount of information for an individual patient and the growing number of treatment options facilitate personalized treatment, but they also complicate treatment decision making. Decision support systems (DSS), which provide individualized prognostic information, can overcome this but are currently lacking. A DSS for stage III NSCLC requires the development and integration of multiple models. The current study takes the first step in this process by developing andmore » validating a model that can provide physicians with a survival probability for an individual NSCLC patient. Methods and Materials: Data from 548 patients with stage III NSCLC were available to enable the development of a prediction model, using stratified Cox regression. Variables were selected by using a bootstrap procedure. Performance of the model was expressed as the c statistic, assessed internally and on 2 external data sets (n=174 and n=130). Results: The final multivariate model, stratified for treatment, consisted of age, gender, World Health Organization performance status, overall treatment time, equivalent radiation dose, number of positive lymph node stations, and gross tumor volume. The bootstrapped c statistic was 0.62. The model could identify risk groups in external data sets. Nomograms were constructed to predict an individual patient's survival probability ( (www.predictcancer.org)). The data set can be downloaded at (https://www.cancerdata.org/10.1016/j.ijrobp.2015.02.048). Conclusions: The prediction model for overall survival of patients with stage III NSCLC highlights the importance of combining patient, clinical, and treatment variables. Nomograms were developed and validated. This tool could be used as a first building block for a decision support system.« less

  6. Phase I Study of IMRT and Molecular-Image Guided Adaptive Radiation Therapy for Advanced HNSCC

    ClinicalTrials.gov

    2016-10-27

    Salivary Gland Squamous Cell Carcinoma; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  7. The proportion cured of patients diagnosed with Stage III-IV cutaneous malignant melanoma in Sweden 1990-2007: A population-based study.

    PubMed

    Eriksson, Hanna; Lyth, Johan; Andersson, Therese M-L

    2016-06-15

    The survival in cutaneous malignant melanoma (CMM) is highly dependent on the stage of the disease. Stage III-IV CMM patients are at high risk of relapse with a heterogeneous outcome, but not all experience excess mortality due to their disease. This group is referred to as the cure proportion representing the proportion of patients who experience the same mortality rate as the general population. The aim of this study was to estimate the cure proportion of patients diagnosed with Stage III-IV CMM in Sweden. From the population-based Swedish Melanoma Register, we included 856 patients diagnosed with primary Stage III-IV CMM, 1990-2007, followed-up through 2013. We used flexible parametric cure models to estimate cure proportions and median survival times (MSTs) of uncured by sex, age, tumor site, ulceration status (in Stage III patients) and disease stage. The standardized (over sex, age and site) cure proportion was lower in Stage IV CMMs (0.15, 95% CI 0.09-0.22) than non-ulcerated Stage III CMMs (0.48, 95% CI 0.41-0.55) with a statistically significant difference of 0.33 (95% CI = 0.24-0.41). Ulcerated Stage III CMMs had a cure proportion of 0.27 (95% CI 0.21-0.32) with a statistically significant difference compared to non-ulcerated Stage III CMMs (difference 0.21; 95% CI = 0.13-0.30). The standardized MST of uncured was approximately 9-10 months longer for non-ulcerated versus ulcerated Stage III CMMs. We could demonstrate a significantly better outcome in patients diagnosed with non-ulcerated Stage III CMMs compared to ulcerated Stage III CMMs and Stage IV disease after adjusting for age, sex and tumor site. © 2016 UICC.

  8. Dose Escalation Versus Standard in Laryngopharyngeal Cancers

    ClinicalTrials.gov

    2018-04-12

    Malignant Neoplasm of Oropharynx Stage III; Malignant Neoplasm of Larynx Stage III; Malignant Neoplasm of Hypopharynx Stage III; Malignant Neoplasm of Oropharynx Stage IVa; Malignant Neoplasm of Oropharynx Stage IVb; Malignant Neoplasm of Larynx Stage IV; Malignant Neoplasm of Hypopharynx Stage IVa; Malignant Neoplasm of Hypopharynx Stage IVb

  9. Soy Isoflavones in Preventing Head and Neck Cancer Recurrence in Patients With Stage I-IV Head and Neck Cancer Undergoing Surgery

    ClinicalTrials.gov

    2016-09-01

    Recurrent Hypopharyngeal Squamous Cell Carcinoma; Recurrent Laryngeal Squamous Cell Carcinoma; Recurrent Laryngeal Verrucous Carcinoma; Recurrent Lip and Oral Cavity Squamous Cell Carcinoma; Recurrent Oral Cavity Verrucous Carcinoma; Recurrent Oropharyngeal Squamous Cell Carcinoma; Stage I Hypopharyngeal Squamous Cell Carcinoma; Stage I Laryngeal Squamous Cell Carcinoma; Stage I Laryngeal Verrucous Carcinoma; Stage I Lip and Oral Cavity Squamous Cell Carcinoma; Stage I Oral Cavity Verrucous Carcinoma; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Hypopharyngeal Squamous Cell Carcinoma; Stage II Laryngeal Squamous Cell Carcinoma; Stage II Laryngeal Verrucous Carcinoma; Stage II Lip and Oral Cavity Squamous Cell Carcinoma; Stage II Oral Cavity Verrucous Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Hypopharyngeal Squamous Cell Carcinoma; Stage III Laryngeal Squamous Cell Carcinoma; Stage III Laryngeal Verrucous Carcinoma; Stage III Lip and Oral Cavity Squamous Cell Carcinoma; Stage III Oral Cavity Verrucous Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IV Hypopharyngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Verrucous Carcinoma; Stage IVA Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVA Oral Cavity Verrucous Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Tongue Carcinoma

  10. L-lysine in Treating Oral Mucositis in Patients Undergoing Radiation Therapy With or Without Chemotherapy For Head and Neck Cancer

    ClinicalTrials.gov

    2013-05-15

    Mucositis; Oral Complications of Chemotherapy; Oral Complications of Radiation Therapy; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Basal Cell Carcinoma of the Lip; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  11. Erlotinib, Docetaxel, and Radiation Therapy in Treating Patients With Locally Advanced Head and Neck Cancer

    ClinicalTrials.gov

    2014-06-05

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  12. Entolimod in Treating Patients With Stage III-IV Squamous Cell Head and Neck Cancer Receiving Cisplatin and Radiation Therapy

    ClinicalTrials.gov

    2013-12-10

    Mucositis; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  13. Sunitinib, Cetuximab, and Radiation Therapy in Treating Patients With Locally Advanced or Recurrent Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-07-01

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  14. VAC protocol for treatment of dogs with stage III hemangiosarcoma.

    PubMed

    Alvarez, Francisco J; Hosoya, Kenji; Lara-Garcia, Ana; Kisseberth, William; Couto, Guillermo

    2013-01-01

    Hemangiosarcomas (HSAs) are aggressive tumors with a high rate of metastasis. Clinical stage has been considered a negative prognostic factor for survival. The study authors hypothesized that the median survival time (MST) of dogs with metastatic (stage III) HSA treated with a vincristine, doxorubicin, and cyclophosphamide (VAC) chemotherapy protocol would not be different than those with stage I/II HSA. Sixty-seven dogs with HSA in different anatomic locations were evaluated retrospectively. All dogs received the VAC protocol as an adjuvant to surgery (n = 50), neoadjuvant (n = 3), or as the sole treatment modality (n = 14). There was no significant difference (P = 0.97) between the MST of dogs with stage III and stage I/II HSA. For dogs presenting with splenic HSA alone, there was no significant difference between the MST of dogs with stage III and stage I/II disease (P = 0.12). The overall response rate (complete response [CR] and partial response [PR]) was 86%). No unacceptable toxicities were observed. Dogs with stage III HSA treated with the VAC protocol have a similar prognosis to dogs with stage I/II HSA. Dogs with HSA and evidence of metastases at the time of diagnosis should not be denied treatment.

  15. Esophagoscopy in Evaluating Treatment in Patients With Stage I-IV Head and Neck Cancer Who Are Undergoing Radiation Therapy and/or Chemotherapy

    ClinicalTrials.gov

    2017-05-25

    Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  16. Results of multiple drilling compared with those of conventional methods of core decompression.

    PubMed

    Song, Won Seok; Yoo, Jeong Joon; Kim, Young-Min; Kim, Hee Joong

    2007-01-01

    We performed multiple drilling as a femoral head-preserving procedure for osteonecrosis of the femoral head thinking the therapeutic effects of core decompression could be achieved by this simpler procedure than core decompression. We retrospectively reviewed 136 patients (163 hips) who had multiple drilling using 9/64-inch Steinmann pins for treatment of nontraumatic osteonecrosis of the femoral head. The mean followup for patients who did not require additional surgery (113 hips) was 87 months (range, 60-134 months). We defined failure as the need for additional surgery or a Harris hip score less than 75. After a minimum 5-year followup, 79% (31/39) of patients with Stage I disease and 77% (62/81) of patients with Stage II disease had no additional surgery. All (15/15) small lesions (<25% involvement) and 84% (37/44) of medium-sized lesions (25-50% involvement) were considered successful. Survival rates of patients with Ficat Stages I or II lesions were greater than survival rates for patients with Stage III lesions. Hips with a large necrotic area had poor results. We had one instance of subtrochanteric fracture through drill entry holes. Multiple drilling is straightforward with few complications and produces results comparable to results of other core decompression techniques.

  17. Induction Chemotherapy With TP+5-FU or TP+Cetuximab Followed by Radioimmuptherapy for Locally Advanced or Not Resectable SCCHNN

    ClinicalTrials.gov

    2017-06-26

    Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Squamous Cell Carcinoma of the Larynx Stage III; Squamous Cell Carcinoma of the Larynx Stage IV; Squamous Cell Carcinoma of the Oropharynx Stage III; Squamous Cell Carcinoma of the Oropharynx Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV

  18. Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction

    ClinicalTrials.gov

    2018-04-02

    Glioma; Lymphoma; Metastatic Malignant Solid Neoplasm; Neuroendocrine Neoplasm; Recurrent Adult Soft Tissue Sarcoma; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Colorectal Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Melanoma; Recurrent Pancreatic Carcinoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Thyroid Gland Carcinoma; Refractory Chronic Lymphocytic Leukemia; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Refractory Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Breast Cancer AJCC v7; Stage III Colorectal Cancer AJCC v7; Stage III Cutaneous Melanoma AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Prostate Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Prostate Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Unresectable Solid Neoplasm

  19. Trigriluzole With Nivolumab and Pembrolizumab in Treating Patients With Metastatic or Unresectable Solid Malignancies or Lymphoma

    ClinicalTrials.gov

    2018-05-23

    Lymphoma; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Metastatic Renal Cell Cancer; Recurrent Bladder Carcinoma; Recurrent Classical Hodgkin Lymphoma; Recurrent Head and Neck Squamous Cell Carcinoma; Recurrent Lymphoma; Recurrent Malignant Solid Neoplasm; Recurrent Renal Cell Carcinoma; Stage III Bladder Cancer; Stage III Lymphoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Renal Cell Cancer; Stage III Skin Melanoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Lymphoma; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Bladder Cancer; Stage IVB Bladder Cancer; Unresectable Head and Neck Squamous Cell Carcinoma; Unresectable Solid Neoplasm

  20. Monoclonal Antibody Therapy and Peripheral Stem Cell Transplant in Treating Patients With Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-01-08

    Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  1. Why adjuvant chemotherapy for stage III colon cancer was not given: Reasons for non-recommendation by clinicians or patient refusal.

    PubMed

    Gilbar, Peter; Lee, Andrew; Pokharel, Khageshwor

    2017-03-01

    Aim The aim of our study was to evaluate stage III colon cancer patients discussed at a multidisciplinary team meeting to identify reasons for clinicians not recommending adjuvant chemotherapy and reasons for patients declining recommended chemotherapy. Methods A retrospective, single institution Australian study was conducted on all surgically managed stage III colon cancer patients diagnosed at the regional cancer centre at Toowoomba Hospital between July 2010 and December 2014. Reasons why adjuvant chemotherapy was not recommended by the multidisciplinary team or following referral to a medical oncologist and patients' reasons for refusing chemotherapy despite medical oncology recommendation were determined. Results One hundred and nine patients were suitable for evaluation. Overall, 72 (66.1%) received adjuvant chemotherapy. Chemotherapy was not recommended in 25 (23.4%) of patients, with the majority (68%) having more than one cited reason. Multiple comorbidities and advanced age were the most common reasons for non-recommendation ( p < 0.01). Age alone was not a reason for not recommending chemotherapy. Twelve (11%) patients declined offered chemotherapy. The reasons for refusal were not detailed in the majority of patient charts (63.6%). Travel distance was not a factor in accepting or refusing chemotherapy. Conclusion Discussion at a multidisciplinary team meeting facilitates the identification of patients unsuitable for adjuvant treatment. The reasons for declining offered chemotherapy need to be assessed fully to ensure that patients' treatment preferences are balanced against the proven benefits of chemotherapy. Attendance at a regional cancer centre provides the opportunity for high standard care in the management of stage III colon cancer.

  2. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  3. Transoral Robotic Surgery in Treating Patients With Benign or Stage I-IV Head and Neck Cancer

    ClinicalTrials.gov

    2014-11-07

    Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  4. Vaccine Therapy With Sargramostim (GM-CSF) in Treating Patients With Her-2 Positive Stage III-IV Breast Cancer or Ovarian Cancer

    ClinicalTrials.gov

    2018-05-01

    HER2-positive Breast Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  5. Bevacizumab, Cisplatin, Radiation Therapy, and Fluorouracil in Treating Patients With Stage IIB, Stage III, Stage IVA, or Stage IVB Nasopharyngeal Cancer

    ClinicalTrials.gov

    2018-01-04

    Stage II Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage III Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage III Nasopharyngeal Undifferentiated Carcinoma AJCC v7; Stage IV Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage IV Nasopharyngeal Undifferentiated Carcinoma AJCC v7

  6. Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer

    ClinicalTrials.gov

    2013-01-24

    Adenocarcinoma of the Colon; Adenocarcinoma of the Gallbladder; Adenocarcinoma of the Pancreas; Adenocarcinoma of the Rectum; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Gallbladder; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Male Breast Cancer; Mixed Adenocarcinoma of the Stomach; Ovarian Endometrioid Adenocarcinoma; Paget Disease of the Breast With Intraductal Carcinoma; Paget Disease of the Breast With Invasive Ductal Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Salivary Gland Adenocarcinoma; Stage II Malignant Testicular Germ Cell Tumor; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Gallbladder Cancer

  7. Sphingosine 1-phosphate receptor modulators in multiple sclerosis.

    PubMed

    Subei, Adnan M; Cohen, Jeffrey A

    2015-07-01

    Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease-modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor's function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the USA in 2010 for relapsing MS after two phase III trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience, as well as a third phase III trial (FREEDOMS II), also showed favorable results. More selective S1P receptor agents-ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303-are still in relatively early stages of development, but phase I and II trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase III clinical trials.

  8. Ropidoxuridine in Treating Patients With Advanced Gastrointestinal Cancer Undergoing Radiation Therapy

    ClinicalTrials.gov

    2018-03-02

    Advanced Bile Duct Carcinoma; Stage II Esophageal Cancer AJCC v7; Stage II Pancreatic Cancer AJCC v6 and v7; Stage IIA Esophageal Cancer AJCC v7; Stage IIA Pancreatic Cancer AJCC v6 and v7; Stage IIB Esophageal Cancer AJCC v7; Stage IIB Pancreatic Cancer AJCC v6 and v7; Stage III Colon Cancer AJCC v7; Stage III Esophageal Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage III Liver Cancer; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Rectal Cancer AJCC v7; Stage III Small Intestinal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Esophageal Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIA Small Intestinal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Esophageal Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIB Small Intestinal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Esophageal Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Esophageal Cancer AJCC v7; Stage IV Gastric Cancer AJCC v7; Stage IV Liver Cancer; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Rectal Cancer AJCC v7; Stage IV Small Intestinal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Liver Cancer; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Liver Cancer; Stage IVB Rectal Cancer AJCC v7

  9. Radiation Therapy With Durvalumab or Cetuximab in Treating Patients With Stage III-IVB Head and Neck Cancer Who Cannot Take Cisplatin

    ClinicalTrials.gov

    2018-06-15

    Head and Neck Squamous Cell Carcinoma; Stage III Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage III Laryngeal Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7

  10. Cisplatin, Intensity-Modulated Radiation Therapy, and Pembrolizumab in Treating Patients With Stage III-IV Head and Neck Squamous Cell Carcinoma

    ClinicalTrials.gov

    2018-05-18

    CDKN2A-p16 Negative; Stage III Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage III Laryngeal Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7

  11. Ipilimumab, Cetuximab, and Intensity-Modulated Radiation Therapy in Treating Patients With Previously Untreated Stage III-IVB Head and Neck Cancer

    ClinicalTrials.gov

    2018-05-23

    Stage III Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage III Laryngeal Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7

  12. Vorinostat, Tacrolimus, and Methotrexate in Preventing GVHD After Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2015-10-13

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Intraocular Lymphoma; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Central Nervous System Hodgkin Lymphoma; Secondary Central Nervous System Non-Hodgkin Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  13. Memory-enriched CAR-T Cells Immunotherapy for B Cell Lymphoma

    ClinicalTrials.gov

    2016-04-25

    Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  14. Vemurafenib, Cobimetinib, and Atezolizumab in Treating Participants With High-Risk Stage III Melanoma

    ClinicalTrials.gov

    2018-06-13

    Clinical Stage III Cutaneous Melanoma AJCC v8; Pathologic Stage III Cutaneous Melanoma AJCC v8; Pathologic Stage IIIA Cutaneous Melanoma AJCC v8; Pathologic Stage IIIB Cutaneous Melanoma AJCC v8; Pathologic Stage IIIC Cutaneous Melanoma AJCC v8; Pathologic Stage IIID Cutaneous Melanoma AJCC v8

  15. BCL-2 system analysis identifies high-risk colorectal cancer patients.

    PubMed

    Lindner, Andreas U; Salvucci, Manuela; Morgan, Clare; Monsefi, Naser; Resler, Alexa J; Cremona, Mattia; Curry, Sarah; Toomey, Sinead; O'Byrne, Robert; Bacon, Orna; Stühler, Michael; Flanagan, Lorna; Wilson, Richard; Johnston, Patrick G; Salto-Tellez, Manuel; Camilleri-Broët, Sophie; McNamara, Deborah A; Kay, Elaine W; Hennessy, Bryan T; Laurent-Puig, Pierre; Van Schaeybroeck, Sandra; Prehn, Jochen H M

    2017-12-01

    The mitochondrial apoptosis pathway is controlled by an interaction of multiple BCL-2 family proteins, and plays a key role in tumour progression and therapy responses. We assessed the prognostic potential of an experimentally validated, mathematical model of BCL-2 protein interactions (DR_MOMP) in patients with stage III colorectal cancer (CRC). Absolute protein levels of BCL-2 family proteins were determined in primary CRC tumours collected from n=128 resected and chemotherapy-treated patients with stage III CRC. We applied DR_MOMP to categorise patients as high or low risk based on model outputs, and compared model outputs with known prognostic factors (T-stage, N-stage, lymphovascular invasion). DR_MOMP signatures were validated on protein of n=156 patients with CRC from the Cancer Genome Atlas (TCGA) project. High-risk stage III patients identified by DR_MOMP had an approximately fivefold increased risk of death compared with patients identified as low risk (HR 5.2, 95% CI 1.4 to 17.9, p=0.02). The DR_MOMP signature ranked highest among all molecular and pathological features analysed. The prognostic signature was validated in the TCGA colon adenocarcinoma (COAD) cohort (HR 4.2, 95% CI 1.1 to 15.6, p=0.04). DR_MOMP also further stratified patients identified by supervised gene expression risk scores into low-risk and high-risk categories. BCL-2-dependent signalling critically contributed to treatment responses in consensus molecular subtypes 1 and 3, linking for the first time specific molecular subtypes to apoptosis signalling. DR_MOMP delivers a system-based biomarker with significant potential as a prognostic tool for stage III CRC that significantly improves established histopathological risk factors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine, Mycophenolate Mofetil, Donor Lymphocyte Infusion in Treating Patients With Hematopoietic Cancer

    ClinicalTrials.gov

    2017-08-09

    Acute Undifferentiated Leukemia; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Systemic Amyloidosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  17. Stage III nasopharyngeal angiofibroma: Improving results with endoscopic-assisted midfacial degloving and modification to the Fisch staging system.

    PubMed

    Shah, Saurin R; Keshri, Amit; Patadia, Simple; Sahu, Rabi Narayan; Srivastava, Arun Kumar; Behari, Sanjay

    2015-10-01

    To study outcomes with endoscopic-assisted midfacial degloving for Fisch stage III nasopharyngeal angiofibroma and propose a new staging system. Retrospective study of patients with Fisch stage III juvenile nasopharyngeal angiofibroma (JNA) including preoperative angiography, intraoperative blood loss and residue/recurrence following surgery. Tertiary care superspecialty referral center. Fifteen consecutive patients with Fisch stage III JNA undergoing operations over a period of 18 months. Preoperative angiography details, intraoperative blood loss, residue/recurrence, complications of surgery. Transarterial embolization with particulate agents followed by endoscopic-assisted midfacial degloving provides excellent outcomes with Fisch stage III JNAs. The modified Fisch staging system proposed would allow better preoperative evaluation and comparison of outcomes with different treatment options for stage III JNAs. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. EF5 in Finding Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Cervical, Endometrial, or Ovarian Epithelial Cancer

    ClinicalTrials.gov

    2013-01-15

    Primary Peritoneal Cavity Cancer; Stage I Endometrial Carcinoma; Stage I Ovarian Epithelial Cancer; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Endometrial Carcinoma; Stage II Ovarian Epithelial Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Endometrial Carcinoma; Stage IV Ovarian Epithelial Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  19. Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2018-02-08

    Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage II Non-Contiguous Mantle Cell Lymphoma; Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Burkitt Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Myelodysplastic Syndrome; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Burkitt Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Burkitt Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Burkitt Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Burkitt Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  20. Prognosis of canine patients with nasal tumors according to modified clinical stages based on computed tomography: a retrospective study.

    PubMed

    Kondo, Yumi; Matsunaga, Satoru; Mochizuki, Manabu; Kadosawa, Tsuyoshi; Nakagawa, Takayuki; Nishimura, Ryohei; Sasaki, Nobuo

    2008-03-01

    To evaluate the efficacy of clinical staging based on computed tomography (CT) imaging over the World Health Organization (WHO) staging system based on radiography for nasal tumors in dogs, a retrospective study was conducted. This study used 112 dogs that had nasal tumors; they had undergone radiography and CT and had been histologically confirmed as having nasal tumors. Among 112 dogs, 85 (75.9%) were diagnosed as adenocarcinoma. Then they were analyzed for survival time according to each staging system. More than 70% of the patients with adenocarcinoma were classified as having WHO stage III. The patients classified under WHO stage II tended to survive longer than those classified under WHO stage III. Dogs classified under WHO stage III were further grouped into CT stages III and IV, and CT stage III patients had a significantly longer survival time than CT stage IV patients. In addition, patients treated with a combination of surgery and radiation had a significantly longer survival time than the patients who did not receive any treatment in CT stage III. On the other hand, different treatment modalities did not show a significant difference in the survival time of CT stage IV dogs. The results suggest that WHO stage III dogs may have various levels of tumor progression, indicating that the CT staging system may be more accurate than the WHO staging system.

  1. Early relapse after autologous hematopoietic cell transplantation remains a poor prognostic factor in multiple myeloma but outcomes have improved over time.

    PubMed

    Kumar, S K; Dispenzieri, A; Fraser, R; Mingwei, F; Akpek, G; Cornell, R; Kharfan-Dabaja, M; Freytes, C; Hashmi, S; Hildebrandt, G; Holmberg, L; Kyle, R; Lazarus, H; Lee, C; Mikhael, J; Nishihori, T; Tay, J; Usmani, S; Vesole, D; Vij, R; Wirk, B; Krishnan, A; Gasparetto, C; Mark, T; Nieto, Y; Hari, P; D'Souza, A

    2018-04-01

    Duration of initial disease response remains a strong prognostic factor in multiple myeloma (MM) particularly for upfront autologous hematopoietic cell transplant (AHCT) recipients. We hypothesized that new drug classes and combinations employed prior to AHCT as well as after post-AHCT relapse may have changed the natural history of MM in this population. We analyzed the Center for International Blood and Marrow Transplant Research database to track overall survival (OS) of MM patients receiving single AHCT within 12 months after diagnosis (N=3256) and relapsing early post-AHCT (<24 months), and to identify factors predicting for early vs late relapses (24-48 months post-AHCT). Over three periods (2001-2004, 2005-2008, 2009-2013), patient characteristics were balanced except for lower proportion of Stage III, higher likelihood of one induction therapy with novel triplets and higher rates of planned post-AHCT maintenance over time. The proportion of patients relapsing early was stable over time at 35-38%. Factors reducing risk of early relapse included lower stage, chemosensitivity, transplant after 2008 and post-AHCT maintenance. Shorter post-relapse OS was associated with early relapse, IgA MM, Karnofsky <90, stage III, >1 line of induction and lack of maintenance. Post-AHCT early relapse remains a poor prognostic factor, even though outcomes have improved over time.

  2. Talactoferrin in Treating Patients With Relapsed or Refractory Non-Small Cell Lung Cancer or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2016-07-30

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  3. Imatinib Mesylate in Treating Patients With Progressive, Refractory, or Recurrent Stage II or Stage III Testicular or Ovarian Cancer

    ClinicalTrials.gov

    2013-01-15

    Ovarian Dysgerminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage II Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Testicular Seminoma

  4. Carevive Survivor Care Planning System in Improving Quality of Life in Breast Cancer Survivors

    ClinicalTrials.gov

    2018-02-20

    Stage I Breast Cancer; Stage I Cervical Cancer; Stage I Ovarian Cancer; Stage I Uterine Corpus Cancer; Stage IA Breast Cancer; Stage IA Cervical Cancer; Stage IA Ovarian Cancer; Stage IA Uterine Corpus Cancer; Stage IB Breast Cancer; Stage IB Cervical Cancer; Stage IB Ovarian Cancer; Stage IB Uterine Corpus Cancer; Stage IC Ovarian Cancer; Stage II Breast Cancer; Stage II Cervical Cancer; Stage II Ovarian Cancer; Stage II Uterine Corpus Cancer; Stage IIA Breast Cancer; Stage IIA Cervical Cancer; Stage IIA Ovarian Cancer; Stage IIB Breast Cancer; Stage IIB Cervical Cancer; Stage IIB Ovarian Cancer; Stage IIC Ovarian Cancer; Stage III Breast Cancer; Stage III Cervical Cancer; Stage III Ovarian Cancer; Stage III Uterine Corpus Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Uterine Corpus Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Breast Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Uterine Corpus Cancer

  5. Pegfilgrastim and Rituximab in Treating Patients With Untreated, Relapsed, or Refractory Follicular Lymphoma, Small Lymphocytic Lymphoma, or Marginal Zone Lymphoma

    ClinicalTrials.gov

    2017-09-08

    Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  6. Atezolizumab With or Without Eribulin Mesylate in Treating Patients With Recurrent Locally Advanced or Metastatic Urothelial Cancer

    ClinicalTrials.gov

    2018-06-05

    Metastatic Urothelial Carcinoma; Recurrent Bladder Urothelial Carcinoma; Recurrent Urethral Urothelial Carcinoma; Recurrent Urothelial Carcinoma of the Renal Pelvis and Ureter; Renal Pelvis Urothelial Carcinoma; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma

  7. Chemotherapy Toxicity On Quality of Life in Older Patients With Stage I, Stage II, Stage III, or Stage IV Ovarian Epithelial, Primary Peritoneal Cavity, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-05-03

    Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IB Fallopian Tube Cancer; Stage IC Fallopian Tube Cancer; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIB Fallopian Tube Cancer; Stage IIC Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIC Fallopian Tube Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  8. Patient, Physician, and Nurse Factors Associated With Entry Onto Clinical Trials and Finishing Treatment in Patients With Primary or Recurrent Uterine, Endometrial, or Cervical Cancer

    ClinicalTrials.gov

    2018-04-11

    Recurrent Cervical Carcinoma; Recurrent Uterine Corpus Carcinoma; Recurrent Uterine Corpus Sarcoma; Stage I Uterine Corpus Cancer; Stage I Uterine Sarcoma; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Uterine Corpus Cancer; Stage II Uterine Sarcoma; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Uterine Sarcoma; Stage IV Uterine Corpus Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  9. Fifteen years' review of advanced childhood neuroblastoma from a single institution in Hong Kong.

    PubMed

    Leung, C K

    1998-05-01

    To assess the progress in the treatment of advanced childhood neuroblastoma. From 1981 to 1996, there were 32 children with neuroblastoma (NB) diagnosed, staged and treated in our institution. There were 4 patients with stage II NB (12%), 5 stage III (16%), 21 stage IV (66%) and 2 stage IV s (6%). The NBs were excised if CT scan indicated that the tumors were operable. For advanced NB, stages III and IV, multiple drug chemotherapy was started first and operability was assessed with serial CT scan examinations. Once the X-ray imaging indicated the tumors were operable, surgical interventions were done. The medical records of the advanced NB were reviewed. In the initial period of the study, 9 patients were treated using the VAC protocol [vincristine (vcr), adriamycin (adria) and cyclophosphamide (cyc)]. No patient was convertible to operable and all died with a mean survival of 10 months. OPEC [vcr, cyc, VM26, cisplatin (cis)], Rapid COJEC (carboplatin, VP16, vcr, cis and cyc) and more recently N6 protocol (cyc, adria, vcr, VP16, cis) was used for 17 patients. 80% of them were converted to operable. In 4 patients, surgical specimens showed only necrotic tissue without viable tumor tissue and 6 (35%) tumors were converted to ganglioneuroma or ganglioneuroblastoma. Although 2 (12%) patients died of fungal septicemia and 1 (6%) developed Fanconi's syndrome after chemotherapy, the mean survival period increased to 27 months. In the 10 survivors (60%), 4 had megatherapy with melphalan followed by autologous peripheral blood stem cell (PBSC) transplantation and 2 were waiting for transplantation. There is a high percentage of advanced NB on presentation in Hong Kong. With more potent multiple drug chemotherapy for advanced stage NB there are (1) improvement in the survival of these patients, (2) opportunities for more operations for tumor excision and (3) opportunities for autologous PBSC transplantation for better tumor eradication.

  10. Long-term outcomes in patients with early stage nodular lymphocyte-predominant Hodgkin's lymphoma treated with radiotherapy.

    PubMed

    Solanki, Abhishek A; LeMieux, Melissa Horoschak; Chiu, Brian C-H; Mahmood, Usama; Hasan, Yasmin; Koshy, Matthew

    2013-01-01

    Radiation therapy (RT) is commonly used as definitive treatment for early-stage nodular lymphocyte-predominant Hodgkin's lymphoma (NLPHL). We evaluated the cause-specific survival (CSS), overall survival (OS), and second malignancy (SM) rates in patients with early-stage NLPHL treated with RT. Patients with stage I-II NLPHL between 1988 and 2009 who underwent RT were selected from the Surveillance, Epidemiology and End Results database. Univariate analysis (UVA) for CSS and Os was performed using the Kaplan-Meier method and included age, gender, involved site, year of diagnosis, presence of B-symptoms, and extranodal involvement (ENI). Multivariable analysis (MVA) was performed using Cox Proportional Hazards modeling and included the above clinical variables. SM were classified as RT-related or non-RT-related. Freedom from SM and freedom from RT-related SM were determined using the Kaplan-Meier method. The study cohort included 469 patients. Median age was 37 years. The most common involved sites were the head and neck (36%), axilla/arm (26%), and multiple lymph node regions (18%). Sixty-eight percent had stage I disease, 70% were male, 4% had ENI, and 7% had B-symptoms. Median follow-up was 6 years. Ten-year CSS and Os were 98% and 88%, respectively. On UVA, none of the covariates was associated with CSS. Increasing age (p<0.01) and female gender (p<0.01) were associated with worse Os. On MVA, older age (p<0.01), female gender (p=0.04), multiple regions of involvement (p=0.03), stage I disease (p=0.02), and presence of B-symptoms (p=0.02) were associated with worse Os. Ten-year freedom from SM and freedom from RT-related SM were 89% and 99%, respectively. This is the largest series to evaluate the outcomes of stage I-II NLPHL patients treated with RT and found that this patient population has an excellent long-term prognosis and a low rate of RT-related second malignancies.

  11. Acetylcysteine Rinse in Reducing Saliva Thickness and Mucositis in Patients With Head and Neck Cancer Undergoing Radiation Therapy

    ClinicalTrials.gov

    2018-04-17

    Mucositis; Oral Complications; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Basal Cell Carcinoma of the Lip; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Basal Cell Carcinoma of the Lip; Stage IVA Lymphoepithelioma of the Oropharynx; Stage IVA Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVB Basal Cell Carcinoma of the Lip; Stage IVB Lymphoepithelioma of the Oropharynx; Stage IVB Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVC Basal Cell Carcinoma of the Lip; Stage IVC Lymphoepithelioma of the Oropharynx; Stage IVC Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  12. Flexitouch® Home Maintenance Therapy or Standard Home Maintenance Therapy in Treating Patients With Lower-Extremity Lymphedema Caused by Treatment for Cervical Cancer, Vulvar Cancer, or Endometrial Cancer

    ClinicalTrials.gov

    2014-12-29

    Lymphedema; Stage 0 Cervical Cancer; Stage 0 Uterine Corpus Cancer; Stage 0 Vulvar Cancer; Stage I Uterine Corpus Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Uterine Corpus Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Vulvar Cancer; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Stage IVB Vulvar Cancer

  13. Atezolizumab and CYT107 in Treating Participants With Locally Advanced, Inoperable, or Metastatic Urothelial Carcinoma

    ClinicalTrials.gov

    2018-05-18

    Metastatic Bladder Urothelial Carcinoma; Metastatic Renal Pelvis Urothelial Carcinoma; Metastatic Ureter Urothelial Carcinoma; Metastatic Urethral Urothelial Carcinoma; Metastatic Urothelial Carcinoma; Recurrent Bladder Urothelial Carcinoma; Recurrent Renal Pelvis Urothelial Carcinoma; Recurrent Ureter Urothelial Carcinoma; Recurrent Urethral Urothelial Carcinoma; Stage III Bladder Cancer AJCC v8; Stage III Renal Pelvis Cancer AJCC v8; Stage III Ureter Cancer AJCC v8; Stage III Urethral Cancer AJCC v8; Stage IV Bladder Cancer AJCC v8; Stage IV Renal Pelvis Cancer AJCC v8; Stage IV Ureter Cancer AJCC v8; Stage IV Urethral Cancer AJCC v8; Stage IVA Bladder Cancer AJCC v8; Stage IVB Bladder Cancer AJCC v8

  14. Tissue Biomarkers in Melanoma Patients Treated with TIL

    PubMed Central

    Knol, Anne-Chantal; Nguyen, Jean-Michel; Pandolfino, Marie-Christine; Quéreux, Gaëlle; Brocard, Anabelle; Peuvrel, Lucie; Saint-Jean, Mélanie; Saiagh, Soraya; Khammari, Amir; Dréno, Brigitte

    2012-01-01

    While treating stage III melanoma patients with autologous therapeutic TIL in an adjuvant setting, we previously reported a significant benefit of treatment on both progression-free survival and overall survival in patients with only one invaded lymph node (early stage III) compared to patients with more than one invaded lymph nodes (advanced stage III). In this context, in order to understand the difference of activity of TIL therapy according to the progression of the illness at stage III, the first objective of the present study was to determine potential differences in the characteristics of TIL populations obtained from an early stage III and a more advanced stage III when tumor burden is more important. The second objective was to determine possible differences in tissue expression level of several molecules involved in interactions between tumor cells and T cells between early and advanced stage III considering that the tumor microenvironment of invaded lymph nodes could become more tolerant with the progression of the disease. A total of 47 samples of melanoma invaded LN from stage IIIb (AJCC 2007) melanoma patients treated with TIL plus IL-2 were included in this study. We confirmed that both PFS and OS were significantly associated to the presence of tumor-reactive T-cells among TIL injected to the patients and that these tumor reactive T cells were more frequently observed at the early stage III. Moreover, while analyzing the expression of 17 markers on 34/47 tumor specimens using immunohistochemistry, we identified that 3 tissue markers involved in interactions between melanoma cells and T cells have a significant difference of expression between early and advanced stage III: MHC class I, adhesion molecule ICAM-1 and the co-stimulation molecule LFA-3 had a significantly weaker expression in melanoma tissue specimens from advanced stage III. In addition, the expression of the alpha chain of the IL-2 receptor (CD25) and the nuclear transcription factor Foxp3 was significantly increased in the melanoma tissue specimens from advanced stage III. Our results suggest differences in the immunological status of the tumor microenvironment between early and advanced stage III, which could explain the difference in clinical response to TIL infusion in an adjuvant setting between early and advanced stage III. PMID:23284620

  15. Tissue biomarkers in melanoma patients treated with TIL.

    PubMed

    Knol, Anne-Chantal; Nguyen, Jean-Michel; Pandolfino, Marie-Christine; Quéreux, Gaëlle; Brocard, Anabelle; Peuvrel, Lucie; Saint-Jean, Mélanie; Saiagh, Soraya; Khammari, Amir; Dréno, Brigitte

    2012-01-01

    While treating stage III melanoma patients with autologous therapeutic TIL in an adjuvant setting, we previously reported a significant benefit of treatment on both progression-free survival and overall survival in patients with only one invaded lymph node (early stage III) compared to patients with more than one invaded lymph nodes (advanced stage III). In this context, in order to understand the difference of activity of TIL therapy according to the progression of the illness at stage III, the first objective of the present study was to determine potential differences in the characteristics of TIL populations obtained from an early stage III and a more advanced stage III when tumor burden is more important. The second objective was to determine possible differences in tissue expression level of several molecules involved in interactions between tumor cells and T cells between early and advanced stage III considering that the tumor microenvironment of invaded lymph nodes could become more tolerant with the progression of the disease. A total of 47 samples of melanoma invaded LN from stage IIIb (AJCC 2007) melanoma patients treated with TIL plus IL-2 were included in this study. We confirmed that both PFS and OS were significantly associated to the presence of tumor-reactive T-cells among TIL injected to the patients and that these tumor reactive T cells were more frequently observed at the early stage III. Moreover, while analyzing the expression of 17 markers on 34/47 tumor specimens using immunohistochemistry, we identified that 3 tissue markers involved in interactions between melanoma cells and T cells have a significant difference of expression between early and advanced stage III: MHC class I, adhesion molecule ICAM-1 and the co-stimulation molecule LFA-3 had a significantly weaker expression in melanoma tissue specimens from advanced stage III. In addition, the expression of the alpha chain of the IL-2 receptor (CD25) and the nuclear transcription factor Foxp3 was significantly increased in the melanoma tissue specimens from advanced stage III. Our results suggest differences in the immunological status of the tumor microenvironment between early and advanced stage III, which could explain the difference in clinical response to TIL infusion in an adjuvant setting between early and advanced stage III.

  16. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death

    PubMed Central

    Veto, Sara; Acs, Peter; Bauer, Jan; Lassmann, Hans; Berente, Zoltan; Setalo, Gyorgy; Borgulya, Gabor; Sumegi, Balazs; Komoly, Samuel; Gallyas, Ferenc; Illes, Zsolt

    2010-01-01

    Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation. PMID:20157013

  17. Ofatumumab and Bendamustine Hydrochloride With or Without Bortezomib in Treating Patients With Untreated Follicular Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-04-17

    Ann Arbor Stage III Grade 1 Follicular Lymphoma; Ann Arbor Stage III Grade 2 Follicular Lymphoma; Ann Arbor Stage III Grade 3 Follicular Lymphoma; Ann Arbor Stage IV Grade 1 Follicular Lymphoma; Ann Arbor Stage IV Grade 2 Follicular Lymphoma; Ann Arbor Stage IV Grade 3 Follicular Lymphoma; Grade 3a Follicular Lymphoma

  18. Effects of Dexrazoxane Hydrochloride on Biomarkers Associated With Cardiomyopathy and Heart Failure After Cancer Treatment

    ClinicalTrials.gov

    2017-10-27

    Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Refractory Childhood Hodgkin Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult T-Cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma

  19. Onalespib in Treating Patients With Locoregionally Advanced Squamous Cell Carcinoma of the Head and Neck Receiving Radiation Therapy and Cisplatin

    ClinicalTrials.gov

    2018-04-23

    Stage III Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage III Laryngeal Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7

  20. Quantification of functional abilities in Rett syndrome: a comparison between stages III and IV

    PubMed Central

    Monteiro, Carlos BM; Savelsbergh, Geert JP; Smorenburg, Ana RP; Graciani, Zodja; Torriani-Pasin, Camila; de Abreu, Luiz Carlos; Valenti, Vitor E; Kok, Fernando

    2014-01-01

    We aimed to evaluate the functional abilities of persons with Rett syndrome (RTT) in stages III and IV. The group consisted of 60 females who had been diagnosed with RTT: 38 in stage III, mean age (years) of 9.14, with a standard deviation of 5.84 (minimum 2.2/maximum 26.4); and 22 in stage IV, mean age of 12.45, with a standard deviation of 6.17 (minimum 5.3/maximum 26.9). The evaluation was made using the Pediatric Evaluation of Disability Inventory, which has 197 items in the areas of self-care, mobility, and social function. The results showed that in the area of self-care, stage III and stage IV RTT persons had a level of 24.12 and 18.36 (P=0.002), respectively. In the area of mobility, stage III had 37.22 and stage IV had 14.64 (P<0.001), while in the area of social function, stage III had 17.72 and stage IV had 12.14 (P=0.016). In conclusion, although persons with stage III RTT have better functional abilities when compared with stage IV, the areas of mobility, self-care, and social function are quite affected, which shows a great functional dependency and need for help in basic activities of daily life. PMID:25061307

  1. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits

    PubMed Central

    Xu, Hong-Ping; Burbridge, Timothy J.; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z. Jimmy

    2016-01-01

    Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical, in vitro and in vivo electrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the “recurrent network” model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic “retinal waves” are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as “readouts” of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. PMID:27030771

  2. Veliparib and Irinotecan Hydrochloride in Treating Patients With Cancer That Is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-12

    Advanced Malignant Solid Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Hodgkin Lymphoma; Metastatic Malignant Neoplasm; Metastatic Malignant Solid Neoplasm; Non-Hodgkin Lymphoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Colon Cancer AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Colon Cancer AJCC v7; Stage IV Lung Cancer AJCC v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Colon Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Malignant Neoplasm; Unresectable Solid Neoplasm

  3. PIPAC Nab-pac for Stomach, Pancreas, Breast and Ovarian Cancer

    ClinicalTrials.gov

    2018-05-31

    Peritoneal Carcinomatosis; Ovarian Cancer Stage IIIB; Ovarian Cancer Stage IIIC; Ovarian Cancer Stage IV; Breast Cancer Stage IIIB; Breast Cancer Stage IIIc; Breast Cancer Stage IV; Stomach Cancer Stage III; Stomach Cancer Stage IV With Metastases; Pancreas Cancer, Stage III; Pancreas Cancer, Stage IV

  4. Cetuximab, Cisplatin, and Radiation Therapy in Treating Patients With Stage IB, Stage II, Stage III, or Stage IVA Cervical Cancer

    ClinicalTrials.gov

    2014-12-29

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  5. Guadecitabine and Durvalumab in Treating Patients With Advanced Liver, Pancreatic, Bile Duct, or Gallbladder Cancer

    ClinicalTrials.gov

    2018-04-27

    Extrahepatic Bile Duct Adenocarcinoma, Biliary Type; Gallbladder Adenocarcinoma, Biliary Type; Metastatic Pancreatic Adenocarcinoma; Recurrent Cholangiocarcinoma; Recurrent Gallbladder Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Intrahepatic Cholangiocarcinoma; Recurrent Pancreatic Carcinoma; Stage III Gallbladder Cancer AJCC V7; Stage III Hepatocellular Carcinoma AJCC v7; Stage III Intrahepatic Cholangiocarcinoma AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Gallbladder Cancer AJCC v7; Stage IIIA Hepatocellular Carcinoma AJCC v7; Stage IIIB Gallbladder Cancer AJCC v7; Stage IIIB Hepatocellular Carcinoma AJCC v7; Stage IIIC Hepatocellular Carcinoma AJCC v7; Stage IV Gallbladder Cancer AJCC v7; Stage IV Hepatocellular Carcinoma AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Gallbladder Cancer AJCC v7; Stage IVA Hepatocellular Carcinoma AJCC v7; Stage IVA Intrahepatic Cholangiocarcinoma AJCC v7; Stage IVB Gallbladder Cancer AJCC v7; Stage IVB Hepatocellular Carcinoma AJCC v7; Stage IVB Intrahepatic Cholangiocarcinoma AJCC v7; Unresectable Gallbladder Carcinoma; Unresectable Pancreatic Carcinoma

  6. Gemcitabine Hydrochloride and Eribulin Mesylate in Treating Patients With Bladder Cancer That is Advanced or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-23

    Metastatic Ureteral Neoplasm; Metastatic Urethral Neoplasm; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma

  7. Quality of Life and Survivorship Care in Patients Undergoing Hyperthermic Intraperitoneal Chemotherapy (HIPEC)

    ClinicalTrials.gov

    2017-05-25

    Advanced Malignant Mesothelioma; Carcinoma of the Appendix; Ovarian Sarcoma; Ovarian Stromal Cancer; Pseudomyxoma Peritonei; Recurrent Colon Cancer; Recurrent Malignant Mesothelioma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage III Colon Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IV Colon Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  8. Inferior outcomes of stage III T lymphoblastic lymphoma relative to stage IV lymphoma and T-acute lymphoblastic leukemia: long-term comparison of outcomes in the JACLS NHL T-98 and ALL T-97 protocols.

    PubMed

    Kobayashi, Ryoji; Takimoto, Tetsuya; Nakazawa, Atsuko; Fujita, Naoto; Akazai, Ayumi; Yamato, Kazumi; Yazaki, Makoto; Deguchi, Takao; Hashii, Yoshiko; Kato, Koji; Hatakeyama, Naoki; Horibe, Keizo; Hori, Hiroki; Oda, Megumi

    2014-06-01

    T cell lymphoblastic lymphoma (T-LBL) accounts for 30 % of all childhood non-Hodgkin's lymphomas (NHL) in Japan. Twenty-nine patients with T-LBL in stages III and IV were eligible for and enrolled in the JACLS NHL-T98 trial (1998-2002), and 72 patients with T-ALL were enrolled in the JACLS ALL-T97 trial (1997-2001). The 10-year overall survival (OS) (61.1 ± 11.5 %) and the 10-year event-free survival (EFS) (44.4 ± 11.7 %) of stage III LBL were lower than those of other diseases, and the OS and EFS were nearly the same when comparing stage IV LBL and ALL (OS: stage IV LBL, 80.0 ± 12.7 % vs. ALL, 80.2 ± 4.9 %; EFS: stage IV, LBL 70.0 ± 14.5 % vs. ALL, 70.7 ± 5.5 %). Outcomes were worse for stage III LBL than for stage IV LBL or T-ALL. Given that the treatment results of T-ALL and LBL stage IV did not differ when compared with previous reports, LBL stage III in Japanese children may differ from LBL stage III in children in other countries.

  9. Phase 1b Food Based Modulation of Biomarkers in Human Tissues at High-Risk for Oral Cancer.

    ClinicalTrials.gov

    2018-03-05

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage 0 Hypopharyngeal Cancer; Stage 0 Laryngeal Cancer; Stage 0 Lip and Oral Cavity Cancer; Stage 0 Nasopharyngeal Cancer; Stage 0 Oropharyngeal Cancer; Stage 0 Paranasal Sinus and Nasal Cavity Cancer; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Oral Cavity Squamous Cell Carcinoma; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Nasal Cavity and Paranasal Sinus Cancer; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Oral Cavity Squamous Cell Carcinoma; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Oral Cavity Squamous Cell Carcinoma; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Paranasal Sinus and Nasal Cavity Squamous Cell Carcinoma; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  10. Extended Cancer Education for Longer-Term Survivors in Primary Care for Patients With Stage I-II Breast or Prostate Cancer or Stage I-III Colorectal Cancer

    ClinicalTrials.gov

    2017-11-15

    Stage I Breast Cancer; Stage I Colorectal Cancer AJCC v6 and v7; Stage I Prostate Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage II Colorectal Cancer AJCC v7; Stage II Prostate Cancer; Stage IIA Breast Cancer; Stage IIA Colorectal Cancer AJCC v7; Stage IIA Prostate Cancer; Stage IIB Breast Cancer; Stage IIB Colorectal Cancer AJCC v7; Stage IIB Prostate Cancer; Stage IIC Colorectal Cancer AJCC v7; Stage III Colorectal Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7

  11. Psychosexual Intervention in Patients With Stage I-III Gynecologic or Breast Cancer

    ClinicalTrials.gov

    2018-05-25

    Ovarian Sarcoma; Ovarian Stromal Cancer; Stage I Uterine Sarcoma; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IA Endometrial Carcinoma; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Epithelial Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IA Primary Peritoneal Cavity Cancer; Stage IB Cervical Cancer; Stage IB Endometrial Carcinoma; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Epithelial Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IB Primary Peritoneal Cavity Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Epithelial Cancer; Stage IC Ovarian Germ Cell Tumor; Stage IC Primary Peritoneal Cavity Cancer; Stage II Endometrial Carcinoma; Stage II Gestational Trophoblastic Tumor; Stage II Uterine Sarcoma; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIA Primary Peritoneal Cavity Cancer; Stage IIB Cervical Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIB Primary Peritoneal Cavity Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIC Primary Peritoneal Cavity Cancer; Stage III Gestational Trophoblastic Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Cervical Cancer; Stage IIIA Endometrial Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Cervical Cancer; Stage IIIB Endometrial Carcinoma; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Endometrial Carcinoma; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Breast Cancer

  12. Ruxolitinib Phosphate, Paclitaxel, and Carboplatin in Treating Patients With Stage III-IV Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-02-14

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Serous Neoplasm; High Grade Ovarian Serous Adenocarcinoma; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage III Fallopian Tube Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Primary Peritoneal Cancer AJCC v7; Stage IIIA Fallopian Tube Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIA Primary Peritoneal Cancer AJCC v7; Stage IIIB Fallopian Tube Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIB Primary Peritoneal Cancer AJCC v7; Stage IIIC Fallopian Tube Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IIIC Primary Peritoneal Cancer AJCC v7; Stage IV Fallopian Tube Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Primary Peritoneal Cancer AJCC v7

  13. Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents

    NASA Astrophysics Data System (ADS)

    Lin, Sen; Lian, Cheng; Xu, Meng; Zhang, Wei; Liu, Lili; Lin, Kuangfei

    2017-11-01

    The adsorption and co-adsorption of As(V), Cr(VI) and As(III) onto the magnetic iron oxide nanoparticles (MIONPs) surface were investigated comprehensively to clarify the competitive processes. The results reflected that the MIONPs had remarkable preferential adsorption to As(V) compared with Cr(VI) and As(III). And it was determined, relying on the analysis of heavy metals variations on the MIONPs surface at different co-adsorption stages using FTIR and XPS, that the inner-sphere complexation made vital contribution to the preferential adsorption for As(V), corresponding with the replacement experiments where As(V) could grab extensively active sites on the MIONPs pre-occupied by As(III) or Cr(V) uniaxially. The desorption processes displayed that the strongest affinity between the MIONPs and As(V) where As(III) and Cr(VI) were more inclined to wash out. It is wish to provide a helpful direction with this study for the wastewater treatment involving multiple oxyacid-type heavy metals using MIONPs as adsorbents.

  14. Interactive Tailored Website to Promote Sun Protection and Skin Self-Check Behaviors in Patients With Stage 0-III Melanoma

    ClinicalTrials.gov

    2017-11-15

    Stage 0 Skin Melanoma; Stage I Skin Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage II Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage III Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma

  15. [Morphology of III stage larvae of Angiostrongylus cantonensis in Pomacea canaliculata].

    PubMed

    Zhang, Chao-Wei; Zhou, Xiao-Nong; Lv, Shan; Zhang, Yi; Liu, He-Xiang

    2008-06-30

    To observe the morphologic characteristics of III stage larvae of Angiostrongylus cantonensis from Pomacea canaliculata. P. canaliculata, the intermediate host snail of A. cantonensis, was infected with I stage larvae of A. cantonensis in laboratory. After 61 days, III stage larvae of A. cantonensis were harvested from snail's lungs and muscle of head-foot, followed by HE stain to observe morphological characteristics. The whole body of III stage larva was curling with obtuse head. Its pharyngeal canal extends from the buccal hole on the top of the head to the intestines at the pharyngeal intestine joint place, with apex cauda and clear anal tube. The tegument of the III stage larva was eosin-stained, with a transparent sheath outside of tegument. Some of the larvae cauda showed in circular cylinder, and some larvae presented ventral gland with two very short uterine which used to be the feature only showed in early IV stage larva. Morphologically characteristics of the III stage larvae is helpful to better understand the life-cycle and the control of A. cantonensis.

  16. Nanoparticle Albumin-Bound Rapamycin in Treating Patients With Advanced Cancer With mTOR Mutations

    ClinicalTrials.gov

    2018-06-01

    Advanced Malignant Neoplasm; Cervical Squamous Cell Carcinoma; Endometrial Carcinoma; Malignant Uterine Neoplasm; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Cervical Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Malignant Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Solid Neoplasm; Stage III Bladder Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Breast Cancer; Stage IIIC Ovarian Cancer; Stage IV Breast Cancer; Stage IV Ovarian Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IVA Bladder Cancer; Stage IVA Cervical Cancer; Stage IVB Bladder Cancer; Stage IVB Cervical Cancer

  17. LDL-oxidation, serum uric acid, kidney function and pulse-wave velocity: Data from the Brisighella Heart Study cohort.

    PubMed

    Cicero, Arrigo F G; Kuwabara, Masanari; Johnson, Richard; Bove, Marilisa; Fogacci, Federica; Rosticci, Martina; Giovannini, Marina; D'Addato, Sergio; Borghi, Claudio

    2018-06-15

    Serum uric acid (SUA) and oxidized LDL (oxLDL) may be associated with arterial aging. The aim of our study was to evaluate the relationship between SUA, oxLDL and arterial stiffness in subjects with normal renal function and in patients with mild or moderate renal impairment. From the database of the 2012 Brisighella Heart Study, we compared age-matched adult, non-smoker subjects without cardiovascular disease and with normal renal function (n = 205), subjects with stage II chronic kidney disease (CKD) (n = 118) and subjects with stage III CKD (n = 94). All subjects underwent a determination of the LDL oxidative susceptibility, oxLDL levels, SUA and Pulse Wave Velocity (PWV). By univariate analysis, PWV correlated with a large number of clinical, haemodynamic and metabolic parameters, including estimated glomerular filtration rate (eGFR) in subjects with normal renal function and in those with stage II or III CKD. Stepwise multiple regression analyses showed that in the presence of normal renal function or stage II CKD, the main predictors of PWV were age, systolic blood pressure (SBP), ox-LDL, apolipoprotein B and SUA (p < 0.05), while in the presence of stage III CKD only age, SBP and apolipoprotein B remained significant (p < 0.05). Both ox-LDL and SUA independently predicts PWV only in subjects with normal or mildly reduced renal function, but not in the subjects with more compromised eGFR. This study confirms the complex relationship of SUA with cardiovascular and metabolic disease in the patient with established renal disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Developing symptom-based predictive models of endometriosis as a clinical screening tool: results from a multicenter study

    PubMed Central

    Nnoaham, Kelechi E.; Hummelshoj, Lone; Kennedy, Stephen H.; Jenkinson, Crispin; Zondervan, Krina T.

    2012-01-01

    Objective To generate and validate symptom-based models to predict endometriosis among symptomatic women prior to undergoing their first laparoscopy. Design Prospective, observational, two-phase study, in which women completed a 25-item questionnaire prior to surgery. Setting Nineteen hospitals in 13 countries. Patient(s) Symptomatic women (n = 1,396) scheduled for laparoscopy without a previous surgical diagnosis of endometriosis. Intervention(s) None. Main Outcome Measure(s) Sensitivity and specificity of endometriosis diagnosis predicted by symptoms and patient characteristics from optimal models developed using multiple logistic regression analyses in one data set (phase I), and independently validated in a second data set (phase II) by receiver operating characteristic (ROC) curve analysis. Result(s) Three hundred sixty (46.7%) women in phase I and 364 (58.2%) in phase II were diagnosed with endometriosis at laparoscopy. Menstrual dyschezia (pain on opening bowels) and a history of benign ovarian cysts most strongly predicted both any and stage III and IV endometriosis in both phases. Prediction of any-stage endometriosis, although improved by ultrasound scan evidence of cyst/nodules, was relatively poor (area under the curve [AUC] = 68.3). Stage III and IV disease was predicted with good accuracy (AUC = 84.9, sensitivity of 82.3% and specificity 75.8% at an optimal cut-off of 0.24). Conclusion(s) Our symptom-based models predict any-stage endometriosis relatively poorly and stage III and IV disease with good accuracy. Predictive tools based on such models could help to prioritize women for surgical investigation in clinical practice and thus contribute to reducing time to diagnosis. We invite other researchers to validate the key models in additional populations. PMID:22657249

  19. Anti-CD22 CAR-T Therapy for CD19-refractory or Resistant Lymphoma Patients

    ClinicalTrials.gov

    2017-03-08

    Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Stage III/IV Adult Diffuse Large Cell Lymphoma; Stage III/IV Follicular Lymphoma; Stage III/IV Mantle Cell Lymphoma

  20. A Phase 2 Study of Cediranib in Combination With Olaparib in Advanced Solid Tumors

    ClinicalTrials.gov

    2018-06-04

    Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Small Cell Lung Carcinoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Small Cell Lung Carcinoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Small Cell Lung Carcinoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Small Cell Lung Carcinoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Pancreatic Carcinoma

  1. Clinical Study of Time Optimizing of Endoscopic Photodynamic Therapy on Esophageal and/or Gastric Cardiac Cancer

    ClinicalTrials.gov

    2015-12-10

    Stage I Esophageal Adenocarcinoma; Stage II Esophageal Adenocarcinoma; Stage III Esophageal Adenocarcinoma; Stage I Esophageal Squamous Cell Carcinoma; Stage II Esophageal Squamous Cell Carcinoma; Stage III Esophageal Squamous Cell Carcinoma

  2. Triapine, Cisplatin, and Radiation Therapy in Treating Patients With Cervical Cancer or Vaginal Cancer

    ClinicalTrials.gov

    2017-10-16

    Recurrent Cervical Cancer; Recurrent Vaginal Cancer; Stage IB Cervical Cancer; Stage II Vaginal Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Vaginal Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Therapy-related Toxicity

  3. Exercise in Targeting Metabolic Dysregulation in Stage I-III Breast or Prostate Cancer Survivors

    ClinicalTrials.gov

    2017-09-12

    Cancer Survivor; No Evidence of Disease; Obesity; Overweight; Prostate Carcinoma; Sedentary Lifestyle; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  4. T4 category revision enhances the accuracy and significance of stage III breast cancer.

    PubMed

    Güth, Uwe; Singer, Gad; Langer, Igor; Schötzau, Andreas; Herberich, Linda; Holzgreve, Wolfgang; Wight, Edward

    2006-06-15

    Because of the considerable heterogeneity in breast carcinoma with noninflammatory skin involvement (T4b/Stage IIIB), a revision was proposed of the TNM staging system that would classify these tumors exclusively based on their tumor size and lymph node status. In the current study, the authors evaluated how implementation of this proposal will affect Stage III noninflammatory breast cancer. Two hundred seven patients who were classified with noninflammatory Stage III breast cancer were treated consecutively between 1990 and 1999 at the University Hospital Basel, Switzerland. To assess the extent of T4b/Stage IIIB tumors independent of the clinicopathologic feature of skin involvement, the reclassification was undertaken. Of 68 patients who had nonmetastatic T4b breast cancer, 37 patients (54.4%) had a tumor extent in accordance with Stage I/II and had improved disease-specific survival (DSS) compared with patients who had Stage III breast cancer (P = .008). Excluding those patients from Stage III led to a 17.9% reduction of the number of patients in this group (n = 170 patients). The 10-year DSS declined from 48.5% to 42.9%. Considerable numbers of patients who are classified with noninflammatory Stage IIIB breast cancer show only a limited disease extent. Through a revision of the T4 category, these low-risk patients were excluded from the highest nonmetastatic TNM stage, and overstaging could be avoided. This procedure decreased the degree of heterogeneity of the entire Stage III group and may result in a more precise assessment of this disease entity. Copyright 2006 American Cancer Society.

  5. Oblimersen Sodium and Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage I, Stage II, Stage III, or Stage IV Diffuse Large B-Cell Lymphoma

    ClinicalTrials.gov

    2012-10-11

    Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma

  6. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  7. Afatinib in Advanced Refractory Urothelial Cancer

    ClinicalTrials.gov

    2017-09-28

    Distal Urethral Cancer; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Urethral Cancer; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Stage IV Urethral Cancer; Ureter Cancer

  8. Financial Burden Assessment in Patients With Stage I-III Colon or Rectal Cancer Undergoing Treatment

    ClinicalTrials.gov

    2018-06-12

    Stage I Colon Cancer AJCC v8; Stage I Rectal Cancer AJCC v8; Stage II Colon Cancer AJCC v8; Stage II Rectal Cancer AJCC v8; Stage IIA Colon Cancer AJCC v8; Stage IIA Rectal Cancer AJCC v8; Stage IIB Colon Cancer AJCC v8; Stage IIB Rectal Cancer AJCC v8; Stage IIC Colon Cancer AJCC v8; Stage IIC Rectal Cancer AJCC v8; Stage III Colon Cancer AJCC v8; Stage III Rectal Cancer AJCC v8; Stage IIIA Colon Cancer AJCC v8; Stage IIIA Rectal Cancer AJCC v8; Stage IIIB Colon Cancer AJCC v8; Stage IIIB Rectal Cancer AJCC v8; Stage IIIC Colon Cancer AJCC v8; Stage IIIC Rectal Cancer AJCC v8

  9. Vorinostat, Rituximab, and Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage II, Stage III, or Stage IV Diffuse Large B-Cell Lymphoma

    ClinicalTrials.gov

    2017-09-12

    Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma

  10. Barriers to early presentation of breast cancer among women in Soweto, South Africa

    PubMed Central

    McCormack, Valerie Ann; Das, Ishani; Neugut, Alfred I.; Jacobson, Judith S.

    2018-01-01

    Purpose Reported breast cancer incidence is rising in South Africa, where some women are diagnosed late and have poor outcomes. We studied patient and provider factors associated with clinical stage at diagnosis among women diagnosed at the Chris Hani Baragwanath Academic Hospital in Soweto, Johannesburg in 2015–2016. Methods From face-to-face interviewer-administered questionnaires we compared self-reported socioeconomics, demographics, comorbidities, risk factors, personal and health system barriers, and from patient clinical records, clinical staging, receptor subtype, and tumor grade among 499 consecutive women newly diagnosed with advanced stage (III/IV) breast cancer versus those diagnosed early (stage 0/I/II). Logistic regression models were used to identify factors associated with advanced stage at diagnosis. Results Among the women, 243 (49%) were diagnosed at early and 256 (51%) at advanced stages. In the multiple logistic regression adjusted model, completion of high school or beyond (odds ratio (OR) 0.59, and greater breast cancer knowledge and awareness (OR 0.86) were associated with lower stage of breast cancer at presentation. Advanced stage was associated with Luminal B (OR 2.25) and triple-negative subtypes (OR 3.17) compared to luminal A, with delays >3 months from first breast symptoms to accessing the health system (OR 2.79) and with having more than 1 visit within the referral health system (OR 3.19) for 2 visits; OR 2.73 for ≥3 visits). Conclusions Limited patient education, breast cancer knowledge and awareness, and health system inefficiencies were associated with advanced stage at diagnosis. Sustained community and healthcare worker education may down-stage disease and improve cancer outcomes. PMID:29394271

  11. Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage.

    PubMed

    Xu, Xiao-Quan; Ma, Gao; Wang, Yan-Jun; Hu, Hao; Su, Guo-Yi; Shi, Hai-Bin; Wu, Fei-Yun

    2017-07-18

    To evaluate the correlation between histogram parameters derived from diffusion-kurtosis (DK) imaging and the clinical stage of nasopharyngeal carcinoma (NPC). High T-stage (T3/4) NPC showed significantly higher Kapp-mean (P = 0.018), Kapp-median (P = 0.029) and Kapp-90th (P = 0.003) than low T-stage (T1/2) NPC. High N-stage NPC (N2/3) showed significantly lower Dapp-mean (P = 0.002), Dapp-median (P = 0.002) and Dapp-10th (P < 0.001) than low N-stage NPC (N0/1). High AJCC-stage NPC (III/IV) showed significantly lower Dapp-10th (P = 0.038) than low AJCC-stage NPC (I/II). ROC analyses indicated that Kapp-90th was optimal for predicting high T-stage (AUC, 0.759; sensitivity, 0.842; specificity, 0.607), while Dapp-10th was best for predicting high N- and AJCC-stage (N-stage, AUC, 0.841; sensitivity, 0.875; specificity, 0.807; AJCC-stage, AUC, 0.671; sensitivity, 0.800; specificity, 0.588). DK imaging data of forty-seven consecutive NPC patients were retrospectively analyzed. Apparent diffusion for Gaussian distribution (Dapp) and apparent kurtosis coefficient (Kapp) were generated using diffusion-kurtosis model. Histogram parameters, including mean, median, 10th, 90th percentiles, skewness and kurtosis of Dapp and Kapp were calculated. Patients were divided into low and high T, N and clinical stage based on American Joint Committee on Cancer (AJCC) staging system. Differences of histogram parameters between low and high T, N and AJCC stages were compared using t test. Multiple receiver operating characteristic (ROC) curves were used to determine and compare the value of significant parameters in predicting high T, N and AJCC stage, respectively. DK imaging-derived parameters correlated well with clinical stage of NPC, therefore could serve as an adjunctive imaging technique for evaluating NPC.

  12. Glass composition and solution speciation effects on stage III dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  13. Early response to therapy and survival in multiple myeloma.

    PubMed

    Schaar, C G; Kluin-Nelemans, J C; le Cessie, S; Franck, P F H; te Marvelde, M C; Wijermans, P W

    2004-04-01

    Whether the response to chemotherapy is a prognosticator in multiple myeloma (MM) is still not known. Therefore, the relationship between survival and the rate of monoclonal protein (M-protein) decrement during the first cycles of therapy was prospectively assessed in 262 patients with newly diagnosed MM that were included in a phase III trial (HOVON-16). M-proteins were collected monthly during melphalan-prednisone therapy (MP: melphalan 0.25 mg/kg, prednisone 1.0 mg/kg orally for 5 d every 4 weeks). Patients with light chain disease (n = 18), immunoglobulin M (IgM)-MM (n = 1) and no immunotyping (n = 1) were excluded. Of the 242 patients studied, 75% had IgG M-protein and 25% IgA; MM stages: I: 1%, II: 35% and III: 64%. The median M-protein decrease after the first cycle of MP was 21% for IgG and 27% for IgA, and declined to < 5% after four cycles. An obvious survival advantage was seen for patients who had an M-protein decrease of at least 30% after the first MP cycle, which became significant when an M-protein decrease of 40% or more was reached. As established prognostic parameters (Salmon & Durie stage, serum creatinine, and haemoglobin) also remained prognostically significant, we concluded that early response to MP predicts for survival in MM.

  14. Trastuzumab Emtansine in Treating Older Patients With Human Epidermal Growth Factor Receptor 2-Positive Stage I-III Breast Cancer

    ClinicalTrials.gov

    2018-02-01

    Estrogen Receptor Status; HER2 Positive Breast Carcinoma; Progesterone Receptor Status; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  15. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2018-06-07

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; WT1 Positive

  16. Transoral Robotic Surgery in Treating Patients With Benign or Malignant Tumors of the Head and Neck

    ClinicalTrials.gov

    2018-06-26

    Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage 0 Hypopharyngeal Cancer; Stage 0 Laryngeal Cancer; Stage 0 Lip and Oral Cavity Cancer; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVB Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVC Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  17. sEphB4-HSA Before Surgery in Treating Patients With Bladder Cancer, Prostate Cancer, or Kidney Cancer

    ClinicalTrials.gov

    2018-06-08

    Infiltrating Bladder Urothelial Carcinoma; Recurrent Bladder Carcinoma; Stage I Prostate Cancer; Stage I Renal Cell Cancer; Stage II Bladder Urothelial Carcinoma; Stage II Renal Cell Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer

  18. Vorinostat, Fludarabine Phosphate, Cyclophosphamide, and Rituximab in Treating Patients With Previously Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2018-01-12

    Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  19. Alvocidib in Treating Patients With B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-01

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  20. Study of Kidney Tumors in Younger Patients

    ClinicalTrials.gov

    2017-11-27

    Clear Cell Sarcoma of the Kidney; Congenital Mesoblastic Nephroma; Diffuse Hyperplastic Perilobar Nephroblastomatosis; Rhabdoid Tumor of the Kidney; Stage I Renal Cell Cancer; Stage I Wilms Tumor; Stage II Renal Cell Cancer; Stage II Wilms Tumor; Stage III Renal Cell Cancer; Stage III Wilms Tumor; Stage IV Renal Cell Cancer; Stage IV Wilms Tumor; Stage V Wilms Tumor

  1. Aldesleukin and Pembrolizumab in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2018-05-23

    Metastatic Melanoma; Stage III Mucosal Melanoma of the Head and Neck; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma; Stage IVA Mucosal Melanoma of the Head and Neck; Stage IVB Mucosal Melanoma of the Head and Neck; Stage IVC Mucosal Melanoma of the Head and Neck

  2. Talimogene Laherparepvec and Pembrolizumab in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2018-06-18

    Recurrent Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  3. Phase 2 Sequential and Concurrent Chemoradiation for Advanced Nasopharyngeal Carcinoma (NPC)

    ClinicalTrials.gov

    2016-12-09

    Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  4. Trametinib and Navitoclax in Treating Patients With Advanced or Metastatic Solid Tumors

    ClinicalTrials.gov

    2018-06-08

    Advanced Malignant Solid Neoplasm; KRAS Gene Mutation; Metastatic Malignant Solid Neoplasm; NRAS Gene Mutation; Recurrent Colorectal Carcinoma; Recurrent Lung Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Pancreatic Carcinoma; Stage III Colorectal Cancer AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Unresectable Malignant Neoplasm

  5. Prepare to Care, A Supported Self-Management Intervention for Head and Neck Cancer CaregiversHead and Neck Cancer

    ClinicalTrials.gov

    2018-04-26

    Caregiver; Malignant Head and Neck Neoplasm; Paranasal Sinus Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage I Hypopharyngeal Squamous Cell Carcinoma; Stage I Laryngeal Squamous Cell Carcinoma; Stage I Lip and Oral Cavity Squamous Cell Carcinoma; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Hypopharyngeal Squamous Cell Carcinoma; Stage II Laryngeal Squamous Cell Carcinoma; Stage II Lip and Oral Cavity Squamous Cell Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Hypopharyngeal Squamous Cell Carcinoma; Stage III Laryngeal Squamous Cell Carcinoma; Stage III Lip and Oral Cavity Squamous Cell Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IV Hypopharyngeal Squamous Cell Carcinoma; Stage IV Laryngeal Squamous Cell Carcinoma; Stage IV Lip and Oral Cavity Squamous Cell Carcinoma; Stage IV Oropharyngeal Squamous Cell Carcinoma; Stage IVA Hypopharyngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Squamous Cell Carcinoma; Stage IVA Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Stage IVB Hypopharyngeal Squamous Cell Carcinoma; Stage IVB Laryngeal Squamous Cell Carcinoma; Stage IVB Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVB Oropharyngeal Squamous Cell Carcinoma; Stage IVC Hypopharyngeal Squamous Cell Carcinoma; Stage IVC Laryngeal Squamous Cell Carcinoma; Stage IVC Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVC Oropharyngeal Squamous Cell Carcinoma

  6. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-24

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage III Large Cell Lung Carcinoma AJCC v7; Stage III Lung Adenocarcinoma AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Large Cell Lung Carcinoma AJCC v7; Stage IIIA Lung Adenocarcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Large Cell Lung Carcinoma AJCC v7; Stage IIIB Lung Adenocarcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Large Cell Lung Carcinoma AJCC v7; Stage IV Lung Adenocarcinoma AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  7. Glembatumumab Vedotin, Nivolumab, and Ipilimumab in Treating Patients With Advanced Metastatic Solid Tumors That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-11

    Advanced Malignant Solid Neoplasm; Estrogen Receptor Negative; GPNMB Positive; HER2/Neu Negative; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Cutaneous Melanoma AJCC v7; Stage III Uveal Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Uveal Melanoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  8. Tositumomab and Iodine I 131 Tositumomab in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma in First Remission

    ClinicalTrials.gov

    2017-10-10

    Lymphoid Leukemia in Remission; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  9. HIV-Resistant Gene Modified Stem Cells and Chemotherapy in Treating Patients With Lymphoma With HIV Infection

    ClinicalTrials.gov

    2017-11-08

    Human Immunodeficiency Virus 1 Positive; Stage I Adult Hodgkin Lymphoma; Stage I Adult Non-Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult Non-Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Non-Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Non-Hodgkin Lymphoma

  10. Fatigue Interventions in Cancer (Exercise Intervention)

    ClinicalTrials.gov

    2018-01-29

    Sedentary Lifestyle; Stage III Breast Cancer AJCC v7; Stage III Prostate Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Prostate Cancer AJCC v7

  11. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2018-01-24

    Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage II Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  12. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.

    PubMed

    Xu, Hong-Ping; Burbridge, Timothy J; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z Jimmy; Crair, Michael C

    2016-03-30

    Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as "readouts" of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. Copyright © 2016 the authors 0270-6474/16/363872-16$15.00/0.

  13. Trends in Mortality After Primary Cytoreductive Surgery for Ovarian Cancer: A Systematic Review and Metaregression of Randomized Clinical Trials and Observational Studies.

    PubMed

    Di Donato, Violante; Kontopantelis, Evangelos; Aletti, Giovanni; Casorelli, Assunta; Piacenti, Ilaria; Bogani, Giorgio; Lecce, Francesca; Benedetti Panici, Pierluigi

    2017-06-01

    Primary cytoreductive surgery (PDS) followed by platinum-based chemotherapy is the cornerstone of treatment and the absence of residual tumor after PDS is universally considered the most important prognostic factor. The aim of the present analysis was to evaluate trend and predictors of 30-day mortality in patients undergoing primary cytoreduction for ovarian cancer. Literature was searched for records reporting 30-day mortality after PDS. All cohorts were rated for quality. Simple and multiple Poisson regression models were used to quantify the association between 30-day mortality and the following: overall or severe complications, proportion of patients with stage IV disease, median age, year of publication, and weighted surgical complexity index. Using the multiple regression model, we calculated the risk of perioperative mortality at different levels for statistically significant covariates of interest. Simple regression identified median age and proportion of patients with stage IV disease as statistically significant predictors of 30-day mortality. When included in the multiple Poisson regression model, both remained statistically significant, with an incidence rate ratio of 1.087 for median age and 1.017 for stage IV disease. Disease stage was a strong predictor, with the risk estimated to increase from 2.8% (95% confidence interval 2.02-3.66) for stage III to 16.1% (95% confidence interval 6.18-25.93) for stage IV, for a cohort with a median age of 65 years. Metaregression demonstrated that increased age and advanced clinical stage were independently associated with an increased risk of mortality, and the combined effects of both factors greatly increased the risk.

  14. Comprehensive Approach to Pupil Planning: Stage III - Instructional Planning (Includes Data Sources Within the CAPP System and Teacher's Instructional Plan). Experimental Edition.

    ERIC Educational Resources Information Center

    Vlasak, Frances Stetson; Kaufman, Martin J.

    Presented is Stage III of the Comprehensive Approach to Pupil Planning (CAPP) System, a three-stage model for planning educational interventions in the regular and special education classrooms and for guiding placement decisions. The guide focuses on the instructional planning team with sections on the following: Stage III personnel; roles and…

  15. The treatment of Stage III nonseminomatous testicular tumors. Roswell Park Memorial Institute results (1970-1979).

    PubMed

    Pontes, J E; Wajsman, Z; Beckley, S; Williams, P; Murphy, G P

    1983-04-01

    A review of 92 patients with Stage III nonseminomatous tumors treated at Roswell Park Memorial Institute between 1970-1979 was undertaken to verify changes in concepts as related to multiple agent chemotherapy and cytoreductive surgery. Each patient had a minimal follow-up of 18 months. Fifty-three patients were seen before 1975. Eighteen had metastasis to the lungs only. These were treated with a variety of single chemotherapeutic agents and cytoreductive surgery. The survival of this group was 38%. Among 35 patients with lung and visceral involvement seen at the same time, only one patient is alive. Thirty-nine patients were seen after 1975 and treated with multi-drug chemotherapy and cytoreductive surgery. The current survival rate of 23 patients with lung metastasis only is 69%. Among 16 patients with lung and visceral involvement, the present survival rate is 31%. This report confirms the effectiveness of multi-drug therapy in conjunction with cytoreductive surgery in the treatment of disseminated testicular tumors.

  16. Multiple-stage structure transformation of organic-inorganic hybrid perovskite CH 3 NH 3 PbI 3

    DOE PAGES

    Chen, Qiong; Liu, Henan; Kim, Hui -Seon; ...

    2016-09-15

    In this study, by performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH 3NH 3PbI 3) to the fully degraded state (i.e., PbI 2) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditionsmore » (e.g., power, illumination time, and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.« less

  17. Multiple-Stage Structure Transformation of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Chen, Qiong; Liu, Henan; Kim, Hui-Seon; Liu, Yucheng; Yang, Mengjin; Yue, Naili; Ren, Gang; Zhu, Kai; Liu, Shengzhong; Park, Nam-Gyu; Zhang, Yong

    2016-07-01

    By performing spatially resolved Raman and photoluminescence spectroscopy with varying excitation wavelength, density, and data acquisition parameters, we achieve a unified understanding towards the spectroscopy signatures of the organic-inorganic hybrid perovskite, transforming from the pristine state (CH3NH3PbI3 ) to the fully degraded state (i.e., PbI2 ) for samples with varying crystalline domain size from mesoscopic scale (approximately 100 nm) to macroscopic size (centimeters), synthesized by three different techniques. We show that the hybrid perovskite exhibits multiple stages of structure transformation occurring either spontaneously or under light illumination, with exceptionally high sensitivity to the illumination conditions (e.g., power, illumination time, and interruption pattern). We highlight four transformation stages (stages I-IV, with stage I being the pristine state) along either the spontaneous or photoinduced degradation path exhibiting distinctly different Raman spectroscopy features at each stage, and point out that previously reported Raman spectra in the literature reflect highly degraded structures of either stage III or stage IV. Additional characteristic optical features of partially degraded materials under the joint action of spontaneous and photodegradation are also given. This study offers reliable benchmark results for understanding the intrinsic material properties and structure transformation of this unique category of hybrid materials, and the findings are pertinently important to a wide range of potential applications where the hybrid material is expected to function in greatly different environment and light-matter interaction conditions.

  18. Radiation Therapy, Amifostine, and Chemotherapy in Treating Young Patients With Newly Diagnosed Nasopharyngeal Cancer

    ClinicalTrials.gov

    2017-05-15

    Stage I Lymphoepithelioma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  19. Rituximab and Dexamethasone in Treating Patients With Low-Grade Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2017-04-14

    Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Marginal Zone Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Waldenstrom Macroglobulinemia

  20. Systems Support Mapping in Guiding Self-Management in Stage I-III Colorectal Cancer Survivors

    ClinicalTrials.gov

    2018-05-30

    Cancer Survivor; Stage I Colorectal Cancer AJCC v8; Stage II Colorectal Cancer AJCC v8; Stage IIA Colorectal Cancer AJCC v8; Stage IIB Colorectal Cancer AJCC v8; Stage IIC Colorectal Cancer AJCC v8; Stage III Colorectal Cancer AJCC v8; Stage IIIA Colorectal Cancer AJCC v8; Stage IIIB Colorectal Cancer AJCC v8; Stage IIIC Colorectal Cancer AJCC v8

  1. Ofatumumab, Pentostatin, and Cyclophosphamide in Treating Patients With Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2014-10-30

    Hematopoietic/Lymphoid Cancer; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  2. Anti-SEMA4D Monoclonal Antibody VX15/2503 With Nivolumab or Ipilimumab in Treating Patients With Stage III or IV Melanoma

    ClinicalTrials.gov

    2018-06-15

    Metastatic Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  3. Lipids during Bufo arenarum oogenesis.

    PubMed

    Bruzzone, Ariana; Buschiazzo, Jorgelina; Alonso, Telma S

    2003-05-01

    The content and composition of phospholipids and triacylglycerols (TAGs) in Bufo arenarum oocytes in stages III and IV of their oogenesis were studied. The total amount of phospholipids in stage IV oocytes is 0.5-fold higher than in stage III oocytes. In both cases, the main phospholipids are phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A striking observation concerns the high level of diphosphatidylglycerol (DPG) in stage III oocytes, which could be indicative of a relatively larger mitochondrial population with respect to other oogenetic stages. A net increase in sphingomyelin content was found during oogenesis. This fact could be related to the role of this phospholipid in the signal transductional pathways. In PC, palmitic (16:0), linoleic (18:2) and oleic (18:1) are the major fatty acids for both types of oocytes, while in PE the main acyl groups are 18:1, 16:0, arachidonic acid (20:4n6) and 18:2. PE is more unsaturated than PC and both phospholipids are more unsaturated in stage III oocytes than in stage IV oocytes. The amount of triacylglycerols is 0.3-fold higher in stage IV oocytes than in stage III oocytes. In both stages, the main fatty acids are 18:2, 18:1 and 16:0. During oogenesis, a significant increase in 18:1 and 18:3n3, and a decrease in 18:2 of TAG were found. The unsaturation index of TAGs from stage IV oocytes is higher than that from stage III oocytes. The TAG increase during oogenesis is consistent with the putative use of these lipids as a source of energy in embryo development.

  4. Severe gastritis decreases success rate of Helicobacter pylori eradication.

    PubMed

    Kalkan, Ismail Hakki; Sapmaz, Ferdane; Güliter, Sefa; Atasoy, Pınar

    2016-05-01

    In several studies, different risk factors other than antibiotic resistance have been documented with Helicobacter pylori eradication failure. We aimed in this study to investigate the relationship of gastric density of H. pylori, the occurrence/degree of gastric atrophy, and intestinal metaplasia (IM) with success rate of H. pylori eradication. Two hundred consecutive treatment naive patients who received bismuth containing standart quadruple treatment due to H. pylori infection documented by histopathological examination of two antral or two corpal biopsies entered this retrospective study. The updated Sydney system was used to grade the activity of gastritis, density of H. pylori colonization, atrophy, and IM. Stages III and IV of operative link for gastritis assessment (OLGA) or the operative link on gastric intestinal metaplasia assessment (OLGIM) stages was considered as severe gastritis. H. pylori eradication was determined via stool H. pylori antigen test performed 4 weeks after the end of therapy. The presence of gastric atrophy and IM was significantly higher in patients with eradication failure (p = 0.001 and 0.01, respectively). Severe gastritis (OLGA III-IV and OLGIM III-IV) rates were higher in eradication failure group. A multiple linear regression analysis showed that OLGA and OLGIM stages were to be independent risk factors for eradication failure (p = 0.03 and 0.01, respectively). Our results suggested that histopathologically severe gastritis may cause H. pylori eradication failure. In addition, we found that H. pylori density was not a risk factor for treatment failure in patients who receive quadruple treatment.

  5. High-Dose Recombinant Interferon Alfa-2B, Ipilimumab, or Pembrolizumab in Treating Patients With Stage III-IV High Risk Melanoma That Has Been Removed by Surgery

    ClinicalTrials.gov

    2018-06-18

    Metastatic Non-Cutaneous Melanoma; Non-Cutaneous Melanoma; Recurrent Melanoma of the Skin; Recurrent Non-Cutaneous Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage III Mucosal Melanoma of the Head and Neck AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IVA Mucosal Melanoma of the Head and Neck AJCC v7; Stage IVB Mucosal Melanoma of the Head and Neck AJCC v7; Stage IVC Mucosal Melanoma of the Head and Neck AJCC v7

  6. Aflibercept in Treating Patients With Recurrent and/or Metastatic Thyroid Cancer That Did Not Respond to Radioactive Iodine Therapy

    ClinicalTrials.gov

    2017-01-24

    Recurrent Thyroid Gland Carcinoma; Stage III Thyroid Gland Follicular Carcinoma; Stage III Thyroid Gland Papillary Carcinoma; Stage IV Thyroid Gland Follicular Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma

  7. VEGF Trap in Treating Patients With Recurrent Stage III or Stage IV Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-26

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage III Melanoma; Stage IV Melanoma

  8. [Massive multiplication of coffee (Coffee arabica L. cv. Catimor) through embryogenic cell suspension culture].

    PubMed

    Flermoso-Gallardo, L; Menóndez-Yuffá, A

    2000-01-01

    Cell suspensions offer several advantages as a system for massive propagation because of the high rates of multiplication, the higher homogeneity in the culture conditions and the possibility of automatization. In this study, different experimental conditions were analyzed to establish embryogenic cell suspension cultures of coffee. The best conditions to establish the embryogenic cell suspension cultures of coffee were as follows: coffee leaf sections were cultivated during 12 weeks (Stage I) in a solid medium with the Murashige and Skoog salts, 2 mg/l kinetin and 0.5 mg/l 2,4-dichlorophenoxiacetic acid (medium 1). Under these conditions the explants formed a callus tissue that was transferred to a liquid medium containing 5 mg/l of 6-benzylamlno-purine (medium 2). After 12 days in a shaking liquid medium (Stage II), the cultures were sieved and were maintained In the same media, which was renewed every eight days (Stage III). This method yielded 1884 embryos in 50 ml; placing the embryos under conditions for germination yielded plantlets of normal appearance.

  9. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  10. Radiotherapy improves survival in unresected stage I-III bronchoalveolar carcinoma.

    PubMed

    Urban, Damien; Mishra, Mark; Onn, Amir; Dicker, Adam P; Symon, Zvi; Pfeffer, M Raphael; Lawrence, Yaacov Richard

    2012-11-01

    To test the hypothesis that radiotherapy (RT) improves the outcome of patients with unresected, nonmetastatic bronchoalveolar carcinoma (BAC) by performing a population-based analysis within the Surveillance, Epidemiology, and End Results (SEER) registry. Inclusion criteria were as follows: patients diagnosed with BAC, Stage I-III, between 2001 and 2007. Exclusion criteria included unknown stage, unknown primary treatment modality, Stage IV disease, and those diagnosed at autopsy. Demographic data, treatment details, and overall survival were retrieved from the SEER database. Survival was analyzed using the Kaplan-Meier method and log-rank test. A total of 6933 patients with Stage I-III BAC were included in the analysis. The median age at diagnosis was 70 years (range, 10-101 years). The majority of patients were diagnosed with Stage I (74.4%); 968 patients (14%) did not undergo surgical resection. Unresected patients were more likely to be older (p < 0.0001), male (p = 0.001), black (p < 0.0001), and Stage III (p < 0.0001). Within the cohort of unresected patients, 300 (31%) were treated with RT. The estimated 2-year overall survival for patients with unresected, nonmetastatic BAC was 58%, 44%, and 27% in Stage I, II, and III, respectively. Factors associated with improved survival included female sex, earlier stage at diagnosis, and use of RT. Median survival in those not receiving RT vs. receiving RT was as follows: Stage I, 28 months vs. 33 months (n = 364, p = 0.06); Stage II, 18 months vs. not reached (n = 31, nonsignificant); Stage III, 10 months vs. 17 months (n = 517, p < 0.003). The use of RT is associated with improved prognosis in unresected Stage I-III BAC. Less than a third of patients who could have potentially benefited from RT received it, suggesting that the medical specialists involved in the care of these patients underappreciate the importance of RT. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Use of Image-Guided Stereotactic Body Radiation Therapy in Lieu of Intracavitary Brachytherapy for the Treatment of Inoperable Endometrial Neoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemmerer, Eric; Hernandez, Enrique; Ferriss, James S.

    2013-01-01

    Purpose: Retrospective analysis of patients with invasive endometrial neoplasia who were treated with external beam radiation therapy followed by stereotactic body radiation therapy (SBRT) boost because of the inability to undergo surgery or brachytherapy. Methods and Materials: We identified 11 women with stage I-III endometrial cancer with a median age of 78 years that were not candidates for hysterectomy or intracavitary brachytherapy secondary to comorbidities (91%) or refusal (9%). Eight patients were American Joint Committee on Cancer (AJCC) stage I (3 stage IA, 5 stage IB), and 3 patients were AJCC stage III. Patients were treated to a median ofmore » 4500 cGy at 180 cGy per fraction followed by SBRT boost (600 cGy per fraction Multiplication-Sign 5). Results: The most common side effect was acute grade 1 gastrointestinal toxicity in 73% of patients, with no late toxicities observed. With a median follow-up of 10 months since SBRT, 5 patients (45%) experienced locoregional disease progression, with 3 patients (27%) succumbing to their malignancy. At 12 and 18 months from SBRT, the overall freedom from progression was 68% and 41%, respectively. Overall freedom from progression (FFP) was 100% for all patients with AJCC stage IA endometrial carcinoma, whereas it was 33% for stage IB at 18 months. The overall FFP was 100% for International Federation of Obstetrics and Gynecology grade 1 disease. The estimated overall survival was 57% at 18 months from diagnosis. Conclusion: In this study, SBRT boost to the intact uterus was feasible, with encouragingly low rates of acute and late toxicity, and favorable disease control in patients with early-stage disease. Additional studies are needed to provide better insight into the best management of these clinically challenging cases.« less

  12. Pembrolizumab and Combination Chemotherapy in Treating Patients With Previously Untreated Diffuse Large B-cell Lymphoma or Grade 3b Follicular Lymphoma

    ClinicalTrials.gov

    2017-10-24

    Composite Lymphoma; Grade 3b Follicular Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage I Follicular Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage II Follicular Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage III Follicular Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma; Stage IV Follicular Lymphoma

  13. Cyclophosphamide, Alvocidib, and Rituximab in Treating Patients With High Risk B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2015-11-10

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  14. DNA Polymerase III Star Requires ATP to Start Synthesis on a Primed DNA†

    PubMed Central

    Wickner, William; Kornberg, Arthur

    1973-01-01

    DNA polymerase III star replicates a ϕX174 single-stranded, circular DNA primed with a fragment of RNA. This reaction proceeds in two stages. In stage I, a complex is formed requiring DNA polymerase III star, ATP, spermidine, copolymerase III*, and RNA-primed ϕX174 single-stranded, circular DNA. The complex, isolated by gel filtration, contains ADP and inorganic phosphate (the products of a specific ATP cleavage) as well as spermidine, polymerase III star, and copolymerase III star. In stage II, the chain grows upon addition of deoxynucleoside triphosphates; ADP and inorganic phosphate are discharged and chain elongation is resistant to antibody to copolymerase III star. Thus ATP and copolymerase III star are required to initiate chain growth but not to sustain it. Images PMID:4519657

  15. Safe adalimumab therapy for rheumatoid arthritis in a patient with pre-existing multiple myeloma.

    PubMed

    Mielke, Frank; Schweigert, Marcus

    2008-04-01

    We report on a patient with rheumatoid arthritis (RA) who was treated with adalimumab and retrospectively diagnosed as having a multiple myeloma. In addition to the determination of clinical symptoms, investigations included radiography of the thorax, spine, hands and feet, arthrosonography, determination of laboratory parameters (including C-reactive protein levels and presence of antibodies against cyclic citrullinated peptide), cytogenetics and electrocardiography. RA was initially diagnosed in 1988. Stage II and stage III RA were diagnosed for the left and right foot, respectively, in 1996. Joints of both hands were diagnosed with stage I RA; both wrists and some finger joints showed signs of synovitis. Plasmocytoma was diagnosed in 2004; however, investigation of medical records revealed evidence of multiple myeloma 8 years earlier, in 1996. RA was originally treated with gold, sulfasalazine, azathioprin and glucocorticoid. Methotrexate was later used in addition to cortisone and then in combination with a selective cyclo-oxygenase-2 inhibitor. A combination therapy consisting of adalimumab (40 mg every 2 weeks), methotrexate (15 mg weekly) and a cyclo-oxygenase-2 inhibitor (rofecoxib 25 mg daily until July 2004, etoricoxib 90 mg daily from October 2004) was started in November 2003. Adalimumab therapy was interrupted for 6 months owing to safety concerns, but was resumed after a careful risk-benefit assessment.

  16. Eribulin Mesylate and Gemcitabine Hydrochloride in Treating Patients With Metastatic Solid Tumors or Solid Tumors That Cannot be Removed by Surgery

    ClinicalTrials.gov

    2017-09-19

    Adult Solid Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Uterine Corpus Carcinoma; Stage III Ovarian Cancer; Stage III Uterine Corpus Cancer; Stage IV Ovarian Cancer; Stage IV Uterine Corpus Cancer

  17. PHASE II TRIAL OF THE CYCLIN-DEPEDENT KINASE INHIBITOR PD 0332991 IN PATIENTS WITH CANCER

    ClinicalTrials.gov

    2016-08-24

    Adult Solid Tumor; Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Benign Teratoma; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Familial Testicular Germ Cell Tumor; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Monodermal and Highly Specialized Teratoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Melanoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Rectal Cancer; Stage III Extragonadal Non-seminomatous Germ Cell Tumor; Stage III Extragonadal Seminoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Extragonadal Non-seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Melanoma; Stage IV Ovarian Germ Cell Tumor; Stage IV Rectal Cancer; Testicular Immature Teratoma; Testicular Mature Teratoma

  18. Rituximab With or Without Yttrium Y-90 Ibritumomab Tiuxetan in Treating Patients With Untreated Follicular Lymphoma

    ClinicalTrials.gov

    2018-02-05

    Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma

  19. 18F-FSPG PET/CT for Cancer Patients on Therapy

    ClinicalTrials.gov

    2017-02-15

    B-Cell Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Renal Cell Cancer; Progesterone Receptor Negative; Stage III Mesothelioma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Mesothelioma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Triple-Negative Breast Carcinoma

  20. Olfactory Training in Improving Sense of Smell After Radiation Therapy in Patients With Paranasal Sinus or Nasopharyngeal Cancer

    ClinicalTrials.gov

    2017-07-11

    Stage 0 Nasopharyngeal Carcinoma; Stage 0 Paranasal Sinus Cancer; Stage I Nasopharyngeal Carcinoma; Stage I Paranasal Sinus Cancer; Stage II Nasopharyngeal Carcinoma; Stage II Paranasal Sinus Cancer; Stage IIA Nasopharyngeal Carcinoma; Stage IIB Nasopharyngeal Carcinoma; Stage III Nasopharyngeal Carcinoma; Stage III Paranasal Sinus Cancer; Stage IV Nasopharyngeal Carcinoma; Stage IV Paranasal Sinus Cancer; Stage IVA Nasopharyngeal Carcinoma; Stage IVA Paranasal Sinus Cancer; Stage IVB Nasopharyngeal Carcinoma; Stage IVB Paranasal Sinus Cancer; Stage IVC Nasopharyngeal Carcinoma; Stage IVC Paranasal Sinus Cancer

  1. Nivolumab and Ipilimumab With or Without Sargramostim in Treating Patients With Stage III-IV Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-20

    Recurrent Melanoma of the Skin; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  2. Atezolizumab, Pemetrexed Disodium, Cisplatin, and Surgery With or Without Radiation Therapy in Treating Patients With Stage I-III Pleural Malignant Mesothelioma

    ClinicalTrials.gov

    2018-06-26

    Biphasic Mesothelioma; Epithelioid Mesothelioma; Stage I Pleural Malignant Mesothelioma AJCC v7; Stage IA Pleural Malignant Mesothelioma AJCC v7; Stage IB Pleural Malignant Mesothelioma AJCC v7; Stage II Pleural Malignant Mesothelioma AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7

  3. Durvalumab Before Surgery in Treating Patients With Oral Cavity or Oropharynx Cancer

    ClinicalTrials.gov

    2017-12-20

    Human Papillomavirus Infection; Stage I Oral Cavity Squamous Cell Carcinoma; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Oral Cavity Squamous Cell Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Oral Cavity Squamous Cell Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Oral Cavity Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Stage IVB Oral Cavity Squamous Cell Carcinoma; Stage IVB Oropharyngeal Squamous Cell Carcinoma; Stage IVC Oropharyngeal Squamous Cell Carcinoma

  4. Trametinib and TAS-102 in Treating Patients With Colon or Rectal Cancer That is Advanced, Metastatic, or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-07

    RAS Family Gene Mutation; Stage III Colon Cancer AJCC v7; Stage III Colorectal Cancer AJCC v7; Stage III Rectal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Rectal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Stage IVB Rectal Cancer AJCC v7

  5. Stress Test in Detecting Heart Damage in Premenopausal Women With Stage I-III Breast Cancer

    ClinicalTrials.gov

    2018-04-26

    Anatomic Stage I Breast Cancer AJCC v8; Anatomic Stage IA Breast Cancer AJCC v8; Anatomic Stage IB Breast Cancer AJCC v8; Anatomic Stage II Breast Cancer AJCC v8; Anatomic Stage IIA Breast Cancer AJCC v8; Anatomic Stage IIB Breast Cancer AJCC v8; Anatomic Stage III Breast Cancer AJCC v8; Anatomic Stage IIIA Breast Cancer AJCC v8; Anatomic Stage IIIB Breast Cancer AJCC v8; Anatomic Stage IIIC Breast Cancer AJCC v8; Premenopausal; Prognostic Stage I Breast Cancer AJCC v8; Prognostic Stage IA Breast Cancer AJCC v8; Prognostic Stage IB Breast Cancer AJCC v8; Prognostic Stage II Breast Cancer AJCC v8; Prognostic Stage IIA Breast Cancer AJCC v8; Prognostic Stage IIB Breast Cancer AJCC v8; Prognostic Stage III Breast Cancer AJCC v8; Prognostic Stage IIIA Breast Cancer AJCC v8; Prognostic Stage IIIB Breast Cancer AJCC v8; Prognostic Stage IIIC Breast Cancer AJCC v8

  6. Lenvatinib and Pembrolizumab in DTC

    ClinicalTrials.gov

    2018-05-21

    Columnar Cell Variant Thyroid Gland Papillary Carcinoma; Follicular Variant Thyroid Gland Papillary Carcinoma; Poorly Differentiated Thyroid Gland Carcinoma; Recurrent Thyroid Gland Carcinoma; Stage III Differentiated Thyroid Gland Carcinoma AJCC v7; Stage III Thyroid Gland Follicular Carcinoma AJCC v7; Stage III Thyroid Gland Papillary Carcinoma AJCC v7; Stage IV Thyroid Gland Follicular Carcinoma AJCC v7; Stage IV Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVA Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVA Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVA Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVB Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVB Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVB Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVC Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVC Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVC Thyroid Gland Papillary Carcinoma AJCC v7; Tall Cell Variant Thyroid Gland Papillary Carcinoma; Thyroid Gland Oncocytic Follicular Carcinoma

  7. Interleukin-12 and Interleukin-2 in Treating Patients With Mycosis Fungoides

    ClinicalTrials.gov

    2013-01-15

    Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome

  8. Combination Chemotherapy, Radiation Therapy, and/or Surgery in Treating Patients With High-Risk Kidney Tumors

    ClinicalTrials.gov

    2017-06-22

    Childhood Renal Cell Carcinoma; Clear Cell Renal Cell Carcinoma; Clear Cell Sarcoma of the Kidney; Papillary Renal Cell Carcinoma; Rhabdoid Tumor of the Kidney; Stage I Renal Cell Cancer; Stage I Renal Wilms Tumor; Stage II Renal Cell Cancer; Stage II Renal Wilms Tumor; Stage III Renal Cell Cancer; Stage III Renal Wilms Tumor; Stage IV Renal Cell Cancer; Stage IV Renal Wilms Tumor

  9. Clinicopathological analysis of colorectal cancer: a comparison between emergency and elective surgical cases.

    PubMed

    Ghazi, Sam; Berg, Elisabeth; Lindblom, Annika; Lindforss, Ulrik

    2013-06-11

    Approximately 15 to 30% of colorectal cancers present as an emergency, most often as obstruction or perforation. Studies report poorer outcome for patients who undergo emergency compared with elective surgery, both for their initial hospital stay and their long-term survival. Advanced tumor pathology and tumors with unfavorable histologic features may provide the basis for the difference in outcome. The aim of this study was to compare the clinical and pathologic profiles of emergency and elective surgical cases for colorectal cancer, and relate these to gender, age group, tumor location, and family history of the disease. The main outcome measure was the difference in morphology between elective and emergency surgical cases. In total, 976 tumors from patients treated surgically for colorectal cancer between 2004 and 2006 in Stockholm County, Sweden (8 hospitals) were analyzed in the study. Seventeen morphological features were examined and compared with type of operation (elective or emergency), gender, age, tumor location, and family history of colorectal cancer by re-evaluating the histopathologic features of the tumors. In a univariate analysis, the following characteristics were found more frequently in emergency compared with elective cases: multiple tumors, higher American Joint Committee on Cancer (AJCC), tumor (T) and node (N) stage, peri-tumor lymphocytic reaction, high number of tumor-infiltrating lymphocytes, signet-ring cell mucinous carcinoma, desmoplastic stromal reaction, vascular and perineural invasion, and infiltrative tumor margin (P<0.0001 for AJCC stage III to IV, N stage 1 to 2/3, and vascular invasion). In a multivariate analysis, all these differences, with the exception of peri-tumor lymphocytic reaction, remained significant (P<0.0001 for multiple tumors, perineural invasion, infiltrative tumor margin, AJCC stage III, and N stage 1 to 2/3). Colorectal cancers that need surgery as an emergency case generally show a more aggressive histopathologic profile and a more advanced stage than do elective cases. Essentially, no difference was seen in location, and therefore it is likely there would be no differences in macro-environment either. Our results could indicate that colorectal cancers needing emergency surgery belong to an inherently specific group with a different etiologic or genetic background.

  10. Prognostic impact of the level of nodal involvement: retrospective analysis of patients with advanced oral squamous cell carcinoma.

    PubMed

    Murakami, R; Nakayama, H; Semba, A; Hiraki, A; Nagata, M; Kawahara, K; Shiraishi, S; Hirai, T; Uozumi, H; Yamashita, Y

    2017-01-01

    We retrospectively evaluated the prognostic impact of the level of nodal involvement in patients with advanced oral squamous cell carcinoma (SCC). Between 2005 and 2010, 105 patients with clinical stage III or IV oral SCC had chemoradiotherapy preoperatively. Clinical (cN) and pathological nodal (pN) involvement was primarily at levels Ib and II. We defined nodal involvement at levels Ia and III-V as anterior and inferior extensions, respectively, and recorded such findings as extensive. With respect to pretreatment variables (age, clinical stage, clinical findings of the primary tumour, and nodal findings), univariate analysis showed that extensive cN was the only significant factor for overall survival (hazard ratio [HR], 3.27; 95% CI 1.50 to 7.13; p=0.001). Univariate analysis showed that all pN findings, including the nodal classification (invaded nodes, multiple, and contralateral) and extensive involvement were significant, and multivariate analysis confirmed that extensive pN (HR 4.71; 95% CI 1.85 to 11.97; p=0.001) and multiple pN (HR 2.59; 95% CI 1.10 to 6.09; p=0.029) were independent predictors of overall survival. Assessment based on the level of invaded neck nodes may be a better predictor of survival than the current nodal classification. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. [Perimetric changes in advanced glaucoma].

    PubMed

    Feraru, Crenguta Ioana; Pantalon, Anca

    2011-01-01

    The evaluation of various perimetric aspects in advanced glaucoma stages correlated to morpho-functional changes. MATHERIAL AND METHOD: Retrospective clinical trial over a 10 months time period that included patients with advanced glaucoma stages, for which there have been recorded several computerised visual field tests (central 24-2 strategy, 10-2 strategy with either III or V--Goldman stimulus spot size) along with other morpho-funtional ocular paramaters: VA, lOP optic disk analysis. We included in our study 56 eyes from 45 patients. In most cases 89% it was an open angle glaucoma (either primary or secondary) Mean visual acuity was 0.45 +/- 0.28. Regarding the perimetric deficit 83% had advanced deficit, 9% moderate and 8% early visual changes. As perimetric type of defect we found a majority with general reduction of sensitivity (33 eyes) + ring shape scotoma. In 6 eyes (10.7%) having left only a central isle of vision we performed the central 10-2 strategy with III or V Goldmann stimulus spot size. Statistic analysis showed scarce correlation between the visual acuity and the quantitative perimetric parameters (MD and PSD), and variance analysis found present a multiple correlation parameter p = 0.07 that proves there is no liniary correspondence between the morpho-functional parameters: VA-MD(PSD) and C/D ratio. In advanced glaucoma stages, the perimetric changes are mostly severe. Perimetric evaluation is essential in these stages and needs to be individualised.

  12. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 and Temsirolimus in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-05-29

    Endometrial Papillary Serous Carcinoma; Recurrent Endometrial Carcinoma; Recurrent Renal Cell Cancer; Stage III Endometrial Carcinoma; Stage III Renal Cell Cancer; Stage IV Endometrial Carcinoma; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  13. EF5 to Evaluate Tumor Hypoxia in Patients With High-Grade Soft Tissue Sarcoma or Mouth Cancer

    ClinicalTrials.gov

    2013-01-15

    Stage I Adult Soft Tissue Sarcoma; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Adult Soft Tissue Sarcoma; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Adult Soft Tissue Sarcoma; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity

  14. Dabrafenib and Trametinib in Treating Patients With Stage III-IV BRAF Mutant Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-25

    BRAF V600E Mutation Present; BRAF V600K Mutation Present; Recurrent Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  15. Validation of the ICON-S staging for HPV-associated oropharyngeal carcinoma using a pre-defined treatment policy.

    PubMed

    Porceddu, Sandro V; Milne, Rob; Brown, Elizabeth; Bernard, Anne; Rahbari, Reza; Cartmill, Bena; Foote, Matthew; McGrath, Margaret; Coward, Jermaine; Panizza, Benedict

    2017-03-01

    To determine whether the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S) for HPV associated oropharyngeal carcinoma (HPV+OPC) is a better discriminator of overall survival (OS), compared with the 7th edition (7th Ed) AJCC/UICC TNM staging following curative radiotherapy (RT). The 5-year OS for all patients with non-metastatic (M0) p16-confirmed OPC treated between 2005 and 2015 was determined and grouped based on the 7th Ed AJCC/UICC TNM and ICON-S staging. A total of 279 patients met the inclusion criteria. The 5-year OS with the 7th Ed TNM classification were Stage I/II 88.9% (95% CI; 70.6-100%), Stage III 93.8% (95% CI; 85.9-100%), Stage IVa 86.4% (95% CI; 81.6-91.5%) and Stage IVb 62.3% (95% CI; 46.8-82.8%). On multivariate Cox regression analysis there was no statistically significant OS difference when comparing Stage I/II with, Stage III (p=0.98, HR=0.97, 95% CI; 0.11-8.64), IVa (p=0.67, HR=1.56, 95% CI; 0.2-11.94) and IVb (p=0.11, HR=5.54, 95% CI; 0.69-44.52), respectively. The 5-year OS with ICON-S staging were Stage I 93.6% (95% CI; 89.4-98.0%), Stage II 81.9% (95% CI; 73.7-91.1%) and Stage III 69.1% (95%; 57.9-82.6%). There was a consistent decrease of OS with increasing stage. On multivariate Cox regression analysis, when compared to Stage I, OS was significantly lower for stage II (p=0.007, HR=2.84, 95% CI; 1.33-6.05) and stage III (p<0.001, HR=3.78, 95% CI; 1.81-7.92), respectively. The ICON-S staging provides better OS stratification for HPV+OPC following RT compared with the 7th Ed TNM staging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ziv-aflibercept in Treating Patients With Locally Advanced, Unresectable, or Metastatic Gynecologic Soft Tissue Sarcoma

    ClinicalTrials.gov

    2015-12-03

    Fallopian Tube Cancer; Female Reproductive Cancer; Ovarian Carcinosarcoma; Ovarian Sarcoma; Recurrent Ovarian Epithelial Cancer; Recurrent Uterine Sarcoma; Stage III Ovarian Epithelial Cancer; Stage III Uterine Sarcoma; Stage IV Ovarian Epithelial Cancer; Stage IV Uterine Sarcoma; Uterine Carcinosarcoma; Uterine Leiomyosarcoma

  17. Point of No Return From Water Loss in Coptotermes formosanus (Isoptera: Rhinotermitidae).

    PubMed

    Gautam, Bal K; Henderson, Gregg

    2015-08-01

    Describing desiccation stages based on the physical appearance of termites has not been evaluated previously. Formosan subterranean termites were studied to determine the rate of water loss, singly and in groups, in the laboratory. The stages of water loss are described based on changes in physical appearance and percent total body water loss evaluated at 2- to 8-h time intervals up to 32 h. Workers in groups lost water slower than individual worker trials. Weight loss was linear over time for worker groups and individuals, as was individual soldier only trials. Water loss in individual workers was significantly faster than in soldiers. Three physical stages of desiccation are described for living workers: (I) curling of antennae, (II) on back but with assistance able to right themselves and walk, and (III) unable to get off back; and two stages for living soldiers (II and III). Recovery was determined from termites in a second trial by transferring stage I, II, and III individuals from open, dry Petri dishes to those with moist filter paper at 4, 6, 10, 12, 14, 16, 24, 26 and 28 h. After 12 h on moist filter paper, stage I workers had a 83% recovery rate, stage II had a 33%, and stage III had a 7% recovery. Soldiers had a 56% recovery at stage II and was similar to the recovery of workers at stage III. Most termites that reached stage III were destined to die. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Patterns of adjuvant chemotherapy for stage II and III colon cancer in France and Italy.

    PubMed

    Bouvier, Anne-Marie; Minicozzi, Pamela; Grosclaude, Pascale; Bouvier, Véronique; Faivre, Jean; Sant, Milena

    2013-08-01

    European guidelines recommend adjuvant chemotherapy for stage III colon cancer but not for stage II. To determine the extent to which adjuvant chemotherapy was used in Italy and France. A common retrospective database of 2186 colon cancers diagnosed between 2003 and 2005 was analysed according to age, stage and presenting features. 38.9% of patients with stage II and 64.6% with stage III received chemotherapy in Italy, 21.7% and 65.1% in France. For stage II, the association between country and chemotherapy was only significant in patients diagnosed out of emergency (ORItaly/France: 3.05 [2.12-4.37], p<0.001) whereas patients diagnosed in emergency were as likely to receive chemotherapy in both countries. For stage III, there was a trend to a higher administration of chemotherapy for elderly patients in France compared to Italy. French patients were more likely than Italian to receive chemotherapy (OR: 1.91[1.32-2.78], p=0.001). Chemotherapy for stage III colon cancer was as extensively used in Italy as in France for young patients. Its administration could be increased in patients over 75. Stage II patients with a lower risk of relapse received chemotherapy more often in Italy than in France. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  19. Collecting Tumor Samples From Patients With Gynecological Tumors

    ClinicalTrials.gov

    2016-10-26

    Borderline Ovarian Clear Cell Tumor; Borderline Ovarian Serous Tumor; Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Childhood Embryonal Rhabdomyosarcoma; Childhood Malignant Ovarian Germ Cell Tumor; Endometrioid Stromal Sarcoma; Gestational Trophoblastic Tumor; Malignant Mesothelioma; Malignant Ovarian Epithelial Tumor; Melanoma; Neoplasm of Uncertain Malignant Potential; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Paget Disease of the Vulva; Recurrent Cervical Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Recurrent Vaginal Carcinoma; Recurrent Vulvar Carcinoma; Stage I Ovarian Cancer; Stage I Uterine Corpus Cancer; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IB Cervical Cancer; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IC Ovarian Germ Cell Tumor; Stage II Ovarian Cancer; Stage II Uterine Corpus Cancer; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Cervical Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage III Borderline Ovarian Surface Epithelial-Stromal Tumor; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cancer; Stage IV Borderline Ovarian Surface Epithelial-Stromal Tumor; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Uterine Corpus Cancer; Uterine Corpus Leiomyosarcoma; Vulvar Squamous Cell Carcinoma

  20. Paclitaxel, Bevacizumab And Adjuvant Intraperitoneal Carboplatin in Treating Patients Who Had Initial Debulking Surgery for Stage II, Stage III, or Stage IV Ovarian Epithelial, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2014-06-18

    Brenner Tumor; Fallopian Tube Cancer; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Primary Peritoneal Cavity Cancer; Stage II Ovarian Epithelial Cancer; Stage III Ovarian Epithelial Cancer; Stage IV Ovarian Epithelial Cancer

  1. Erlotinib and Radiation Therapy With or Without Cisplatin in Treating Patients With Mouth or Throat Cancer

    ClinicalTrials.gov

    2013-09-27

    Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx

  2. American Joint Committee on Cancer Classification of Uveal Melanoma (Anatomic Stage) Predicts Prognosis in 7,731 Patients: The 2013 Zimmerman Lecture.

    PubMed

    Shields, Carol L; Kaliki, Swathi; Furuta, Minoru; Fulco, Enzo; Alarcon, Carolina; Shields, Jerry A

    2015-06-01

    To analyze the clinical features and prognosis of posterior uveal melanoma based on the American Joint Committee on Cancer (AJCC) (7th edition) tumor staging. Retrospective interventional case series. A total of 7731 patients. Uveal melanoma management. Melanoma-related metastasis and death. Of 7731 patients with posterior uveal (ciliary body and choroidal) melanoma, the AJCC tumor staging was stage I in 2767 (36%), stage II in 3735 (48%), stage III in 1220 (16%), and stage IV in 9 (<1%). Based on tumor staging (I, II, III, and IV), features that showed significant increase with tumor staging included age at presentation (57, 58, 60, 60 years) (P < 0.001), tumor base (8, 12, 17, 17 mm) (P < 0.001), tumor thickness (2.9, 6.0, 10.1, 10.2 mm) (P < 0.001), distance to optic disc (3, 5, 5, 5 mm) (P < 0.001), distance to foveola (3, 5, 5, 5 mm) (P < 0.001), mushroom configuration (6%, 24%, 34%, 33%) (P < 0.001), plateau configuration (3%, 4%, 7%, 11%) (P < 0.001), tumor pigmentation (48%, 53%, 69%, 78%) (P < 0.001), and extraocular extension (0%, 1%, 11%, 22%) (P < 0.001). After therapy, Kaplan-Meier estimates of metastasis at 1, 5, 10, and 20 years were <1%, 5%, 12%, and 20% for stage I, 2%; 17%, 29%, and 44% for stage II; 6%, 44%, 61%, and 73% for stage III, and 100% by 1 year for stage IV. Kaplan-Meier estimates of death at 1, 5, 10, and 20 years were <1%, 3%, 6%, and 8% for stage I; <1%, 9%, 15%, and 24% for stage II; 3%, 27%, 39%, and 53% for stage III, and 100% by 1 year for stage IV. Compared with stage I, the hazard ratio for metastasis/death was 3.1/3.1 for stage II and 9.3/10.1 for stage III. Compared with uveal melanoma classified as AJCC stage I, the rate of metastasis/death was 3 times greater for stage II, 9 to 10 times greater for stage III, and further greater for stage IV. Early detection of posterior uveal melanoma, at a point when the tumor is small, can be lifesaving. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Therapeutic Angiotensin-(1-7) in Treating Patients With Metastatic Sarcoma That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2018-02-27

    Bone Cancer; Chondrosarcoma; Clear Cell Sarcoma of the Kidney; Metastatic Osteosarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Osteosarcoma; Recurrent Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma

  4. Comparison of Two Combination Chemotherapy Regimens Plus Radiation Therapy in Treating Patients With Stage III or Stage IV Endometrial Cancer

    ClinicalTrials.gov

    2015-04-30

    Endometrial Adenocarcinoma; Endometrial Adenosquamous Carcinoma; Endometrial Clear Cell Adenocarcinoma; Endometrial Endometrioid Adenocarcinoma, Variant With Squamous Differentiation; Endometrial Serous Adenocarcinoma; Stage III Uterine Corpus Cancer

  5. Methoxyamine, Cisplatin, and Pemetrexed Disodium in Treating Patients With Advanced Solid Tumors or Mesothelioma That Cannot Be Removed by Surgery or Mesothelioma That Is Refractory to Pemetrexed Disodium and Cisplatin or Carboplatin

    ClinicalTrials.gov

    2018-04-23

    Advanced Malignant Solid Neoplasm; Advanced Peritoneal Malignant Mesothelioma; Advanced Pleural Malignant Mesothelioma; Recurrent Peritoneal Malignant Mesothelioma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; Thymoma; Unresectable Solid Neoplasm

  6. Acupuncture in Reducing Chemotherapy-Induced Peripheral Neuropathy in Participants With Stage I-III Breast Cancer

    ClinicalTrials.gov

    2018-06-27

    Anatomic Stage I Breast Cancer AJCC v8; Anatomic Stage IA Breast Cancer AJCC v8; Anatomic Stage IB Breast Cancer AJCC v8; Anatomic Stage II Breast Cancer AJCC v8; Anatomic Stage IIA Breast Cancer AJCC v8; Anatomic Stage IIB Breast Cancer AJCC v8; Anatomic Stage III Breast Cancer AJCC v8; Anatomic Stage IIIA Breast Cancer AJCC v8; Anatomic Stage IIIB Breast Cancer AJCC v8; Anatomic Stage IIIC Breast Cancer AJCC v8; Grade 1 Peripheral Motor Neuropathy, CTCAE; Grade 1 Peripheral Sensory Neuropathy, CTCAE; Grade 2 Peripheral Motor Neuropathy, CTCAE; Grade 2 Peripheral Sensory Neuropathy, CTCAE; Prognostic Stage I Breast Cancer AJCC v8; Prognostic Stage IA Breast Cancer AJCC v8; Prognostic Stage IB Breast Cancer AJCC v8; Prognostic Stage II Breast Cancer AJCC v8; Prognostic Stage IIA Breast Cancer AJCC v8; Prognostic Stage IIB Breast Cancer AJCC v8; Prognostic Stage III Breast Cancer AJCC v8; Prognostic Stage IIIA Breast Cancer AJCC v8; Prognostic Stage IIIB Breast Cancer AJCC v8; Prognostic Stage IIIC Breast Cancer AJCC v8

  7. Combination Chemotherapy and Lenalidomide in Treating Patients With Newly Diagnosed Stage II-IV Peripheral T-cell Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2017-07-07

    Anaplastic Large Cell Lymphoma, ALK-Negative; Anaplastic Large Cell Lymphoma, ALK-Positive; Hepatosplenic T-Cell Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Stage II Angioimmunoblastic T-cell Lymphoma; Stage II Enteropathy-Associated T-Cell Lymphoma; Stage III Angioimmunoblastic T-cell Lymphoma; Stage III Enteropathy-Associated T-Cell Lymphoma; Stage IV Angioimmunoblastic T-cell Lymphoma; Stage IV Enteropathy-Associated T-Cell Lymphoma

  8. Prognostic impact of interhospital variation in adjuvant chemotherapy for patients with Stage II/III colorectal cancer: a nationwide study.

    PubMed

    Arakawa, K; Kawai, K; Tanaka, T; Hata, K; Sugihara, K; Nozawa, H

    2018-05-12

    Clinical guidelines recommend adjuvant chemotherapy for high-risk patients with Stage II-III colorectal cancer. However, chemotherapeutic administration rates differ significantly between hospitals. We assessed the prognostic benefit of adjuvant chemotherapy in patients with Stage IIb/c colorectal cancer, and the prognostic impact of interhospital variations in the administration of adjuvant chemotherapy for Stage II-III colorectal cancer. We conducted a multicentre, retrospective study of 17 757 patients with Stage II-III colorectal cancer treated between 1997 and 2008 in 23 hospitals in Japan. Hospitals were classified as high-rate (rate > 42.8%) or low-rate (rate ≤ 42.8%), chemotherapy prescribing clinics. The 5-year overall survival (OS) of patients with Stage II-III colorectal cancer receiving adjuvant chemotherapy was significantly higher than for those not receiving adjuvant chemotherapy (85.7% vs 79.2%, P < 0.01 and 79.9% vs 72.5%, P < 0.01, respectively). For patients with Stage II disease, adjuvant chemotherapy was an independent factor for longer OS (P < 0.01, hazard ratio = 0.71). Both adjuvant chemotherapy and high-rate hospital independently improved OS for patients with Stage III colorectal cancer (both P < 0.01; hazard ratio = 0.68 and 0.87, respectively). Significant prognostic benefit was found for patients with Stage IIb/c colorectal cancer who received adjuvant chemotherapy, with patients who were treated in hospitals with high adjuvant chemotherapy rates demonstrating better prognoses. Colorectal Disease © 2018 The Association of Coloproctology of Great Britain and Ireland.

  9. Factors Affecting the Risk of Brain Metastasis in Small Cell Lung Cancer With Surgery: Is Prophylactic Cranial Irradiation Necessary for Stage I-III Disease?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Linlin; Wang, Q.I.; Zhao Lujun

    2013-01-01

    Purpose: The use of prophylactic cranial irradiation (PCI) in small cell lung cancer (SCLC) with surgical resection has not been fully identified. This study undertook to assess the factors affecting the risk of brain metastases in patients with stage I-III SCLC after surgical resection. The implications of PCI treatment for these patients are discussed. Methods and Materials: One hundred twenty-six patients treated with surgical resection for stage I-III SCLC from January 1998-December 2009 were retrospectively analyzed to elucidate the risk factors of brain metastases. Log-rank test and Cox regression model were used to determine the risk factors of brain metastases.more » Results: The median survival time for this patient population was 34 months, and the 5-year overall survival rate was 34.9%. For the whole group, 23.0% (29/126) of the patients had evidence of metastases to brain. Pathologic stage not only correlated with overall survival but also significantly affected the risk of brain metastases. The 5-year survival rates for patients with pathologic stages I, II, and III were 54.8%, 35.6%, and 14.1%, respectively (P=.001). The frequency of brain metastases in patients with pathologic stages I, II, and III were 6.25% (2/32), 28.2% (11/39), and 29.1% (16/55) (P=.026), respectively. A significant difference in brain metastases between patients with complete resection and incomplete resection was also observed (20.5% vs 42.9%, P=.028). The frequency of brain metastases was not found to be correlated with age, sex, pathologic type, induction chemotherapy, adjuvant chemotherapy, or adjuvant radiation therapy. Conclusions: Stage I SCLC patients with complete resection had a low incidence of brain metastases and a favorable survival rate. Stage II-III disease had a higher incidence of brain metastases. Thus, PCI might have a role for stage II-III disease but not for stage I disease.« less

  10. Radiotherapy Improves Survival in Unresected Stage I-III Bronchoalveolar Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Damien; Mishra, Mark; Onn, Amir

    2012-11-01

    Purpose: To test the hypothesis that radiotherapy (RT) improves the outcome of patients with unresected, nonmetastatic bronchoalveolar carcinoma (BAC) by performing a population-based analysis within the Surveillance, Epidemiology, and End Results (SEER) registry. Methods and Materials: Inclusion criteria were as follows: patients diagnosed with BAC, Stage I-III, between 2001 and 2007. Exclusion criteria included unknown stage, unknown primary treatment modality, Stage IV disease, and those diagnosed at autopsy. Demographic data, treatment details, and overall survival were retrieved from the SEER database. Survival was analyzed using the Kaplan-Meier method and log-rank test. Results: A total of 6933 patients with Stage I-IIImore » BAC were included in the analysis. The median age at diagnosis was 70 years (range, 10-101 years). The majority of patients were diagnosed with Stage I (74.4%); 968 patients (14%) did not undergo surgical resection. Unresected patients were more likely to be older (p < 0.0001), male (p = 0.001), black (p < 0.0001), and Stage III (p < 0.0001). Within the cohort of unresected patients, 300 (31%) were treated with RT. The estimated 2-year overall survival for patients with unresected, nonmetastatic BAC was 58%, 44%, and 27% in Stage I, II, and III, respectively. Factors associated with improved survival included female sex, earlier stage at diagnosis, and use of RT. Median survival in those not receiving RT vs. receiving RT was as follows: Stage I, 28 months vs. 33 months (n = 364, p = 0.06); Stage II, 18 months vs. not reached (n = 31, nonsignificant); Stage III, 10 months vs. 17 months (n = 517, p < 0.003). Conclusions: The use of RT is associated with improved prognosis in unresected Stage I-III BAC. Less than a third of patients who could have potentially benefited from RT received it, suggesting that the medical specialists involved in the care of these patients underappreciate the importance of RT.« less

  11. Prognosis for dogs with stage III osteosarcoma following treatment with amputation and chemotherapy with and without metastasectomy.

    PubMed

    Turner, Hailey; Séguin, Bernard; Worley, Deanna R; Ehrhart, Nicole P; Lafferty, Mary H; Withrow, Stephen J; Selmic, Laura E

    2017-12-01

    OBJECTIVE To determine survival times of selected dogs with metastatic (stage III) osteosarcoma, whether disease-free interval (DFI) was associated with survival time after diagnosis of stage III disease (ie, stage III survival time), and whether a survival benefit of metastasectomy existed. DESIGN Retrospective case series with nested cohort study. ANIMALS 194 client-owned dogs treated for histologically confirmed appendicular osteosarcoma from 1997 through 2009. PROCEDURES Dogs were included if they had stage I or II osteosarcoma at the time of initial evaluation, had amputation of the affected appendage and ≥ 1 dose of chemotherapy afterward, and developed metastasis within the follow-up period or prior to death. Data collected from the medical records included signalment, primary tumor location, clinical and laboratory findings, whether metastasectomy was performed, and outcome. Various factors were examined for associations with outcome. RESULTS Dogs that received no treatment for the metastasis had a median survival time between 49 and 57 days after diagnosis of stage III osteosarcoma. Duration of the preceding DFI had no association with this period. Metastasectomy alone was associated with a longer median stage III survival time (232 days) than no metastasectomy (49 days). Among all dogs identified as qualifying for pulmonary metastasectomy on the basis of < 3 pulmonary nodules visible on thoracic radiographs and a DFI > 275 days (n = 21), a survival advantage was also identified for those that actually received pulmonary metastasectomy (6). CONCLUSIONS AND CLINICAL RELEVANCE Preceding DFI had no influence on survival time of dogs with stage III osteosarcoma. Metastasectomy was associated with an increase in survival time for selected dogs.

  12. Adavosertib, External Beam Radiation Therapy, and Cisplatin in Treating Patients With Cervical, Vaginal, or Uterine Cancer

    ClinicalTrials.gov

    2018-06-06

    Endometrioid Adenocarcinoma; Recurrent Cervical Carcinoma; Stage I Uterine Corpus Cancer AJCC v7; Stage I Vaginal Cancer AJCC v6 and v7; Stage IA Uterine Corpus Cancer AJCC v7; Stage IB Cervical Cancer AJCC v6 and v7; Stage IB Uterine Corpus Cancer AJCC v7; Stage IB2 Cervical Cancer AJCC v6 and v7; Stage II Cervical Cancer AJCC v7; Stage II Uterine Corpus Cancer AJCC v7; Stage II Vaginal Cancer AJCC v6 and v7; Stage IIA Cervical Cancer AJCC v7; Stage IIB Cervical Cancer AJCC v6 and v7; Stage III Cervical Cancer AJCC v6 and v7; Stage III Uterine Corpus Cancer AJCC v7; Stage III Vaginal Cancer AJCC v6 and v7; Stage IIIA Cervical Cancer AJCC v6 and v7; Stage IIIA Uterine Corpus Cancer AJCC v7; Stage IIIB Cervical Cancer AJCC v6 and v7; Stage IIIB Uterine Corpus Cancer AJCC v7; Stage IIIC Uterine Corpus Cancer AJCC v7

  13. Concurrent chemoradiotherapy with S-1 in patients with stage III-IV oral squamous cell carcinoma: A retrospective analysis of nodal classification based on the neck node level.

    PubMed

    Murakami, Ryuji; Semba, Akiko; Kawahara, Kenta; Matsuyama, Keiya; Hiraki, Akimitsu; Nagata, Masashi; Toya, Ryo; Yamashita, Yasuyuki; Oya, Natsuo; Nakayama, Hideki

    2017-07-01

    The aim of the present study was to retrospectively evaluate the treatment outcomes of concurrent chemoradiotherapy (CCRT) with S-1, an oral fluoropyrimidine anticancer agent, for advanced oral squamous cell carcinoma (SCC). The study population consisted of 47 patients with clinical stage III or IV oral SCC, who underwent CCRT with S-1. Pretreatment variables, including patient age, clinical stage, T classification, midline involvement of the primary tumor and nodal status, were analyzed as predictors of survival. In addition to the N classification (node-positive, multiple and contralateral), the prognostic impact of the level of nodal involvement was assessed. Nodal involvement was mainly observed at levels Ib and II; involvement at levels Ia and III-V was considered to be anterior and inferior extension, respectively, and was recorded as extensive nodal involvement (ENI). The 3-year overall survival (OS) and progression-free survival (PFS) rates were 37 and 27%, respectively. A finding of ENI was a significant factor for OS [hazard ratio (HR)=2.16; 95% confidence interval (CI): 1.03-4.55; P=0.038] and PFS (HR=2.65; 95% CI: 1.32-5.33; P=0.005); the 3-year OS and PFS rates in patients with vs. those without ENI were 23 vs. 50% and 9 vs. 43%, respectively. The other variables were not significant. Therefore, CCRT with S-1 may be an alternative treatment for advanced oral SCC; favorable outcomes are expected in patients without ENI.

  14. A Phase I/II Study of Oblimersen Plus Cisplatin and Fluorouracil in Gastric & Esophageal Junction Cancer

    ClinicalTrials.gov

    2015-06-10

    Adenocarcinoma of the Esophagus; Adenocarcinoma of the Gastroesophageal Junction; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Mixed Adenocarcinoma of the Stomach; Recurrent Esophageal Cancer; Recurrent Gastric Cancer; Squamous Cell Carcinoma of the Esophagus; Stage III Esophageal Cancer; Stage IIIA Gastric Cancer; Stage IIIB Gastric Cancer; Stage IIIC Gastric Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer

  15. Hypofractionated Radiation Therapy Followed by Surgery in Treating Patients With Advanced Squamous Cell Carcinoma of the Oral Cavity

    ClinicalTrials.gov

    2017-11-15

    Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  16. Dabrafenib and Trametinib Followed by Ipilimumab and Nivolumab or Ipilimumab and Nivolumab Followed by Dabrafenib and Trametinib in Treating Patients With Stage III-IV BRAFV600 Melanoma

    ClinicalTrials.gov

    2018-06-29

    BRAF NP_004324.2:p.V600X; Metastatic Melanoma; Recurrent Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  17. Nivolumab With or Without Ipilimumab in Treating Patients With Metastatic Sarcoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-20

    Dedifferentiated Liposarcoma; Gastrointestinal Stromal Tumor; Metastatic Liposarcoma; Metastatic Undifferentiated Pleomorphic Sarcoma; Pleomorphic Liposarcoma; Stage III Bone Sarcoma AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Bone Sarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Bone Sarcoma AJCC v7; Stage IVB Bone Sarcoma AJCC v7; Unresectable Liposarcoma

  18. Freeze-Dried Black Raspberries in Preventing Oral Cancer Recurrence in High-Risk Appalachian Patients Previously Treated With Surgery For Oral Cancer

    ClinicalTrials.gov

    2018-03-04

    Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer

  19. Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy.

    PubMed

    Wang, Hong; Zhang, Shaohong; Wan, Limei; Sun, Hong; Tan, Jie; Su, Qiucheng

    2018-08-05

    Lung cancer is the leading cause of cancer-related death worldwide. Current clinical screening methods to detect lung cancer are expensive and associated with many complications. Raman spectroscopy is a spectroscopic technique that offers a convenient method to gain molecular information about biological samples. In this study, we measured the serum Raman spectral intensity of healthy volunteers and patients with different stages of non-small cell lung cancer. The purpose of this study was to evaluate the application of serum laser Raman spectroscopy as a low cost alternative method in the screening and staging of non-small cell lung cancer (NSCLC). The Raman spectra of the sera of peripheral venous blood were measured with a LabRAM HR 800 confocal Micro Raman spectrometer for individuals from five groups including 14 healthy volunteers (control group), 23 patients with stage I NSCLC (stage I group), 24 patients with stage II NSCLC (stage II group), 19 patients with stage III NSCLC (stage III group), 11 patients with stage IV NSCLC (stage IV group). Each serum sample was measured 3 times at different spots and the average spectra represented the signal of Raman spectra in each case. The Raman spectrum signal data of the five groups were statistically analyzed by analysis of variance (ANOVA), principal component analysis (PCA), linear discriminant analysis (LDA), and cross-validation. Raman spectral intensity was sequentially reduced in serum samples from control group, stage I group, stage II group and stage III/IV group. The strongest peak intensity was observed in the control group, and the weakest one was found in the stage III/IV group at bands of 848 cm -1 , 999 cm -1 , 1152 cm -1 , 1446 cm -1 and 1658 cm -1 (P < 0.05). Linear discriminant analysis showed that the sensitivity to identify healthy people, stage I, stage II, and stage III/IV NSCLC was 86%, 65%, 75%, and 87%, respectively; the specificity was 95%, 94%, 88%, and 93%, respectively; and the overall accuracy rate was 92% (71/77). The laser Raman spectroscopy can effectively identify patients with stage I, stage II or stage III/IV Non-Small Cell Lung cancer using patient serum samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Rituximab, Rasburicase, and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Advanced B-Cell Leukemia or Lymphoma

    ClinicalTrials.gov

    2014-09-10

    Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Paclitaxel and Carboplatin With or Without Metformin Hydrochloride in Treating Patients With Stage III, IV, or Recurrent Endometrial Cancer

    ClinicalTrials.gov

    2018-03-07

    Endometrial Adenocarcinoma; Endometrial Clear Cell Adenocarcinoma; Endometrial Serous Adenocarcinoma; Endometrial Undifferentiated Carcinoma; Recurrent Uterine Corpus Carcinoma; Stage III Uterine Corpus Cancer AJCC v7; Stage IIIA Uterine Corpus Cancer AJCC v7; Stage IIIB Uterine Corpus Cancer AJCC v7; Stage IIIC Uterine Corpus Cancer AJCC v7; Stage IV Uterine Corpus Cancer AJCC v7; Stage IVA Uterine Corpus Cancer AJCC v7; Stage IVB Uterine Corpus Cancer AJCC v7

  2. Fludeoxyglucose F 18 PET Scan, CT Scan, and Ferumoxtran-10 MRI Scan Before Chemotherapy and Radiation Therapy in Finding Lymph Node Metastasis in Patients With Locally Advanced Cervical Cancer or High-Risk Endometrial Cancer

    ClinicalTrials.gov

    2016-11-14

    Cervical Adenocarcinoma; Cervical Adenosquamous Cell Carcinoma; Cervical Small Cell Carcinoma; Cervical Squamous Cell Carcinoma; Endometrial Clear Cell Carcinoma; Endometrial Papillary Serous Carcinoma; Stage I Endometrial Carcinoma; Stage IB Cervical Cancer; Stage II Endometrial Carcinoma; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage IVA Cervical Cancer

  3. Sorafenib in Treating Patients With Metastatic, Locally Advanced, or Recurrent Sarcoma

    ClinicalTrials.gov

    2014-05-07

    Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Leiomyosarcoma; Adult Malignant Fibrous Histiocytoma; Adult Neurofibrosarcoma; Adult Synovial Sarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma; Uterine Carcinosarcoma; Uterine Leiomyosarcoma

  4. Belinostat in Treating Patients With Advanced Ovarian Epithelial Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer or Ovarian Low Malignant Potential Tumors

    ClinicalTrials.gov

    2016-10-20

    Fallopian Tube Carcinoma; Primary Peritoneal Carcinoma; Recurrent Borderline Ovarian Surface Epithelial-Stromal Tumor; Recurrent Ovarian Carcinoma; Stage III Borderline Ovarian Surface Epithelial-Stromal Tumor; Stage III Ovarian Cancer; Stage IV Borderline Ovarian Surface Epithelial-Stromal Tumor; Stage IV Ovarian Cancer

  5. Trametinib, Combination Chemotherapy, and Radiation Therapy in Treating Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-23

    KRAS Activating Mutation; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  6. Oxaliplatin, Fluorouracil, Erlotinib Hydrochloride, and Radiation Therapy Before Surgery and Erlotinib Hydrochloride After Surgery in Treating Patients With Locally Advanced Cancer of the Esophagus or Gastroesophageal Junction

    ClinicalTrials.gov

    2017-04-17

    Adenocarcinoma of the Esophagus; Adenocarcinoma of the Gastroesophageal Junction; Adenocarcinoma of the Stomach; Squamous Cell Carcinoma of the Esophagus; Stage II Esophageal Cancer; Stage II Gastric Cancer; Stage III Esophageal Cancer; Stage III Gastric Cancer

  7. Gene Therapy in Treating Patients With Human Immunodeficiency Virus-Related Lymphoma Receiving Stem Cell Transplant

    ClinicalTrials.gov

    2018-01-02

    HIV Infection; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Plasmablastic Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Follicular Lymphoma; Stage III Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  8. The surgical pathology of human Lyme disease. An enlarging picture.

    PubMed

    Duray, P H

    1987-01-01

    Lyme disease is a multisystems infectious disorder caused by the spirochete, Borrelia burgdorferi. Infection occurs by ticks feeding on mammalian hosts, including humans. The distribution of the tick and spirochete is world-wide and is especially prevalent where there are large deer populations. The disease is seen in three stages. Stage I is a cutaneous rash (erythema chronicum migrans) consisting of lymphoplasmacytic infiltrates around dermal vessels. Stage II is characterized by varying forms of meningopolyradiculitis, with or without Bell's palsy or cardiac involvement (complete or incomplete heart block) and with interstitial endomyocarditis of lymphocytes and plasma cells. Lymphoplasmacellular infiltration is seen in the meninges, ganglia, and peripheral nerves. Chronic and intermittent oligoarthritis is the hallmark of stage III disease, characterized by hypertrophic synovitis, often with fibrinaceous deposits and synovial vascular occlusion. Stage III chronic dermatologic syndromes (lymphadenosis benigna cutis, acrodermatitis chronicum atrophicans) consist of cutaneous lymphoid hyperplasia and vascular changes. Neurologic demyelination syndromes also occur in stage III. Plasma cells occur in all stages, but are more prominent in stages II and III. Spirochetes can be demonstrated by silver impregnation stains in some cases.

  9. Clinical Presentation and Outcomes of Stage III or Stage IV Retinoblastoma in 80 Asian Indian Patients.

    PubMed

    Kaliki, Swathi; Patel, Anamika; Iram, Sadiya; Palkonda, Vijay Anand Reddy

    2017-05-01

    To describe the clinical features and outcomes of patients with stage III or IV retinoblastoma. This was a retrospective study of 80 patients. Based on the International Retinoblastoma Staging System (IRSS), the tumors (n = 81) belonged to stage IIIa (n = 38, 47%), IIIb (n = 1, 1%), IVa2 (n = 10, 12%), IVb1 (n = 14, 17%), and IVb3 (n = 18, 22%). Of 80 patients, 42 (53%) were compliant to treatment and 38 (47%) were non-compliant. All 38 patients who were non-compliant to treatment died of the disease at a mean duration of 13 months from diagnosis. Of the 42 patients compliant to treatment, 22 (52%) died before completion of treatment. Twenty patients with stage III disease (25%) could complete the multimodal treatment and 17 (71%) were alive and well at a median follow-up duration of 77 months. Compliant multimodality treatment is beneficial in patients with IRSS stage III disease. IRSS stage IV retinoblastoma has poor prognosis despite treatment. [J Pediatr Ophthalmol Strabismus. 2017;54(3):177-184.]. Copyright 2017, SLACK Incorporated.

  10. Bladder symptoms assessed with overactive bladder questionnaire in Parkinson's disease.

    PubMed

    Iacovelli, Elisa; Gilio, Francesca; Meco, Giuseppe; Fattapposta, Francesco; Vanacore, Nicola; Brusa, Livia; Giacomelli, Elena; Gabriele, Maria; Rubino, Alfonso; Locuratolo, Nicoletta; Iani, Cesare; Pichiorri, Floriana; Colosimo, Carlo; Carbone, Antonio; Palleschi, Giovanni; Inghilleri, Maurizio

    2010-07-15

    In Parkinson's disease (PD) the urinary dysfunction manifests primarily with symptoms of overactive bladder (OAB). The OAB questionnaire (OAB-q) is a measure designed to assess the impact of OAB symptoms on health-related quality of life. In this study, we quantified the urinary symptoms in a large cohort of PD patients by using the OAB-q short form. Possible correlations between the OAB-q and clinical features were tested. Three hundred and two PD patients were enrolled in the study. Correlations between the OAB-q and sex, age, Unified Parkinson's Disease Rating Scale part III (UPDRS-III), Hoehn-Yahr (H-Y) staging, disease duration, and treatment were analyzed. Data were compared with a large cohort of 303 age-matched healthy subjects. The OAB-q yielded significantly higher scores in PD patients than in healthy subjects. In the group of PD patients, all the variables tested were similar between men and women. Pearson's coefficient showed a significant correlation between mean age, disease duration, mean OAB-q scores, UPDRS-III scores, and H-Y staging. A multiple linear regression analysis showed that OAB-q values were significantly influenced by age and UPDRS-III. No statistical correlations were found between OAB-q scores and drug therapy or the equivalent levodopa dose, whilst the items relating to the nocturia symptoms were significantly associated with the equivalent levodopa dose. Our findings suggest that bladder dysfunction assessed by OAB-q mainly correlates with UPDRS-III scores for severity of motor impairment, possibly reflecting the known role of the decline in nigrostriatal dopaminergic function in bladder dysfunction associated with PD and patients' age. Our study also suggests that the OAB-q is a simple, easily administered test that can objectively evaluate bladder function in patients with PD.

  11. Quality of Life and Care Needs of Patients With Persistent or Recurrent Ovarian Cancer, Fallopian Tube Cancer, or Peritoneal Cancer

    ClinicalTrials.gov

    2017-05-03

    Anxiety; Fatigue; Nausea and Vomiting; Neurotoxicity Syndrome; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IB Fallopian Tube Cancer; Stage IC Fallopian Tube Cancer; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIB Fallopian Tube Cancer; Stage IIC Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIC Fallopian Tube Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  12. Altered development, oxidative stress and DNA damage in Leptodactylus chaquensis (Anura: Leptodactylidae) larvae exposed to poultry litter.

    PubMed

    Curi, L M; Peltzer, P M; Martinuzzi, C; Attademo, M A; Seib, S; Simoniello, M F; Lajmanovich, R C

    2017-09-01

    Poultry litter (PL), which is usually used as organic fertilizer, is a source of nutrients, metals, veterinary pharmaceuticals and bacterial pathogens, which, through runoff, may end up in the nearest aquatic ecosystems. In this study, Leptodactylus chaquensis at different development stages (eggs, larval stages 28 and 31 here referred to as stages I, II and III respectively) were exposed to PL test sediments as follows: 6.25% (T1), 12.5% (T2); 25% (T3); 50% (T4); 75% (T5); 100% PL (T6) and to dechlorinated water as control. Larval survival, development endpoints (growth rate -GR-, development rate -DR-, abnormalities), antioxidant enzyme activities (Catalase -CAT- and Glutathione-S-Transferase -GST-), and genotoxic effect (DNA damage index by the Comet assay) were analyzed at different times. In stage I, no egg eclosion was observed in treatments T3-T6, and 50% of embryo mortality was recorded after 24h of exposure to T2. In stages II and III, mortality in treatments T3-T6 reached 100% between 24 and 48h. In the three development stages evaluated, the DR and GR were higher in controls than in PL treatments (T1, T2), except for those T1-treated larvae of stage II. Larvae of stage I showed five types of morphological abnormalities, being diamond body shape and lateral displacement of the intestine the most prevalent in T1, whereas larvae of stages II and III presented lower prevalence of abnormalities. In stage I, CAT activity was similar to that of control (p>0.05), whereas it was higher in T1- and T2- treated larvae of stages II and III than controls (p<0.05). In stages I and III, GST activity was similar to that of controls (p>0.05), whereas it was inhibited in T1-treated larvae of stage II (p<0.05). T1- and T2-treated larvae of stages II and III caused higher DNA damage respect to controls (p<0.05), varying from medium to severe damage (comet types II, III and IV). These results showed that PL treatments altered development and growth and induced oxidative stress and DNA damage, resulting ecotoxic for L. chaquensis larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Veliparib and Atezolizumab Either Alone or in Combination in Treating Patients With Stage III-IV Triple Negative Breast Cancer

    ClinicalTrials.gov

    2018-03-20

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Triple-Negative Breast Carcinoma

  14. CD44v6 expression in patients with stage II or stage III sporadic colorectal cancer is superior to CD44 expression for predicting progression

    PubMed Central

    Zhao, LH; Lin, QL; Wei, J; Huai, YL; Wang, KJ; Yan, HY

    2015-01-01

    Background: Currently, it is difficult to predict the prognosis of patients exhibiting stage II or stage III colorectal cancer (CRC) and to identify those patients most likely to benefit from aggressive treatment. The current study was performed to examine the clinicopathological significance of CD44 and CD44v6 protein expression in these patients. Study design: We retrospectively investigated 187 consecutive patients who underwent surgery with curative intent for stage II to III CRC from 2007 to 2013 in the Beijing Civil Aviation Hospital. CD44 and CD44v6 protein expression levels were determined using immunohistochemistry and compared to the clinicopathological data. Results: Using immunohistochemical detection, CD44 expression was observed in 108 (57.75%) of the CRC patients; and its detection was significantly associated with greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological tumor-lymph node-metastasis (TNM) stage. CD44v6 expression was observed in 135 (72.19%) of the CRC patients; and its expression was significantly associated with a poorly differentiated histology, greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological TNM stage. Expression of CD44v6 was higher than that of CD44 in stage II and stage III sporadic CRC. Conclusion: CD44v6 is a more useful marker for predicting a poor prognosis in stage II and stage III sporadic CRC as compared to CD44. PMID:25755763

  15. The effect of cancer stage and treatment modality on quality of life in oropharyngeal cancer.

    PubMed

    Oates, Justine; Davies, Sarah; Roydhouse, Jessica K; Fethney, Judith; White, Kate

    2014-01-01

    To examine changes in health-related quality of life among oropharyngeal cancer patients by stages and across treatment types among advanced cancer patients. Individual prospective cohort study. All newly diagnosed patients with oropharyngeal cancer treated with curative intent were routinely assessed. The European Organization for Research and Treatment of Cancer (EORTC) both the Main Module quality-of-life questionnaire (QLQ-C30) and the Head and Neck Cancer (HNC) Module (QLQ-H&N35) were administered at diagnosis and 3, 6, and 12 months thereafter. Complete case analysis was used following assessment of missing data. The proportion of patients with clinically significant deterioration (changes of ≥ 10 points) from baseline were calculated for each follow-up time point and compared by stage (I/II vs. III/IV) and then treatment type (chemotherapy and radiotherapy [CRT] vs. surgery and postoperative radiotherapy [S&PORT]). Deterioration in most domains was most frequent for stage III/IV patients at 3 months (both modules), whereas stage I/II patients experienced this at 6 months (QLQ-C30) and 12 months (H&N35). Among stage III/IV patients, this happened at all time points for S&PORT patients (QLQ-C30) versus 12 months for CRT patients (H&N35). The number of patients reporting deterioration was lower for most domains at 12 months compared to earlier periods, although dry mouth remained a problem for most patients (60%-85% across treatment/stage groups). Our preliminary findings suggest that general and disease-specific deterioration is of most concern for stage I/II patients at 6 and 12 months and at 3 months for advanced cancer patients. For stage III/IV patients receiving S&PORT, general deterioration remains a problem after diagnosis, whereas for CRT patients, disease-specific deterioration is of most concern at 12 months. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Geographic variation and sociodemographic disparity in the use of oxaliplatin-containing chemotherapy in patients with stage III colon cancer.

    PubMed

    Panchal, Janki M; Lairson, David R; Chan, Wenyaw; Du, Xianglin L

    2013-06-01

    This study examined the geographic variation and sociodemographic disparities in the use of oxaliplatin chemotherapy, which has not been widely studied in the past. Our results suggest that chemotherapy use varies across geographic regions. Patterns of use that relate specifically to oxaliplatin-containing chemotherapy can inform providers and researchers how newer regimens are being used as standard chemotherapy in a real-world setting. According to the National Cancer Comprehensive Network (NCCN), oxaliplatin with 5-fluorouracil and leucovorin (5-FU/LV) is the recommended adjuvant chemotherapy for patients with resected stage III colon cancer. Age and race are considered strong predictors of chemotherapy receipt, whereas geographic disparity has received minimal attention. The purpose of this study was to examine geographic variation and sociodemographic disparity in the use of chemotherapy in patients with stage III colon cancer, focusing specifically on oxaliplatin. A retrospective cohort of 4106 Medicare patients was identified from the Surveillance, Epidemiology and End Results (SEER)/Medicare linked database. Descriptive statistics show how oxaliplatin-containing chemotherapy was used in various geographic regions among different age and racial groups. Multiple logistic regression analysis was performed to examine the relationship between receipt of oxaliplatin-containing chemotherapy and geographic region while adjusting for other sociodemographic and tumor characteristics. Only 49% of the patients with stage III disease received adjuvant chemotherapy within 3 to 6 months of colon cancer-specific surgery. Patients aged 66 to 70 years were 78% more likely to receive chemotherapy than were those aged 80 years and older (P<.001). Patients in less urban regions were approximately 42% less likely to receive oxaliplatin chemotherapy than those residing in a big metro region (odds ratio [OR], 0.58; P=.008). Chemotherapy use varies across geographic regions, especially for new chemotherapy drugs like oxaliplatin. Further research is needed to identify the causes of this geographic disparity and ways to provide high-quality cancer care to all patients according to their preferences and needs. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Sunitinib in Treating Patients With Thyroid Cancer That Did Not Respond to Iodine I 131 and Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2017-08-18

    Recurrent Thyroid Gland Carcinoma; Stage III Thyroid Gland Follicular Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IV Thyroid Gland Follicular Carcinoma; Stage IV Thyroid Gland Medullary Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma; Stage IVA Thyroid Gland Follicular Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVA Thyroid Gland Papillary Carcinoma; Stage IVB Thyroid Gland Follicular Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Papillary Carcinoma; Stage IVC Thyroid Gland Follicular Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Papillary Carcinoma; Thyroid Gland Oncocytic Follicular Carcinoma

  18. Postoperative radiotherapy and tumor recurrence after complete resection of stage II/III thymic tumor: a meta-analysis of cohort studies.

    PubMed

    Ma, Jietao; Sun, Xin; Huang, Letian; Xiong, Zhicheng; Yuan, Meng; Zhang, Shuling; Han, Cheng-Bo

    2016-01-01

    Whether postoperative radiotherapy (PORT) is effective for reducing the recurrence risk in patients who received complete resection of the stage II or III thymic tumors has not been determined. A meta-analysis was performed by combining the results of all available controlled trials. PubMed, Cochrane's Library, and the Embase databases were searched for studies which compared the recurrence data for patients with complete resection of the stage II or III thymic tumors assigned to an observing group, or a PORT group. A random effect model was applied to combine the results. Nineteen studies, all designed as retrospective cohort studies were included. These studies included 663 patients of PORT group and 617 patients of observing group. The recurrence rate for the patients in PORT group and observing group were 12.4% and 11.5%, respectively. Results of our study indicated that PORT has no significant influence on recurrent risk in patients with stage II or III thymic tumor after complete resection (odds ratio 1.02, 95% confidence interval 0.55-1.90, P=0.96). When stratified by stages, our meta-analyses did not indicate any significant effects of PORT on recurrent outcomes in either the stage II or the stage III patients. Moreover, subsequent analysis limited to studies only including patients with thymoma or thymic carcinoma also did not support the benefits of PORT on recurrent outcomes. Although derived from retrospective cohort studies, current evidence did not support any benefit of PORT on recurrent risk in patients with complete resection of the stage II or III thymic tumors.

  19. Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification

    PubMed Central

    Ghosh, Ajit; Kushwaha, Hemant R; Hasan, Mohammad R; Pareek, Ashwani; Sopory, Sudhir K; Singla-Pareek, Sneh L

    2016-01-01

    Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing proteins in plants have indicated the existence of GLY III-like proteins in monocots, dicots, lycopods, gymnosperm and bryophytes. A deeper in silico analysis of rice genome identified twelve DJ-1 proteins encoded by six genes. Detailed analysis has been carried out including their chromosomal distribution, genomic architecture and localization. Transcript profiling under multiple stress conditions indicated strong induction of OsDJ-1 in response to exogenous MG. A member of OsDJ-1 family, OsDJ-1C, showed high constitutive expression at all developmental stages and tissues of rice. MG depletion study complemented by simultaneous formation of D-lactate proved OsDJ-1C to be a GLY III enzyme that converts MG directly into D-lactate in a GSH-independent manner. Site directed mutagenesis of Cys-119 to Alanine significantly reduces its GLY III activity indicating towards the existence of functional GLY III enzyme in rice—a shorter route for MG detoxification. PMID:26732528

  20. Lenalidomide, Ibrutinib, and Rituximab in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma That Is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-13

    Ann Arbor Stage III Small Lymphocytic Lymphoma; Ann Arbor Stage IV Small Lymphocytic Lymphoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  1. Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2018-06-27

    Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  2. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials

    PubMed Central

    Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-01-01

    Abstract HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti‐EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK–AKT pathway activation through HER2 up‐regulation. We assessed HER2‐amplification/overexpression in stage II–III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II–III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2‐amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression‐free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II–III tumours showed HER2 protein overexpression. Of the HER2‐overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II–III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2‐overexpression was associated with KRAS/BRAF wild‐type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II–III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II–III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2‐overexpressing cases experienced recurrence, but the difference was not significant. HER2‐amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II–III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2‐targeted therapy in patients with HER2‐amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26690310

  3. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    PubMed

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  4. Efficacy of Rotigotine at Different Stages of Parkinson's Disease Symptom Severity and Disability: A Post Hoc Analysis According to Baseline Hoehn and Yahr Stage.

    PubMed

    Giladi, Nir; Nicholas, Anthony P; Asgharnejad, Mahnaz; Dohin, Elisabeth; Woltering, Franz; Bauer, Lars; Poewe, Werner

    2016-10-19

    The efficacy of rotigotine has been demonstrated in studies of patients with early (i.e. not receiving levodopa) and advanced (i.e. not adequately controlled on levodopa; average 2.5 h/day in 'off' state) Parkinson's disease (PD). To further investigate the efficacy of rotigotine transdermal patch across different stages of PD symptom severity and functional disability, according to baseline Hoehn and Yahr (HY) staging. Post hoc analysis of six placebo-controlled studies of rotigotine in patients with early PD (SP506, SP512, SP513; rotigotine ≤8 mg/24 h) or advanced-PD (CLEOPATRA-PD, PREFER, SP921; rotigotine ≤16 mg/24 h). Data were pooled and analyzed according to baseline HY stage (1, 2, 3 or 4) for change from baseline to end of maintenance in Unified Parkinson's Disease Rating Scale (UPDRS) II (activities of daily living), UPDRS III (motor) and UPDRS II+III; statistical tests are exploratory. Data were available for 2057 patients (HY 1 : 262; HY 2 : 1230; HY 3 : 524; HY 4 : 41). Patients at higher HY stages were older, had a longer time since PD diagnosis and higher baseline UPDRS II+III scores vs patients at lower HY stages. Rotigotine improved UPDRS II+III versus placebo for each individual HY stage (p < 0.05 for each HY stage), with treatment differences increasing with increasing HY stages. Similar results were observed for UPDRS II and UPDRS III. This post hoc analysis suggests that rotigotine may be efficacious across a broad range of progressive stages of PD symptom severity and functional disability (HY stages 1-4).

  5. Impact of dementia on cancer discovery and pain.

    PubMed

    Iritani, Shuji; Tohgi, Mizuho; Miyata, Hiroaki; Ohi, Gen

    2011-03-01

    Dementia is clinically noted to influence both reporting and experience of cancer pains. However, no systemic evaluation of this aspect has been reported. The aim of the present study was to retrospectively evaluate how dementia modified the cancer discovery process, frequency of cancer pain reports and analgesic-narcotic use at a large psychiatric hospital. We reviewed all the records of cancer patients with and without dementia treated at the surgical ward of Matsuzawa Hospital from 1993 to 2004. Psychiatric diseases other than dementia, brain metastasis and alcoholism, as well as leukaemia and skin cancer, were excluded. Patients' communicativeness as to pain was ascertained from nursing records. A total of 134 cancer patients with and without dementia (50 demented and 84 non-demented) were included. Demented patients were accidentally discovered to have cancer (48%) or by an unexpected unfolding of clinical signs (44%), whereas most non-demented patients (63%) voluntarily sought medical evaluation (P= 0.000). Overall, 76% of non-demented patients had cancer pains (stages I and II, 64%; stages III and IV, 84%), whereas just 22% of demented patients had cancer pains (stages I and II, 16%; stages III and IV, 26%; P= 0.000). Non-demented patients showed stage-dependent requirements for both non-narcotic analgesics (stages I and II, 64%; stages III and IV, 84%) and narcotics (stages I and II, 0%; stages III and IV, 41%). Demented patients required much less analgesics (stages I and II, 11%; stages III and IV, 13%), with only one stage IV patient requiring narcotics (P= 0.000). Dementia greatly modifies the cancer discovery process, reduces prevalence of cancer pain and analgesic requirement. © 2011 The Authors. Psychogeriatrics © 2011 Japanese Psychogeriatric Society.

  6. Profil diagnostique et évolutif du myélome multiple au Sénégal: étude monocentrique de 2005 à 2016

    PubMed Central

    Fall, Seynabou; Dieng, Fatma; Diouf, Coumba; Djiba, Boundia; Ndao, Awa Cheikh; Ndiaye, Fatou Samba Diago

    2017-01-01

    Introduction Les thérapeutiques innovantes du myélome multiple sont peu accessibles en Afrique subsaharienne. Le but de cette étude est de décrire les particularités diagnostiques et évolutives observées dans notre pratique de prise en charge des myélomateux. Méthodes Une étude rétrospective (2005 - 2016) descriptive à visée analytique, mené à l’hôpital Le Dantec (Sénégal) a concerné les myélomateux inclus selon les critères de l’International Myeloma Working Group (2003, 2014). Résultats Ont été colligés 136 dossiers (69 hommes, 67 femmes) de patients d’âge moyen 59 ans ± 10,1 ans et qui ont un âge inférieur à 65 ans dans 69,1% des cas. Les signes révélateurs ont été des douleurs osseuses (96,3%), une insuffisance rénale (36,8%), une infection (23,5%), une fracture pathologique (17,6%), une compression médullaire (16,9%), et une hypercalcémie maligne (16,2%). L’isotype a été IgG dans 61,3% des cas et Kappa dans 65% des cas. Les malades ont été classés stade III (59,4%) et I-II (40,6%) de l’index staging system. Sous traitement conventionnel (Méphalan-Prédnisone: 67,6%, innovant: 5,9%), la survie médiane a été de 20 mois (1-78 mois). La survie est meilleure, en l’absence de complications neurologiques, infectieuses et au score I-II de l’Index Staging System. Conclusion Dans notre étude, le myélome multiple est fréquemment diagnostiqué avant 65 ans, au stade de forte masse tumorale. La survie globale peut être améliorée par un dépistage précoce et un accès aux thérapeutiques adéquates. PMID:29187931

  7. ypTNM staging after neoadjuvant chemotherapy in the Chinese gastric cancer population: an evaluation on the prognostic value of the AJCC eighth edition cancer staging system.

    PubMed

    Li, Ziyu; Wang, Yinkui; Shan, Fei; Ying, Xiangji; Wu, Zhouqiao; Xue, Kan; Miao, Rulin; Zhang, Yan; Ji, Jiafu

    2018-05-10

    This study aims to evaluate the new ypTNM staging system in Chinese gastric cancer patients. We conducted retrospective survival and regression analyses using a database of gastric cancer patients who underwent neoadjuvant chemotherapy at the Peking University Cancer Hospital and Institute from January 2007 to January 2015. A total of 473 patients were included in the study with 28 pathological complete response (pCR) cases, 3 ypT0N1 cases, 65 stage I cases, 126 stage II cases, and 251 stage III cases. The pCR cases had similar survival to stage I patients (p > 0.05). The 3-year disease-free survival (DFS) and 5-year overall survival (OS) rates of stage I, II and III patients were significantly different (3-year DFS: 89.0, 75.5, and 39.6%, p < 0.001; 5-year OS: 89.6, 65.5, and 36.5%, p = 0.001). Both ypT and ypN are independent predictors of patient survival, while further log-rank tests showed that the ypN stage is of better prognostic value than ypT. Subgrouping analysis revealed that stage III patients of ypT4b and ypN3 had worse survival compared to the rest of stage III cases (p < 0.001). The c-index values of the ypTNM stage and modified ypTNM stage (stage III divided into IIIa and IIIb) were 0.657 and 0.708, respectively (p < 0.001). Our data showed significant differences in survival among gastric cancer patients at different ypTNM stages, indicating its prognostic value in the Chinese population. Further detailed analyses may facilitate the subgrouping of each stage to allow for a more accurate evaluation of disease prognosis in gastric cancer patients.

  8. Macroscopic appearance of Type IV and giant Type III is a high risk for a poor prognosis in pathological stage II/III advanced gastric cancer with postoperative adjuvant chemotherapy

    PubMed Central

    Yamashita, Keishi; Ema, Akira; Hosoda, Kei; Mieno, Hiroaki; Moriya, Hiromitsu; Katada, Natsuya; Watanabe, Masahiko

    2017-01-01

    AIM To evaluate whether a high risk macroscopic appearance (Type IV and giant Type III) is associated with a dismal prognosis after curative surgery, because its prognostic relevance remains elusive in pathological stage II/III (pStage II/III) gastric cancer. METHODS One hundred and seventy-two advanced gastric cancer (defined as pT2 or beyond) patients with pStage II/III who underwent curative surgery plus adjuvant S1 chemotherapy were evaluated, and the prognostic relevance of a high-risk macroscopic appearance was examined. RESULTS Advanced gastric cancers with a high-risk macroscopic appearance were retrospectively identified by preoperative recorded images. A high-risk macroscopic appearance showed a significantly worse relapse free survival (RFS) (35.7%) and overall survival (OS) (34%) than an average risk appearance (P = 0.0003 and P < 0.0001, respectively). A high-risk macroscopic appearance was significantly associated with the 13th Japanese Gastric Cancer Association (JGCA) pT (P = 0.01), but not with the 13th JGCA pN. On univariate analysis for RFS and OS, prognostic factors included 13th JGCA pStage (P < 0.0001) and other clinicopathological factors including macroscopic appearance. A multivariate Cox proportional hazards model for univariate prognostic factors identified high-risk macroscopic appearance (P = 0.036, HR = 2.29 for RFS and P = 0.021, HR = 2.74 for OS) as an independent prognostic indicator. CONCLUSION A high-risk macroscopic appearance was associated with a poor prognosis, and it could be a prognostic factor independent of 13th JGCA stage in pStage II/III advanced gastric cancer. PMID:28451064

  9. Carboplatin and Paclitaxel With or Without Atezolizumab Before Surgery in Treating Patients With Newly Diagnosed, Stage II-III Triple-Negative Breast Cancer

    ClinicalTrials.gov

    2018-06-08

    Estrogen Receptor Negative; HER2/Neu Negative; Invasive Breast Carcinoma; Progesterone Receptor Negative; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7; Stage III Breast Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Triple-Negative Breast Carcinoma

  10. Dasatinib, Paclitaxel, and Carboplatin in Treating Patients With Stage III-IV or Recurrent Endometrial Cancer

    ClinicalTrials.gov

    2018-04-04

    Endometrial Adenocarcinoma; Endometrial Clear Cell Adenocarcinoma; Endometrial Mucinous Adenocarcinoma; Endometrial Serous Adenocarcinoma; Endometrial Squamous Cell Carcinoma; Endometrial Transitional Cell Carcinoma; Endometrial Undifferentiated Carcinoma; Endometrioid Adenocarcinoma; Recurrent Uterine Corpus Carcinoma; Stage III Uterine Corpus Cancer AJCC v7; Stage IIIA Uterine Corpus Cancer AJCC v7; Stage IIIB Uterine Corpus Cancer AJCC v7; Stage IIIC Uterine Corpus Cancer AJCC v7; Stage IV Uterine Corpus Cancer AJCC v7; Stage IVA Uterine Corpus Cancer AJCC v7; Stage IVB Uterine Corpus Cancer AJCC v7

  11. Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer

    PubMed Central

    MASUDA, TAIKI; ISHIKAWA, TOSHIAKI; MOGUSHI, KAORU; OKAZAKI, SATOSHI; ISHIGURO, MEGUMI; IIDA, SATORU; MIZUSHIMA, HIROSHI; TANAKA, HIROSHI; UETAKE, HIROYUKI; SUGIHARA, KENICHI

    2016-01-01

    We aimed to identify a novel prognostic biomarker related to recurrence in stage II and III colorectal cancer (CRC) patients. Stage II and III CRC tissue mRNA expression was profiled using an Affymetrix Gene Chip, and copy number profiles of 125 patients were generated using an Affymetrix 250K Sty array. Genes showing both upregulated expression and copy number gains in cases involving recurrence were extracted as candidate biomarkers. The protein expression of the candidate gene was assessed using immunohistochemical staining of tissue from 161 patients. The relationship between protein expression and clinicopathological features was also examined. We identified 9 candidate genes related to recurrence of stage II and III CRC, whose mRNA expression was significantly higher in CRC than in normal tissue. Of these proteins, the S100 calcium-binding protein A2 (S100A2) has been observed in several human cancers. S100A2 protein overexpression in CRC cells was associated with significantly worse overall survival and relapse-free survival, indicating that S100A2 is an independent risk factor for stage II and III CRC recurrence. S100A2 overexpression in cancer cells could be a biomarker of poor prognosis in stage II and III CRC recurrence and a target for treatment of this disease. PMID:26783118

  12. Enobosarm (GTx-024, S-22): a potential treatment for cachexia.

    PubMed

    Srinath, Reshmi; Dobs, Adrian

    2014-02-01

    Muscle loss and wasting occurs with aging and in multiple disease states including cancer, heart failure, chronic obstructive pulmonary disease, end-stage liver disease, end-stage renal disease and HIV. Cachexia is defined as a multifactorial syndrome that is associated with anorexia, weight loss and increased catabolism, with increased morbidity and mortality. Currently no therapy is approved for the treatment or prevention of cachexia. Different treatment options have been suggested but many have proven to be ineffective or associated with adverse events. Nonsteroidal selective androgen receptor modulators (SARMs) are a new class of anabolic agents that bind the androgen receptor and exhibit tissue selectivity. Enobosarm (GTx-024, S-22) is a recently developed SARM, developed by GTx, Inc. (TN, USA), which has been tested in Phase I, II and III trials with promising results in terms of improving lean body mass and measurements of physical function and power. Enobosarm has received fast track designation by the US FDA and results from the Phase III trials POWER1 and POWER2 will help determine approval for use in the prevention and treatment of muscle wasting in patients with non-small-cell lung cancer. This article provides an introduction to enobosarm as a new therapeutic strategy for the prevention and treatment of cachexia. A review of the literature was performed using search terms 'cachexia', 'sarcopenia', 'SARM', 'enobosarm' and 'GTx-024' in September 2013 using multiple databases as well as online resources.

  13. Photodynamic Therapy With HPPH in Treating Patients With Squamous Cell Carcinoma of the Oral Cavity

    ClinicalTrials.gov

    2016-04-19

    Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Oral Cavity

  14. Predictive factors for survival and correlation to toxicity in advanced Stage III non-small cell lung cancer patients with concurrent chemoradiation.

    PubMed

    Kim, Yong-Hyub; Ahn, Sung-Ja; Kim, Young-Chul; Kim, Kyu-Sik; Oh, In-Jae; Ban, Hee-Jung; Chung, Woong-Ki; Nam, Taek-Keun; Yoon, Mee Sun; Jeong, Jae-Uk; Song, Ju-Young

    2016-02-01

    Concurrent chemoradiotherapy is the standard treatment for locally advanced Stage III non-small cell lung cancer in patients with a good performance status and minimal weight loss. This study aimed to define subgroups with different survival outcomes and identify correlations with the radiation-related toxicities. We retrospectively reviewed 381 locally advanced Stage III non-small cell lung cancer patients with a good performance status or weight loss of <10% who received concurrent chemoradiotherapy between 2004 and 2011. Three-dimensional conformal radiotherapy was administered once daily, combined with weekly chemotherapy. The Kaplan-Meier method was used for survival comparison and Cox regression for multivariate analysis. Multivariate analysis was performed using all variables with P values <0.1 from the univariate analysis. Median survival of all patients was 24 months. Age > 75 years, the diffusion lung capacity for carbon monoxide ≤80%, gross tumor volume ≥100 cm(3) and subcarinal nodal involvement were the statistically significant predictive factors for poor overall survival both in univariate and multivariate analyses. Patients were classified into four groups according to these four predictive factors. The median survival times were 36, 29, 18 and 14 months in Groups I, II, III and IV, respectively (P < 0.001). Rates of esophageal or lung toxicity ≥Grade 3 were 5.9, 14.1, 12.5 and 22.2%, respectively. The radiotherapy interruption rate differed significantly between the prognostic subgroups; 8.8, 15.4, 22.7 and 30.6%, respectively (P = 0.017). Severe toxicity and interruption of radiotherapy were more frequent in patients with multiple adverse predictive factors. To maintain the survival benefit in patients with concurrent chemoradiotherapy, strategies to reduce treatment-related toxicities need to be deeply considered. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Skeletal anteroposterior discrepancy and vertical type effects on lower incisor preoperative decompensation and postoperative compensation in skeletal Class III patients.

    PubMed

    Ahn, Hyo-Won; Baek, Seung-Hak

    2011-01-01

    To determine the initial compensation, preoperative decompensation, and postoperative compensation of the lower incisors according to the skeletal anteroposterior discrepancy and vertical type in skeletal Class III patients. The samples consisted of 68 skeletal Class III patients treated with two-jaw surgery and orthodontic treatment. Lateral cephalograms were taken before preoperative orthodontic treatment (T0) and before surgery (T1) and after debonding (T2). According to skeletal anteroposterior discrepancy/vertical type (ANB, criteria  =  -4°; SN-GoMe, criteria  =  35°) at the T0 stage, the samples were allocated into group 1 (severe anteroposterior discrepancy/hypodivergent vertical type, N  =  17), group 2 (moderate anteroposterior discrepancy/hypodivergent vertical type, N  =  17), group 3 (severe anteroposterior discrepancy/hyperdivergent vertical type, N  =  17), or group 4 (moderate anteroposterior discrepancy/hyperdivergent vertical type, N  =  17). After measurement of variables, one-way analysis of variance with Duncan's multiple comparison test, crosstab analysis, and Pearson correlation analysis were performed. At T0, groups 3 and 2 exhibited the most and least compensated lower incisors. In group 2, good preoperative decompensation and considerable postoperative compensation resulted in different values for T0, T1, and T2 (IMPA, T0 < T2 < T1; P < .001). However, group 3 did not show significant changes in IMPA between stages. Therefore, groups 2 and 3 showed different decompensation achievement ratios (P < .05). Group 3 exhibited the worst ratios of decompensation and stability (24% and 6%, respectively, P < .001). Anteroposterior discrepancy/vertical type (ANB: P < .01 at T0 and T1, P < .001 at T2; SN-GoMe: P < .01, all stages) were strongly correlated with relative percentage ratio of IMPA to norm value. Skeletal anteroposterior discrepancy/vertical type results in differences in the amount and pattern of initial compensation, preoperative decompensation, and postoperative compensation of lower incisors in Class III patients.

  16. Identification by Random Mutagenesis of Functional Domains in KREPB5 That Differentially Affect RNA Editing between Life Cycle Stages of Trypanosoma brucei

    PubMed Central

    McDermott, Suzanne M.; Carnes, Jason

    2015-01-01

    KREPB5 is an essential component of ∼20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs. PMID:26370513

  17. Fludarabine Phosphate, Radiation Therapy, and Rituximab in Treating Patients Who Are Undergoing Donor Stem Cell Transplant Followed by Rituximab for High-Risk Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2018-03-26

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia

  18. Phase II Trial Of PS-341 (Bortezomib) In Patients With Previously Treated Advanced Urothelial Tract Transitional Cell Carcinoma

    ClinicalTrials.gov

    2013-06-04

    Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Stage IV Urethral Cancer; Transitional Cell Carcinoma of the Bladder; Ureter Cancer

  19. PI3Kbeta Inhibitor AZD8186 and Docetaxel in Treating Patients Advanced Solid Tumors With PTEN or PIK3CB Mutations That Are Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-16

    Advanced Malignant Solid Neoplasm; Anatomic Stage III Breast Cancer AJCC v8; Anatomic Stage IIIA Breast Cancer AJCC v8; Anatomic Stage IIIB Breast Cancer AJCC v8; Anatomic Stage IIIC Breast Cancer AJCC v8; Anatomic Stage IV Breast Cancer AJCC v8; Castration-Resistant Prostate Carcinoma; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Metastatic Malignant Solid Neoplasm; Metastatic Prostate Carcinoma; PIK3CB Gene Mutation; Progesterone Receptor Negative; Prognostic Stage III Breast Cancer AJCC v8; Prognostic Stage IIIA Breast Cancer AJCC v8; Prognostic Stage IIIB Breast Cancer AJCC v8; Prognostic Stage IIIC Breast Cancer AJCC v8; Prognostic Stage IV Breast Cancer AJCC v8; PTEN Gene Mutation; PTEN Loss; Stage III Prostate Cancer AJCC v8; Stage IIIA Prostate Cancer AJCC v8; Stage IIIB Prostate Cancer AJCC v8; Stage IIIC Prostate Cancer AJCC v8; Stage IV Prostate Cancer AJCC v8; Stage IVA Prostate Cancer AJCC v8; Stage IVB Prostate Cancer AJCC v8; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  20. Clinical features and treatment of patients with esophageal cancer and a history of gastrectomy: a multicenter, questionnaire survey in Kyushu, Japan

    PubMed Central

    Mori, N.; Tanaka, T.; Morita, M.; Toh, Y.; Saeki, H.; Maehara, Y.; Nakamura, K.; Honda, H.; Yoshida, N.; Baba, H.; Natsugoe, S.

    2015-01-01

    Summary It is still controversial whether patients with a history of gastrectomy have high risk of esophageal carcinogenesis. On the other hand, the treatment strategy for esophageal cancer patients after gastrectomy is complicated. The association between histories of gastrectomy and esophageal carcinogenesis was retrospectively analyzed, and the treatment of esophageal cancer patients after gastrectomy was evaluated based on questionnaire data collected from multiple centers in Kyushu, Japan. The initial subject population comprised 205 esophageal cancer patients after gastrectomy. Among them, 108 patients underwent curative surgical treatment, and 70 patients underwent chemoradiation therapy (CRT). The time between gastrectomy and esophageal cancer development was longer in peptic ulcer patients (28.3 years) than in gastric cancer patients (9.6 years). There were no differences in the location of esophageal cancer according to the gastrectomy reconstruction method. There were no significant differences in the clinical background characteristics between patients with and without a history of gastrectomy. Among the 108 patients in the surgery group, the 5‐year overall survival rates for stages I (n = 30), II (n = 18), and III (n = 60) were 68.2%, 62.9%, and 32.1%, respectively. In the CRT group, the 5‐year overall survival rate of stage I (n = 29) was 82.6%, but there were no 5‐year survivors in other stages. The 5‐year overall survival rate of patients with CR (n = 33) or salvage surgery (n = 10) was 61.2% or 36%, respectively. For the treatment of gastrectomized esophageal cancer patients, surgery or CRT is recommended for stage I, and surgery with or without adjuvant therapy is the main central treatment in advanced stages, with surgery for stage II, neoadjuvant therapy + surgery for stage III, and CRT + salvage surgery for any stage, if the patient's condition permits. PMID:26542524

  1. Clinical features and treatment of patients with esophageal cancer and a history of gastrectomy: a multicenter, questionnaire survey in Kyushu, Japan.

    PubMed

    Okumura, H; Mori, N; Tanaka, T; Morita, M; Toh, Y; Saeki, H; Maehara, Y; Nakamura, K; Honda, H; Yoshida, N; Baba, H; Natsugoe, S

    2016-11-01

    It is still controversial whether patients with a history of gastrectomy have high risk of esophageal carcinogenesis. On the other hand, the treatment strategy for esophageal cancer patients after gastrectomy is complicated. The association between histories of gastrectomy and esophageal carcinogenesis was retrospectively analyzed, and the treatment of esophageal cancer patients after gastrectomy was evaluated based on questionnaire data collected from multiple centers in Kyushu, Japan. The initial subject population comprised 205 esophageal cancer patients after gastrectomy. Among them, 108 patients underwent curative surgical treatment, and 70 patients underwent chemoradiation therapy (CRT). The time between gastrectomy and esophageal cancer development was longer in peptic ulcer patients (28.3 years) than in gastric cancer patients (9.6 years). There were no differences in the location of esophageal cancer according to the gastrectomy reconstruction method. There were no significant differences in the clinical background characteristics between patients with and without a history of gastrectomy. Among the 108 patients in the surgery group, the 5-year overall survival rates for stages I (n = 30), II (n = 18), and III (n = 60) were 68.2%, 62.9%, and 32.1%, respectively. In the CRT group, the 5-year overall survival rate of stage I (n = 29) was 82.6%, but there were no 5-year survivors in other stages. The 5-year overall survival rate of patients with CR (n = 33) or salvage surgery (n = 10) was 61.2% or 36%, respectively. For the treatment of gastrectomized esophageal cancer patients, surgery or CRT is recommended for stage I, and surgery with or without adjuvant therapy is the main central treatment in advanced stages, with surgery for stage II, neoadjuvant therapy + surgery for stage III, and CRT + salvage surgery for any stage, if the patient's condition permits. © 2015 The Authors. Diseases of the Esophagus published by Wiley Periodicals, Inc. on behalf of International Society for Diseases of the Esophagus.

  2. A prospective validation of the Bova score in normotensive patients with acute pulmonary embolism.

    PubMed

    Bova, Carlo; Vanni, Simone; Prandoni, Paolo; Morello, Fulvio; Dentali, Francesco; Bernardi, Enrico; Mumoli, Nicola; Bucherini, Eugenio; Barbar, Sofia; Picariello, Claudio; Enea, Iolanda; Pesavento, Raffaele; Bottino, Fabrizio; Jiménez, David

    2018-05-01

    The Bova score has shown usefulness in the identification of intermediate-high risk patients with acute pulmonary embolism (PE), but lacks prospective validation. The aim of this study was to prospectively validate the Bova score in different settings from the original derivation cohort. Consecutive, normotensive patients with acute PE recruited at 13 academic or general hospitals were stratified, using their baseline data, into the three Bova risk stages (I-III). The primary outcome was the 30-day composite of PE-related mortality, hemodynamic collapse and non-fatal PE recurrences in the three risk categories. In the study period, 639 patients were enrolled. The primary end point occurred in 45 patients (7.0%; 95% Confidence Intervals, 5.2%-9.3%). Risk stage correlated with the PE-related complication rate (stage I, 2.9%; stage II, 17%; stage III, 27%). Patients classified as stage III by the Bova score had a 6.5-fold increased risk for adverse outcomes (3.1-13.5, p < 0.001) compared with stages I and II combined. Rescue thrombolysis increased from stage I to stage III (0.6%, 12% and 15% respectively). All-cause mortality (5.3%) did not substantially differ among the stages. The Bova score accurately stratifies normotensive patients with acute PE into stages of increasing risk of 30-day PE-related complications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A Phase III Trial Comparing Two Dose-dense, Dose-intensified Approaches (ETC and PM(Cb)) for Neoadjuvant Treatment of Patients With High-risk Early Breast Cancer (GeparOcto)

    ClinicalTrials.gov

    2017-07-10

    Tubular Breast Cancer Stage II; Tubular Breast Cancer Stage III; Mucinous Breast Cancer Stage II; Breast Cancer Female NOS; Invasive Ductal Breast Cancer; HER2 Positive Breast Cancer; Inflammatory Breast Cancer

  4. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  5. Capmatinib, Ceritinib, Regorafenib, or Entrectinib in Treating Patients With BRAF/NRAS Wild-Type Stage III-IV Melanoma

    ClinicalTrials.gov

    2017-12-20

    ALK Fusion Protein Expression; BRAF wt Allele; Invasive Skin Melanoma; MET Fusion Gene Positive; NRAS wt Allele; NTRK1 Fusion Positive; NTRK2 Fusion Positive; NTRK3 Fusion Positive; RET Fusion Positive; ROS1 Fusion Positive; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  6. Serum resistin is associated with the severity of microangiopathies in type 2 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Haruhiko; Ochi, Masaaki; Kato, Kenichi

    2007-04-06

    Resistin, secreted from adipocytes, causes insulin resistance and diabetes in rodents. To determine the relation between serum resistin and diabetic microangiopathies in humans, we analyzed 238 Japanese T2DM subjects. Mean serum resistin was higher in subjects with either advanced retinopathy (preproliferative or proliferative) (P = 0.0130), advanced nephropathy (stage III or IV) (P = 0.0151), or neuropathy (P = 0.0013). Simple regression analysis showed that serum resistin was positively correlated with retinopathy stage (P = 0.0212), nephropathy stage (P = 0.0052), and neuropathy (P = 0.0013). Multiple regression analysis adjusted for age, gender, and BMI, revealed that serum resistin wasmore » correlated with retinopathy stage (P = 0.0144), nephropathy stage (P = 0.0111), and neuropathy (P = 0.0053). Serum resistin was positively correlated with the number of advanced microangiopathies, independent of age, gender, BMI, and either the duration of T2DM (P = 0.0318) or serum creatinine (P = 0.0092). Therefore, serum resistin was positively correlated with the severity of microangiopathies in T2DM.« less

  7. Postoperative radiotherapy and tumor recurrence after complete resection of stage II/III thymic tumor: a meta-analysis of cohort studies

    PubMed Central

    Ma, Jietao; Sun, Xin; Huang, Letian; Xiong, Zhicheng; Yuan, Meng; Zhang, Shuling; Han, Cheng-Bo

    2016-01-01

    Background Whether postoperative radiotherapy (PORT) is effective for reducing the recurrence risk in patients who received complete resection of the stage II or III thymic tumors has not been determined. A meta-analysis was performed by combining the results of all available controlled trials. Methods PubMed, Cochrane’s Library, and the Embase databases were searched for studies which compared the recurrence data for patients with complete resection of the stage II or III thymic tumors assigned to an observing group, or a PORT group. A random effect model was applied to combine the results. Results Nineteen studies, all designed as retrospective cohort studies were included. These studies included 663 patients of PORT group and 617 patients of observing group. The recurrence rate for the patients in PORT group and observing group were 12.4% and 11.5%, respectively. Results of our study indicated that PORT has no significant influence on recurrent risk in patients with stage II or III thymic tumor after complete resection (odds ratio 1.02, 95% confidence interval 0.55–1.90, P=0.96). When stratified by stages, our meta-analyses did not indicate any significant effects of PORT on recurrent outcomes in either the stage II or the stage III patients. Moreover, subsequent analysis limited to studies only including patients with thymoma or thymic carcinoma also did not support the benefits of PORT on recurrent outcomes. Conclusion Although derived from retrospective cohort studies, current evidence did not support any benefit of PORT on recurrent risk in patients with complete resection of the stage II or III thymic tumors. PMID:27524907

  8. Characteristics and outcome of stage II and III non-anaplastic Wilms' tumour treated according to the SIOP trial and study 93-01.

    PubMed

    Graf, Norbert; van Tinteren, Harm; Bergeron, Christophe; Pein, François; van den Heuvel-Eibrink, Marry M; Sandstedt, Bengt; Schenk, Jens-Peter; Godzinski, Jan; Oldenburger, Foppe; Furtwängler, Rhoikos; de Kraker, Jan

    2012-11-01

    To determine the prognosis of children with stage II and III of low or intermediate risk histology (SIOP classification) in unilateral localised Wilms tumour (WT) after neoadjuvant chemotherapy according to the trial and study of the International Society of Paediatric Oncology, SIOP 93-01. Patients with unilateral localised WT and stage II or III with low (LR) or intermediate risk (IR) histology between 6 months and 18 years of age, were selected from the total sample of patients registered in the SIOP 93-01 study between June 1993 and December 2001. All patients received 4 weeks of actinomycin-D/vincristine before surgery. Postoperative chemotherapy consisted of actinomycin-D, vincristine and epirubicin/doxorubicin for 27 weeks. Flank or whole abdomen irradiation was given for stage III. Event-free survival (EFS) and overall survival (OS) were analysed for various subgroups. Of 1476 registered patients 594 (40%) met the inclusion criteria for this analysis. Four hundred and two (67%) had stage II disease and 563 (95%) had intermediate risk histology. Median tumour volume was 439 ml at diagnosis and 163 ml after preoperative chemotherapy. With a median follow-up of 8 years, 5-year EFS was 90% (95% confidence interval [95% CI]: 87-92%) and OS 95% (95% CI: 93-97%). Patients with stage III, blastemal type histology and a large volume at surgery had a worse outcome. Treatment for stage II and III LR or IR WT is successful in a neoadjuvant setting as advised by the SIOP. Stage, tumour volume and blastemal type histology are the most important prognostic factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Plasma cell growth fraction using Ki-67 antigen expression identifies a subgroup of multiple myeloma patients displaying short survival within the ISS stage I.

    PubMed

    Gastinne, Thomas; Leleu, Xavier; Duhamel, Alain; Moreau, Anne-Sophie; Franck, Genevieve; Andrieux, Joris; Lai, Jean-Luc; Coiteux, Valerie; Yakoub-Agha, Ibrahim; Bauters, Francis; Harousseau, Jean-Luc; Zandecki, Marc; Facon, Thierry

    2007-10-01

    The current most powerful prognostic model in Multiple Myeloma (MM) combines beta-2 microglobulin (b2m) with albumin, corresponding to the International Staging System (ISS). However, the prognosis of patients within the ISS stage I (high albumin and low b2m) may vary. Ki-67 is a nuclear protein associated with cell proliferation. We retrospectively evaluated the percentage of bone marrow plasma cells expressing Ki-67 antigen (Ki-67 index) in a series of 174 untreated MM patients at diagnosis. Median survival was 51, 41 and 20 months respectively, and median Ki-67 index was 3.0%, 6.1% and 6.5% in ISS stages I, II, and III respectively. Independently of ISS, Ki-67 index > or =4% was highly predictive of adverse prognosis. Ki-67 index correlated with markers of intrinsic malignancy and with markers of tumour burden. Within ISS stage I, median survival was of 31 months (RR of death 2.65) in patients with Ki-67 index > or =4%. Eventually, the combination of Ki-67 with b2m produced an efficient prognostic model, which appeared most effective in our series when compared with b2m and KI-67 with chromosome 13 deletion models. In this series, we demonstrated that a proliferation marker provides clear-cut additional survival prognostic information to b2m into the ISS model.

  10. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  11. Adjuvant 5FU plus levamisole in colonic or rectal cancer: improved survival in stage II and III

    PubMed Central

    Taal, B G; Van Tinteren, H; Zoetmulder, F A N

    2001-01-01

    Based on the first favourable results of adjuvant therapy of 5FU plus levamisole in Dukes C colonic cancer in 1990, we conducted a prospective trial. 1029 patients were randomised to receive one year 5FU plus levamisole or no further treatment following curative surgery for stage II or III colon (n = 730) or rectal cancer (n = 299). 45% were in stage II and 55% in stage III. With a median follow-up of 4 years and 9 months a significant reduction in odds of death (25%, SD 9%, P = 0.007) was observed for those with adjuvant treatment (65% at 5 year) compared to the observation group (55%). Improved relative survival was present in stage III (56% vs 44%), and in stage II patients (78% vs 70%). In rectal cancer a non-significant difference in disease-free or overall survival was observed. Distant metastases developed in 76%, while local recurrence alone occurred in 14%. An early start of adjuvant treatment (< 4 weeks) did not affect results. Compliance to 5FU plus levamisole was 69%. Severe toxicity did not occur. In conclusion, one year 5FU plus levamisole was of benefit in stage II and III colonic cancer; in rectal cancer a significant positive effect could not be demonstrated. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11720425

  12. Veliparib With or Without Radiation Therapy, Carboplatin, and Paclitaxel in Patients With Stage III Non-small Cell Lung Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-01

    Large Cell Lung Carcinoma; Lung Adenocarcinoma; Lung Adenocarcinoma, Mixed Subtype; Minimally Invasive Lung Adenocarcinoma; Squamous Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7

  13. Phase I/II Study of Postoperative Adjuvant Chemoradiation for Advanced-Stage Cutaneous Squamous Cell Carcinoma of the Head and Neck (cSCCHN)

    ClinicalTrials.gov

    2014-11-17

    Recurrent Skin Cancer; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Squamous Cell Carcinoma of the Skin; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity

  14. Bortezomib Followed by the Addition of Doxorubicin at Disease Progression in Treating Patients With Locally Advanced, Recurrent, or Metastatic Adenoid Cystic Carcinoma (Cancer) of the Head and Neck

    ClinicalTrials.gov

    2013-01-23

    Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Salivary Gland Adenoid Cystic Carcinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer

  15. Thymidine phosphorylase and hypoxia-inducible factor 1-α expression in clinical stage II/III rectal cancer: association with response to neoadjuvant chemoradiation therapy and prognosis.

    PubMed

    Lin, Shuhan; Lai, Hao; Qin, Yuzhou; Chen, Jiansi; Lin, Yuan

    2015-01-01

    The aim of this study was to determine whether pretreatment status of thymidine phosphorylase (TP), and hypoxia-inducible factor alpha (HIF-1α) could predict pathologic response to neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine (XELOXART) and outcomes for clinical stage II/III rectal cancer patients. A total of 180 patients diagnosed with clinical stage II/III rectal cancer received XELOXART. The status of TP, and HIF-1α were determined in pretreatment biopsies by immunohistochemistry (IHC). Tumor response was assessed in resected regimens using the tumor regression grade system and TNM staging system. 5-year disease free survival (DFS) and 5-year overall survival (OS) were evaluated with the Kaplan-Meier method and were compared by the log-rank test. Over expression of TP and low expression of HIF-1α were associated with pathologic response to XELOXART and better outcomes (DFS and OS) in clinical stage II/III rectal cancer patients (P < 0.05). Our result suggested that pretreatment status of TP and HIF-1α were found to predict pathologic response and outcomes in clinical stage II/III rectal cancer received XELOXART. Additional well-designed, large sample, multicenter, prospective studies are needed to confirm the result of this study.

  16. Phase transformation in the alumina-titania system during flash sintering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, S. K.; Lebrun, J. M.; Raj, R.

    2016-02-01

    We show that phase transformation in the alumina–titania system, which produces aluminum-titanate, follows an unusual trajectory during flash sintering. The experiments begin with mixed powders of alumina–titania and end in dense microstructures that are transformed into aluminum-titanate. The sintering and the phase transformation are separated in time, with the sintering occurs during Stage II, and phase transformation during Stage III of the flash sintering experiment. Stage III is the steady-state condition of flash activated state that is established under current control, while Stage II is the period of transition from voltage to current control. The extent of phase transformation increasesmore » with the current density and the hold time in Stage III.« less

  17. Tumor Heterogeneity of FIGO Stage III Carcinoma of the Uterine Cervix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yong Bae; Lee, Ik Jae; Kim, Song Yih

    2009-12-01

    Purpose: The purpose of this study was to analyze tumor heterogeneity based on tumor extent and suggest reappraisal of the system of the International Federation of Gynecology and Obstetrics (FIGO) for Stage III carcinoma of the uterine cervix from a radiotherapeutic viewpoint. Methods and Materials: Between 1986 and 2004, 407 patients with FIGO Stage III (FIGO Stage IIIa in 19 and IIIb in 388) were treated with external beam radiotherapy (RT) and high-dose rate brachytherapy. All patients were reviewed with respect to tumor extent. Patterns of failure and survival parameters were analyzed by use of the chi{sup 2} test andmore » Kaplan-Meier method. Results: The complete response rate was 79.6%, and the 5-year overall survival rates for Stage IIIa and Stage IIIb carcinoma of the cervix were 82.1% and 54.8%, respectively. To determine which parameters of tumor extent had an influence on prognosis for Stage IIIb patients, pelvic wall (PW) extension and hydronephrosis (HD) retained significance on multivariate analysis. Stage IIIb patients were divided into three subgroups according to PW extension and HD: low risk (unilateral PW extension without HD), intermediate risk (HD without PW extension or bilateral PW extension without HD), and high risk (unilateral or bilateral PW extension with HD). The high-risk group had a remarkably low complete response rate, high locoregional failure rate, and low 5-year survival rate compared with the intermediate- and low-risk groups. Conclusions: FIGO Stage III carcinoma of the cervix covers considerably heterogeneous subgroups according to tumor extent. Before initiation of treatment, we suggest that physicians determine a tailored treatment policy based on tumor heterogeneity for each Stage III patient.« less

  18. Pazopanib Hydrochloride in Treating Patients With Advanced Thyroid Cancer

    ClinicalTrials.gov

    2018-05-08

    Recurrent Thyroid Gland Carcinoma; Stage III Differentiated Thyroid Gland Carcinoma AJCC v7; Stage III Thyroid Gland Medullary Carcinoma AJCC v7; Stage IVA Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVA Thyroid Gland Medullary Carcinoma AJCC v7; Stage IVA Thyroid Gland Undifferentiated (Anaplastic) Carcinoma AJCC v7; Stage IVB Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVB Thyroid Gland Medullary Carcinoma AJCC v7; Stage IVB Thyroid Gland Undifferentiated (Anaplastic) Carcinoma AJCC v7; Stage IVC Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVC Thyroid Gland Medullary Carcinoma AJCC v7; Stage IVC Thyroid Gland Undifferentiated (Anaplastic) Carcinoma AJCC v7; Thyroglobulin Antibody Negative; Thyroid Gland Undifferentiated (Anaplastic) Carcinoma

  19. Vorinostat and Combination Chemotherapy With Rituximab in Treating Patients With HIV-Related Diffuse Large B-Cell Non-Hodgkin Lymphoma or Other Aggressive B-Cell Lymphomas

    ClinicalTrials.gov

    2018-06-07

    AIDS-Related Plasmablastic Lymphoma; AIDS-Related Primary Effusion Lymphoma; CD20 Positive; HIV Infection; Plasmablastic Lymphoma; Primary Effusion Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma; Stage IV Grade 3 Follicular Lymphoma

  20. Cure by age and stage at diagnosis for colorectal cancer patients in North West England, 1997-2004: a population-based study.

    PubMed

    Shack, L G; Shah, A; Lambert, P C; Rachet, B

    2012-12-01

    Stage and age at diagnosis are important prognostic factors for patients with colorectal cancer. However, the proportion cured by stage and age is unknown in England. This population-based study includes 29,563 adult patients who were diagnosed and registered with colorectal cancer during 1997-2004 and followed till 2007 in North West England. Multiple imputation was used to provide more reliable estimates of stage at diagnosis, when these data were missing. Cure mixture models were used to estimate the proportion 'cured' and the median survival of the uncured by age and stage. For both colon and rectal cancer the proportion of patients cured and median survival time of the uncured decreased with advancing stage and increasing age. Patients aged under 65 years had the highest proportion cured and longest median survival of the uncured. Cure of colorectal cancer patients is dependent on stage and age at diagnosis with younger patients or those with less advanced disease having a better prognosis. Further efforts are required, in order to reduce the proportion of patients presenting with stage III and IV disease and ultimately increase the chance of cure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Short-term and long-term treatment outcomes with Class III activator

    PubMed Central

    Ryu, Hyo-kyung; Chong, Hyun-Jeong; An, Ki-Yong

    2015-01-01

    Objective The purpose of this retrospective study was to investigate short-term and long-term skeletodental outcomes of Class III activator treatment. Methods A Class III activator treatment group (AG) comprised of 22 patients (9 boys, 13 girls) was compared with a Class III control group (CG) comprised of 17 patients (6 boys, 11 girls). The total treatment period was divided into three stages; the initial stage (T1), the post-activator treatment or post-mandibular growth peak stage (T2), and the long-term follow-up stage (T3). Cephalometric changes were evaluated statistically via the Mann-Whitney U-test and the Friedman test. Results The AG exhibited significant increases in the SNA angle, ANB angle, Wits appraisal, A point-N perpendicular, Convexity of A point, and proclination of the maxillary incisors, from T1 to T2. In the long-term follow-up (T1-T3), the AG exhibited significantly greater increases in the ANB angle, Wits appraisal, and Convexity of A point than the CG. Conclusions Favorable skeletal outcomes induced during the Class III activator treatment period were generally maintained until the long-term follow-up period of the post-mandibular growth peak stage. PMID:26445717

  2. Combination Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Stage III Ovarian Cancer

    ClinicalTrials.gov

    2017-08-08

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  3. Family Caregiver Palliative Care Intervention in Supporting Caregivers of Patients With Stage II-IV Gastrointestinal, Gynecologic, Urologic and Lung Cancers

    ClinicalTrials.gov

    2018-02-12

    Healthy Subject; Localized Transitional Cell Cancer of the Renal Pelvis and Ureter; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Psychosocial Effects of Cancer and Its Treatment; Recurrent Bladder Cancer; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Gastric Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Uterine Sarcoma; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage II Bladder Cancer; Stage II Renal Cell Cancer; Stage II Urethral Cancer; Stage IIA Cervical Cancer; Stage IIA Colon Cancer; Stage IIA Gastric Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIA Pancreatic Cancer; Stage IIA Rectal Cancer; Stage IIA Uterine Sarcoma; Stage IIB Cervical Cancer; Stage IIB Colon Cancer; Stage IIB Gastric Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIB Pancreatic Cancer; Stage IIB Rectal Cancer; Stage IIB Uterine Sarcoma; Stage IIC Colon Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIC Rectal Cancer; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage III Urethral Cancer; Stage IIIA Cervical Cancer; Stage IIIA Colon Cancer; Stage IIIA Gastric Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Uterine Sarcoma; Stage IIIB Cervical Cancer; Stage IIIB Colon Cancer; Stage IIIB Gastric Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Uterine Sarcoma; Stage IIIC Colon Cancer; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Uterine Sarcoma; Stage IV Bladder Cancer; Stage IV Gastric Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Urethral Cancer; Stage IVA Cervical Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVA Uterine Sarcoma; Stage IVB Cervical Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Stage IVB Uterine Sarcoma; Ureter Cancer; Stage IIA Lung Carcinoma; Stage IIB Lung Carcinoma; Stage IIIA Lung Carcinoma; Stage IIIB Lung Carcinoma

  4. Adherence to GOLD guideline treatment recommendations among pulmonologists in Turkey.

    PubMed

    Sen, Elif; Guclu, Salih Zeki; Kibar, Isil; Ocal, Ulku; Yilmaz, Veysel; Celik, Onur; Cimen, Filiz; Topcu, Fusun; Orhun, Meltem; Tereci, Hikmet; Konya, Aylin; Ar, Idilhan; Saryal, Sevgi

    2015-01-01

    Low adherence to Global initiative for chronic Obstructive Lung Disease (GOLD) guideline recommendations has been reported worldwide. There has been no study on the adherence to GOLD guidelines for COPD treatment in Turkey. To investigate the rates of adherence to GOLD 2010 guidelines for COPD treatment among pulmonologists. A multi-center, cross-sectional, observational study was carried out in eleven pulmonary outpatient clinics across Turkey. Adherence to GOLD was evaluated through hospital records. Demographic and clinical data were recorded. Study included 719 patients (mean age: 62.9±9.7 years; males 85.4%) of whom 16 was classified as GOLD Stage I, 238 as II, 346 as III, and 119 as IV, and only 59.5% received appropriate treatment. Rates of guideline adherence varied across GOLD stages (I, 6.3%; II, 14.7%; III, 84.4%; and IV, 84%). Causes of inappropriate therapies were overtreatment (Stage I, 100% and Stage II, 91.1%), undertreatment (Stage III, 3.3% and Stage IV, 10.9%) and lack of treatment (Stage II, 3.8%; Stage III, 2.3%; and Stage IV, 5.9%). The most preferred regimen (43.4%) was long-acting β2-agonist-inhaled corticosteroid-long-acting muscarinic antagonist. Overall, 614 patients (89%) received treatment containing inhaled corticosteroid. Pulmonologists in Turkey have low rates of adherence to GOLD guidelines in COPD treatment. Inappropriateness of therapies was due to overtreatment in early stages and excessive use of inhaled corticosteroid (ICS) in all disease stages.

  5. Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

    ClinicalTrials.gov

    2018-06-25

    Advanced Malignant Solid Neoplasm; Ann Arbor Stage III Childhood Non-Hodgkin Lymphoma; Ann Arbor Stage IV Childhood Non-Hodgkin Lymphoma; Childhood Langerhans Cell Histiocytosis; Histiocytic Sarcoma; Juvenile Xanthogranuloma; Malignant Glioma; Recurrent Central Nervous System Neoplasm; Recurrent Childhood Ependymoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Solid Neoplasm; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Refractory Central Nervous System Neoplasm; Refractory Childhood Malignant Germ Cell Tumor; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Solid Neoplasm; Refractory Neuroblastoma; Rhabdoid Tumor; Stage III Osteosarcoma AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Osteosarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Osteosarcoma AJCC v7; Stage IVB Osteosarcoma AJCC v7; Wilms Tumor

  6. Larotrectinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With NTRK Fusions (A Pediatric MATCH Treatment Trial)

    ClinicalTrials.gov

    2018-06-25

    Advanced Malignant Solid Neoplasm; Ann Arbor Stage III Childhood Non-Hodgkin Lymphoma; Ann Arbor Stage IV Childhood Non-Hodgkin Lymphoma; Malignant Glioma; NTRK1 Fusion Positive; NTRK2 Fusion Positive; NTRK3 Fusion Positive; Recurrent Central Nervous System Neoplasm; Recurrent Childhood Ependymoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Non-Hodgkin Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Solid Neoplasm; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Refractory Central Nervous System Neoplasm; Refractory Childhood Malignant Germ Cell Tumor; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Solid Neoplasm; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Rhabdoid Tumor; Stage III Osteosarcoma AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Osteosarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Osteosarcoma AJCC v7; Stage IVB Osteosarcoma AJCC v7; Wilms Tumor

  7. PI3K/mTOR Inhibitor LY3023414 in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With TSC or PI3K/MTOR Mutations (A Pediatric MATCH Treatment Trial)

    ClinicalTrials.gov

    2018-06-18

    Advanced Malignant Solid Neoplasm; Ann Arbor Stage III Non-Hodgkin Lymphoma; Ann Arbor Stage IV Non-Hodgkin Lymphoma; Malignant Glioma; Recurrent Central Nervous System Neoplasm; Recurrent Childhood Ependymoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Langerhans Cell Histiocytosis; Recurrent Malignant Germ Cell Tumor; Recurrent Malignant Solid Neoplasm; Recurrent Medulloblastoma; Recurrent Neuroblastoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Osteosarcoma; Recurrent Peripheral Primitive Neuroectodermal Tumor; Recurrent Rhabdomyosarcoma; Recurrent Soft Tissue Sarcoma; Refractory Central Nervous System Neoplasm; Refractory Langerhans Cell Histiocytosis; Refractory Malignant Germ Cell Tumor; Refractory Malignant Solid Neoplasm; Refractory Neuroblastoma; Refractory Non-Hodgkin Lymphoma; Rhabdoid Tumor; Stage III Osteosarcoma AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IV Osteosarcoma AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Osteosarcoma AJCC v7; Stage IVB Osteosarcoma AJCC v7; TSC1 Gene Mutation; TSC2 Gene Mutation; Wilms Tumor

  8. Prevalence of chronic kidney disease among patients undergoing transradial percutaneous coronary interventions.

    PubMed

    Hossain, Mohammad A; Quinlan, Amy; Heck-Kanellidis, Jennifer; Calderon, Dawn; Patel, Tejas; Gandhi, Bhavika; Patel, Shrinil; Hetavi, Mahida; Costanzo, Eric J; Cosentino, James; Patel, Chirag; Dewan, Asa; Kuo, Yen-Hong; Salman, Loay; Vachharajani, Tushar J

    2018-07-01

    While transradial approach to conduct percutaneous coronary interventions offers multiple advantages, the procedure can cause radial artery damage and occlusion. Because radial artery is the preferred site for the creation of an arteriovenous fistula to provide dialysis, patients with chronic kidney disease are particularly dependent on radial artery for their long-term survival. In this retrospective study, we investigated the prevalence of chronic kidney disease in patients undergoing coronary interventions via radial artery. Stage of chronic kidney disease was based on estimated glomerular filtration rate and National Kidney Foundation - Kidney Disease Outcomes Quality Initiative guidelines. A total of 497 patients undergoing transradial percutaneous coronary interventions were included. Over 70.4% (350/497) of the patients had chronic kidney disease. Stage II chronic kidney disease was observed in 243 (69%) patients (estimated glomerular filtration rate = 76.0 ± 8.4 mL/min). Stage III was observed in 93 (27%) patients (estimated glomerular filtration rate = 49 ± 7.5 mL/min). Stage IV chronic kidney disease was observed in 5 (1%) patients (estimated glomerular filtration rate = 25.6 ± 4.3 mL/min) and Stage V chronic kidney disease was observed in 9 (3%) patients (estimated glomerular filtration rate = 9.3 ± 3.5 mL/min). Overall, 107 of 350 patients (30%) had advanced chronic kidney disease, that is, stage III-V chronic kidney disease. Importantly, 14 of the 107 (13%) patients had either stage IV or V chronic kidney disease. This study finds that nearly one-third of the patients undergoing transradial percutaneous coronary interventions have advanced chronic kidney disease. Because many of these patients may require dialysis, the use of radial artery to conduct percutaneous coronary interventions must be carefully considered in chronic kidney disease population.

  9. Efficacy of Rotigotine at Different Stages of Parkinson’s Disease Symptom Severity and Disability: A Post Hoc Analysis According to Baseline Hoehn and Yahr Stage

    PubMed Central

    Giladi, Nir; Nicholas, Anthony P.; Asgharnejad, Mahnaz; Dohin, Elisabeth; Woltering, Franz; Bauer, Lars; Poewe, Werner

    2016-01-01

    Background: The efficacy of rotigotine has been demonstrated in studies of patients with early (i.e. not receiving levodopa) and advanced (i.e. not adequately controlled on levodopa; average 2.5 h/day in ‘off’ state) Parkinson’s disease (PD). Objective: To further investigate the efficacy of rotigotine transdermal patch across different stages of PD symptom severity and functional disability, according to baseline Hoehn and Yahr (HY) staging. Methods: Post hoc analysis of six placebo-controlled studies of rotigotine in patients with early PD (SP506, SP512, SP513; rotigotine ≤8 mg/24 h) or advanced-PD (CLEOPATRA-PD, PREFER, SP921; rotigotine ≤16 mg/24 h). Data were pooled and analyzed according to baseline HY stage (1, 2, 3 or 4) for change from baseline to end of maintenance in Unified Parkinson’s Disease Rating Scale (UPDRS) II (activities of daily living), UPDRS III (motor) and UPDRS II+III; statistical tests are exploratory. Results: Data were available for 2057 patients (HY 1 : 262; HY 2 : 1230; HY 3 : 524; HY 4 : 41). Patients at higher HY stages were older, had a longer time since PD diagnosis and higher baseline UPDRS II+III scores vs patients at lower HY stages. Rotigotine improved UPDRS II+III versus placebo for each individual HY stage (p < 0.05 for each HY stage), with treatment differences increasing with increasing HY stages. Similar results were observed for UPDRS II and UPDRS III. Conclusions: This post hoc analysis suggests that rotigotine may be efficacious across a broad range of progressive stages of PD symptom severity and functional disability (HY stages 1–4). PMID:27567886

  10. Interim analysis of postoperative chemoradiotherapy with capecitabine and oxaliplatin versus capecitabine alone for pathological stage II and III rectal cancer: a randomized multicenter phase III trial.

    PubMed

    Feng, Yan-Ru; Zhu, Yuan; Liu, Lu-Ying; Wang, Wei-Hu; Wang, Shu-Lian; Song, Yong-Wen; Wang, Xin; Tang, Yuan; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Zhang, Shi-Ping; Liu, Xin-Fan; Yu, Zi-Hao; Li, Ye-Xiong; Jin, Jing

    2016-05-03

    The aim of this study is to present an interim analysis of a phase III trial (NCT00714077) of postoperative concurrent capecitabine and radiotherapy with or without oxaliplatin for pathological stage II and III rectal cancer. Patients with pathologically confirmed stage II and III rectal cancer were randomized to either radiotherapy with concurrent capecitabine (Cap-RT group) or with capecitabine and oxaliplatin (Capox-RT group). The primary endpoint was 3-year disease-free survival rate (DFS). The 3-year DFS rate was 73.9% in the Capox-RT group and 71.6% in the Cap-RT group (HR 0.92, p = 0.647), respectively. No significant difference was observed in overall survival, cumulative incidence of local recurrence and distant metastasis between the two groups (p > 0.05). More grade 3-4 acute toxicity was observed in the Capox-RT group than in the Cap-RT group (38.1% vs. 29.2%, p = 0.041). Inclusion of oxaliplatin in the capecitabine-based postoperative regimen did not improve DFS but increased toxicities for pathological stage II and III rectal cancer in this interim analysis.

  11. Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling.

    PubMed

    Findeisen, Peter; Zapatka, Marc; Peccerella, Teresa; Matzk, Heike; Neumaier, Michael; Schadendorf, Dirk; Ugurel, Selma

    2009-05-01

    Currently known prognostic serum biomarkers of melanoma are powerful in metastatic disease, but weak in early-stage patients. This study was aimed to identify new prognostic biomarkers of melanoma by serum mass spectrometry (MS) proteomic profiling, and to validate candidates compared with established markers. Two independent sets of serum samples from 596 melanoma patients were investigated. The first set (stage I = 102; stage IV = 95) was analyzed by matrix assisted laser desorption and ionization time of flight (MALDI TOF) MS for biomarkers differentiating between stage I and IV. In the second set (stage I = 98; stage II = 91; stage III = 87; stage IV = 103), the serum concentrations of the candidate marker serum amyloid A (SAA) and the known biomarkers S100B, lactate dehydrogenase, and C reactive protein (CRP) were measured using immunoassays. MALDI TOF MS revealed a peak at m/z 11.680 differentiating between stage I and IV, which could be identified as SAA. High peak intensities at m/z 11.680 correlated with poor survival. In univariate analysis, SAA was a strong prognostic marker in stage I to III (P = .043) and stage IV (P = .000083) patients. Combination of SAA and CRP increased the prognostic impact to P = .011 in early-stage (I to III) patients. Multivariate analysis revealed sex, stage, tumor load, S100B, SAA, and CRP as independent prognostic factors, with an interaction between SAA and CRP. In stage I to III patients, SAA combined with CRP was superior to S100B in predicting patients' progression-free and overall survival. SAA combined with CRP might be used as prognostic serological biomarkers in early-stage melanoma patients, helping to discriminate low-risk patients from high-risk patients needing adjuvant treatment.

  12. Pembrolizumab in Treating Participants With Metastatic, Recurrent or Locally Advanced Cancer and Genomic Instability

    ClinicalTrials.gov

    2018-03-22

    BRCA1 Gene Mutation; BRCA2 Gene Mutation; Locally Advanced Solid Neoplasm; Metastatic Malignant Solid Neoplasm; POLD1 Gene Mutation; POLE Gene Mutation; Recurrent Malignant Solid Neoplasm; Recurrent Ovarian Carcinoma; Stage III Breast Cancer AJCC v7; Stage III Ovarian Cancer AJCC v8; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v8; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v8; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v8; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v8; Stage IVA Ovarian Cancer AJCC v8; Stage IVB Ovarian Cancer AJCC v8

  13. Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)

    2002-01-01

    A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.

  14. Vorinostat in Treating Patients With Locally Advanced, Recurrent, or Metastatic Adenoid Cystic Carcinoma

    ClinicalTrials.gov

    2018-05-23

    Recurrent Oral Cavity Adenoid Cystic Carcinoma; Recurrent Salivary Gland Carcinoma; Salivary Gland Adenoid Cystic Carcinoma; Stage III Major Salivary Gland Cancer AJCC v7; Stage III Oral Cavity Adenoid Cystic Carcinoma AJCC v6 and v7; Stage IVA Major Salivary Gland Cancer AJCC v7; Stage IVA Oral Cavity Adenoid Cystic Carcinoma AJCC v6 and v7; Stage IVB Major Salivary Gland Cancer AJCC v7; Stage IVB Oral Cavity Adenoid Cystic Carcinoma AJCC v6 and v7; Stage IVC Major Salivary Gland Cancer AJCC v7; Stage IVC Oral Cavity Adenoid Cystic Carcinoma AJCC v6 and v7; Tongue Carcinoma

  15. Multiplicity in Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  16. S1613, Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients With Locally Advanced or Metastatic HER2/Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-09

    Colon Adenocarcinoma; ERBB2 Gene Amplification; Rectal Adenocarcinoma; Recurrent Colon Carcinoma; Recurrent Rectal Carcinoma; Stage III Colon Cancer AJCC v7; Stage III Rectal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Rectal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Rectal Cancer AJCC v7

  17. Cediranib Maleate With or Without Lenalidomide in Treating Patients With Thyroid Cancer

    ClinicalTrials.gov

    2018-05-23

    Recurrent Thyroid Gland Carcinoma; Stage I Thyroid Gland Follicular Carcinoma AJCC v7; Stage I Thyroid Gland Papillary Carcinoma AJCC v7; Stage II Thyroid Gland Follicular Carcinoma AJCC v7; Stage II Thyroid Gland Papillary Carcinoma AJCC v7; Stage III Thyroid Gland Follicular Carcinoma AJCC v7; Stage III Thyroid Gland Papillary Carcinoma AJCC v7; Stage IV Thyroid Gland Follicular Carcinoma AJCC v7; Stage IV Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVA Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVA Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVB Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVB Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVC Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVC Thyroid Gland Papillary Carcinoma AJCC v7

  18. [An unexpected stage of alkalosis in the dynamics of the early posthemorrhagic period].

    PubMed

    Beliaev, A V

    2000-01-01

    A study was made on acid-base metabolism in early posthemorrhagic period as exemplified by examination of patients presenting with gastrointestinal hemorrhage. It has been ascertained that hemorrhage is accompanied by a mixed variant of the acid-base state (ABS) deviation, namely metabolic lactate-acidosis and respiratory alkalosis. In the time-related course of posthemorrhagic period such deviations persist in patients with lethal outcome; with the disease running a favourable course the above deviations are found to return to normal quite soon. The development of complications leads to staging in ABC, its stages being as follows: stage I--the initial stage, stage II--persisting metabolic acidosis and respiratory alkalosis, stage III--alkalosis, stage IV--normalization, with stage III of ABS being encouraged by hypocapnia caused by function disorders of the lungs in early posthemorrhagic period, normalization of cell metabolism, increase in the rate of urination as a reflection of the third earlier identified stage of water metabolism, with the H+ excretion in the urine at the previous level. The identified ABS stage III threatens coming trouble, being accompanied by metabolic deviations together with a risk of function disorder of the myocardium.

  19. Ginseng in Decreasing Cancer-Related Fatigue After Treatment in Cancer Survivors

    ClinicalTrials.gov

    2018-03-15

    Cancer Survivor; Stage I Breast Cancer AJCC v7; Stage I Colon Cancer AJCC v6 and v7; Stage IA Breast Cancer AJCC v7; Stage IB Breast Cancer AJCC v7; Stage II Breast Cancer AJCC v6 and v7; Stage II Colon Cancer AJCC v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIA Colon Cancer AJCC v7; Stage IIB Breast Cancer AJCC v6 and v7; Stage IIB Colon Cancer AJCC v7; Stage IIC Colon Cancer AJCC v7; Stage III Breast Cancer AJCC v7; Stage III Colon Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7

  20. Increased levels of circulating platelet-derived microparticles are associated with metastatic cutaneous melanoma.

    PubMed

    Moreau, Joséphine; Pelletier, Fabien; Biichle, Sabeha; Mourey, Guillaume; Puyraveau, Marc; Badet, Nicolas; Caubet, Matthieu; Laresche, Claire; Garnache-Ottou, Francine; Saas, Philippe; Seilles, Estelle; Aubin, François

    2017-10-01

    We investigated the plasma levels of PMPs in patients with 45 stage III and 45 stage IV melanoma. PMPs were characterised by flow cytometry and their thrombogenic activity. We also investigated the link between PMPs circulating levels and tumor burden. The circulating levels of PMPs were significantly higher in stage IV (8500 μL -1 ) than in patients with stage III (2041 μL -1 ) melanoma (P=.0001). We calculated a highly specific (93.3%) and predictive (91.7%) cut-off value (5311 μL -1 ) allowing the distinction between high-risk stage III and metastatic stage IV melanoma. The thrombogenic activity of PMPs was significantly higher in patients with stage IV melanoma (clotting time: 40.7 second vs 65 second, P=.0001). There was no significant association between the radiological tumoral syndrome and the plasma level of PMPs. Our data suggest the role of PMPs in metastatic progression of melanoma. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Identification by Random Mutagenesis of Functional Domains in KREPB5 That Differentially Affect RNA Editing between Life Cycle Stages of Trypanosoma brucei.

    PubMed

    McDermott, Suzanne M; Carnes, Jason; Stuart, Kenneth

    2015-12-01

    KREPB5 is an essential component of ∼ 20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼ 20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sustarsic, Elahu G.; Department of Biological Sciences, Ohio University, Athens, OH; Junnila, Riia K.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includesmore » 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on this data, GH could be a new therapeutic target in melanoma.« less

  3. Intravenous Chemotherapy or Oral Chemotherapy in Treating Patients With Previously Untreated Stage III-IV HIV-Associated Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-06-20

    AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Stage III AIDS-related Lymphoma; Stage IV AIDS-related Lymphoma

  4. [Tandem transplantation with peripheral autologous hematopoietic blood stem cells in treatment of oncologic and hematologic malignancies. Initial results of the Donauspital, Vienna].

    PubMed

    Ruckser, R; Kier, P; Sebesta, C; Kittl, E; Kurz, M; Selleny, S; Höniger, S; Scherz, M; Habertheuer, K H; Zelenka, P

    1995-01-01

    10 patients were subjected to tandem transplantation for breast cancer (n = 3), ovarian cancer (n = 2) and multiple myeloma (n = 5), at the Second Department of Medicine, Donauspital, Vienna. The breast cancer patients were in stages 2 and 3, respectively, at diagnosis and entered complete remission thereafter. 2 of them developed lymph node metastasis and additional local recurrence, the 3rd patient presented with distant metastasis. The 2 patients with ovarian cancer were in stages Figo III and IV, respectively, at the time of diagnosis, and showed minimal residual disease at second-look-operation. 5 patients with multiple myeloma were in stage 3 pretransplant. Peripheral stem cells were obtained after either high-dose cyclophosphamide or FEC induction and application of cytokines. In 4 patients, tandem transplantation has been completed. 1 patient with multiple myeloma, who had received total body irradiation in combination with chemotherapy for the 2nd transplant, succumbed from idiopathic interstitial pneumonia. No severe clinical complications were observed in all other patients. All patients with solid tumors entered complete remission after the 1st transplantation. 3 of them completed tandem transplantation. Of these, 2 remain in continuous complete remission, the 3rd patient relapsed in lymph nodes day 485. In patients who received only 1 course of high dose chemotherapy with stem cell transplantation, relapses occurred on days 29 and 75, respectively. All patients with multiple myeloma entered only partial remission. We conclude that supralethal chemotherapy with peripheral blood stem cell support is a safe procedure that may at least induce prolonged remissions in solid tumors and hematologic malignancies.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Fc gamma RII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor beta chain rearrangement status.

    PubMed

    Rodewald, H R; Awad, K; Moingeon, P; D'Adamio, L; Rabinowitz, D; Shinkai, Y; Alt, F W; Reinherz, E L

    1993-04-01

    We have recently identified a dominant wave of CD4-CD8- (double-negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III-CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double-positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta chain V(D)J rearrangement is mostly, if not entirely, restricted to the Fc gamma RII/III-CD2+ subset of DN fetal thymocytes. Consistent with this analysis in fetal thymocytes, > 90% of adult thymocytes derived from mice carrying a disrupting mutation at the recombination-activating gene 2 locus (RAG-2-/-) on both alleles are developmentally arrested at the DN CD2- stage. In addition, there is a fivefold increase in the relative percentage of thymocytes expressing Fc gamma RII/III in TCR and immunoglobulin gene rearrangement-incompetent homozygous RAG-2-/- mice (15% Fc gamma RII/III+) versus rearrangement-competent heterozygous RAG-2+/- mice (< 3% Fc gamma RII/III+). Thus, Fc gamma RII/III expression defines an early DN stage preceding V beta(D beta)I beta rearrangement, which in turn is followed by surface expression of CD2. Loss of Fc gamma RII/III and acquisition of CD2 expression characterize a late DN stage immediately before the conversion into DP thymocytes.

  6. Oral submucous fibrosis: A clinico-histopathological correlational study.

    PubMed

    Biradar, Sudharani Basawaraj; Munde, Anita Dnyanoba; Biradar, Basawaraj Chanabasappa; Shaik, Safia Shoeb; Mishra, Shweta

    2018-01-01

    The aim of this study was to correlate the clinical staging (clinical severity) with the histopathological staging (histopathological changes) of oral submucous fibrosis (OSF) patients, which would further assist the clinicians to formulate a definite treatment plan. The study group consisted of 50 subjects who were clinically and histologically diagnosed as OSF. Detailed information was gathered in a pretested proforma with emphasis on the various addictions. The clinical findings were noted; punch biopsy was performed followed by histological examination. Clinical and histological staging were divided into four stages, as Stages I-IV according to Khanna and Andrade classification. The 50 subjects were in the age range of 18-70 years, of which 20 patients were in clinical Group III, 15 were in histopathological stage III, 2, 1, and 2 in Stage II, Stage I, and Stage IV, respectively, out of 5 patients in clinical Group IV, 4 were in histopathological staging IV and 1 was in Stage III, out of 5 patients in clinical Group I, 3 and 2 were in histologic Stages II and I, respectively. Statistical analysis with Chi-square test showed high significance with P < 0.001. The correlation of clinical and histopathological staging was found to be highly significant, thus suggesting that the subject with clinically advanced OSF had extensive fibrosis histologically.

  7. Proangiogenic and Profibrotic Markers in Pulmonary Sarcoidosis.

    PubMed

    Tuleta, I; Biener, L; Pizarro, C; Nickenig, G; Skowasch, D

    2018-04-21

    The aim of our study was to determine the blood levels of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, fibroblast growth factor (FGF)-2, and platelet-derived growth factor (PDGF)-AB in different stages of pulmonary sarcoidosis. There were 92 patients in sarcoidosis stages I + II, III, and IV enrolled into the study. All the patients underwent lung diffusing capacity and blood sampling. We found that VEGF levels differed significantly between the stage groups with the peak VEGF concentrations in stage III. TGF-β1 levels were similar in stages I + II and III, and tended to be lower in stage IV. The analysis of the subgroups showed increased VEGF and FGF-2, and reduced TGF-β1 concentration in stages I + II patients with relevantly reduced lung diffusing capacity or increased sarcoidosis activity compared to patients with normal lung diffusing capacity or inactive sarcoidosis. A tendency towards increased VEGF, PDGF-AB and TGF-β1 levels was observed in the analogical subgroup analysis within the stage III. We conclude that proangiogenic VEGF, and profibrotic FGF-2 and PDGF-AB may contribute to the progression of sarcoidosis, whereas TGF-β1, with its dual anti-inflammatory and profibrotic actions, may play a dichotomous protective or deleterious role. Reduced diffusing capacity and active sarcoidosis are associated with an unfavorable constellation of the markers studied, which predicts a progressive disease course.

  8. Benefit from the inclusion of radiation therapy in the treatment of patients with stage III classical Hodgkin lymphoma: A propensity matched analysis of the Surveillance, Epidemiology, and End Results database.

    PubMed

    Bates, James E; Dhakal, Sughosh; Mazloom, Ali; Casulo, Carla; Constine, Louis S

    2017-08-01

    While stage III and IV classical Hodgkin lymphoma (HL) patients are often combined and defined as "advanced stage," there are significant differences in disease distribution and burden between the two stages. This may obscure advantages of radiotherapy (RT) in a combined modality therapy strategy in stage III disease due to the relative lack of benefit in stage IV patients. We queried the Surveillance, Epidemiology, and End Results (SEER) database, restricting our search to patients with stage III classical HL diagnosed from 2004 to 2012, to examine the difference in overall and cause-specific survival (OS and CSS) between patients who did or did not receive RT. Patients treated with RT had improved OS and CSS relative to those treated without RT (5-year OS 91.6% with RT compared to 71.4% without RT, HR=0.34, p<0.001) and CSS (5-year OS 95.4% with RT compared to 84.7% without RT, HR=0.32, p<0.001). A benefit in OS and/or CSS was seen in all patient subgroups except for older adults (>64years). These data support at least a cautionary approach to omitting RT from treatment strategies for patients with advanced stage HL. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma.

    PubMed

    Mark, Tomer; Stern, Jessica; Furst, Jessica R; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N; Harpel, John; Shore, Tsiporah; Schuster, Michael W; Leonard, John P; Christos, Paul J; Coleman, Morton; Niesvizky, Ruben

    2008-07-01

    A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte-colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P < .0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide.

  10. Stem Cell Mobilization with Cyclophosphamide Overcomes the Suppressive Effect of Lenalidomide Therapy on Stem Cell Collection in Multiple Myeloma

    PubMed Central

    Mark, Tomer; Stern, Jessica; Furst, Jessica R.; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N.; Harpel, John; Shore, Tsiporah; Schuster, Michael W.; Leonard, John P.; Christos, Paul J.; Coleman, Morton; Niesvizky, Ruben

    2013-01-01

    A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte- colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P<.0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide. PMID:18541199

  11. Molecular Phenotyping in Predicting Response in Patients With Stage IB-III Esophageal Cancer Receiving Combination Chemotherapy

    ClinicalTrials.gov

    2018-01-16

    Stage IB Esophageal Adenocarcinoma; Stage IIA Esophageal Adenocarcinoma; Stage IIB Esophageal Adenocarcinoma; Stage IIIA Esophageal Adenocarcinoma; Stage IIIB Esophageal Adenocarcinoma; Stage IIIC Esophageal Adenocarcinoma

  12. Surgical management of laryngeal collapse associated with brachycephalic airway obstruction syndrome in dogs.

    PubMed

    White, R N

    2012-01-01

    To describe the use of cricoarytenoid lateralisation combined with thyroarytenoid caudo- lateralisation (arytenoid laryngoplasty) for the management of stage II and III laryngeal collapse in dogs. A retrospective study of a consecutive series of 12 dogs suffering from life-threatening stage II or III laryngeal collapse associated with brachycephalic airway obstruction syndrome. Pre-operatively, either stage II collapse (2/12) or stage III collapse (10/12) was confirmed on visual examination. In all cases, a left-sided arytenoid laryngoplasty was performed. Two dogs were euthanased postoperatively as a result of persistent life-threatening respiratory compromise. The procedure resulted in subjective enlargement of the rima glottidis and an associated improvement in respiratory function in the remaining 10 dogs. Follow-up, long-term outcome (median, 3·5 years) in these dogs indicated that all owners considered that the surgery had resulted in marked improvements in their dog's respiratory function, tolerance to exercise, and quality of life. Combined cricoarytenoid and thyroarytenoid caudo-lateralisation may be a useful procedure for treatment of stage II and III laryngeal collapse in the dog. © 2011 British Small Animal Veterinary Association.

  13. Cellular and functional characterization of buffalo (Bubalus bubalis) corpus luteum during the estrous cycle and pregnancy.

    PubMed

    Baithalu, Rubina Kumari; Singh, S K; Gupta, Chhavi; Raja, Anuj K; Saxena, Abhishake; Kumar, Yogendra; Singh, R; Agarwal, S K

    2013-08-01

    In the present paper, cellular composition of buffalo corpus luteum (CL) with its functional characterization based on 3β-HSD and progesterone secretory ability at different stages of estrous cycle and pregnancy was studied. Buffalo uteri along with ovaries bearing CL were collected from the local slaughter house. These were classified into different stages of estrous cycle (Stage I, II, III and IV) and pregnancy (Stage I, II and III) based on morphological appearance of CL, surface follicles on the ovary and crown rump length of conceptus. Luteal cell population, progesterone content and steroidogenic properties were studied by dispersion of luteal cells using collagenase type I enzyme, RIA and 3β-HSD activity, respectively. Large luteal cells (LLC) appeared as polyhedral or spherical in shape with a centrally placed large round nucleus and an abundance of cytoplasmic lipid droplets. However, small luteal cells (SLC) appeared to be spindle shaped with an eccentrically placed irregular nucleus and there was paucity of cytoplasmic lipid droplets. The size of SLC (range 12-23μm) and LLC (range 25-55μm) increased (P<0.01) with the advancement of stage of estrous cycle and pregnancy. The mean progesterone concentration per gram and per CL increased (P<0.01) from Stage I to III of estrous cycle with maximum concentration at Stage III of estrous cycle and pregnancy. The progesterone concentration decreased at Stage IV (day 17-20) of estrous cycle coinciding with CL regression. Total luteal cell number (LLC and SLC) also increased (P<0.01) from Stage I to III of estrous cycle and decreased (P<0.05), thereafter, at Stage IV indicating degeneration of luteal cells and regression of the CL. Total luteal cell population during pregnancy also increased (P<0.01) from Stage I to II and thereafter decreased (P>0.05) indicating cessation of mitosis. Increased (P<0.05) large luteal cell numbers from Stage I to III of estrous cycle and pregnancy coincided with the increased progesterone secretion and 3β-HSD activity of CL. Thus, proportionate increases of large compared with small luteal cells were primarily responsible for increased progesterone secretion during the advanced stages of the estrous cycle and pregnancy. Total luteal cells and progesterone content per CL during the mid-luteal stage in buffalo as observed in the present study seem to be less than with cattle suggesting inherent luteal deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Gefitinib in Treating Patients With Metastatic or Unresectable Head and Neck Cancer or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-11

    Anaplastic Thyroid Cancer; Insular Thyroid Cancer; Metastatic Parathyroid Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Parathyroid Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Thyroid Cancer; Recurrent Verrucous Carcinoma of the Larynx; Stage III Follicular Thyroid Cancer; Stage III Papillary Thyroid Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Larynx; Stage IIIB Non-small Cell Lung Cancer; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Basal Cell Carcinoma of the Lip; Stage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Follicular Thyroid Cancer; Stage IVA Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Lymphoepithelioma of the Oropharynx; Stage IVA Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVA Papillary Thyroid Cancer; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVB Basal Cell Carcinoma of the Lip; Stage IVB Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Follicular Thyroid Cancer; Stage IVB Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Lymphoepithelioma of the Oropharynx; Stage IVB Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVB Papillary Thyroid Cancer; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVC Basal Cell Carcinoma of the Lip; Stage IVC Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Follicular Thyroid Cancer; Stage IVC Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Lymphoepithelioma of the Oropharynx; Stage IVC Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVC Papillary Thyroid Cancer; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Thryoid Gland Nonmedullary Carcinoma; Thyroid Gland Medullary Carcinoma; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  15. Clinical Investigation Program Report, RCS MED-300 (R-1).

    DTIC Science & Technology

    1985-10-31

    Patients with Locally Advanced Gastric Adenocarcinoma, Phase III. (C) 63 1982 SWOG 8006, Preoperative Reductive Chemotherapy for Stage III or IV Operable...Mesothelioma Localized to One Hemithorax, Phase III. (C) 81 1984 SWOG 8104, Treatment of Advanced Seminoma (Stage cII (4) + clII) with Combined...of Locally or Regionally Recurrent but Surgically Resectable Breast Cancer. (C) 99 1984 SWOG 8300, Treatment of Limited Non-Small Cell Lung Cancer

  16. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques.

    PubMed

    Koolen, Bas B; Vrancken Peeters, Marie-Jeanne T F D; Aukema, Tjeerd S; Vogel, Wouter V; Oldenburg, Hester S A; van der Hage, Jos A; Hoefnagel, Cornelis A; Stokkel, Marcel P M; Loo, Claudette E; Rodenhuis, Sjoerd; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2012-01-01

    The aim of the present study was to investigate if 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) outperforms conventional imaging techniques for excluding distant metastases prior to neoadjuvant chemotherapy (NAC) treatment in patients with stage II and III breast cancer. Second, we assessed the clinical importance of false positive findings. One hundred and fifty four patients with stage II or III breast cancer, scheduled to receive NAC, underwent an 18F-FDG PET/CT scan and conventional imaging, consisting of bone scintigraphy, ultrasound of the liver, and chest radiography. Suspect additional lesions at staging examination were confirmed by biopsy and histopathology and/or additional imaging. Metastases that were detected within 6 months after the PET/CT scan were considered evidence of occult metastasis, missed by staging examination. Forty-two additional distant lesions were seen in 25 patients with PET/CT and could be confirmed in 20 (13%) of 154 patients. PET/CT was false positive for 8 additional lesions (19%) and misclassified the presence of metastatic disease in 5 (3%) of 154 patients. In 16 (80%) of 20 patients, additional lesions were exclusively seen with PET/CT, leading to a change in treatment in 13 (8%) of 154 patients. In 129 patients with a negative staging PET/CT, no metastases developed during the follow-up of 9.0 months. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET/CT in the detection of additional distant lesions in patients with stage II or III breast cancer are 100, 96, 80, 100, and 97%, respectively. FDG PET/CT is superior to conventional imaging techniques in the detection of distant metastases in patients with untreated stage II or III breast cancer and is associated with a low false positive rate. PET/CT may be of additional value in the staging of breast cancer prior to NAC.

  17. Comparison of Survival Rate in Primary Non-Small-Cell Lung Cancer Among Elderly Patients Treated With Radiofrequency Ablation, Surgery, or Chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Heon; Jin, Gong Yong, E-mail: gyjin@chonbuk.ac.kr; Han, Young Min

    Purpose: We retrospectively compared the survival rate in patients with non-small-cell lung cancer (NSCLC) treated with radiofrequency ablation (RFA), surgery, or chemotherapy according to lung cancer staging. Materials and Methods: From 2000 to 2004, 77 NSCLC patients, all of whom had WHO performance status 0-2 and were >60 years old, were enrolled in a cancer registry and retrospectively evaluated. RFA was performed on patients who had medical contraindications to surgery/unsuitability for surgery, such as advanced lung cancer or refusal of surgery. In the RFA group, 40 patients with inoperable NSCLC underwent RFA under computed tomography (CT) guidance. These included 16more » patients with stage I to II cancer and 24 patients with stage III to IV cancer who underwent RFA in an adjuvant setting. In the comparison group (n = 37), 13 patients with stage I to II cancer underwent surgery; 18 patients with stage III to IV cancer underwent chemotherapy; and 6 patients with stage III to IV cancer were not actively treated. The survival curves for RFA, surgery, and chemotherapy in these patients were calculated using Kaplan-Meier method. Results: Median survival times for patients treated with (1) surgery alone and (2) RFA alone for stage I to II lung cancer were 33.8 and 28.2 months, respectively (P = 0.426). Median survival times for patients treated with (1) chemotherapy alone and (2) RFA with chemotherapy for stage III to IV cancer were 29 and 42 months, respectively (P = 0.03). Conclusion: RFA can be used as an alternative treatment to surgery for older NSCLC patients with stage I to II inoperable cancer and can play a role as adjuvant therapy with chemotherapy for patients with stage III to IV lung cancer.« less

  18. Regional Lung Function Profiles of Stage I and III Lung Cancer Patients: An Evaluation for Functional Avoidance Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Schubert, Leah; Diot, Quentin

    2016-07-15

    Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assessmore » each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance treatment approach.« less

  19. Prognostic value of the 8th edition of the tumor-node-metastasis classification for patients with papillary thyroid carcinoma: a single-institution study at a high-volume center in Japan.

    PubMed

    Ito, Yasuhiro; Miyauchi, Akira; Hirokawa, Mitsuyoshi; Yamamoto, Masatoshi; Oda, Hitomi; Masuoka, Hiroo; Sasai, Hisanori; Fukushima, Mitsuhiro; Higashiyama, Takuya; Kihara, Minoru; Miya, Akihiro

    2018-04-20

    The tumor-node-metastasis (TNM) staging system is most commonly adopted to evaluate the prognosis of patients with thyroid carcinoma. The 8 th edition of the TNM staging system, an extensively revised version of the 7 th edition, was recently released. We aimed to investigate whether and how well the 8 th edition reflects the cause-specific survival (CSS) of patients with papillary thyroid carcinoma by analyzing the cases in 5,892 patients who underwent initial surgery at Kuma Hospital between 1987 and 2005. The median postoperative follow-up duration was 178 months (range: 6-357 months). One patient with T4b disease was excluded from the analysis. Overall, 116 (2.0%) patients died of thyroid carcinoma. The proportion of variance explained (PVE) for CSS in the 7 th and 8 th editions was 10.69 and 10.97, respectively. Using the 7 th edition, CSS of patients with stage IVA and stage III disease was similar (p = 0.32). In contrast, using the 8 th edition, CSS was poorer in stage II than in stage I (p < 0.001), in stage III than in stage II (p < 0.001), and in stage IVB than in stage III (p < 0.001). Similar results were observed for disease-free survival. Although we could not establish any objective evidence that the 8 th edition is superior to the 7 th edition, the 8 th edition is simpler and more convenient, as it includes fewer stages and addresses the issue of the 7 th edition where stage IVA and III patients had similar prognoses.

  20. Combined Orthodontic-surgical Treatment for Skeletal Class III Malocclusion with Multiple Impacted Permanent and Supernumerary Teeth: Case Report.

    PubMed

    Xue, Dai Juan And Feng

    2014-01-01

    In this report we describe a combined orthodontic and surgical treatment for a 14-year-old boy with severe skeletal class III deformity and dental problem. His upper posterior primary teeth in the left side were over-retained and 6 maxillary teeth (bilateral central incisors and canines, left first and second premolars) were impacted, together with 5 supernumerary teeth in both arches. The treatment protocol involved extraction of all the supernumerary and deciduous teeth, surgical exposure and orthodontic traction of the impacted teeth, a bimaxillary orthognathic approach including Lefort I osteotomy. Bilateral sagittal split ramus osteotomy (BSSRO) and genioplasty was performed to correct skeletal problem. After treatment, all of the impacted teeth were brought to proper alignment in the maxillary arch. A satisfied profile and good posterior occlusion was achieved. Treatment mechanics and consideration during different stages are discussed.

  1. [Correlation of Th17 Cells and IL-17 Level in Multiple Myeloma Patients with Pathogenesis of Multiple Myeloma].

    PubMed

    DU, Chao-Yang; Yang, Ru-Yu; Li, Chao; Duan, Li-Juan

    2017-02-01

    To explore the correlation of Th17 cell rate and IL-17 level with pathogenetis of multiple myeloma(MM). Forty-five cases of MM were enrolled in MM group, while 45 healthy volunteers were selected in control group. The rate of Th17 cells, levels of IL-17 and β2-microglobulin(β2-MG) in patients subgrouping according to ISS staging and treatment were detected by using flow cytometer and IL-17 assay kit. The correlation of Th17 cell rate and IL-17 level with MM was analyzed. The rate of Th17 cells and level of IL-17 in MM group were higher than those in control group(P<0.05), the rate of Th17 cells and level of IL-17 in ISS III stage patients were higher than those in ISS I and II stage patients(P<0.05); the rate of Th17 cells and level of IL-17 in ISS I and ISS II stage patients were not significant difference (P>0.05); the rate of Th17 cells and level of IL-17 in firstly treated, retreated/refractory patients were significantly higher than those in patients with effective treatment(P<0.05), while the rate of Th17 cells and level of IL-17 between firstly treated patients and retreated/refractory patients were not significant difference (P>0.05). The Th17 rate and IL-17 level in MM patients positively correlated with β2-MG level (r=0.422, r=0.416, P<0.05). The obvious increase of Th17 rate, IL-17 and β2-MG levels closely relates with pathogenesis of MM. The Th17 rate and IL-17 level may be used as important evidence for evaluation of ISS stage and therapeutic efficacy of MM.

  2. Early harvest increases post-harvest physiological quality of Araucaria angustifolia (Araucariaceae) seeds.

    PubMed

    Shibata, Marília; Medeiros Coelho, Cileide Maria

    2016-06-01

    Araucaria angustifolia is a conifer native to Brazil and is an endangered species. Since this species seeds have a short period of viability, its vulnerability is higher. Thus the aim of this study was to evaluate the physiological quality of A. angustifolia seeds during the development and post-storage periods. For this, cones of A. angustifolia were collected from a natural population in Curitibanos, Santa Catarina, Brazil, in March, April, May and June 2012. The collected seeds were classified into developmental stages of cotyledonary, I, II and III according to the month of collection; a total of 10 cones were collected for each stage. Seeds were stored in a refrigerator for 60 and 120 days, and were submitted to a chamber germination test (25 °C-photoperiod 12 h). Additionally, seeds were tested for moisture content (105 °C for 24 hours), tetrazolium (0.1 % for 1 hour) and vigor (electric conductivity [75 mL distilled water at 25 °C], germination speed index, and shoot and root length). Our results showed that during seed development, moisture content decreased from the cotyledonary stage (66.54 %) to stage III (49.69 %), and vigor increased in the last stage. During storage, moisture content at cotyledonary stage and stage I was stable. On the other hand, stored seeds exhibited a decrease in moisture content after 120 days at stages II and III. Physiological quality at the cotyledonary stage resulted in an increased germination rate of 86 % and 93 % after 60 and 120 days of storage, respectively; unlike stages II and III exhibited a decrease in seed viability and vigor after storage. Electrical conductivity was higher for fresh seeds at the cotyledonary stage, than for those stored for 60 and 120 days. However, in other stages, released leachate content after 120 days of storage, increased with the advance of the collection period. Germination speed index and shoot and root lengths after storage were highest for seeds at the cotyledonary stage and stage I; unlike stages II and III which had short root and shoot lengths during storage. Thus, the maintenance of seed moisture content during storage was variable and dependent on the period of collection. Furthermore, the physiological quality differed among earlier and later stages. Early collection favored seed physiological quality, and may be a strategy for better conservation of A. angustifolia seeds.

  3. FDG and FMISO PET Hypoxia Evaluation in Cervical Cancer

    ClinicalTrials.gov

    2016-12-28

    Cervical Adenocarcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  4. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF SOIL OR HOUSE DUST SAMPLES USING CHLORPYRIFOS ELISA SAMPLES (BCO-L-1.0)

    EPA Science Inventory

    This abstract is included for completeness of documentation, but this SOP was not used in the study.

    The purpose of this SOP is to describe the procedures for analyzing both Stage II and Stage III soil and vacuum-cleaner collected house dust samples, and Stage III air samples u...

  5. Survival in stage I-III breast cancer patients by surgical treatment in a publicly funded health care system.

    PubMed

    Fisher, S; Gao, H; Yasui, Y; Dabbs, K; Winget, M

    2015-06-01

    Recent investigations of breast cancer survival in the United States suggest that patients who receive mastectomy have poorer survival than those who receive breast-conserving surgery (BCS) plus radiotherapy, despite clinically established equivalence. This study investigates breast cancer survival in the publicly funded health care system present in Alberta, Canada. Surgically treated stage I-III breast cancer cases diagnosed in Alberta from 2002 to 2010 were included. Demographic, treatment and mortality information were collected from the Alberta Cancer Registry. Unadjusted overall and breast cancer-specific mortality was assessed using Kaplan-Meier and cumulative incidence curves, respectively. Cox proportional hazards models were used to calculate stage-specific mortality hazard estimates associated with surgical treatment received. A total of 14 939 cases of breast cancer (14 633 patients) were included in this study. The unadjusted 5-year all-cause survival probabilities for patients treated with BCS plus radiotherapy, mastectomy, and BCS alone were 94% (95% CI 93% to 95%), 83% (95% CI 82% to 84%) and 74% (95% CI 70% to 78%), respectively. Stage II and III patients who received mastectomy had a higher all-cause (stage II HR = 1.36, 95% CI 1.13-1.48; stage III HR = 1.74, 95% CI 1.24-2.45) and breast cancer-specific (stage II HR = 1.39, 95% CI 1.09-1.76; stage III HR = 1.79, 95% CI 1.21-2.65) mortality hazard compared with those who received BCS plus radiotherapy, adjusting for patient and clinical characteristics. BCS alone was consistently associated with poor survival. Stage II and III breast cancer patients diagnosed in Alberta, Canada, who received mastectomy had a significantly higher all-cause and breast cancer-specific mortality hazard compared with those who received BCS plus radiotherapy. We suggest greater efforts toward educating and encouraging patients to receive BCS plus radiotherapy rather than mastectomy when it is medically feasible and appropriate. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Outcome for stage II and III rectal and colon cancer equally good after treatment improvement over three decades.

    PubMed

    Fischer, Joern; Joern, Fischer; Hellmich, Gunter; Gunter, Hellmich; Jackisch, Thomas; Thomas, Jackisch; Puffer, Erik; Erik, Puffer; Zimmer, Jörg; Jörg, Zimmer; Bleyl, Dorothea; Dorothea, Bleyl; Kittner, Thomas; Thomas, Kittner; Witzigmann, Helmut; Helmut, Witzigmann; Stelzner, Sigmar; Sigmar, Stelzner

    2015-06-01

    This study aimed to investigate the outcome for stage II and III rectal cancer patients compared to stage II and III colonic cancer patients with regard to 5-year cause-specific survival (CSS), overall survival, and local and combined recurrence rates over time. This prospective cohort study identified 3,355 consecutive patients with adenocarcinoma of the colon or rectum and treated in our colorectal unit between 1981 and 2011, for investigation. The study was restricted to International Union Against Cancer (UICC) stages II and III. Postoperative mortality and histological incomplete resection were excluded, which left 995 patients with colonic cancer and 726 patients with rectal cancer for further analysis. Five-year CSS rates improved for colonic cancer from 65.0% for patients treated between 1981 and 1986 to 88.1% for patients treated between 2007 and 2011. For rectal cancer patients, the respective 5-year CSS rates improved from 53.4% in the first observation period to 89.8% in the second one. The local recurrence rate for rectal cancer dropped from 34.2% in the years 1981-1986 to 2.1% in the years 2007-2011. In the last decade of observation, prognosis for rectal cancer was equal to that for colon cancer (CSS 88.6 vs. 86.7%, p = 0.409). Survival of patients with colon and rectal cancer has continued to improve over the last three decades. After major changes in treatment strategy including introduction of total mesorectal excision and neoadjuvant (radio)chemotherapy, prognosis for stage II and III rectal cancer is at least as good as for stage II and III colonic cancer.

  7. Adjuvant sequential chemo and radiotherapy improves the oncological outcome in high risk endometrial cancer

    PubMed Central

    Signorelli, Mauro; Lissoni, Andrea Alberto; De Ponti, Elena; Grassi, Tommaso; Ponti, Serena

    2015-01-01

    Objective Evaluation of the impact of sequential chemoradiotherapy in high risk endometrial cancer (EC). Methods Two hundred fifty-four women with stage IB grade 3, II and III EC (2009 FIGO staging), were included in this retrospective study. Results Stage I, II, and III was 24%, 28.7%, and 47.3%, respectively. Grade 3 tumor was 53.2% and 71.3% had deep myometrial invasion. One hundred sixty-five women (65%) underwent pelvic (+/- aortic) lymphadenectomy and 58 (22.8%) had nodal metastases. Ninety-eight women (38.6%) underwent radiotherapy, 59 (23.2%) chemotherapy, 42 (16.5%) sequential chemoradiotherapy, and 55 (21.7%) were only observed. After a median follow-up of 101 months, 78 women (30.7%) relapsed and 91 women (35.8%) died. Sequential chemoradiotherapy improved survival rates in women who did not undergo nodal evaluation (disease-free survival [DFS], p=0.040; overall survival [OS], p=0.024) or pelvic (+/- aortic) lymphadenectomy (DFS, p=0.008; OS, p=0.021). Sequential chemoradiotherapy improved both DFS (p=0.015) and OS (p=0.014) in stage III, while only a trend was found for DFS (p=0.210) and OS (p=0.102) in stage I-II EC. In the multivariate analysis, only age (≤65 years) and sequential chemoradiotherapy were statistically related to the prognosis. Conclusion Sequential chemoradiotherapy improves survival rates in high risk EC compared with chemotherapy or radiotherapy alone, in particular in stage III. PMID:26197768

  8. Cardiac Rehabilitation Program in Improving Cardiorespiratory Fitness in Stage 0-III Breast Cancer Survivors

    ClinicalTrials.gov

    2018-01-04

    Cancer Survivor; Stage 0 Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  9. VX-970, Cisplatin, and Radiation Therapy in Treating Patients With Locally Advanced HPV-Negative Head and Neck Squamous Cell Carcinoma

    ClinicalTrials.gov

    2018-06-11

    Head and Neck Squamous Cell Carcinoma; Human Papillomavirus Negative; Stage III Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IV Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IV Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVC Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IVC Oropharyngeal Squamous Cell Carcinoma AJCC v7

  10. Effects of rare earth and acid rain pollution on plant chloroplast ATP synthase and element contents at different growth stages.

    PubMed

    Zhang, Fan; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2018-03-01

    Combined rare earth and acid rain pollution has become a new environmental problem, seriously affecting plant survival. The effects of these two kinds of pollutants on plant photosynthesis have been reported, but the micro mechanisms are not very clear. In this research, we studied the effects of lanthanum [La(III), 0.08, 1.20 and 2.40 mM] and acid rain (pH value = 2.5, 3.5 and 4.5) on the ATPase activity and gene transcription level and the functional element contents in rice leaf chloroplasts. The results showed that the combined 0.08 mM La(III) and pH 4.5 acid rain increased the ATPase activity and gene transcription level as well as contents of some functional elements. But other combined treatments of acid rain and La(III) reduced the ATPase activity and gene transcription level as well as functional element contents. The change magnitude of the above indexes at rice booting stage was greater than that in seedling stage or grain filling stage. These results reveal that effects of La(III) and acid rain on ATPase activity and functional element contents in rice leaf chloroplasts are related to the combination of La(III) dose and acid rain intensity and the plant growth stage. In addition, the changes in the ATPase activity were related to ATPase gene transcription level. This study would provide a reference for understanding the microcosmic mechanism of rare earth and acid rain pollution on plant photosynthesis and contribute to evaluate the possible environmental risks associated with combined La(III) and acid rain pollution. The effects of La(III) and acid rain on activity and gene transcription level of rice chloroplast ATPase and contents of functional elements were different at different growth stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Management of gastric and duodenal neuroendocrine tumors

    PubMed Central

    Sato, Yuichi; Hashimoto, Satoru; Mizuno, Ken-ichi; Takeuchi, Manabu; Terai, Shuji

    2016-01-01

    Gastrointestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, like all NETs. However, the incidence of GI-NETS has been increasing in recent years. Gastric NETs (G-NETs) and duodenal NETs (D-NETs) are the common types of upper GI-NETs based on tumor location. G-NETs are classified into three distinct subgroups: type I, II, and III. Type I G-NETs, which are the most common subtype (70%-80% of all G-NETs), are associated with chronic atrophic gastritis, including autoimmune gastritis and Helicobacter pylori associated atrophic gastritis. Type II G-NETs (5%-6%) are associated with multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome (MEN1-ZES). Both type I and II G-NETs are related to hypergastrinemia, are small in size, occur in multiple numbers, and are generally benign. In contrast, type III G-NETs (10%-15%) are not associated with hypergastrinemia, are large-sized single tumors, and are usually malignant. Therefore, surgical resection and chemotherapy are generally necessary for type III G-NETs, while endoscopic resection and follow-up, which are acceptable for the treatment of most type I and II G-NETs, are only acceptable for small and well differentiated type III G-NETs. D-NETs include gastrinomas (50%-60%), somatostatin-producing tumors (15%), nonfunctional serotonin-containing tumors (20%), poorly differentiated neuroendocrine carcinomas (< 3%), and gangliocytic paragangliomas (< 2%). Most D-NETs are located in the first or second part of the duodenum, with 20% occurring in the periampullary region. Therapy for D-NETs is based on tumor size, location, histological grade, stage, and tumor type. While endoscopic resection may be considered for small nonfunctional D-NETs (G1) located in the higher papilla region, surgical resection is necessary for most other D-NETs. However, there is no consensus regarding the ideal treatment of D-NETs. PMID:27570419

  12. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism.

    PubMed

    Soldatova, Alexandra V; Romano, Christine A; Tao, Lizhi; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G

    2017-08-23

    The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO 2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO 2 . In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO 2 production from Mn(II) is presented.

  13. Prognostic relevance of biological subtype overrides that of TNM staging in breast cancer: discordance between stage and biology.

    PubMed

    Jung, Hyun Ae; Park, Yeon Hee; Kim, Moonjin; Kim, Sungmin; Chang, Won Jin; Choi, Moon Ki; Hong, Jung Yong; Kim, Seok Won; Kil, Won Ho; Lee, Jeong Eon; Nam, Seok Jin; Ahn, Jin Seok; Im, Young-Hyuck

    2015-02-01

    Recently, we faced difficult treatment decisions regarding appropriate adjuvant systemic treatment, especially for patients who show discordance between stage and tumor biology. The aim of this study was to compare the prognostic relevance of the TNM staging system with that of intrinsic subtype in breast cancer. We retrospectively identified women patients who received curative surgery for stage I-III breast cancer with available data on immunohistochemistry profiles including hormone receptor (HR) status, human epidermal growth factor receptor 2 (HER2) status, and Ki 67 staining at the Samsung Medical Center from January 2004 to September 2008. Primary outcomes were recurrence-free survival (RFS) and overall survival (OS). A total of 1145 patients were diagnosed with breast cancer and received curative surgery. Of these, 463 (40.4%) patients were stage I, and 682 (59.6%) were stage II or III. In addition, 701 (61.2%) patients were HR positive, 239 (20.9%) were HER2 positive, and 205 (20.9%) had triple-negative breast cancer. The 5-year RFS for the patients who were HR positive and HER2 negative with a low Ki 67 staining score (0-25%) was 99%. The 5-year RFS for patients who were HER2-positive or had triple-negative breast cancer were 89 and 83%, respectively (P value = <0.001). In multivariate analysis, advanced stage (II/III) and unfavorable biology (HER2 positive or triple negative) retained their statistical significance as predictors of decreased RFS and OS. Patients with advanced-stage disease (II or III) but favorable tumor biology (HR positive and HER2 negative and low Ki 67) had better clinical outcomes than those with stage I disease and unfavorable tumor biology in terms of RFS (99 versus 92%, P value = 0.011) and OS (99 versus 96%, P value = 0.03) at 5 years. The current results showed that intrinsic subtype has a greater prognostic impact in predicting clinical outcomes in subpopulations of patients with stage I-III breast cancer who show discordance between stage and biologic subtypes.

  14. High-energy extracorporeal shock wave therapy for nontraumatic osteonecrosis of the femoral head.

    PubMed

    Xie, Kai; Mao, Yuanqing; Qu, Xinhua; Dai, Kerong; Jia, Qingwei; Zhu, Zhenan; Yan, Mengning

    2018-02-02

    Nontraumatic osteonecrosis of the femoral head (ONFH) is treated with a series of methods. High-energy extracorporeal shock wave therapy (ESWT) is an option with promising mid-term outcomes. The objective of this study was to determine the long-term outcomes of ESWT for ONFH. Fifty-three hips in 39 consecutive patients were treated with ESWT in our hospital between January 2005 and July 2006. Forty-four hips in 31 patients with stage I-III nontraumatic ONFH, according to the Association Research Circulation Osseous (ARCO) system, were reviewed in the current retrospective study. The visual analog pain scale (VAS), Harris hip score, radiography, and magnetic resonance imaging were used to estimate treatment results. The progression of ONFH was evaluated by imaging examination and clinical outcomes. The results were classified as clinical success (no progression of hip symptoms) and imaging success (no progression of stage or substage on radiography and MRI). The mean follow-up duration was 130.6 months (range, 121 to 138 months). The mean VAS decreased from 3.8 before ESWT to 2.2 points at the 10-year follow-up (p < 0.001). The mean Harris hip score improved from 77.4 before ESWT to 86.9 points at the 10-year follow-up. The clinical success rates were 87.5% in ARCO stage I patients, 71.4% in ARCO stage II patients, and 75.0% in ARCO stage III patients. Imaging success was observed in all stage I hips, 64.3% of stage II hips, and 12.5% of stage III hips. Seventeen hips showed progression of the ARCO stage/substage on imaging examination. Eight hips showed femoral head collapse at the 10-year follow-up. Four hips in ARCO stage III and one hip in ARCO stage II were treated with total hip arthroplasty during the follow-up. Three were performed 1 year after ESWT, one at 2 years, and one at 5 years. The results of the current study indicated that ESWT is an effective treatment method for nontraumatic ONFH, resulting in pain relief and function restoration, especially for patients with ARCO stage I-II ONFH.

  15. Definitive radiation therapy for squamous cell carcinoma of the vagina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Steven J.; Jhingran, Anuja; Levenback, Charles

    2005-05-01

    Purpose: To evaluate outcome and describe clinical treatment guidelines for patients with primary squamous cell carcinoma of the vagina treated with definitive radiation therapy. Methods and Materials: Between 1970 and 2000, a total of 193 patients were treated with definitive radiation therapy for squamous cell carcinoma of the vagina at The University of Texas M. D. Anderson Cancer Center. The patients' medical records were reviewed to obtain information about patient, tumor, and treatment characteristics, as well as outcome and patterns of recurrence. Surviving patients were followed for a median of 137 months. Survival rates were calculated using the Kaplan-Meier method,more » with differences assessed using log-rank tests. Results: Disease-specific survival (DSS) and pelvic disease control rates correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and tumor size. At 5 years, DSS rates were 85% for the 50 patients with Stage I, 78% for the 97 patients with Stage II, and 58% for the 46 patients with Stage III-IVA disease (p = 0.0013). Five-year DSS rates were 82% and 60% for patients with tumors {<=}4 cm or >4 cm, respectively (p = 0.0001). At 5 years, pelvic disease control rates were 86% for Stage I, 84% for Stage II, and 71% for Stage III-IVA (p = 0.027). The predominant mode of relapse after definitive radiation therapy was local-regional (68% and 83%, respectively, for patients with stages I-II or III-IVA disease). The incidence of major complications was correlated with FIGO stage; at 5 years, the rates of major complications were 4% for Stage I, 9% for Stage II, and 21% for Stage III-IVA (p < 0.01). Conclusions: Excellent outcomes can be achieved with definitive radiation therapy for invasive squamous cell carcinoma of the vagina. However, to achieve these results, treatment must be individualized according to the site and size of the tumor at presentation and the response to initial external-beam radiation therapy. Brachytherapy plays an important role in the treatment of many vaginal cancers but should be carefully selected and applied to obtain optimal coverage of the target volume.« less

  16. The influence of a change in medicare reimbursement on the effectiveness of stage III or greater decubitus ulcer home health nursing care.

    PubMed

    Eaton, Melody K

    2005-02-01

    This study was designed to describe and evaluate the influence of a change in a Medicare reimbursement on the effectiveness of home health nursing care for stage III or greater decubitus ulcer patients. This health policy originated from the Balanced Budget Act (BBA) of 1997 and took its full effect with initiation of the Prospective Payment System (PPS) on October 1, 2000. A quantitative quasi-experimental design used OASIS data from the state of Virginia to evaluate 555 stage III or greater decubitus ulcer patients, age 65 or older. Comparisons were investigated between pre-PPS, 2000, and post-PPS, 2001, outcomes related to reported ulcer healing, lengths of stay, and discharge disposition. Results demonstrated significant differences for the outcomes studied. In addition, sanitation, ulcer healing, and discharge disposition were linked as predictors for length of stay. Results demonstrated that PPS has affected nursing care effectiveness for stage III or greater decubitus ulcer home health patients.

  17. Comparison of Outcomes After Fluorouracil-Based Adjuvant Therapy for Stages II and III Colon Cancer Between 1978 to 1995 and 1996 to 2007: Evidence of Stage Migration From the ACCENT Database

    PubMed Central

    Shi, Qian; Andre, Thierry; Grothey, Axel; Yothers, Greg; Hamilton, Stanley R.; Bot, Brian M.; Haller, Daniel G.; Van Cutsem, Eric; Twelves, Chris; Benedetti, Jacqueline K.; O'Connell, Michael J.; Sargent, Daniel J.

    2013-01-01

    Purpose With improved patient care, better diagnosis, and more treatment options after tumor recurrence, outcomes after fluorouracil (FU) -based treatment are expected to have improved over time in early-stage colon cancer. Data from 18,449 patients enrolled onto 21 phase III trials conducted from 1978 to 2002 were evaluated for potential differences in time to recurrence (TTR), time from recurrence to death (TRD), and overall survival (OS) with regard to FU-based adjuvant regimens. Methods Trials were predefined as old versus newer era using initial accrual before or after 1995. Outcomes were compared between patients enrolled onto old- or newer-era trials, stratified by stage. Results Within the first 3 years, recurrence rates were lower in newer- versus old-era trials for patients with stage II disease, with no differences among those with stage III disease. Both TRD and OS were significantly longer in newer-era trials overall and within each stage. The lymph node (LN) ratio (ie, number of positive nodes divided by total nodes harvested) in those with stage III disease declined over time. TTR improved slightly, with larger number of LNs examined in both stages. Conclusion Improved TRD in newer trials supports the premise that more aggressive intervention (oxaliplatin- and irinotecan-based chemotherapy and/or surgery for recurrent disease) improves OS for patients previously treated in the adjuvant setting. Lower recurrence rates with identical treatments in those with stage II disease enrolled onto newer-era trials reflect stage migration over time, calling into question historical data related to the benefit of FU-based adjuvant therapy in such patients. PMID:23980089

  18. Motion deficit of the thumb in CMC joint arthritis.

    PubMed

    Gehrmann, Sebastian V; Tang, Jie; Li, Zong Ming; Goitz, Robert J; Windolf, Joachim; Kaufmann, Robert A

    2010-09-01

    Idiopathic osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is a common disabling disease that often causes pain and motion loss. The aims of this study were to characterize the multidimensional motion capability of the thumb CMC joint in a group with severe CMC OA and to compare it with a control group. We included 15 subjects with stage III/IV CMC OA according to the Eaton/Littler classification, and 15 control subjects. A motion analysis system using surface markers was employed to quantify the maximum boundary of the thumb circumduction envelope during repetitive thumb movements. We measured the area enclosed by the angular circumduction envelope and the ranges of motion (ROM) in multiple directions for the thumb CMC joint. Thumb osteoarthritis of the CMC joint stage III/IV resulted in a significantly smaller ROM in flexion/extension (45 degrees +/- 11 degrees for the CMC OA group, 59 degrees +/- 10 degrees for the controls), abduction-adduction (37 degrees +/- 6 degrees for the CMC OA group, 63 degrees +/- 13 degrees for the controls), and pronation-supination (49 degrees +/- 10 degrees for the CMC OA group, 62 degrees +/- 11 degrees for the controls) (p < .01). When analyzing the motion directions in flexion-extension and abduction-adduction separately, there was only a loss of extension and adduction (p < .01). Severe stages of thumb CMC OA cause an asymmetrical motion deficit with decreased ROM in extension and adduction, leading to decreased capability of counteropposition. Copyright 2010. Published by Elsevier Inc.

  19. Epacadostat and Vaccine Therapy in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2018-01-09

    Mucosal Melanoma; Recurrent Melanoma; Recurrent Uveal Melanoma; Stage IIIA Skin Melanoma; Stage IIIA Uveal Melanoma; Stage IIIB Skin Melanoma; Stage IIIB Uveal Melanoma; Stage IIIC Skin Melanoma; Stage IIIC Uveal Melanoma; Stage IV Skin Melanoma; Stage IV Uveal Melanoma

  20. Fibrosis-Related Gene Expression in Single Ventricle Heart Disease.

    PubMed

    Nakano, Stephanie J; Siomos, Austine K; Garcia, Anastacia M; Nguyen, Hieu; SooHoo, Megan; Galambos, Csaba; Nunley, Karin; Stauffer, Brian L; Sucharov, Carmen C; Miyamoto, Shelley D

    2017-12-01

    To evaluate fibrosis and fibrosis-related gene expression in the myocardium of pediatric subjects with single ventricle with right ventricular failure. Real-time quantitative polymerase chain reaction was performed on explanted right ventricular myocardium of pediatric subjects with single ventricle disease and controls with nonfailing heart disease. Subjects were divided into 3 groups: single ventricle failing (right ventricular failure before or after stage I palliation), single ventricle nonfailing (infants listed for primary transplantation with normal right ventricular function), and stage III (Fontan or right ventricular failure after stage III). To evaluate subjects of similar age and right ventricular volume loading, single ventricle disease with failure was compared with single ventricle without failure and stage III was compared with nonfailing right ventricular disease. Histologic fibrosis was assessed in all hearts. Mann-Whitney tests were performed to identify differences in gene expression. Collagen (Col1α, Col3) expression is decreased in single ventricle congenital heart disease with failure compared with nonfailing single ventricle congenital heart disease (P = .019 and P = .035, respectively), and is equivalent in stage III compared with nonfailing right ventricular heart disease. Tissue inhibitors of metalloproteinase (TIMP-1, TIMP-3, and TIMP-4) are downregulated in stage III compared with nonfailing right ventricular heart disease (P = .0047, P = .013 and P = .013, respectively). Matrix metalloproteinases (MMP-2, MMP-9) are similar between nonfailing single ventricular heart disease and failing single ventricular heart disease, and between stage III heart disease and nonfailing right ventricular heart disease. There is no difference in the prevalence of right ventricular fibrosis by histology in subjects with single ventricular failure heart disease with right ventricular failure (18%) compared with those with normal right ventricular function (38%). Fibrosis is not a primary contributor to right ventricular failure in infants and young children with single ventricular heart disease. Additional studies are required to understand whether antifibrotic therapies are beneficial in this population. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Radiation therapy for primary squamous cell carcinoma of the vagina: Stanford University experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spirtos, N.M.; Doshi, B.P.; Kapp, D.S.

    1989-10-01

    A retrospective analysis of 38 patients with primary squamous cell carcinoma of the vagina seen at Stanford University Medical Center from 1958 to 1984 was undertaken. Patients were analyzed with regard to symptoms, stage, treatment techniques, survival, patterns of failure, and complications. Eighteen patients were classified as FIGO Stage I, 5 as Stage II, 10 as Stage III, and 5 as Stage IV. The 5-year disease-free survival was 94% in Stage I, 80% in Stage II, 50% in Stage III, and 0% in Stage IV. Five patients (13%) had eight major complications secondary to treatment. Only 2 of 23 patientsmore » with Stage I or Stage II disease developed a recurrence. There was a significant correlation between dose and response in patients treated with radiotherapy.« less

  2. Prognostic values of common clinical parameters in advanced pancreatic ductal adenocarcinoma: a large multicenter cohort study of ten years.

    PubMed

    Zhang, Chenyue; Dong, Shu; Wang, Lei; Yu, Songlin; Zheng, Yuwei; Geng, Yanyan; Shen, Xiaoheng; Ying, Haifeng; Guo, Yuanbiao; Yu, Jinming; Deng, Qinglong; Meng, Zhiqiang; Li, Zhaoshen; Chen, Hao; Shen, Yehua; Chen, Qiwen

    2018-03-01

    We conducted a multicenter cohort study to investigate the prognostic value of some commonly-used laboratory indices in advanced pancreatic ductal adenocarcinoma (PDAC). A multicenter cohort study was conducted from 2004 to 2013. The associations between laboratory indices and prognosis of advanced PDAC were examined. This cohort consisted of 553 females (36.2%) and 973 males (63.8%). Patients at cancer stage III and IV were 595 (39.0%) and 931 (61.0%), respectively. The median survival of stage III patients was 9.0 months, with 3-, 6-, and 12-month survival rates of 94.5%, 73.4%, and 28.5%, respectively. The median survival of stage IV patients was 5.4 months, with 3-, 6-, and 12-month survival rates of 79.3%, 42.9%, and 15.0%, respectively. In multivariate analyses, primary tumor diameter, low albumin, and elevated CA19-9 were associated with decreased survival for stage III patients. Age, smoking, primary tumor diameter, elevated ALT or AST, low albumin, and elevated CA19-9 were associated with decreased survival for stage IV patients. Elevated CA19-9 level, decreased albumin level, and tumor size were associated with worse survival in stage III patients. Meanwhile, advanced age, smoking, and ALT or AST level were negatively correlated to prognosis in stage IV patients.

  3. Neoadjuvant Chemotherapy Followed by Radiation Therapy and Gemcitabine/Sorafenib/Vorinostat in Pancreatic Cancer

    ClinicalTrials.gov

    2017-11-29

    Pancreatic Adenocarcinoma; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer; Recurrent Pancreatic Carcinoma

  4. Summary of Research 2000, Department of Aeronautics and Astronautics

    DTIC Science & Technology

    2001-12-01

    swept transonic blading, and to facilitate design optimization; (iii) to install and test an advanced transonic axial stage, and thereby establish the...limited) rotor design optimization can now be attempted. (iii) The Sanger (code-validation) compressor stage was rebuilt, re- instrumented and retested...34Investigation of the Performance of a CFD Designed Compressor Stage," Paper AIAA 2000-3205, presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion

  5. Heavy Metal Exposure in Predicting Peripheral Neuropathy in Patients With Stage I-III Breast Cancer Undergoing Chemotherapy

    ClinicalTrials.gov

    2017-06-14

    Male Breast Cancer; Neurotoxicity; Peripheral Neuropathy; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  6. Minocycline Hydrochloride in Reducing Chemotherapy Induced Depression and Anxiety in Patients With Stage I-III Breast Cancer

    ClinicalTrials.gov

    2017-08-07

    Anxiety Disorder; Depression; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  7. PPP1R12A Copy Number Is Associated with Clinical Outcomes of Stage III CRC Receiving Oxaliplatin-Based Chemotherapy

    PubMed Central

    Zhang, Chenbo; Li, Ajian; Li, Huaguang; Peng, Kangsheng; Wei, Qing; Lin, Moubin; Liu, Zhanju; Yin, Lu; Li, Jianwen

    2015-01-01

    Aim. To investigate the correlation between PPP1R12A gene copy number and clinical outcomes of oxaliplatin-based regimen in stage III colorectal cancer (CRC). Methods. A total of 139 paraffin-embedded tissue samples of stage III CRC patients who received oxaliplatin-based treatment after radical surgery were recruited. Genomic DNA was extracted and purified from paraffin-embedded sections. Quantitative PCR methods were used to detect the relative copy number (RCN) of PPP1R12A. Results. Statistical analysis demonstrated that low PPP1R12A RCN was associated with poor RFS (HR = 2.186, 95% CI: 1.293–3.696; P = 0.003) and OS (HR = 2.782, 95% CI: 1.531–5.052; P < 0.001). Additionally, when patients were stratified according to subgroups of stage III and tumor location, poor RFS and OS were also observed in the low PPP1R12A RCN group with significance (RFS: IIIB HR = 2.870, P < 0.001; colon HR = 1.910, P = 0.037; OS: IIIB HR = 3.527, P < 0.001; IIIC HR = 2.662, P = 0.049; rectum HR = 4.229, P = 0.002). Conclusion. Our findings suggest the copy number of PPP1R12A can independently predict recurrence and overall survival of stage III colorectal cancer patients receiving oxaliplatin-based chemotherapy. PMID:26113782

  8. Locally advanced breast cancer in Saudi Arabia: high frequency of stage III in a young population.

    PubMed

    Ezzat, A A; Ibrahim, E M; Raja, M A; Al-Sobhi, S; Rostom, A; Stuart, R K

    1999-07-01

    In the Kingdom of Saudi Arabia (KSA), breast cancer constitutes 18% of all cancers in Saudi women. Whilst locally advanced breast cancer disease is unusual in Western countries, it constitutes more than 40% of all non-metastatic breast cancer in KSA. The relative frequency of locally advanced disease among our breast cancer population and the lack of a uniform consensus in the literature about its optimal management have prompted this retrospective analysis of the medical records of patients with Stage III breast cancer patients seen at King Faisal Specialist Hospital and Research Center between 1981 and 1991. In all, 315 patients were identified. Their median age +/- SD was 46 +/- 11.6 years which is distinctly different from the 60-65 years median age in industrial Western nations. Most patients were younger than 50 years (64%) and premenopausal (62%). Patients were approximately equally divided between Stage IIIA and Stage III B. Patients received multimodality treatment, including surgery, adjuvant chemotherapy, tamoxifen, and adjuvant radiotherapy. Sixty-one patients were excluded from survival analysis as they were considered lost to follow-up. Of the remaining 254 patients, 73 (29%) were alive and disease free, and 18 patients (7%) were alive but with evidence of the disease. The remaining 163 (64%) had died from breast cancer or its related complications. Their median overall survival (OS) was 54 months, (95% CI, 27 to 121 months) and the median progression-free survival (PFS) was 28.8 months (95% CI, 14.2 to 113 months). Cox proportional hazard model identified Stage III B and the number of positive axillary lymph nodes as poor predictors of OS and PFS. Radiotherapy was the only adjuvant modality that affected survival favourably. The prognosis of patients with Stage III disease remains poor despite the use of a multimodality approach. The overall young age of our patients may have contributed to the poor outcome. Moreover, the adverse effect of Stage III B disease (as compared with Stage III A) and axillary nodal status was evident. Whilst the favourable effect of radiotherapy on survival was demonstrated, the lack of independent efficacy of other modalities (adjuvant chemotherapy and tamoxifen) or the apparent deleterious effect of neoadjuvant chemotherapy should be addressed with discretion in such retrospective analysis. Optimal management of patients with locally advanced breast cancer disease should be appraised in well designed, prospective, randomised studies.

  9. Functional Magnetic Resonance Imaging in Assessing Affect Reactivity and Regulation in Patients With Stage 0-III Breast Cancer

    ClinicalTrials.gov

    2018-05-30

    Healthy Subject; Stage 0 Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  10. Using Computer-extracted Image Phenotypes from Tumors on Breast MRI to Predict Breast Cancer Pathologic Stage

    PubMed Central

    Burnside, Elizabeth S.; Drukker, Karen; Li, Hui; Bonaccio, Ermelinda; Zuley, Margarita; Ganott, Marie; Net, Jose M.; Sutton, Elizabeth; Brandt, Kathleen R.; Whitman, Gary; Conzen, Suzanne; Lan, Li; Ji, Yuan; Zhu, Yitan; Jaffe, Carl; Huang, Erich; Freymann, John; Kirby, Justin; Morris, Elizabeth; Giger, Maryellen

    2015-01-01

    Background To demonstrate that computer-extracted image phenotypes (CEIPs) of biopsy-proven breast cancer on MRI can accurately predict pathologic stage. Methods We used a dataset of de-identified breast MRIs organized by the National Cancer Institute in The Cancer Imaging Archive. We analyzed 91 biopsy-proven breast cancer cases with pathologic stage (stage I = 22; stage II = 58; stage III = 11) and surgically proven nodal status (negative nodes = 46, ≥ 1 positive node = 44, no nodes examined = 1). We characterized tumors by (a) radiologist measured size, and (b) CEIP. We built models combining two CEIPs to predict tumor pathologic stage and lymph node involvement, evaluated them in leave-one-out cross-validation with area under the ROC curve (AUC) as figure of merit. Results Tumor size was the most powerful predictor of pathologic stage but CEIPs capturing biologic behavior also emerged as predictive (e.g. stage I+II vs. III demonstrated AUC = 0.83). No size measure was successful in the prediction of positive lymph nodes but adding a CEIP describing tumor “homogeneity,” significantly improved this discrimination (AUC = 0.62, p=.003) over chance. Conclusions Our results indicate that MRI phenotypes show promise for predicting breast cancer pathologic stage and lymph node status. PMID:26619259

  11. Supportive care needs in Hong Kong Chinese women confronting advanced breast cancer.

    PubMed

    Au, Angel; Lam, Wendy; Tsang, Janice; Yau, Tsz-kok; Soong, Inda; Yeo, Winnie; Suen, Joyce; Ho, Wing M; Wong, Ka-yan; Kwong, Ava; Suen, Dacita; Sze, Wing-Kin; Ng, Alice; Girgis, Afaf; Fielding, Richard

    2013-05-01

    Women with advanced breast cancer (ABC) are living longer, so understanding their needs becomes important. This cross-sectional study investigated the type and extent of unmet supportive care needs in Hong Kong Chinese women with advanced breast cancer. Face-to-face interviews were conducted among women with stage III or stage IV disease mostly awaiting chemotherapy (76%) to identify unmet needs using the Supportive Care Needs Survey Short Form, psychological morbidity using the Hospital Anxiety and Depression Scale, symptom distress using the Memorial Symptom Assessment Scale, and satisfaction with care using the Patient satisfaction questionnaire (PSQ-9). About 27-72% of 198/220 (90%) women (mean age = 53.4 ± 9.74 (standard deviation) years) identified needs from the health system, information, and patient support (HSIPS) domain as the top 15 most prevalent unmet needs. 'having one member of hospital staff with whom you can talk to about all aspect of your condition, treatment, and follow-up' was most cited by 72% of the patients, with remaining unmet needs addressing mostly desire for information. Unmet need strength did not differ between women with stage III and stage IV disease, whereas women with first time diagnosis reported greater health system and information unmet needs compared with women with recurrent disease. Stepwise multiple regression analyses revealed that symptom distress was consistently positively associated with all but sexuality need domains, whereas low satisfaction with care was associated with HSIPS (β = 3.270, p < 0.001) and physical and daily living (β = 2.810, p < 0.01) domains. Chinese women with ABC expressed need for continuity of care and improved information provision. High symptom distress was associated with lower levels of satisfaction with care. These unmet needs appear to reflect current care services shortcomings. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Sorafenib Tosylate and Pembrolizumab in Treating Patients With Advanced or Metastatic Liver Cancer

    ClinicalTrials.gov

    2018-06-04

    Advanced Adult Hepatocellular Carcinoma; Child-Pugh Class A; Stage III Hepatocellular Carcinoma; Stage IIIA Hepatocellular Carcinoma; Stage IIIB Hepatocellular Carcinoma; Stage IIIC Hepatocellular Carcinoma; Stage IV Hepatocellular Carcinoma; Stage IVA Hepatocellular Carcinoma; Stage IVB Hepatocellular Carcinoma

  13. Spectral characteristics of caries-related autofluorescence spectra and their use for diagnosis of caries stage

    NASA Astrophysics Data System (ADS)

    Son, Sung-Ae; Jung, Kyeong-Hoon; Ko, Ching-Chang; Kwon, Yong Hoon

    2016-01-01

    The purpose of the present study was to identify factors useful for diagnosis of the caries stage from laser-induced autofluorescence (AF) spectra. Affected teeth were accurately staged and allocated to four groups: sound, stage II, stage III, or stage IV. A 405-nm laser was used to produce AF spectra. The spectrum factors analyzed were spectrum slope at 550 to 600 nm, spectral area from 500 and 590 nm, and intensity ratio of peaks 625 and 667 nm (625/667 nm). DIAGNOdent was used as control measurement. AF spectra of sound teeth had a peak near 500 nm followed by a smooth decline to 800 nm. As caries progressed, some specimens in stages II to IV showed one or two peak(s) near 625 and 667 nm. Slopes at 550 to 600 nm and areas under the curve at 500 to 590 nm were significantly different (p<0.001) for each stage. Two-peak ratios were also significantly different (p<0.001) except for stage III and stage IV. DIAGNOdent readings for sound and stage II and stage III and IV were not significantly different. Among the studied factors, the spectrum slope at 550 to 600 nm and area under curve at 500 to 590 nm could be useful treatment decision-making tools for carious lesions.

  14. Breast cancer mortality in African-American and non-Hispanic white women by molecular subtype and stage at diagnosis: a population-based study

    PubMed Central

    Tao, Li; Gomez, Scarlett Lin; Keegan, Theresa HM; Kurian, Allison W.; Clarke, Christina A.

    2015-01-01

    Background Higher breast cancer mortality rates for African-American than non-Hispanic white women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. Methods We obtained data for all invasive breast cancers diagnosed 1/1/2005-12/31/2012 and followed through 12/31/2012 among 93,760 non-Hispanic white and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) for breast cancer-specific mortality. Results After adjustment for patient, tumor and treatment characteristics, outcomes were comparable by race for Stage I or IV cancer regardless of subtype, and HR+/HER2+ or HR-/HER2+ cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with Stage II/III HR+/HER2- (HR, 1.31, 95% CI, 1.03-1.65, and HR, 1.39, 95% CI, 1.10-1.75, respectively) and Stage III triple-negative cancers relative to whites. Conclusions There are substantial racial/ethnic disparities among patients with Stages II/III HR+/HER2- and Stage III triple-negative breast cancers but not for other subtype and stage. Impact These data provide insights to assess barriers to targeted treatment (e.g. trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients. PMID:25969506

  15. Breast Cancer Mortality in African-American and Non-Hispanic White Women by Molecular Subtype and Stage at Diagnosis: A Population-Based Study.

    PubMed

    Tao, Li; Gomez, Scarlett Lin; Keegan, Theresa H M; Kurian, Allison W; Clarke, Christina A

    2015-07-01

    Higher breast cancer mortality rates for African-American than non-Hispanic White women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. We obtained data for all invasive breast cancers diagnosed between January 1, 2005, and December 31, 2012, and followed through December 31, 2012, among 93,760 non-Hispanic White and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate relative hazard (RH) and 95% confidence intervals (CI) for breast cancer-specific mortality. After adjustment for patient, tumor, and treatment characteristics, outcomes were comparable by race for stage I or IV cancer regardless of subtype, and HR(+)/HER2(+) or HR(-)/HER2(+) cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with stage II/III HR(+)/HER2(-) (RH, 1.31; 95% CI, 1.03-1.65; and RH, 1.39; 95% CI, 1.10-1.75, respectively) and stage III triple-negative cancers relative to Whites. There are substantial racial/ethnic disparities among patients with stages II/III HR(+)/HER2(-) and stage III triple-negative breast cancers but not for other subtype and stage. These data provide insights to assess barriers to targeted treatment (e.g., trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients. ©2015 American Association for Cancer Research.

  16. Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma.

    PubMed

    Chinen, Yoshiaki; Kuroda, Junya; Shimura, Yuji; Nagoshi, Hisao; Kiyota, Miki; Yamamoto-Sugitani, Mio; Mizutani, Shinsuke; Sakamoto, Natsumi; Ri, Masaki; Kawata, Eri; Kobayashi, Tsutomu; Matsumoto, Yosuke; Horiike, Shigeo; Iida, Shinsuke; Taniwaki, Masafumi

    2014-12-15

    Multiple myeloma is a cytogenetically/molecularly heterogeneous hematologic malignancy that remains mostly incurable, and the identification of a universal and relevant therapeutic target molecule is essential for the further development of therapeutic strategy. Herein, we identified that 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a serine threonine kinase, is expressed and active in all eleven multiple myeloma-derived cell lines examined regardless of the type of cytogenetic abnormality, the mutation state of RAS and FGFR3 genes, or the activation state of ERK and AKT. Our results revealed that PDPK1 is a pivotal regulator of molecules that are essential for myelomagenesis, such as RSK2, AKT, c-MYC, IRF4, or cyclin Ds, and that PDPK1 inhibition caused the growth inhibition and the induction of apoptosis with the activation of BIM and BAD, and augmented the in vitro cytotoxic effects of antimyeloma agents in myeloma cells. In the clinical setting, PDPK1 was active in myeloma cells of approximately 90% of symptomatic patients at diagnosis, and the smaller population of patients with multiple myeloma exhibiting myeloma cells without active PDPK1 showed a significantly less frequent proportion of the disease stage III by the International Staging System and a significantly more favorable prognosis, including the longer overall survival period and the longer progression-free survival period by bortezomib treatment, than patients with active PDPK1, suggesting that PDPK1 activation accelerates the disease progression and the resistance to treatment in multiple myeloma. Our study demonstrates that PDPK1 is a potent and a universally targetable signaling mediator in multiple myeloma regardless of the types of cytogenetic/molecular profiles. ©2014 American Association for Cancer Research.

  17. Mindfulness Meditation or Survivorship Education in Improving Behavioral Symptoms in Younger Stage 0-III Breast Cancer Survivors (Pathways to Wellness)

    ClinicalTrials.gov

    2018-02-15

    Cancer Survivor; Early-Stage Breast Carcinoma; Stage 0 Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  18. Exercise and Low-Dose Ibuprofen for Cognitive Impairment in Colorectal Cancer Patients Receiving Chemotherapy

    ClinicalTrials.gov

    2018-03-13

    Cognitive Impairment; Stage 0 Colorectal Cancer; Stage I Colorectal Cancer; Stage II Colorectal Cancer; Stage IIA Colorectal Cancer; Stage IIB Colorectal Cancer; Stage IIC Colorectal Cancer; Stage III Colorectal Cancer; Stage IIIA Colorectal Cancer; Stage IIIB Colorectal Cancer; Stage IIIC Colorectal Cancer

  19. VEGF Trap in Treating Patients With Recurrent, Locally Advanced, or Metastatic Cancer of the Urothelium

    ClinicalTrials.gov

    2014-10-10

    Adenocarcinoma of the Bladder; Distal Urethral Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Squamous Cell Carcinoma of the Bladder; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Urethral Cancer Associated With Invasive Bladder Cancer

  20. Ultrasound in Detecting Taxane-Induced Neuropathy in Patients With Breast Cancer

    ClinicalTrials.gov

    2018-04-26

    Peripheral Neuropathy; Stage 0 Breast Cancer; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  1. Cabazitaxel Plus Prednisone With Octreotide For Castration-Resistant Prostate Cancer (CRPC) Previously Treated With Docetaxel

    ClinicalTrials.gov

    2014-11-21

    Diarrhea; Hormone-resistant Prostate Cancer; Recurrent Prostate Cancer; Stage I Prostate Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage IV Prostate Cancer

  2. Omega-3 Fatty Acid in Treating Patients With Stage I-III Breast Cancer

    ClinicalTrials.gov

    2018-06-25

    Ductal Breast Carcinoma in Situ; Lobular Breast Carcinoma in Situ; Male Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  3. ACTOplus Met XR in Treating Patients With Stage I-IV Oral Cavity or Oropharynx Cancer Undergoing Definitive Treatment

    ClinicalTrials.gov

    2018-03-02

    Oral Cavity Neoplasm; Oropharyngeal Neoplasm; Stage I Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage I Oropharyngeal Squamous Cell Carcinoma AJCC v6 and v7; Stage II Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage II Oropharyngeal Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage III Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IV Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IV Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVC Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVC Oropharyngeal Squamous Cell Carcinoma AJCC v7

  4. Combined-modality treatment for advanced oral tongue squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, K.-H.; Lin, C.-Y.; Kang, C.-J.

    Purpose: The aim of this study was to investigate prognostic factors in advanced-stage oral tongue cancer treated with postoperative adjuvant therapy and to identify indications for adjuvant concomitant chemoradiotherapy (CCRT). Methods and Materials: We retrospectively reviewed the records of 201 patients with advanced squamous cell carcinoma of the oral tongue managed between January 1995 and November 2002. All had undergone wide excision and neck dissection plus adjuvant radiotherapy or CCRT. Based on postoperative staging, 123 (61.2%) patients had Stage IV and 78 (38.8%) had Stage III disease. All patients were followed for at least 18 months after completion of radiotherapymore » or until death. The median follow-up was 40.4 months for surviving patients. The median dose of radiotherapy was 64.8 Gy (range, 58.8-72.8 Gy). Cisplatin-based regimens were used for chemotherapy. Results: The 3-year overall survival (OS) and recurrence-free survival (RFS) rates were 48% and 50.8%, respectively. Stage, multiple nodal metastases, differentiation, and extracapsular spread (ECS) significantly affected disease-specific survival on univariate analysis. On multivariate analysis, multiple nodal metastases, differentiation, ECS, and CCRT were independent prognostic factors. If ECS was present, only CCRT significantly improved survival (3-year RFS with ECS and with CCRT = 48.2% vs. without CCRT = 15%, p = 0.038). In the presence of other poor prognostic factors, results of the two treatment strategies did not significantly differ. Conclusions: Based on this study, ECS appears to be an absolute indication for adjuvant CCRT. CCRT can not be shown to be statistically better than radiotherapy alone in this retrospective series when ECS is not present.« less

  5. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata

    PubMed Central

    Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345

  6. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata.

    PubMed

    Diniz, Daniel G; Silva, Geane O; Naves, Thaís B; Fernandes, Taiany N; Araújo, Sanderson C; Diniz, José A P; de Farias, Luis H S; Sosthenes, Marcia C K; Diniz, Cristovam G; Anthony, Daniel C; da Costa Vasconcelos, Pedro F; Picanço Diniz, Cristovam W

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous.

  7. Impact of chemotherapy relative dose intensity on cause-specific and overall survival for stage I-III breast cancer: ER+/PR+, HER2- vs. triple-negative.

    PubMed

    Zhang, Lu; Yu, Qingzhao; Wu, Xiao-Cheng; Hsieh, Mei-Chin; Loch, Michelle; Chen, Vivien W; Fontham, Elizabeth; Ferguson, Tekeda

    2018-05-01

    To investigate the impact of chemotherapy relative dose intensity (RDI) on cause-specific and overall survival for stage I-III breast cancer: estrogen receptor or progesterone receptor positive, human epidermal-growth factor receptor negative (ER+/PR+ and HER2-) vs. triple-negative (TNBC) and to identify the optimal RDI cut-off points in these two patient populations. Data were collected by the Louisiana Tumor Registry for two CDC-funded projects. Women diagnosed with stage I-III ER+/PR+, HER2- breast cancer, or TNBC in 2011 with complete information on RDI were included. Five RDI cut-off points (95, 90, 85, 80, and 75%) were evaluated on cause-specific and overall survival, adjusting for multiple demographic variables, tumor characteristics, comorbidity, use of granulocyte-growth factor/cytokines, chemotherapy delay, chemotherapy regimens, and use of hormone therapy. Cox proportional hazards models and Kaplan-Meier survival curves were estimated and adjusted by stabilized inverse probability treatment weighting (IPTW) of propensity score. Of 494 ER+/PR+, HER2- patients and 180 TNBC patients, RDI < 85% accounted for 30.4 and 27.8%, respectively. Among ER+/PR+, HER2- patients, 85% was the only cut-off point at which the low RDI was significantly associated with worse overall survival (HR = 1.93; 95% CI 1.09-3.40). Among TNBC patients, 75% was the cut-off point at which the high RDI was associated with better cause-specific (HR = 2.64; 95% CI 1.09, 6.38) and overall survival (HR = 2.39; 95% CI 1.04-5.51). Higher RDI of chemotherapy is associated with better survival for ER+/PR+, HER2- patients and TNBC patients. To optimize survival benefits, RDI should be maintained ≥ 85% in ER+/PR+, HER2- patients, and ≥ 75% in TNBC patients.

  8. Surgical management and clinical prognosis of adrenocortical carcinoma.

    PubMed

    Dong, Dexin; Li, Hanzhong; Yan, Weigang; Ji, Zhigang; Mao, Quanzong

    2012-01-01

    To study the relationship between surgical management and prognosis of adrenocortical carcinoma (ACC) in order to guide the surgical management of ACC. Clinical data of 45 cases of ACC treated in our hospital were retrospectively analyzed. The 45 cases included 3 cases in stage I, 12 cases in stage II, 7 cases in stage III, and 23 cases in stage IV. 17 cases underwent complete excision, 14 cases underwent palliative excision, 8 cases had non-operative treatment and 6 cases gave up treatment. All patients were followed up from 2 to 141 months. The average survival time of 31 patients with surgery was 32.46 months, and the average survival time of 14 patients without surgery was 4.75 months. There were statistically significant differences between the two groups (p < 0.01). There were no statistically significant differences between the two groups in survival time in stage III and stage IV (p > 0.05). Surgery is considered to be the only method to cure ACC. For ACC in stage I and II, tumor resection is the most effective treatment, and second surgical operation is recommended for local recurrence. For ACC in stage III, extensive surgical operation is recommended, and for ACC in stage IV, surgical operation has no effect on the prognosis. Copyright © 2012 S. Karger AG, Basel.

  9. Patient Derived Cancer Cell Lines in Identifying Molecular Changes in Patients With Previously Untreated Pancreatic Cancer Receiving Gemcitabine Hydrochloride-Based Chemotherapy

    ClinicalTrials.gov

    2017-09-05

    Pancreatic Ductal Adenocarcinoma; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IV Pancreatic Cancer

  10. Doxorubicin Hydrochloride, Cisplatin, and Paclitaxel or Carboplatin and Paclitaxel in Treating Patients With Stage III-IV or Recurrent Endometrial Cancer

    ClinicalTrials.gov

    2018-03-23

    Recurrent Uterine Corpus Carcinoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Uterine Corpus Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer

  11. Prognostic Significance of Nodal Location and Ratio in Stage IIIC Endometrial Carcinoma Among a Multi-Institutional Academic Collaboration.

    PubMed

    Mayadev, Jyoti; Elshaikh, Mohamed A; Christie, Alana; Nagel, Christa; Kennedy, Vanessa; Khan, Nadia; Lea, Jayanthi; Ghanem, Ahmad; Miller, David; Xie, Xian-Jin; Folkert, Michael; Albuquerque, Kevin

    2018-04-20

    Stage IIIC endometrial carcinoma (EC) represents pathologically heterogenous patients with single/multiple pelvic (stage IIIC1) or paraaortic (stage IIIC2) lymph nodes (LNs). There is an increasing trend to offer adjuvant chemotherapy (CT) +/- radiation (RT) uniformly to these patients, regardless of substage. We investigate the prognostic significance of positive LN (pLN) number, ratio (%pLN), location (IIC1 vs. IIC2), and adjuvant treatment on patterns of failure and survival in a large collaborative multi-institutional series. Clinical data for stage III EC patients such as patient characteristics, surgery/pathologic details, adjuvant therapies (including CT, RT, and chemotherapy and radiation), and outcomes (including pelvic control [PC], disease-free survival [DFS], distant DFS, and overall survival [OS]) were collected from 3 academic institutions. Log-rank analyses, Cox regression univariate and multivariate analyses were performed. Of the 264 patients queried for stage III disease, 237 (73%) had pLN, and complete LN sampling for analysis. The mean number of pLN in the combined data were 3.9, with 26.1% of all LN sampled positive; 121 patients (51%) staged IIIC1, and 116 patients (49%) staged IIIC2. There was a significant difference in number of pLN (P=0.0006) and total LN sampled by institution (range, 13 to 35; P=0.0004), without a difference in %pLN (P=0.35). Ninety-seven of 220 (44.1%) have ≥20% pLN. While controlling for substage and institution, a decrease in DFS (hazard ratio [HR], 1.1; P=0.007), and OS (HR, 1.1; P=0.01) was observed with every increase of 10% in the pLN ratio. There was a significant difference in DFS (HR, 1.8; P=0.003), PC (HR, 1.9; P=0.004), and distant DFS (HR, 1.6; P=0.03), as well as a trend for decreased OS (HR, 1.6; P=0.08) for substage IIIC2 versus IIIC1 disease; 5 years DFS 40% versus 45%, OS 50% versus 57%. Patients received no adjuvant therapy (10%), CT alone (27%), RT alone (16%), or chemotherapy and radiation (47%). There was no significant difference in PC, DFS, or OS between the various treatment regimens. On univariate analysis, while pLN was significant, treatment type did not impact DFS or OS. On multivariate analysis for DFS, patient age, race, and IIIC1 versus IIIC2 substage retained significance (HR, 0.56; P=0.01). Stage III EC patients with substage IIIC2 disease have a significantly increased risk of local and distant disease recurrence and death from EC. A decrease in DFS and OS was observed with every increase of 10% in the pLN ratio. Stage IIIC2 patients represent a high-risk subpopulation for whom clinical trials, or targeted regimens should be explored to achieve improved oncologic outcomes.

  12. [Staging gastritis with the OLGA system: prevalence of advanced stages of gastric atrophy in Mexican patients].

    PubMed

    Ramírez-Mendoza, P; Ruiz-Castillo, S A; Maroun-Marun, C; Trujillo-Benavides, O; Baltazar-Montúfar, P; Méndez del Monte, R; Angeles-Garay, U

    2011-01-01

    Gastric adenocarcinoma of intestinal type is preceded by inflammation, which produces mucosal atrophy and intestinal metaplasia, progressing eventually to dysplasia and invasive cancer. Recently an international group, the Operative Link on Gastritis Assessment (OLGA) proponed a staging system for gastric biopsies. To recognize the distribution of advanced stages of gastric mucosal atrophy in Mexican patients with dyspepsia according to the OLGA system. We apply the OLGA system for cancer risk (Stages 0 to IV) to 322 gastric biopsies from consecutive patients with dyspepsia. Using the Sydney protocol, we recorded the presence of atrophy, dysplasia and the relationship with ulcer disease. We report the stage of atrophy for each region and the Helicobacter pylori infection status. We documented 72 (22.4%) cases with atrophy, 50 of them (69.4%) were metaplastic-type. Overall, nine biopsies (2.78%) were stage III (all of them with metaplastic-type atrophy) and there was not stage IV cases. We did not find high-grade dysplasia or intramucosal carcinoma. In 8 of subjects with stage III, we observed low-grade dysplasia. We documented gastric ulcer in 5 patients with stage II, 60% of them with associated low-grade dysplasia. Five patients with duodenal ulcer were found in stages 0 and I. We found low prevalence of advanced stages of mucosal gastric atrophy among patients with dyspepsia. However we recognized 9 patients with stage III according to OLGA system worthy of follow-up because the high risk for developing gastric cancer.

  13. Doxorubicin Hydrochloride, Vinblastine, Dacarbazine, Brentuximab Vedotin, and Nivolumab in Treating Patients With Stage I-II Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-04-30

    Ann Arbor Stage I Hodgkin Lymphoma; Ann Arbor Stage IA Hodgkin Lymphoma; Ann Arbor Stage IB Hodgkin Lymphoma; Ann Arbor Stage II Hodgkin Lymphoma; Ann Arbor Stage IIA Hodgkin Lymphoma; Ann Arbor Stage IIB Hodgkin Lymphoma

  14. Interactive Gentle Yoga in Improving Quality of Life in Patients With Stage I-III Breast Cancer Undergoing Radiation Therapy

    ClinicalTrials.gov

    2017-07-28

    Anxiety Disorder; Depression; Ductal Breast Carcinoma in Situ; Fatigue; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  15. Comparison of capecitabine and oxaliplatin with S-1 as adjuvant chemotherapy in stage III gastric cancer after D2 gastrectomy.

    PubMed

    Cho, Jang Ho; Lim, Jae Yun; Cho, Jae Yong

    2017-01-01

    To compare capecitabine and oxaliplatin (XELOX) with S-1 as adjuvant chemotherapy in stage III gastric cancer after D2 gastrectomy. Clinical data from 206 patients who received XELOX or S-1 regimens as adjuvant chemotherapy in stage III gastric cancer were collected. Patients were divided into 2 groups according to regimen; the groups were XELOX (n = 114) and S-1 monotherapy (n = 92). 3-year disease-free survival (DFS) was higher in the S-1 group than in the XELOX group (66.6% vs 59.1%; p = 0.636). 3-year overall survival (OS) was 75.6% in the S-1 group and 69.6% in the XELOX group (p = 0.495). But, the difference was not statistically significant. Especially, for patients with stage IIIC disease, 3-year overall survival was 55.2% in the XELOX group and 39.0% in the S-1 group (hazard ratio, HR 0.50, 95% confidence interval, CI 0.23-1.10; p = 0.075). In multivariate analysis, N stage (HR, 5.639; 95% CI, 1.297-24.522; p = 0.021) and cycle completion as planned (HR, 5.734; 95% CI, 3.007-10.936; p<0.001) were independent predictors of overall survival. Adjuvant XELOX and S-1 regimen did not prove anything superior for stage III gastric cancer in this study. But, XELOX had a tendency to be superior to S-1 in stage IIIC gastric cancer after D2 gastrectomy although the difference was not statistically significant. N stage and cycle completion as planned were prognostic factors.

  16. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study.

    PubMed

    Taylor, Fiona G M; Quirke, Philip; Heald, Richard J; Moran, Brendan; Blomqvist, Lennart; Swift, Ian; Sebag-Montefiore, David J; Tekkis, Paris; Brown, Gina

    2011-04-01

    To assess local recurrence, disease-free survival, and overall survival in magnetic resonance imaging (MRI)-predicted good prognosis tumors treated by surgery alone. The MERCURY study reported that high-resolution MRI can accurately stage rectal cancer. The routine policy in most centers involved in the MERCURY study was primary surgery alone in MRI-predicted stage II or less and in MRI "good prognosis" stage III with selective avoidance of neoadjuvant therapy. Data were collected prospectively on all patients included in the MERCURY study who were staged as MRI-defined "good" prognosis tumors. "Good" prognosis included MRI-predicted safe circumferential resection margins, with MRI-predicted T2/T3a/T3b (less than 5 mm spread from muscularis propria), regardless of MRI N stage. None received preoperative or postoperative radiotherapy. Overall survival, disease-free survival, and local recurrence were calculated. Of 374 patients followed up in the MERCURY study, 122 (33%) were defined as "good prognosis" stage III or less on MRI. Overall and disease-free survival for all patients with MRI "good prognosis" stage I, II and III disease at 5 years was 68% and 85%, respectively. The local recurrence rate for this series of patients predicted to have a good prognosis tumor on MRI was 3%. The preoperative identification of good prognosis tumors using MRI will allow stratification of patients and better targeting of preoperative therapy. This study confirms the ability of MRI to select patients who are likely to have a good outcome with primary surgery alone.

  17. Radiation Therapy and Docetaxel in Treating Patients With HPV-Related Oropharyngeal Cancer

    ClinicalTrials.gov

    2017-11-14

    Human Papillomavirus Infection; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Stage IVB Oropharyngeal Squamous Cell Carcinoma

  18. Cisplatin and Radiation Therapy With or Without Tirapazamine in Treating Patients With Cervical Cancer

    ClinicalTrials.gov

    2017-05-30

    Cervical Adenocarcinoma; Cervical Adenosquamous Cell Carcinoma; Cervical Squamous Cell Carcinoma; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  19. Erlotinib Hydrochloride in Treating Patients With Pancreatic Cancer That Can Be Removed by Surgery

    ClinicalTrials.gov

    2014-10-07

    Intraductal Papillary Mucinous Neoplasm of the Pancreas; Recurrent Pancreatic Cancer; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer

  20. Safety and efficacy of adjuvant therapy with oxaliplatin, leucovorin and 5-fluorouracil after mesorectal excision with lateral pelvic lymph node dissection for stage iii lower rectal cancer.

    PubMed

    Iwasa, Satoru; Souda, Hiroaki; Yamazaki, Kentaro; Takahari, Daisuke; Miyamoto, Yuji; Takii, Yasumasa; Ikeda, Satoshi; Hamaguchi, Tetsuya; Kanemitsu, Yukihide; Shimada, Yasuhiro

    2015-03-01

    Preoperative chemoradiotherapy followed by total mesorectal excision (TME) is the standard treatment for stage III lower rectal cancer worldwide. However, in Japan, the standard treatment is TME with lateral pelvic lymph node dissection (LPLD) followed by adjuvant chemotherapy. We examined the safety and efficacy of adjuvant therapy with oxaliplatin, leucovorin, and 5-fluorouracil (modified FOLFOX6) after TME with LPLD. This retrospective study included 33 patients who received modified FOLFOX6 after TME with LPLD for stage III lower rectal cancer. The overall completion rate of 12 cycles of adjuvant modified FOLFOX6 was 76%. Grade 3 or 4 neutropenia was observed in eight patients (24%). Sensory neuropathy was observed in 32 patients (97%) with 4 (12%) having a grade 3 event. The disease-free survival (DFS) rate was 45% at 3 years. Adjuvant modified FOLFOX6 was feasible in patients with stage III lower rectal cancer after TME with LPLD. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets

    PubMed Central

    Rahmioglu, Nilufer; Nyholt, Dale R.; Morris, Andrew P.; Missmer, Stacey A.; Montgomery, Grant W.; Zondervan, Krina T.

    2014-01-01

    BACKGROUND Endometriosis is a heritable common gynaecological condition influenced by multiple genetic and environmental factors. Genome-wide association studies (GWASs) have proved successful in identifying common genetic variants of moderate effects for various complex diseases. To date, eight GWAS and replication studies from multiple populations have been published on endometriosis. In this review, we investigate the consistency and heterogeneity of the results across all the studies and their implications for an improved understanding of the aetiology of the condition. METHODS Meta-analyses were conducted on four GWASs and four replication studies including a total of 11 506 cases and 32 678 controls, and on the subset of studies that investigated associations for revised American Fertility Society (rAFS) Stage III/IV including 2859 cases. The datasets included 9039 cases and 27 343 controls of European (Australia, Belgium, Italy, UK, USA) and 2467 cases and 5335 controls of Japanese ancestry. Fixed and Han and Elkin random-effects models, and heterogeneity statistics (Cochran's Q test), were used to investigate the evidence of the nine reported genome-wide significant loci across datasets and populations. RESULTS Meta-analysis showed that seven out of nine loci had consistent directions of effect across studies and populations, and six out of nine remained genome-wide significant (P < 5 × 10−8), including rs12700667 on 7p15.2 (P = 1.6 × 10−9), rs7521902 near WNT4 (P = 1.8 × 10−15), rs10859871 near VEZT (P = 4.7 × 10−15), rs1537377 near CDKN2B-AS1 (P = 1.5 × 10−8), rs7739264 near ID4 (P = 6.2 × 10−10) and rs13394619 in GREB1 (P = 4.5 × 10−8). In addition to the six loci, two showed borderline genome-wide significant associations with Stage III/IV endometriosis, including rs1250248 in FN1 (P = 8 × 10−8) and rs4141819 on 2p14 (P = 9.2 × 10−8). Two independent inter-genic loci, rs4141819 and rs6734792 on chromosome 2, showed significant evidence of heterogeneity across datasets (P < 0.005). Eight of the nine loci had stronger effect sizes among Stage III/IV cases, implying that they are likely to be implicated in the development of moderate to severe, or ovarian, disease. While three out of nine loci were inter-genic, the remaining were in or near genes with known functions of biological relevance to endometriosis, varying from roles in developmental pathways to cellular growth/carcinogenesis. CONCLUSIONS Our meta-analysis shows remarkable consistency in endometriosis GWAS results across studies, with little evidence of population-based heterogeneity. They also show that the phenotypic classifications used in GWAS to date have been limited. Stronger associations with Stage III/IV disease observed for most loci emphasize the importance for future studies to include detailed sub-phenotype information. Functional studies in relevant tissues are needed to understand the effect of the variants on downstream biological pathways. PMID:24676469

  2. Innovations in Clinical Trial Design in the Era of Molecular Profiling.

    PubMed

    Wulfkuhle, Julia D; Spira, Alexander; Edmiston, Kirsten H; Petricoin, Emanuel F

    2017-01-01

    Historically, cancer has been studied, and therapeutic agents have been evaluated based on organ site, clinical staging, and histology. The science of molecular profiling has expanded our knowledge of cancer at the cellular and molecular level such that numerous subtypes are being described based on biomarker expression and genetic mutations rather than traditional classifications of the disease. Drug development has experienced a concomitant revolution in response to this knowledge with many new targeted therapeutic agents becoming available, and this has necessitated an evolution in clinical trial design. The traditional, large phase II and phase III adjuvant trial models need to be replaced with smaller, shorter, and more focused trials. These trials need to be more efficient and adaptive in order to quickly assess the efficacy of new agents and develop new companion diagnostics. We are now seeing a substantial shift from the traditional multiphase trial model to an increase in phase II adjuvant and neoadjuvant trials in earlier-stage disease incorporating surrogate endpoints for long-term survival to assess efficacy of therapeutic agents in shorter time frames. New trial designs have emerged with capabilities to assess more efficiently multiple disease types, multiple molecular subtypes, and multiple agents simultaneously, and regulatory agencies have responded by outlining new pathways for accelerated drug approval that can help bring effective targeted therapeutic agents to the clinic more quickly for patients in need.

  3. Prevalence of multiple organ dysfunction in the pediatric intensive care unit: Pediatric Risk of Mortality III versus Pediatric Logistic Organ Dysfunction scores for mortality prediction

    PubMed Central

    Hamshary, Azza Abd Elkader El; Sherbini, Seham Awad El; Elgebaly, HebatAllah Fadel; Amin, Samah Abdelkrim

    2017-01-01

    Objectives To assess the frequency of primary multiple organ failure and the role of sepsis as a causative agent in critically ill pediatric patients; and calculate and evaluate the accuracy of the Pediatric Risk of Mortality III (PRISM III) and Pediatric Logistic Organ Dysfunction (PELOD) scores to predict the outcomes of critically ill children. Methods Retrospective study, which evaluated data from patients admitted from January to December 2011 in the pediatric intensive care unit of the Children's Hospital of the University of Cairo. Results Out of 237 patients in the study, 72% had multiple organ dysfunctions, and 45% had sepsis with multiple organ dysfunctions. The mortality rate in patients with multiple organ dysfunction was 73%. Independent risk factors for death were mechanical ventilation and neurological failure [OR: 36 and 3.3, respectively]. The PRISM III score was more accurate than the PELOD score in predicting death, with a Hosmer-Lemeshow X2 (Chi-square value) of 7.3 (df = 8, p = 0.5). The area under the curve was 0.723 for PRISM III and 0.78 for PELOD. Conclusion A multiple organ dysfunctions was associated with high mortality. Sepsis was the major cause. Pneumonia, diarrhea and central nervous system infections were the major causes of sepsis. PRISM III had a better calibration than the PELOD for prognosis of the patients, despite the high frequency of the multiple organ dysfunction syndrome. PMID:28977260

  4. Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature.

    PubMed

    Yuan, Y; Gu, Y F; Zhong, Z H; Osada, T; Cui, C Y; Tetsui, T; Yokokawa, T; Harada, H

    2012-10-01

    The microstructures of a new Ni-Co-base disc superalloy, TMW-4M3, before and after the creep test at 725 °C/630 MPa have been systematically investigated by transmission electron microscopy (TEM). The crept microstructures were marked as three different deformation stages (I, II and III) corresponding to the gradually increased strain. At stage I, stacking fault (SF) shearing was the main deformation mechanism. The SF was extrinsic and lay on {111} plane. However, deformation microtwinning became the dominant mode at stage II and III. The average spacing of deformation twins decreased from 109 ± 15 nm at stage II to 76 ± 12 nm at stage III, whereas the twin thickness did not change significantly. The influence of stacking fault energy (SFE) of γ matrix on the deformation mechanism is discussed. It is suggested that lower SFE in TMW-4M3 is partly responsible for the enhanced creep resistance. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  5. Histology-based Combination Induction Chemotherapy for Elderly Patients with Clinical Stage III Non-small Cell Lung Cancer.

    PubMed

    Banna, Giuseppe L; Parra, Hector Josè Soto; Castaing, Marine; Dieci, Maria Vittoria; Anile, Giuseppe; Nicolosi, Maurizio; Strano, Salvatore; Marletta, Francesco; Guarneri, Valentina; Conte, Pierfranco; Lal, Rohit

    2017-07-01

    To explore the feasibility and activity of a histology-based induction combination chemotherapy for elderly patients with clinical stage III non-small cell lung cancer (NSCLC). Patients aged ≥70 years with stage IIIA and IIIB lung squamous cell carcinoma (SCC) or adenocarcinoma were treated with three cycles of carboplatin and gemcitabine or pemetrexed, respectively, followed by definitive radiotherapy or surgery. The primary endpoint was the overall response rate (ORR) following induction. Twenty-seven patients, with a median age of 74 years (range=70-80 years) were treated for adenocarcinoma in 14 (52%) and SCC in 13 (48%), clinical stage IIIA in eight (30%) and IIIB in 19 (70%). Grade 3 or 4 toxicity was reported for five patients (18.5%). The ORR was 46% in 12 (partial responses) out of 26 assessable patients. Histology-based induction combination chemotherapy is active and feasible in elderly patients with stage III NSCLC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Decitabine in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2013-02-06

    Male Breast Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Stage III Melanoma; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Unspecified Adult Solid Tumor, Protocol Specific

  7. Akt Inhibitor MK-2206 and Anastrozole With or Without Goserelin Acetate in Treating Patients With Stage II-III Breast Cancer

    ClinicalTrials.gov

    2018-04-06

    Estrogen Receptor Positive; HER2/Neu Negative; Recurrent Breast Carcinoma; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  8. TAS-102 in Treating Advanced Biliary Tract Cancers

    ClinicalTrials.gov

    2017-10-23

    Cholangiocarcinoma; Stage III Gallbladder Cancer AJCC v7; Stage IIIA Gallbladder Cancer AJCC v7; Stage IIIB Gallbladder Cancer AJCC v7; Stage IV Gallbladder Cancer AJCC v7; Stage IVA Gallbladder Cancer AJCC v7; Stage IVB Gallbladder Cancer AJCC v7

  9. Catheter interventions in the staged management of hypoplastic left heart syndrome.

    PubMed

    Reinhardt, Zdenka; De Giovanni, Joseph; Stickley, John; Bhole, Vinay K; Anderson, Benjamin; Murtuza, Bari; Mehta, Chetan; Miller, Paul; Dhillon, Rami; Stumper, Oliver

    2014-04-01

    To analyse the current practice and contribution of catheter interventions in the staged management of patients with hypoplastic left heart syndrome. This study is a retrospective case note review of 527 patients undergoing staged Norwood/Fontan palliation at a single centre between 1993 and 2010. Indications and type of catheter interventions were reviewed over a median follow-up period of 7.5 years. A staged Norwood/Fontan palliation for hypoplastic left heart syndrome was performed in 527 patients. The 30-day survival rate after individual stages was 76.5% at Stage I, 96.3% at Stage II, and 99.4% at Stage III. A total of 348 interventions were performed in 189 out of 527 patients. Freedom from catheter intervention in survivors was 58.2% before Stage II and 46.7% before Stage III. Kaplan-Meier freedom from intervention post Fontan completion was 55% at 10.8 years of follow-up. Post-stage I interventions were mostly directed to relieve aortic arch obstruction--84 balloon angioplasties--and augment pulmonary blood flow--15 right ventricle-to-pulmonary conduit interventions; post-Stage II interventions centred on augmenting size of the left pulmonary artery--73 procedures and abolishing systemic venous collaterals--32 procedures. After Stage III, the focus was on manipulating the size of the fenestration--42 interventions--and the left pulmonary artery -31 procedures. Interventional cardiac catheterisation constitutes an integral part in the staged palliative management of patients with hypoplastic left heart syndrome. Over one-third (37%) of patients undergoing staged palliation required catheter intervention over the follow-up period.

  10. Impact of SciELO and MEDLINE indexing on submissions to Jornal de Pediatria.

    PubMed

    Blank, Danilo; Buchweitz, Claudia; Procianoy, Renato S

    2005-01-01

    To evaluate the impact of SciELO and MEDLINE indexing on the number of articles submitted to Jornal de Pediatria. Analysis of total article submission, submission of articles from foreign countries and acceptance figures in the following periods: stage I - pre-website (Jan 2000-Mar 2001); stage II - website (Apr 2001-Jul 2002); stage III - SciELO (Aug 2002-Aug 2003); stage IV - MEDLINE (Sep 2003-Dec 2004). There was a significant trend toward linear increase in the number of submissions along the study period (p = 0.009). The number of manuscripts submitted in stages I through IV was 184, 240, 297, and 482, respectively. The number of submissions was similar in stages I and II (p = 0.148), but statistically higher in Stage III (p < 0.001 vs. Stage I and p = 0.006 vs. Stage II) and Stage IV (p < 0.001 vs. stages I and II, and p < 0.05 vs. stage III). The rate of article acceptance decreased during the study period. The number of original articles published has been stable since the 2001 March/April issue (n = 10), when the journal reached a printed page limit, leading to stricter judgment criteria and a relative decrease in acceptance rate. The number of foreign submissions in stages I through IV was 1, 2, zero and 17, respectively, with p < 0.001 for the comparison of stage IV with previous stages. SciELO indexing was associated with an increase in Brazilian manuscript submissions to Jornal de Pediatria, whereas MEDLINE indexing led to an increase in both Brazilian and foreign submissions.

  11. [DRG-based cost analysis of inpatient conservative treatment of stage III/IV peripheral arterial occlusive disease].

    PubMed

    Heidrich, H; Rogatti, W; Altmann, E; Bauersachs, R; Diehm, C; Fahrig, C; Lawall, H; Ranft, J; Schenker, M; Schweizer, H J; Stiegler, H; Wilke, M

    2003-11-01

    DRG-based cost analysis of inpatient conservative treatment of PAD stage III/IV BACKGROUND: In a prospective study carried out by the German Society of Angiology and the DRG Competence Center, Munich, the question was investigated whether the costs of conservative treatment of patients with PAOD stage III/IV (DRG F65) are adequately represented within the current G-DRG system. METHODS UND PATIENTS: Between September 1 and December 16, 2002, a total of 704 patients with DRG F65 (peripheral vascular diseases) were evaluated at 8 angiologic centers in Germany. Apart from the length of hospital stay, the total costs (cost equivalents) were calculated using a method developed by the DRG Research Group at the University of Münster. Moreover, the study population was compared with a German calculation sample for the DRGs F65A/B, as published by InEK. As it turned out, conservatively treated patients with PAOD stage III or IV (DRGs F65A/B) cause significantly (p < 0.001) higher costs and have significantly (p < 0.001) greater lengths of hospital stay than patients who were also assigned to DRG F65 because of other vascular diseases. At the same time it became clear that angiologic centers treat twice as many patients with critical limb ischemia in comparison with the German average. The reimbursement hitherto estimated by InEK covers not even half the cost actually produced by conservative treatment of PAD stage III/IV. To ensure a performance-related reimbursement, a new basis DRG for patients with PAD stage III/IV has to be created, as has ben proposed by the German Society of Angiology. Otherwise, adequate conservative therapy in accordance with existing guidelines, of patients who cannot be treated surgically or interventionally will not be possible any more in the future.

  12. Direct variable cost of the topical treatment of stages III and IV pressure injuries incurred in a public university hospital.

    PubMed

    Chacon, Julieta M F; Blanes, Leila; Borba, Luis G; Rocha, Luis R M; Ferreira, Lydia M

    2017-05-01

    to estimate the direct variable costs of the topical treatment of stages III and IV pressure injuries of hospitalized patients in a public university hospital, and assess the correlation between these costs and hospitalization time. Forty patients of both sexes who had been admitted to the São Paulo Hospital, São Paulo, SP, Brazil, from 2011 to 2012, with pressure injuries in the sacral, ischial or trochanteric region were included. The patients had a total of 57 pressure injuries in the selected regions, and the lesions were monitored daily until patient release, transfer or death. The quantities and types of materials, as well as the amount of professional labor time spent on each procedure and each patient were recorded. The unit costs of the materials and the hourly costs of the professional labor were obtained from the hospital's purchasing and human resources departments, respectively. Spearman's correlation coefficient and the Mann-Whitney and Kruskal-Wallis tests were used for the statistical analyses. The mean topical treatment costs for stages III and IV PIs were significantly different (US$ 854.82 versus US$ 1785.35; p = 0.004). The mean topical treatment cost of stages III and IV pressure injuries per patient was US$ 1426.37. The mean daily topical treatment cost per patient was US$ 40.83. There was a significant correlation between hospitalization time and the total costs of labor and materials (p < 0.05). There was no significant difference between hospitalization time periods for stages III and IV pressure injuries (40.80 days and 45.01 days, respectively; p = 0.834). The mean direct variable cost of the topical treatment for stages III and IV pressure injuries per patient in this public university hospital was US$ 1426.37. Copyright © 2016. Published by Elsevier Ltd.

  13. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma

    PubMed Central

    Radon, Tomasz P; Massat, Nathalie J; Jones, Richard; Alrawashdeh, Wasfi; Dumartin, Laurent; Ennis, Darren; Duffy, Stephen W; Kocher, Hemant M; Pereira, Stephen P; Nascimento, Cristiane M; Real, Francisco X; Malats, Núria; Neoptolemos, John; Costello, Eithne; Greenhalf, William; Lemoine, Nick R; Crnogorac-Jurcevic, Tatjana

    2015-01-01

    Purpose Non-invasive biomarkers for early detection of pancreatic ductal adenocarcinoma (PDAC) are currently not available. Here, we aimed to identify a set of urine proteins able to distinguish patients with early stage PDAC from healthy individuals (H). Experimental design Proteomes of 18 urine samples from healthy controls, chronic pancreatitis and PDAC patients (six/group) were assayed using GeLC/MS/MS analysis. The selected biomarkers were subsequently validated using ELISA assays using multiple logistic regression applied to a training dataset in a multicentre cohort comprising 488 urine samples. Results LYVE-1, REG1A and TFF1 were selected as candidate biomarkers. When comparing PDAC (n=192) to healthy (n=87) urines, the resulting areas under the receiver operating characteristic curves (AUCs) of the panel were 0.89 (95%CI 0.84-0.94) in the training (70% of the data), and 0.92 (95%CI 0.86-0.98) in the validation (30% of the data) datasets. When comparing PDAC stage I-II (n=71) to healthy urines, the panel achieved AUCs of 0.90 (95%CI 0.84-0.96) and 0.93 (95%CI 0.84-1.00) in the training and validation datasets, respectively. In PDAC stage I-II and healthy samples with matching plasma CA19.9 the panel achieved a higher AUC of 0.97 (95%CI 0.94-0.99) than CA19.9 (AUC=0.88, 95%CI 0.81-0.95, p=0.005). Adding plasma CA19.9 to the panel increased the AUC from 0.97 (95%CI 0.94-0.99) to 0.99 (95%CI 0.97-1.00, p=0.04) but did not improve the comparison of stage I-IIA PDAC (n=17) to healthy urine. Conclusion We have established a novel, three-protein biomarker panel that is able to detect patients with early stage pancreatic cancer in urine specimens. PMID:26240291

  14. [Pressure sores in a university hospital].

    PubMed

    Barbut, Frédéric; Parzybut, Bérengère; Boëlle, Pierre-Yves; Neyme, Denis; Farid, Rachida; Kosmann, Marie-Jeanne; Luquel, Laurence

    2006-05-01

    To determine the prevalence of pressure sores, their risk factors, and the responsible microbial agents in an acute-care hospital and to evaluate their management. A prevalence survey was conducted from 5 July through 9 July 2004. Investigators completed a standardized questionnaire for each hospitalized patient, including demographic data (age, sex, previous hospitalizations, etc.) and Braden scale risk factors (sensory perception, humidity, activity, mobility, nutrition, and friction and shear). Two experts in skin care detected pressure sores by physical examination of the patients. Each pressure sore was swabbed and inoculated on selective media. Management was evaluated by reviewing the clinical charts of each patient with a pressure sore. The study included 535 adult patients (aged 59 +/- 19 years): 75 ulcer sores were observed in 37 patients (prevalence=6.9%). Stage I sores accounted for 24% of the total, stage II for 29%, stage III 31%, and stage IV 16%. The most frequent site was the heel (41%), followed by the sacrum (20%), elbow (11%), back (7%) and ischial tuberosities (7%). Sixty (80%) were acquired while hospitalized. Age-adjusted multivariate analyses found that the risk factors significantly associated with pressure sores were Braden score< or =15 (OR=5.9, 95% CI: 2.4-13.7, p<0.0001) and previous pressure sores (OR=5.0 95% CI: 2.2-11.6, p<0.0001). Eleven sores (24.5%), mostly stage III and IV, were colonized by multiple-drug-resistant bacteria (i.e., methicillin resistant Staphylococcus aureus, extended spectrum beta-lactamase Enterobacteriaceae). Seven (9.3%) of the 75 ulcers were diagnosed only during the survey, by the experts; of the 68 diagnosed before the survey, 57 (83.8%) had been under treatment. Treatment was considered inappropriate according to French guidelines in 31.6% of the cases. This prospective prevalence study resulted in better awareness of the patients at risk for pressure sores. It also made the recently created mobile geriatrics unit better known within the hospital.

  15. Sorafenib Tosylate in Treating Patients With Liver Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2017-06-30

    Advanced Adult Hepatocellular Carcinoma; Localized Non-Resectable Adult Hepatocellular Carcinoma; Stage III Childhood Hepatocellular Carcinoma; Stage IIIA Hepatocellular Carcinoma; Stage IIIB Hepatocellular Carcinoma; Stage IIIC Hepatocellular Carcinoma; Stage IV Childhood Hepatocellular Carcinoma; Stage IVA Hepatocellular Carcinoma; Stage IVB Hepatocellular Carcinoma

  16. Carboplatin and Paclitaxel With or Without Cisplatin and Radiation Therapy in Treating Patients With Stage I, Stage II, Stage III, or Stage IVA Endometrial Cancer

    ClinicalTrials.gov

    2018-01-09

    Endometrial Clear Cell Adenocarcinoma; Endometrial Serous Adenocarcinoma; Stage IA Uterine Corpus Cancer; Stage IB Uterine Corpus Cancer; Stage II Uterine Corpus Cancer; Stage IIIA Uterine Corpus Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Uterine Corpus Cancer; Stage IVA Uterine Corpus Cancer

  17. Carfilzomib and Hyper-CVAD in Treating Patients With Newly Diagnosed Acute Lymphoblastic Leukemia or Lymphoma

    ClinicalTrials.gov

    2018-03-01

    Contiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia

  18. Decision Aids in Improving Knowledge in Patients With Newly Diagnosed Prostate Cancer

    ClinicalTrials.gov

    2018-06-08

    Stage II Prostate Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage I Prostate Cancer; PSA Level Five to Ten; PSA Level Less Than Five; PSA Level Ten to Fifty

  19. Mechanisms of tricuspid regurgitation in patients with hypoplastic left heart syndrome undergoing tricuspid valvuloplasty.

    PubMed

    Bautista-Hernandez, Victor; Brown, David W; Loyola, Hugo; Myers, Patrick O; Borisuk, Michele; del Nido, Pedro J; Baird, Christopher W

    2014-09-01

    Tricuspid regurgitation (TR) remains a risk factor for morbidity and mortality through staged palliation in patients with hypoplastic left heart syndrome (HLHS). Reports on the mechanisms associated with TR in patients with HLHS are limited. Thus, we sought to describe our experience with tricuspid valve (TV) repair in these patients, focusing on the mechanisms of TR and corresponding surgical techniques. We performed a retrospective single-center review (January 2000 to December 2012) of patients with HLHS undergoing TV repair and completing Fontan circulation. We evaluated the pre- and postoperative echocardiograms, intraoperative findings, and surgical techniques used. A total of 53 TV repairs were performed in 35 patients with HLHS completing staged palliation. TV repairs were performed at stage II in 15, between stage II and III in 4, at stage III in 27, and after stage III in 7. The surgical techniques for valvuloplasty included annuloplasty (38%), anteroseptal (AS) commissuroplasty (66%), anterior papillary muscle repositioning (11%), multiple commissuroplasties (9%), septal-posterior commissuroplasty (9%), and fenestration closure (4%). The predominant jet of TR emanated along the AS commissure in 68% of the cases. All patients survived the procedure and were discharged. Preoperative echocardiography showed a dilated TV annulus on the lateral dimension, anteroposterior dimension, and area that was significantly reduced after TV repair (P < .0001). The preoperative mean TR, as assessed by lateral (P = .002) and anteroposterior (P = .005) vena contracta, was also significantly reduced after TV repair. TV repair did not significantly affect right ventricular systolic function immediately after surgery (P = .17) or at the most recent follow-up visit (P = .52). Patients with anterior leaflet prolapse were at increased risk of worse outcomes, including moderate or greater right ventricular dysfunction (P = .02). Patients requiring reoperation for TV repair were younger (6.3 vs 28.1 months, P < .0001) at the initial operation. One patient died of heart failure. Freedom from TV replacement and transplant-free survival were both 97% at the most recent follow-up point. TR in patients with HLHS commonly emanates from the AS commissure. The associated mechanisms are often annular dilatation and anterior leaflet prolapse. Preoperative anterior leaflet prolapse was associated with worse outcomes. Annuloplasty, closure of the AS commissure, and repositioning of the anterior papillary muscle are effective in addressing TR in the short- and mid-term in this challenging population. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  20. Anti-ICOS Monoclonal Antibody MEDI-570 in Treating Patients With Relapsed or Refractory Peripheral T-cell Lymphoma Follicular Variant or Angioimmunoblastic T-cell Lymphoma

    ClinicalTrials.gov

    2018-05-25

    Follicular T-Cell Lymphoma; Grade 1 Follicular Lymphoma; Grade 2 Follicular Lymphoma; Grade 3a Follicular Lymphoma; Recurrent Angioimmunoblastic T-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mature T- and NK-Cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Refractory Angioimmunoblastic T-Cell Lymphoma; Refractory Follicular Lymphoma; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Stage IB Mycosis Fungoides AJCC v7; Stage II Mycosis Fungoides AJCC v7; Stage III Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Mycosis Fungoides AJCC v7; Stage IV Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides AJCC v7

  1. Skeletal maturation of the cervical vertebrae: association with various types of malocclusion.

    PubMed

    Armond, Mônica Costa; Generoso, Rodrigo; Falci, Saulo Gabriel Moreira; Ramos-Jorge, Maria Letícia; Marques, Leandro Silva

    2012-01-01

    The identification of the skeletal maturation stage of the cervical vertebrae has proven an important reference for orthodontic diagnosis. The aim of the present study was to determine the association between the skeletal maturation stage of the cervical vertebrae and types of malocclusion according to the age and gender of participants. A total of 361 individuals (168 males and 193 females) between 8 and 14 years of age were selected from a convenience sample. Malocclusions were diagnosed through study models using the Angle classification. Maturation stages of the cervical vertebrae were determined using the method proposed by Hassel and Farman. Statistical analysis involved the chi-square test (p £ 0.05) and multiple logistic regression (forward stepwise procedure). Significant differences were observed between the stage of skeletal maturation of the cervical vertebrae and gender at ages 11, 12 and 14 years. Males with Class II malocclusion were twice as likely to be in Stage 1 or 2 of cervical vertebra maturation than individuals with Class I malocclusion (OR = 2.1 [CI 95%, 1.33-3.18]). There were no differences between individuals with Class I and Class III malocclusions. The association between skeletal maturation of the cervical vertebrae and type of malocclusion was significant, suggesting a skeletal component in the determination of Class II malocclusions.

  2. Associations between respiratory health and ambient air quality in Canakkale, Turkey: a long-term cohort study.

    PubMed

    Mentese, Sibel; Bakar, Coskun; Mirici, Nihal Arzu; Oymak, Sibel; Otkun, Muserref Tatman

    2018-05-01

    Few epidemiological studies investigating the association between air pollution and health are available in Turkey. The aim of this cohort-type study is to examine the relationships between ambient air quality, respiratory diseases, and decreases in pulmonary function over a year in three different towns in Canakkale: Canakkale Central town (region I), Lapseki town center (region II), and Can town (region III). Region III had four different sub-regions, which were Can town center (region III-A), and the villages located around Can town, namely Durali (region III-B), Kulfal (region III-C), and Yuvalar (region III-D). In the first stage of the study, a detailed questionnaire was completed by the participants (n = 1152) in face-to-face interviews and pulmonary function test (PFT) was performed. In the second stage of the study, PFT measurements were repeated 1 year after the first stage. Particulate matter, SO 2 , NO 2 , and ozone were gathered from air quality monitoring stations located in the centers of the three regions. The most polluted area was region III, while region I and region II were the least polluted areas. The risk of pulmonary function decline throughout a year was 2.1 times higher in region III, 2.4 times higher both in regions III-B and III-C, and 1.6 times higher for smokers in all regions. In the present study, ambient air quality was worse in region III (industrialized region), which influenced PFT scores and the prognostics for chronic respiratory diseases. The findings of this study should be considered for future investment plans in this region related to human and environmental health needs.

  3. Study on possibilities of reconstructive--plastic surgery in patients with stage III breast cancer.

    PubMed

    Ismagilov, A K; Khasanov, R S; Navrusov, S N; Beknazarov, Z P

    2011-01-01

    This population based study aimed to use reconstructive-plastic surgery with autologous tissue as a treatment of patients with stage III breast cancer. We identified women (374) diagnosed with stage III breast cancer between 2000 and 2009 years. We compared radical operations with and without a plastic step, where 29 patients underwent the surgery in combination with an immediate radical resection with LD-flap replacement, mastectomy concurrently to TRAM-flap reconstruction in 103 patients. We examined the immediate and remote results of therapy. In data analysis, there were higher summarized indices of physical and mental health rates in patients who underwent the reconstruction plastic surgery compared to patients with mastectomy. All treated women 5 -year survival rate was 77.4+3.6 %, 63.5+3.2% and 40.1+3.1 % in stages IIIa, IIIb, IIIc respectively. In the control group, the rates were 78.6+3.4 %, 64.0+3.3 %, and 39.3+3.1 % (p<0.05) respectively. Our results showed that women with stage III breast cancer who underwent reconstructive-plastic surgeries had a chance to improve their quality of life, and did not increase the frequency, neither did reduce 5 year survival (Tab. 2, Fig. 4, Ref. 19). Full Text in free PDF www.bmj.sk.

  4. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival

    PubMed Central

    Fink, Stephen P.; Myeroff, Lois L.; Kariv, Revital; Platzer, Petra; Xin, Baozhong; Mikkola, Debra; Lawrence, Earl; Morris, Nathan; Nosrati, Arman; Willson, James K. V.; Willis, Joseph; Veigl, Martina; Barnholtz-Sloan, Jill S.; Wang, Zhenghe; Markowitz, Sanford D.

    2015-01-01

    Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target. PMID:26437221

  5. Long-term Outcomes of One Stage Surgery Using Transanal Colorectal Tube for Acute Colorectal Obstruction of Stage II/III Distal Colon Cancer.

    PubMed

    Okuda, Yusuke; Yamada, Tomonori; Hirata, Yoshikazu; Shimura, Takaya; Yamaguchi, Ryuzo; Sakamoto, Eiji; Sobue, Satoshi; Nakazawa, Takahiro; Kataoka, Hiromi; Joh, Takashi

    2018-06-06

    Since oncological outcomes of transanal colorectal tube (TCT) placement, an endoscopic treatment for colorectal cancer (CRC) with acute colorectal obstruction (ACO), remain unknown, this study analyzed long-term outcomes of TCT placement for stage II/III CRC with ACO. Data were retrospectively reviewed from consecutive patients with distal stage II/III CRC who underwent surgery between January 2007 and December 2011 at two Japanese hospitals. One hospital conducted emergency surgery and the other performed TCT placement as the standard treatment for all CRCs with ACO. Propensity score (PS) matching was used to adjust baseline characteristics between two groups. Among 754 patients with distal stage II/III CRC, 680 did not have ACO (non-ACO group) and 74 had ACO (ACO group). The PS matching between both hospitals identified 234 pairs in the non-ACO group and 23 pairs in the ACO group. In the non-ACO group, the surgical quality was equivalent between the two institutions, with no significant differences in overall survival (OS) and disease-free survival (DFS). In the ACO group, the rate of primary resection/anastomosis was higher in the TCT group than in the surgery group (87.0% vs. 26.1%; p < 0.001). No significant differences were noted between the surgery and the TCT groups in OS (5-year OS, 61.9% vs. 51.5%; p=0.490) and DFS (5-year DFS, 45.9% vs. 38.3%; p=0.658). TCT placement can achieve similar long-term outcomes to emergency surgery, with a high rate of primary resection/anastomosis for distal stage II/III colon cancer with ACO.

  6. [Study on the difference of corresponding age at cervical vertebral maturation stages among different skeletal malocclusions].

    PubMed

    Zuo, Changyan; Cong, Chao; Wang, Shihui; Gu, Yan

    2015-10-01

    To compare the difference of corresponding age at cervical vertebral maturation (CVM) stages among different skeletal malocclusions and provide clinic guideline on optimal treatment timing for skeletal malocclusion. Based on ANB angle, 2 575 cephalograms collected from Department of Orthodontics, Peking University School and Hospital of Stomatology from May, 2006 to November, 2014 were classified into skeletal Class I (ANB 0°~5°, 1 317 subjects), Class II (ANB > 5°, 685 subjects) and Class III (ANB < 0°, 573 subjects) groups. CVM stages were evaluated with the modified version of CVM method. Independent sample t test was performed to analyze the difference of age at different CVM stages among various skeletal groups. Significant gender difference of age was found at CS3 to CS6 for skeletal Class I group (P < 0.05), at CS5 and CS6 for skeletal Class II group (P < 0.05), and at CS3 and CS5 for skeletal Class III group (P < 0.05). At CS3 stage, the average age of male in skeletal Class II and skeletal Class III groups was (11.6 ± 1.5) years old and (10.3 ± 1.9) years old, respectively; the average age of females in those two groups was (11.7 ± 1.3) years old and (9.3 ± 1.5) years old, respectively, and significant difference was found in both comparisons (P < 0.05). Compared average age at CS5 and CS6 between skeletal Class II and skeletal Class III groups [the ages of male was (15.1 ± 1.7) and (16.8 ± 1.6) years old, the ages of male was (14.6 ± 1.2) and (15.7 ± 2.5) years old], significant difference was also found (P < 0.05). Significant gender differences were found when evaluated CVM stage and age in skeletal Class I, II and III groups. Significant differences of age at different CVM stage was noted when skeletal Class II was compared with skeletal Class III groups.

  7. Sphingosine 1-Phosphate Receptor Modulators for the Treatment of Multiple Sclerosis.

    PubMed

    Chaudhry, Burhan Z; Cohen, Jeffrey A; Conway, Devon S

    2017-10-01

    Sphingosine 1-phosphate receptor (S1PR) modulators possess a unique mechanism of action in the treatment of multiple sclerosis (MS). Subtype 1 of the S1PR is expressed on the surface of lymphocytes and is important in regulating egression from lymph nodes. The S1PR modulators indirectly antagonize the receptor's function leading to sequestration of lymphocytes in the lymph nodes. Fingolimod was the first S1PR modulator to receive regulatory approval for relapsing-remitting MS after 2 phase III trials demonstrated potent efficacy, safety, and tolerability. Fingolimod can cause undesirable effects as a result of its interaction with other S1PR subtypes, which are expressed in diverse tissues, including cardiac myocytes. As such, agents that more selectively target subtype 1 of the S1PR are of interest and are at various stages of development. These include ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303. Data from phase II trials and early results from phase III studies have been promising and will be presented in this review. Of special interest are results from the EXPAND study of siponimod, which suggest a potential role for S1PR modulators in secondary progressive MS.

  8. Validation of the 12-Gene Colon Cancer Recurrence Score in NSABP C-07 As a Predictor of Recurrence in Patients With Stage II and III Colon Cancer Treated With Fluorouracil and Leucovorin (FU/LV) and FU/LV Plus Oxaliplatin

    PubMed Central

    Yothers, Greg; O'Connell, Michael J.; Lee, Mark; Lopatin, Margarita; Clark-Langone, Kim M.; Millward, Carl; Paik, Soonmyung; Sharif, Saima; Shak, Steven; Wolmark, Norman

    2013-01-01

    Purpose Accurate assessments of recurrence risk and absolute treatment benefit are needed to inform colon cancer adjuvant therapy. The 12-gene Recurrence Score assay has been validated in patients with stage II colon cancer from the Cancer and Leukemia Group B 9581 and Quick and Simple and Reliable (QUASAR) trials. We conducted an independent, prospectively designed clinical validation study of Recurrence Score, with prespecified end points and analysis plan, in archival specimens from patients with stage II and III colon cancer randomly assigned to fluorouracil (FU) or FU plus oxaliplatin in National Surgical Adjuvant Breast and Bowel Project C-07. Methods Recurrence Score was assessed in 892 fixed, paraffin-embedded tumor specimens (randomly selected 50% of patients with tissue). Data were analyzed by Cox regression adjusting for stage and treatment. Results Continuous Recurrence Score predicted recurrence (hazard ratio for a 25-unit increase in score, 1.96; 95% CI, 1.50 to 2.55; P < .001), as well as disease-free and overall survival (both P < .001). Recurrence Score predicted recurrence risk (P = .001) after adjustment for stage, mismatch repair, nodes examined, grade, and treatment. Recurrence Score did not have significant interaction with stage (P = .90) or age (P = .76). Relative benefit of oxaliplatin was similar across the range of Recurrence Score (interaction P = .48); accordingly, absolute benefit of oxaliplatin increased with higher scores, most notably in patients with stage II and IIIA/B disease. Conclusion The 12-gene Recurrence Score predicts recurrence risk in stage II and stage III colon cancer and provides additional information beyond conventional clinical and pathologic factors. Incorporating Recurrence Score into the clinical context may better inform adjuvant therapy decisions in stage III as well as stage II colon cancer. PMID:24220557

  9. Validation of the 12-gene colon cancer recurrence score in NSABP C-07 as a predictor of recurrence in patients with stage II and III colon cancer treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus oxaliplatin.

    PubMed

    Yothers, Greg; O'Connell, Michael J; Lee, Mark; Lopatin, Margarita; Clark-Langone, Kim M; Millward, Carl; Paik, Soonmyung; Sharif, Saima; Shak, Steven; Wolmark, Norman

    2013-12-20

    Accurate assessments of recurrence risk and absolute treatment benefit are needed to inform colon cancer adjuvant therapy. The 12-gene Recurrence Score assay has been validated in patients with stage II colon cancer from the Cancer and Leukemia Group B 9581 and Quick and Simple and Reliable (QUASAR) trials. We conducted an independent, prospectively designed clinical validation study of Recurrence Score, with prespecified end points and analysis plan, in archival specimens from patients with stage II and III colon cancer randomly assigned to fluorouracil (FU) or FU plus oxaliplatin in National Surgical Adjuvant Breast and Bowel Project C-07. Recurrence Score was assessed in 892 fixed, paraffin-embedded tumor specimens (randomly selected 50% of patients with tissue). Data were analyzed by Cox regression adjusting for stage and treatment. Continuous Recurrence Score predicted recurrence (hazard ratio for a 25-unit increase in score, 1.96; 95% CI, 1.50 to 2.55; P < .001), as well as disease-free and overall survival (both P < .001). Recurrence Score predicted recurrence risk (P = .001) after adjustment for stage, mismatch repair, nodes examined, grade, and treatment. Recurrence Score did not have significant interaction with stage (P = .90) or age (P = .76). Relative benefit of oxaliplatin was similar across the range of Recurrence Score (interaction P = .48); accordingly, absolute benefit of oxaliplatin increased with higher scores, most notably in patients with stage II and IIIA/B disease. The 12-gene Recurrence Score predicts recurrence risk in stage II and stage III colon cancer and provides additional information beyond conventional clinical and pathologic factors. Incorporating Recurrence Score into the clinical context may better inform adjuvant therapy decisions in stage III as well as stage II colon cancer.

  10. Gene Therapy for Infectious Diseases

    PubMed Central

    Bunnell, Bruce A.; Morgan, Richard A.

    1998-01-01

    Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent. PMID:9457428

  11. Hierarchical damage mechanisms in composite materials subjected to fatigue loadings

    NASA Astrophysics Data System (ADS)

    D'Amore, Alberto; Grassia, Luigi

    2018-02-01

    The strength degradation of fiber reinforced composites subjected to constant amplitude (CA) fatigue loadings can be described by a two-parameter residual strength model. From the analytical approach it results that under moderate loadings the multiple damage mechanisms develop with different kinetics and manifest their effectiveness at different time scales highlighting the three-Stage hierarchical nature of damage accumulation in composites. The model captures the sequence of damage accumulation mechanisms from diffuse matrix cracking (I), to fiber/matrix interface failure (II) to fiber and ply rupture and delamination (III). Further, by increasing the loading severity it appears that the different mechanisms superpose witnessing their simultaneous co-existence.

  12. EF5 in Measuring Tumor Hypoxia in Patients With Stage I-III Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2015-04-10

    Stage IA Non-Small Cell Lung Carcinoma; Stage IB Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  13. Combination Chemotherapy With or Without Oregovomab Followed by Stereotactic Body Radiation Therapy and Nelfinavir Mesylate in Treating Patients With Locally Advanced Pancreatic Cancer

    ClinicalTrials.gov

    2018-04-24

    Pancreatic Adenocarcinoma; Resectable Pancreatic Carcinoma; Stage I Pancreatic Cancer; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer

  14. VX15/2503 and Immunotherapy in Resectable Pancreatic and Colorectal Cancer

    ClinicalTrials.gov

    2017-12-26

    Colon Carcinoma Metastatic in the Liver; Colorectal Adenocarcinoma; Pancreatic Adenocarcinoma; Resectable Pancreatic Carcinoma; Stage I Pancreatic Cancer; Stage IA Pancreatic Cancer; Stage IB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage IIA Pancreatic Cancer; Stage IIB Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IV Colorectal Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer

  15. MK2206 in Treating Patients With Stage I, Stage II, or Stage III Breast Cancer

    ClinicalTrials.gov

    2017-08-01

    Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; HER2/Neu Positive; Progesterone Receptor Negative; Progesterone Receptor Positive; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-Negative Breast Carcinoma

  16. Exercise Intervention in Targeting Adiposity and Inflammation With Movement to Improve Prognosis in Breast Cancer

    ClinicalTrials.gov

    2018-05-01

    Cancer Survivor; Central Obesity; Estrogen Receptor Positive; Postmenopausal; Progesterone Receptor Positive; Stage I Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  17. Alisertib With or Without Fulvestrant in Treating Patients With Locally Advanced or Metastatic, Endocrine-Resistant Breast Cancer

    ClinicalTrials.gov

    2018-04-03

    Estrogen Receptor Status; HER2/Neu Negative; Invasive Breast Carcinoma; Postmenopausal; Stage III Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer

  18. Patient Preferences in Making Treatment Decisions in Patients With Stage I-IVA Oropharyngeal Cancer

    ClinicalTrials.gov

    2015-09-01

    Stage I Squamous Cell Carcinoma of the Oropharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Tongue Cancer

  19. FLT PET in Measuring Treatment Response in Patients With Newly Diagnosed Estrogen Receptor-Positive, HER2-Negative Stage I-III Breast Cancer

    ClinicalTrials.gov

    2018-04-13

    Estrogen Receptor Positive; HER2/Neu Negative; Male Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  20. Selumetinib in Treating Patients With Papillary Thyroid Cancer That Did Not Respond to Radioactive Iodine

    ClinicalTrials.gov

    2016-12-02

    Recurrent Thyroid Gland Carcinoma; Stage I Thyroid Gland Papillary Carcinoma; Stage II Thyroid Gland Papillary Carcinoma; Stage III Thyroid Gland Papillary Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma

  1. Reduced-Dose Intensity-Modulated Radiation Therapy With or Without Cisplatin in Treating Patients With Advanced Oropharyngeal Cancer

    ClinicalTrials.gov

    2018-01-08

    Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Stage IVB Oropharyngeal Squamous Cell Carcinoma; Stage IVC Oropharyngeal Squamous Cell Carcinoma; Tongue Carcinoma

  2. Oblimersen in Treating Patients With Merkel Cell Carcinoma

    ClinicalTrials.gov

    2013-06-03

    Recurrent Neuroendocrine Carcinoma of the Skin; Stage I Neuroendocrine Carcinoma of the Skin; Stage II Neuroendocrine Carcinoma of the Skin; Stage III Neuroendocrine Carcinoma of the Skin; Stage IV Neuroendocrine Carcinoma of the Skin

  3. Low Tumor Infiltrating Mast Cell Density Confers Prognostic Benefit and Reflects Immunoactivation in Colorectal Cancer.

    PubMed

    Mao, Yihao; Feng, Qingyang; Zheng, Peng; Yang, Liangliang; Zhu, Dexiang; Chang, Wenju; Ji, Meiling; He, Guodong; Xu, Jianmin

    2018-06-06

    The role of mast cells (MCs) in colorectal cancer (CRC) progression was controversial. Thus, this study was designed to evaluate the prognostic value of MCs as well as their correlation with immune microenvironment. A retrospective cohort of CRC patients of stage I-IV was enrolled in this study. 854 consecutive patients were divided into training set (427 patients) and validation set (427 patients) randomly. The findings were further validated in a GEO cohort, GSE39582 (556 patients). The mast cell density (MCD) was measured by immunohistochemical staining of tryptase or by CIBERSORT algorithm. Low MCD predicted prolonged overall survival (OS) in training and validation set. Moreover, MCD was identified as an independent prognostic indicator in both sets. Better stratification for CRC prognosis can be achieved by building a MCD based nomogram. The prognostic role of MCD was further validated in GSE39582. In addition, MCD predicted improved survival in stage II and III CRC patients receiving adjuvant chemotherapy (ACT). Multiple immune pathways were enriched in low MCD group while cytokines/chemokines promoting anti-tumor immunity were highly expressed in such group. Furthermore, MCD was negatively correlated with CD8+ T cells infiltration. In conclusion, MCD was identified as an independent prognostic factor, as well as a potential biomarker for ACT benefit in stage II and III CRC. Better stratification of CRC prognosis could be achieved by building a MCD based nomogram. Moreover, immunoactivation in low MCD tumors may contributed to improved prognosis. This article is protected by copyright. All rights reserved. © 2018 UICC.

  4. Intravital Microscopy in Evaluating Patients With Primary Peritoneal, Fallopian Tube, or Stage IA-IV Ovarian Cancer

    ClinicalTrials.gov

    2018-06-20

    Fallopian Tube Carcinoma; Primary Peritoneal Carcinoma; Stage I Ovarian Cancer; Stage IA Ovarian Cancer; Stage IB Ovarian Cancer; Stage IC Ovarian Cancer; Stage II Ovarian Cancer; Stage IIA Ovarian Cancer; Stage IIB Ovarian Cancer; Stage IIC Ovarian Cancer; Stage III Ovarian Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Ovarian Cancer; Stage IV Ovarian Cancer

  5. A modified varying-stage adaptive phase II/III clinical trial design.

    PubMed

    Dong, Gaohong; Vandemeulebroecke, Marc

    2016-07-01

    Conventionally, adaptive phase II/III clinical trials are carried out with a strict two-stage design. Recently, a varying-stage adaptive phase II/III clinical trial design has been developed. In this design, following the first stage, an intermediate stage can be adaptively added to obtain more data, so that a more informative decision can be made. Therefore, the number of further investigational stages is determined based upon data accumulated to the interim analysis. This design considers two plausible study endpoints, with one of them initially designated as the primary endpoint. Based on interim results, another endpoint can be switched as the primary endpoint. However, in many therapeutic areas, the primary study endpoint is well established. Therefore, we modify this design to consider one study endpoint only so that it may be more readily applicable in real clinical trial designs. Our simulations show that, the same as the original design, this modified design controls the Type I error rate, and the design parameters such as the threshold probability for the two-stage setting and the alpha allocation ratio in the two-stage setting versus the three-stage setting have a great impact on the design characteristics. However, this modified design requires a larger sample size for the initial stage, and the probability of futility becomes much higher when the threshold probability for the two-stage setting gets smaller. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Proposal of a novel system for the staging of thymic epithelial tumors.

    PubMed

    Bedini, Amedeo Vittorio; Andreani, Stefano Michele; Tavecchio, Luca; Fabbri, Alessandra; Giardini, Roberto; Camerini, Tiziana; Bufalino, Rosaria; Morabito, Alberto; Rosai, Juan

    2005-12-01

    We designed and assessed a new TNM staging system (herein called the INT [Istituto Nazionale Tumori] system) for thymic epithelial tumors in order to overcome the perceived drawbacks of Masaoka's system, which represents the current standard. In all, 123 cases were evaluated. The histologic types according to the World Health Organization (WHO) classification were as follows: subtype A: 5 cases; AB: 40; B1: 16; B2: 29; B3: 16; and C: 17 cases. There were 45 Masaoka's stage I, 33 stage II, 26 stage III, and 19 stage IV cases. A total of 11 INT definitions were grouped into three stages: locally restricted disease (75 cases), which included Masaoka's stage I and selected stage II cases (no pleural invasion); locally advanced disease (37 cases), which included Masaoka's stage III cases plus those staged II owing to pleural invasion and those staged IV owing to intrathoracic nodal or limited pleuropericardial involvement; and systemic disease (11 cases), which included the remaining Masaoka's stage IV cases. Completeness of resection, WHO types, and both staging systems were significant prognostic factors (p < 0.0001) on univariate analysis. The 95-month progression-free survival rates according to Masaoka's system were stage I: 100%; II: 93.6%; III: 46.3%; and IV: 23.2%. The INT system corresponding figures were as follows: locally restricted disease: 98.6%; locally advanced disease: 46.9%; and systemic disease: 11.7%. The INT system was the prognostic factor with the greatest impact (p = 0.0218) on multivariate analysis (Masaoka's system: p = 0.2012; completeness of resection: p = 0.6855; histology: p = 0.9386). The INT system allows finer disease descriptions than Masaoka's system, resulting in a stage grouping with higher prognostic distinctiveness.

  7. MRI and PET Imaging in Predicting Treatment Response in Patients With Stage IB-IVA Cervical Cancer

    ClinicalTrials.gov

    2018-06-18

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma, Not Otherwise Specified; Cervical Undifferentiated Carcinoma; Recurrent Cervical Carcinoma; Stage IB2 Cervical Cancer; Stage II Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IIIA Cervical Cancer; Stage IIIB Cervical Cancer; Stage IVA Cervical Cancer

  8. Tumor cavitation in patients with stage III non-small-cell lung cancer undergoing concurrent chemoradiotherapy: incidence and outcomes.

    PubMed

    Phernambucq, Erik C J; Hartemink, Koen J; Smit, Egbert F; Paul, Marinus A; Postmus, Pieter E; Comans, Emile F I; Senan, Suresh

    2012-08-01

    Commonly reported complications after concurrent chemoradiotherapy (CCRT) in patients with stage III non-small-cell lung cancer (NSCLC) include febrile neutropenia, radiation esophagitis, and pneumonitis. We studied the incidence of tumor cavitation and/or "tumor abscess" after CCRT in a single-institutional cohort. Between 2003 and 2010, 87 patients with stage III NSCLC underwent cisplatin-based CCRT and all subsequent follow-up at the VU University Medical Center. Diagnostic and radiotherapy planning computed tomography scans were reviewed for tumor cavitation, which was defined as a nonbronchial air-containing cavity located within the primary tumor. Pulmonary toxicities scored as Common Toxicity Criteria v3.0 of grade III or more, occurring within 90 days after end of radiotherapy, were analyzed. In the entire cohort, tumor cavitation was observed on computed tomography scans of 16 patients (18%). The histology in cavitated tumors was squamous cell (n = 14), large cell (n = 1), or adenocarcinoma (n = 1). Twenty patients (23%) experienced pulmonary toxicity of grade III or more, other than radiation pneumonitis. Eight patients with a tumor cavitation (seven squamous cell carcinoma) developed severe pulmonary complications; tumor abscess (n = 5), fatal hemorrhage (n = 2), and fatal embolism (n = 1). Two patients with a tumor abscess required open-window thoracostomy post-CCRT. The median overall survival for patients with or without tumor cavitation were 9.9 and 16.3 months, respectively (p = 0.09). With CCRT, acute pulmonary toxicity of grade III or more developed in 50% of patients with stage III NSCLC, who also had radiological features of tumor cavitation. The optimal treatment of patients with this presentation is unclear given the high risk of a tumor abscess.

  9. The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis☆

    PubMed Central

    Stark, Mitchell S.; Klein, Kerenaftali; Weide, Benjamin; Haydu, Lauren E.; Pflugfelder, Annette; Tang, Yue Hang; Palmer, Jane M.; Whiteman, David C.; Scolyer, Richard A.; Mann, Graham J.; Thompson, John F.; Long, Georgina V.; Barbour, Andrew P.; Soyer, H. Peter; Garbe, Claus; Herington, Adrian; Pollock, Pamela M.; Hayward, Nicholas K.

    2015-01-01

    The overall 5-year survival for melanoma is 91%. However, if distant metastasis occurs (stage IV), cure rates are < 15%. Hence, melanoma detection in earlier stages (stages I–III) maximises the chances of patient survival. We measured the expression of a panel of 17 microRNAs (miRNAs) (MELmiR-17) in melanoma tissues (stage III; n = 76 and IV; n = 10) and serum samples (collected from controls with no melanoma, n = 130; and patients with melanoma (stages I/II, n = 86; III, n = 50; and IV, n = 119)) obtained from biobanks in Australia and Germany. In melanoma tissues, members of the ‘MELmiR-17’ panel were found to be predictors of stage, recurrence, and survival. Additionally, in a minimally-invasive blood test, a seven-miRNA panel (MELmiR-7) detected the presence of melanoma (relative to controls) with high sensitivity (93%) and specificity (≥ 82%) when ≥ 4 miRNAs were expressed. Moreover, the ‘MELmiR-7’ panel characterised overall survival of melanoma patients better than both serum LDH and S100B (delta log likelihood = 11, p < 0.001). This panel was found to be superior to currently used serological markers for melanoma progression, recurrence, and survival; and would be ideally suited to monitor tumour progression in patients diagnosed with early metastatic disease (stages IIIa–c/IV M1a–b) to detect relapse following surgical or adjuvant treatment. PMID:26288839

  10. Indian girls have higher bone mineral content per unit of lean body than boys through puberty.

    PubMed

    Khadilkar, Anuradha V; Sanwalka, Neha; Mughal, M Zulf; Chiplonkar, Shashi; Khadilkar, Vaman

    2018-05-01

    Our aim is to describe changes in the muscle-bone unit assessed as a ratio of bone mineral content (BMC) to lean body mass (LBM) through puberty at total body and various skeletal sites in Indian boys and girls. A cross-sectional study was conducted (888 children, 480 boys, aged 5-17 years) in Pune, India. Pubertal staging was assessed. BMC, LBM and fat percentage at the arms, legs, android, gynoid and total body (less the head) were assessed by dual energy X-ray absorptiometry. The amount of BMC per unit LBM (BMC/LBM) was computed. Changes in mean BMC/LBM at 5 Tanner (pubertal) stages after adjustment for age and fat percentage were calculated. In boys, adjusted BMC/LBM was significantly higher with successive Tanner stages [legs (TS-II vs TS-I), android (TS-III vs TS-II, TS-IV vs TS-III) and gynoid region (TS-III vs TS-II and TS-II vs TS-I) (p < 0.05)]. In girls, adjusted BMC/LBM was significantly higher with successive Tanner stages at total body, legs and gynoid (TS-III vs TS-II; TS-II vs TS-I; TS-V vs TS-IV), arms (TS-I to TS-V) and android regions (TS-V vs TS-IV) (p < 0.05). Boys had significantly higher adjusted BMC/LBM than girls at earlier Tanner stages (TS-I to TS-III), whereas girls had significantly higher adjusted BMC/LBM than boys at later Tanner stages (TS-IV, TS-V) (p < 0.05). Indian boys and girls showed higher total and regional body, and age- and fat percentage-adjusted BMC/LBM with successive pubertal stages. Girls had higher BMC/LBM than boys which may possibly act as a reservoir for later demands of pregnancy and lactation.

  11. Short Course Vaginal Cuff Brachytherapy in Treating Patients With Stage I-II Endometrial Cancer

    ClinicalTrials.gov

    2018-04-17

    Endometrial Clear Cell Adenocarcinoma; Endometrial Endometrioid Adenocarcinoma; Endometrial Serous Adenocarcinoma; Stage I Uterine Corpus Cancer; Stage IA Uterine Corpus Cancer; Stage IB Uterine Corpus Cancer; Stage II Uterine Corpus Cancer; Uterine Corpus Carcinosarcoma; Uterine Corpus Sarcoma

  12. Carfilzomib, Rituximab, and Combination Chemotherapy in Treating Patients With Diffuse Large B-Cell Lymphoma

    ClinicalTrials.gov

    2018-05-16

    Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma

  13. Biomarkers in Tissue Samples From Patients With High-Risk Wilms Tumor

    ClinicalTrials.gov

    2016-05-17

    Clear Cell Sarcoma of the Kidney; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Rhabdoid Tumor of the Kidney; Stage I Wilms Tumor; Stage II Wilms Tumor; Stage III Wilms Tumor; Stage IV Wilms Tumor; Stage V Wilms Tumor

  14. Gamma-Secretase Inhibitor RO4929097 and Cediranib Maleate in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-12-22

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Solid Neoplasm; Male Breast Carcinoma; Recurrent Adult Brain Neoplasm; Recurrent Breast Carcinoma; Recurrent Colon Carcinoma; Recurrent Melanoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Carcinoma; Recurrent Rectal Carcinoma; Recurrent Renal Cell Carcinoma; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Breast Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Breast Cancer; Stage IIIC Colon Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  15. Obatoclax, Fludarabine, and Rituximab in Treating Patients With Previously Treated Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  16. Screening or Symptoms? How Do We Detect Colorectal Cancer in an Equal Access Health Care System?

    PubMed

    Hatch, Quinton M; Kniery, Kevin R; Johnson, Eric K; Flores, Shelly A; Moeil, David L; Thompson, John J; Maykel, Justin A; Steele, Scott R

    2016-02-01

    Detection of colorectal cancer ideally occurs at an early stage through proper screening. We sought to establish methods by which colorectal cancers are diagnosed within an equal access military health care population and evaluate the correlation between TNM stage at colorectal cancer diagnosis and diagnostic modality (i.e., symptomatic detection vs screen detection). A retrospective chart review of all newly diagnosed colorectal cancer patients from January 2007 to August 2014 was conducted at the authors' equal access military institution. We evaluated TNM stage relative to diagnosis by screen detection (fecal occult blood test, flexible sigmoidoscopy, CT colonography, colonoscopy) or symptomatic evaluation (diagnostic colonoscopy or surgery). Of 197 colorectal cancers diagnosed (59 % male; mean age 62 years), 50 (25 %) had stage I, 47 (24 %) had stage II, 70 (36 %) had stage III, and 30 (15 %) had stage IV disease. Twenty-five percent of colorectal cancers were detected via screen detection (3 % by fecal occult blood testing (FOBT), 0.5 % by screening CT colonography, 17 % by screening colonoscopy, and 5 % by surveillance colonoscopy). One hundred forty-eight (75 %) were diagnosed after onset of signs or symptoms. The preponderance of these was advanced-stage disease (stages III-IV), although >50 % of stage I-II disease also had signs or symptoms at diagnosis. The most common symptoms were rectal bleeding (45 %), abdominal pain (35 %), and change in stool caliber (27 %). The most common overall sign was anemia (60 %). Screening FOBT (odds ratio (OR) 8.7, 95 % confidence interval (CI) 1.0-78.3; P = 0.05) independently predicted early diagnosis with stage I-II disease. Patient gender and ethnicity were not associated with cancer stage at diagnosis. Despite equal access to colorectal cancer screening, diagnosis after development of symptomatic cancer remains more common. Fecal occult blood screen detection is associated with early stage at colorectal cancer diagnosis and is the focus for future initiatives.

  17. Obesity Cardiometabolic Comorbidity Prevalence in Children in a Rural Weight-Management Program.

    PubMed

    O'Hara, Valerie; Browne, Nancy; Fathima, Samreen; Sorondo, Barbara; Bayleran, Janet; Johnston, Starr; Hastey, Kathrin

    2017-01-01

    This descriptive study examines the prevalence of obesity-related cardiometabolic (CM) risk factors using CM laboratory metrics, in 3 to 19 year olds presenting to a rural American Academy of Pediatrics stage 3 multidisciplinary weight management clinic based on gender, age ranges, and obesity classes. From 2009 to 2016, 382 children (body mass index ≥85th percentile) enrolled. Multiple logistic regression determined the effects of age, gender, or obesity class on CM risk factors. Odds of elevated insulin were more significant in 15 to 19 year olds than in 3 to 5 year olds, or in 6 to 11 year olds. Obesity class III had higher odds than class II, class I, and overweight in having elevated insulin; twice likely than class II for having low high-density lipoprotein; and twice as likely than class I for high triglycerides. Adolescents and obesity class III categories have significant CM risk but the burden in younger and less severe obesity cohorts cannot be underestimated.

  18. Methoxyamine and Fludarabine Phosphate in Treating Patients With Relapsed or Refractory Hematologic Malignancies

    ClinicalTrials.gov

    2015-08-12

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Chronic Lymphocytic Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  19. Temporal patterns of care and outcomes of non-small cell lung cancer patients in the United States diagnosed in 1996, 2005, and 2010.

    PubMed

    Kaniski, Filip; Enewold, Lindsey; Thomas, Anish; Malik, Shakuntala; Stevens, Jennifer L; Harlan, Linda C

    2017-01-01

    Lung cancer remains a common and deadly cancer in the United States. This study evaluated factors associated with stage-specific cancer therapy and survival focusing on temporal trends and sociodemographic disparities. A random sample (n=3,318) of non-small cell lung cancer (NSCLC) patients diagnosed in 1996, 2005 and 2010, and reported to the National Cancer Institute's Surveillance Epidemiology and End Results (SEER) program was analyzed. Logistic regression was utilized to identify factors associated with receipt of surgery among stage I/II patients and chemotherapy among stage IIIB/IV patients. Cox proportional hazard regression was utilized to assess factors associated with all-cause mortality, stratified by stage. Surgery among stage I/II patients decreased non-significantly overtime (1996: 78.8%; 2010: 68.5%; p=0.18), whereas receipt of chemotherapy among stage IIIB/IV patients increased significantly overtime (1996: 36.1%; 2010: 51.2%; p<0.01). Receipt of surgery (70-79 and ≥80 vs. <70: Odds Ratio(OR):0.31; 95% Confidence Interval (CI): 0.16-0.63 and OR:0.04; 95% CI: 0.02-0.10, respectively) and chemotherapy (≥80 vs. <70: OR: 0.26; 95% CI:0.15-0.45) was less likely among older patients. Median survival improved non-significantly among stage I/II patients from 51 to 64 months (p=0.75) and significantly among IIIB/IV patients from 4 to 5 months (p<0.01). Treatment disparities were observed in both stage groups, notably among older patients. Among stage I/II patients, survival did not change significantly possibly due to stable surgery utilization. Among stage IIIB/IV patients, although the use of chemotherapy increased and survival improved, the one-month increase in median survival highlights the need for addition research. Published by Elsevier Ireland Ltd.

  20. Clinical Significance of the Champagne Bottle Neck Sign in the Extracranial Carotid Arteries of Patients with Moyamoya Disease.

    PubMed

    Yasuda, C; Arakawa, S; Shimogawa, T; Kanazawa, Y; Sayama, T; Haga, S; Morioka, T

    2016-05-26

    The champagne bottle neck sign represents a rapid reduction in the extracranial ICA diameters and is a characteristic feature of Moyamoya disease. However, the clinical significance of the champagne bottle neck sign is unclear. We investigated the relationship between the champagne bottle neck sign and the clinical and hemodynamic stages of Moyamoya disease. We analyzed 14 patients with Moyamoya disease before revascularization (5 men, 9 women; age, 43.2 ± 19.3 years). The ratio of the extracranial ICA and common carotid artery diameters was determined using carotid ultrasonography or cerebral angiography; a ratio of < 0.5 was considered champagne bottle neck sign-positive. The clinical disease stage was determined using the Suzuki angiographic grading system. CBF and cerebral vasoreactivity also were measured. The ICA/common carotid artery ratio (expressed as median [interquartile range]) decreased as the clinical stage advanced (stages I-II, 0.71 [0.60-0.77]; stages III-IV, 0.49 [0.45-0.57]; stages V-VI, 0.38 [0.34-0.47]; P < .001). Lower ICA/common carotid artery ratio tended to occur in symptomatic versus asymptomatic arteries (0.47 [0.40-0.53] versus 0.57 [0.40-0.66], respectively; P = .06). Although the ICA/common carotid artery ratio was not related to cerebral perfusion, it decreased as cerebral vasoreactivity decreased (P < .01). All champagne bottle neck sign-positive arteries were classified as Suzuki stage ≥III, 73% were symptomatic, and 89% exhibited reduced cerebral vasoreactivity. In contrast, all champagne bottle neck sign-negative arteries were Suzuki stage ≤III, 67% were asymptomatic, and all showed preserved cerebral vasoreactivity. The champagne bottle neck sign was related to advanced clinical stage, clinical symptoms, and impaired cerebral vasoreactivity. Thus, detection of the champagne bottle neck sign might be useful in determining the clinical and hemodynamic stages of Moyamoya disease. © 2016 American Society of Neuroradiology.

Top