Sample records for stage iv rectal

  1. Health Care Coach Support in Reducing Acute Care Use and Cost in Patients With Cancer

    ClinicalTrials.gov

    2017-05-12

    Acute Myeloid Leukemia; Brain Glioblastoma; Estrogen Receptor Negative; Extensive Stage Small Cell Lung Carcinoma; Head and Neck Carcinoma; HER2/Neu Negative; Hormone-Resistant Prostate Cancer; Limited Stage Small Cell Lung Carcinoma; Myelodysplastic Syndrome; Progesterone Receptor Negative; Progressive Disease; Recurrent Carcinoma; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage IIA Pancreatic Cancer; Stage IIA Rectal Cancer; Stage IIB Pancreatic Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage III Colon Cancer; Stage III Esophageal Cancer; Stage III Gastric Cancer; Stage III Non-Small Cell Lung Cancer; Stage III Ovarian Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Skin Melanoma; Stage IIIA Colon Cancer; Stage IIIA Esophageal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Colon Cancer; Stage IIIB Esophageal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Colon Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Bone Sarcoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IV Soft Tissue Sarcoma; Stage IVA Bone Sarcoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Bone Sarcoma; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Triple-Negative Breast Carcinoma

  2. Vaccine Therapy in Treating Patients With Colorectal, Stomach, or Pancreatic Cancer

    ClinicalTrials.gov

    2017-07-28

    Recurrent Colon Cancer; Recurrent Gastric Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer

  3. Telomere Length in Predicting Toxicity in Older Patients With Stage III-IV Colorectal Cancer Undergoing Chemotherapy

    ClinicalTrials.gov

    2018-02-06

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IIIA Colon Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IV Colon Cancer; Stage IV Rectal Cancer

  4. Gamma-Secretase Inhibitor RO4929097 and Cediranib Maleate in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-12-22

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Solid Neoplasm; Male Breast Carcinoma; Recurrent Adult Brain Neoplasm; Recurrent Breast Carcinoma; Recurrent Colon Carcinoma; Recurrent Melanoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Carcinoma; Recurrent Rectal Carcinoma; Recurrent Renal Cell Carcinoma; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Skin Melanoma; Stage IIIB Breast Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Skin Melanoma; Stage IIIC Breast Cancer; Stage IIIC Colon Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Skin Melanoma; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  5. Trametinib and TAS-102 in Treating Patients With Colon or Rectal Cancer That is Advanced, Metastatic, or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-07

    RAS Family Gene Mutation; Stage III Colon Cancer AJCC v7; Stage III Colorectal Cancer AJCC v7; Stage III Rectal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Rectal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Stage IVB Rectal Cancer AJCC v7

  6. Ropidoxuridine in Treating Patients With Advanced Gastrointestinal Cancer Undergoing Radiation Therapy

    ClinicalTrials.gov

    2018-03-02

    Advanced Bile Duct Carcinoma; Stage II Esophageal Cancer AJCC v7; Stage II Pancreatic Cancer AJCC v6 and v7; Stage IIA Esophageal Cancer AJCC v7; Stage IIA Pancreatic Cancer AJCC v6 and v7; Stage IIB Esophageal Cancer AJCC v7; Stage IIB Pancreatic Cancer AJCC v6 and v7; Stage III Colon Cancer AJCC v7; Stage III Esophageal Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage III Liver Cancer; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Rectal Cancer AJCC v7; Stage III Small Intestinal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Esophageal Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIA Small Intestinal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Esophageal Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIB Small Intestinal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Esophageal Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Esophageal Cancer AJCC v7; Stage IV Gastric Cancer AJCC v7; Stage IV Liver Cancer; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Rectal Cancer AJCC v7; Stage IV Small Intestinal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Liver Cancer; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Liver Cancer; Stage IVB Rectal Cancer AJCC v7

  7. Family Caregiver Palliative Care Intervention in Supporting Caregivers of Patients With Stage II-IV Gastrointestinal, Gynecologic, Urologic and Lung Cancers

    ClinicalTrials.gov

    2018-02-12

    Healthy Subject; Localized Transitional Cell Cancer of the Renal Pelvis and Ureter; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Psychosocial Effects of Cancer and Its Treatment; Recurrent Bladder Cancer; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Gastric Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Uterine Sarcoma; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage II Bladder Cancer; Stage II Renal Cell Cancer; Stage II Urethral Cancer; Stage IIA Cervical Cancer; Stage IIA Colon Cancer; Stage IIA Gastric Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIA Pancreatic Cancer; Stage IIA Rectal Cancer; Stage IIA Uterine Sarcoma; Stage IIB Cervical Cancer; Stage IIB Colon Cancer; Stage IIB Gastric Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIB Pancreatic Cancer; Stage IIB Rectal Cancer; Stage IIB Uterine Sarcoma; Stage IIC Colon Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIC Rectal Cancer; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage III Renal Cell Cancer; Stage III Urethral Cancer; Stage IIIA Cervical Cancer; Stage IIIA Colon Cancer; Stage IIIA Gastric Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Rectal Cancer; Stage IIIA Uterine Sarcoma; Stage IIIB Cervical Cancer; Stage IIIB Colon Cancer; Stage IIIB Gastric Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Rectal Cancer; Stage IIIB Uterine Sarcoma; Stage IIIC Colon Cancer; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Rectal Cancer; Stage IIIC Uterine Sarcoma; Stage IV Bladder Cancer; Stage IV Gastric Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IV Urethral Cancer; Stage IVA Cervical Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVA Uterine Sarcoma; Stage IVB Cervical Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Stage IVB Uterine Sarcoma; Ureter Cancer; Stage IIA Lung Carcinoma; Stage IIB Lung Carcinoma; Stage IIIA Lung Carcinoma; Stage IIIB Lung Carcinoma

  8. S1613, Trastuzumab and Pertuzumab or Cetuximab and Irinotecan Hydrochloride in Treating Patients With Locally Advanced or Metastatic HER2/Neu Amplified Colorectal Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-09

    Colon Adenocarcinoma; ERBB2 Gene Amplification; Rectal Adenocarcinoma; Recurrent Colon Carcinoma; Recurrent Rectal Carcinoma; Stage III Colon Cancer AJCC v7; Stage III Rectal Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Colon Cancer AJCC v7; Stage IV Rectal Cancer AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Rectal Cancer AJCC v7

  9. Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-03-07

    Male Breast Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Tumors Metastatic to Brain

  10. Talimogene Laherparepvec, Capecitabine, and Chemoradiation Before Surgery in Treating Patients With Locally Advanced or Metastatic Rectal Cancer

    ClinicalTrials.gov

    2018-04-30

    Rectal Adenocarcinoma; Stage III Rectal Cancer AJCC v7; Stage IIIA Rectal Cancer AJCC v7; Stage IIIB Rectal Cancer AJCC v7; Stage IIIC Rectal Cancer AJCC v7; Stage IV Rectal Cancer AJCC v7; Stage IVA Rectal Cancer AJCC v7; Stage IVB Rectal Cancer AJCC v7

  11. Vaccine Therapy and Sargramostim With or Without Docetaxel in Treating Patients With Metastatic Lung Cancer or Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2014-03-28

    Extensive Stage Small Cell Lung Cancer; Recurrent Colon Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Rectal Cancer; Recurrent Small Cell Lung Cancer; Stage IV Colon Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Rectal Cancer

  12. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Uterine Sarcoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  13. Pan FGFR Kinase Inhibitor BGJ398 and Combination Chemotherapy in Treating Patients With Untreated Metastatic Pancreatic Cancer

    ClinicalTrials.gov

    2016-05-19

    Colon Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Rectal Adenocarcinoma; Stage III Pancreatic Cancer; Stage IIIA Colon Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IV Pancreatic Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  14. Chemoembolization Using Irinotecan in Treating Patients With Liver Metastases From Metastatic Colon or Rectal Cancer

    ClinicalTrials.gov

    2015-09-10

    Liver Metastases; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IV Colon Cancer; Stage IV Rectal Cancer

  15. Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer

    ClinicalTrials.gov

    2013-01-24

    Adenocarcinoma of the Colon; Adenocarcinoma of the Gallbladder; Adenocarcinoma of the Pancreas; Adenocarcinoma of the Rectum; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Gallbladder; Diffuse Adenocarcinoma of the Stomach; Intestinal Adenocarcinoma of the Stomach; Male Breast Cancer; Mixed Adenocarcinoma of the Stomach; Ovarian Endometrioid Adenocarcinoma; Paget Disease of the Breast With Intraductal Carcinoma; Paget Disease of the Breast With Invasive Ductal Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Salivary Gland Adenocarcinoma; Stage II Malignant Testicular Germ Cell Tumor; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Gallbladder Cancer

  16. Phase II Trial of FOLFOX6, Bevacizumab and Cetuximab in Patients With Colorectal Cancer

    ClinicalTrials.gov

    2015-06-26

    Adenocarcinoma of the Rectum; Mucinous Adenocarcinoma of the Colon; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Stage IV Colon Cancer; Stage IV Rectal Cancer

  17. Panitumumab and Chemotherapy in Patients With Advanced Colorectal Cancer After Prior Therapy With Bevacizumab

    ClinicalTrials.gov

    2018-02-01

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IV Colon Cancer; Stage IV Rectal Cancer

  18. Ziv-Aflibercept Followed by Ziv-Aflibercept, Fluorouracil, and Leucovorin Calcium in Treating Patients With Stage IV Colorectal Cancer

    ClinicalTrials.gov

    2015-05-04

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  19. Genotype-guided Dosing of mFOLFIRINOX Chemotherapy in Patients With Previously Untreated Advanced Gastrointestinal Malignancies

    ClinicalTrials.gov

    2018-03-08

    Acinar Cell Adenocarcinoma of the Pancreas; Adenocarcinoma of the Gallbladder; Adenocarcinoma of Unknown Primary; Adult Primary Cholangiocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Diffuse Adenocarcinoma of the Stomach; Duct Cell Adenocarcinoma of the Pancreas; Intestinal Adenocarcinoma of the Stomach; Localized Unresectable Adult Primary Liver Cancer; Metastatic Carcinoma of Unknown Primary; Metastatic Extrahepatic Bile Duct Cancer; Mixed Adenocarcinoma of the Stomach; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Newly Diagnosed Carcinoma of Unknown Primary; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage III Pancreatic Cancer; Stage IIIA Colon Cancer; Stage IIIA Gallbladder Cancer; Stage IIIA Gastric Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Gallbladder Cancer; Stage IIIB Gastric Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Gastric Cancer; Stage IIIC Rectal Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IVA Colon Cancer; Stage IVA Gallbladder Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Gallbladder Cancer; Stage IVB Rectal Cancer; Unresectable Extrahepatic Bile Duct Cancer

  20. Cetuximab and/or Dasatinib in Patients With Colorectal Cancer and Liver Metastases That Can Be Removed by Surgery

    ClinicalTrials.gov

    2014-05-07

    Liver Metastases; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IV Colon Cancer; Stage IV Rectal Cancer

  1. Gefitinib and Combination Chemotherapy in Treating Patients With Advanced or Recurrent Colorectal Cancer

    ClinicalTrials.gov

    2013-01-15

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IV Colon Cancer; Stage IV Rectal Cancer

  2. Differential Impact of Anastomotic Leak in Patients With Stage IV Colonic or Rectal Cancer: A Nationwide Cohort Study.

    PubMed

    Nordholm-Carstensen, Andreas; Rolff, Hans Christian; Krarup, Peter-Martin

    2017-05-01

    Anastomotic leak has a negative impact on the prognosis of patients who undergo colorectal cancer resection. However, data on anastomotic leak are limited for stage IV colorectal cancers. The purpose of this study was to investigate the impact of anastomotic leak on survival and the decision to administer chemotherapy and/or metastasectomy after elective surgery for stage IV colorectal cancer. This was a nationwide, retrospective cohort study. Data were obtained from the Danish Colorectal Cancer Group, the Danish Pathology Registry, and the National Patient Registry. Patients who were diagnosed with stage IV colorectal cancer between 2009 and 2013 and underwent elective resection of their primary tumors were included. The primary outcome was all-cause mortality depending on the occurrence of anastomotic leak. Secondary outcomes were the administration of and time to adjuvant chemotherapy, metastasectomy rate, and risk factors for leak. Of the 774 patients with stage IV colorectal cancer who were included, 71 (9.2%) developed anastomotic leaks. Anastomotic leak had a significant impact on the long-term survival of patients with colon cancer (p = 0.04) but not on those with rectal cancer (p = 0.91). Anastomotic leak was followed by the decreased administration of adjuvant chemotherapy in patients with colon cancer (p = 0.007) but not in patients with rectal cancer (p = 0.47). Finally, anastomotic leak had a detrimental impact on metastasectomy rates after colon cancer but not on resection rates of rectal cancer. Retrospective data on the selection criteria for primary tumor resection and metastatic tumor load were unavailable. The impact of anastomotic leak on patients differed between stage IV colon and rectal cancers. Survival and eligibility to receive chemotherapy and metastasectomy differed between patients with colon and rectal cancers. When planning for primary tumor resection, these factors should be considered.

  3. Aflibercept and FOLFOX6 Treatment for Previously Untreated Stage IV Colorectal Cancer

    ClinicalTrials.gov

    2018-05-23

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IV Colon Cancer; Stage IV Rectal Cancer

  4. PHASE II TRIAL OF THE CYCLIN-DEPEDENT KINASE INHIBITOR PD 0332991 IN PATIENTS WITH CANCER

    ClinicalTrials.gov

    2016-08-24

    Adult Solid Tumor; Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Benign Teratoma; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; Familial Testicular Germ Cell Tumor; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Ovarian Immature Teratoma; Ovarian Mature Teratoma; Ovarian Monodermal and Highly Specialized Teratoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Extragonadal Germ Cell Tumor; Recurrent Extragonadal Non-seminomatous Germ Cell Tumor; Recurrent Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Melanoma; Recurrent Ovarian Germ Cell Tumor; Recurrent Rectal Cancer; Stage III Extragonadal Non-seminomatous Germ Cell Tumor; Stage III Extragonadal Seminoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Extragonadal Non-seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Melanoma; Stage IV Ovarian Germ Cell Tumor; Stage IV Rectal Cancer; Testicular Immature Teratoma; Testicular Mature Teratoma

  5. RO4929097 and Capecitabine in Treating Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2014-11-06

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; HER2-negative Breast Cancer; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Male Breast Cancer; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Rectal Cancer; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Colon Cancer; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Rectal Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Rectal Cancer; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  6. Erlotinib and Cetuximab With or Without Bevacizumab in Treating Patients With Metastatic or Unresectable Kidney, Colorectal, Head and Neck, Pancreatic, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2014-06-10

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Colon Cancer; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  7. Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu

    ClinicalTrials.gov

    2013-02-27

    Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Skin Metastases; Small Intestine Adenocarcinoma; Somatostatinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Adrenocortical Carcinoma; Stage III Bladder Cancer; Stage III Cervical Cancer; Stage III Colon Cancer; Stage III Endometrial Carcinoma; Stage III Esophageal Cancer; Stage III Follicular Thyroid Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Pancreatic Cancer; Stage III Papillary Thyroid Cancer; Stage III Prostate Cancer; Stage III Rectal Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Anal Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Anal Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Adrenocortical Carcinoma; Stage IV Anal Cancer; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Gastric Cancer; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Papillary Thyroid Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Urethral Cancer Associated With Invasive Bladder Cancer; WDHA Syndrome

  8. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    ClinicalTrials.gov

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  9. Erlotinib in Treating Patients With Solid Tumors and Liver or Kidney Dysfunction

    ClinicalTrials.gov

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Primary Hepatocellular Carcinoma; Adult Subependymoma; Advanced Adult Primary Liver Cancer; Advanced Malignant Mesothelioma; Male Breast Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Malignant Mesothelioma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage II Esophageal Cancer; Stage II Pancreatic Cancer; Stage III Esophageal Cancer; Stage III Pancreatic Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  10. 18F FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy

    ClinicalTrials.gov

    2017-03-12

    Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Male Breast Cancer; Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Hypopharyngeal Cancer; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Laryngeal Cancer; Recurrent Lip and Oral Cavity Cancer; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Nasopharyngeal Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Oropharyngeal Cancer; Recurrent Pancreatic Cancer; Recurrent Paranasal Sinus and Nasal Cavity Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVA Salivary Gland Cancer; Stage IVB Colon Cancer; Stage IVB Salivary Gland Cancer; Stage IVC Salivary Gland Cancer; Tongue Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  11. [Analysis of histoprognostic factors for the non metastatic rectal cancer in a west Algerian series of 58 cases].

    PubMed

    Mesli, Smain Nabil; Regagba, Derbali; Tidjane, Anisse; Benkalfat, Mokhtar; Abi-Ayad, Chakib

    2016-01-01

    The aim of our study was to analyze histoprognostic factors in patients with non-metastatic rectal cancer operated at the division of surgery "A" in Tlemcen, west Algeria, over a period of six years. Retrospective study of 58 patients with rectal adenocarcinoma. Evaluation criterion was survival. Parameters studied were sex, age, tumor stage, tumor recurrence. The average age was 58 years, 52% of men and 48% of women, with sex-ratio (1,08). Tumor seat was: middle rectum 41.37%, lower rectum 34.48% and upper rectum 24.13%. Concerning TNM clinical staging, patients were classified as stage I (17.65%), stage II (18.61%), stage III (53.44%) and stage IV (7.84%). Median overall survival was 40 months ±2,937 months. Survival based on tumor staging: stage III and IV had a lower 3 years survival rate (19%) versus stage I, II which had a survival rate of 75% (P = 0.000) (95%). Patients with tumor recurrences had a lower 3 years survival rate compared to those who had no tumoral recurrences (30.85% vs 64.30% P = 0.043). In this series, univariate analysis of prognostic factors affecting survival allowed to retain only three factors influencing survival: tumor size, stage and tumor recurrences. In multivariate analysis using Cox's model only one factor was retained: tumor recurrence.

  12. Lower or Standard Dose Regorafenib in Treating Patients With Refractory Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2018-03-22

    Colon Adenocarcinoma; Rectal Adenocarcinoma; Stage III Colorectal Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7

  13. Complete pathological response (ypT0N0M0) after preoperative chemotherapy alone for stage IV rectal cancer.

    PubMed

    Naiken, Surennaidoo P; Toso, Christian; Rubbia-Brandt, Laura; Thomopoulos, Theodoros; Roth, Arnaud; Mentha, Gilles; Morel, Philippe; Gervaz, Pascal

    2014-01-17

    Complete pathological response occurs in 10-20% of patients with rectal cancer who are treated with neoadjuvant chemoradiation therapy prior to pelvic surgery. The possibility that complete pathological response of rectal cancer can also occur with neoadjuvant chemotherapy alone (without radiation) is an intriguing hypothesis. A 66-year old man presented an adenocarcinoma of the rectum with nine liver metastases (T3N1M1). He was included in a reverse treatment, aiming at first downsizing the liver metastases by chemotherapy, and subsequently performing the liver surgery prior to the rectum resection. The neoadjuvant chemotherapy consisted in a combination of oxaliplatin, 5-FU, irinotecan, leucovorin and bevacizumab (OCFL-B). After a right portal embolization, an extended right liver lobectomy was performed. On the final histopathological analysis, all lesions were fibrotic, devoid of any viable cancer cells. One month after liver surgery, the rectoscopic examination showed a near-total response of the primary rectal adenocarcinoma, which convinced the colorectal surgeon to perform the low anterior resection without preoperative radiation therapy. Macroscopically, a fibrous scar was observed at the level of the previously documented tumour, and the histological examination of the surgical specimen did not reveal any malignant cells in the rectal wall as well as in the mesorectum. All 15 resected lymph nodes were free of tumour, and the final tumour stage was ypT0N0M0. Clinical outcome was excellent, and the patient is currently alive 5 years after the first surgery without evidence of recurrence. The presented patient with stage IV rectal cancer and liver metastases was in a unique situation linked to its inclusion in a reversed treatment and the use of neoadjuvant chemotherapy alone. The observed achievement of a complete pathological response after chemotherapy should promote the design of prospective randomized studies to evaluate the benefits of chemotherapy alone in patients with stages II-III rectal adenocarcinoma (without metastasis).

  14. 7-Hydroxystaurosporine and Irinotecan Hydrochloride in Treating Patients With Metastatic or Unresectable Solid Tumors or Triple Negative Breast Cancer (Currently Accruing Only Triple-negative Breast Cancer Patients Since 6/8/2007)

    ClinicalTrials.gov

    2013-09-27

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Estrogen Receptor-negative Breast Cancer; Extensive Stage Small Cell Lung Cancer; Gastrointestinal Stromal Tumor; HER2-negative Breast Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Progesterone Receptor-negative Breast Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Borderline Ovarian Surface Epithelial-stromal Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Cell Lung Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Borderline Ovarian Surface Epithelial-stromal Tumor; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Triple-negative Breast Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  15. [A Case of Advanced Rectal Cancer Resected Successfully after Induction Chemotherapy with Modified FOLFOX6 plus Panitumumab].

    PubMed

    Yukawa, Yoshimi; Uchima, Yasutake; Kawamura, Minori; Takeda, Osami; Hanno, Hajime; Takayanagi, Shigenori; Hirooka, Tomoomi; Dozaiku, Toshio; Hirooka, Takashi; Aomatsu, Naoki; Hirakawa, Toshiki; Iwauchi, Takehiko; Nishii, Takafumi; Morimoto, Junya; Nakazawa, Kazunori; Takeuchi, Kazuhiro

    2016-05-01

    We report a case of advanced colon cancer that was effectively treated with mFOLFOX6 plus panitumumab combination chemotherapy. The patient was a 54-year-old man who had type 2 colon cancer of the rectum. An abdominal CT scan demonstrated rectal cancer with bulky lymph node metastasis and 1 hepatic node (rectal cancer SI [bladder retroperitoneum], N2M0H1P0, cStage IV). He was treated with mFOLFOX6 plus panitumumab as neoadjuvant chemotherapy. After 4 courses of chemotherapy, CT revealed that the primary lesion and regional metastatic lymph nodes had reduced in size (rectal cancer A, N1H1P0M0, cStage IV). Anterior rectal resection with D3 nodal dissection and left lateral segmentectomy of the liver was performed. The histological diagnosis was tubular adenocarcinoma (tub2-1), int, INF a, pMP, ly0, v0, pDM0, pPM0, R0. He was treated with 4 courses of mFOLFOX6 after surgery. The patient has been in good health without a recurrence for 2 years and 5 months after surgery. This case suggests that induction chemotherapy with mFOLFOX6 plus panitumumab is a potentially effective regimen for advanced colon cancer.

  16. Cost effectiveness of mesh prophylaxis to prevent parastomal hernia in patients undergoing permanent colostomy for rectal cancer.

    PubMed

    Lee, Lawrence; Saleem, Abdulaziz; Landry, Tara; Latimer, Eric; Chaudhury, Prosanto; Feldman, Liane S

    2014-01-01

    Parastomal hernia (PSH) is common after stoma formation. Studies have reported that mesh prophylaxis reduces PSH, but there are no cost-effectiveness data. Our objective was to determine the cost effectiveness of mesh prophylaxis vs no prophylaxis to prevent PSH in patients undergoing abdominoperineal resection with permanent colostomy for rectal cancer. Using a cohort Markov model, we modeled the costs and effectiveness of mesh prophylaxis vs no prophylaxis at the index operation in a cohort of 60-year-old patients undergoing abdominoperineal resection for rectal cancer during a time horizon of 5 years. Costs were expressed in 2012 Canadian dollars (CAD$) and effectiveness in quality-adjusted life years. Deterministic and probabilistic sensitivity analyses were performed. In patients with stage I to III rectal cancer, prophylactic mesh was dominant (less costly and more effective) compared with no mesh. In patients with stage IV disease, mesh prophylaxis was associated with higher cost (CAD$495 more) and minimally increased effectiveness (0.05 additional quality-adjusted life years), resulting in an incremental cost-effectiveness ratio of CAD$10,818 per quality-adjusted life year. On sensitivity analyses, the decision was sensitive to the probability of mesh infection and the cost of the mesh, and method of diagnosing PSH. In patients undergoing abdominoperineal resection with permanent colostomy for rectal cancer, mesh prophylaxis might be the less costly and more effective strategy compared with no mesh to prevent PSH in patients with stage I to III disease, and might be cost effective in patients with stage IV disease. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. [Treatment tactics of hemorroidal disease stage III-IV].

    PubMed

    Goncharuk, R A; Stegniĭ, K V; Krekoten', A A; Grossman, S S; Sarychev, V A

    2013-01-01

    The Miligan-Morgan's operation has long been considered to be the "golden standard" of hemorrhoids' stage I-III treatment. The invention of distal branches of the upper rectal artery' suture ligation with mucopexia and lifting of the anal canal mucosa discovered new possibilities for hemorrhoids surgery, though there are still some questions considering long-term results. 151 cases of recurrence within 1-6 months were analyzed. The use of CT-angiography with 3D reconstruction of the upper rectal artery allowed to chose the operative technique more relevant and thus improve the treatment results.

  18. Experts reviews of the multidisciplinary consensus conference colon and rectal cancer 2012: science, opinions and experiences from the experts of surgery.

    PubMed

    van de Velde, C J H; Boelens, P G; Tanis, P J; Espin, E; Mroczkowski, P; Naredi, P; Pahlman, L; Ortiz, H; Rutten, H J; Breugom, A J; Smith, J J; Wibe, A; Wiggers, T; Valentini, V

    2014-04-01

    The first multidisciplinary consensus conference on colon and rectal cancer was held in December 2012, achieving a majority of consensus for diagnostic and treatment decisions using the Delphi Method. This article will give a critical appraisal of the topics discussed during the meeting and in the consensus document by well-known leaders in surgery that were involved in this multidisciplinary consensus process. Scientific evidence, experience and opinions are collected to support multidisciplinary teams (MDT) with arguments for medical decision-making in diagnosis, staging and treatment strategies for patients with colon or rectal cancer. Surgery is the cornerstone of curative treatment for colon and rectal cancer. Standardizing treatment is an effective instrument to improve outcome of multidisciplinary cancer care for patients with colon and rectal cancer. In this article, a review of the following focuses; Perioperative care, age and colorectal surgery, obstructive colorectal cancer, stenting, surgical anatomical considerations, total mesorectal excision (TME) surgery and training, surgical considerations for locally advanced rectal cancer (LARC) and local recurrent rectal cancer (LRRC), surgery in stage IV colorectal cancer, definitions of quality of surgery, transanal endoscopic microsurgery (TEM), laparoscopic colon and rectal surgery, preoperative radiotherapy and chemoradiotherapy, and how about functional outcome after surgery? Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. DNA Mismatch Repair Deficiency in Rectal Cancer: Benchmarking Its Impact on Prognosis, Neoadjuvant Response Prediction, and Clinical Cancer Genetics

    PubMed Central

    de Rosa, Nicole; Rodriguez-Bigas, Miguel A.; Chang, George J.; Veerapong, Jula; Borras, Ester; Krishnan, Sunil; Bednarski, Brian; Messick, Craig A.; Skibber, John M.; Feig, Barry W.; Lynch, Patrick M.; Vilar, Eduardo

    2016-01-01

    Purpose DNA mismatch repair deficiency (dMMR) hallmarks consensus molecular subtype 1 of colorectal cancer. It is being routinely tested, but little is known about dMMR rectal cancers. The efficacy of novel treatment strategies cannot be established without benchmarking the outcomes of dMMR rectal cancer with current therapy. We aimed to delineate the impact of dMMR on prognosis, the predicted response to fluoropyrimidine-based neoadjuvant therapy, and implications of germline alterations in the MMR genes in rectal cancer. Methods Between 1992 and 2012, 62 patients with dMMR rectal cancers underwent multimodality therapy. Oncologic treatment and outcomes as well as clinical genetics work-up were examined. Overall and rectal cancer–specific survival were calculated by the Kaplan-Meier method. Results The median age at diagnosis was 41 years. MMR deficiency was most commonly due to alterations in MSH2 (53%) or MSH6 (23%). After a median follow-up of 6.8 years, the 5-year rectal cancer–specific survival was 100% for stage I and II, 85.1% for stage III, and 60.0% for stage IV disease. Fluoropyrimidine-based neoadjuvant chemoradiation was associated with a complete pathologic response rate of 27.6%. The extent of surgical resection was influenced by synchronous colonic disease at presentation, tumor height, clinical stage, and pelvic radiation. An informed decision for a limited resection focusing on proctectomy did not compromise overall survival. Five of the 11 (45.5%) deaths during follow-up were due to extracolorectal malignancies. Conclusion dMMR rectal cancer had excellent prognosis and pathologic response with current multimodality therapy including an individualized surgical treatment plan. Identification of a dMMR rectal cancer should trigger germline testing, followed by lifelong surveillance for both colorectal and extracolorectal malignancies. We herein provide genotype-specific outcome benchmarks for comparison with novel interventions. PMID:27432916

  20. DNA Mismatch Repair Deficiency in Rectal Cancer: Benchmarking Its Impact on Prognosis, Neoadjuvant Response Prediction, and Clinical Cancer Genetics.

    PubMed

    de Rosa, Nicole; Rodriguez-Bigas, Miguel A; Chang, George J; Veerapong, Jula; Borras, Ester; Krishnan, Sunil; Bednarski, Brian; Messick, Craig A; Skibber, John M; Feig, Barry W; Lynch, Patrick M; Vilar, Eduardo; You, Y Nancy

    2016-09-01

    DNA mismatch repair deficiency (dMMR) hallmarks consensus molecular subtype 1 of colorectal cancer. It is being routinely tested, but little is known about dMMR rectal cancers. The efficacy of novel treatment strategies cannot be established without benchmarking the outcomes of dMMR rectal cancer with current therapy. We aimed to delineate the impact of dMMR on prognosis, the predicted response to fluoropyrimidine-based neoadjuvant therapy, and implications of germline alterations in the MMR genes in rectal cancer. Between 1992 and 2012, 62 patients with dMMR rectal cancers underwent multimodality therapy. Oncologic treatment and outcomes as well as clinical genetics work-up were examined. Overall and rectal cancer-specific survival were calculated by the Kaplan-Meier method. The median age at diagnosis was 41 years. MMR deficiency was most commonly due to alterations in MSH2 (53%) or MSH6 (23%). After a median follow-up of 6.8 years, the 5-year rectal cancer-specific survival was 100% for stage I and II, 85.1% for stage III, and 60.0% for stage IV disease. Fluoropyrimidine-based neoadjuvant chemoradiation was associated with a complete pathologic response rate of 27.6%. The extent of surgical resection was influenced by synchronous colonic disease at presentation, tumor height, clinical stage, and pelvic radiation. An informed decision for a limited resection focusing on proctectomy did not compromise overall survival. Five of the 11 (45.5%) deaths during follow-up were due to extracolorectal malignancies. dMMR rectal cancer had excellent prognosis and pathologic response with current multimodality therapy including an individualized surgical treatment plan. Identification of a dMMR rectal cancer should trigger germline testing, followed by lifelong surveillance for both colorectal and extracolorectal malignancies. We herein provide genotype-specific outcome benchmarks for comparison with novel interventions. © 2016 by American Society of Clinical Oncology.

  1. Comparison of abdominoperineal resection and low anterior resection in lower and middle rectal cancer.

    PubMed

    Omidvari, Shapour; Hamedi, Sayed Hasan; Mohammadianpanah, Mohammad; Razzaghi, Samira; Mosalaei, Ahmad; Ahmadloo, Niloofar; Ansari, Mansour; Pourahmad, Saeideh

    2013-09-01

    This study aimed to investigate local control and survival rates following abdominoperineal resection (APR) compared with low anterior resection (LAR) in lower and middle rectal cancer. In this retrospective study, 153 patients with newly histologically proven rectal adenocarcinoma located at low and middle third that were treated between 2004 and 2010 at a tertiary hospital. The tumors were pathologically staged according to the 7th edition of the American Joint Committee on Cancer (AJCC) staging system. Surgery was applied for 138 (90%) of the patients, of which 96 (70%) underwent LAR and 42 were (30%) treated with APR. Total mesorectal excision was performed for all patients. In addition, 125 patients (82%) received concurrent (neoadjuvant, adjuvant or palliative) pelvic chemoradiation, and 134 patients (88%) received neoadjuvant, adjuvant or concurrent chemotherapy. Patients' follow-up ranged from 4 to 156 (median 37) months. Of 153 patients, 89 were men and 64 were women with a median age of 57 years. One patient (0.7%) was stage 0, 15 (9.8%) stage I, 63 (41.2%) stage II, 51 (33.3%) stage III and 23 (15%) stage IV. There was a significant difference between LAR and APR in terms of tumor distance from anal verge, disease stage and combined modality therapy used. However, there was no significant difference regarding 5-year local control, disease free and overall survival rates between LAR and APR. LAR can provide comparable local control, disease free and overall survival rates compared with APR in eligible patients with lower and middle rectal cancer. Copyright © 2013. Production and hosting by Elsevier B.V.

  2. Management of stage IV rectal cancer: Palliative options

    PubMed Central

    Ronnekleiv-Kelly, Sean M; Kennedy, Gregory D

    2011-01-01

    Approximately 30% of patients with rectal cancer present with metastatic disease. Many of these patients have symptoms of bleeding or obstruction. Several treatment options are available to deal with the various complications that may afflict these patients. Endorectal stenting, laser ablation, and operative resection are a few of the options available to the patient with a malignant large bowel obstruction. A thorough understanding of treatment options will ensure the patient is offered the most effective therapy with the least amount of associated morbidity. In this review, we describe various options for palliation of symptoms in patients with metastatic rectal cancer. Additionally, we briefly discuss treatment for asymptomatic patients with metastatic disease. PMID:21412493

  3. Erlotinib Hydrochloride in Treating Patients With Stage I-III Colorectal Cancer or Adenoma

    ClinicalTrials.gov

    2014-12-22

    Adenomatous Polyp; Recurrent Colon Cancer; Recurrent Rectal Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IIA Colon Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  4. Programs to Support You During Chemotherapy (Pro-You)

    ClinicalTrials.gov

    2015-06-19

    Depressive Symptoms; Fatigue; Psychosocial Effects of Cancer and Its Treatment; Stage IIA Colon Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  5. Phase I Study of Neoadjuvant Radiotherapy With 5-Fluorouracil for Rectal Cancer

    ClinicalTrials.gov

    2017-09-14

    Mucinous Adenocarcinoma of the Rectum; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Rectum; Rectal Adenocarcinoma; Stage IIA Rectal Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage IIIA Rectal Cancer; Stage IIIB Rectal Cancer; Stage IIIC Rectal Cancer

  6. Lenalidomide and Cetuximab in Treating Patients With Advanced Colorectal Cancer or Head and Neck Cancer

    ClinicalTrials.gov

    2018-05-23

    Recurrent Colon Carcinoma; Recurrent Hypopharyngeal Squamous Cell Carcinoma; Recurrent Laryngeal Squamous Cell Carcinoma; Recurrent Laryngeal Verrucous Carcinoma; Recurrent Lip and Oral Cavity Squamous Cell Carcinoma; Recurrent Metastatic Squamous Cell Carcinoma in the Neck With Occult Primary; Recurrent Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma; Recurrent Nasopharyngeal Keratinizing Squamous Cell Carcinoma; Recurrent Oral Cavity Verrucous Carcinoma; Recurrent Oropharyngeal Squamous Cell Carcinoma; Recurrent Rectal Carcinoma; Recurrent Salivary Gland Carcinoma; Salivary Gland Squamous Cell Carcinoma; Squamous Cell Carcinoma Metastatic in the Neck With Occult Primary; Stage IV Hypopharyngeal Squamous Cell Carcinoma AJCC v7; Stage IV Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage IVA Colon Cancer AJCC v7; Stage IVA Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Laryngeal Verrucous Carcinoma AJCC v7; Stage IVA Lip and Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVA Major Salivary Gland Cancer AJCC v7; Stage IVA Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IVA Oral Cavity Cancer AJCC v6 and v7; Stage IVA Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVA Rectal Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Stage IVB Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Laryngeal Verrucous Carcinoma AJCC v7; Stage IVB Lip and Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVB Major Salivary Gland Cancer AJCC v7; Stage IVB Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IVB Oral Cavity Cancer AJCC v6 and v7; Stage IVB Oropharyngeal Squamous Cell Carcinoma AJCC v7; Stage IVB Rectal Cancer AJCC v7; Stage IVC Laryngeal Squamous Cell Carcinoma AJCC v7; Stage IVC Laryngeal Verrucous Carcinoma AJCC v7; Stage IVC Lip and Oral Cavity Squamous Cell Carcinoma AJCC v6 and v7; Stage IVC Major Salivary Gland Cancer AJCC v7; Stage IVC Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma AJCC v7; Stage IVC Oral Cavity Cancer AJCC v6 and v7; Stage IVC Oropharyngeal Squamous Cell Carcinoma AJCC v7; Tongue Carcinoma; Untreated Metastatic Squamous Cell Carcinoma to Neck With Occult Primary

  7. Genetic Mutations in Blood and Tissue Samples in Predicting Response to Treatment in Patients With Locally Advanced Rectal Cancer Undergoing Chemoradiation

    ClinicalTrials.gov

    2017-09-08

    Mucinous Adenocarcinoma of the Rectum; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Rectum; Stage IIA Rectal Cancer; Stage IIB Rectal Cancer; Stage IIC Rectal Cancer; Stage IIIA Rectal Cancer; Stage IIIB Rectal Cancer; Stage IIIC Rectal Cancer

  8. Financial Burden Assessment in Patients With Stage I-III Colon or Rectal Cancer Undergoing Treatment

    ClinicalTrials.gov

    2018-06-12

    Stage I Colon Cancer AJCC v8; Stage I Rectal Cancer AJCC v8; Stage II Colon Cancer AJCC v8; Stage II Rectal Cancer AJCC v8; Stage IIA Colon Cancer AJCC v8; Stage IIA Rectal Cancer AJCC v8; Stage IIB Colon Cancer AJCC v8; Stage IIB Rectal Cancer AJCC v8; Stage IIC Colon Cancer AJCC v8; Stage IIC Rectal Cancer AJCC v8; Stage III Colon Cancer AJCC v8; Stage III Rectal Cancer AJCC v8; Stage IIIA Colon Cancer AJCC v8; Stage IIIA Rectal Cancer AJCC v8; Stage IIIB Colon Cancer AJCC v8; Stage IIIB Rectal Cancer AJCC v8; Stage IIIC Colon Cancer AJCC v8; Stage IIIC Rectal Cancer AJCC v8

  9. Age-related guideline adherence and outcome in low rectal cancer.

    PubMed

    Schiphorst, Anandi H W; Verweij, Norbert M; Pronk, Apollo; Hamaker, Marije E

    2014-08-01

    Care for elderly patients with low rectal cancer can pose dilemmas, because radical total mesorectal excision surgery comes with high morbidity and mortality rates. The purpose of this study was to analyze the treatment of patients with low rectal cancer, comparing treatment choices, guideline adherence, and outcomes for elderly patients (≥75 years) with younger patients (<75 years). Patient data were retrieved from the hospital pathology database and from the hospital prospective colorectal surgery database for surgically treated patients. Records were reviewed for nonadherence to treatment guidelines. Delivered treatment modalities for patients with stage I to III rectal cancer were compared with treatment advised by national guidelines, and reasons stated by the treating physician for nonadherence to guidelines were subsequently collected. This study was performed at a high-volume teaching hospital. Patients included were those with newly diagnosed rectal cancer (≤10 cm from the anal verge). Treatment decisions, guideline adherence, and outcome of surgical treatment were the main outcome parameters. Of 218 included patients, 75 (34%) were aged ≥75 years. Guideline adherence for all of the treatment modalities in stage I to III rectal cancer was significantly lower in elderly patients (62% versus 87% for aged <75 years; p < 0.001), and age was the primary reason mentioned for withholding treatment. Palliative anticancer treatment for stage IV disease was also initiated significantly less frequently in elderly patients (60% versus 97%; p = 0.002). Overall rates of treatment complications were similar for both patient groups (p = 0.71), but the impact of complications on survival was much greater for elderly patients (p = 0.002). Data on outcome of other treatment modalities, such as chemotherapy and radiotherapy, are lacking. Guideline adherence for all of the treatment modalities in stage I to III rectal cancer declines significantly with increasing age. Future research should focus on strategies of treatment tailored to patient health status rather than chronological age.

  10. High stoma prevalence and stoma reversal complications following anterior resection for rectal cancer: a population-based multicentre study.

    PubMed

    Holmgren, K; Kverneng Hultberg, D; Haapamäki, M M; Matthiessen, P; Rutegård, J; Rutegård, M

    2017-12-01

    Fashioning a defunctioning stoma is common when performing an anterior resection for rectal cancer in order to avoid and mitigate the consequences of an anastomotic leakage. We investigated the permanent stoma prevalence, factors influencing stoma outcome and complication rates following stoma reversal surgery. Patients who had undergone an anterior resection for rectal cancer between 2007 and 2013 in the northern healthcare region were identified using the Swedish Colorectal Cancer Registry and were followed until the end of 2014 regarding stoma outcome. Data were retrieved by a review of medical records. Multiple logistic regression was used to evaluate predefined risk factors for stoma permanence. Risk factors for non-reversal of a defunctioning stoma were also analysed, using Cox proportional-hazards regression. A total of 316 patients who underwent anterior resection were included, of whom 274 (87%) were defunctioned primarily. At the end of the follow-up period 24% had a permanent stoma, and 9% of patients who underwent reversal of a stoma experienced major complications requiring a return to theatre, need for intensive care or mortality. Anastomotic leakage and tumour Stage IV were significant risk factors for stoma permanence. In this series, partial mesorectal excision correlated with a stoma-free outcome. Non-reversal was considerably more prevalent among patients with leakage and Stage IV; Stage III patients at first had a decreased reversal rate, which increased after the initial year of surgery. Stoma permanence is common after anterior resection, while anastomotic leakage and advanced tumour stage decrease the chances of a stoma-free outcome. Stoma reversal surgery entails a significant risk of major complications. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  11. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  12. Irinotecan Compared With Combination Chemotherapy in Treating Patients With Advanced Colorectal Cancer

    ClinicalTrials.gov

    2013-05-01

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IIIA Colon Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  13. CPI-613 and Fluorouracil in Treating Patients With Metastatic Colorectal Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-26

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IIIA Colon Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  14. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    ClinicalTrials.gov

    2017-04-05

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  15. Phase I Study of Cetuximab With RO4929097 in Metastatic Colorectal Cancer

    ClinicalTrials.gov

    2015-05-15

    Colon Mucinous Adenocarcinoma; Colon Signet Ring Cell Adenocarcinoma; Rectal Mucinous Adenocarcinoma; Rectal Signet Ring Cell Adenocarcinoma; Recurrent Colon Carcinoma; Recurrent Rectal Carcinoma; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  16. GTI-2040, Oxaliplatin, and Capecitabine in Treating Patients With Locally Advanced or Metastatic Colorectal Cancer or Other Solid Tumors

    ClinicalTrials.gov

    2013-03-26

    Recurrent Colon Cancer; Recurrent Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  17. Pharmacokinetics of tramadol and its major metabolites following rectal and intravenous administration in dogs.

    PubMed

    Giorgi, M; Del Carlo, S; Saccomanni, G; Łebkowska-Wieruszewska, B; Kowalski, C J

    2009-06-01

    To compare the rectal and I/V administration of tramadol in dogs, to assess both its pharmacokinetic properties and absolute bioavailability. After rectal administration via suppositories and I/V injection of tramadol (4 mg/kg), the concentration of tramadol and its main metabolites, O-desmethyl-tramadol (M1), N-desmethyl-tramadol (M2) and N,O-didesmethyl-tramadol (M5), were determined in plasma, using high-performance liquid chromatography (HPLC). A balanced cross-over study was used, involving six male Beagle dogs. Plasma concentrations after rectal and I/V administration were fitted on the basis of mono- and bi-compartmental models, respectively. Following rectal administration tramadol was detected from 5 minutes up to 10 hours, in lesser amounts than M5 and M2, while M1 was detected in negligible amounts. Following I/V administration tramadol was detected up to 10 hours, M2 and M5 were detected at similar concentrations, and M1 was present at low concentrations. The area under the curve (AUC) of the three metabolites did not differ significantly after either route of administration of tramadol. The absolute bioavailability of tramadol via rectal administration was 10 (SD 4)%. After rectal administration of tramadol suppositories, absorption of the active ingredient was rapid, but its metabolism quickly transformed the parent drug to high levels of M2 and M5. In the dog, rectal pharmaceutical formulation of tramadol would have a different pharmacokinetic behaviour than in humans.

  18. Prognostic Factors Affecting Locally Recurrent Rectal Cancer and Clinical Significance of Hemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rades, Dirk; Kuhn, Hildegard; Schultze, Juergen

    2008-03-15

    Purpose: To investigate potential prognostic factors, including hemoglobin levels before and during radiotherapy, for associations with survival and local control in patients with unirradiated locally recurrent rectal cancer. Patients and Methods: Ten potential prognostic factors were investigated in 94 patients receiving radiotherapy for recurrent rectal cancer: age ({<=}68 vs. {>=}69 years), gender, Eastern Cooperative Oncology Group performance status (0-1 vs. 2-3), American Joint Committee on Cancer (AJCC) stage ({<=}II vs. III vs. IV), grading (G1-2 vs. G3), surgery, administration of chemotherapy, radiation dose (equivalent dose in 2-Gy fractions: {<=}50 vs. >50 Gy), and hemoglobin levels before (<12 vs. {>=}12 g/dL)more » and during (majority of levels: <12 vs. {>=}12 g/dL) radiotherapy. Multivariate analyses were performed, including hemoglobin levels, either before or during radiotherapy (not both) because these are confounding variables. Results: Improved survival was associated with better performance status (p < 0.001), lower AJCC stage (p = 0.023), surgery (p = 0.011), chemotherapy (p = 0.003), and hemoglobin levels {>=}12 g/dL both before (p = 0.031) and during (p < 0.001) radiotherapy. On multivariate analyses, performance status, AJCC stage, and hemoglobin levels during radiotherapy maintained significance. Improved local control was associated with better performance status (p = 0.040), lower AJCC stage (p = 0.010), lower grading (p = 0.012), surgery (p < 0.001), chemotherapy (p < 0.001), and hemoglobin levels {>=}12 g/dL before (p < 0.001) and during (p < 0.001) radiotherapy. On multivariate analyses, chemotherapy, grading, and hemoglobin levels before and during radiotherapy remained significant. Subgroup analyses of the patients having surgery demonstrated the extent of resection to be significantly associated with local control (p = 0.011) but not with survival (p = 0.45). Conclusion: Predictors for outcome in patients who received radiotherapy for locally recurrent rectal cancer were performance status, AJCC stage, chemotherapy, surgery, extent of resection, histologic grading, and hemoglobin levels both before and during radiotherapy.« less

  19. Marital status and survival in patients with rectal cancer: An analysis of the Surveillance, Epidemiology and End Results (SEER) database.

    PubMed

    Wang, Xiangyang; Cao, Weilan; Zheng, Chenguo; Hu, Wanle; Liu, Changbao

    2018-06-01

    Marital status has been validated as an independent prognostic factor for survival in several cancer types, but is controversial in rectal cancer (RC). The objective of this study was to investigate the impact of marital status on the survival outcomes of patients with RC. We extracted data of 27,498 eligible patients diagnosed with RC between 2004 and 2009 from the Surveillance, Epidemiology and End Results (SEER) database. Patients were categorized into married, never married, divorced/separated and widowed groups.We used Chi-square tests to compare characteristics of patients with different marital status.Rectal cancer specific survival was compared using the Kaplan-Meier method,and multivariate Cox regression analyses was used to analyze the survival outcome risk factors in different marital status. The widowed group had the highest percentage of elderly patients and women,higher proportion of adenocarcinomas, and more stage I/II in tumor stage (P < 0.05),but with a lower rate of surgery compared to the married group (76.7% VS 85.4%). Compared with the married patients, the never married (HR 1.40), widowed (HR 1.61,) and divorced/separated patients (HR 1.16) had an increased overall 5-year mortality. A further analysis showed that widowed patients had an increased overall 5-year cause-specific survival(CSS) compared with married patients at stage I(HR 1.92),stage II (HR 1.65),stage III (HR 1.73),and stage IV (HR 1.38). Our study showed marriage was associated with better outcomes of RC patients, but unmarried RC patients, especially widowed patients,are at greater risk of cancer specific mortality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Irinotecan-Eluting Beads in Treating Patients With Refractory Metastatic Colon or Rectal Cancer That Has Spread to the Liver

    ClinicalTrials.gov

    2018-02-22

    Liver Metastases; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  1. Efficacy and short-term outcomes of preoperative chemoradiotherapy with intermittent oral tegafur-uracil plus leucovorin in Japanese rectal cancer patients: a single center experience retrospective analysis.

    PubMed

    Nakagawa, Ryosuke; Inoue, Yuji; Ohki, Takeshi; Kaneko, Yuka; Maeda, Fumi; Yamamoto, Masakazu

    2017-05-31

    Various types of preoperative chemoradiotherapy (CRT) have been established for rectal cancer; thus, Physicians will need to refine the selection of appropriate preoperative CRT for different patients since there are various treatment regimens. Oral tegafur-uracil (UFT) plus leucovorin (LV) is commonly used to treat rectal cancer in Japan. Oral chemotherapy offers patients many potential advantages. Since 2008, we have been performing preoperative CRT with intermittent oral UFT plus LV in locally advanced rectal cancer patients to prevent postoperative local recurrence. Here, in a retrospective analysis, we evaluated the efficacy and short-term outcomes of preoperative CRT with intermittent oral UFT plus LV. We analyzed data from 62 patients with locally advanced rectal cancer, including 31 patients who underwent preoperative CRT between 2009 and 2013 (the CRT group) and 31 patients who were treated with surgery alone between 2001 and 2008 (the non-CRT group). Clinicopathologically, both groups included patients with rectal cancer at clinical tumor stages III-IV or clinical node stages 0-III. In the CRT group, curative operations were performed ≥8 weeks after CRT. Patients were concomitantly treated with 2 cycles of oral UFT (300 mg/m 2 /day, days 1-14 and 29-42) plus LV (75 mg/day, days 1-14 and 29-42) and 45 Gy of radiotherapy. Chemotherapy was repeated every 28 days, followed by a 2-week break. The completion rate of CRT was high at 94% (n = 29/31). The downstaging rate of CRT was 61% (n = 19/31). The pathological complete response rate was 6.5% (n = 2/31). Significant differences were observed in the 3-year local recurrence rate between the two groups (P < 0.05). Preoperative CRT with intermittent oral UFT plus LV appears to be a tolerable and effective treatment for Japanese patients with rectal cancer. A further investigation of a diversification of preoperative CRT for Japanese rectal cancer patients is required.

  2. Preoperative staging of rectal cancer.

    PubMed

    Yeung, Justin Mc; Ferris, Nicholas J; Lynch, A Craig; Heriot, Alexander G

    2009-10-01

    Preoperative staging is now an essential factor in the multidisciplinary management of rectal cancer because tumor stage is the strongest predictive factor for recurrence. Preoperative staging of rectal cancer can be divided into either local or distant staging. Local staging incorporates the assessment of mural wall invasion, circumferential resection margin involvement, as well as the nodal status for metastasis. Distant staging assesses for evidence of metastatic disease. The aim of this review is to consider the indications and limitations of the current preoperative imaging modalities for rectal cancer staging including clinical examination, endorectal ultrasound, magnetic resonance imaging, computed tomography and positron emission tomography-computed tomography, with respect to local and distant disease.

  3. Phase I-II Study of Fluorouracil in Combination With Phenylbutyrate in Advanced Colorectal Cancer

    ClinicalTrials.gov

    2013-01-31

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Recurrent Colon Cancer; Recurrent Rectal Cancer; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer

  4. Symptom presentations and other characteristics of colorectal cancer patients and the diagnostic performance of the Auckland Regional Grading Criteria for Suspected Colorectal Cancer in the South Auckland population.

    PubMed

    Hsiang, John C; Bai, Wayne; Lal, Dinesh

    2013-09-13

    This study reviews the presenting symptoms of colorectal cancer in the ethnically diverse Middlemore Hospital referral population of South Auckland, New Zealand. The performance of the newly introduced Auckland Regional Grading Criteria as prediction tool for selecting colorectal cancer cases referred from primary care was evaluated in this group. Retrospective review of all colorectal cancer (CRC) cases diagnosed between January 2006 and January 2011. Information extracted from case note review was used to grade patients using the Auckland Regional Grading Criteria. A total of 799 patients were included. The commonest symptoms were: rectal bleeding (25.5-42.3%) and change in bowel habit (20.6-26.8%). Low-risk symptoms including abdominal pain (16.3-46.8%) and weight loss (18.4-26.1%) were not uncommon. 64.4% of Maori and 64.9% of Pacific patients had stage III or IV cancers. Pacific patients had more stage IV disease, 37.7% (p<0.001) and were less likely to undergo tumour resection, 26.0% (p<0.001). The Auckland Regional Grading Criteria would miss 24.7% of the patients with CRC in the referral population. While rectal bleeding and change in bowel habit are frequent presenting symptoms, low-risk atypical symptoms including constipation, weight loss and abdominal pain were not uncommon. Significant proportion of Pacific patients present with late-stage disease. The current Auckland Regional grading criteria would miss significant proportion of our study population with colorectal cancer.

  5. MRI in local staging of rectal cancer: an update

    PubMed Central

    Tapan, Ümit; Özbayrak, Mustafa; Tatlı, Servet

    2014-01-01

    Preoperative imaging for staging of rectal cancer has become an important aspect of current approach to rectal cancer management, because it helps to select suitable patients for neoadjuvant chemoradiotherapy and determine the appropriate surgical technique. Imaging modalities such as endoscopic ultrasonography, computed tomography, and magnetic resonance imaging (MRI) play an important role in assessing the depth of tumor penetration, lymph node involvement, mesorectal fascia and anal sphincter invasion, and presence of distant metastatic diseases. Currently, there is no consensus on a preferred imaging technique for preoperative staging of rectal cancer. However, high-resolution phased-array MRI is recommended as a standard imaging modality for preoperative local staging of rectal cancer, with excellent soft tissue contrast, multiplanar capability, and absence of ionizing radiation. This review will mainly focus on the role of MRI in preoperative local staging of rectal cancer and discuss recent advancements in MRI technique such as diffusion-weighted imaging and dynamic contrast-enhanced MRI. PMID:25010367

  6. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    PubMed Central

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would provide a promising molecular diagnostic approach for clinical diagnosis of human rectal cancer. The role and underlying mechanism of metabolites in rectal cancer progression are worth being further investigated. PMID:24138801

  7. Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.

    PubMed

    Wei, Xiao-Li; Wang, De-Shen; Xi, Shao-Yan; Wu, Wen-Jing; Chen, Dong-Liang; Zeng, Zhao-Lei; Wang, Rui-Yu; Huang, Ya-Xin; Jin, Ying; Wang, Feng; Qiu, Miao-Zhen; Luo, Hui-Yan; Zhang, Dong-Sheng; Xu, Rui-Hua

    2014-12-28

    To explore the association between AT-rich interactive domain 1A (ARID1A) protein loss by immunohistochemistry and both clinicopathologic characteristics and prognosis in patients with colorectal cancer. We retrospectively collected clinicopathologic data and archived paraffin-embedded primary colorectal cancer samples from 209 patients, including 111 patients with colon cancer and 98 patients with rectal cancer. The tumor stage ranged from stage I to stage IV according to the 7(th) edition of the American Joint Committee on Cancer tumor-node-metastasis (TNM) staging system. All patients underwent resection of primary colorectal tumors. The expression of ARID1A protein in primary colorectal cancer tissues was examined by immunohistochemical staining. The clinicopathologic association and survival relevance of ARID1A protein loss in colorectal cancer were analyzed. ARID1A loss by immunohistochemistry was not rare in primary colorectal cancer tumors (25.8%). There were 7.4%, 24.1%, 22.2% and 46.3% of patients with ARID1A loss staged at TNM stage I, II, III and IV, respectively, compared with 20.0%, 22.6%, 27.7% and 29.7% of patients without ARID1A loss staged at TNM stage I, II, III and IV, respectively. In patients with ARID1A loss, the distant metastasis rate was 46.3%. However, only 29.7% of patients without ARID1A loss were found to have distant metastasis. In terms of pathologic differentiation, there were 25.9%, 66.7% and 7.4% with poorly, moderately and well differentiated tumors in patients with ARID1A loss, and 14.2%, 72.3% and 13.5% with poorly, moderately and well differentiated tumors in patients without ARID1A loss, respectively. ARID1A loss was associated with late TNM stage (P = 0.020), distant metastasis (P = 0.026), and poor pathological classification (P = 0.035). However, patients with positive ARID1A had worse overall survival compared to those with negative ARID1A in stage IV colorectal cancer (HR = 2.49, 95%CI: 1.13-5.51). ARID1A protein loss is associated with clinicopathologic characteristics in colorectal cancer patients and with survival in stage IV patients.

  8. Advanced Mucinous Colorectal Cancer: Epidemiology, Prognosis and Efficacy of Chemotherapeutic Treatment.

    PubMed

    Ott, Claudia; Gerken, Michael; Hirsch, Daniela; Fest, Petra; Fichtner-Feigl, Stefan; Munker, Stefan; Schnoy, Elisabeth; Stroszczynski, Christian; Vogelhuber, Martin; Herr, Wolfgang; Evert, Matthias; Reng, Michael; Schlitt, Hans Jürgen; Klinkhammer-Schalke, Monika; Teufel, Andreas

    2018-06-05

    The clinicopathological significance of the mucinous subtype of colorectal cancer (CRC) remains controversial. As of today, none of the current guidelines differentiate treatment with respect to mucinous or nonmucinous cancer. Due to the lack of substantiated data, best treatment remains unclear and the mucinous subtype of CRC is usually treated along the lines of recommendations for adenocarcinoma of the colon. We investigated an East-Bavarian cohort of 8,758 patients with CRC. These included 613 (7.0%) patients with a mucinous subtype, who were analyzed for assessing their characteristics in clinical course and for evaluating the efficacy of common chemotherapy protocols. Mucinous CRC was predominantly located in the right hemicolon; it was diagnosed at more advanced stages and occurred with preponderance in women. A higher rate of G3/4 grading was observed at diagnosis (all p < 0.001). An association of mucinous CRC with younger age at initial diagnosis, previously reported by other groups, could not be confirmed. Patients with mucinous stage IV colon cancer demonstrated poorer survival (p = 0.006). In contrast, no differences in survival were observed for specific stages I-III colon cancer. Stage-dependent analysis of rectal cancer stages I-IV also showed no differences in survival. However, univariable overall analysis resulted in significant poorer survival of mucinous compared to nonmucinous rectal cancer (p = 0.029). Also, combined analysis of all patients with mucinous CRC revealed poorer overall survival (OS) of these patients compared to nonmucinous CRC patients (median 48.4 vs. 60.2 months, p = 0.049) but not in multivariable analysis (p = 0.089). Chemotherapeutic treatment showed comparable efficacy regarding OS for mucinous and nonmucinous cancers in both an adjuvant and palliative setting for colon cancer patients (p values comparing mucinous and nonmucinous cancers < 0.001-0.005). © 2018 S. Karger AG, Basel.

  9. Peculiarities of hyperlipidaemia in tumour patients.

    PubMed Central

    Dilman, V. M.; Berstein, L. M.; Ostroumova, M. N.; Tsyrlina, Y. V.; Golubev, A. G.

    1981-01-01

    The study group included 684 cases: 258 patients with breast carcinoma, 113 males with lung cancer, 42 patients with rectal tumours, 42 patients with stomach tumours, 59 patients with fibroadenomatosis, and 170 healthy subjects of varying age (male and female). A relatively high blood triglyceride level was found in patients with breast, lung, rectal (females), and stomach (female) tumours. The blood concentration of high-density lipoprotein-cholesterol in patients with breast, lung, and stomach (female) tumours was relatively low. The elimination of tumour (breast carcinoma) did not lead to significant changes in lipid metabolism. There was no correlation between degree of lipidaemia and stage of tumour progression except in the cases of rectal cancer. Preliminary results are presented on the tentative classification of hyperlipoproteinaemia in tumour patients, using the lipid concentration threshold values advocated by Carlson et al. (1977); an increased frequency of Type IV hyperlipoproteinaemia proved to be the most characteristic feature of tumour patients. The results are discussed in terms of the concept of the importance of lipid metabolic disturbances, primarily those due to ageing, in the genesis of the syndrome of "cancerophilia" (predisposition to cancer). PMID:7248149

  10. Peculiarities of hyperlipidaemia in tumour patients.

    PubMed

    Dilman, V M; Berstein, L M; Ostroumova, M N; Tsyrlina, Y V; Golubev, A G

    1981-05-01

    The study group included 684 cases: 258 patients with breast carcinoma, 113 males with lung cancer, 42 patients with rectal tumours, 42 patients with stomach tumours, 59 patients with fibroadenomatosis, and 170 healthy subjects of varying age (male and female). A relatively high blood triglyceride level was found in patients with breast, lung, rectal (females), and stomach (female) tumours. The blood concentration of high-density lipoprotein-cholesterol in patients with breast, lung, and stomach (female) tumours was relatively low. The elimination of tumour (breast carcinoma) did not lead to significant changes in lipid metabolism. There was no correlation between degree of lipidaemia and stage of tumour progression except in the cases of rectal cancer. Preliminary results are presented on the tentative classification of hyperlipoproteinaemia in tumour patients, using the lipid concentration threshold values advocated by Carlson et al. (1977); an increased frequency of Type IV hyperlipoproteinaemia proved to be the most characteristic feature of tumour patients. The results are discussed in terms of the concept of the importance of lipid metabolic disturbances, primarily those due to ageing, in the genesis of the syndrome of "cancerophilia" (predisposition to cancer).

  11. Application value of biplane transrectal ultrasonography plus ultrasonic elastosonography and contrast-enhanced ultrasonography in preoperative T staging after neoadjuvant chemoradiotherapy for rectal cancer.

    PubMed

    Xiao, Ying; Xu, Dong; Ju, Haixing; Yang, Chen; Wang, Liping; Wang, Jinming; Hazle, John D; Wang, Dongguo

    2018-07-01

    To determine the accuracy of biplane transrectal ultrasonography (TRUS) plus ultrasonic elastosonography (UE) and contrast-enhanced ultrasonography (CEUS) in preoperative T staging after neoadjuvant chemoradiotherapy for rectal cancer. Fifty-three patients with advanced lower rectal cancer were examined before and after neoadjuvant chemoradiotherapy with use of TRUS plus UE and CEUS and were diagnosed as having T stage disease. We compared ultrasonic T stages before and after neoadjuvant chemoradiotherapy and analyzed any changes. Also, with postoperative pathological stages as the gold standard, we compared ultrasonic and pathological T stages and determined their consistency by the kappa statistic. For patients with rectal cancer, ultrasonic T stages were lower after neoadjuvant chemoradiotherapy than before, with a statistically significant difference (P < 0.05). The posttreatment downstaging rate was 39.6% (21/53). A total of 84.9% received correct staging with use of biplane TRUS plus UE and CEUS in the evaluation of preoperative T staging after neoadjuvant chemoradiotherapy for rectal cancer, which was highly consistent with that of pathological staging (κ = 0.768, P < 0.05). Its sensitivities were 80.0%, 50.0%, 75.0%, 96.3%, and 100% in the diagnoses of stages T0 to T4 rectal cancers, respectively; the specificities were 95.4%, 97.9%, 95.1%, 88.5%, and 100% at stages T0 to T4, respectively. Biplane TRUS plus UE and CEUS can be used to accurately perform preoperative T staging in rectal cancer after neoadjuvant chemoradiotherapy; in addition, this procedure well reflects changes in depth of rectal cancer invasion into the intestinal wall before and after neoadjuvant chemoradiotherapy. It is of great value in clinically evaluating the efficacy of neoadjuvant chemoradiotherapy, in selecting therapeutic regimens, and in avoiding overtreatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Pathological response of locally advanced rectal cancer to preoperative chemotherapy without pelvic irradiation.

    PubMed

    Bensignor, T; Brouquet, A; Dariane, C; Thirot-Bidault, A; Lazure, T; Julié, C; Nordlinger, B; Penna, C; Benoist, S

    2015-06-01

    Pathological response to chemotherapy without pelvic irradiation is not well defined in rectal cancer. This study aimed to evaluate the objective pathological response to preoperative chemotherapy without pelvic irradiation in middle or low locally advanced rectal cancer (LARC). Between 2008 and 2013, 22 patients with middle or low LARC (T3/4 and/or N+ and circumferential resection margin < 2 mm) and synchronous metastatic disease or a contraindication to pelvic irradiation underwent rectal resection after preoperative chemotherapy. The pathological response of rectal tumour was analysed according to the Rödel tumour regression grading (TRG) system. Predictive factors of objective pathological response (TRG 2-4) were analysed. All patients underwent rectal surgery after a median of six cycles of preoperative chemotherapy. Of these, 20 (91%) had sphincter saving surgery and an R0 resection. Twelve (55%) patients had an objective pathological response (TRG 2-4), including one complete response. Poor response (TRG 0-1) to chemotherapy was noted in 10 (45%) patients. In univariate analyses, none of the factors examined was found to be predictive of an objective pathological response to chemotherapy. At a median follow-up of 37.2 months, none of the 22 patients experienced local recurrence. Of the 19 patients with Stage IV rectal cancer, 15 (79%) had liver surgery with curative intent. Preoperative chemotherapy without pelvic irradiation is associated with objective pathological response and adequate local control in selected patients with LARC. Further prospective controlled studies will address the question of whether it can be used as a valuable alternative to radiochemotherapy in LARC. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  13. Pharmacokinetics of three formulations of ondansetron hydrochloride in healthy volunteers: 24-mg oral tablet, rectal suppository, and i.v. infusion.

    PubMed

    VanDenBerg, C M; Kazmi, Y; Stewart, J; Weidler, D J; Tenjarla, S N; Ward, E S; Jann, M W

    2000-06-01

    The absolute bioavailability and pharmacokinetics of three formulations of ondansetron hydrochloride 24 mg--an oral tablet, an intravenous solution, and an extemporaneous rectal suppository--were studied. Twelve healthy, nonsmoking volunteers (six men and six women) were given ondansetron in a study with a three-way cross-over design. All subjects received each dosage form on the same day in the following order: oral tablet, rectal suppository, and intravenous infusion. Administrations were separated by one week. Blood sampling times varied, depending on the administration route. Mean absolute bioavailability for the oral tablet and the rectal suppository differed significantly. Absorption of ondansetron was prolonged when it was administered as the rectal suppository. Absolute bioavailability for the 24-mg tablet was similar to that for other tablet strengths in previous studies. All subjects completed the study without significant adverse effects. Absorption of ondansetron from the rectal suppository was prolonged compared with the oral tablet and the i.v. infusion. Bioavailability for the 24-mg suppository formulation was considerably lower than for the 24-mg tablet.

  14. Emborrhoid: A New Concept for the Treatment of Hemorrhoids with Arterial Embolization: The First 14 Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, V., E-mail: vincent.vidal@ap-hm.fr; Sapoval, M., E-mail: marc.sapoval@gmail.com; Sielezneff, Y., E-mail: igor.sielezneff@ap-hm.fr

    2015-02-15

    PurposeThe ‘emborrhoid’ technique consists of the embolization of the hemorrhoidal arteries. The endovascular arterial occlusion is performed using coils placed in the terminal branches of the superior rectal arteries. The emborrhoid technique has been modeled after elective transanal Doppler-guided hemorrhoidal artery ligation which has been shown to be effective in hemorrhoidal disease. We report the first 14 cases of our experience with emborrhoid technique.Materials and MethodsFourteen patients with disabling chronic rectal bleeding were treated using the emborrhoid technique (3 women, 11 men). The stage of the hemorrhoidal disease was II (10 patients), III (3), and IV (1). This treatment wasmore » decided by a multidisciplinary team (proctologist, visceral surgeon, and radiologist). Seven patients underwent previous proctological surgery. Ten patients had coagulation disorders (anticoagulants or cirrhosis). Superior rectal arteries were embolized with pushable microcoils (0.018).ResultsTechnical success of the embolization procedure was 100 %. Clinical success at 1 month was 72 % (10/14). Of the 4 patients who experienced rebleeding, two underwent additional embolization of the posterior rectal arteries with success. No pain or ischemic complications were observed in 13 patients. One patient experienced a temporary painful and edematous, perianal reaction.ConclusionOur case studies suggest that coil embolization of the superior rectal arteries is technically feasible, safe and well tolerated. Additional studies are needed to evaluate the efficacy of this new ‘emborrhoid’ technique in the management of hemorrhoidal disease.« less

  15. MRI in T staging of rectal cancer: How effective is it?

    PubMed Central

    Mulla, MG; Deb, R; Singh, R

    2010-01-01

    Background: Rectal cancer constitutes about one-third of all gastrointestinal (GI) tract tumors. Because of the high recurrence rates (30%) in rectal cancer, it is vitally important to accurately stage these tumours preoperatively so that appropriate surgical resection can be undertaken. MRI is the ideal technique for the preoperative staging of these tumours. Aim: To determine the accuracy of local T staging of rectal cancer with MRI, using histopathological staging as the gold. Materials and Methods: Forty consecutive patients admitted with rectal cancer over a period of 18 months were included in this retrospective study. MRI scans were performed prior to surgery in all patients, on 1.5T scanners. Two radiologists, with a special interest in gastrointestinal imaging reported all images. Two dedicated histopathologists reported the histology slides. The accuracy of preoperative local MRI T staging was assessed by comparison with postoperative histopathological staging. Results: There was agreement between MRI and histopathology (TNM) staging in 12 patients (30%). The sensitivity and specificity of MRI for T staging was 89% and 67% respectively. The circumferential resection margin (CRM) status was accurately staged in 94.1% of the patients. Conclusions: Preoperative staging with MRI is sensitive in identifying CRM involvement, which is the main factor affecting the outcome of surgery. PMID:20607023

  16. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    ClinicalTrials.gov

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  17. Project Gel a Randomized Rectal Microbicide Safety and Acceptability Study in Young Men and Transgender Women

    PubMed Central

    Cranston, Ross D.; Mayer, Kenneth H.; Febo, Irma; Duffill, Kathryn; Siegel, Aaron; Engstrom, Jarret C.; Nikiforov, Alexyi; Park, Seo-Young; Brand, Rhonda M.; Jacobson, Cindy; Giguere, Rebecca; Dolezal, Curtis; Frasca, Timothy; Leu, Cheng-Shiun; Schwartz, Jill L.; Carballo-Diéguez, Alex

    2016-01-01

    Objectives The purpose of Project Gel was to determine the safety and acceptability of rectal microbicides in young men who have sex with men (MSM) and transgender women (TGW) at risk of HIV infection. Methods MSM and TGW aged 18–30 years were enrolled at three sites; Pittsburgh, PA; Boston, MA; and San Juan, PR. Stage 1A was a cross-sectional assessment of sexual health and behavior in MSM and TGW. A subset of participants from Stage 1A were then enrolled in Stage 1B, a 12-week evaluation of the safety and acceptability of a placebo rectal gel. This was followed by the final phase of the study (Stage 2) in which a subset of participants from Stage 1B were enrolled into a Phase 1 rectal safety and acceptability evaluation of tenofovir (TFV) 1% gel. Results 248 participants were enrolled into Stage 1A. Participants’ average age was 23.3 years. The most common sexually transmitted infection (STIs) at baseline were Herpes simplex (HSV)-2 (16.1% by serology) and rectal Chlamydia trachomatis (CT) (10.1% by NAAT). 134 participants were enrolled into Stage 1B. During the 12 week period of follow-up 2 HIV, 5 rectal CT, and 5 rectal Neisseria gonorrhea infections were detected. The majority of adverse events (AEs) were infections (N = 56) or gastrointestinal (N = 46) and were mild (69.6%) or moderate (28.0%). Of the participants who completed Stage 1B, 24 were enrolled into Stage 2 and randomized (1:1) to receive TFV or placebo gel. All participants completed Stage 2. The majority of AEs were gastrointestinal (N = 10) and of mild (87.2%) or moderate (10.3%) severity. Conclusions In this study we were able to enroll a sexually active population of young MSM and TGW who were willing to use rectal microbicides. TFV gel was safe and acceptable and should be further developed as an alternative HIV prevention intervention for this population. Trial Registration ClinicalTrials.gov NCT01283360 PMID:27362788

  18. Outcome for stage II and III rectal and colon cancer equally good after treatment improvement over three decades.

    PubMed

    Fischer, Joern; Joern, Fischer; Hellmich, Gunter; Gunter, Hellmich; Jackisch, Thomas; Thomas, Jackisch; Puffer, Erik; Erik, Puffer; Zimmer, Jörg; Jörg, Zimmer; Bleyl, Dorothea; Dorothea, Bleyl; Kittner, Thomas; Thomas, Kittner; Witzigmann, Helmut; Helmut, Witzigmann; Stelzner, Sigmar; Sigmar, Stelzner

    2015-06-01

    This study aimed to investigate the outcome for stage II and III rectal cancer patients compared to stage II and III colonic cancer patients with regard to 5-year cause-specific survival (CSS), overall survival, and local and combined recurrence rates over time. This prospective cohort study identified 3,355 consecutive patients with adenocarcinoma of the colon or rectum and treated in our colorectal unit between 1981 and 2011, for investigation. The study was restricted to International Union Against Cancer (UICC) stages II and III. Postoperative mortality and histological incomplete resection were excluded, which left 995 patients with colonic cancer and 726 patients with rectal cancer for further analysis. Five-year CSS rates improved for colonic cancer from 65.0% for patients treated between 1981 and 1986 to 88.1% for patients treated between 2007 and 2011. For rectal cancer patients, the respective 5-year CSS rates improved from 53.4% in the first observation period to 89.8% in the second one. The local recurrence rate for rectal cancer dropped from 34.2% in the years 1981-1986 to 2.1% in the years 2007-2011. In the last decade of observation, prognosis for rectal cancer was equal to that for colon cancer (CSS 88.6 vs. 86.7%, p = 0.409). Survival of patients with colon and rectal cancer has continued to improve over the last three decades. After major changes in treatment strategy including introduction of total mesorectal excision and neoadjuvant (radio)chemotherapy, prognosis for stage II and III rectal cancer is at least as good as for stage II and III colonic cancer.

  19. A systematic approach to the interpretation of preoperative staging MRI for rectal cancer.

    PubMed

    Taylor, Fiona G M; Swift, Robert I; Blomqvist, Lennart; Brown, Gina

    2008-12-01

    The purpose of this article is to provide an aid to the systematic evaluation of MRI in staging rectal cancer. MRI has been shown to be an effective tool for the accurate preoperative staging of rectal cancer. In the Magnetic Resonance Imaging and Rectal Cancer European Equivalence Study (MERCURY), imaging workshops were held for participating radiologists to ensure standardization of scan acquisition techniques and interpretation of the images. In this article, we report how the information was obtained and give examples of the images and how they are interpreted, with the aim of providing a systematic approach to the reporting process.

  20. Liberal perioperative fluid administration is an independent risk factor for morbidity and is associated with longer hospital stay after rectal cancer surgery.

    PubMed

    Boland, M R; Reynolds, I; McCawley, N; Galvin, E; El-Masry, S; Deasy, J; McNamara, D A

    2017-02-01

    INTRODUCTION Recent studies have advocated the use of perioperative fluid restriction in patients undergoing major abdominal surgery as part of an enhanced recovery protocol. Series reported to date include a heterogenous group of high- and low-risk procedures but few studies have focused on rectal cancer surgery alone. The aim of this study was to assess the effects of perioperative fluid volumes on outcomes in patients undergoing elective rectal cancer resection. METHODS A prospectively maintained database of patients with rectal cancer who underwent elective surgery over a 2-year period was reviewed. Total volume of fluid received intraoperatively was calculated, as well as blood products required in the perioperative period. The primary outcome was postoperative morbidity (Clavien-Dindo grade I-IV) and the secondary outcomes were length of stay and major morbidity (Clavien-Dindo grade III-IV). RESULTS Over a 2-year period (2012-2013), 120 patients underwent elective surgery with curative intent for rectal cancer. Median total intraoperative fluid volume received was 3680ml (range 1200-9670ml); 65/120 (54.1%) had any complications, with 20/120 (16.6%) classified as major (Clavien-Dindo grade III-IV). Intraoperative volume >3500ml was an independent risk factor for the development of postoperative all-cause morbidity (P=0.02) and was associated with major morbidity (P=0.09). Intraoperative fluid volumes also correlated with length of hospital stay (Pearson's correlation coefficient 0.33; P<0.01). CONCLUSIONS Intraoperative fluid infusion volumes in excess of 3500ml are associated with increased morbidity and length of stay in patients undergoing elective surgery for rectal cancer.

  1. Colorectal specialization and survival in colorectal cancer.

    PubMed

    Hall, G M; Shanmugan, S; Bleier, J I S; Jeganathan, A N; Epstein, A J; Paulson, E C

    2016-02-01

    It is recognized that higher surgeon volume is associated with improved survival in colorectal cancer. However, there is a paucity of national studies that have evaluated the relationship between surgical specialization and survival. We used the Surveillance, Epidemiology, and End Results Medicare cancer registry to examine the association between colorectal specialization (CRS) and disease-specific survival (DSS) between 2001 and 2009. A total of 21,432 colon cancer and 5893 rectal cancer patients who underwent elective surgical resection between 2001 and 2009 were evaluated. Univariate and multivariate Cox survival analysis was used to identify the association between surgical specialization and cancer-specific survival. Colorectal specialists performed 16.3% of the colon and 27% of the rectal resections. On univariate analysis, specialization was associated with improved survival in Stage II and Stage III colon cancer and Stage II rectal cancer. In multivariate analysis, however, CRS was associated with significantly improved DSS only in Stage II rectal cancer [hazard ratio (HR) 0.70, P = 0.03]. CRS was not significantly associated with DSS in either Stage I (colon HR 1.14, P = 0.39; rectal HR 0.1.26, P = 0.23) or Stage III (colon HR 1.06, P = 0.52; rectal HR 1.08, P = 0.55) disease. When analysis was limited to high volume surgeons only, the relationship between CRS and DSS was unchanged. CRS is associated with improved DSS following resection of Stage II rectal cancer. A combination of factors may contribute to long-term survival in these patients, including appropriate surgical technique, multidisciplinary treatment decisions and guideline-adherent surveillance. CRS probably contributes positively to these factors resulting in improved survival. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  2. Comparison of different administration of ketamine and intravenous tramadol hydrochloride for postoperative pain relief and sedation after pediatric tonsillectomy.

    PubMed

    Yenigun, Alper; Et, Tayfun; Aytac, Sirin; Olcay, Betul

    2015-01-01

    Tonsillectomy is the oldest and most frequently performed surgical procedure practiced by ear, nose, and throat physicians. In this study, our aim was to compare the analgesic effects of peritonsillar, rectal, as well as intravenous infiltration of ketamine and intravenous tramadol hydrochloride infiltration for postoperative pain relief and sedation after tonsillectomy in children. This randomized controlled study evaluated the effects of peritonsillar, intravenous, and rectal infiltration of ketamine in children undergoing adenotonsillectomy. One hundred twenty children who were categorized under American Society of Anesthesiologists classes I to II were randomized to 4 groups of 30 members each. Group 1 received intravenous (IV) ketamine (0.5 mg/kg), group 2 received rectal ketamine (0.5 mg/kg), group 3 received local peritonsillar ketamine (2 mg/kg), and the control group received IV tramadol hydrochloride infiltration (2 mg/kg). Children's Hospital of Eastern Ontario Pain Scale scores and Wilson sedation scale were recorded at minutes 1, 15, 30, 60 as well as hours 2, 12, and 24 postoperatively. The patients were interviewed on the day after the surgery to assess the postoperative pain and sedation. All the routes of infiltration of ketamine were as effective as those of tramadol hydrochloride (P > 0.05). A statistically significant difference was observed between IV infiltrations and all groups during the assessments at hours 6 and 24. The analgesic efficacy of IV ketamine was found especially higher at hours 6 and 24 (P(6) = 0.045, P(24) = 0.011). Perioperative, low-dose IV, rectal, or peritonsillar ketamine infiltration provides efficient pain relief without any adverse effects in children who would undergo adenotonsillectomy.

  3. Practice patterns and long-term survival for early-stage rectal cancer.

    PubMed

    Stitzenberg, Karyn B; Sanoff, Hanna K; Penn, Dolly C; Meyers, Michael O; Tepper, Joel E

    2013-12-01

    Standard of care treatment for most stage I rectal cancers is total mesorectal excision (TME). Given the morbidity associated with TME, local excision (LE) for early-stage rectal cancer has been explored. This study examines practice patterns and overall survival (OS) for early-stage rectal cancer. All patients in the National Cancer Data Base diagnosed with rectal cancer from 1998 to 2010 were initially included. Use of LE versus proctectomy and use of adjuvant radiation therapy were compared over time. Adjusted Cox proportional hazards models were used to compare OS based on treatment. LE was used to treat 46.5% of patients with T1 and 16.8% with T2 tumors. Use of LE increased steadily over time (P < .001). LE was most commonly used for women, black patients, very old patients, those without private health insurance, those with well-differentiated tumors, and those with T1 tumors. Proctectomy was associated with higher rates of tumor-free surgical margins compared with LE (95% v 76%; P < .001). Adjuvant radiation therapy use decreased over time independent of surgical procedure or T stage. For T2N0 disease, patients treated with LE alone had significantly poorer adjusted OS than those treated with proctectomy alone or multimodality therapy. Guideline-concordant adoption of LE for treatment of low-risk stage I rectal cancer is increasing. However, use of LE is also increasing for higher-risk rectal cancers that do not meet guideline criteria for LE. Treatment with LE alone is associated with poorer long-term OS. Additional studies are warranted to understand the factors driving increased use of LE.

  4. Differences of protein expression profiles, KRAS and BRAF mutation, and prognosis in right-sided colon, left-sided colon and rectal cancer.

    PubMed

    Gao, Xian Hua; Yu, Guan Yu; Gong, Hai Feng; Liu, Lian Jie; Xu, Yi; Hao, Li Qiang; Liu, Peng; Liu, Zhi Hong; Bai, Chen Guang; Zhang, Wei

    2017-08-11

    To compare protein expression levels, gene mutation and survival among Right-Sided Colon Cancer (RSCC), Left-Sided Colon Cancer (LSCC) and rectal cancer patients, 57 cases of RSCC, 87 LSCC and 145 rectal cancer patients were included retrospectively. Our results demonstrated significant differences existed among RSCC, LSCC and rectal cancer regarding tumor diameter, differentiation, invasion depth and TNM stage. No significant difference was identified in expression levels of MLH1, MSH2, MSH6, PMS2, β-Tubulin III, P53, Ki67 and TOPIIα, and gene mutation of KRAS and BRAF among three groups. Progression Free Survival (PFS) of RSCC was significantly lower than that of LRCC and rectal cancer. In univariate analyses, RSCC, preoperative chemoradiotherapy, poor differentiation, advanced TNM stage, elevated serum CEA and CA19-9 level, tumor deposit, perineural and vascular invasion were found to be predictive factors of shorter PFS. In multivariate analyses, only differentiation and TNM stages were found to be independent predictors of PFS. In conclusion, compared with LSCC and rectal cancer, RSCC has larger tumor size, poor differentiation, advanced TNM stage and shorter survival. The shorter survival in RSCC might be attributed to the advanced tumor stage caused by its inherent position feature of proximal colon rather than genetic difference.

  5. Rectal Tumour Staging with Endorectal Ultrasound: Is There Any Difference between Western and Eastern European Countries?

    PubMed

    Fábián, Anna; Bor, Renáta; Farkas, Klaudia; Bálint, Anita; Milassin, Ágnes; Rutka, Mariann; Tiszlavicz, László; Wittmann, Tibor; Nagy, Ferenc; Molnár, Tamás; Szepes, Zoltán

    2016-01-01

    Background. Rectal tumour management depends highly on locoregional extension. Rectal endoscopic ultrasound (ERUS) is a good alternative to computed tomography and magnetic resonance imaging. However, in Hungary only a small amount of rectal tumours is examined with ERUS. Methods. Our retrospective study (2006-2012) evaluates the diagnostic accuracy of ERUS and compares the results, the first data from Central Europe, with those from Western Europe. The effect of neoadjuvant therapy, rectal probe type, and investigator's experience were also assessed. Results. 311 of the 647 ERUS assessed locoregional extension. Histological comparison was available in 177 cases: 67 patients underwent surgery alone; 110 received neoadjuvant chemoradiotherapy (CRT); ERUS preceded CRT in 77 and followed it in 33 patients. T-staging was accurate in 72% of primarily operated patients. N-staging was less accurate (62%). CRT impaired staging accuracy (64% and 59% for T- and N-staging). Rigid probes were more accurate (79%). At least 30 examinations are needed to master the technique. Conclusions. The sensitivity of ERUS complies with the literature. ERUS is easy to learn and more accurate in early stages but unnecessary for restaging after CRT. Staging accuracy is similar in Western and Central Europe, although the number of examinations should be increased.

  6. Correlation Between Magnetic Resonance Imaging-Based Evaluation of Extramural Vascular Invasion and Prognostic Parameters of T3 Stage Rectal Cancer.

    PubMed

    Yu, Jing; Huang, Dong-Ya; Xu, Hui-Xin; Li, Yang; Xu, Qing

    2016-01-01

    The aim of this study was to analyze the correlation between magnetic resonance imaging-based extramural vascular invasion (EMVI) and the prognostic clinical and histological parameters of stage T3 rectal cancers. Eighty-six patients with T3 stage rectal cancer who received surgical resection without neoadjuvant therapy were included. Magnetic resonance imaging-based EMVI scores were determined. Correlations between the scores and pretreatment carcinoembryonic antigen levels, tumor differentiation grade, nodal stage, and vascular endothelial growth factor expression were analyzed using Spearman rank coefficient analysis. Magnetic resonance imaging-based EMVI scores were statistically different (P = 0.001) between histological nodal stages (N0 vs N1 vs N2). Correlations were found between magnetic resonance imaging-based EMVI scores and tumor histological grade (rs = 0.227, P = 0.035), histological nodal stage (rs = 0.524, P < 0.001), and vascular endothelial growth factor expression (rs = 0.422; P = 0.016). Magnetic resonance imaging-based EMVI score is correlated with prognostic parameters of T3 stage rectal cancers and has the potential to become an imaging biomarker of tumor aggressiveness. Magnetic resonance imaging-based EMVI may be useful in helping the multidisciplinary team to stratify T3 rectal cancer patients for neoadjuvant therapies.

  7. Practice Patterns and Long-Term Survival for Early-Stage Rectal Cancer

    PubMed Central

    Stitzenberg, Karyn B.; Sanoff, Hanna K.; Penn, Dolly C.; Meyers, Michael O.; Tepper, Joel E.

    2013-01-01

    Purpose Standard of care treatment for most stage I rectal cancers is total mesorectal excision (TME). Given the morbidity associated with TME, local excision (LE) for early-stage rectal cancer has been explored. This study examines practice patterns and overall survival (OS) for early-stage rectal cancer. Methods All patients in the National Cancer Data Base diagnosed with rectal cancer from 1998 to 2010 were initially included. Use of LE versus proctectomy and use of adjuvant radiation therapy were compared over time. Adjusted Cox proportional hazards models were used to compare OS based on treatment. Results LE was used to treat 46.5% of patients with T1 and 16.8% with T2 tumors. Use of LE increased steadily over time (P < .001). LE was most commonly used for women, black patients, very old patients, those without private health insurance, those with well-differentiated tumors, and those with T1 tumors. Proctectomy was associated with higher rates of tumor-free surgical margins compared with LE (95% v 76%; P < .001). Adjuvant radiation therapy use decreased over time independent of surgical procedure or T stage. For T2N0 disease, patients treated with LE alone had significantly poorer adjusted OS than those treated with proctectomy alone or multimodality therapy. Conclusion Guideline-concordant adoption of LE for treatment of low-risk stage I rectal cancer is increasing. However, use of LE is also increasing for higher-risk rectal cancers that do not meet guideline criteria for LE. Treatment with LE alone is associated with poorer long-term OS. Additional studies are warranted to understand the factors driving increased use of LE. PMID:24166526

  8. Squamous Cancers of the Rectum Demonstrate Poorer Survival and Increased Need for Salvage Surgery Compared With Squamous Cancers of the Anus.

    PubMed

    Kulaylat, Audrey S; Hollenbeak, Christopher S; Stewart, David B

    2017-09-01

    Squamous cell cancers of the anus are rare GI malignancies for which neoadjuvant chemoradiation is the first-line treatment for nonmetastatic disease. Squamous cancers of the rectum are far less common, and it is unclear to what degree chemoradiotherapy improves their outcomes. The purpose of this study was to compare stage-specific survival for anal and rectal squamous cancers stratified by treatment approach. This was a retrospective cohort study. The study was conducted at Commission on Cancer designated hospitals. Patients (2006-2012) identified in the National Cancer Database with pretreatment clinical stage I to III cancers who underwent chemoradiotherapy, with and without subsequent salvage surgical resection (low anterior resection or abdominoperineal resection), ≥12 weeks after chemoradiotherapy were included in the study. Overall survival and the need for salvage surgery were measured. Anal cancers (n = 11,224) typically presented with stage II (45.7%) or III (36.3%) disease, whereas rectal cancer stages (n = 1049) were more evenly distributed (p < 0.001). More patients with rectal cancer underwent low anterior or abdominoperineal resections 12 weeks or later after chemoradiotherapy versus those undergoing abdominoperineal resection for anal cancer (3.8% versus 1.2%; p < 0.001). Stage I and II rectal cancer was associated with poorer survival compared with anal cancer (stage I, p = 0.017; stage II, p < 0.001); survival was similar for stage III disease. Salvage surgery for anal cancer was associated with worse survival for stage I to III cancers; salvage surgery did not significantly affect survival for rectal cancer. This was a retrospective study without cancer-specific survival measures. Squamous rectal cancers are associated with significantly worse survival than squamous cancers of the anus for clinical stage I and II disease. Despite both cancers exhibiting squamous histology, rectal cancers may be less radiosensitive than anal cancers, as suggested by the greater incidence of salvage surgery that does not appear to significantly improve overall survival. See Video Abstract at http://links.lww.com/DCR/A422.

  9. Rectal cancer: An evidence-based update for primary care providers

    PubMed Central

    Gaertner, Wolfgang B; Kwaan, Mary R; Madoff, Robert D; Melton, Genevieve B

    2015-01-01

    Rectal adenocarcinoma is an important cause of cancer-related deaths worldwide, and key anatomic differences between the rectum and the colon have significant implications for management of rectal cancer. Many advances have been made in the diagnosis and management of rectal cancer. These include clinical staging with imaging studies such as endorectal ultrasound and pelvic magnetic resonance imaging, operative approaches such as transanal endoscopic microsurgery and laparoscopic and robotic assisted proctectomy, as well as refined neoadjuvant and adjuvant therapies. For stage II and III rectal cancers, combined chemoradiotherapy offers the lowest rates of local and distant relapse, and is delivered neoadjuvantly to improve tolerability and optimize surgical outcomes, particularly when sphincter-sparing surgery is an endpoint. The goal in rectal cancer treatment is to optimize disease-free and overall survival while minimizing the risk of local recurrence and toxicity from both radiation and systemic therapy. Optimal patient outcomes depend on multidisciplinary involvement for tailored therapy. The successful management of rectal cancer requires a multidisciplinary approach, with the involvement of enterostomal nurses, gastroenterologists, medical and radiation oncologists, radiologists, pathologists and surgeons. The identification of patients who are candidates for combined modality treatment is particularly useful to optimize outcomes. This article provides an overview of the diagnosis, staging and multimodal therapy of patients with rectal cancer for primary care providers. PMID:26167068

  10. Effects of anesthetic induction with a benzodiazepine plus ketamine hydrochloride or propofol on hypothermia in dogs undergoing ovariohysterectomy.

    PubMed

    Bornkamp, Jennifer L; Robertson, Sheilah; Isaza, Natalie M; Harrison, Kelly; DiGangi, Brian A; Pablo, Luisito

    2016-04-01

    To assess the effect of anesthetic induction with a benzodiazepine plus ketamine or propofol on hypothermia in dogs undergoing ovariohysterectomy without heat support. 23 adult sexually intact female dogs undergoing ovariohysterectomy. Baseline rectal temperature, heart rate, and respiratory rate were recorded prior to premedication with buprenorphine (0.02 mg/kg, IM) and acepromazine (0.05 mg/kg, IM). Anesthesia was induced with midazolam or diazepam (0.25 mg/kg, IV) plus ketamine (5 mg/kg, IV; n = 11) or propofol (4 mg/kg, IV; 12) and maintained with isoflurane in oxygen. Rectal temperature was measured at hospital intake, prior to premedication, immediately after anesthetic induction, and every 5 minutes after anesthetic induction. Esophageal temperature was measured every 5 minutes during anesthesia, beginning 30 minutes after anesthetic induction. After anesthesia, dogs were covered with a warm-air blanket and rectal temperature was measured every 10 minutes until normothermia (37°C) was achieved. Dogs in both treatment groups had lower rectal temperatures within 5 minutes after anesthetic induction and throughout anesthesia. Compared with dogs that received a benzodiazepine plus ketamine, dogs that received a benzodiazepine plus propofol had significantly lower rectal temperatures and the interval from discontinuation of anesthesia to achievement of normothermia was significantly longer. Dogs in which anesthesia was induced with a benzodiazepine plus propofol or ketamine became hypothermic; the extent of hypothermia was more profound for the propofol combination. Dogs should be provided with adequate heat support after induction of anesthesia, particularly when a propofol-benzodiazepine combination is administered.

  11. Imaging in rectal cancer with emphasis on local staging with MRI

    PubMed Central

    Arya, Supreeta; Das, Deepak; Engineer, Reena; Saklani, Avanish

    2015-01-01

    Imaging in rectal cancer has a vital role in staging disease, and in selecting and optimizing treatment planning. High-resolution MRI (HR-MRI) is the recommended method of first choice for local staging of rectal cancer for both primary staging and for restaging after preoperative chemoradiation (CT-RT). HR-MRI helps decide between upfront surgery and preoperative CT-RT. It provides high accuracy for prediction of circumferential resection margin at surgery, T category, and nodal status in that order. MRI also helps assess resectability after preoperative CT-RT and decide between sphincter saving or more radical surgery. Accurate technique is crucial for obtaining high-resolution images in the appropriate planes for correct staging. The phased array external coil has replaced the endorectal coil that is no longer recommended. Non-fat suppressed 2D T2-weighted (T2W) sequences in orthogonal planes to the tumor are sufficient for primary staging. Contrast-enhanced MRI is considered inappropriate for both primary staging and restaging. Diffusion-weighted sequence may be of value in restaging. Multidetector CT cannot replace MRI in local staging, but has an important role for evaluating distant metastases. Positron emission tomography-computed tomography (PET/CT) has a limited role in the initial staging of rectal cancer and is reserved for cases with resectable metastatic disease before contemplating surgery. This article briefly reviews the comprehensive role of imaging in rectal cancer, describes the role of MRI in local staging in detail, discusses the optimal MRI technique, and provides a synoptic report for both primary staging and restaging after CT-RT in routine practice. PMID:25969638

  12. Thymidine phosphorylase and hypoxia-inducible factor 1-α expression in clinical stage II/III rectal cancer: association with response to neoadjuvant chemoradiation therapy and prognosis.

    PubMed

    Lin, Shuhan; Lai, Hao; Qin, Yuzhou; Chen, Jiansi; Lin, Yuan

    2015-01-01

    The aim of this study was to determine whether pretreatment status of thymidine phosphorylase (TP), and hypoxia-inducible factor alpha (HIF-1α) could predict pathologic response to neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine (XELOXART) and outcomes for clinical stage II/III rectal cancer patients. A total of 180 patients diagnosed with clinical stage II/III rectal cancer received XELOXART. The status of TP, and HIF-1α were determined in pretreatment biopsies by immunohistochemistry (IHC). Tumor response was assessed in resected regimens using the tumor regression grade system and TNM staging system. 5-year disease free survival (DFS) and 5-year overall survival (OS) were evaluated with the Kaplan-Meier method and were compared by the log-rank test. Over expression of TP and low expression of HIF-1α were associated with pathologic response to XELOXART and better outcomes (DFS and OS) in clinical stage II/III rectal cancer patients (P < 0.05). Our result suggested that pretreatment status of TP and HIF-1α were found to predict pathologic response and outcomes in clinical stage II/III rectal cancer received XELOXART. Additional well-designed, large sample, multicenter, prospective studies are needed to confirm the result of this study.

  13. The preoperative reaction and decision-making process regarding colostomy surgery among Chinese rectal cancer patients.

    PubMed

    Zhang, Jun-E; Wong, Frances Kam Yuet; Zheng, Mei-Chun

    2017-06-01

    Patients with rectal cancer have issues in adjusting to their permanent colostomy after surgery, and support is required to help them resume normal life. However, few studies have explored the experience and factors that affect a patient's decision-making and maladjustment prior to colostomy surgery. The aim of this study was to explore the experience of rectal cancer patients who have to undergo colostomy surgery. A descriptive, qualitative design was used. We studied a purposive sample of 18 patients who had received a diagnosis of primary rectal cancer and were expecting permanent colostomy surgery. The thematic analysis approach was used to analyze the data collected using semi-structured, open-ended questions. The overriding theme that emerged was 'stoma dilemma: a hard decision-making process'. From this main theme, three themes were derived: the resistance stage, the hesitation stage, and the acquiescence stage. It is hard for preoperative rectal patients to choose to undergo stoma surgery or a sphincter-saving operation. From the initial stage of definitive diagnosis to the final consent to stoma surgery, most patients experience the resistance and hesitation stages before reaching the acquiescence stage. Arriving at a decision is a process that nurses can facilitate by eliminating unnecessary misunderstanding surrounding colostomy surgery and by fully respecting patients' right to choose at the various stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Umbilical metastasis derived from early stage rectal cancer: a case report

    PubMed Central

    2014-01-01

    Background Umbilical metastasis, also called Sister Mary Joseph’s nodule (SMJN), is defined as the umbilical nodule associated with advanced metastatic intra-abdominal and pelvic malignancies. A patient with umbilical metastasis has been deemed to have a poor prognosis. Rectal cancer presenting with a SMJN is a rare phenomenon, especially in the early stage and in middle-low rectal cancer. Case presentation We report a case of a 70-year-old male presenting with umbilical metastasis derived from rectal cancer (10 cm from the anal verge, T2N0). Discussion and conclusion For rectal cancer with umbilical metastasis, the exact metastatic routes as well as the criterion of diagnosis and treatments are not very clear. Here we review the literature on rectal cancer and SMJN to deepen the understanding of this disease. PMID:24708697

  15. Cell-free DNA levels and correlation to stage and outcome following treatment of locally advanced rectal cancer.

    PubMed

    Boysen, Anders Kindberg; Wettergren, Yvonne; Sorensen, Boe Sandahl; Taflin, Helena; Gustavson, Bengt; Spindler, Karen-Lise Garm

    2017-11-01

    Accurate staging of rectal cancer remains essential for optimal patient selection for combined modality treatment, including radiotherapy, chemotherapy and surgery. We aimed at examining the correlation of cell free DNA with the pathologic stage and subsequent risk of recurrence for patients with locally advanced rectal cancer undergoing preoperative chemoradiation. We examined 75 patients with locally advanced rectal cancer receiving preoperative chemoradiation. Blood samples for translational use were drawn prior to rectal surgery. The level of cell free DNA was quantified by digital droplet PCR and expressed as copy number of beta 2 microglobulin. We found a median level of cell free DNA in the AJCC stages I-III of 3100, 8300, and 10,700 copies/mL respectively. For patients with 12 sampled lymph nodes or above, the median level of cell free DNA were 2400 copies/mL and 4400 copies/mL (p = 0.04) for node negative and node positive disease respectively. The median follow-up was 39 months and 11 recurrences were detected (15%). The median level for patients with recurrent disease was 13,000 copies/mL compared to 5200 copies/mL for non-recurrent patients (p = 0.08). We have demonstrated a correlation between the level of total cell free DNA and the pathologic stage and nodal involvement. Furthermore, we have found a trend towards a correlation with the risk of recurrence following resection of localized rectal cancer.

  16. Danish Colorectal Cancer Group Database.

    PubMed

    Ingeholm, Peter; Gögenur, Ismail; Iversen, Lene H

    2016-01-01

    The aim of the database, which has existed for registration of all patients with colorectal cancer in Denmark since 2001, is to improve the prognosis for this patient group. All Danish patients with newly diagnosed colorectal cancer who are either diagnosed or treated in a surgical department of a public Danish hospital. The database comprises an array of surgical, radiological, oncological, and pathological variables. The surgeons record data such as diagnostics performed, including type and results of radiological examinations, lifestyle factors, comorbidity and performance, treatment including the surgical procedure, urgency of surgery, and intra- and postoperative complications within 30 days after surgery. The pathologists record data such as tumor type, number of lymph nodes and metastatic lymph nodes, surgical margin status, and other pathological risk factors. The database has had >95% completeness in including patients with colorectal adenocarcinoma with >54,000 patients registered so far with approximately one-third rectal cancers and two-third colon cancers and an overrepresentation of men among rectal cancer patients. The stage distribution has been more or less constant until 2014 with a tendency toward a lower rate of stage IV and higher rate of stage I after introduction of the national screening program in 2014. The 30-day mortality rate after elective surgery has been reduced from >7% in 2001-2003 to <2% since 2013. The database is a national population-based clinical database with high patient and data completeness for the perioperative period. The resolution of data is high for description of the patient at the time of diagnosis, including comorbidities, and for characterizing diagnosis, surgical interventions, and short-term outcomes. The database does not have high-resolution oncological data and does not register recurrences after primary surgery. The Danish Colorectal Cancer Group provides high-quality data and has been documenting an increase in short- and long-term survivals since it started in 2001 for both patients with colon and rectal cancers.

  17. Surgical outcomes of robot-assisted rectal cancer surgery using the da Vinci Surgical System: a multi-center pilot Phase II study.

    PubMed

    Tsukamoto, Shunsuke; Nishizawa, Yuji; Ochiai, Hiroki; Tsukada, Yuichiro; Sasaki, Takeshi; Shida, Dai; Ito, Masaaki; Kanemitsu, Yukihide

    2017-12-01

    We conducted a multi-center pilot Phase II study to examine the safety of robotic rectal cancer surgery performed using the da Vinci Surgical System during the introduction period of robotic rectal surgery at two institutes based on surgical outcomes. This study was conducted with a prospective, multi-center, single-arm, open-label design to assess the safety and feasibility of robotic surgery for rectal cancer (da Vinci Surgical System). The primary endpoint was the rate of adverse events during and after robotic surgery. The secondary endpoint was the completion rate of robotic surgery. Between April 2014 and July 2016, 50 patients were enrolled in this study. Of these, 10 (20%) had rectosigmoid cancer, 17 (34%) had upper rectal cancer, and 23 (46%) had lower rectal cancer; six underwent high anterior resection, 32 underwent low anterior resection, 11 underwent intersphincteric resection, and one underwent abdominoperineal resection. Pathological stages were Stage 0 in 1 patient, Stage I in 28 patients, Stage II in 7 patients and Stage III in 14 patients. Pathologically complete resection was achieved in all patients. There was no intraoperative organ damage or postoperative mortality. Eight (16%) patients developed complications of all grades, of which 2 (4%) were Grade 3 or higher, including anastomotic leakage (2%) and conversion to open surgery (2%). The present study demonstrates the feasibility and safety of robotic rectal cancer surgery, as reflected by low morbidity and low conversion rates, during the introduction period. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Prediction of pathologic staging with magnetic resonance imaging after preoperative chemoradiotherapy in rectal cancer: pooled analysis of KROG 10-01 and 11-02.

    PubMed

    Lee, Jong Hoon; Jang, Hong Seok; Kim, Jun-Gi; Lee, Myung Ah; Kim, Dae Yong; Kim, Tae Hyun; Oh, Jae Hwan; Park, Sung Chan; Kim, Sun Young; Baek, Ji Yeon; Park, Hee Chul; Kim, Hee Cheol; Nam, Taek-Keun; Chie, Eui Kyu; Jung, Ji-Han; Oh, Seong Taek

    2014-10-01

    The reported overall accuracy of MRI in predicting the pathologic stage of nonirradiated rectal cancer is high. However, the role of MRI in restaging rectal tumors after neoadjuvant CRT is contentious. Thus, we evaluate the accuracy of restaging magnetic resonance imaging (MRI) for rectal cancer patients who receive preoperative chemoradiotherapy (CRT). We analyzed 150 patients with locally advanced rectal cancer (T3-4N0-2) who had received preoperative CRT. Pre-CRT MRI was performed for local tumor and nodal staging. All patients underwent restaging MRI followed by total mesorectal excision after the end of radiotherapy. The primary endpoint of the present study was to estimate the accuracy of post-CRT MRI as compared with pathologic staging. Pathologic T classification matched the post-CRT MRI findings in 97 (64.7%) of 150 patients. 36 (24.0%) of 150 patients were overstaged in T classification, and the concordance degree was moderate (k=0.33, p<0.01). Pathologic N classification matched the post-CRI MRI findings in 85 (56.6%) of 150 patients. 54 (36.0%) of 150 patients were overstaged in N classification. 26 patients achieved downstaging (ycT0-2N0) on restaging MRI after CRT. 23 (88.5%) of 26 patients who had been downstaged on MRI after CRT were confirmed on the pathological staging, and the concordance degree was good (k=0.72, p<0.01). Restaging MRI has low accuracy for the prediction of the pathologic T and N classifications in rectal cancer patients who received preoperative CRT. The diagnostic accuracy of restaging MRI is relatively high in rectal cancer patients who achieved clinical downstaging after CRT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Validation of the 12-gene colon cancer recurrence score as a predictor of recurrence risk in stage II and III rectal cancer patients.

    PubMed

    Reimers, Marlies S; Kuppen, Peter J K; Lee, Mark; Lopatin, Margarita; Tezcan, Haluk; Putter, Hein; Clark-Langone, Kim; Liefers, Gerrit Jan; Shak, Steve; van de Velde, Cornelis J H

    2014-11-01

    The 12-gene Recurrence Score assay is a validated predictor of recurrence risk in stage II and III colon cancer patients. We conducted a prospectively designed study to validate this assay for prediction of recurrence risk in stage II and III rectal cancer patients from the Dutch Total Mesorectal Excision (TME) trial. RNA was extracted from fixed paraffin-embedded primary rectal tumor tissue from stage II and III patients randomized to TME surgery alone, without (neo)adjuvant treatment. Recurrence Score was assessed by quantitative real time-polymerase chain reaction using previously validated colon cancer genes and algorithm. Data were analysed by Cox proportional hazards regression, adjusting for stage and resection margin status. All statistical tests were two-sided. Recurrence Score predicted risk of recurrence (hazard ratio [HR] = 1.57, 95% confidence interval [CI] = 1.11 to 2.21, P = .01), risk of distant recurrence (HR = 1.50, 95% CI = 1.04 to 2.17, P = .03), and rectal cancer-specific survival (HR = 1.64, 95% CI = 1.15 to 2.34, P = .007). The effect of Recurrence Score was most prominent in stage II patients and attenuated with more advanced stage (P(interaction) ≤ .007 for each endpoint). In stage II, five-year cumulative incidence of recurrence ranged from 11.1% in the predefined low Recurrence Score group (48.5% of patients) to 43.3% in the high Recurrence Score group (23.1% of patients). The 12-gene Recurrence Score is a predictor of recurrence risk and cancer-specific survival in rectal cancer patients treated with surgery alone, suggesting a similar underlying biology in colon and rectal cancers. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Hand-assisted laparoscopic repair of a grade IV rectal tear in a postparturient mare.

    PubMed

    Stewart, Suzanne G; Johnston, Janet K; Parente, Eric J

    2014-10-01

    An 8-year-old multiparous Thoroughbred broodmare was admitted for evaluation of a rectal tear sustained during parturition. On initial evaluation, the mare had mild signs of abdominal discomfort. A full-thickness rectal tear located 30 cm cranial to the anus and extending approximately 15 cm longitudinally along the surface of the small colon between the 4 and 6 o'clock positions, when viewed from behind, was diagnosed on examination per rectum. Laparoscopic evaluation of the abdomen was performed to assess the tear and extent of peritoneal contamination. A hand-assisted repair via a flank incision was performed. The tear was closed in a single-layer, simple continuous pattern with size-0 polydioxanone with a handheld needle holder. Subsequently, a ventral midline celiotomy was performed, and intestinal contents were evacuated via a pelvic flexure enterotomy and a typhlotomy. Following surgery, the mare was managed with IV fluid therapy, partial parenteral nutrition, antimicrobials, and NSAIDs for 5 to 7 days before being gradually reintroduced to a complete pelleted feed and alfalfa hay. Prior to discharge, examination per rectum revealed no stricture formation associated with repair. The mare was discharged from the hospital and performed successfully as a broodmare, with the delivery of a live foal 1 year after surgery. Successful repair with an excellent outcome was achieved in this mare. Hand-assisted laparoscopic repair should be considered as a possible treatment option in horses with grade IV rectal tears.

  1. [A case of a geriatric patient with stage IV anal canal cancer showing complete response to chemoradiation therapy].

    PubMed

    Kuroda, Masatoshi; Hirai, Ryuji; Ikeda, Eiji; Tsuji, Hisashi; Takagi, Shoji; Yamano, Toshihisa; Yoshitomi, Seiji

    2012-11-01

    We present a case in which chemoradiation therapy was effective in a geriatric patient with Stage IV anal canal cancer. The patient is an 81-year-old woman who complained of proctorrhagia and anal pain. She was referred to us by her family doctor who suspected rectal cancer. Tumors as large as 6.5 cm in diameter mainly on the right side of the rectum as well as 2 palpable enlarged lymph nodes on the right inguinal area, were found during the initial physical examination. Squamous cell carcinoma was elevated to 16 ng/mL. A CT scan revealed that irregularly shaped masses as large as 7 cm in diameter were externally exposed on the right side of the rectum along with enlarged lymph nodes on the right inguinal area and metastasis at S7 lesion in the liver. Squamous cell carcinoma was diagnosed from biopsy results. Due to her age, the chemotherapy regimen was S-1+CDDP with radiation therapy and 4-port irradiation (50.4 Gy) of the primary tumor, interior of the pelvis, and inguinal lymph nodes. Partial response was observed upon completion of treatment, and complete response was obtained after 6 months. She is currently an outpatient taking S-1: 60 mg/day orally. There is no indication of cancer recurrence after 1 year and 3 months, and she continues to visit an outpatient clinic for regular follow-ups. These results demonstrate the effectiveness of chemoradiation therapy for geriatric patients with Stage IV anal canal cancer.

  2. Circumferential resection margin (CRM) positivity after MRI assessment and adjuvant treatment in 189 patients undergoing rectal cancer resection.

    PubMed

    Simpson, G S; Eardley, N; McNicol, F; Healey, P; Hughes, M; Rooney, P S

    2014-05-01

    The management of rectal cancer relies on accurate MRI staging. Multi-modal treatments can downstage rectal cancer prior to surgery and may have an effect on MRI accuracy. We aim to correlate the findings of MRI staging of rectal cancer with histological analysis, the effect of neoadjuvant therapy on this and the implications of circumferential resection margin (CRM) positivity following neoadjuvant therapy. An analysis of histological data and radiological staging of all cases of rectal cancer in a single centre between 2006 and 2011 were conducted. Two hundred forty-one patients had histologically proved rectal cancer during the study period. One hundred eighty-two patients underwent resection. Median age was 66.6 years, and male to female ratio was 13:5. R1 resection rate was 11.1%. MRI assessments of the circumferential resection margin in patients without neoadjuvant radiotherapy were 93.6 and 88.1% in patients who underwent neoadjuvant radiotherapy. Eighteen patients had predicted positive margins following chemoradiotherapy, of which 38.9% had an involved CRM on histological analysis. MRI assessment of the circumferential resection margin in rectal cancer is associated with high accuracy. Neoadjuvant chemoradiotherapy has a detrimental effect on this accuracy, although accuracy remains high. In the presence of persistently predicted positive margins, complete resection remains achievable but may necessitate a more radical approach to resection.

  3. Surgical Quality in Rectal Cancer Management: What Can Be Achieved by a Voluntary Observational Study?

    PubMed Central

    Dziki, Łukasz; Otto, Ronny; Lippert, Hans; Jannasch, Olof

    2018-01-01

    Purpose Countries with nationwide quality programmes in colorectal cancer report an improved outcome. In Germany, a self-organized and self-financed observational quality assurance project exists, based on voluntary participation. The object of the present study was to ascertain whether this nationwide project also improves the outcome of colorectal cancer. Methods The German Quality Assurance in Colorectal Cancer Project started in 2000 and by 2012 contained 85,000 patients. Inclusion criteria for the study were participation for the entire period of 13 years and treatment of rectal cancer. The following parameters were analysed: (1) patient related: age, gender, ASA classification, T-stage, and N-stage, (2) system related: frequency of preoperative CT and MRI, and (3) outcome related: CRM status, complications, and hospital mortality. Results Forty-one of the 345 hospitals treating 11,597 patients fulfilled the inclusion criteria. The median age increased from 67 to 69 years (p = 0.002). ASA stages III and IV increased from 32.0% to 37.6% (p = 0.005) and from 2.0% to 3.3% (p = 0.022), respectively. The use of CT rose from 67.2% to 88.8% (p < 0.001) and that of MRI from 5.0% to 35.2% (p < 0.001). The proportion of patients suffering from complications decreased from 7.9% to 5.3% (p < 0.001) for intraoperative and from 28.0% to 18.6% (p < 0.001) for postoperative surgical complications, but general postoperative complications increased from 25.8% to 29.5% (p = 0.006). The distribution of histopathological stage, anastomotic leakage, and in-hospital mortality did not change significantly. Conclusion Participation in a quality assurance project improves compliance with treatment standards, especially for diagnostic procedures. An improvement of surgical results will require further investment in training. PMID:29853860

  4. Surgical Quality in Rectal Cancer Management: What Can Be Achieved by a Voluntary Observational Study?

    PubMed

    Dziki, Łukasz; Otto, Ronny; Lippert, Hans; Mroczkowski, Paweł; Jannasch, Olof

    2018-01-01

    Countries with nationwide quality programmes in colorectal cancer report an improved outcome. In Germany, a self-organized and self-financed observational quality assurance project exists, based on voluntary participation. The object of the present study was to ascertain whether this nationwide project also improves the outcome of colorectal cancer. The German Quality Assurance in Colorectal Cancer Project started in 2000 and by 2012 contained 85,000 patients. Inclusion criteria for the study were participation for the entire period of 13 years and treatment of rectal cancer. The following parameters were analysed: (1) patient related: age, gender, ASA classification, T-stage, and N-stage, (2) system related: frequency of preoperative CT and MRI, and (3) outcome related: CRM status, complications, and hospital mortality. Forty-one of the 345 hospitals treating 11,597 patients fulfilled the inclusion criteria. The median age increased from 67 to 69 years ( p = 0.002). ASA stages III and IV increased from 32.0% to 37.6% ( p = 0.005) and from 2.0% to 3.3% ( p = 0.022), respectively. The use of CT rose from 67.2% to 88.8% ( p < 0.001) and that of MRI from 5.0% to 35.2% ( p < 0.001). The proportion of patients suffering from complications decreased from 7.9% to 5.3% ( p < 0.001) for intraoperative and from 28.0% to 18.6% ( p < 0.001) for postoperative surgical complications, but general postoperative complications increased from 25.8% to 29.5% ( p = 0.006). The distribution of histopathological stage, anastomotic leakage, and in-hospital mortality did not change significantly. Participation in a quality assurance project improves compliance with treatment standards, especially for diagnostic procedures. An improvement of surgical results will require further investment in training.

  5. Multimodal imaging evaluation in staging of rectal cancer

    PubMed Central

    Heo, Suk Hee; Kim, Jin Woong; Shin, Sang Soo; Jeong, Yong Yeon; Kang, Heoung-Keun

    2014-01-01

    Rectal cancer is a common cancer and a major cause of mortality in Western countries. Accurate staging is essential for determining the optimal treatment strategies and planning appropriate surgical procedures to control rectal cancer. Endorectal ultrasonography (EUS) is suitable for assessing the extent of tumor invasion, particularly in early-stage or superficial rectal cancer cases. In advanced cases with distant metastases, computed tomography (CT) is the primary approach used to evaluate the disease. Magnetic resonance imaging (MRI) is often used to assess preoperative staging and the circumferential resection margin involvement, which assists in evaluating a patient’s risk of recurrence and their optimal therapeutic strategy. Positron emission tomography (PET)-CT may be useful in detecting occult synchronous tumors or metastases at the time of initial presentation. Restaging after neoadjuvant chemoradiotherapy (CRT) remains a challenge with all modalities because it is difficult to reliably differentiate between the tumor mass and other radiation-induced changes in the images. EUS does not appear to have a useful role in post-therapeutic response assessments. Although CT is most commonly used to evaluate treatment responses, its utility for identifying and following-up metastatic lesions is limited. Preoperative high-resolution MRI in combination with diffusion-weighted imaging, and/or PET-CT could provide valuable prognostic information for rectal cancer patients with locally advanced disease receiving preoperative CRT. Based on these results, we conclude that a combination of multimodal imaging methods should be used to precisely assess the restaging of rectal cancer following CRT. PMID:24764662

  6. Poor rectal absorption of trimethoprim/sulphamethoxazole in treating Pneumocystis carinii pneumonia.

    PubMed Central

    Dorr, R. T.; Powell, J. R.; Heick, M.; Barry, D. W.

    1981-01-01

    A 24-year-old female with Hodgkin's disease and Pneumocystis carinii pneumonia was tested with trimethoprim/sulphamethoxazole (TMP/SMX) tablets. Because treatment failure was feared owing to chronic emesis potentially resulting in incomplete drug absorption, the same TMP/SMX dose was administered by rectal suppositories after the 5th day of oral dosing. The relative fractions (rectal/oral) or the suppository dose absorbed for TMP and SMX were 3.0% and 19.5% respectively. When TMP/SMX treatment is required and the oral route is not practical, the investigational i.v. preparation should be obtained. PMID:6973756

  7. High-grade hemorrhoids requiring surgical treatment are common after laparoscopic ventral mesh rectopexy.

    PubMed

    van Iersel, J J; Formijne Jonkers, H A; Verheijen, P M; Draaisma, W A; Consten, E C J; Broeders, I A M J

    2016-04-01

    To describe patients developing grade III and IV hemorrhoids requiring surgery after laparoscopic ventral mesh rectopexy (LVMR) and to explore the relationship between developing such hemorrhoids and recurrence of rectal prolapse after LVMR. All consecutive patients receiving LVMR at the Meander Medical Centre, Amersfoort, the Netherlands, between 2004 and 2013 were analyzed. Kaplan-Meier estimates were calculated for recurrences. A total of 420 patients underwent LVMR. Sixty-five of these patients (actuarial 5-year incidence 24.3, 95 % confidence interval (CI) 18.6-30.0) developed symptomatic grade III/IV hemorrhoids requiring stapled or excisional hemorrhoidectomy. Re-do surgery for recurrent grade III/IV hemorrhoids was required for 15 of the 65 patients (actuarial 5-year recurrence rate 40.6, 95 % CI 23.2-58.0) after the primary hemorrhoidectomy. Three of the 65 patients developed an external rectal prolapse (ERP) recurrence and eight an internal rectal prolapse (IRP) recurrence. This generated a 5-year recurrence rate of 25.3 % (95 % CI 0-53.9) for ERP recurrence and 24.4 % (95 % CI 9.1-39.7) for IRP recurrence. The rest of the LVMR cohort not receiving additional surgery for hemorrhoids (n = 355) showed significantly lower actuarial 5-year ERP (0.8 %, p = 0.011) and IRP (11 %, p = 0.020) recurrence rates. High-grade hemorrhoids requiring surgery may be common after LVMR. The development of high-grade hemorrhoids after LVMR might be considered a predictor of rectal prolapse recurrence.

  8. Safety and efficacy of adjuvant therapy with oxaliplatin, leucovorin and 5-fluorouracil after mesorectal excision with lateral pelvic lymph node dissection for stage iii lower rectal cancer.

    PubMed

    Iwasa, Satoru; Souda, Hiroaki; Yamazaki, Kentaro; Takahari, Daisuke; Miyamoto, Yuji; Takii, Yasumasa; Ikeda, Satoshi; Hamaguchi, Tetsuya; Kanemitsu, Yukihide; Shimada, Yasuhiro

    2015-03-01

    Preoperative chemoradiotherapy followed by total mesorectal excision (TME) is the standard treatment for stage III lower rectal cancer worldwide. However, in Japan, the standard treatment is TME with lateral pelvic lymph node dissection (LPLD) followed by adjuvant chemotherapy. We examined the safety and efficacy of adjuvant therapy with oxaliplatin, leucovorin, and 5-fluorouracil (modified FOLFOX6) after TME with LPLD. This retrospective study included 33 patients who received modified FOLFOX6 after TME with LPLD for stage III lower rectal cancer. The overall completion rate of 12 cycles of adjuvant modified FOLFOX6 was 76%. Grade 3 or 4 neutropenia was observed in eight patients (24%). Sensory neuropathy was observed in 32 patients (97%) with 4 (12%) having a grade 3 event. The disease-free survival (DFS) rate was 45% at 3 years. Adjuvant modified FOLFOX6 was feasible in patients with stage III lower rectal cancer after TME with LPLD. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Adjuvant 5FU plus levamisole in colonic or rectal cancer: improved survival in stage II and III

    PubMed Central

    Taal, B G; Van Tinteren, H; Zoetmulder, F A N

    2001-01-01

    Based on the first favourable results of adjuvant therapy of 5FU plus levamisole in Dukes C colonic cancer in 1990, we conducted a prospective trial. 1029 patients were randomised to receive one year 5FU plus levamisole or no further treatment following curative surgery for stage II or III colon (n = 730) or rectal cancer (n = 299). 45% were in stage II and 55% in stage III. With a median follow-up of 4 years and 9 months a significant reduction in odds of death (25%, SD 9%, P = 0.007) was observed for those with adjuvant treatment (65% at 5 year) compared to the observation group (55%). Improved relative survival was present in stage III (56% vs 44%), and in stage II patients (78% vs 70%). In rectal cancer a non-significant difference in disease-free or overall survival was observed. Distant metastases developed in 76%, while local recurrence alone occurred in 14%. An early start of adjuvant treatment (< 4 weeks) did not affect results. Compliance to 5FU plus levamisole was 69%. Severe toxicity did not occur. In conclusion, one year 5FU plus levamisole was of benefit in stage II and III colonic cancer; in rectal cancer a significant positive effect could not be demonstrated. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11720425

  10. Cure by age and stage at diagnosis for colorectal cancer patients in North West England, 1997-2004: a population-based study.

    PubMed

    Shack, L G; Shah, A; Lambert, P C; Rachet, B

    2012-12-01

    Stage and age at diagnosis are important prognostic factors for patients with colorectal cancer. However, the proportion cured by stage and age is unknown in England. This population-based study includes 29,563 adult patients who were diagnosed and registered with colorectal cancer during 1997-2004 and followed till 2007 in North West England. Multiple imputation was used to provide more reliable estimates of stage at diagnosis, when these data were missing. Cure mixture models were used to estimate the proportion 'cured' and the median survival of the uncured by age and stage. For both colon and rectal cancer the proportion of patients cured and median survival time of the uncured decreased with advancing stage and increasing age. Patients aged under 65 years had the highest proportion cured and longest median survival of the uncured. Cure of colorectal cancer patients is dependent on stage and age at diagnosis with younger patients or those with less advanced disease having a better prognosis. Further efforts are required, in order to reduce the proportion of patients presenting with stage III and IV disease and ultimately increase the chance of cure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Anorectal Cancer: Critical Anatomic and Staging Distinctions That Affect Use of Radiation Therapy

    PubMed Central

    Mamon, Harvey J.; Fuchs, Charles S.; Doyle, Leona A.; Tirumani, Sree Harsha; Ramaiya, Nikhil H.; Rosenthal, Michael H.

    2015-01-01

    Although rectal and anal cancers are anatomically close, they are distinct entities with different histologic features, risk factors, staging systems, and treatment pathways. Imaging is at the core of initial clinical staging of these cancers and most commonly includes magnetic resonance imaging for local-regional staging and computed tomography for evaluation of metastatic disease. The details of the primary tumor and involvement of regional lymph nodes are crucial in determining if and how radiation therapy should be used in treatment of these cancers. Unfortunately, available imaging modalities have been shown to have imperfect accuracy for identification of nodal metastases and imaging features other than size. Staging of nonmetastatic rectal cancers is dependent on the depth of invasion (T stage) and the number of involved regional lymph nodes (N stage). Staging of nonmetastatic anal cancers is determined according to the size of the primary mass and the combination of regional nodal sites involved; the number of positive nodes at each site is not a consideration for staging. Patients with T3 rectal tumors and/or involvement of perirectal, mesenteric, and internal iliac lymph nodes receive radiation therapy. Almost all anal cancers warrant use of radiation therapy, but the extent and dose of the radiation fields is altered on the basis of both the size of the primary lesion and the presence and extent of nodal involvement. The radiologist must recognize and report these critical anatomic and staging distinctions, which affect use of radiation therapy in patients with anal and rectal cancers. ©RSNA, 2015 PMID:26562239

  12. Complete Neoadjuvant Treatment for Rectal Cancer: The Brown University Oncology Group CONTRE Study.

    PubMed

    Perez, Kimberly; Safran, Howard; Sikov, William; Vrees, Matthew; Klipfel, Adam; Shah, Nishit; Schechter, Steven; Oldenburg, Nicklas; Pricolo, Victor; Rosati, Kayla; Dipetrillo, Thomas

    2017-06-01

    Following preoperative chemoradiation and surgery, many patients with stage II to III rectal cancer are unable to tolerate full-dose adjuvant chemotherapy. BrUOG R-224 was designed to assess the impact of COmplete Neoadjuvant Treatment for REctal cancer (CONTRE), primary chemotherapy followed by chemoradiation and surgery, on treatment delivery, toxicities, and pathologic response at surgery. Patients with clinical stage II to III (T3 to T4 and/or N1 to N2) rectal cancer received 8 cycles of modified FOLFOX6 followed by capecitabine 825 mg/m bid concurrent with 50.4 Gy intensity-modulated radiation therapy. Surgery was performed 6 to 10 weeks after chemoradiation. Thirty-nine patients were enrolled between August 2010 and June 2013. Median age was 61 years (30 to 79 y); 7 patients (18%) were clinical stage II and 32 (82%) stage III. Thirty-six patients (92%) received all 8 cycles of mFOLFOX6, of whom 35 completed subsequent chemoradiation; thus 89% of patients received CONTRE as planned. No unexpected toxicities were reported. All patients had resolution of bleeding and improvement of obstructive symptoms, with no complications requiring surgical intervention. Pathologic complete response (ypT0N0) was demonstrated in 13 patients (33%; 95% CI, 18.24%-47.76%). CONTRE seems to be a well-tolerated alternative to the current standard treatment sequence. Evaluating its impact on long-term outcomes would require a large randomized trial, but using pathologic response as an endpoint, it could serve as a platform for assessing the addition of novel agents to preoperative treatment in stage II to III rectal cancer.

  13. Crizotinib-induced Rectal Perforation with Abscess.

    PubMed

    Yanagisawa, Asako; Hayama, Noriko; Amano, Hiroyuki; Nakamura, Makoto; Hirano, Satoshi; Nakamura, Sukeyuki; Tabeta, Hiroshi

    2017-12-01

    An 86-year-old Japanese man was diagnosed with stage IV lung adenocarcinoma. The patient was treated with crizotinib after echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement was detected from his pleural effusion. He subsequently developed abdominal pain and rebound tenderness in the right lower abdomen. Contrast-enhanced abdominal CT showed a low-density area in the abdominal cavity. The size of the abscess was decreased by drainage and the administration of antibiotics. Fistulography revealed a fistula from the rectum to the abscess, and a diagnosis of lower intestinal tract perforation with abscess formation was made. Crizotinib was discontinued and treatment with alectinib was initiated. The patient remains under treatment as an outpatient at our department without adverse effects.

  14. Crizotinib-induced Rectal Perforation with Abscess

    PubMed Central

    Yanagisawa, Asako; Hayama, Noriko; Amano, Hiroyuki; Nakamura, Makoto; Hirano, Satoshi; Nakamura, Sukeyuki; Tabeta, Hiroshi

    2017-01-01

    An 86-year-old Japanese man was diagnosed with stage IV lung adenocarcinoma. The patient was treated with crizotinib after echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement was detected from his pleural effusion. He subsequently developed abdominal pain and rebound tenderness in the right lower abdomen. Contrast-enhanced abdominal CT showed a low-density area in the abdominal cavity. The size of the abscess was decreased by drainage and the administration of antibiotics. Fistulography revealed a fistula from the rectum to the abscess, and a diagnosis of lower intestinal tract perforation with abscess formation was made. Crizotinib was discontinued and treatment with alectinib was initiated. The patient remains under treatment as an outpatient at our department without adverse effects. PMID:29021430

  15. Interim analysis of postoperative chemoradiotherapy with capecitabine and oxaliplatin versus capecitabine alone for pathological stage II and III rectal cancer: a randomized multicenter phase III trial.

    PubMed

    Feng, Yan-Ru; Zhu, Yuan; Liu, Lu-Ying; Wang, Wei-Hu; Wang, Shu-Lian; Song, Yong-Wen; Wang, Xin; Tang, Yuan; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Zhang, Shi-Ping; Liu, Xin-Fan; Yu, Zi-Hao; Li, Ye-Xiong; Jin, Jing

    2016-05-03

    The aim of this study is to present an interim analysis of a phase III trial (NCT00714077) of postoperative concurrent capecitabine and radiotherapy with or without oxaliplatin for pathological stage II and III rectal cancer. Patients with pathologically confirmed stage II and III rectal cancer were randomized to either radiotherapy with concurrent capecitabine (Cap-RT group) or with capecitabine and oxaliplatin (Capox-RT group). The primary endpoint was 3-year disease-free survival rate (DFS). The 3-year DFS rate was 73.9% in the Capox-RT group and 71.6% in the Cap-RT group (HR 0.92, p = 0.647), respectively. No significant difference was observed in overall survival, cumulative incidence of local recurrence and distant metastasis between the two groups (p > 0.05). More grade 3-4 acute toxicity was observed in the Capox-RT group than in the Cap-RT group (38.1% vs. 29.2%, p = 0.041). Inclusion of oxaliplatin in the capecitabine-based postoperative regimen did not improve DFS but increased toxicities for pathological stage II and III rectal cancer in this interim analysis.

  16. Descriptive characteristics of colon and rectal cancer recurrence in a Danish population-based study.

    PubMed

    Holmes, Ashley C; Riis, Anders H; Erichsen, Rune; Fedirko, Veronika; Ostenfeld, Eva Bjerre; Vyberg, Mogens; Thorlacius-Ussing, Ole; Lash, Timothy L

    2017-08-01

    Recurrence is a common outcome among patients that have undergone an intended curative resection for colorectal cancer. However, data on factors that influence colorectal cancer recurrence are sparse. We report descriptive characteristics of both colon and rectal cancer recurrence in an unselected population. We identified 21,152 patients with colorectal cancer diagnosed between May 2001 and December 2011 and registered with the Danish Colorectal Cancer Group. Recurrences were identified in 3198 colon and 1838 rectal cancer patients during follow-up. We calculated the frequency, proportion, and incidence rates of colon and rectal cancer recurrence within descriptive categories, and the cumulative five- and ten-year incidences of recurrence, treating death as a competing risk. We used a Cox proportional hazard model to calculate hazard ratios (HR) and 95% confidence intervals (CI). Recurrence risk was highest in the first three years of follow-up. Patients <55 years old at initial diagnosis (incidence rate for colon: 7.2 per 100 person-years; 95% CI: 6.5-7.9; rectum: 8.1 per 100 person-years; 95% CI: 7.2-9.0) and patients diagnosed with stage III cancer (colon HR: 5.70; 95% CI: 4.61-7.06; rectal HR: 7.02; 95% CI: 5.58-8.82) had increased risk of recurrence. Patients diagnosed with stage III cancer from 2009 to 2011 had a lower incidence of recurrence than those diagnosed with stage III cancer in the years before. Cumulative incidences of colon and rectal cancer recurrence were similar for both cancer types among each descriptive category. In this population, increases in colorectal cancer recurrence risk were associated with younger age and increasing stage at diagnosis. Cumulative incidence of recurrence did not differ by cancer type. Descriptive characteristics of colon and rectal cancer recurrence may help to inform patient-physician decision-making, and could be used to determine adjuvant therapies or tailor surveillance strategies so that recurrence may be identified early, particularly within the first 3 years of follow-up.

  17. Stages of Anal Cancer

    MedlinePlus

    ... past illnesses and treatments will also be taken. Digital rectal examination (DRE) : An exam of the anus ... lumps or anything else that seems unusual. Enlarge Digital rectal exam (DRE). The doctor inserts a gloved, ...

  18. Endoscopic Criteria for Evaluating Tumor Stage after Preoperative Chemoradiation Therapy in Locally Advanced Rectal Cancer.

    PubMed

    Han, Kyung Su; Sohn, Dae Kyung; Kim, Dae Yong; Kim, Byung Chang; Hong, Chang Won; Chang, Hee Jin; Kim, Sun Young; Baek, Ji Yeon; Park, Sung Chan; Kim, Min Ju; Oh, Jae Hwan

    2016-04-01

    Local excision may be an another option for selected patients with markedly down-staged rectal cancer after preoperative chemoradiation therapy (CRT), and proper evaluation of post-CRT tumor stage (ypT) is essential prior to local excision of these tumors. This study was designed to determine the correlations between endoscopic findings and ypT of rectal cancer. In this study, 481 patients with locally advanced rectal cancer who underwent preoperative CRT followed by surgical resection between 2004 and 2013 at a single institution were evaluated retrospectively. Pathological good response (p-GR) was defined as ypT ≤ 1, and pathological minimal or no response (p-MR) as ypT ≥ 2. The patients were randomly classified according to two groups, a testing (n=193) and a validation (n=288) group. Endoscopic criteria were determined from endoscopic findings and ypT in the testing group and used in classifying patients in the validation group as achieving or not achieving p-GR. Based on findings in the testing group, the endoscopic criteria for p-GR included scarring, telangiectasia, and erythema, whereas criteria for p-MR included nodules, ulcers, strictures, and remnant tumors. In the validation group, the kappa statistic was 0.965 (p < 0.001), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.362, 0.963, 0.654, and 0.885, respectively. The endoscopic criteria presented are easily applicable for evaluation of ypT after preoperative CRT for rectal cancer. These criteria may be used for selection of patients for local excision of down-staged rectal tumors, because patients with p-MR could be easily ruled out.

  19. [A Curatively Resected Case of Lateral Lymph Node Metastasis Five-Years after Initial Surgery for Rectal Cancer].

    PubMed

    Miura, Takayuki; Tsunenari, Takazumi; Sasaki, Tsuyoshi; Yokoyama, Tadaaki; Fukuhara, Kenji

    2017-11-01

    A 74-year-old male had undergone laparoscopic abdominoperineal resection for lower rectal cancer in July 2009. The pathological diagnosis was T2, N0, M0, pStage I (TNM 7th). Because of pathological venous invasion, adjuvant chemotherapy with Tegafur-uracil(UFT)plus Leucovorin for a year was performed. A CT examination revealed slowly growing peripheral right internal iliaclymph node. PET-CT demonstrated a 20mm right lateral lymph node(LLN)metastasis without other distant metastases. On diagnosis of solitary LLN metastasis of rectal cancer, the patient underwent surgical lymph node resection in September 2014. The pathological diagnosis was lymph node metastasis from rectal cancer. Subsequently, the patient received mFOLFOX6 adjuvant chemotherapy for 6 months. The patient remains alive without any recurrence 31 months after the second surgical treatment. lt is important to consider that LLN metastasis of Stage I rectal cancer might still occur a long time after the curative operation.

  20. Performance of endoscopic ultrasound in staging rectal adenocarcinoma appropriate for primary surgical resection.

    PubMed

    Ahuja, Nitin K; Sauer, Bryan G; Wang, Andrew Y; White, Grace E; Zabolotsky, Andrew; Koons, Ann; Leung, Wesley; Sarkaria, Savreet; Kahaleh, Michel; Waxman, Irving; Siddiqui, Ali A; Shami, Vanessa M

    2015-02-01

    Endoscopic ultrasound (EUS) often is used to stage rectal cancer and thereby guide treatment. Prior assessments of its accuracy have been limited by small sets of data collected from tumors of varying stages. We aimed to characterize the diagnostic performance of EUS analysis of rectal cancer, paying particular attention to determining whether patients should undergo primary surgical resection. We performed a retrospective observational study using procedural databases and electronic medical records from 4 academic tertiary-care hospitals, collecting data on EUS analyses from 2000 through 2012. Data were analyzed from 86 patients with rectal cancer initially staged as T2N0 by EUS. The negative predictive value (NPV) was calculated by comparing initial stages determined by EUS with those determined by pathology analysis of surgical samples. Logistic regression models were used to assess variation in diagnostic performance with case attributes. EUS excluded advanced tumor depth with an NPV of 0.837 (95% confidence interval [CI], 0.742-0.908), nodal metastasis with an NPV of 0.872 (95% CI, 0.783-0.934), and both together with an NPV of 0.767 (95% CI, 0.664-0.852) compared with pathology analysis. Incorrect staging by EUS affected treatment decision making for 20 of 86 patients (23.3%). Patient age at time of the procedure correlated with the NPV for metastasis to lymph node, but no other patient features were associated significantly with diagnostic performance. Based on a multicenter retrospective study, EUS staging of rectal cancer as T2N0 excludes advanced tumor depth and nodal metastasis, respectively, with an approximate NPV of 85%, similar to that of other modalities. EUS has an error rate of approximately 23% in identifying disease appropriate for surgical resection, which is lower than previously reported. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. How the Change in IBS Criteria From Rome III to Rome IV Impacts on Clinical Characteristics and Key Pathophysiological Factors.

    PubMed

    Aziz, Imran; Törnblom, Hans; Palsson, Olafur S; Whitehead, William E; Simrén, Magnus

    2018-06-08

    The diagnostic criteria for irritable bowel syndrome (IBS) have recently been updated from Rome III to Rome IV. Whereas in Rome III a diagnosis of IBS entailed chronic abdominal pain or discomfort at least 3 days per month, in Rome IV the term discomfort has been removed and the frequency of abdominal pain increased to at least 1 day per week. We examined how this change in IBS criteria impacts on clinical characteristics and pathophysiological factors. A total of 542 Swedish subjects with Rome III IBS completed a baseline questionnaire enquiring for the number of abdominal pain days in the last 10 days; this was subsequently used as a surrogate marker to identify Rome IV IBS, in that (a) those with 0 or 1 day of pain were classed as Rome IV-negative, and (b) those with ≥2 days of pain were classed as Rome IV-positive. Comparisons were made between Rome IV-positive and -negative IBS groups for demographics, IBS subtype, gastrointestinal and psychological symptoms, somatisation, fatigue, disease-specific quality of life, rectal sensitivity, and oro-anal transit time. Overall, 85% of Rome III IBS patients fulfilled the Rome IV criteria for IBS, but 15% did not. Rome IV-positive subjects were significantly more likely to be female, have poorer quality of life, greater pain severity, bloating, somatisation, fatigue, and rectal sensitivity than Rome IV-negative subjects. There were no differences in severity of anxiety or depression, IBS subtypes, bowel habit dissatisfaction, or oro-anal transit time. Finally, increasing number of pain days correlated positively with symptoms and visceral hypersensitivity. Most Rome III-positive IBS patients seeking healthcare fulfil the Rome IV IBS criteria. They constitute a more severe group than those who lose their IBS diagnosis.

  2. Successful resection of metachronous para-aortic, Virchow lymph node and liver metastatic recurrence of rectal cancer.

    PubMed

    Takeshita, Nobuyoshi; Fukunaga, Toru; Kimura, Masayuki; Sugamoto, Yuji; Tasaki, Kentaro; Hoshino, Isamu; Ota, Takumi; Maruyama, Tetsuro; Tamachi, Tomohide; Hosokawa, Takashi; Asai, Yo; Matsubara, Hisahiro

    2015-11-28

    A 66-year-old female presented with the main complaint of defecation trouble and abdominal distention. With diagnosis of rectal cancer, cSS, cN0, cH0, cP0, cM0 cStage II, Hartmann's operation with D3 lymph node dissection was performed and a para-aortic lymph node and a disseminated node near the primary tumor were resected. Histological examination showed moderately differentiated adenocarcinoma, pSS, pN3, pH0, pP1, pM1 (para-aortic lymph node, dissemination) fStage IV. After the operation, the patient received chemotherapy with FOLFIRI regimen. After 12 cycles of FOLFIRI regimen, computed tomography (CT) detected an 11 mm of liver metastasis in the postero-inferior segment of right hepatic lobe. With diagnosis of liver metastatic recurrence, we performed partial hepatectomy. Histological examination revealed moderately differentiated adenocarcinoma as a metastatic rectal cancer with cut end microscopically positive. After the second operation, the patient received chemotherapy with TS1 alone for 2 years. Ten months after the break, CT detected a 20 mm of para-aortic lymph node metastasis and a 10 mm of lymph node metastasis at the hepato-duodenal ligament. With diagnosis of lymph node metastatic recurrences, we performed lymph node dissection. Histological examination revealed moderately differentiated adenocarcinoma as metastatic rectal cancer in para-aortic and hepato-duodenal ligament areas. After the third operation, we started chemotherapy with modified FOLFOX6 regimen. After 2 cycles of modified FOLFOX6 regimen, due to the onset of neutropenia and liver dysfunction, we switched to capecitabine alone and continued it for 6 mo and then stopped. Eleven months after the break, CT detected two swelling 12 mm of lymph nodes at the left supraclavicular region. With diagnosis of Virchow lymph node metastatic recurrence, we started chemotherapy with capecitabine plus bevacizumab regimen. Due to the onset of neutropenia and hand foot syndrome (Grade 3), we managed to continue capecitabine administration with extension of interval period and dose reduction. After 2 years and 2 mo from starting capecitabine plus bevacizumab regimen, Virchow lymph nodes had slowly grown up to 17 mm. Because no recurrence had been detected besides Virchow lymph nodes for this follow up period, considering the side effects and quality of life, surgical resection was selected. We performed left supraclavicular lymph node dissection. Histological examination revealed moderately differentiated adenocarcinoma as a metastatic rectal cancer. After the fourth operation, the patient selected follow up without chemotherapy. Now we follow up her without recurrence and keep her quality of life high.

  3. Relative Value of Restaging MRI, CT, and FDG-PET Scan After Preoperative Chemoradiation for Rectal Cancer.

    PubMed

    Schneider, Daniel A; Akhurst, Timothy J; Ngan, Samuel Y; Warrier, Satish K; Michael, Michael; Lynch, Andrew C; Te Marvelde, Luc; Heriot, Alexander G

    2016-03-01

    Management of rectal cancer has become multidisciplinary and is driven by the stage of the disease, with increased focus on restaging rectal cancer after neoadjuvant therapy. The purpose of this study was to assess the relative impact of restaging after preoperative chemoradiation with FDG-PET scan, CT, and MRI in the management of patients with rectal cancer. This was a retrospective study from a single institution. This study was conducted at a tertiary cancer center. A total of 199 patients met the inclusion criteria: patients with rectal adenocarcinoma; staged with positron emission tomography, CT, and MRI; T2 to T4, N0 to N2, M0 to M1; treated with neoadjuvant chemoradiation 50.4 Gy and infusional 5-fluorouracil; and restaged 4 weeks after chemoradiation before surgery between 2003 and 2013. Comparisons of the tumor stage among different imaging modalities before and after neoadjuvant chemoradiation were performed. The impact of restaging on the management plan was assessed. The stage at presentation was T2, 8.04%; T3, 65.33%; T4, 26.63%; N0, 17.09%; N1, 47.74%; N2, 34.67%; M0, 81.91%; and M1, 18.09%. Changes in disease stage postneoadjuvant chemoradiation were observed in 99 patients (50%). The management plans of 29 patients (15%) were changed. The impact of each restaging modality on management for all of the patients was positron emission tomography, 11%; CT, 4%; and MRI, 4%. In patients with metastatic disease at primary staging, the relative impact of each restaging modality in changing management was positron emission tomography, 32%; CT, 18%; and MRI, 6%. This study was limited by its single-center and retrospective design. Operations were performed 4 weeks after restaging. Changes in the extent of disease after long-course chemoradiotherapy result in changes of management in a significant percentage of patients. Positron emission tomography has the most significant impact in the change of management overall, and its use in restaging advanced rectal cancer should be further explored.

  4. Rectal sac distention is induced by 20-hydroxyecdysone in the pupa of Bombyx mori.

    PubMed

    Suzuki, Takumi; Sakurai, Sho; Iwami, Masafumi

    2009-03-01

    Holometabolous insects do not excrete but store metabolic wastes during the pupal period. The waste is called meconium and is purged after adult emergence. Although the contents of meconium are well-studied, the developmental and physiological regulation of meconium accumulation is poorly understood. In Bombyx mori, meconium is accumulated in the rectal sac; thereby, the rectal sac distends at the late pupal stage. Here, we show that rectal sac distention occurs between 4 and 5 days after pupation. The distention is halted by brain-removal just after larval-pupal ecdysis but not by brain-removal 1 day after pupation. In the pupae, brain-removal just after ecdysis kept the hemolymph ecdysteroid titer low during early and mid-pupal stages. An injection of 20-hydroxyecdysone (20E) evoked the distention that was halted by brain-removal in a dose-dependent manner. Therefore, brain-removal caused the lack of ecdysteroid, and rectal sac distention did not appear in the brain-removed pupae because of the lack of ecdysteroid. We conclude that rectal sac distention is one of the developmental events regulated by 20E during the pupal period in B. mori.

  5. Influence of the intravenous contrast media on treatment planning dose calculations of lower esophageal and rectal cancers.

    PubMed

    Nasrollah, Jabbari; Mikaeil, Molazadeh; Omid, Esnaashari; Mojtaba, Seyed Siahi; Ahad, Zeinali

    2014-01-01

    The impact of intravenous (IV) contrast media (CM) on radiation dose calculations must be taken into account in treatment planning. The aim of this study is to evaluate the effect of an intravenous contrast media on dose calculations in three-dimensional conformal radiation therapy (3D-CRT) for lower esophageal and rectal cancers. Seventeen patients with lower esophageal tumors and 12 patients with rectal cancers were analyzed. At the outset, all patients were planned for 3D-CRT based on the computed tomography (CT) scans with IV contrast media. Subsequently, all the plans were copied and replaced on the scans without intravenous CM. The radiation doses calculated from the two sets of CTs were compared. The dose differences between the planning image set using intravenous contrast and the image set without contrast showed an average increase in Monitor Units (MUs) in the lower esophageal region that was 1.28 and 0.75% for 6 and 15 MV photon beams, respectively. There was no statistical significant difference in the rectal region between the two sets of scans in the 3D-CRT plans. The results showed that the dose differences between the plans for the CT scans with and without CM were small and clinically tolerable. However, the differences in the lower esophageal region were significant in the statistical analysis.

  6. Preoperative tumour staging with multidisciplinary team assessment improves the outcome in locally advanced primary rectal cancer.

    PubMed

    Palmer, G; Martling, A; Cedermark, B; Holm, T

    2011-12-01

    Multidisciplinary team meetings have been introduced as a result of developments in preoperative radiological tumour staging and neoadjuvant treatment. Multidisciplinary team recommendations will influence treatment decisions but their effect on patient outcome is unknown. The aim of this study was to assess outcome in relation to preoperative local and distant staging, with or without multidisciplinary team assessment. A population-based registry of all patients with rectal cancer, treated in the Stockholm region from 1995 to 2004, identified 303 patients with locally advanced primary rectal cancer. The patients were classified into three groups: group 1, preoperative local and distant radiological tumour staging with discussion at a multidisciplinary team meeting; group 2, preoperative staging but no multidisciplinary team assessment; and group 3, no proper preoperative radiological staging. Neoadjuvant treatment was more prevalent in groups 1 and 2 than in group 3. The incidence of R0 resection differed significantly between the groups (52% in group 1, 43% in group 2 and 21% in group 3; P < 0.001). Local tumour control was achieved in 57%, 36%, and 19% of patients in groups 1, 2 and 3, respectively (P < 0.001). The estimated overall 5-year survival of patients was 30%, 28% and 12% in groups 1, 2 and 3, respectively. Preoperative radiological tumour staging in patients with locally advanced primary rectal cancer and discussion at a multidisciplinary team meeting increases the proportion of patients receiving neoadjuvant treatment and cancer-specific end-points. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  7. Screening or Symptoms? How Do We Detect Colorectal Cancer in an Equal Access Health Care System?

    PubMed

    Hatch, Quinton M; Kniery, Kevin R; Johnson, Eric K; Flores, Shelly A; Moeil, David L; Thompson, John J; Maykel, Justin A; Steele, Scott R

    2016-02-01

    Detection of colorectal cancer ideally occurs at an early stage through proper screening. We sought to establish methods by which colorectal cancers are diagnosed within an equal access military health care population and evaluate the correlation between TNM stage at colorectal cancer diagnosis and diagnostic modality (i.e., symptomatic detection vs screen detection). A retrospective chart review of all newly diagnosed colorectal cancer patients from January 2007 to August 2014 was conducted at the authors' equal access military institution. We evaluated TNM stage relative to diagnosis by screen detection (fecal occult blood test, flexible sigmoidoscopy, CT colonography, colonoscopy) or symptomatic evaluation (diagnostic colonoscopy or surgery). Of 197 colorectal cancers diagnosed (59 % male; mean age 62 years), 50 (25 %) had stage I, 47 (24 %) had stage II, 70 (36 %) had stage III, and 30 (15 %) had stage IV disease. Twenty-five percent of colorectal cancers were detected via screen detection (3 % by fecal occult blood testing (FOBT), 0.5 % by screening CT colonography, 17 % by screening colonoscopy, and 5 % by surveillance colonoscopy). One hundred forty-eight (75 %) were diagnosed after onset of signs or symptoms. The preponderance of these was advanced-stage disease (stages III-IV), although >50 % of stage I-II disease also had signs or symptoms at diagnosis. The most common symptoms were rectal bleeding (45 %), abdominal pain (35 %), and change in stool caliber (27 %). The most common overall sign was anemia (60 %). Screening FOBT (odds ratio (OR) 8.7, 95 % confidence interval (CI) 1.0-78.3; P = 0.05) independently predicted early diagnosis with stage I-II disease. Patient gender and ethnicity were not associated with cancer stage at diagnosis. Despite equal access to colorectal cancer screening, diagnosis after development of symptomatic cancer remains more common. Fecal occult blood screen detection is associated with early stage at colorectal cancer diagnosis and is the focus for future initiatives.

  8. Advances in organ preserving strategies in rectal cancer patients.

    PubMed

    Stijns, Rutger C H; Tromp, Mike-Stephen R; Hugen, Niek; de Wilt, Johannes H W

    2018-02-01

    Treatment of rectal cancer patients has been subjected to change over the past thirty years. Total mesorectal excision is considered the cornerstone of rectal cancer treatment, but is also associated with significant morbidity resulting in an impaired quality of life. The addition of neoadjuvant chemoradiotherapy to surgery has shown to improve survival and local control and may lead to a partial or even complete response (CR). This raises questions regarding the necessity for subsequent radical surgery. After careful patient selection local excision and wait-and-see approaches are explored, aiming to improve quality of life without compromising oncological outcome. A multimodality diagnostic approach for optimal staging is crucial in determining the appropriate neoadjuvant treatment regimen. Adequate endoscopic restaging of rectal tumours after multimodality treatment will aid in selecting patients who are eligible for an organ preserving approach. The role and accuracy of imaging in the detection of the primary tumour, residual rectal cancer or local recurrence seems vital. Alternative neoadjuvant regimens are currently explored to increase the rate of clinical CRs, which may support organ preserving approaches. This review aims to generate insight into the advances in diagnostics and treatment modalities in all stages of rectal cancer and will highlight future studies that may support further implementation of organ preservation treatment in rectal cancer. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  9. Modified methylene blue injection improves lymph node harvest in rectal cancer.

    PubMed

    Liu, Jianpei; Huang, Pinjie; Zheng, Zongheng; Chen, Tufeng; Wei, Hongbo

    2017-04-01

    The presence of nodal metastases in rectal cancer plays an important role in accurate staging and prognosis, which depends on adequate lymph node harvest. The aim of this prospective study is to investigate the feasibility and survival benefit of improving lymph node harvest by a modified method with methylene blue injection in rectal cancer specimens. One hundred and thirty-one patients with rectal cancer were randomly assigned to the control group in which lymph nodes were harvested by palpation and sight, or to the methylene blue group using a modified method of injection into the superior rectal artery with methylene blue. Analysis of clinicopathologic records, including a long-term follow-up, was performed. In the methylene blue group, 678 lymph nodes were harvested by simple palpation and sight. Methylene blue injection added 853 lymph nodes to the total harvest as well as 32 additional metastatic lymph nodes, causing a shift to node-positive stage in four patients. The average number of lymph nodes harvested was 11.7 ± 3.4 in the control group and 23.2 ± 4.7 in the methylene blue group, respectively. The harvest of small lymph nodes (<5 mm) and the average number of metastatic nodes were both significantly higher in the methylene blue group. The modified method of injection with methylene blue had no impact on overall survival. The modified method with methylene blue injection improved lymph node harvest in rectal cancer, especially small node and metastatic node retrieval, which provided more accurate staging. However, it was not associated with overall survival. © 2014 Royal Australasian College of Surgeons.

  10. Benzodiazepine use in seizure emergencies: A systematic review.

    PubMed

    Haut, Sheryl R; Seinfeld, Syndi; Pellock, John

    2016-10-01

    The aim of this review was to systematically examine safety and efficacy outcomes, as well as patient/caregiver satisfaction, from clinical studies in pediatric and adult patients treated with benzodiazepines (BZDs) through various administration routes in response to seizure emergencies. A literature search was conducted to identify articles describing the use of various routes of administration (RoAs) of BZDs for the treatment of seizure emergencies through April 21, 2015, using Embase™ and PubMed®. Eligible studies included (a) randomized controlled trials or (b) controlled nonrandomized clinical trials, either retrospective or prospective. Outcome assessments reviewed were 1) time to administration, 2) time to seizure termination, 3) rate of treatment failure, 4) prevention of seizure recurrence, 5) patient and caregiver treatment satisfaction, 6) adverse events related to BDZ treatment or RoA, and 7) respiratory adverse events. Seventy-five studies evaluated safety and efficacy using individual or comparator BDZs of various RoAs for treating seizure emergencies in all-aged patients with epilepsy. Buccal, intranasal (IN), or intramuscular (IM) BZDs were often more rapidly administered compared with rectal and intravenous (IV) formulations. Time to seizure termination, seizure recurrence rates, and adverse events were generally similar among RoAs, whereas nonrectal RoAs resulted in greater patient and caregiver satisfaction compared with rectal RoA. Results of this systematic literature review suggest that nonrectal and non-IV BZD formulations provide equal or improved efficacy and safety outcomes compared with rectal and IV formulations for the treatment of seizure emergencies. Copyright © 2016. Published by Elsevier Inc.

  11. Phase II trial evaluating the feasibility of interdigitating folfox with chemoradiotherapy in locally advanced and metastatic rectal cancer.

    PubMed

    Michael, M; Chander, S; McKendrick, J; MacKay, J R; Steel, M; Hicks, R; Heriot, A; Leong, T; Cooray, P; Jefford, M; Zalcberg, J; Bressel, M; McClure, B; Ngan, S Y

    2014-11-11

    Patients (pts) with metastatic rectal cancer and symptomatic primary, require local and systemic control. Chemotherapy used during chemoradiotherapy (CRT) is adequate for radiosensitisation, but suboptimal for systemic control. The aim of this phase II study was to assess tolerability, local/systemic benefits, of a novel regimen delivering interdigitating intensive chemotherapy with radical CRT. Eligible pts had untreated synchronous symptomatic primary/metastatic rectal cancer. A total of 12 weeks of treatment with split-course pelvic CRT (total 50.4 Gy with concurrent oxaliplatin and 5-FU infusion) alternating with FOLFOX chemotherapy. All pts staged with CT, MRI and FDG-PET pre and post treatment. Twenty-six pts were treated. Rectal primary MRI stage: T3 81% and T4 15%. Liver metastases in 81%. Twenty-four pts (92%) completed the 12-week regimen. All patients received planned RT dose, and for both agents over 88% of patients achieved a relative dose intensity of >75%. Grade 3 toxicities: neutropenia 23%, diarrhoea 15%, and radiation skin reaction 12%. Grade 4 toxicity: neutropenia 15%. FDG-PET metabolic response rate for rectal primary 96%, and for metastatic disease 60%. Delivery of interdigitating chemotherapy with radical CRT was feasible to treat both primary and metastatic rectal cancer. High completion and response rates were encouraging.

  12. Ano-rectal physiological changes after rubber band ligation and closed haemorrhoidectomy.

    PubMed

    Bursics, A; Weltner, J; Flautner, L E; Morvay, K

    2004-01-01

    The effect of treatment for haemorrhoids on ano-rectal physiology was studied in a prospective longitudinal follow-up study. Thirty-six consecutive patients having II-III degree (Group I, 18 patients) or IV degree (Group II, 18 patients) haemorrhoids were studied. Group I underwent rubber band ligation while Group II underwent closed scissors haemorrhoidectomy. Patients in Group I had significantly lower maximum basal pressure (P < 0.05) and also significantly lower maximum squeeze pressure (P < 0.05) compared to Group II before treatment. Both basal and squeeze pressures dropped after haemorrhoidectomy (P < 0.001) whereas they remained unchanged after rubber band ligation (P > 0.1). The volume of first sensation was higher in Group II before treatment (P < 0.001) and remained so after treatment. Rectal compliance was higher (P < 0.005) in Group I before treatment. It increased significantly in both groups (P < 0.05, Group I; P < 0.001, Group II) after treatment. The results show a significant increase in anal pressures in constantly prolapsing (IV degree) haemorrhoids. Most of the physiological differences observed between the two groups were abolished after treatment. This suggests that these may be a consequence rather than a cause of haemorrhoids.

  13. Long-Term Survival and Local Relapse Following Surgery Without Radiotherapy for Locally Advanced Upper Rectal Cancer

    PubMed Central

    Park, Jun Seok; Sakai, Yoshiharu; Simon, NG Siu Man; Law, Wai Lun; Kim, Hyeong Rok; Oh, Jae Hwan; Shan, Hester Cheung Yui; Kwak, Sang Gyu; Choi, Gyu-Seog

    2016-01-01

    Abstract Controversy remains regarding whether preoperative chemoradiation protocol should be applied uniformly to all rectal cancer patients regardless of tumor height. This pooled analysis was designed to evaluate whether preoperative chemoradiation can be safely omitted in higher rectal cancer. An international consortium of 7 institutions was established. A review of the database that was collected from January 2004 to May 2008 identified a series of 2102 patients with stage II/III rectal or sigmoid cancer (control arm) without concurrent chemoradiation. Data regarding patient demographics, recurrence pattern, and oncological outcomes were analyzed. The primary end point was the 5-year local recurrence rate. The local relapse rate of the sigmoid colon cancer (SC) and upper rectal cancer (UR) cohorts was significantly lower than that of the mid/low rectal cancer group (M-LR), with 5-year estimates of 2.5% for the SC group, 3.5% for the UR group, and 11.1% for the M-LR group, respectively. A multivariate analysis showed that tumor depth, nodal metastasis, venous invasion, and lower tumor level were strongly associated with local recurrence. The cumulative incidence rate of local failure was 90.6%, 92.5%, and 94.4% for tumors located within 5, 7, and 9 cm from the anal verge, respectively. Routine use of preoperative chemoradiation for stage II/III rectal tumors located more than 8 to 9 cm above the anal verge would be excessive. The integration of a more individualized approach focused on systemic control is warranted to improve survival in patients with upper rectal cancer. PMID:27258487

  14. Thermoregulation and stress hormone recovery after exercise dehydration: comparison of rehydration methods.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Lee, Elaine; Yamamoto, Linda; Beasley, Kathleen; Emmanuel, Holly; Anderson, Jeffrey; Pescatello, Linda; Armstrong, Lawrence E; Maresh, Carl

    2013-01-01

    Athletic trainers recommend and use a multitude of rehydration (REHY) methods with their patients. The REHY modality that most effectively facilitates recovery is unknown. To compare 5 common REHY methods for thermoregulatory and stress hormone recovery after exercise dehydration (EXDE) in trained participants. Randomized, cross-over, controlled study. Twelve physically active, non-heat-acclimatized men (age = 23 ± 4 years, height = 180 ± 6 cm, mass = 81.3 ± 3.7 kg, VO2max = 56.9 ± 4.4 mL·min(-1)·kg(-1), body fat = 7.9% ± 3%) participated. Participants completed 20-hour fluid restriction and 2-hour EXDE; they then received no fluid (NF) or REHY (half-normal saline) via ad libitum (AL), oral (OR), intravenous (IV), or combination IV and OR (IV + OR) routes for 30 minutes; and then were observed for another 30 minutes. Body mass, rectal temperature, 4-site mean weighted skin temperature, plasma stress hormone concentrations, and environmental symptoms questionnaire (ESQ) score. Participants were hypohydrated (body mass -4.23% ± 0.22%) post-EXDE. Rectal temperature for the NF group was significantly greater than for the IV group (P = .023) at 30 minutes after beginning REHY (REHY30) and greater than OR, IV, and IV + OR (P ≤ .009) but not AL (P = .068) at REHY60. Mean weighted skin temperature during AL was less than during IV + OR at REHY5 (P = .019). The AL participants demonstrated increased plasma cortisol concentrations compared with IV + OR, independent of time (P = .015). No differences existed between catecholamine concentrations across treatments (P > .05). The ESQ score was increased at REHY60 for NF, AL, OR, and IV (P < .05) but not for IV + OR (P = .217). The NF ESQ score was greater than that of IV + OR at REHY60 (P = .012). Combination IV + OR REHY reduced body temperature to a greater degree than OR and AL REHY when compared with NF. Future studies addressing clinical implications are needed.

  15. Rectal cancer staging: Multidetector-row computed tomography diagnostic accuracy in assessment of mesorectal fascia invasion

    PubMed Central

    Ippolito, Davide; Drago, Silvia Girolama; Franzesi, Cammillo Talei; Fior, Davide; Sironi, Sandro

    2016-01-01

    AIM: To assess the diagnostic accuracy of multidetector-row computed tomography (MDCT) as compared with conventional magnetic resonance imaging (MRI), in identifying mesorectal fascia (MRF) invasion in rectal cancer patients. METHODS: Ninety-one patients with biopsy proven rectal adenocarcinoma referred for thoracic and abdominal CT staging were enrolled in this study. The contrast-enhanced MDCT scans were performed on a 256 row scanner (ICT, Philips) with the following acquisition parameters: tube voltage 120 KV, tube current 150-300 mAs. Imaging data were reviewed as axial and as multiplanar reconstructions (MPRs) images along the rectal tumor axis. MRI study, performed on 1.5 T with dedicated phased array multicoil, included multiplanar T2 and axial T1 sequences and diffusion weighted images (DWI). Axial and MPR CT images independently were compared to MRI and MRF involvement was determined. Diagnostic accuracy of both modalities was compared and statistically analyzed. RESULTS: According to MRI, the MRF was involved in 51 patients and not involved in 40 patients. DWI allowed to recognize the tumor as a focal mass with high signal intensity on high b-value images, compared with the signal of the normal adjacent rectal wall or with the lower tissue signal intensity background. The number of patients correctly staged by the native axial CT images was 71 out of 91 (41 with involved MRF; 30 with not involved MRF), while by using the MPR 80 patients were correctly staged (45 with involved MRF; 35 with not involved MRF). Local tumor staging suggested by MDCT agreed with those of MRI, obtaining for CT axial images sensitivity and specificity of 80.4% and 75%, positive predictive value (PPV) 80.4%, negative predictive value (NPV) 75% and accuracy 78%; while performing MPR the sensitivity and specificity increased to 88% and 87.5%, PPV was 90%, NPV 85.36% and accuracy 88%. MPR images showed higher diagnostic accuracy, in terms of MRF involvement, than native axial images, as compared to the reference magnetic resonance images. The difference in accuracy was statistically significant (P = 0.02). CONCLUSION: New generation CT scanner, using high resolution MPR images, represents a reliable diagnostic tool in assessment of loco-regional and whole body staging of advanced rectal cancer, especially in patients with MRI contraindications. PMID:27239115

  16. Plasma and cerebrospinal fluid pharmacokinetic parameters after single-dose administration of intravenous, oral, or rectal acetaminophen.

    PubMed

    Singla, Neil K; Parulan, Cherri; Samson, Roselle; Hutchinson, Joel; Bushnell, Rick; Beja, Evelyn G; Ang, Robert; Royal, Mike A

    2012-09-01

    This is the first study to compare plasma and cerebrospinal fluid (CSF) pharmacokinetics of intravenous (IV), oral (PO), or rectal (PR) formulations of acetaminophen. Healthy male subjects (N = 6) were randomized to receive a single dose of IV (OFIRMEV(®) ; Cadence) 1,000 mg (15 minute infusion), PO (2 Tylenol(®) 500 mg caplets; McNeil Consumer Healthcare), or PR acetaminophen (2 Feverall(®) 650 mg suppositories; Actavis) with a 1-day washout period between doses. The 1,300 mg PR concentrations were standardized to 1,000 mg. Acetaminophen plasma and CSF levels were obtained at T0, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 6 hours. IV acetaminophen showed earlier and higher plasma and CSF levels compared with PO or PR administration. CSF bioavailability over 6 hours (AUC(0-6)) for IV, PO, and PR 1 g was 24.9, 14.2, and 10.3 μg·h/mL, respectively. No treatment-related adverse events were reported. One subject was replaced because of premature failure of his lumbar spinal catheter. The mean CSF level in the IV group was similar to plasma from 3 to 4 hours and higher from 4 hours on. Absorption phase, variability in plasma, and CSF were greater in PO and PR groups than variability with IV administration. These results demonstrate that earlier and greater CSF penetration occurs as a result of the earlier and higher plasma peak with IV administration compared with PO or PR. © 2012 Lotus Clinical Research, LLC. Pain Practice © 2012 World Institute of Pain.

  17. Rectal Cancer Survivors’ Participation in Productive Activities

    PubMed Central

    Hornbrook, Mark C; Grant, Marcia; Wendel, Christopher; Bulkley, Joanna E; McMullen, Carmit K; Altschuler, Andrea; Temple, Larissa KF; Herrinton, Lisa J; Krouse, Robert S

    2018-01-01

    Context Rectal cancer and its treatment impair survivors’ productivity. Objective To assess determinants of market and nonmarket employment, job search, volunteering, and homemaking among survivors five years or longer after diagnosis. Design We mailed questionnaires to 1063 survivors who were members of Kaiser Permanente (Northern California, Northwest) during 2010 and 2011. Main Outcome Measures Productive activities, functional health status, and bowel management at the time of the survey. Results Response rate was 60.5% (577/953). Higher comorbidity burdens were associated with lower productivity for men and women rectal cancer survivors. Productive survivors were younger and had lower disease stage and age at diagnosis, higher household income and educational attainment, and fewer comorbidity burdens and workplace adjustments than did nonproductive survivors (p < 0.05 each; 2-sided). Productive rectal cancer survivors were evenly split by sex. Conclusion Staying productive is associated with better mental health for rectal cancer survivors. Rectal cancer survivors with multiple chronic conditions, higher disease stage, lower productive activities, and older age need better access to medical care and closer monitoring of the quality of their care, including self-care. To capture the full extent of the involvement of survivors in all types of productive activities, research should routinely include measures of employment, searching for employment, homemaking, and volunteering. Counting market and nonmarket productive activities is innovative and recognizes the continuum of contributions survivors make to families and society. Health care systems should routinely monitor rectal cancer survivors’ medical care access, comorbidities, health-related quality of life, and productive activities. PMID:29236653

  18. Rectal Cancer Survivors' Participation in Productive Activities.

    PubMed

    Hornbrook, Mark C; Grant, Marcia; Wendel, Christopher; Bulkley, Joanna E; Mcmullen, Carmit K; Altschuler, Andrea; Temple, Larissa Kf; Herrinton, Lisa J; Krouse, Robert S

    2017-01-01

    Rectal cancer and its treatment impair survivors' productivity. To assess determinants of market and nonmarket employment, job search, volunteering, and homemaking among survivors five years or longer after diagnosis. We mailed questionnaires to 1063 survivors who were members of Kaiser Permanente (Northern California, Northwest) during 2010 and 2011. Productive activities, functional health status, and bowel management at the time of the survey. Response rate was 60.5% (577/953). Higher comorbidity burdens were associated with lower productivity for men and women rectal cancer survivors. Productive survivors were younger and had lower disease stage and age at diagnosis, higher household income and educational attainment, and fewer comorbidity burdens and workplace adjustments than did nonproductive survivors (p < 0.05 each; 2-sided). Productive rectal cancer survivors were evenly split by sex. Staying productive is associated with better mental health for rectal cancer survivors. Rectal cancer survivors with multiple chronic conditions, higher disease stage, lower productive activities, and older age need better access to medical care and closer monitoring of the quality of their care, including self-care. To capture the full extent of the involvement of survivors in all types of productive activities, research should routinely include measures of employment, searching for employment, homemaking, and volunteering. Counting market and nonmarket productive activities is innovative and recognizes the continuum of contributions survivors make to families and society. Health care systems should routinely monitor rectal cancer survivors' medical care access, comorbidities, health-related quality of life, and productive activities.

  19. Rectal ulcer in a patient with VZV sacral meningoradiculitis (Elsberg syndrome).

    PubMed

    Matsumoto, Hideyuki; Shimizu, Takahiro; Tokushige, Shin-ichi; Mizuno, Hideo; Igeta, Yukifusa; Hashida, Hideji

    2012-01-01

    This report describes the case of a 55-year-old woman with varicella-zoster virus (VZV) sacral meningoradiculitis (Elsberg syndrome) who presented with herpes zoster in the left S2 dermatome area, urinary retention, and constipation. Lumbar magnetic resonance imaging showed the left sacral nerve root swelling with enhancement. Thereafter, she suddenly showed massive hematochezia and hemorrhagic shock because of a rectal ulcer. To elucidate the relation between Elsberg syndrome and rectal ulcer, accumulation of similar cases is necessary. To avoid severe complications, attention must be devoted to the possibility of rectal bleeding in the early stage of Elsberg syndrome.

  20. Use of sequential endorectal US to predict the tumor response of preoperative chemoradiotherapy in rectal cancer.

    PubMed

    Li, Ning; Dou, Lizhou; Zhang, Yueming; Jin, Jing; Wang, Guiqi; Xiao, Qin; Li, Yexiong; Wang, Xin; Ren, Hua; Fang, Hui; Wang, Weihu; Wang, Shulian; Liu, Yueping; Song, Yongwen

    2017-03-01

    Accurate prediction of the response to preoperative chemoradiotherapy (CRT) potentially assists in the individualized selection of treatment. Endorectal US (ERUS) is widely used for the pretreatment staging of rectal cancer, but its use for preoperatively predicting the effects of CRT is not well evaluated because of the inflammation, necrosis, and fibrosis induced by CRT. This study assessed the value of sequential ERUS in predicting the efficacy of preoperative CRT for locally advanced rectal cancer. Forty-one patients with clinical stage II/III rectal adenocarcinoma were enrolled prospectively. Radiotherapy was delivered to the pelvis with concurrent chemotherapy of capecitabine and oxaliplatin. Total mesorectal excision was performed 6 to 8 weeks later. EUS measurements of primary tumor maximum diameter were performed before (ERUS1), during (ERUS2), and 6 to 8 weeks after (ERUS3) CRT, and the ratios of these were calculated. Correlations between ERUS values, tumor regression grade (TRG), T down-staging rate, and pathologic complete response (pCR) rate were assessed, and survival was analyzed. There was no significant correlation between ERUS2/ERUS1 and TRG. The value of ERUS3/ERUS1 correlated with pCR rate and TRG but not T down-staging rate. An ERUS3 value of 6.3 mm and ERUS3/ERUS1 of 52% were used as the cut-off for predicting pCR, and patients were divided into good and poor prognosis groups. Although not statistically significant, 3-year recurrence and survival rates of the good prognosis group were better than those of the poor prognosis group. Sequential ERUS may predict therapeutic efficacy of preoperative CRT for locally advanced rectal cancer. (Clinical trial registration number: NCT01582750.). Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  1. Effect of increasing radiation dose on pathologic complete response in rectal cancer patients treated with neoadjuvant chemoradiation therapy.

    PubMed

    Hall, Matthew D; Schultheiss, Timothy E; Smith, David D; Fakih, Marwan G; Wong, Jeffrey Y C; Chen, Yi-Jen

    2016-12-01

    Neoadjuvant chemoradiation therapy (CRT) increases pathological complete response (pCR) rates compared to radiotherapy alone in patients with stage II-III rectal cancer. Limited evidence addresses whether radiotherapy dose escalation further improves pCR rates. Our purpose is to measure the effects of radiotherapy dose and other factors on post-therapy pathologic tumor (ypT) and nodal stage in rectal cancer patients treated with neoadjuvant CRT followed by mesorectal excision. A non-randomized comparative effectiveness analysis was performed of rectal cancer patients treated in 2000-2013 from the National Oncology Data Alliance™ (NODA), a pooled database of cancer registries from >150 US hospitals. The NODA contains the same data submitted to state cancer registries and SEER combined with validated radiotherapy and chemotherapy records. Eligible patients were treated with neoadjuvant CRT followed by proctectomy and had complete data on treatment start dates, radiotherapy dose, clinical tumor (cT) and ypT stage, and number of positive nodes at surgery (n = 3298 patients). Multivariable logistic regression was used to assess the predictive value of independent variables on achieving a pCR. On multivariable regression, radiotherapy dose, cT stage, and time interval between CRT and surgery were significant predictors of achieving a pCR. After adjusting for the effect of other variates, patients treated with higher radiotherapy doses were also more likely to have negative nodes at surgery and be downstaged from cT3-T4 and/or node positive disease to ypT0-T2N0 after neoadjuvant CRT. Our study suggests that increasing dose significantly improved pCR rates and downstaging in rectal cancer patients treated with neoadjuvant CRT followed by surgery.

  2. [Practical neoadjuvant and adjuvant therapies for rectal cancer. How many patients are actually recruited in multimodality therapy concepts? An analysis of the Tumour Centre Schwerin].

    PubMed

    Sauer, J; Sobolewski, K; Dommisch, K

    2009-09-01

    For rectal cancer in UICC stage II or III, a neoadjuvant chemoradiotherapy or short-course radiotherapy is established to reduce the incidence of local relapses. It has been documented that the neoadjuvant therapy is superior to the adjuvant therapy. In spite of the formulation of therapeutic principles in guidelines, they are not consistently applied. The actual rate of application and the reasons for a change from the recommended treatment strategy have been investigated. The data of the tumour centre West Mecklenburg were analysed. Data concerning the type and stage of rectal cancer, multimodal treatment (surgery with or without neoadjuvant therapy or adjuvant therapy) and treatment according to the level of medical care of hospitals were recorded from 2000 to 2008. In addition, in our clinic prospectively collected data of patients with rectal cancer (September 2006 until December 2008) were used to find out the reasons for the denial of neoadjuvant therapy. During the observation period we detected 348 patients with rectal cancer in UICC stage II or III in the area of the tumour centre West Mecklenburg. 16 % of these patients were treated pre-operatively. An increase in the preoperative multimodal treatment from 3 % to 39 % was observed. Hospitals with higher provisions of medical care applied the multimodal treatment 4-fold more frequently during this period of time. 55 patients of our own clinic were found to be of UICC stage II or III. 6 patients were emergency cases. The carcinoma was found in the lower or middle third of the rectum in 38 of our patients. The endosonographical examination could not adequately show the tumour or was falsely negative in 16 of these patients. A neoadjuvant treatment was started for 58 % of the patients. Overall, 76 of patients with rectal carcinoma were treated adjuvant or neoadjuvant, 62 of them with a complete treatment scheme. The application of neoadjuvant treatment for rectal carcinoma in UICC stage II or III in West Mecklenburg was unexpectedly low during the observation period. However, an increase in treatment frequency was detected. During the same period of time the number of patients treated in hospitals of basic and standard medical care decreased by half. This is the reason for the regional increase of neoadjuvant treatment. 47 % of the patients of our clinic received neoadjuvant chemoradiotherapy or a short-course radiotherapy. Including the adjuvant treatment, 76 % of all patients were treated multimodally. An increase in neoadjuvant treatment can only be achieved by shifting patients to centres with an appropriate diagnostic facility and a regular tumour board for rectal cancer. (c) Georg Thieme Verlag Stuttgart-New York.

  3. Thermographic imaging of superficial temperature in dogs sedated with medetomidine and butorphanol with and without MK-467 (L-659'066).

    PubMed

    Vainionpää, Mari; Salla, Kati; Restitutti, Flávia; Raekallio, Marja; Junnila, Jouni; Snellman, Marjatta; Vainio, Outi

    2013-03-01

    To record, with a thermal camera, peripheral temperature changes during different sedation protocols and to relate the results to changes in the rectal temperature. Randomized crossover part-blinded experimental study. Eight healthy purpose-bred neutered Beagles (two females and six males) weight 14.5 ± 1.6 kg (mean ± SD) and aged 3-4 years. Each dog was sedated four times. Treatments were medetomidine 20 μg kg(-1) and butorphanol 0.1 mg kg(-1) (MB) with or without MK-467 500 μg kg(-1) (MK). Both drug combinations were administered IV and IM as separate treatments. A thermal camera (T425, FLIR) with a resolution of 320 by 240 was used for imaging. The dogs were placed in lateral recumbency on an insulated mattress. Digital (DFT) and metatarsal footpad temperatures (MFT) were measured with thermography. Thermograms and rectal temperature (RT) were taken before and at 3, 10, 20, 30, 45 and 60 minutes after treatment. At 60 minutes after drug administration, MFT was higher (p < 0.001) after MB+MK (34.5 ± 1.1 IV, 34.8 ± 0.5 IM) than MB (31.1 ± 2.9 IV, 30.5 ± 3.6 IM), DFT was higher (p < 0.001) after MB+MK (33.6 ± 1.4 IV, 34.0 ± 0.6 IM) than MB (26.7 ± 1.4 IV, 26.7 ± 2.5 IM), and RT was lower (p < 0.001) after MB+MK (36.7 ± 0.8 IV, 36.9 ± 0.3 IM) than MB (37.5 ± 0.3 IV, 37.4 ± 0.4 IM), with both routes. The change from baseline was greater with MB+MK than MB in all variables. Superficial temperature changes can be seen and detected with thermography. MK-467 used with MB resulted in increased superficial temperatures and a decline in rectal temperature compared to MB alone. The sedation protocol may influence core temperature loss, and may also have an effect on thermographic images. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  4. The Selective Use of Radiation Therapy in Rectal Cancer Patients.

    PubMed

    Martella, Andrew; Willett, Christopher; Palta, Manisha; Czito, Brian

    2018-04-11

    Colorectal cancer has a high global incidence, and standard treatment employs a multimodality approach. In addition to cure, minimizing treatment-related toxicity and improving the therapeutic ratio is a common goal. The following article addresses the potential of omitting radiotherapy in select rectal cancer patients. Omission of radiotherapy in rectal cancer is analyzed in the context of historical findings, as well as more recent data describing risk stratification of stage II-III disease, surgical optimization, imaging limitations, improvement in systemic chemotherapeutic agents, and contemporary studies evaluating selective omission of radiotherapy. A subset of rectal cancer patients exists that may be considered low to intermediate risk for locoregional recurrence. With appropriate staging, surgical technique, and possibly improved systemic therapy, it may be feasible to selectively omit radiotherapy in these patients. Current imaging limitations as well as evidence of increased locoregional recurrence following radiotherapy omission lend us to continue supporting the standard treatment of approach of neoadjuvant chemoradiation therapy followed by surgical resection until additional improvements and prospective evidence can support otherwise.

  5. Neoadjuvant conformal chemoradiation with induction chemotherapy for rectal adenocarcinoma. A prospective observational study.

    PubMed

    Fekete, Zsolt; Muntean, Alina-Simona; Hica, Ştefan; Rancea, Alin; Resiga, Liliana; Csutak, Csaba; Todor, Nicolae; Nagy, Viorica Magdalena

    2014-06-01

    The purpose of this prospective observational study was to evaluate the rate and the prognostic factors for down-staging and complete response for rectal adenocarcinoma after induction chemotherapy and neoadjuvant chemoradiation followed by surgery, and to analyze the rate of sphincter-saving surgery. We included from March 2011 to October 2013 a number of 88 patients hospitalized with locally advanced rectal adenocarcinoma in the Prof. Dr. Ion Chiricuta Institute of Oncology, Cluj. The treatment schedule included 2-4 cycles of Oxaliplatin plus a fluoropyrimidine followed by concomitant chemoradiation with a dose of 50 Gy in 25 fractions combined with a fluoropyrimidine monotherapy. The rate of T down-staging was 49.4% (40/81 evaluable patients). Independent prognostic factors for T down-staging were: age >57 years (p<0.01), cN0 (p<0.01), distance from anal verge >5 cm (p<0.01), initial CEA <6.2 ng/ml (p<0.01), higher number of chemotherapy cycles with Oxaliplatin (pROC=0.05) and protraction of radiotherapy of >35 days (p<0.01). Nine patients from 81 (11.1%) presented complete response (7 pathological and 2 clinical); the independent prognostic factors were stage cT2 versus cT3-4 (p<0.01), initial tumor size ≤3.5 cm and distance from anal verge >5 cm (p=0.03). Sixty-eight patients (79.1%) underwent radical surgery and among them 35 patients (51.5 %) had a sphincter saving procedure. Induction chemotherapy with neoadjuvant chemoradiation produced important down-staging in rectal adenocarcinoma. Independent prognostic factors for T down-staging were: age, cN0, distance from anal verge, initial CEA, the number of Oxaliplatin cycles and duration of radiotherapy; for complete response: cT2, initial tumor size and distance from the anal verge.

  6. Interleukin-24 is correlated with differentiation and lymph node numbers in rectal cancer

    PubMed Central

    Choi, Youngmin; Roh, Mee-Sook; Hong, Young-Seoub; Lee, Hyung-Sik; Hur, Won-Joo

    2011-01-01

    AIM: To assess the significance of interleukin (IL)-24 and vascular endothelial growth factor (VEGF) expression in lymph-node-positive rectal cancer. METHODS: Between 1998 and 2005, 90 rectal adenocarcinoma patients with lymph node involvement were enrolled. All patients received radical surgery and postoperative pelvic chemoradiotherapy of 50.4-54.0 Gy. Chemotherapy of 5-fluorouracil and leucovorin or levamisole was given intravenously during the first and last week of radiotherapy, and then monthly for about 6 mo. Expression of IL-24 and VEGF was evaluated by immunohistochemical staining of surgical specimens, and their relations with patient characteristics and survival were analyzed. The median follow-up of surviving patients was 73 mo (range: 52-122 mo). RESULTS: IL-24 expression was found in 81 out of 90 patients; 31 showed weak intensity and 50 showed strong intensity. VEGF expression was found in 64 out of 90 patients. Negative and weak intensities of IL-24 expression were classified as negative expression for analysis. IL-24 expression was significantly reduced in poorly differentiated tumors in comparison with well or moderately differentiated tumors (P = 0.004), N2b to earlier N stages (P = 0.016), and stage IIIc to stage IIIa or IIIb (P = 0.028). The number of involved lymph nodes was also significantly reduced in IL-24-positive patients in comparison with IL-24-negative ones.There was no correlation between VEGF expression and patient characteristics. Expression of IL-24 and VEGF was not correlated with survival, but N stage and stages were significantly correlated with survival. CONCLUSION: IL-24 expression was significantly correlated with histological differentiation, and inversely correlated with the degree of lymph node involvement in stage III rectal cancer. PMID:21448421

  7. Surgeons' Perceived Barriers to Palliative and End-of-Life Care: A Mixed Methods Study of a Surgical Society.

    PubMed

    Suwanabol, Pasithorn A; Reichstein, Ari C; Suzer-Gurtekin, Z Tuba; Forman, Jane; Silveira, Maria J; Mody, Lona; Morris, Arden M

    2018-06-01

    Nearly 20% of colorectal cancer (CRC) patients present with potentially incurable (Stage IV) disease, yet their physicians do not integrate cancer treatment with palliative care. Compared with patients treated by primary providers, surgical patients with terminal diseases are significantly less likely to receive palliative or end-of-life care. To describe surgeon perspectives on palliative and end-of-life care for patients with Stage IV CRCs. This is a convergent mixed methods study using a validated survey instrument from the Critical Care Peer Workgroup of the Robert Wood Johnson Foundation's Promoting Excellence in End-of-Life Care Project with additional qualitative questions. Participants were all current, nonretired members of the American Society of Colon and Rectal Surgeons. Surgeon-perceived barriers to palliative and end-of-life care for patients with Stage IV CRCs were identified. Among 131 Internet survey respondents (response rate 16.5%), 76.1% reported no formal education in palliative care, and specifically noted inadequate training in techniques to forgo life-sustaining measures (37.9%) and communication (42.7%). Over half (61.8%) of surgeons cited unrealistic expectations among patients and families as a barrier to care, which also limited discussion of palliation. At the system level, absence of documentation, appropriate processes, and culture hindered the initiation of palliative care. Thematic analysis of open-ended questions confirmed and extended these findings through the following major barriers to palliative and end-of-life care: (1) surgeon knowledge and training; (2) communication challenges; (3) difficulty with prognostication; (4) patient and family factors encompassing unrealistic expectations and discordant preferences; and (5) systemic issues including culture and lack of documentation and appropriate resources. Generalizability is limited by the small sample size inherent to Internet surveys, which may contribute to selection bias. Surgeons valued palliative and end-of-life care but reported multilevel barriers to its provision. These data will inform strategies to reduce these perceived barriers.

  8. Rectal cancer: a review

    PubMed Central

    Fazeli, Mohammad Sadegh; Keramati, Mohammad Reza

    2015-01-01

    Rectal cancer is the second most common cancer in large intestine. The prevalence and the number of young patients diagnosed with rectal cancer have made it as one of the major health problems in the world. With regard to the improved access to and use of modern screening tools, a number of new cases are diagnosed each year. Considering the location of the rectum and its adjacent organs, management and treatment of rectal tumor is different from tumors located in other parts of the gastrointestinal tract or even the colon. In this article, we will review the current updates on rectal cancer including epidemiology, risk factors, clinical presentations, screening, and staging. Diagnostic methods and latest treatment modalities and approaches will also be discussed in detail. PMID:26034724

  9. Knowledge, Attitudes, and Practices Related to Preoperative Chemoradiotherapy in Rectal Cancer Patients.

    PubMed

    Chen, Xingxing; Lin, Ruifang; Li, Huifang; Su, Meng; Zhang, Wenyi; Deng, Xia; Zhang, Ping; Zou, Changlin

    2016-01-01

    Background . The aim of this study is to assess the knowledge, attitudes, and practices related to pre-CRT in patients of stage II/III rectal cancer. Materials and Methods . Questionnaires regarding the knowledge, attitudes, and practices of pre-CRT were mailed to 145 rectal cancer patients in II/III stage between January 2012 and December 2014, and 111 agreed to participate and returned completed questionnaires to the researcher. Logistic regression model was used to compare sociodemographic characteristics, knowledge, and attitude with practice, respectively. Results . A total of 145 patients were approached for interview, of which 111 responded and 48.6% (54) had undergone pre-CRT. Only 31.5% of the participants knew that CRT is a treatment of rectal cancer and 39.6% were aware of the importance of CRT. However, the vast majority of participants (68.5%) expressed a positive attitude toward rectal cancer. Multivariate logistic regression analysis revealed that knowledge level ( p = 0.006) and attitudes ( p = 0.001) influence the actual practice significantly. Furthermore, age, gender, and income were potential predictors of practice (all p < 0.05). Conclusion . This study shows that, despite the fact that participants had suboptimal level of knowledge on rectal cancer, their attitude is favorable to pre-CRT. Strengthening the professional health knowledge and realizing the importance of attitudes may deepen patients' understanding of preoperative therapy.

  10. A misleading false-negative result using Neisseria gonorrhoeae opa MGB multiplex PCR assay in patient's rectal sample due to partial mutations of the opa gene.

    PubMed

    Vahidnia, Ali; van Empel, Pieter Jan; Costa, Sandra; Oud, Rob T N; van der Straaten, Tahar; Bliekendaal, Harry; Spaargaren, Joke

    2015-07-01

    A 53-year-old homosexual man presented at his general practitioner (GP) practice with a suspicion of sexually transmitted infection. Initial NAAT screening was performed for Chlamydia trachomatis and Neisseria gonorrhoeae. The patient was positive for Neisseria gonorrhoeae both for his urine and rectal sample. The subsequent confirmation test for Neisseria gonorrhoeae by a second laboratory was only confirmed for the urine sample and the rectal sample was negative. We report a case of a potential false-negative diagnosis of Neisseria gonorrhoeae due to mutations of DNA sequence in the probe region of opa-MGB assay of the rectal sample. The patient did not suffer any discomfort as diagnosis of Neisseria gonorrhoeae in his urine sample had already led to treatment by prescribing the patient with Ceftriaxone 500 mg IV dissolved in 1 ml lidocaine 2% and 4 mL saline. The patient also received a prescription for Azithromycin (2x500 mg).

  11. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study

    PubMed Central

    Rose, Shannon; Bennuri, Sirish C.; Murray, Katherine F.; Buie, Timothy; Winter, Harland

    2017-01-01

    Gastrointestinal (GI) symptoms are prevalent in autism spectrum disorder (ASD) but the pathophysiology is poorly understood. Imbalances in the enteric microbiome have been associated with ASD and can cause GI dysfunction potentially through disruption of mitochondrial function as microbiome metabolites modulate mitochondrial function and mitochondrial dysfunction is highly associated with GI symptoms. In this study, we compared mitochondrial function in rectal and cecum biopsies under the assumption that certain microbiome metabolites, such as butyrate and propionic acid, are more abundant in the cecum as compared to the rectum. Rectal and cecum mucosal biopsies were collected during elective diagnostic colonoscopy. Using a single-blind case-control design, complex I and IV and citrate synthase activities and complex I-V protein quantity from 10 children with ASD, 10 children with Crohn’s disease and 10 neurotypical children with nonspecific GI complaints were measured. The protein for all complexes, except complex II, in the cecum as compared to the rectum was significantly higher in ASD samples as compared to other groups. For both rectal and cecum biopsies, ASD samples demonstrated higher complex I activity, but not complex IV or citrate synthase activity, compared to other groups. Mitochondrial function in the gut mucosa from children with ASD was found to be significantly different than other groups who manifested similar GI symptomatology suggesting a unique pathophysiology for GI symptoms in children with ASD. Abnormalities localized to the cecum suggest a role for imbalances in the microbiome, potentially in the production of butyrate, in children with ASD. PMID:29028817

  12. A randomized phase III trial comparing S-1 versus UFT as adjuvant chemotherapy for stage II/III rectal cancer (JFMC35-C1: ACTS-RC).

    PubMed

    Oki, E; Murata, A; Yoshida, K; Maeda, K; Ikejiri, K; Munemoto, Y; Sasaki, K; Matsuda, C; Kotake, M; Suenaga, T; Matsuda, H; Emi, Y; Kakeji, Y; Baba, H; Hamada, C; Saji, S; Maehara, Y

    2016-07-01

    Preventing distant recurrence and achieving local control are important challenges in rectal cancer treatment, and use of adjuvant chemotherapy has been studied. However, no phase III study comparing adjuvant chemotherapy regimens for rectal cancer has demonstrated superiority of a specific regimen. We therefore conducted a phase III study to evaluate the superiority of S-1 to tegafur-uracil (UFT), a standard adjuvant chemotherapy regimen for curatively resected stage II/III rectal cancer in Japan, in the adjuvant setting for rectal cancer. The ACTS-RC trial was an open-label, randomized, phase III superiority trial conducted at 222 sites in Japan. Patients aged 20-80 with stage II/III rectal cancer undergoing curative surgery without preoperative therapy were randomly assigned to receive UFT (500-600 mg/day on days 1-5, followed by 2 days rest) or S-1 (80-120 mg/day on days 1-28, followed by 14 days rest) for 1 year. The primary end point was relapse-free survival (RFS), and the secondary end points were overall survival and adverse events. In total, 961 patients were enrolled from April 2006 to March 2009. The primary analysis was conducted in 480 assigned to receive UFT and 479 assigned to receive S-1. Five-year RFS was 61.7% [95% confidence interval (CI) 57.1% to 65.9%] for UFT and 66.4% (95% CI 61.9% to 70.5%) for S-1 [P = 0.0165, hazard ratio (HR): 0.77, 95% CI 0.63-0.96]. Five-year survival was 80.2% (95% CI 76.3% to 83.5%) for UFT and 82.0% (95% CI 78.3% to 85.2%) for S-1. The main grade 3 or higher adverse events were increased alanine aminotransferase and diarrhea (each 2.3%) in the UFT arm and anorexia, diarrhea (each 2.6%), and fatigue (2.1%) in the S-1 arm. One-year S-1 treatment is superior to UFT with respect to RFS and has therefore become a standard adjuvant chemotherapy regimen for stage II/III rectal cancer following curative resection. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  13. Effect of hyoscine-N-butyl bromide rectal suppository on labor progress in primigravid women: randomized double-blind placebo-controlled clinical trial.

    PubMed

    Makvandi, Somayeh; Tadayon, Mitra; Abbaspour, Mohammadreza

    2011-04-15

    To determine the effects of hyoscine-N-butyl bromide (HBB) rectal suppository on labor progress in primigravid women. A randomized double-blind placebo-controlled clinical trial was carried out on 130 primigravid women admitted for spontaneous labor. The women were recruited based on the inclusion and exclusion criteria and randomized into the experimental (n=65) and control group (n=65). In the beginning of the active phase of labor, 20 mg of HBB rectal suppository was administered to the experimental group, while a placebo suppository was administered to the control group. Cervical dilatation and duration of active phase and second stage of labor were recorded. The rate of cervical dilatation was 2.6 cm/h in the experimental and 1.5 cm/h in the control group (P<0.001). The active phase and the second stage of labor were significantly shorter in the experimental group (P=0.001 and P<0.001, respectively). There was no significant difference between the two groups in the fetal heart rate, maternal pulse rate, blood pressure, and the APGAR score 1 and 5 minutes after birth. Use of HBB rectal suppository in the active management of labor can shorten both the active phase and second stage of labor without significant side-effects.

  14. Endoscopic ultrasound for the characterization and staging of rectal cancer. Current state of the method. Technological advances and perspectives.

    PubMed

    Gersak, Mariana M; Badea, Radu; Graur, Florin; Hajja, Nadim Al; Furcea, Luminita; Dudea, Sorin M

    2015-06-01

    Endoscopic ultrasound is the most accurate type of examination for the assessment of rectal tumors. Over the years, the method has advanced from gray-scale examination to intravenous contrast media administration and to different types of elastography. The multimodal approach of tumors (transrectal, transvaginal) is adapted to each case. 3D ultrasound is useful for spatial representation and precise measurement of tumor formations, using CT/MR image reconstruction; color elastography is useful for tumor characterization and staging; endoscopic ultrasound using intravenous contrast agents can help study the amount of contrast agent targeted at the level of the tumor formations and contrast wash-in/wash-out time, based on the curves displayed on the device. The transvaginal approach often allows better visualization of the tumor than the transrectal approach. Performing the procedure with the rectal ampulla distended with contrast agent may be seen as an optimization of the examination methodology. All these aspects are additional methods for gray-scale endoscopic ultrasound, capable of increasing diagnostic accuracy. This paper aims at reviewing the progress of transrectal and transvaginal ultrasound, generically called endoscopic ultrasound, for rectal tumor diagnosis and staging, with emphasis on the current state of the method and its development trends.

  15. Perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma: the muscular graft as a pseudosphincter.

    PubMed

    Souadka, Amine; Majbar, Mohammed Anass; Amrani, Laila; Souadka, Abdelilah

    2016-10-01

    The aim of this study was to analyze objectively the role of the muscular graft in the continence using manometric study in the patients who underwent pseudocontinent perineal colostomy after abdominoperineal resection for rectal adenocarcinoma. This was a retrospective study including all the patients from January 2002 to December 2009 who underwent an abdominoperineal resection followed by perineal pseudocontinent colostomy for ultra-low rectal adenocarcinoma and agreed to perform the manometric evaluation of the muscular graft. Fifteen patients were included, six males and nine females, with a mean age of 50 years. According to Kirwan's classification, 2 (13.3%) patients had normal continence (Stage A) had 10 (66.6%) no soiling (stage B) and 3 (20%) patients had minimal soiling (Stage C). The manometric evaluation was performed after a median period of 12 months post-surgery. The mean maximal resting and squeeze pressures were respectively 41 cmH2O and 59 cmH2O and the mean colonic sensory volume was 12 ml. This study showed that the musculae graft of Pseudocontinent Perineal colostomy acted as a hypotonic sphincter that pressure can increase during the voluntary squeeze. These data may help to clarify the functional outcomes of this technique after APR for ultra-low rectal adenocarcinoma.

  16. Oblimersen and Gemcitabine in Treating Patients With Advanced Solid Tumor or Lymphoma

    ClinicalTrials.gov

    2013-01-24

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific

  17. Treatment outcomes regarding the addition of targeted agents in the therapeutic portfolio for stage II-III rectal cancer undergoing neoadjuvant chemoradiation.

    PubMed

    Liang, Jin-Tung; Chen, Tzu-Chun; Huang, John; Jeng, Yung-Ming; Cheng, Jason Chia-Hsien

    2017-11-24

    To evaluate the impact of targeted agents in stage II-III rectal cancer undergoing neoadjuvant concurrent chemoradiation therapy (CCRT). A retrospective study was performed in 124 consecutive patients with clinically T 3 N 0-2 M 0 -staged rectal cancer incorporating targeted agents in CCRT. Pathologic complete response was detected in 34.2% (n=26) of bevacizumab+FOLFOX-treated patients (n=76), which was significantly higher (p=0.019, post-hoc statistical power =35.87%) than that (n=10, 20.8%) of the cetuximab+FOLFOX-treated patients (n=48). Patients receiving cetuximab+FOLFOX therapy tended to develop severe liver toxicity (91.7%, n=44 versus 17.1%, n=13, p<0.0001), as evaluated by morphologic grading of hepatic steatosis and sinusoidal dilatation in laparoscopy. In the 57 patients with morphologically severe liver toxicity, 36 (63.2%) retained a normal liver function; for the remaining 21 patients with an abnormal liver function, the abnormality was self-limited in 19 patients, whereas 2 cetuximab-treated patients progressed to hepatic failure and mortality. A subset analysis within bevacizumab+FOLFOX-treated patients with either wild-type (n=36) or mutant (n=40) K-ras status indicated K-ras status did not significantly influence the treatment outcomes. The addition of bevacizumab instead of cetuximab to FOLFOX in the neoadjuvant settings for T 3 N 0-2 M 0 -staged rectal cancer could induce a promising rate of pathologic complete response and lesser hepatotoxicity.

  18. Long-term survival of patients with mismatch repair protein-deficient, high-stage ovarian clear cell carcinoma.

    PubMed

    Stewart, Colin J R; Bowtell, David D L; Doherty, Dorota A; Leung, Yee C

    2017-01-01

    Gynaecological cancer patients with germline mutations appear to have a better prognosis than those with sporadic malignancies. Following the observation of long-term survival in a patient with stage III ovarian clear cell carcinoma (CCC) and possible Lynch syndrome (LS), DNA mismatch repair (MMR) protein immunohistochemistry was performed in a series of high-stage CCC and correlated with patient outcomes. Thirty-two consecutive cases of stage III/IV ovarian CCCs accessioned between 1992 and 2015 were examined. The tumours from two patients (6%), including the index case, showed loss of MSH2/MSH6 expression while MLH1/PMS2 staining was retained. The index patient subsequently developed colonic and rectal carcinomas that were also MSH2/MSH6-deficient, while the second patient had a genetically confirmed germline MSH2 mutation. All other tumours showed retained expression of the four MMR proteins. The two patients with MMR protein-deficient tumours were alive 160 months and 124 months following surgery, whereas the median survival of patients with MMR protein-intact CCCs was 11.8 months (75th and 25th percentiles of 8.1 months and 39.3 months, respectively), with 21 patients deceased due to tumour. Larger studies are required but high-stage, MMR protein-deficient CCCs may have a relatively favourable prognosis. © 2016 John Wiley & Sons Ltd.

  19. Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; AIDS-related Peripheral/Systemic Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  20. [Electrocoagulation on a fragment of anterior abdominal rectal muscle for the control of presacral bleeding during rectal resection].

    PubMed

    Casal Núñez, José Enrique; Martínez, María Teresa García; Poblador, Alejandro Ruano

    2012-03-01

    Presacral venous haemorrhage during rectal movement is low, but is often massive, and even fatal. Our objective is the "in vitro" determination of the results of electrocoagulation applied to a fragment of muscle on the sacral bone surface during rectal resection due to a malignant neoplasm of the rectum. Single-pole coagulation was applied "in vitro" with the selector at maximum power on a 2×2 cms muscle fragment, applied to the anterior side of the IV sacral vertebra until reaching boiling point. The method was used on 6 patients with bleeding of the presacral venous plexus. In the "in vitro" study, boiling point was reached in 90 seconds from applying the single-pole current on the muscle fragment. Electrocoagulation was applied to a 2×2 cm rectal muscle fragment in 6 patients with presacral venous haemorrhage, using pressure on the surface of the presacral bone, with the stopping of the bleeding being achieved in all cases. The use of indirect electrocoagulation on a fragment of the rectus abdominis muscle is a straightforward and highly effective technique for controlling presacral venous haemorrhage. Copyright © 2011 AEC. Published by Elsevier Espana. All rights reserved.

  1. Alvespimycin Hydrochloride in Treating Patients With Metastatic or Unresectable Solid Tumors

    ClinicalTrials.gov

    2013-04-09

    Male Breast Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Gastric Cancer; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Melanoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Ovarian Epithelial Cancer; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Colon Cancer; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Gastric Cancer; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Melanoma; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Melanoma; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Ovarian Epithelial Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  2. Patient-Reported Roles, Preferences, and Expectations Regarding Treatment of Stage I Rectal Cancer in the Cancer Care Outcomes Research and Surveillance Consortium.

    PubMed

    Tyler Ellis, C; Charlton, Mary E; Stitzenberg, Karyn B

    2016-10-01

    Historically, stage I rectal cancer was treated with total mesorectal excision. However, there has been growing use of local excision, with and without adjuvant therapy, to treat these early rectal cancers. Little is known about how patients and providers choose among the various treatment approaches. The purpose of this study was to identify patient roles, preferences, and expectations as they relate to treatment decision making for patients with stage I rectal cancer. This is a population-based study. The study included a geographically diverse population and health-system-based cohort. A total of 154 adults with newly diagnosed and surgically treated stage I rectal cancer between 2003 and 2005 were included. We compared patients by surgical treatment groups, including total mesorectal excision and local excision. Clinical, sociodemographic, and health-system factors were assessed for association with patient decision-making preferences and expectations. A total of 80% of patients who underwent total mesorectal excision versus 63% of patients who underwent local excision expected that surgery would be curative (p = 0.04). The total mesorectal excision group was less likely to report that radiation would cure their cancer compared with the local excision group (27% vs 63%; p = 0.004). When asked about their preferred role in decision making, 28% of patients who underwent total mesorectal excision preferred patient-controlled decision making compared with 48% of patients who underwent local excision (p = 0.046). However, with regard to the treatment actually received, 38% of the total mesorectal excision group reported making their own surgical decision compared with 25% of the local excision group (p = 0.18). The study was limited by its sample size. The preferred decision-making role for patients did not match the actual decision-making process. Future efforts should focus on bridging the gap between the decision-making process and patient preferences regarding various treatment approaches. This will be particularly important as newer innovative procedures play a more prominent role in the rectal cancer treatment paradigm.

  3. Paclitaxel and Carboplatin in Treating Patients With Metastatic or Recurrent Solid Tumors and HIV Infection

    ClinicalTrials.gov

    2017-12-19

    HIV Infection; Recurrent Anal Cancer; Recurrent Breast Cancer; Recurrent Esophageal Cancer; Recurrent Gastric Cancer; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Salivary Gland Squamous Cell Carcinoma; Stage IV Anal Cancer; Stage IV Breast Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Unspecified Adult Solid Tumor, Protocol Specific

  4. Acceptance and Commitment Therapy in Improving Well-Being in Patients With Stage III-IV Cancer and Their Partners

    ClinicalTrials.gov

    2018-02-06

    Malignant Female Reproductive System Neoplasm; Malignant Hepatobiliary Neoplasm; Partner; Stage III Breast Cancer; Stage III Cervical Cancer; Stage III Colorectal Cancer; Stage III Lung Cancer; Stage III Prostate Cancer; Stage III Skin Melanoma; Stage III Uterine Corpus Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Lung Carcinoma; Stage IIIA Skin Melanoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Lung Carcinoma; Stage IIIB Skin Melanoma; Stage IIIB Uterine Corpus Cancer; Stage IIIC Breast Cancer; Stage IIIC Colorectal Cancer; Stage IIIC Skin Melanoma; Stage IIIC Uterine Corpus Cancer; Stage IV Breast Cancer; Stage IV Cervical Cancer; Stage IV Colorectal Cancer; Stage IV Lung Cancer; Stage IV Prostate Cancer; Stage IV Skin Melanoma; Stage IV Uterine Corpus Cancer; Stage IVA Cervical Cancer; Stage IVA Colorectal Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Cervical Cancer; Stage IVB Colorectal Cancer; Stage IVB Uterine Corpus Cancer

  5. Prospective Cohort Study Depending on the Use of Palliative Care for Advanced Stage of Cancer Patients

    ClinicalTrials.gov

    2017-09-05

    Stage IV Breast Cancer; Stage IV Pancreatic Cancer; Stage IV Colon Cancer; Stage IV Gastric Cancer; Stage IV Lung Cancer; Stage IV Liver Cancer; Malignant Hematologic Neoplasm; Biliary Cancer Metastatic; Pediatric Leukemia; Pediatric Lymphoma; Pediatric Brain Tumor; Pediatric Solid Tumor

  6. EURECCA colorectal: multidisciplinary mission statement on better care for patients with colon and rectal cancer in Europe.

    PubMed

    van de Velde, Cornelis J H; Aristei, Cynthia; Boelens, Petra G; Beets-Tan, Regina G H; Blomqvist, Lennart; Borras, Josep M; van den Broek, Colette B M; Brown, Gina; Coebergh, Jan-Willem; Cutsem, Eric Van; Espin, Eloy; Gore-Booth, Jola; Glimelius, Bengt; Haustermans, Karin; Henning, Geoffrey; Iversen, Lene H; Han van Krieken, J; Marijnen, Corrie A M; Mroczkowski, Pawel; Nagtegaal, Iris; Naredi, Peter; Ortiz, Hector; Påhlman, Lars; Quirke, Philip; Rödel, Claus; Roth, Arnaud; Rutten, Harm J T; Schmoll, Hans J; Smith, Jason; Tanis, Pieter J; Taylor, Claire; Wibe, Arne; Gambacorta, Maria Antonietta; Meldolesi, Elisa; Wiggers, Theo; Cervantes, Andres; Valentini, Vincenzo

    2013-09-01

    Care for patients with colon and rectal cancer has improved in the last twenty years however still considerable variation exists in cancer management and outcome between European countries. Therefore, EURECCA, which is the acronym of European Registration of cancer care, is aiming at defining core treatment strategies and developing a European audit structure in order to improve the quality of care for all patients with colon and rectal cancer. In December 2012 the first multidisciplinary consensus conference about colon and rectum was held looking for multidisciplinary consensus. The expert panel consisted of representatives of European scientific organisations involved in cancer care of patients with colon and rectal cancer and representatives of national colorectal registries. The expert panel had delegates of the European Society of Surgical Oncology (ESSO), European Society for Radiotherapy & Oncology (ESTRO), European Society of Pathology (ESP), European Society for Medical Oncology (ESMO), European Society of Radiology (ESR), European Society of Coloproctology (ESCP), European CanCer Organisation (ECCO), European Oncology Nursing Society (EONS) and the European Colorectal Cancer Patient Organisation (EuropaColon), as well as delegates from national registries or audits. Experts commented and voted on the two web-based online voting rounds before the meeting (between 4th and 25th October and between the 20th November and 3rd December 2012) as well as one online round after the meeting (4th-20th March 2013) and were invited to lecture on the subjects during the meeting (13th-15th December 2012). The sentences in the consensus document were available during the meeting and a televoting round during the conference by all participants was performed. All sentences that were voted on are available on the EURECCA website www.canceraudit.eu. The consensus document was divided in sections describing evidence based algorithms of diagnostics, pathology, surgery, medical oncology, radiotherapy, and follow-up where applicable for treatment of colon cancer, rectal cancer and stage IV separately. Consensus was achieved using the Delphi method. The total number of the voted sentences was 465. All chapters were voted on by at least 75% of the experts. Of the 465 sentences, 84% achieved large consensus, 6% achieved moderate consensus, and 7% resulted in minimum consensus. Only 3% was disagreed by more than 50% of the members. It is feasible to achieve European Consensus on key diagnostic and treatment issues using the Delphi method. This consensus embodies the expertise of professionals from all disciplines involved in the care for patients with colon and rectal cancer. Diagnostic and treatment algorithms were developed to implement the current evidence and to define core treatment guidance for multidisciplinary team management of colon and rectal cancer throughout Europe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Advanced Epithelial Cancer, Malignant Lymphoma, or Sarcoma

    ClinicalTrials.gov

    2013-02-06

    AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Chondrosarcoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Osteosarcoma; Nodal Marginal Zone B-cell Lymphoma; Ovarian Sarcoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Osteosarcoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Uterine Sarcoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Stage IV Uterine Sarcoma; Unspecified Adult Solid Tumor, Protocol Specific

  8. Lenalidomide Maintenance Therapy After High Dose BEAM With or Without Rituximab

    ClinicalTrials.gov

    2018-01-13

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  9. Thermoregulation and Stress Hormone Recovery After Exercise Dehydration: Comparison of Rehydration Methods

    PubMed Central

    McDermott, Brendon P.; Casa, Douglas J.; Lee, Elaine; Yamamoto, Linda; Beasley, Kathleen; Emmanuel, Holly; Anderson, Jeffrey; Pescatello, Linda; Armstrong, Lawrence E.; Maresh, Carl

    2013-01-01

    Context: Athletic trainers recommend and use a multitude of rehydration (REHY) methods with their patients. The REHY modality that most effectively facilitates recovery is unknown. Objective: To compare 5 common REHY methods for thermoregulatory and stress hormone recovery after exercise dehydration (EXDE) in trained participants. Design: Randomized, cross-over, controlled study. Patients or Other Participants: Twelve physically active, non–heat-acclimatized men (age = 23 ± 4 years, height = 180 ± 6 cm, mass = 81.3 ± 3.7 kg, V̇o2max = 56.9 ± 4.4 mL·min−1·kg−1, body fat = 7.9% ± 3%) participated. Intervention(s): Participants completed 20-hour fluid restriction and 2-hour EXDE; they then received no fluid (NF) or REHY (half-normal saline) via ad libitum (AL), oral (OR), intravenous (IV), or combination IV and OR (IV + OR) routes for 30 minutes; and then were observed for another 30 minutes. Main Outcome Measure(s): Body mass, rectal temperature, 4-site mean weighted skin temperature, plasma stress hormone concentrations, and environmental symptoms questionnaire (ESQ) score. Results: Participants were hypohydrated (body mass −4.23% ± 0.22%) post-EXDE. Rectal temperature for the NF group was significantly greater than for the IV group (P = .023) at 30 minutes after beginning REHY (REHY30) and greater than OR, IV, and IV + OR (P ≤ .009) but not AL (P = .068) at REHY60. Mean weighted skin temperature during AL was less than during IV + OR at REHY5 (P = .019). The AL participants demonstrated increased plasma cortisol concentrations compared with IV + OR, independent of time (P = .015). No differences existed between catecholamine concentrations across treatments (P > .05). The ESQ score was increased at REHY60 for NF, AL, OR, and IV (P < .05) but not for IV + OR (P = .217). The NF ESQ score was greater than that of IV + OR at REHY60 (P = .012). Conclusions: Combination IV + OR REHY reduced body temperature to a greater degree than OR and AL REHY when compared with NF. Future studies addressing clinical implications are needed. PMID:24143900

  10. MS-275 and Isotretinoin in Treating Patients With Metastatic or Advanced Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2013-01-23

    Adult Grade III Lymphomatoid Granulomatosis; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  11. Tumor response and negative distal resection margins of rectal cancer after hyperthermochemoradiation therapy.

    PubMed

    Tsutsumi, Soichi; Tabe, Yuichi; Fujii, Takaaki; Yamaguchi, Satoru; Suto, Toshinaga; Yajima, Reina; Morita, Hiroki; Kato, Toshihide; Shioya, Mariko; Saito, Jun-Ichi; Asao, Takayuki; Nakano, Takashi; Kuwano, Hiroyuki

    2011-11-01

    The safety of regional hyperthermia has been tested in locally advanced rectal cancer. The aim of this study was to assess the effects of shorter distal margins on local control and survival in rectal cancer patients who were treated with preoperative hyperthermochemoradiation therapy (HCRT) and underwent rectal resection by using the total mesorectal excision (TME) method. Ninety-three patients with rectal adenocarcinoma who received neoadjuvant HCRT (total radiation: 50 Gy) were included in this study. Surgery was performed 8 weeks after HCRT, and each resected specimen was evaluated histologically. Length of distal surgical margins, status of circumferential margins, pathological response, and tumor node metastasis stage were examined for their effects on recurrence and survival. Fifty-eight (62.4%) patients had tumor regression, and 20 (21.5%) had a pathological complete response. Distal margin length ranged from 1 to 55 mm (median, 21 mm) and did not correlate with local recurrence (p=0.57) or survival (p=0.75) by univariate analysis. Kaplan-Meier estimates of recurrence-free survival and local recurrence for the <10 mm versus ≥10 mm groups were not significantly different. Positive circumferential margins and failure of tumors to respond were unfavorable factors in survival. Distal resection margins that are shorter than 10 mm but are not positive appear to be equivalent to longer margins in patients who undergo HCRT followed by rectal resection with TME. To improve the down-staging rate, additional studies are needed.

  12. Genetic Testing Plus Irinotecan in Treating Patients With Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2013-01-23

    AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific

  13. Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

    ClinicalTrials.gov

    2014-02-21

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  14. PXD101 and 17-N-Allylamino-17-Demethoxygeldanamycin in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma

    ClinicalTrials.gov

    2013-05-15

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  15. AR-42 in Treating Patients With Advanced or Relapsed Multiple Myeloma, Chronic Lymphocytic Leukemia, or Lymphoma

    ClinicalTrials.gov

    2017-02-21

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  16. Erlotinib Hydrochloride and Radiation Therapy in Stage III-IV Squamous Cell Cancer of the Head and Neck

    ClinicalTrials.gov

    2012-10-30

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  17. Predictive value of MRI-detected extramural vascular invasion in stage T3 rectal cancer patients before neoadjuvant chemoradiation.

    PubMed

    Sun, Yiqun; Li, Jianwen; Shen, Lijun; Wang, Xiaolin; Tong, Tong; Gu, Yajia

    2018-01-01

    We set out to explore the probability of MRI-detected extramural vascular invasion (mr-EMVI) before chemoradiation to predict responses to chemoradiation and survival in stage T3 rectal cancer patients. A total of 100 patients with T3 rectal cancer who underwent MRI examination and received neoadjuvant chemoradiation and surgery were enrolled. The correlation between mr-EMVI and other clinical factors were analyzed by chi-square. Logistic regression model was performed to select the potential factors influencing tumor responses to neoadjuvant chemoradiation. A Cox proportional hazards regression model was performed to explore potential predictors of survival. The positive mr-EMVI result was more likely to be present in patients with a higher T3 subgroup (T3a+b = 7.1% vs. T3c+d = 90.1%, P < 0.001) and more likely in patients with mesorectal fascia involvement than in those without MRF (65% vs. 38.8%, P = 0.034). Compared with mr-EMVI (+) patients, more mr-EMVI (-) patients showed a good response (staged ≤ ypT2N0) (odds ratio [OR], 3.020; 95% confidence interval [CI], 1.071-8.517; P = 0.037). In univariate analysis, mr-EMVI (+) (hazard ratio [HR], 5.374; 95% CI, 1.210-23.872; P = 0.027) and lower rectal cancers (HR, 3.326; 95% CI, 1.135-9.743; P = 0.028) were significantly associated with decreased disease-free survival. A positive mr-EMVI status (HR, 5.727; 95% CI, 1.286-25.594; P = 0.022) and lower rectal cancers (HR, 3.137; 95% CI, 1.127-8.729; P = 0.029) also served as prognostic factors related to decreased disease-free survival in multivariate analysis. The mr-EMVI status before chemoradiation is a significant prognostic factor and could be used for identifying T3 rectal cancer patients who might benefit from neoadjuvant chemoradiation.

  18. Influence of Preoperative Chemoradiotherapy on the Surgical Strategy According to the Clinical T Stage of Patients With Rectal Cancer

    PubMed Central

    Park, In Ja; Lee, Jong Lyul; Yoon, Yong Sik; Kim, Chan Wook; Lim, Seok-Byung; Lee, Jong Seok; Park, Seong Ho; Park, Jin Hong; Kim, Jong Hoon; Yu, Chang Sik; Kim, Jin Cheon

    2015-01-01

    Abstract The aim of this study was to evaluate the pathologic responses and changes to surgical strategies following preoperative chemoradiotherapy (PCRT) in rectal cancer patients according to their clinical T stage (cT). The use of PCRT has recently been extended to less advanced disease. The authors enrolled 650 patients with cT2 to 4 mid and low rectal cancer who received both PCRT and surgical resection. The rate of total regression and the proportion of local excision were compared according to the cT category. The 3-year recurrence-free survival (RFS) rate was compared using the log-rank test according to patient cT category, pathologic stage, and type of surgical treatment. Patients with cT2 were older (P = 0.001), predominately female (P = 0.028), and had low-lying rectal cancer (P = 0.008). Pathologic total regression was achieved most frequently in cT2 patients (54% of cT2 versus 17.6% of cT3 versus 8.2% of cT4; P < 0.001). Local excision was performed on 42 cT2 (42%) and 24 cT3 (5.2%) patients (P < 0.001). The 3-year RFS rates differed according to both cT (P < 0.001) and ypT stage (P < 0.001). Among patients with ypT0 to 1 disease, the 3-year RFS did not differ according to the type of surgical treatment received (P = 0.5). Total regression of the primary tumor and a change in the surgical strategy after PCRT are most commonly seen in cT2 disease. Although PCRT is not generally indicated for cT2 rectal cancer, optimal surgical treatment may be achieved with the tailored use of PCRT. PMID:26717384

  19. Self-Advocacy Serious Game in Advanced Cancer

    ClinicalTrials.gov

    2018-04-05

    Ovarian Cancer Stage III; Ovarian Cancer Stage IV; Breast Cancer Stage IV; Cervical Cancer Stage IIIB; Cervical Cancer Stage IVA; Cervical Cancer Stage IVB; Endometrial Cancer Stage III; Endometrial Cancer Stage IV; Vulvar Cancer, Stage III; Vulvar Cancer, Stage IV; Vaginal Cancer Stage III; Vaginal Cancer Stage IVA; Vaginal Cancer Stage IVB

  20. Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function

    ClinicalTrials.gov

    2013-01-04

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  1. Manometric characterization of rectal dysfunction following radical hysterectomy.

    PubMed

    Barnes, W; Waggoner, S; Delgado, G; Maher, K; Potkul, R; Barter, J; Benjamin, S

    1991-08-01

    Bladder dysfunction thought to be due to partial denervation has been described following radical hysterectomy. Some patients experience acute and chronic rectal dysfunction characterized by difficulty with defecation and loss of defecatory urge. To define this abnormality, anorectal pressure profiles were examined in 15 patients with Stage I carcinoma of the cervix before and after radical hysterectomy. Profiles were done using standard anorectal manometry with a water-infused system. In all patients preoperative manometric profiles were normal; postoperative studies were abnormal in all patients. Features seen include altered relaxation of the internal sphincter, increased distension needed to trigger relaxation, and decreased rectal sensation; external sphincters and resting internal sphincters were unchanged. Postoperatively, 12 patients reported problems with rectal function. A physiologic defect is definable in patients undergoing radical hysterectomy; this suggests disruption of the spinal reflex arcs controlling rectal emptying. These physiologic abnormalities correlate with the clinical symptomatology experienced by some patients. Continuing definition and evaluation of management options in this situation should be useful in developing effective therapy for rectal dysfunction following radical hysterectomy.

  2. Associations of subsite-specific colorectal cancer incidence rates and stage of disease at diagnosis with county-level poverty, by race and sex.

    PubMed

    Wu, Xiaocheng; Cokkinides, Vilma; Chen, Vivien W; Nadel, Marion; Ren, Yuan; Martin, Jim; Ellison, Gary L

    2006-09-01

    This study examined associations of subsite-specific colorectal cancer incidence rates and stage of the disease with county-level poverty. The 1998-2001 colorectal cancer incidence data, covering 75% of the United States population, were from 38 states and metropolitan areas. The county-level poverty data were categorized into 3 groups according to the percentage of the population below the poverty level in 1999: <10% (low-poverty), 10%-19% (middle-poverty), and >or=20% (high-poverty). Age-adjusted subsite-specific incidence rates (for all ages) and stage-specific incidence rates (for ages >or=50) were examined by race (whites and blacks), sex, and the county's poverty level. The differences in the incidence rates were examined using the 2-tailed z-statistic. The incidence rates of proximal colon cancer were higher among white males (11% higher) and white females (15% higher) in the low-poverty than in the high-poverty counties. No differences across county poverty levels were observed among whites for distal colon and rectal cancers or among blacks for all the subsites. The late-to-early stage incidence rate ratios were higher in the high-poverty than in the low-poverty counties among white and black males for distal colon and rectal cancers, among white females for distal colon cancer, and among black females for rectal cancer. For proximal colon cancer, however, the late-to-early stage rate ratios were similar across all county poverty levels. Higher incidence rates of proximal cancer were observed among white males and females in the low-poverty counties relative to the high-poverty counties. The higher late-to-early stage rate ratios in high-poverty than in low-poverty counties is observed for distal colon and rectal cancers, but not for proximal colon cancer.

  3. PIPAC Nab-pac for Stomach, Pancreas, Breast and Ovarian Cancer

    ClinicalTrials.gov

    2018-05-31

    Peritoneal Carcinomatosis; Ovarian Cancer Stage IIIB; Ovarian Cancer Stage IIIC; Ovarian Cancer Stage IV; Breast Cancer Stage IIIB; Breast Cancer Stage IIIc; Breast Cancer Stage IV; Stomach Cancer Stage III; Stomach Cancer Stage IV With Metastases; Pancreas Cancer, Stage III; Pancreas Cancer, Stage IV

  4. Cisplatin and Radiation Therapy With or Without Erlotinib Hydrochloride in Treating Patients With Stage III or Stage IV Head and Neck Cancer

    ClinicalTrials.gov

    2013-05-08

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx

  5. GRP78 Protein Expression as Prognostic Values in Neoadjuvant Chemoradiotherapy and Laparoscopic Surgery for Locally Advanced Rectal Cancer.

    PubMed

    Lee, Hee Yeon; Jung, Ji-Han; Cho, Hyun-Min; Kim, Sung Hwan; Lee, Kang-Moon; Kim, Hyung-Jin; Lee, Jong Hoon; Shim, Byoung Yong

    2015-10-01

    We investigated the relationships between biomarkers related to endoplasmic reticulum stress proteins (glucose-regulated protein of molecular mass 78 [GRP78] and Cripto-1 [teratocarcinoma-derived growth factor 1 protein]), pathologic response, and prognosis in locally advanced rectal cancer. All clinical stage II and III rectal cancer patients received 50.4 Gy over 5.5 weeks, plus 5-fluorouracil (400 mg/m(2)/day) and leucovorin (20 mg/m(2)/day) bolus on days 1 to 5 and 29 to 33, and surgery was performed at 7 to 10 weeks after completion of all therapies. Expression of GRP78 and Cripto-1 proteins was determined by immunohistochemistry and was assessed in 101 patients with rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). High expression of GRP78 and Cripto-1 proteins was observed in 86 patients (85.1%) and 49 patients (48.5%), respectively. Low expression of GRP78 protein was associated with a significantly high rate of down staging (80.0% vs. 52.3%, respectively; p=0.046) and a significantly low rate of recurrence (0% vs. 33.7%, respectively; p=0.008) compared with high expression of GRP78 protein. Mean recurrence-free survival according to GRP78 expression could not be estimated because the low expression group did not develop recurrence events but showed a significant correlation with time to recurrence, based on the log rank method (p=0.007). GRP78 also showed correlation with overall survival, based on the log rank method (p=0.045). GRP78 expression is a predictive and prognostic factor for down staging, recurrence, and survival in rectal cancer patients treated with 5-fluorouracil and leucovorin neoadjuvant CRT.

  6. [Study on the tectology change of rectum wall above the hemorrhoids].

    PubMed

    Zhang, Li; Yang, Bin; Zhang, Yu-Chao; Fu, Yu-Ru; Chen, Shuang

    2009-06-15

    To investigate the histomorphological characteristics and its significance of rectum wall above hemorrhoids. Tissues of rectum wall above hemorrhoids were obtained after stapled hemorrhoidopexy from 21 patients with grade III-IV internal hemorrhoids. Seven macroscopically normal rectal tissues collected from upper rectal cancer patients without a history of hemorrhoids served as control. Masson trichrome staining was performed for detecting smooth muscles and collagen in the tissues. The expression of type III collagen was detected by using immunohistochemical staining in the two groups. Morphological abnormalities, such as fragment, rupture, disorganization were found in smooth muscle of proximal rectal tissues above the piles, and it was statistically different from the distal rectal tissues above the piles and control tissues (all P < 0.05). Moreover, hyperplasia of type III collagen in both muscularis mucosa and rectum wall in tissues above hemorrhoids were observed, no such changes was found in the control tissues. The range of pathological changes in hemorrhoids is beyond the anal cushions. The pathological changes of the smooth muscle and the type III collagen in the tissues above the piles are the pathological basis of hemorrhoids.

  7. Temsirolimus and Vinorelbine Ditartrate in Treating Patients With Unresectable or Metastatic Solid Tumors

    ClinicalTrials.gov

    2016-06-09

    Extensive Stage Small Cell Lung Cancer; Hereditary Paraganglioma; Male Breast Cancer; Malignant Paraganglioma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pheochromocytoma; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Small Cell Lung Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Regional Pheochromocytoma; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage III Uterine Sarcoma; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Endometrial Carcinoma; Stage IV Neuroendocrine Carcinoma of the Skin; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Thyroid Gland Medullary Carcinoma

  8. Rituximab and Oblimersen in Treating Patients With Stage II, Stage III, or Stage IV Follicular Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-01-04

    Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma

  9. Adoption of Preoperative Radiation Therapy for Rectal Cancer From 2000 to 2006: A Surveillance, Epidemiology, and End Results Patterns-of-Care Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, Raymond H.; McCarthy, Ellen P.; Das, Prajnan

    2011-07-15

    Purpose: The German rectal study determined that preoperative radiation therapy (RT) as a component of combined-modality therapy decreased local tumor recurrence, increased sphincter preservation, and decreased treatment toxicity compared with postoperative RT for rectal cancer. We evaluated the use of preoperative RT after the presentation of the landmark German rectal study results and examined the impact of tumor and sociodemographic factors on receiving preoperative RT. Methods and Materials: In total, 20,982 patients who underwent surgical resection for T3-T4 and/or node-positive rectal adenocarcinoma diagnosed from 2000 through 2006 were identified from the Surveillance, Epidemiology, and End Results tumor registries. We analyzedmore » trends in preoperative RT use before and after publication of the findings from the German rectal study. We also performed multivariate logistic regression to identify factors associated with receiving preoperative RT. Results: Among those treated with RT, the proportion of patients treated with preoperative RT increased from 33.3% in 2000 to 63.8% in 2006. After adjustment for age; gender; race/ethnicity; marital status; Surveillance, Epidemiology, and End Results registry; county-level education; T stage; N stage; tumor size; and tumor grade, there was a significant association between later year of diagnosis and an increase in preoperative RT use (adjusted odds ratio, 1.26/y increase; 95% confidence interval, 1.23-1.29). When we compared the years before and after publication of the German rectal study (2000-2003 vs. 2004-2006), patients were more likely to receive preoperative RT than postoperative RT in 2004-2006 (adjusted odds ratio, 2.35; 95% confidence interval, 2.13-2.59). On multivariate analysis, patients who were older, who were female, and who resided in counties with lower educational levels had significantly decreased odds of receiving preoperative RT. Conclusions: After the publication of the landmark German rectal study, there was widespread, rapid adoption of preoperative RT for locally advanced rectal cancer. However, preoperative RT may be underused in certain sociodemographic groups.« less

  10. [A Case of Pathological Complete Response after Neoadjuvant Chemotherapy(S-1 plus Oxaliplatin)and Laparoscopic Low Anterior Resection for Rectal Cancer].

    PubMed

    Ichinohe, Daichi; Morohashi, Hajime; Umetsu, Satoko; Yoshida, Tatsuya; Wakasa, Yusuke; Odagiri, Tadashi; Kimura, Toshirou; Suto, Akiko; Saito, Takeshi; Yoshida, Eri; Akasaka, Harue; Jin, Hiroyuki; Miura, Takuya; Sakamoto, Yoshiyuki; Hakamada, Kenichi

    2016-11-01

    We report a case of pathological complete response after neoadjuvant chemotherapy(NAC)(S-1 plus oxaliplatin)for rectal cancer. The patient was a 50-year-old man who had type 3 circumferential rectal cancer. An abdominal CT scan revealed locally advanced rectal cancer(cT3N2H0P0M0, cStage III b)with severe stenosis and oral-side intestinal dilatation. The patient was treated with NAC after loop-ileostomy. After 3 courses of chemotherapy, a CT scan revealed significant tumor reduction. Laparoscopic low anterior resection and bilateral lymph node dissection were performed 5 weeks after the last course of chemotherapy. The pathological diagnosis was a pathological complete response(no residual cancer cells). This case suggests that laparoscopic low anterior resection after NAC with S-1 plus oxaliplatin for locally advanced rectal cancer is a potentially effective procedure.

  11. Elevated platelet count as predictor of recurrence in rectal cancer patients undergoing preoperative chemoradiotherapy followed by surgery.

    PubMed

    Toiyama, Yuji; Inoue, Yasuhiro; Kawamura, Mikio; Kawamoto, Aya; Okugawa, Yoshinaga; Hiro, Jyunichiro; Saigusa, Susumu; Tanaka, Koji; Mohri, Yasuhiko; Kusunoki, Masato

    2015-02-01

    The impact of systemic inflammatory response (SIR) on prognostic and predictive outcome in rectal cancer after neoadjuvant chemoradiotherapy (CRT) has not been fully investigated. This retrospective study enrolled 89 patients with locally advanced rectal cancer who underwent neoadjuvant CRT and for whom platelet (PLT) counts and SIR status [neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR)] were available. Both clinical values of PLT and SIR status in rectal cancer patients were investigated. Elevated PLT, NLR, PLR, and pathologic TNM stage III [ypN(+)] were associated with significantly poor overall survival (OS). Elevated PLT, NLR, and ypN(+) were shown to independently predict OS. Elevated PLT and ypN(+) significantly predicted poor disease-free survival (DFS). Elevated PLT was identified as the only independent predictor of DFS. PLT counts are a promising pre-CRT biomarker for predicting recurrence and poor prognosis in rectal cancer.

  12. Cholecalciferol(25-[OH]-Vitamin D) in Treating Patients With Colorectal Cancer

    ClinicalTrials.gov

    2014-01-16

    Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Stage I Colon Cancer; Stage I Rectal Cancer

  13. Robotic sacrocolpoperineopexy with ventral rectopexy for the combined treatment of rectal and pelvic organ prolapse: initial report and technique.

    PubMed

    Reddy, Jhansi; Ridgeway, Beri; Gurland, Brooke; Paraiso, Marie Fidela R

    2011-09-01

    The objective of our study is to describe the peri-operative and early postoperative surgical outcomes following robotic sacrocolpoperineopexy with ventral rectopexy for the combined treatment of rectal and pelvic organ prolapse. This was a retrospective cohort study of ten women with symptomatic Stage 2 or greater pelvic organ prolapse and concomitant rectal prolapse who desired combined robotic surgery, at a single institution. The mean age of the subjects was 55.3 ± 19.2 years (range 19-86)  and the mean body mass index was 25.8 ± 5.7 kg/m(2). Preoperatively, the women had Stage 2 or greater pelvic organ prolapse and the average length of rectal prolapse was 2.1 ± 1.9 cm. There were no conversions to conventional laparoscopy or laparotomy. The mean operating room time was 307 ± 45 min with an estimated blood loss of 144 ± 68 ml. The average length of stay was 2.4 ± 0.8 days. Preliminary data suggest that robotic sacrocolpoperineopexy with ventral rectopexy is a feasible procedure with minimal operative morbidity for the combined treatment of rectal and pelvic organ prolapse. Longer follow-up is needed to ensure favorable long-term subjective and objective outcomes.

  14. Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma

    ClinicalTrials.gov

    2014-02-14

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  15. Bevacizumab, Fluorouracil, and Hydroxyurea Plus Radiation Therapy in Treating Patients With Advanced Head and Neck Cancer

    ClinicalTrials.gov

    2013-02-06

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  16. Comparison of Intravenous Infusion of Tramadol Alone with Combination of Tramadol and Paracetamol for Postoperative Pain after Major Abdominal Surgery in Children.

    PubMed

    Ali, Shayesta; Sofi, Khalid; Dar, Abdul Qayoom

    2017-01-01

    Pain is a common complaint after surgery and seems to be difficult to manage in children because of fear of complications of pain treatment or misconception that infants and small children do not feel pain at all or feel less pain. A survey reported that 40% of pediatric surgical patients experienced moderate or severe postoperative pain and that more than 75% had insufficient analgesia. Our study was carried to provide continuous infusion of intravenous (i.v.) tramadol alone using a dedicated infusion device Graseby 2100 syringe pump and compared it to a combination of i.v. tramadol infusion and per rectal paracetamol. A total of 124 children aged 1-8 years selected for the study were randomized into two groups using a table of random numbers. Power calculation had suggested a sample size of 62 in each group with a power of 80% and significance level of 5%. Group A comprising 62 children, received i.v. infusion of tramadol in a dose of 0.25 mg/kg/h for 24 h postoperatively. Group B comprising 62 children, received i.v. infusion of tramadol in a dose of 0.25 mg/kg/h for 24 h postoperatively in addition to per rectal suppository of paracetamol in a dose of 90 mg/kg in 24 h (30 mg/kg as first dose followed by 20 mg/kg every 6 hourly for the next 18 h). Postoperatively, patients were observed for 24 h. A statistically significant difference ( P ≤ 0.001) in Face, Legs, Activity, Cry, Consolability pain scores was seen between two groups at 4, 6, and 8 h. Pain scores being less in Group B patients who had received infusion of tramadol and per rectal suppositories of paracetamol compared to Group A patients who received only infusion of tramadol. A statistically significant difference ( P < 0.05) was found in mean analgesic consumption during the first 24 h between the groups. Consumption was more in Group A as compared to Group B. In Group A, 13 patients (21%) required rescue analgesia as compared to only 4 patients (6.5%) in Group B. We recommend use of an infusion of tramadol in a dose of 0.25 mg/kg/h in the first 24 h after surgery, in combination with a regular per rectal paracetamol in a daily dose of 90 mg/kg/day in four divided doses for children after major abdominal surgery. However, a close nursing supervision is essential to increase the safety profile.

  17. Cabozantinib-s-malate and Nivolumab With or Without Ipilimumab in Treating Patients With Metastatic Genitourinary Tumors

    ClinicalTrials.gov

    2018-04-02

    Clear Cell Renal Cell Carcinoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Penile Carcinoma; Renal Pelvis Urothelial Carcinoma; Squamous Cell Carcinoma of the Penis; Stage III Bladder Adenocarcinoma AJCC v6 and v7; Stage III Bladder Squamous Cell Carcinoma AJCC v6 and v7; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Penile Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IIIa Penile Cancer AJCC v7; Stage IIIb Penile Cancer AJCC v7; Stage IV Bladder Adenocarcinoma AJCC v7; Stage IV Bladder Squamous Cell Carcinoma AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Penile Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma

  18. [Sensitivity, specificity and prognostic value of CEA in colorectal cancer: results of a Tunisian series and literature review].

    PubMed

    Bel Hadj Hmida, Y; Tahri, N; Sellami, A; Yangui, N; Jlidi, R; Beyrouti, M I; Krichen, M S; Masmoudi, H

    2001-01-01

    In order to determine the sensitivity of CEA in the diagnosis of colo-rectal carcinoma, we studied a series of 48 patients with colo-rectal carcinoma (1992-1996). The sensitivity was at 52% with a reference value of 5 ng/ml and 68.7% for a reference value of 2.5 ng/ml. With a reference value of 5 ng/ml, the sensitivity of CEA was at 37% only for patients with colo-rectal carcinoma at Dukes B stage, 66.6% for patients at stage C and 75% for patients at stage D. The dosage of CEA was carried out with a sandwich immunoenzymatic technique in tube. There is no statistic significant correlation between the pre-operative rate of CEA and the localisation of the tumor and its histologic type; in contrast, it was significantly correlated with the ganglionnary metastasis. A significant relationship between the pre-operative rate of CEA and the Dukes stage was found for a reference value of 10 ng/ml but not for a reference value of 5 ng/ml. We calculated the specificity of the CEA for the cancers of colon and rectum which was at 76.98% with a reference value of 5 ng/ml and 86% with a reference value of 10 ng/ml.

  19. Gefitinib and Radiation Therapy With or Without Cisplatin in Treating Patients With Stage III or Stage IV Head and Neck Cancer

    ClinicalTrials.gov

    2013-01-24

    Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx

  20. Prevention of post-partum hemorrhage by rectal Misoprostol: A randomized clinical trial

    PubMed Central

    Firouzbakht, Mozhgan; Kiapour, Azadeh; Omidvar, Shabnam

    2013-01-01

    Background: Post-partum hemorrhage (PPH) is a common cause of maternal mortality in developing countries. This trial was conducted to study the effectiveness and safety of rectal misoprostol for PPH. Aim: To assess the effectiveness and safety of misoprostol and comparing with oxytocin for prevention of PPH. Materials and Methods: Women were randomized to receive either two 200 μg rectal misoprostol tablets (study group) or 20 units oxytocin in 1000 cc normal saline intravenously (control group). The outcomes were incidence of PPH, amount of blood loss, duration of labor, incidence of side effects, pre- and post-delivery hemoglobin, and use of additional uterotonics. Finding: The incidence of PPH was 12% in the study group and 10% in the control group (P > 0.05). No significant difference was observed between the groups hematocrit (P > 0.05). Other variables including severe PPH and duration of the third stage of labor were similar in both groups. Conclusion: Rectal misoprostol was as effective as intravenous oxytocin for preventing post-partum hemorrhage with the same incidence of side effects and is recommended to be use as an uterotonic agent to manage third stage of labor routinely. PMID:23633849

  1. HOSPITAL VARIATION IN SPHINCTER PRESERVATION FOR ELDERLY RECTAL CANCER PATIENTS

    PubMed Central

    Dodgion, Christopher M.; Neville, Bridget A; Lipsitz, Stuart R.; Schrag, Deborah; Breen, Elizabeth; Zinner, Michael J.; Greenberg, Caprice C.

    2014-01-01

    Purpose To evaluate hospital variation in the use of low anterior resection (LAR), local excision (LE) and abdominoperineal resection (APR) in the treatment of rectal cancer in elderly patients. Methods Using SEER-Medicare linked data, we identified 4,959 stage I–III rectal cancer patients over age 65 diagnosed from 2000–2005 who underwent operative intervention at one of 370 hospitals. We evaluated the distribution of hospital-specific procedure rates and used generalized mixed models with random hospital effects to examine the influence of patient characteristics and hospital on operation type, using APR as a reference. Results The median hospital performed APR on 33% of elderly rectal cancer patients. Hospital was a stronger predictor of LAR receipt than any patient characteristic, explaining 32% of procedure choice, but not a strong predictor of LE, explaining only 3.8%. Receipt of LE was primarily related to tumor size and tumor stage, which, combined, explained 31% of procedure variation. Conclusions Receipt of local excision is primarily determined by patient characteristics. In contrast, the hospital where surgery is performed significantly influences whether a patient undergoes an LAR or APR. Understanding the factors that cause this institutional variation is crucial to ensuring equitable availability of sphincter preservation. PMID:24750983

  2. [Injection of methylene blue into inferior mesenteric artery improves lymph node harvest in rectal cancer after neoadjuvant chemotherapy].

    PubMed

    Liu, Jianpei; Huang, Pinjie; Huang, Jianglong; Chen, Tufeng; Wei, Hongbo

    2015-06-09

    To confirm the feasibility of improving lymph node harvest by injecting methylene blue into inferior mesenteric artery in rectal cancer after neoadjuvant therapy. Forty two ex vivo specimens were collected from rectal cancer patients with neoadjuvant therapy and radical operation at our hospital. Traditional method with palpation and injection of methylene blue into inferior mesenteric artery were employed. The data of lymph node harvest were analyzed by paired t and chi-square tests. The average number of detected lymph node in traditional method and methylene blue groups were 6.1 ± 4.3 and 15.2 ± 6.4 respectively (P<0.001). The proportions of lymph nodes <5 mm were 14.1% and 46.7% in traditional method and methylene blue groups respectively (P<0.001). And the injection of methylene blue added 13 extra metastatic lymph nodes and caused a shift to node-positive stage (P=0.89). Neoadjuvant therapy decrease lymph node retrieval in rectal cancer. Injecting methylene blue into inferior mesenteric artery improves lymph node harvest especially for small nodes and helps to acquire more metastatic nodes for accurate pathological staging.

  3. Fosaprepitant Dimeglumine, Palonosetron Hydrochloride, and Dexamethasone in Preventing Nausea and Vomiting Caused by Cisplatin in Patients With Stage III or Stage IV Head and Neck Cancer Undergoing Chemotherapy and Radiation Therapy

    ClinicalTrials.gov

    2017-04-13

    Nausea and Vomiting; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx

  4. Vaccine Therapy With Sargramostim (GM-CSF) in Treating Patients With Her-2 Positive Stage III-IV Breast Cancer or Ovarian Cancer

    ClinicalTrials.gov

    2018-05-01

    HER2-positive Breast Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  5. Stereotactic Radiosurgery Using CyberKnife in Treating Women With Advanced or Recurrent Gynecological Malignancies

    ClinicalTrials.gov

    2013-09-27

    Fallopian Tube Cancer; Ovarian Sarcoma; Ovarian Stromal Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Uterine Sarcoma; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IV Endometrial Carcinoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Uterine Sarcoma; Stage IV Vulvar Cancer; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer

  6. A Statistical Tool for Risk Assessment as Function of Number of Retrieved Lymph Nodes from Rectal Cancer Patients.

    PubMed

    Wu, Zhenyu; Qin, Guoyou; Zhao, Naiqing; Jia, Huixun; Zheng, Xueying

    2018-05-16

    Although a minimum of 12 lymph nodes (LNs) has been recommended for colorectal cancer, there remains considerable debates for rectal cancer patients. Inadequacy of examined LNs would lead to under-staging, and inappropriate treatment as a consequence. We describe statistical tool that allows an estimate the probability of false-negative nodes. A total of 26,778 adenocarcinoma rectum cancer patients with tumour stage (T stage) 1-3, diagnosed between 2004 and 2013, who did not receive neoadjuvant therapies and had at least one histologically assessed LN, were extracted from the Surveillance, Epidemiology and End Results (SEER) database. A statistical tool using beta-binomial distribution was developed to estimate the probability of an occult nodal disease is truly node-negative as a function of total number of LNs examined and T stage. The probability of falsely identifying a patient as node-negative decreased with an increasing number of nodes examined for each stage. It was estimated to be 72%, 66% and 52% for T1, T2 and T3 patients respectively with a single node examined. To confirm an occult nodal disease with 90% confidence, 5, 9, and 29 nodes need to be examined for patients from stages T1, T2, and T3, respectively. The false-negative rate of the examined lymph nodes in rectal cancer was verified to be dependent preoperatively on the clinical tumour stage. A more accurate nodal staging score was developed to recommend a threshold on the minimum number of examined nodes regarding to the favored level of confidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Effect of hyoscine-N-butyl bromide rectal suppository on labor progress in primigravid women: a randomized double-blind placebo-controlled clinical trial

    PubMed Central

    Makvandi, Somayeh; Tadayon, Mitra; Abbaspour, Mohammadreza

    2011-01-01

    Aim To determine the effects of hyoscine-N-butyl bromide (HBB) rectal suppository on labor progress in primigravid women. Methods A randomized double-blind placebo-controlled clinical trial was carried out on 130 primigravid women admitted for spontaneous labor. The women were recruited based on the inclusion and exclusion criteria and randomized into the experimental (n = 65) and control group (n = 65). In the beginning of the active phase of labor, 20 mg of HBB rectal suppository was administered to the experimental group, while a placebo suppository was administered to the control group. Cervical dilatation and duration of active phase and second stage of labor were recorded. Results The rate of cervical dilatation was 2.6 cm/h in the experimental and 1.5 cm/h in the control group (P < 0.001). The active phase and the second stage of labor were significantly shorter in the experimental group (P = 0.001 and P < 0.001, respectively). There was no significant difference between the two groups in the fetal heart rate, maternal pulse rate, blood pressure, and the APGAR score 1 and 5 minutes after birth. Conclusion Use of HBB rectal suppository in the active management of labor can shorten both the active phase and second stage of labor without significant side-effects. Registration No IRCT138804282204N1. PMID:21495198

  8. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2012-07-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Small Lymphocytic Lymphoma

  9. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by CART19

    ClinicalTrials.gov

    2016-01-26

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  10. IGFBP-2 Vaccine and Combination Chemotherapy in Treating Patients With Stage III-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer Undergoing Surgery

    ClinicalTrials.gov

    2018-05-01

    Stage III Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  11. Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2015-06-30

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult Hepatocellular Carcinoma; Adult Nasal Type Extranodal NK/T-Cell Lymphoma; Adult Solid Neoplasm; Adult T Acute Lymphoblastic Leukemia; Advanced Adult Hepatocellular Carcinoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Localized Non-Resectable Adult Liver Carcinoma; Localized Resectable Adult Liver Carcinoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Progressive Hairy Cell Leukemia Initial Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Liver Carcinoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides and Sezary Syndrome; Stage IIIB Mycosis Fungoides and Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides and Sezary Syndrome; Stage IVB Mycosis Fungoides and Sezary Syndrome; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenstrom Macroglobulinemia

  12. Rectal Microbicide Development

    PubMed Central

    Dezzutti, Charlene

    2014-01-01

    The last few years have seen important progress in demonstrating the efficacy of oral pre-exposure prophylaxis, vaginal microbicides, and treatment as prevention as effective strategies for reducing the risk of acquiring or transmitting HIV infection. There has also been significant progress in the development of rectal microbicides. Preclinical non-human primate studies have demonstrated that antiretroviral microbicides can provide significant protection from rectal challenge with SIV or SHIV. Recent Phase 1 rectal microbicide studies have characterized the safety, acceptability, compartmental pharmacokinetics (PK), and pharmaco-dynamics (PD) of both UC781 and tenofovir gels. The tenofovir gel formulation used in vaginal studies was not well tolerated in the rectum and newer rectal-specific formulations have been developed and evaluated in Phase 1 studies. The PK/PD data generated in these Phase 1 studies may reduce the risk of advancing ineffective candidate rectal microbicides into late stage development. Tenofovir gel is currently poised to move into Phase 2 evaluation and it is possible that a Phase 2B/3 effectiveness study with this product could be initiated in the next 2–3 years. PMID:23612991

  13. [Transanal endocopic microsurgery (TEM) in advanced rectal cancer disease treatment].

    PubMed

    Paci, Marcello; Scoglio, Daniele; Ursi, Pietro; Barchetti, Luciana; Fabiani, Bernardina; Ascoli, Giada; Lezoche, Giovanni

    2010-01-01

    After Heald's revolution in 1982, who introduced the total mesorectal excision, for improve the results in terms of recurrance and survival rate, there is a need to explore new therapeutic options in treatment of sub-peritoneal rectal cancer. In particular, local excision represent more often a valid technique for non advanced rectal cancer treatment in comparison with the more invasive procedure, especially in elderly and/or in poor health patients. The introduction of TEM by Buess (transanal endoscopy microsurgery), has extended the local treatment also to classes of patients who would normally have been candidates for TME. The author gives literature's details and his experience in the use of TEM for early rectal cancer sub-peritoneal. The aim of the study is to analyze short and long term results in terms of local recurrence and survival rate comparing TEM technique with the other transanal surgery in rectal cancer treatment. Preoperative Chemio-Radio therapy and rigorous Imaging Staging are the first steps to planning surgery. It's time, for local rectal cancer, has come to make the devolution a few decades ago has been accomplished in the treatment of breast cancer

  14. Estadiaje local del carcinoma rectal: imágenes de ecografía versus resonancia magnética. Revisión sistemática de la literatura y metaanálisis.

    PubMed

    Guenaga, Katia F; Otoch, Jose P; Artifon, Everson L A

    2016-01-01

    New surgical techniques in the treatment of rectal cancer have improved survival mainly by reducing local recurrences. A preoperative staging method is required to accurately identify tumor stage and planning the appropriate treatment. MRI and ERUS are currently being used for the local staging (T stage). In this review, the accuracy of MRI and ERUS with rigid probe was compared against the gold standard of the pathological findings in the resection specimens. Five studies met the inclusion criteria and were included in this meta-analysis. The accuracy was 91.0% to ERUS and 86.8% to MRI (p=0.27). The result has no statistical significance but with pronounced heterogeneity between the included trials as well as other published reviews. We can conclude that there is a clear need for good quality, larger scale and prospective studies.

  15. Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer

    ClinicalTrials.gov

    2017-04-10

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hematopoietic/Lymphoid Cancer; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  16. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  17. Blood Sample Markers of Reproductive Hormones in Assessing Ovarian Reserve in Younger Patients With Newly Diagnosed Lymphomas

    ClinicalTrials.gov

    2018-03-02

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  18. Rectal cancer staging: focus on the prognostic significance of the findings described by high-resolution magnetic resonance imaging

    PubMed Central

    2013-01-01

    Abstract High-resolution (HR) magnetic resonance imaging (MRI) has become an indispensable tool for multidisciplinary teams (MDTs) addressing rectal cancer. It provides anatomic information for surgical planning and allows patients to be stratified into different groups according to the risk of local and distant recurrence. One of the objectives of the MDT is the preoperative identification of high-risk patients who will benefit from neoadjuvant treatment. For this reason, the correct evaluation of the circumferential resection margin (CRM), the depth of tumor spread beyond the muscularis propria, extramural vascular invasion and nodal status is of the utmost importance. Low rectal tumors represent a special challenge for the MDT, because decisions seek a balance between oncologic safety, in the pursuit of free resection margins, and the patient’s quality of life, in order to preserve sphincter function. At present, the exchange of information between the different specialties involved in dealing with patients with rectal cancer can rank the contribution of colleagues, auditing their work and incorporating knowledge that will lead to a better understanding of the pathology. Thus, beyond the anatomic description of the images, the radiologist’s role in the MDT makes it necessary to know the prognostic value of the findings that we describe, in terms of recurrence and survival, because these findings affect decision making and, therefore, the patients’ life. In this review, the usefulness of HR MRI in the initial staging of rectal cancer and in the evaluation of neoadjuvant treatment, with a focus on the prognostic value of the findings, is described as well as the contribution of HR MRI in assessing patients with suspected or confirmed recurrence of rectal cancer. PMID:23876415

  19. Rectal cancer staging: focus on the prognostic significance of the findings described by high-resolution magnetic resonance imaging.

    PubMed

    Dieguez, Adriana

    2013-07-22

    High-resolution (HR) magnetic resonance imaging (MRI) has become an indispensable tool for multidisciplinary teams (MDTs) addressing rectal cancer. It provides anatomic information for surgical planning and allows patients to be stratified into different groups according to the risk of local and distant recurrence. One of the objectives of the MDT is the preoperative identification of high-risk patients who will benefit from neoadjuvant treatment. For this reason, the correct evaluation of the circumferential resection margin (CRM), the depth of tumor spread beyond the muscularis propria, extramural vascular invasion and nodal status is of the utmost importance. Low rectal tumors represent a special challenge for the MDT, because decisions seek a balance between oncologic safety, in the pursuit of free resection margins, and the patient's quality of life, in order to preserve sphincter function. At present, the exchange of information between the different specialties involved in dealing with patients with rectal cancer can rank the contribution of colleagues, auditing their work and incorporating knowledge that will lead to a better understanding of the pathology. Thus, beyond the anatomic description of the images, the radiologist's role in the MDT makes it necessary to know the prognostic value of the findings that we describe, in terms of recurrence and survival, because these findings affect decision making and, therefore, the patients' life. In this review, the usefulness of HR MRI in the initial staging of rectal cancer and in the evaluation of neoadjuvant treatment, with a focus on the prognostic value of the findings, is described as well as the contribution of HR MRI in assessing patients with suspected or confirmed recurrence of rectal cancer.

  20. Deferasirox for Treating Patients Who Have Undergone Allogeneic Stem Cell Transplant and Have Iron Overload

    ClinicalTrials.gov

    2017-11-07

    Iron Overload; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma

  1. Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2017-04-20

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma

  2. Selenomethionine in Reducing Mucositis in Patients With Locally Advanced Head and Neck Cancer Who Are Receiving Cisplatin and Radiation Therapy

    ClinicalTrials.gov

    2014-08-08

    Chemotherapeutic Agent Toxicity; Mucositis; Radiation Toxicity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Xerostomia

  3. Genetically Engineered Lymphocyte Therapy in Treating Patients With Lymphoma That is Resistant or Refractory to Chemotherapy

    ClinicalTrials.gov

    2015-09-27

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  4. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by Tandem CAR T Cells Targeting CD19 and CD20

    ClinicalTrials.gov

    2017-03-26

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  5. Competitive Transfer of αCD19-TCRz-CD28 and αCD19-TCRz-CD137 CAR-T Cells for B-cell Leukemia/Lymphoma

    ClinicalTrials.gov

    2017-03-14

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  6. CART19 to Treat B-Cell Leukemia or Lymphoma That Are Resistant or Refractory to Chemotherapy

    ClinicalTrials.gov

    2017-11-07

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  7. Can we eliminate neoadjuvant chemoradiotherapy in favor of neoadjuvant multiagent chemotherapy for select stage II/III rectal adenocarcinomas: Analysis of the National Cancer Data base.

    PubMed

    Cassidy, Richard J; Liu, Yuan; Patel, Kirtesh; Zhong, Jim; Steuer, Conor E; Kooby, David A; Russell, Maria C; Gillespie, Theresa W; Landry, Jerome C

    2017-03-01

    Stage II and III rectal cancers have been effectively treated with neoadjuvant chemoradiotherapy (NCRT) followed by definitive resection. Advancements in surgical technique and systemic therapy have prompted investigation of neoadjuvant multiagent chemotherapy (NMAC) regimens with the elimination of radiation (RT). The objective of the current study was to investigate factors that predict for the use of NCRT versus NMAC and compare outcomes using the National Cancer Data Base (NCDB) for select stage II and III rectal cancers. In the NCDB, 21,707 patients from 2004 through 2012 with clinical T2N1 (cT2N1), cT3N0, or cT3N1 rectal cancers were identified who had received NCRT or NMAC followed by low anterior resection. Kaplan-Meier analyses, log-rank tests, and Cox-proportional hazards regression analyses were conducted along with propensity score matching analysis to reduce treatment selection bias. The 5-year actuarial overall survival (OS) rate was 75% for patients who received NCRT versus 67.2% for those who received NMAC (P < .01). On MVA, those who received NCRT had improved OS (hazard ratio, 0.77. P < .01), and this effect was confirmed on propensity score matching analysis (hazard ratio, 0.72; P = .01). In the same model, the following variables improved OS: age < 65 years, having private insurance, treatment at an academic center, living in an affluent zip code, a low comorbidity score, receipt of adjuvant chemotherapy, and a shorter interval before surgery (all P < .05). African Americans, men, patients with high-grade tumors, those with cT3N1 tumors, and those who underwent incomplete (R1) resection had worse OS (all P < .05). In this series, the elimination of neoadjuvant RT for select patients with stage II and III rectal adenocarcinoma was associated with worse OS and should not be recommended outside of a clinical trial. Cancer 2017;123:783-93. © 2016 American Cancer Society. © 2016 American Cancer Society.

  8. Esophagoscopy in Evaluating Treatment in Patients With Stage I-IV Head and Neck Cancer Who Are Undergoing Radiation Therapy and/or Chemotherapy

    ClinicalTrials.gov

    2017-05-25

    Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  9. Outcomes of patients with abdominoperineal resection (APR) and low anterior resection (LAR) who had very low rectal cancer.

    PubMed

    Yeom, Seung-Seop; Park, In Ja; Jung, Sung Woo; Oh, Se Heon; Lee, Jong Lyul; Yoon, Yong Sik; Kim, Chan Wook; Lim, Seok-Byung; Kim, Nayoung; Yu, Chang Sik; Kim, Jin Cheon

    2017-10-01

    We compared the oncological outcomes of sphincter-saving resection (SSR) and abdominoperineal resection (APR) in 409 consecutive patients with very low rectal cancer (i.e., tumors within 3 cm from the anal verge); 335 (81.9%) patients underwent APR and 74 (18.1%) underwent SSR. The APR group comprised higher proportions of men (67.5% vs 55.4%, P = .049) and advanced-stage patients (P < .001). Preoperative chemoradiotherapy (PCRT) was more frequently administered in the SSR group (83.8% vs 52.8%, P < .001). Overall, the systemic and local recurrence rates were 29.1% and 6.1%, respectively. On stratification according to PCRT and pathologic stage, the mode of surgery did not affect the recurrence type. Moreover, recurrence-free survival (RFS) did not differ according to the mode of surgery in different cancer stages. RFS was associated with ypT and ypN stages in patients who received PCRT, while pN stage, lymphovascular invasion (LVI), and circumferential resection margin (CRM) involvement were risk factors for RFS in those who did not receive PCRT. Notably, SSR was not found to be a risk factor for RFS in either subgroup. Patients who were stratified according to cancer stage and PCRT also showed no differences in RFS according to the mode of surgery. Our results demonstrate that, regardless of PCRT administration, SSR is an effective treatment for very low rectal cancer, while CRM is an important prognostic factor for patients who did not receive PCRT.

  10. Hospital variation in sphincter preservation for elderly rectal cancer patients.

    PubMed

    Dodgion, Christopher M; Neville, Bridget A; Lipsitz, Stuart R; Schrag, Deborah; Breen, Elizabeth; Zinner, Michael J; Greenberg, Caprice C

    2014-09-01

    The primary goal of an operation for rectal cancer is to cure cancer and, where possible, preserve continence. A wide range of sphincter preservation rates have been reported. This study evaluated hospital variation in the use of low anterior resection (LAR), local excision (LE), and abdominoperineal resection (APR) in the treatment of elderly rectal cancer patients. Using Surveillance, Epidemiology, and End Results-Medicare linked data, we identified 4959 patients older than 65 y with stage I-III rectal cancer diagnosed from 2000-2005 who underwent operative intervention at one of 370 hospitals. We evaluated the distribution of hospital-specific procedure rates and used generalized mixed models with random hospital effects to examine the influence of patient characteristics and hospital on operation type, using APR as a reference. The median hospital performed APR on 33% of elderly patients with rectal cancer. Hospital was a stronger predictor of LAR receipt than any patient characteristic, explaining 32% of procedure choice, but not a strong predictor of LE, explaining only 3.8%. Receipt of LE was primarily related to tumor size and tumor stage, which combined explained 31% of procedure variation. Receipt of LE is primarily determined by patient characteristics. In contrast, the hospital where surgery is performed significantly influences whether a patient undergoes an LAR or APR. Understanding the factors that cause this institutional variation is crucial to ensuring equitable availability of sphincter preservation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. 18F-FSPG PET/CT for Cancer Patients on Therapy

    ClinicalTrials.gov

    2017-02-15

    B-Cell Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Renal Cell Cancer; Progesterone Receptor Negative; Stage III Mesothelioma; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Mesothelioma; Stage IV Non-Small Cell Lung Cancer; Stage IV Renal Cell Cancer; Triple-Negative Breast Carcinoma

  12. Chemotherapy Toxicity On Quality of Life in Older Patients With Stage I, Stage II, Stage III, or Stage IV Ovarian Epithelial, Primary Peritoneal Cavity, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-05-03

    Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IB Fallopian Tube Cancer; Stage IC Fallopian Tube Cancer; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIB Fallopian Tube Cancer; Stage IIC Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIC Fallopian Tube Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  13. Lenalidomide and Combination Chemotherapy (DA-EPOCH-R) in Treating Patients With MYC-Associated B-Cell Lymphomas

    ClinicalTrials.gov

    2017-09-28

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  14. Epacadostat and Vaccine Therapy in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2018-01-09

    Mucosal Melanoma; Recurrent Melanoma; Recurrent Uveal Melanoma; Stage IIIA Skin Melanoma; Stage IIIA Uveal Melanoma; Stage IIIB Skin Melanoma; Stage IIIB Uveal Melanoma; Stage IIIC Skin Melanoma; Stage IIIC Uveal Melanoma; Stage IV Skin Melanoma; Stage IV Uveal Melanoma

  15. Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method.

    PubMed

    Yamaguchi, Tomohiro; Kinugasa, Yusuke; Shiomi, Akio; Sato, Sumito; Yamakawa, Yushi; Kagawa, Hiroyasu; Tomioka, Hiroyuki; Mori, Keita

    2015-07-01

    Few data are available to assess the learning curve for robotic-assisted surgery for rectal cancer. The aim of the present study was to evaluate the learning curve for robotic-assisted surgery for rectal cancer by a surgeon at a single institute. From December 2011 to August 2013, a total of 80 consecutive patients who underwent robotic-assisted surgery for rectal cancer performed by the same surgeon were included in this study. The learning curve was analyzed using the cumulative sum method. This method was used for all 80 cases, taking into account operative time. Operative procedures included anterior resections in 6 patients, low anterior resections in 46 patients, intersphincteric resections in 22 patients, and abdominoperineal resections in 6 patients. Lateral lymph node dissection was performed in 28 patients. Median operative time was 280 min (range 135-683 min), and median blood loss was 17 mL (range 0-690 mL). No postoperative complications of Clavien-Dindo classification Grade III or IV were encountered. We arranged operative times and calculated cumulative sum values, allowing differentiation of three phases: phase I, Cases 1-25; phase II, Cases 26-50; and phase III, Cases 51-80. Our data suggested three phases of the learning curve in robotic-assisted surgery for rectal cancer. The first 25 cases formed the learning phase.

  16. Does perineural invasion of the myenteric plexus have a key role in annular rectal invasion and digestive system symptoms of prostate carcinoma patients?

    PubMed

    Hashimoto, Hirotsugu; Kurata, Atsushi; Nashiro, Tamaki; Kuroda, Masahiko; Horiuchi, Hajime

    2015-12-01

    Prostate carcinoma is one of the most common cancers globally. It relatively rarely invades the rectum, accounting for only about 4% of resected cases. About half of these cases of rectal invasion show an annular rectal stricture pattern. It has been hypothesized that anatomical structures, namely Denonvilliers fascia, may play an important role in annular rectal involvement of prostate carcinoma. Here, we propose another hypothesis: the reason for annular rectal invasion by prostate carcinoma is its extension along the myenteric plexus (Auerbach's plexus). We illustrate this using a case presentation and description of the symptoms of such cases. From a review of the literature, autonomic digestive system symptoms of rectal invasion of prostatic carcinoma, such as diarrhea, tenesmus, or fecal incontinence is seen in about half of cases, coinciding with the frequency of annular rectal invasion. Thus, by modifying the long-established hypothesis, our suggestion that prostate carcinoma spreads along the myenteric plexus when cancer cells invade beyond the Denonvilliers fascia to the rectum could explain the cause and frequency not only of the annular rectal invasion but also the digestive system symptoms related to this disease. The prognosis of prostate carcinoma invading the rectum is very poor; however, this new hypothesis might shed light on the digestive system symptoms associated with prostate carcinoma and might lead to recognition and treatment of these cases at a relatively early stage of rectal invasion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Quality indicators for colorectal cancer surgery and care according to patient-, tumor-, and hospital-related factors.

    PubMed

    Mathoulin-Pélissier, Simone; Bécouarn, Yves; Belleannée, Geneviève; Pinon, Elodie; Jaffré, Anne; Coureau, Gaëlle; Auby, Dominique; Renaud-Salis, Jean-Louis; Rullier, Eric

    2012-07-19

    Colorectal cancer (CRC) care has improved considerably, particularly since the implementation of a quality of care program centered on national evidence-based guidelines. Formal quality assessment is however still needed. The aim of this research was to identify factors associated with practice variation in CRC patient care. CRC patients identified from all cancer centers in South-West France were included. We investigated variations in practices (from diagnosis to surgery), and compliance with recommended guidelines for colon and rectal cancer. We identified factors associated with three colon cancer practice variations potentially linked to better survival: examination of ≥ 12 lymph nodes (LN), non-use and use of adjuvant chemotherapy for stage II and stage III patients, respectively. We included 1,206 patients, 825 (68%) with colon and 381 (32%) with rectal cancer, from 53 hospitals. Compliance was high for resection, pathology report, LN examination, and chemotherapy use for stage III patients. In colon cancer, 26% of stage II patients received adjuvant chemotherapy and 71% of stage III patients. 84% of stage US T3T4 rectal cancer patients received pre-operative radiotherapy. In colon cancer, factors associated with examination of ≥ 12 LNs were: lower ECOG score, advanced stage and larger hospital volume; factors negatively associated were: left sided tumor location and one hospital district. Use of chemotherapy in stage II patients was associated with younger age, advanced stage, emergency setting and care structure (private and location); whereas under-use in stage III patients was associated with advanced age, presence of comorbidities and private hospitals. Although some changes in practices may have occurred since this observational study, these findings represent the most recent report on practices in CRC in this region, and offer a useful methodological approach for assessing quality of care. Guideline compliance was high, although some organizational factors such as hospital size or location influence practice variation. These factors should be the focus of any future guideline implementation.

  18. Effects of 2 commercially-available 9-way killed vaccines on milk production and rectal temperature in Holstein-Friesian dairy cows.

    PubMed Central

    Scott, H M; Atkins, G; Willows, B; McGregor, R

    2001-01-01

    Veterinarians and farmers employing multivalent killed vaccines in lactating dairy cows have reported transient losses in milk production. Few studies have quantified this loss. In this report, effects of 2 commercially available 9-way vaccines on milk production and rectal temperature are examined. Repeated measures analyses of variance were used to compare changes in milk production and rectal temperature over time between treatment groups. There was a significant (P < 0.01) interaction among treatment and time when comparing vaccine- and placebo-treated animals. When pretreatment milk production (or days in milk) and pretreatment rectal temperature were considered, respectively, as covariates, a significant (P < 0.05) depression of milk production and a significant (P < 0.05) increase in rectal temperature were observed one day following injection. These effects were small and short-lived. The stage of lactation, level of milk production, and choice of product may be used as decision-making tools to decrease milk production losses in vaccine-candidate cows. PMID:11665428

  19. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by Tandem CAR T Cells Targeting CD19 and CD22

    ClinicalTrials.gov

    2017-06-10

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-Cell Chronic Lymphocytic Leukemia in Relapse (Diagnosis); Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  20. Pembrolizumab and XL888 in Patients With Advanced Gastrointestinal Cancer

    ClinicalTrials.gov

    2018-04-11

    Adenocarcinoma of the Gastroesophageal Junction; Colorectal Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Non-Resectable Hepatocellular Carcinoma; Recurrent Cholangiocarcinoma; Recurrent Colorectal Carcinoma; Recurrent Gastric Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Pancreatic Carcinoma; Recurrent Small Intestinal Carcinoma; Small Intestinal Adenocarcinoma; Stage III Colorectal Cancer; Stage III Gastric Cancer; Stage III Hepatocellular Carcinoma; Stage III Pancreatic Cancer; Stage III Small Intestinal Cancer; Stage IIIA Colorectal Cancer; Stage IIIA Gastric Cancer; Stage IIIA Hepatocellular Carcinoma; Stage IIIA Small Intestinal Cancer; Stage IIIB Colorectal Cancer; Stage IIIB Gastric Cancer; Stage IIIB Hepatocellular Carcinoma; Stage IIIB Small Intestinal Cancer; Stage IIIC Gastric Cancer; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Hepatocellular Carcinoma; Stage IV Pancreatic Cancer; Stage IV Small Intestinal Cancer; Stage IVA Colorectal Cancer; Stage IVA Hepatocellular Carcinoma; Stage IVA Pancreatic Cancer; Stage IVB Colorectal Cancer; Stage IVB Hepatocellular Carcinoma; Stage IVB Pancreatic Cancer; Unresectable Pancreatic Carcinoma; Unresectable Small Intestinal Carcinoma

  1. Parenteral Nutrition for Patients Treated for Locally Advanced Inoperable Tumors of the Head and Neck

    ClinicalTrials.gov

    2018-03-28

    Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Laryngeal Squamous Cell Carcinoma Stage III; Laryngeal Squamous Cell Carcinoma Stage IV; Oropharyngeal Squamous Cell Carcinoma Stage III; Oropharyngeal Squamous Cell Carcinoma Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV; Locally Advanced Malignant Neoplasm

  2. Total mesorectal excision for the treatment of rectal cancer

    PubMed Central

    Zedan, Ali; Salah, Tareq

    2015-01-01

    Introduction In the surgical treatment of rectal cancer, a clear circumferential resection margin and distal resection margin should be obtained. The aim of this study was to determine the morbidity, mortality, survival outcome, and local failure after total mesorectal excision (TME) in the surgical treatment of rectal cancer. Methods This retrospective study was conducted on 101 patients treated for rectal cancer using low anterior resection (LAR), abdominoperinial resection (APR), or Hartmaan’s technique. In all operative procedures, total mesorectal excisions (TMEs) were done. The patients were treated from November 2000 to April 2011 in the South Egypt Cancer Institute (SECI) of Assuit University (Egypt). Neo-adjuvant therapy was given to those patients with serosalin filtration, lymph node involvement, and sexual and urinary function impairment. Data were analyzed using IBM-SPSS version 21, and survival rates were estimated using the Kaplan-Meier method. Results One hundred one patients were evaluable (61 males, 40 females). Regarding the operative procedure used, it was: (APR), LAR, Hartmaan’s technique in 15.8%, 71.3%, and 12.9% of patients, respectively. Operation-related mortality during the 30 days after surgery was 3%. The operations resulted in morbidity in 25% of the patients, anastomotic site leak in 5.9% of the patients, urinary dysfynction in 9.9% of the patients, and erectile dysfunction in 15.8% of the male patients. Regarding safety margin, the median distances were distal/radial margin, 23/12 mm, distal limit 7 cm. Median lymph nodes harvest 19 nodes. Primary tumor locations were anteriorly 23.8%, laterally 13.9%, posteriorly 38.6%, and circumferential 23.8%. Protective stoma 16.8%. Primary Tumor TNM classification (T1, T2, T3, and T4; 3, 28.7, 55.4, and 12.9%, respectively). Nodes Metastases (N0, N1, and N2; 57.4, 31.7, and 10.9%, respectively). TNM staging (I, II, III, and IV; 15.8, 29.7, 46.5, and 7.9%, respectively). Chemotherapy was administered to 67.3% of the patients. Radiotherapy (short course neoadjuvant, long course neoadjuvant, and adjuvant postoperative used in 33.7, 20.8, and 19.8% of patients, respectively). Survival 5-years CSS was 73% and 5-years RFS 71%. Mean operative time was 213 minutes. The average amount of intraoperative blood loss was 344 mL. Conclusion Total mesorectal excision (TME) represents the gold-standard technique in rectal cancer surgery. It is safe with neoadjuvent chemoradiotherapy and provides both maximal oncological efficiency (local control and long-term survival and maintenance of a good quality of life). PMID:26816592

  3. Total mesorectal excision for the treatment of rectal cancer.

    PubMed

    Zedan, Ali; Salah, Tareq

    2015-12-01

    In the surgical treatment of rectal cancer, a clear circumferential resection margin and distal resection margin should be obtained. The aim of this study was to determine the morbidity, mortality, survival outcome, and local failure after total mesorectal excision (TME) in the surgical treatment of rectal cancer. This retrospective study was conducted on 101 patients treated for rectal cancer using low anterior resection (LAR), abdominoperinial resection (APR), or Hartmaan's technique. In all operative procedures, total mesorectal excisions (TMEs) were done. The patients were treated from November 2000 to April 2011 in the South Egypt Cancer Institute (SECI) of Assuit University (Egypt). Neo-adjuvant therapy was given to those patients with serosalin filtration, lymph node involvement, and sexual and urinary function impairment. Data were analyzed using IBM-SPSS version 21, and survival rates were estimated using the Kaplan-Meier method. One hundred one patients were evaluable (61 males, 40 females). Regarding the operative procedure used, it was: (APR), LAR, Hartmaan's technique in 15.8%, 71.3%, and 12.9% of patients, respectively. Operation-related mortality during the 30 days after surgery was 3%. The operations resulted in morbidity in 25% of the patients, anastomotic site leak in 5.9% of the patients, urinary dysfynction in 9.9% of the patients, and erectile dysfunction in 15.8% of the male patients. Regarding safety margin, the median distances were distal/radial margin, 23/12 mm, distal limit 7 cm. Median lymph nodes harvest 19 nodes. Primary tumor locations were anteriorly 23.8%, laterally 13.9%, posteriorly 38.6%, and circumferential 23.8%. Protective stoma 16.8%. Primary Tumor TNM classification (T1, T2, T3, and T4; 3, 28.7, 55.4, and 12.9%, respectively). Nodes Metastases (N0, N1, and N2; 57.4, 31.7, and 10.9%, respectively). TNM staging (I, II, III, and IV; 15.8, 29.7, 46.5, and 7.9%, respectively). Chemotherapy was administered to 67.3% of the patients. Radiotherapy (short course neoadjuvant, long course neoadjuvant, and adjuvant postoperative used in 33.7, 20.8, and 19.8% of patients, respectively). Survival 5-years CSS was 73% and 5-years RFS 71%. Mean operative time was 213 minutes. The average amount of intraoperative blood loss was 344 mL. Total mesorectal excision (TME) represents the gold-standard technique in rectal cancer surgery. It is safe with neoadjuvent chemoradiotherapy and provides both maximal oncological efficiency (local control and long-term survival and maintenance of a good quality of life).

  4. Bevacizumab in Reducing CNS Side Effects in Patients Who Have Undergone Radiation Therapy to the Brain for Primary Brain Tumor, Meningioma, or Head and Neck Cancer

    ClinicalTrials.gov

    2014-04-21

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Malignant Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineocytoma; Malignant Neoplasm; Meningeal Melanocytoma; Radiation Toxicity; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage I Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage III Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  5. Intratumoral PV701 in Treating Patients With Advanced or Recurrent Unresectable Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-23

    Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity

  6. Clinical efficacy of Spasmofen® suppository in the emergency treatment of renal colic: a randomized, double-blind, double-dummy comparative trial.

    PubMed

    Yakoot, Mostafa; Salem, Amel; Yousef, Sameh; Helmy, Sherine

    2014-01-01

    Renal colic is typically characterized by the sudden onset of severe pain radiating from the flank to the groin and its acute management in emergency departments essentially aims at rapid pain relief. Spasmofen(®) is a brand of Amriya Pharmaceutical Industries in the form of rectal suppositories containing ketoprofen 100 mg and hyoscine butylbromide 10 mg. This combination is intended for the rapid relief of severe colicky pain in the renal system, hepatobiliary system, or gastrointestinal tract. This trial aims to compare a single-dose of Spasmofen rectal suppository to a single intravenous (IV) ketorolac tromethamine 30 mg/2 mL dose in patients with acute renal colic. A total of 80 eligible consecutive patients presenting to the emergency departments of two medical centers with acute renal colic were included in the study. Eligible patients who signed the informed consent were randomly assigned into two treatment groups: an experimental group (Spasmofen group) who received one Spasmofen rectal suppository plus an IV injection of 2 mL of normal saline solution; and a control group (ketorolac group) who received one ketorolac 30 mg/2 mL ampoule IV plus one placebo suppository. Treatment success, defined as a change in the verbal rating score from severe or moderate pain to none or mild at 60 minutes after the dose, was compared between groups using the chi-square/Fisher's exact test. Percentage reductions in visual pain analog scale (VPAS) scores at 15 and 60 minutes after the dose were compared between groups using the Z-test for proportions. Successful treatment at 60 minutes occurred in 35 of 40 (87.5%) of Spasmofen-treated patients and in 33 of 40 (82.5%) of ketorolac-treated patients. The difference was not statistically significant by Fisher's exact test (P=0.755). The mean percentage reduction of VPAS after 15 minutes was 61.82% in the Spasmofen-treated group and 64.76% in the ketorolac-treated group. The difference was also not statistically significant by the Z-test for proportions (P=0.795). Sixty minutes after being treated, Spasmofen was associated with a statistically significant greater reduction in VPAS (mean% reduction =92.36%) than ketorolac (75.06%; P=0.0466). Single-dose Spasmofen rectal suppository might be a safe and effective first-aid treatment for the emergency department relief of acute renal colic.

  7. Transoral Robotic Surgery in Treating Patients With Benign or Stage I-IV Head and Neck Cancer

    ClinicalTrials.gov

    2014-11-07

    Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  8. Phase I Study of IMRT and Molecular-Image Guided Adaptive Radiation Therapy for Advanced HNSCC

    ClinicalTrials.gov

    2016-10-27

    Salivary Gland Squamous Cell Carcinoma; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  9. Sirolimus and Vaccine Therapy in Treating Patients With Stage II-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-27

    Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  10. Effect of long interval between hyperthermochemoradiation therapy and surgery for rectal cancer on apoptosis, proliferation and tumor response.

    PubMed

    Kato, Toshihide; Fujii, Takaaki; Ide, Munenori; Takada, Takahiro; Sutoh, Toshinaga; Morita, Hiroki; Yajima, Reina; Yamaguchi, Satoru; Tsutsumi, Soichi; Asao, Takayuki; Oyama, Tetsunari; Kuwano, Hiroyuki

    2014-06-01

    Neoadjuvant chemoradiotherapy is commonly used to improve the local control and resectability of locally advanced rectal cancer, with surgery performed after an interval of a number of weeks. We have been conducting a clinical trial of preoperative chemoradiotherapy in combination with regional hyperthermia (hyperthermo-chemoradiation therapy; HCRT) for locally advanced rectal cancer. In the current study we assessed the effect of a longer (>10 weeks) interval after neoadjuvant HCRT on pathological response, oncological outcome and especially on apoptosis, proliferation and p53 expression in patients with rectal cancer. Forty-eight patients with proven rectal adenocarcinoma who underwent HCRT followed by surgery were identified for inclusion in this study. Patients were divided into two groups according to the interval between HCRT and surgery, ≤ 10 weeks (short-interval group) and >10 weeks (long-interval group). Patients in the long-interval group had a significantly higher rate of pathological complete response (pCR) (43.5% vs. 16.0%) than patients of the short-interval group. Patients of the long-interval group had a significantly higher rate of down-staging of T-stage (78.3% vs. 36.0%) and relatively higher rate of that of N-stage (52.2% vs. 36.0%) than patients of the short-interval group. Furthermore, apoptosis in the long-interval group was relatively higher compared to that of the short-interval group, without a significant difference in the Ki-67 proliferative index and expression of p53 in the primary tumor. In conclusion, we demonstrated that a longer interval after HCRT (>10 weeks) seemed to result in a better chance of a pCR, a result confirmed by the trends in tumor response markers, including apoptosis, proliferation and p53 expression. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. PET Imaging of Ovarian Carcinoma With 18F-FSPG

    ClinicalTrials.gov

    2018-06-04

    Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  12. Effects of Swallowing Exercises on Patients Undergoing Radiation Treatment for Head and Neck Cancer

    ClinicalTrials.gov

    2017-05-25

    Head and Neck Cancer; Stage I Hypopharyngeal Cancer; Stage I Laryngeal Cancer; Stage I Oropharyngeal Cancer; Stage II Hypopharyngeal Cancer; Stage II Laryngeal Cancer; Stage II Oropharyngeal Cancer; Stage III Hypopharyngeal Cancer; Stage III Laryngeal Cancer; Stage III Oropharyngeal Cancer; Stage IV Hypopharyngeal Cancer; Stage IV Laryngeal Cancer; Stage IV Oropharyngeal Cancer

  13. Propranolol Hydrochloride in Treating Patients With Locally Recurrent or Metastatic Solid Tumors That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2017-11-27

    Male Breast Cancer; Recurrent Melanoma; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Hepatocellular Carcinoma

  14. Depsipeptide in Unresectable Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2015-04-29

    Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx

  15. Lenalidomide And Rituximab as Maintenance Therapy in Treating Patients With B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-11-25

    Adult Non-Hodgkin Lymphoma; Adult Grade III Lymphomatoid Granulomatosis; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  16. Plerixafor and Filgrastim For Mobilization of Donor Peripheral Blood Stem Cells Before A Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2017-06-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  17. Metformin and Chemotherapy in Treating Patients With Stage III-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-17

    Brenner Tumor; Malignant Ascites; Malignant Pleural Effusion; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cavity Cancer

  18. Sunitinib, Cetuximab, and Radiation Therapy in Treating Patients With Locally Advanced or Recurrent Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-07-01

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Salivary Gland Squamous Cell Carcinoma; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  19. Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease (GVHD) After Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-01-24

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, Breakpoint Cluster Region-abl Translocation (BCR-ABL) Negative; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Gastrointestinal Complications; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Childhood Rhabdomyosarcoma; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage II Ovarian Epithelial Cancer; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Ovarian Epithelial Cancer; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Ovarian Epithelial Cancer; Stage IV Small Lymphocytic Lymphoma

  20. L-lysine in Treating Oral Mucositis in Patients Undergoing Radiation Therapy With or Without Chemotherapy For Head and Neck Cancer

    ClinicalTrials.gov

    2013-05-15

    Mucositis; Oral Complications of Chemotherapy; Oral Complications of Radiation Therapy; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Hypopharynx; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Basal Cell Carcinoma of the Lip; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Hypopharynx; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity

  1. Activated T-cell Therapy, Low-Dose Aldesleukin, and Sargramostim in Treating Patients With Ovarian, Fallopian Tube, or Primary Peritoneal Cancer That is Stage III-IV, Refractory, or Recurrent

    ClinicalTrials.gov

    2016-02-15

    Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Serous Tumor; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  2. Induction Chemotherapy With TP+5-FU or TP+Cetuximab Followed by Radioimmuptherapy for Locally Advanced or Not Resectable SCCHNN

    ClinicalTrials.gov

    2017-06-26

    Squamous Cell Carcinoma of the Hypopharynx Stage III; Squamous Cell Carcinoma of the Hypopharynx Stage IV; Squamous Cell Carcinoma of the Larynx Stage III; Squamous Cell Carcinoma of the Larynx Stage IV; Squamous Cell Carcinoma of the Oropharynx Stage III; Squamous Cell Carcinoma of the Oropharynx Stage IV; Squamous Cell Carcinoma of the Oral Cavity Stage III; Squamous Cell Carcinoma of the Oral Cavity Stage IV

  3. Rituximab in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-09-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenström Macroglobulinemia

  4. Accuracy of magnetic resonance imaging in the pre-operative staging of rectal adenocarcinoma: Experience from a regional Australian cancer center.

    PubMed

    White, Rohen; Ung, Kim Ann; Mathlum, Maitham

    2013-12-01

    Selection of the optimal treatment pathway in patients with rectal adenocarcinoma relies on accurate locoregional staging. This study aims to assess the accuracy of staging with magnetic resonance imaging (MRI) and in particular, its accuracy in differentiating patients with early stage disease from those with more advanced disease who benefit from a different treatment approach. Patients who were staged with MRI and received surgery as the first line of treatment for biopsy-proven adenocarcinoma of the rectum were identified. Comparison was made between the clinical stage on MRI and the pathological stage of the surgical specimen. The sensitivity, specificity and overall accuracy of MRI was assessed. In all, 58 eligible patients were identified. In 31% of patients, the extent of disease was underrepresented on preoperative MRI. Sensitivity, specificity and overall accuracy of anorectal MRI in detecting stage II/III disease status in this cohort was 59, 71 and 62%, respectively. MRI underestimated the pathological stage in many patients in this series who may have benefited from the addition of neoadjuvant radiotherapy to their management. This study supports further refinement of preoperative staging and demonstrates that impressive results from highly controlled settings may be difficult to reproduce in community practice. © 2012 Wiley Publishing Asia Pty Ltd.

  5. Dose Monitoring of Busulfan and Combination Chemotherapy in Hodgkin or Non-Hodgkin Lymphoma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2015-08-12

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  6. Cetuximab and Everolimus in Treating Patients With Metastatic or Recurrent Colon Cancer or Head and Neck Cancer

    ClinicalTrials.gov

    2012-07-06

    Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Lymphoepithelioma of the Oropharynx; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Stage IVA Colon Cancer; Stage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Colon Cancer; Stage IVB Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Tongue Cancer

  7. Comparison of Intravenous Infusion of Tramadol Alone with Combination of Tramadol and Paracetamol for Postoperative Pain after Major Abdominal Surgery in Children

    PubMed Central

    Ali, Shayesta; Sofi, Khalid; Dar, Abdul Qayoom

    2017-01-01

    Background: Pain is a common complaint after surgery and seems to be difficult to manage in children because of fear of complications of pain treatment or misconception that infants and small children do not feel pain at all or feel less pain. A survey reported that 40% of pediatric surgical patients experienced moderate or severe postoperative pain and that more than 75% had insufficient analgesia. Our study was carried to provide continuous infusion of intravenous (i.v.) tramadol alone using a dedicated infusion device Graseby 2100 syringe pump and compared it to a combination of i.v. tramadol infusion and per rectal paracetamol. Subjects and Methods: A total of 124 children aged 1–8 years selected for the study were randomized into two groups using a table of random numbers. Power calculation had suggested a sample size of 62 in each group with a power of 80% and significance level of 5%. Group A comprising 62 children, received i.v. infusion of tramadol in a dose of 0.25 mg/kg/h for 24 h postoperatively. Group B comprising 62 children, received i.v. infusion of tramadol in a dose of 0.25 mg/kg/h for 24 h postoperatively in addition to per rectal suppository of paracetamol in a dose of 90 mg/kg in 24 h (30 mg/kg as first dose followed by 20 mg/kg every 6 hourly for the next 18 h). Postoperatively, patients were observed for 24 h. Results: A statistically significant difference (P ≤ 0.001) in Face, Legs, Activity, Cry, Consolability pain scores was seen between two groups at 4, 6, and 8 h. Pain scores being less in Group B patients who had received infusion of tramadol and per rectal suppositories of paracetamol compared to Group A patients who received only infusion of tramadol. A statistically significant difference (P < 0.05) was found in mean analgesic consumption during the first 24 h between the groups. Consumption was more in Group A as compared to Group B. In Group A, 13 patients (21%) required rescue analgesia as compared to only 4 patients (6.5%) in Group B. Conclusion: We recommend use of an infusion of tramadol in a dose of 0.25 mg/kg/h in the first 24 h after surgery, in combination with a regular per rectal paracetamol in a daily dose of 90 mg/kg/day in four divided doses for children after major abdominal surgery. However, a close nursing supervision is essential to increase the safety profile. PMID:28663644

  8. Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction

    ClinicalTrials.gov

    2018-04-02

    Glioma; Lymphoma; Metastatic Malignant Solid Neoplasm; Neuroendocrine Neoplasm; Recurrent Adult Soft Tissue Sarcoma; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Chronic Lymphocytic Leukemia; Recurrent Colorectal Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Lung Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Melanoma; Recurrent Pancreatic Carcinoma; Recurrent Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Thyroid Gland Carcinoma; Refractory Chronic Lymphocytic Leukemia; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Refractory Primary Cutaneous T-Cell Non-Hodgkin Lymphoma; Stage III Breast Cancer AJCC v7; Stage III Colorectal Cancer AJCC v7; Stage III Cutaneous Melanoma AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Prostate Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Soft Tissue Sarcoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Prostate Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Soft Tissue Sarcoma AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Unresectable Solid Neoplasm

  9. Trigriluzole With Nivolumab and Pembrolizumab in Treating Patients With Metastatic or Unresectable Solid Malignancies or Lymphoma

    ClinicalTrials.gov

    2018-05-23

    Lymphoma; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Metastatic Renal Cell Cancer; Recurrent Bladder Carcinoma; Recurrent Classical Hodgkin Lymphoma; Recurrent Head and Neck Squamous Cell Carcinoma; Recurrent Lymphoma; Recurrent Malignant Solid Neoplasm; Recurrent Renal Cell Carcinoma; Stage III Bladder Cancer; Stage III Lymphoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Renal Cell Cancer; Stage III Skin Melanoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Lymphoma; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Bladder Cancer; Stage IVB Bladder Cancer; Unresectable Head and Neck Squamous Cell Carcinoma; Unresectable Solid Neoplasm

  10. Monoclonal Antibody Therapy and Peripheral Stem Cell Transplant in Treating Patients With Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2013-01-08

    Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  11. S0819: Carboplatin and Paclitaxel With or Without Bevacizumab and/or Cetuximab in Treating Patients With Stage IV or Recurrent Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2017-10-03

    Recurrent Large Cell Lung Carcinoma; Recurrent Lung Adenocarcinoma; Recurrent Squamous Cell Lung Carcinoma; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Squamous Cell Lung Carcinoma

  12. Management of colorectal cancer in three South Thames District Health Authorities.

    PubMed

    Pollock, A M; Vickers, N

    1997-05-01

    This study describes the management of colorectal cancer, diagnosed in 1988, of residents in three South Thames Districts. Of the 328 cases identified as having being diagnosed in 1988, case notes were retrieved on 263 (80%) including 62 registered by death certificate only. There were 159 cases (61%) of colon cancer and 104 cases (39%) of rectal cancer. Of these, 172 cases (68%) were admitted electively and 90 (32%) as emergencies. Patients subsequently diagnosed with colon cancer had a relative risk of being admitted through emergency (relative to rectal cancer patients) of 1.39 (95% C.I.: 1.16, 1.67). Elective admissions varied significantly by district of residence (P < 0.0001) ranging from 36-65% for colon cancers and from 63-92% for rectal cancers across the three districts. Dukes' stage was recorded in only 143 (54%) sets of case notes, with significant variation by district of residence in the proportion of elective patients for whom a Dukes' stage was indicated (P < 0.01). Two-hundred and thirty-six (90%) cases received treatment. Of the treated cases, 233 patients received surgery with 29 cases of colon cancer (18%) and 32 cases of rectal cancer (31%) receiving adjuvant therapy. The proportions of anterior resection, AP resection and colostomies given, varied by district. Patients presenting for elective surgery were more likely to be treated by a consultant than patients presenting on emergency: the relative risks were 2.58 (95% C.I.: 1.74, 3.82) for colon cancer patients and 4.93 (95% C.I.: 2.20, 11.06) for rectal cancer patients. In 44 (26%) colon cancer cases and 21 (22%) rectal cancer cases it was explicitly stated that the tumour had not been fully resected. For colon tumours the five year relative survival rates were 35% (95% C.I.: 21%, 50%), 52% (95% C.I.: 34%, 70%), and 14% (95% C.I.: -2%, 30%) in districts A, B and C respectively. The corresponding figures for rectal tumours were 45% (95% C.I.: 27%, 64%), 62% (95% C.I.: 41%, 83%) and 24% (95% C.I.: -1%, 50%). There were wide variations in the representation, management of and survival from colorectal cancers across the three districts. Differences were significant at the level of district of residence, mode of presentation and surgical grade. More assiduous recording of Dukes' stage is imperative if consensus is to be achieved on effective management. Further work is also warranted on district differences in diagnostic and referral protocols.

  13. TAS102 in Combination With NAL-IRI in Advanced GI Cancers

    ClinicalTrials.gov

    2018-03-29

    Colorectal Adenocarcinoma; Gastric Adenocarcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Stage IV Colorectal Cancer; Stage IV Gastric Cancer; Stage IV Pancreatic Cancer; Stage IVA Colorectal Cancer; Stage IVB Colorectal Cancer; Unresectable Pancreatic Carcinoma

  14. Palifermin in Preventing Chronic Graft-Versus-Host Disease in Patients Who Have Undergone Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2014-02-19

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  15. Internet-Based Program With or Without Telephone-Based Problem-Solving Training in Helping Long-Term Survivors of Hematopoietic Stem Cell Transplant Cope With Late Complications

    ClinicalTrials.gov

    2012-03-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Cancer Survivor; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Depression; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fatigue; Long-term Effects Secondary to Cancer Therapy in Adults; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Psychosocial Effects of Cancer and Its Treatment; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  16. Failure of evidence-based cancer care in the United States: the association between rectal cancer treatment, cancer center volume, and geography.

    PubMed

    Monson, John R T; Probst, Christian P; Wexner, Steven D; Remzi, Feza H; Fleshman, James W; Garcia-Aguilar, Julio; Chang, George J; Dietz, David W

    2014-10-01

    This study examines recent adherence to recommended neoadjuvant chemoradiotherapy guidelines for patients with rectal cancer across geographic regions and institution volume and assesses trends over time. A recent report by the Institute of Medicine described US cancer care as chaotic. Cited deficiencies included wide variation in adherence to evidence-based guidelines even where clear consensus exists. Patients operated on for clinical stage II and III rectal cancer were selected from the 2006-2011 National Cancer Data Base. Multivariable logistic regressions were used to assess variation in chemotherapy and radiation use by cancer center type, geographical location, and hospital volume. The analysis controlled for patient age at diagnosis, sex, race/ethnicity, primary payer, average household income, average education, urban/rural classification of patient residence, comorbidity, and oncologic stage. There were 30,994 patients who met the inclusion criteria. Use of neoadjuvant radiation therapy and chemotherapy varied significantly by type of cancer center. The highest rates of adherence were observed in high-volume centers compared with low-volume centers (78% vs 69%; adjusted odds ratio = 1.46; P < 0.001). This variation is mirrored by hospital geographic location. Primary payer and year of diagnosis were not predictive of rates of neoadjuvant chemoradiotherapy. Adherence to evidence-based treatment guidelines in rectal cancer is suboptimal in the United States, with significant differences based on hospital volume and geographic regions. Little improvement has occurred in the last 5 years. These results support the implementation of standardized care pathways and a Centers of Excellence program for US patients with rectal cancer.

  17. Vaccine Therapy in Treating Patients With Stage IIC-IV Melanoma

    ClinicalTrials.gov

    2014-05-20

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Ciliary Body and Choroid Melanoma, Small Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Mucosal Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage IIC Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIA Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIB Melanoma; Stage IIIC Intraocular Melanoma; Stage IIIC Melanoma; Stage IV Intraocular Melanoma; Stage IV Melanoma

  18. Granisetron, Aprepitant, and Dexamethasone in Preventing Nausea and Vomiting in Patients Receiving Chemotherapy for Stage II, III, or IV Ovarian Cancer

    ClinicalTrials.gov

    2018-04-24

    Nausea and Vomiting; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Ovarian Carcinoma

  19. Brentuximab Vedotin + Rituximab as Frontline Therapy for Pts w/ CD30+ and/or EBV+ Lymphomas

    ClinicalTrials.gov

    2015-04-28

    Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Epstein-Barr Virus Infection; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  20. Vaccine Therapy and Cyclophosphamide in Treating Patients With Stage II-III Breast or Stage II-IV Ovarian, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-08-28

    Recurrent Breast Carcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIA Breast Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIB Breast Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIIA Breast Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Breast Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Breast Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  1. Nanoparticle Albumin-Bound Rapamycin in Treating Patients With Advanced Cancer With mTOR Mutations

    ClinicalTrials.gov

    2018-06-01

    Advanced Malignant Neoplasm; Cervical Squamous Cell Carcinoma; Endometrial Carcinoma; Malignant Uterine Neoplasm; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Cervical Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Malignant Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Solid Neoplasm; Stage III Bladder Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Breast Cancer; Stage IIIC Ovarian Cancer; Stage IV Breast Cancer; Stage IV Ovarian Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IVA Bladder Cancer; Stage IVA Cervical Cancer; Stage IVB Bladder Cancer; Stage IVB Cervical Cancer

  2. Bovine acute-phase response following different doses of corticotrophin-releasing hormone (CRH) challenge

    USDA-ARS?s Scientific Manuscript database

    Fourteen weaned, halter-trained Angus steers (BW = 191 ± 2.1 kg) were fitted with indwelling jugular catheter and rectal temperature monitoring device on d -1 of the study. On d 0, steers were ranked by body weight and randomly assigned to receive 1 of 3 infusion treatments (i.v.): 1) 0.1 micrograms...

  3. Talazoparib in Treating Patients With Advanced or Metastatic Solid Tumors That Cannot Be Removed by Surgery and Liver or Kidney Dysfunction

    ClinicalTrials.gov

    2017-04-20

    Estrogen Receptor Negative; Head and Neck Squamous Cell Carcinoma; HER2/Neu Negative; Hormone-Resistant Prostate Cancer; Metastatic Pancreatic Adenocarcinoma; Progesterone Receptor Negative; Solid Neoplasm; Stage III Mesothelioma; Stage IIIA Gastric Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Small Cell Lung Carcinoma; Stage IIIB Gastric Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Small Cell Lung Carcinoma; Stage IIIC Gastric Cancer; Stage IIIC Ovarian Cancer; Stage IV Mesothelioma; Stage IV Non-Small Cell Lung Cancer; Stage IV Ovarian Cancer; Stage IV Small Cell Lung Carcinoma; Triple-Negative Breast Carcinoma

  4. Memory-enriched CAR-T Cells Immunotherapy for B Cell Lymphoma

    ClinicalTrials.gov

    2016-04-25

    Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  5. Decitabine in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2013-02-06

    Male Breast Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Stage III Melanoma; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Unspecified Adult Solid Tumor, Protocol Specific

  6. Cáncer colorrectal en los jóvenes: factores pronósticos y características clínico patológicas en un instituto del cáncer de Perú.

    PubMed

    Ruiz, Rossana; Taxa, Luis; Ruiz, Eloy F; Mantilla, Raúl; Casanova, Luis; Montenegro, Paola

    2016-01-01

    To determine clinicopathological features and prognostic factors among young colorectal cancer (CRC) patients in a Peruvian Cancer Institute. Data of patients 40 years or younger, admitted between January 2005 and December 2010, were analyzed. During the study period, 196 young patients with CRC were admitted. The tumor was located in the rectum, left colon and right colon in 45.9%, 28.6% and 25.5% of cases. Family history of CRC was found in 13.2% and an autosomal pattern of inheritance, in 8.6% of the cases. The most common symptoms were pain (67.9%) and bleeding (67.3%). The majority (63.1%) of colon cancer cases and more than a third (34.4%) of rectal cancer cases were diagnosed in stage III or IV. The histologic type was tubular, mucinous and signet ring cell adenocarcinoma in 73.5%, 14.8% and 8.6%, respectively. The depth of invasion was T3 in 21.4% and T4 in 53%. Nodal involvement was detected in 44.5%. Five-year overall survival (OS) was 44.3%. In the multivariate analysis, only the stage resulted an independent prognostic factor for survival. CRC in Peruvian young patients is mostly sporadic. It presents more often in the distal colon or rectum and at advanced stages of the disease. Mucinous and signet ring cell carcinoma were requent histological types. Five-year OS stage by stage is similar to that reported in the literature for older patients. Stage was the only independent prognostic factor for survival.

  7. Resolution of Rectal Prolapse by Vaginal Reconstruction.

    PubMed

    Devakumar, Hemikaa; Chandrasekaran, Neeraja; Alas, Alexandriah; Martin, Laura; Davila, G Willy; Hurtado, Eric

    Rectal prolapse is a disorder of the pelvic floor in which the layers of the rectal mucosa protrude outward through the anus. Surgical repair is the mainstay of treatment. Options include intra-abdominal procedures such as rectopexy and perineal procedures such as the Delorme and Altemeier perineal rectosigmoidectomy. Rectal and vaginal prolapse can often coexist. However, to our knowledge, there are no reported cases of rectal prolapse resolved by the repair of a compressive enterocele abutting the anterior rectal wall through a vaginal approach alone. We present a novel case of rectal prolapse that resolved by correction of the vaginal defect. A 53-year-old female with prior history of abdominal hysterectomy, presented to the urogynecology clinic with complaints of vaginal bulge, urge urinary incontinence, and rectal bulge on straining with no fecal incontinence for several years. On physical examination, she was found to have stage 2 anterior, posterior, and apical vaginal prolapse and reducible rectal prolapse. Colorectal surgery (CRS) evaluation was requested, which revealed minimal anterior mucosal prolapse on Valsalva with no full-thickness prolapse. Magnetic resonance imaging (MRI) defecogram was performed, which demonstrated a large rectocele, enterocele, and small bowel prolapsing between the rectum and vagina during the evacuation phase, with no rectal prolapse. The decision to proceed with vaginal prolapse surgery without concomitant rectal prolapse repair was made, as the patient had no fecal incontinence, and the degree of rectal prolapse was minimal. On the day of surgery, which was 2 months later, she presented with a 2-cm anterior rectal prolapse with no incontinence. Colorectal surgery was consulted again, but unavailable. After counseling, the patient wished to proceed with her planned surgery. It was felt that correcting the anterior rectocele and enterocele, thereby eliminating the descent of the bowel on the anterior rectal wall, might cause resolution of the rectal prolapse. She then underwent a sacrospinous ligament fixation with mesh through an anterior vaginal approach, enterocele repair, Moschcowitz culdoplasty, and posterior colporraphy. She had an uneventful postoperative course and noted resolution of both vaginal and rectal prolapse. At 54 weeks, she continues without any complaints of rectal prolapse, which was confirmed on physical examination. Usually, the choice of surgical approach is tailored to each individual based on anatomy, age, comorbidity, and patient factors. Correcting both vaginal and rectal prolapse at the same time with a minimally invasive approach is an advantage to the patient. Restoring the apical, anterior, and posterior vaginal wall anatomy and an enterocele repair through the vaginal route caused resolution of the rectal prolapse. Further research is required as to whether rectal prolapse caused by anterior rectal compression needs an additional procedure or repair of the vaginal prolapse and enterocele alone will suffice.

  8. Bortezomib and Filgrastim in Promoting Stem Cell Mobilization in Patients With Non-Hodgkin Lymphoma or Multiple Myeloma Undergoing Stem Cell Transplant

    ClinicalTrials.gov

    2017-05-23

    Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  9. AFP464 in Treating Patients With Metastatic or Refractory Solid Tumors That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2014-02-21

    Male Breast Cancer; Recurrent Breast Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Recurrent Renal Cell Cancer; Stage IV Breast Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  10. Preoperative neo-adjuvant therapy for curable rectal cancer--reaching a consensus 2008.

    PubMed

    Scott, N A; Susnerwala, S; Gollins, S; Myint, A Sun; Levine, E

    2009-03-01

    Our aim was to determine the range of neo-adjuvant therapy the multidisciplinary team (MDT) currently offers patients with curable (M(0)) rectal cancer. A senior oncologist from each of the four oncology centres in north Wales and the north-west of England (approximate target population 8 million - Glan Clwyd, Clatterbridge, Christie and Preston) reviewed his/her understanding of the current evidence of neo-adjuvant therapy in rectal cancer. Then a representative from each centre was asked to identify which of three neo-adjuvant options (no neo-adjuvant therapy, short-course radiotherapy 25 Gy over five fractions and long-course chemoradiotherapy) he/she would use for a rectal cancer in the upper, middle or lower third of the rectum staged by magnetic resonance imaging as being T(2)-T(4) and/or N(0)-N(2). In all cases of locally advanced rectal cancer (T(3a) N(1)-T(4)), oncologists from the four oncology centres recommended long-course chemoradiotherapy before rectal resection. This consensus was maintained for cases of lower third T(3a) N(0) cancers. Thereafter, the majority of patients with rectal cancer are offered adjuvant short-course radiotherapy. Neo-adjuvant therapy is less likely to be offered if the tumour is early (T(2), N(0)) and/or situated in the upper third of the rectum.

  11. Linear array ultrasonography to stage rectal neoplasias suitable for local treatment.

    PubMed

    Ravizza, Davide; Tamayo, Darina; Fiori, Giancarla; Trovato, Cristina; De Roberto, Giuseppe; de Leone, Annalisa; Crosta, Cristiano

    2011-08-01

    Because of the many therapeutic options available, a reliable staging is crucial for rectal neoplasia management. Adenomas and cancers limited to the submucosa without lymph node involvement may be treated locally. The aim of this study is to evaluate the diagnostic accuracy of endorectal ultrasonography in the staging of neoplasias suitable for local treatment. We considered all patients who underwent endorectal ultrasonography between 2001 and 2010. The study population consisted of 92 patients with 92 neoplasias (68 adenocarcinomas and 24 adenomas). A 5 and 7.5MHz linear array echoendoscope was used. The postoperative histopathologic result was compared with the preoperative staging defined by endorectal ultrasonography. Adenomas and cancers limited to the submucosa were considered together (pT0-1). The sensitivity, specificity, overall accuracy rate, positive predictive value, and negative predictive value of endorectal ultrasonography for pT0-1 were 86%, 95.6%, 91.3%, 94.9% and 88.7%. Those for nodal involvement were 45.4%, 95.5%, 83%, 76.9% and 84%, with 3 false positive results and 12 false negative. For combined pT0-1 and pN0, endorectal ultrasonography showed an 87.5% sensitivity, 95.9% specificity, 92% overall accuracy rate, 94.9% positive predictive value and 90.2% negative predictive value. Endorectal linear array ultrasonography is a reliable tool to detect rectal neoplasias suitable for local treatment. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Retroperitoneal margin involvement by adenocarcinoma of the caecum and ascending colon: what does it mean?

    PubMed

    Scott, N; Jamali, A; Verbeke, C; Ambrose, N S; Botterill, I D; Jayne, D G

    2008-03-01

    Circumferential margin involvement (CRM) is a powerful predictor of local recurrence, distant metastasis and patient survival in rectal cancer. In this study, we aimed to determine the frequency of retroperitoneal margin involvement in right colon cancer and describe its relationship to tumour stage and outcome of surgical treatment. Two hundred and twenty-eight consecutive resections for adenocarcinoma of the ascending colon and caecum were identified between 1998 and 2006. Tumour involvement of the posterior retroperitoneal surgical resection margin (RSRM) was recorded and correlated with tumour stage, grade and clinical outcome. RSRM positive patients were compared with CRM positive rectal tumours resected in the same surgical unit. Nineteen of 228 right hemicolectomies (8.4%) showed tumour involvement of the RSRM (defined as < or = 1 mm). Approximately half of the RSRM positive patients underwent palliative resections because of synchronous distant metastases. Out of nine 'potentially curative' resections where the RSRM was involved, five patients subsequently developed metastatic recurrence and two isolated local recurrence. RSRM positivity was associated with advanced tumour stage and more extensive extramural spread than CRM positive rectal cancers. Retroperitoneal surgical resection margin involvement by caecal and ascending colon carcinoma is a marker of advanced tumour stage and associated with a high incidence of synchronous and metachronous distant metastasis. More aggressive surgery to obtain a clear margin or postoperative radiotherapy to the tumour bed is likely to benefit only a minority of patients.

  13. Primary squamous cell carcinoma of the rectum: An update and implications for treatment

    PubMed Central

    Guerra, Glen R; Kong, Cherng H; Warrier, Satish K; Lynch, Andrew C; Heriot, Alexander G; Ngan, Samuel Y

    2016-01-01

    AIM: To provide an update on the aetiology, pathogenesis, diagnosis, staging and management of rectal squamous cell carcinoma (SCC). METHODS: A systematic review was conducted according to the preferred reporting items for Systematic Reviews and Meta-Analyses guidelines. A comprehensive search of Ovid MEDLINE was performed with the reference list of selected articles reviewed to ensure all relevant publications were captured. The search strategy was limited to the English language, spanning from 1946 to 2015. A qualitative analysis was undertaken examining patient demographics, clinical presentation, diagnosis, staging, treatment and outcome. The quantitaive analysis was limited to data extracted on treatment and outcomes including radiological, clinical and pathological complete response where available. The narrative and quantitative review were synthesised in concert. RESULTS: The search identified 487 articles in total with 79 included in the qualitative review. The quantitative analysis involved 63 articles, consisting of 43 case reports and 20 case series with a total of 142 individual cases. The underlying pathogenesis of rectal SCC while unclear, continues to be defined, with increasing evidence of a metaplasia-dysplasia-carcinoma sequence and a possible role for human papilloma virus in this progression. The presentation is similar to rectal adenocarcinoma, with a diagnosis confirmed by endoscopic biopsy. Many presumed rectal SCC’s are in fact an extension of an anal SCC, and cytokeratin markers are a useful adjunct in this distinction. Staging is most accurately reflected by the tumour-node-metastasis classification for rectal adenocarcinoma. It involves examining locoregional disease by way of magnetic resonance imaging and/or endorectal ultrasound, with systemic spread excluded by way of computed tomography. Positron emission tomography is integral in the workup to exclude an external site of primary SCC with metastasis to the rectum. While the optimal treatment remains as yet undefined, recent studies have demonstrated a global shift away from surgery towards definitive chemoradiotherapy as primary treatment. Pooled overall survival was calculated to be 86% in patients managed with chemoradiation compared with 48% for those treated traditionally with surgery. Furthermore, local recurrence and metastatic rates were 25% vs 10% and 30% vs 13% for the chemoradiation vs conventional treatment cohorts. CONCLUSION: The changing paradigm in the treatment of rectal SCC holds great promise for improved outcomes in this rare disease. PMID:27022453

  14. Primary squamous cell carcinoma of the rectum: An update and implications for treatment.

    PubMed

    Guerra, Glen R; Kong, Cherng H; Warrier, Satish K; Lynch, Andrew C; Heriot, Alexander G; Ngan, Samuel Y

    2016-03-27

    To provide an update on the aetiology, pathogenesis, diagnosis, staging and management of rectal squamous cell carcinoma (SCC). A systematic review was conducted according to the preferred reporting items for Systematic Reviews and Meta-Analyses guidelines. A comprehensive search of Ovid MEDLINE was performed with the reference list of selected articles reviewed to ensure all relevant publications were captured. The search strategy was limited to the English language, spanning from 1946 to 2015. A qualitative analysis was undertaken examining patient demographics, clinical presentation, diagnosis, staging, treatment and outcome. The quantitaive analysis was limited to data extracted on treatment and outcomes including radiological, clinical and pathological complete response where available. The narrative and quantitative review were synthesised in concert. The search identified 487 articles in total with 79 included in the qualitative review. The quantitative analysis involved 63 articles, consisting of 43 case reports and 20 case series with a total of 142 individual cases. The underlying pathogenesis of rectal SCC while unclear, continues to be defined, with increasing evidence of a metaplasia-dysplasia-carcinoma sequence and a possible role for human papilloma virus in this progression. The presentation is similar to rectal adenocarcinoma, with a diagnosis confirmed by endoscopic biopsy. Many presumed rectal SCC's are in fact an extension of an anal SCC, and cytokeratin markers are a useful adjunct in this distinction. Staging is most accurately reflected by the tumour-node-metastasis classification for rectal adenocarcinoma. It involves examining locoregional disease by way of magnetic resonance imaging and/or endorectal ultrasound, with systemic spread excluded by way of computed tomography. Positron emission tomography is integral in the workup to exclude an external site of primary SCC with metastasis to the rectum. While the optimal treatment remains as yet undefined, recent studies have demonstrated a global shift away from surgery towards definitive chemoradiotherapy as primary treatment. Pooled overall survival was calculated to be 86% in patients managed with chemoradiation compared with 48% for those treated traditionally with surgery. Furthermore, local recurrence and metastatic rates were 25% vs 10% and 30% vs 13% for the chemoradiation vs conventional treatment cohorts. The changing paradigm in the treatment of rectal SCC holds great promise for improved outcomes in this rare disease.

  15. Apparent Diffusion Coefficient (ADC) value: a potential imaging biomarker that reflects the biological features of rectal cancer.

    PubMed

    Sun, Yiqun; Tong, Tong; Cai, Sanjun; Bi, Rui; Xin, Chao; Gu, Yajia

    2014-01-01

    We elected to analyze the correlation between the pre-treatment apparent diffusion coefficient (ADC) and the clinical, histological, and immunohistochemical status of rectal cancers. Forty-nine rectal cancer patients who received surgical resection without neoadjuvant therapy were selected that underwent primary MRI and diffusion-weighted imaging (DWI). Tumor ADC values were determined and analyzed to identify any correlations between these values and pre-treatment CEA or CA19-9 levels, and/or the histological and immunohistochemical properties of the tumor. Inter-observer agreement of confidence levels from two separate observers was suitable for ADC measurement (k  =  0.775). The pre-treatment ADC values of different T stage tumors were not equal (p  =  0.003). The overall trend was that higher T stage values correlated with lower ADC values. ADC values were also significantly lower for the following conditions: tumors with the presence of extranodal tumor deposits (p  =  0.006) and tumors with CA19-9 levels ≥ 35 g/ml (p  =  0.006). There was a negative correlation between Ki-67 LI and the ADC value (r  =  -0.318, p  =  0.026) and between the AgNOR count and the ADC value (r  =  -0.310, p  =  0.030). Significant correlations were found between the pre-treatment ADC values and T stage, extranodal tumor deposits, CA19-9 levels, Ki-67 LI, and AgNOR counts in our study. Lower ADC values were associated with more aggressive tumor behavior. Therefore, the ADC value may represent a useful biomarker for assessing the biological features and possible relationship to the status of identified rectal cancers.

  16. Surgical treatment in stenosing rectal cancer.

    PubMed

    Deaconescu, V; Simion, L; Alecu, M; Ionescu, S; Mastalier, B; Straja, N D

    2014-01-01

    Rectal cancer represents an important health issue, which involves multidisciplinary treatment, posing a major surgical challenge, both in terms of diagnosis and treatment. Between 2009-2013, we analysed 83 patients with stenosing rectal cancer operated on at the Clinic of General Surgery II of Colentina Clinical Hospital and at the Clinic of General Surgery I of "Prof. Dr. Al. Trestioreanu"€ Oncology Institute, in Bucharest. Gender distribution was: 51 males and 32 females. Average age was 65 years old. The most frequently encountered symptoms were colicky abdominal pain and rectorrhagia. 25 patients presented intestinal occlusion phenomena at admission, the other 58 cases being in subocclusive stage. In occlusive stages: 17 patients presented with resectable tumour, while 8 patients had locally advanced neoplastic forms (€œfrozen pelvis€), left iliac colostomy with tumour biopsy being the chosen approach. In subocclusive stages: 5 cases had unresectable tumours for which left iliac anus with tumour biopsy was performed; 53 cases presented with resectable tumour, for which the Hartmann procedure (12 patients) and left iliac colostomy with tumour biopsy (41 patients) were performed. Depending on the histopathological result, patients were submitted to radio- and chemotherapy.Tumour resection was possible in 70 cases (84.33%), only 34 of these (40.96%) being with radical intent. Treatment for stenosing rectal cancer is multimodal,represented by surgical approach, radio- and chemotherapy. The rationality behind surgery as a first therapeutic gesture in the given study group was represented by the need to treat occlusive type complications, patients benefitting subsequently from radio- and chemotherapy. The opportunity of a second surgical intervention, with the objective to remove the tumour, was established based on the therapeutic response to radio- and chemotherapy. Celsius.

  17. Measuring colorectal cancer care quality for the publicly insured in New York State

    PubMed Central

    Sinclair, Amber H; Schymura, Maria J; Boscoe, Francis P; Yung, Rachel L; Chen, Kun; Roohan, Patrick; Tai, Eric; Schrag, Deborah

    2012-01-01

    The extent to which concordance with colorectal cancer treatment quality metrics varies by patient characteristics in the publicly insured is not well understood. Our objective was to evaluate the quality of colorectal cancer care for publicly insured residents of New York State (NYS). NYS cancer registry data were linked to Medicaid and Medicare claims and hospital discharge data. We identified colorectal cancer cases diagnosed from 2004 through 2006 and evaluated three treatment quality measures: adjuvant chemotherapy within 4 months of diagnosis for American Joint Cancer Committee (AJCC) stage III colon cancer, adjuvant radiation within 6 months of diagnosis for AJCC stage IIB or III rectal cancer, and adjuvant chemotherapy within 9 months of diagnosis for AJCC stage II–III rectal cancer. Concordance with guidelines was evaluated separately for Medicaid-enrollees under age 65 years and Medicare-enrollees aged 65–79 years. For adjuvant chemotherapy for colon cancer, 79.4% (274/345) of the Medicaid cohort and 71.8% (585/815) of the Medicare cohort were guideline concordant. For adjuvant radiation for rectal cancer, 72.3% (125/173) of the Medicaid cohort and 66.9% (206/308) of the Medicare cohort were concordant. For adjuvant chemotherapy for rectal cancer, 89.5% (238/266) of the Medicaid cohort and 76.0% (392/516) of the Medicare cohort were concordant. Younger age was associated with higher adjusted odds of concordance for all three measures in the Medicare cohort. Racial differences were not evident in either cohort. There is room for improvement in concordance with accepted metrics of cancer care quality. Feedback about performance may assist in targeting efforts to improve care. PMID:23342286

  18. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy.

    PubMed

    Iannicelli, Elsa; Di Pietropaolo, Marco; Pilozzi, Emanuela; Osti, Mattia Falchetto; Valentino, Maria; Masoni, Luigi; Ferri, Mario

    2016-10-01

    The aim of our study was to assess the performance value of magnetic resonance imaging (MRI) in the restaging of locally advanced rectal cancer after neoadjuvant chemoradiotherapy (CRT) and in the identification of good vs. poor responders to neoadjuvant therapy. A total of 34 patients with locally advanced rectal cancer underwent MRI prior to and after CRT. T stage and tumor regression grade (TRG) on post-CRT MRI was compared with the pathological staging ypT and TRG. Tumor volume and the apparent diffusion coefficient (ADC) were measured using diffusion-weighted imaging (DWI) before and after neoadjuvant CRT; the percentage of tumor volume reduction and the change of ADC (ΔADC) was also calculated. ADC parameters and the percentage of tumor volume reduction were correlated to histopathological results. The diagnostic performance of ADC and volume reduction to assess tumor response was evaluated by calculating the area under the ROC curve and the optimal cut-off values. A significant correlation between the T stage and the TRG defined in DW-MRI after CRT and the ypT and the TRG observed on the surgical specimens was found (p = 0.001; p < 0.001). The mean post-CRT ADC and ΔADC in responder patients was significantly higher compared to non-responder ones (p = 0.001; p = 0.01). Furthermore, the mean post-CRT ADC values were significantly higher in tumors with T-downstage (p = 0.01). DW-MRI may have a significant role in the restaging and in the evaluation of post-CRT response of locally advanced rectal cancer. Quantitative analysis of DWI through ADC map may result in a promising noninvasive tool to evaluate the response to therapy.

  19. Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2018-02-08

    Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Refractory Chronic Lymphocytic Leukemia; Refractory Plasma Cell Myeloma; Waldenstrom Macroglobulinemia; Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Lymphoma; Childhood Myelodysplastic Syndrome; Stage II Contiguous Adult Burkitt Lymphoma; Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Contiguous Immunoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Contiguous Mantle Cell Lymphoma; Stage II Non-Contiguous Adult Burkitt Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Mixed Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Small Cleaved Cell Lymphoma; Stage II Adult Non-Contiguous Immunoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage II Non-Contiguous Mantle Cell Lymphoma; Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Burkitt Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Recurrent Childhood Hodgkin Lymphoma; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Myelodysplastic Syndrome; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Burkitt Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Burkitt Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Burkitt Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Burkitt Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  20. Transanal total mesorectal excision: pathological results of 186 patients with mid and low rectal cancer.

    PubMed

    de Lacy, F Borja; van Laarhoven, Jacqueline J E M; Pena, Romina; Arroyave, María Clara; Bravo, Raquel; Cuatrecasas, Miriam; Lacy, Antonio M

    2018-05-01

    Transanal total mesorectal excision (TaTME) seems to be a valid alternative to the open or laparoscopic TME. Quality of the TME specimen is the most important prognostic factor in rectal cancer. This study shows the pathological results of the largest single-institution series published on TaTME in patients with mid and low rectal cancer. We conducted a retrospective cohort study of all consecutive patients with rectal cancer, treated by TaTME between November 2011 and June 2016. Patient data were prospectively included in a standardized database. Patients with all TNM stages of mid (5-10 cm from the anal verge) and low (0-5 cm from the anal verge) rectal cancer were included. A total of 186 patients were included. Tumor was in the mid and low rectum in, respectively, 62.9 and 37.1%. Neoadjuvant chemoradiotherapy was given in 62.4%, only radiotherapy in 3.2%, and only chemotherapy in 2.2%. Preoperative staging showed T1 in 3.2%, T2 in 20.4%, T3 in 67.7%, and T4 in 7.5%. Mesorectal resection quality was complete in 95.7% (n = 178), almost complete in 1.6% (n = 3), and incomplete in 1.1% (n = 2). Overall positive CRM (≤ 1 mm) and DRM (≤ 1 mm) were 8.1% (n = 15) and 3.2% (n = 6), respectively. The composite of complete mesorectal excision, negative CRM, and negative DRM was achieved in 88.1% (n = 155) of the patients. The median number of lymph nodes found per specimen was 14.0 (IQR 11-18). The present study showed good rates regarding total mesorectal excision, negative circumferential, and distal resection margins. As the specimen quality is a surrogate marker for survival, TaTME can be regarded as a safe method to treat patients with rectal cancer, from an oncological point of view.

  1. Correlation of Chromosomal Instability, Telomere Length and Telomere Maintenance in Microsatellite Stable Rectal Cancer: A Molecular Subclass of Rectal Cancer

    PubMed Central

    Boardman, Lisa A.; Johnson, Ruth A.; Viker, Kimberly B.; Hafner, Kari A.; Jenkins, Robert B.; Riegert-Johnson, Douglas L.; Smyrk, Thomas C.; Litzelman, Kristin; Seo, Songwon; Gangnon, Ronald E.; Engelman, Corinne D.; Rider, David N.; Vanderboom, Russell J.; Thibodeau, Stephen N.; Petersen, Gloria M.; Skinner, Halcyon G.

    2013-01-01

    Introduction Colorectal cancer (CRC) tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN) and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS) and is historically considered to be chromosomally unstable (CIN+). However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-). MSS CIN- tumors have not been assessed for telomere attrition. Experimental Design MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher) or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]). Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH. Results Tumors were classified as chromosomally stable (CIN-) and chromosomally instable (CIN+) by degree of DNA copy number changes. CIN- tumors (35%; n=6) had fewer copy number changes (<17% of their clones with DNA copy number changes) than CIN+ tumors (65%; n=13) which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066) and in those in which telomerase was not activated (p=0.004). Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040); and tended to be CIN+ (p=0.0949). Conclusions MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase. PMID:24278232

  2. Neoadjuvant Long-Course Chemoradiotherapy for Rectal Cancer: Does Time to Surgery Matter?

    PubMed Central

    Panagiotopoulou, Ioanna G.; Parashar, Deepak; Qasem, Eyas; Mezher-Sikafi, Rasha; Parmar, Jitesh; Wells, Alan D.; Bajwa, Farrukh M.; Menon, Madhav; Jephcott, Catherine R.

    2015-01-01

    The objective of this paper was to evaluate whether delaying surgery following long-course chemoradiotherapy for rectal cancer correlates with pathologic complete response. Pre-operative chemoradiotherapy (CRT) is standard practice in the UK for the management of locally advanced rectal cancer. Optimal timing of surgery following CRT is still not clearly defined. All patients with a diagnosis of rectal cancer who had undergone long-course CRT prior to surgery between January 2008 and December 2011 were included. Statistical analysis was performed using Stata 11. Fifty-nine patients received long-course CRT prior to surgery in the selected period. Twenty-seven percent (16/59) of patients showed a complete histopathologic response and 59.3% (35/59) of patients had tumor down-staging from radiologically-assessed node positive to histologically-proven node negative disease. There was no statistically significant delay to surgery after completion of CRT in the 16 patients with complete response (CR) compared with the rest of the group [IR: incomplete response; CR group median: 74.5 days (IQR: 70–87.5) and IR group median: 72 days (IQR: 57–83), P = 0.470]. Although no statistically significant predictors of either complete response or tumor nodal status down-staging were identified in logistic regression analyses, a trend toward complete response was seen with longer delay to surgery following completion of long-course CRT. PMID:26414816

  3. Sirolimus and Vaccine Therapy in Treating Patients With Stage II-IV Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cavity Cancer

    ClinicalTrials.gov

    2018-03-28

    Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Primary Peritoneal Cavity Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Primary Peritoneal Cavity Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  4. Cognitive-Behavioral Intervention for Worry, Uncertainty, and Insomnia for Cancer Survivors

    ClinicalTrials.gov

    2017-04-04

    Anxiety Disorder; Worry; Uncertainty; Sleep Disorders; Insomnia; Fatigue; Pain; Depression; Cognitive-behavioral Therapy; Psychological Intervention; Esophageal Cancer; Pancreatic Cancer; Leukemia; Lung Cancer; Multiple Myeloma; Ovarian Neoplasm; Stage III or IV Cervical or Uterine Cancer; Stage IIIB, IIIC, or IV Breast Cancer; Glioblastoma Multiforme; Relapsed Lymphoma; Stage III or IV Colorectal Cancer; Stage IIIC or IV Melanoma

  5. Isolated Limb Perfusion With Melphalan in Treating Patients With Stage IIIB-IV Melanoma or Sarcoma

    ClinicalTrials.gov

    2015-07-22

    Basal Cell Carcinoma of the Skin; Eccrine Carcinoma of the Skin; Recurrent Adult Soft Tissue Sarcoma; Recurrent Melanoma; Recurrent Skin Cancer; Squamous Cell Carcinoma of the Skin; Stage III Adult Soft Tissue Sarcoma; Stage IIIB Melanoma; Stage IIIC Melanoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Melanoma

  6. SB-715992 in Treating Patients With Recurrent or Metastatic Head and Neck Cancer

    ClinicalTrials.gov

    2017-01-13

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IV Verrucous Carcinoma of the Oral Cavity; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity

  7. Glutathione in Preventing Peripheral Neuropathy Caused by Paclitaxel and Carboplatin in Patients With Ovarian Cancer, Fallopian Tube Cancer, and/or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2017-01-05

    Chemotherapeutic Agent Toxicity; Neuropathy; Neurotoxicity Syndrome; Pain; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  8. Paclitaxel, Polyglutamate Paclitaxel, or Observation in Treating Patients With Stage III or Stage IV Ovarian Epithelial, Peritoneal Cancer, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-05-03

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  9. Role of endoscopic ultrasonography in the loco-regional staging of patients with rectal cancer

    PubMed Central

    Marone, Pietro; de Bellis, Mario; D’Angelo, Valentina; Delrio, Paolo; Passananti, Valentina; Di Girolamo, Elena; Rossi, Giovanni Battista; Rega, Daniela; Tracey, Maura Claire; Tempesta, Alfonso Mario

    2015-01-01

    The prognosis of rectal cancer (RC) is strictly related to both T and N stage of the disease at the time of diagnosis. RC staging is crucial for choosing the best multimodal therapy: patients with high risk locally advanced RC (LARC) undergo surgery after neoadjuvant chemotherapy and radiotherapy (NAT); those with low risk LARC are operated on after a preoperative short-course radiation therapy; finally, surgery alone is recommended only for early RC. Several imaging methods are used for staging patients with RC: computerized tomography, magnetic resonance imaging, positron emission tomography, and endoscopic ultrasound (EUS). EUS is highly accurate for the loco-regional staging of RC, since it is capable to evaluate precisely the mural infiltration of the tumor (T), especially in early RC. On the other hand, EUS is less accurate in restaging RC after NAT and before surgery. Finally, EUS is indicated for follow-up of patients operated on for RC, where there is a need for the surveillance of the anastomosis. The aim of this review is to highlight the impact of EUS on the management of patients with RC, evaluating its role in both preoperative staging and follow-up of patients after surgery. PMID:26140096

  10. Atezolizumab With or Without Eribulin Mesylate in Treating Patients With Recurrent Locally Advanced or Metastatic Urothelial Cancer

    ClinicalTrials.gov

    2018-06-05

    Metastatic Urothelial Carcinoma; Recurrent Bladder Urothelial Carcinoma; Recurrent Urethral Urothelial Carcinoma; Recurrent Urothelial Carcinoma of the Renal Pelvis and Ureter; Renal Pelvis Urothelial Carcinoma; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma

  11. Inferior outcomes of stage III T lymphoblastic lymphoma relative to stage IV lymphoma and T-acute lymphoblastic leukemia: long-term comparison of outcomes in the JACLS NHL T-98 and ALL T-97 protocols.

    PubMed

    Kobayashi, Ryoji; Takimoto, Tetsuya; Nakazawa, Atsuko; Fujita, Naoto; Akazai, Ayumi; Yamato, Kazumi; Yazaki, Makoto; Deguchi, Takao; Hashii, Yoshiko; Kato, Koji; Hatakeyama, Naoki; Horibe, Keizo; Hori, Hiroki; Oda, Megumi

    2014-06-01

    T cell lymphoblastic lymphoma (T-LBL) accounts for 30 % of all childhood non-Hodgkin's lymphomas (NHL) in Japan. Twenty-nine patients with T-LBL in stages III and IV were eligible for and enrolled in the JACLS NHL-T98 trial (1998-2002), and 72 patients with T-ALL were enrolled in the JACLS ALL-T97 trial (1997-2001). The 10-year overall survival (OS) (61.1 ± 11.5 %) and the 10-year event-free survival (EFS) (44.4 ± 11.7 %) of stage III LBL were lower than those of other diseases, and the OS and EFS were nearly the same when comparing stage IV LBL and ALL (OS: stage IV LBL, 80.0 ± 12.7 % vs. ALL, 80.2 ± 4.9 %; EFS: stage IV, LBL 70.0 ± 14.5 % vs. ALL, 70.7 ± 5.5 %). Outcomes were worse for stage III LBL than for stage IV LBL or T-ALL. Given that the treatment results of T-ALL and LBL stage IV did not differ when compared with previous reports, LBL stage III in Japanese children may differ from LBL stage III in children in other countries.

  12. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-04-24

    Non-Squamous Non-Small Cell Lung Carcinoma; Stage III Large Cell Lung Carcinoma AJCC v7; Stage III Lung Adenocarcinoma AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Large Cell Lung Carcinoma AJCC v7; Stage IIIA Lung Adenocarcinoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Large Cell Lung Carcinoma AJCC v7; Stage IIIB Lung Adenocarcinoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Large Cell Lung Carcinoma AJCC v7; Stage IV Lung Adenocarcinoma AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  13. Vorinostat, Tacrolimus, and Methotrexate in Preventing GVHD After Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2015-10-13

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; B-cell Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Intraocular Lymphoma; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Central Nervous System Hodgkin Lymphoma; Secondary Central Nervous System Non-Hodgkin Lymphoma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Waldenström Macroglobulinemia

  14. Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

    ClinicalTrials.gov

    2017-04-17

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Aggressive NK-cell Leukemia; AIDS-related Diffuse Large Cell Lymphoma; AIDS-related Diffuse Mixed Cell Lymphoma; AIDS-related Diffuse Small Cleaved Cell Lymphoma; AIDS-related Immunoblastic Large Cell Lymphoma; AIDS-related Lymphoblastic Lymphoma; AIDS-related Peripheral/Systemic Lymphoma; AIDS-related Primary CNS Lymphoma; AIDS-related Small Noncleaved Cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; HIV Infection; HIV-associated Hodgkin Lymphoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Lymphoma; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  15. Pegfilgrastim and Rituximab in Treating Patients With Untreated, Relapsed, or Refractory Follicular Lymphoma, Small Lymphocytic Lymphoma, or Marginal Zone Lymphoma

    ClinicalTrials.gov

    2017-09-08

    Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Small Lymphocytic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  16. Sunitinib Malate in Treating Patients With Recurrent Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2015-01-15

    Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  17. Intramuscular and rectal therapies of acute seizures.

    PubMed

    Leppik, Ilo E; Patel, Sima I

    2015-08-01

    The intramuscular (IM) and rectal routes are alternative routes of delivery for antiepileptic drugs (AEDs) when the intravenous route is not practical or possible. For treatment of acute seizures, the AED used should have a short time to maximum concentration (Tmax). Some AEDs have preparations that may be given intramuscularly. These include the benzodiazepines (diazepam, lorazepam, and midazolam) and others (fosphenytoin, levetiracetam). Although phenytoin and valproate have parenteral preparations, these should not be given intramuscularly. A recent study of prehospital treatment of status epilepticus evaluated a midazolam (MDZ) autoinjector delivering IM drug compared to IV lorazepam (LZP). Seizures were absent on arrival to the emergency department in 73.4% of the IM MDZ compared to a 63.4% response in LZP-treated subjects (p < 0.001 for superiority). Almost all AEDs have been evaluated for rectal administration as solutions, gels, and suppositories. In a placebo-controlled study, diazepam (DZP) was administered at home by caregivers in doses that ranged from 0.2 to 0.5 mg/kg. Diazepam was superior to placebo in reduced seizure frequency in children (p < 0.001) and in adults (p = 0.02) and time to recurrent seizures after an initial treatment (p < 0.001). Thus, at this time, only MZD given intramuscularly and DZP given rectally appear to have the properties required for rapid enough absorption to be useful when intravenous routes are not possible. Some drugs cannot be administered rectally owing to factors such as poor absorption or poor solubility in aqueous solutions. The relative rectal bioavailability of gabapentin, oxcarbazepine, and phenytoin is so low that the current formulations are not considered to be suitable for administration by this route. When administered as a solution, diazepam is rapidly absorbed rectally, reaching the Tmax within 5-20 min in children. By contrast, rectal administration of lorazepam is relatively slow, with a Tmax of 1-2h. The dependence of gabapentin on an active transport system, and the much-reduced surface area of the rectum compared with the small intestine, may be responsible for its lack of absorption from the rectum. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Incidence, treatment and outcome of rectal stenosis following transanal endoscopic microsurgery.

    PubMed

    Barker, J A; Hill, J

    2011-09-01

    As an alternative to more radical abdominal surgery, transanal endoscopic microsurgery (TEM) offers a minimally invasive solution for the excision of certain rectal polyps and early-stage rectal tumours. The patient benefits of TEM as compared to radical abdominal surgery are clear; nevertheless, some drawback is possible. The aim of our study was to determine the risk factors, treatment and outcomes of rectal stenosis following TEM. We analysed a series of 354 consecutive patients who underwent TEM for benign or malignant rectal tumours between 1997 and 2009. We recorded the maximum histological diameter of the lesion, and whether the lesion was circumferential. Rectal stenosis was defined as a rectal narrowing not allowing passage of a 12 mm sigmoidoscope. Histological results with a measured specimen diameter were available in 304 of the 354 cases. There were 11 stenoses in total (3.6%), 7 stenoses due to 9 circumferential lesions (78%) and 4 due to lesions with a maximum diameter ≥ 5 cm (3.2%). Two patients presented as emergencies, and the other 9 patients reported symptoms of increased stool frequency at follow-up. Three of the stenoses were associated with recurrent disease. All stenoses were treated by a combination of endoscopic/radiological balloon dilatation or surgically with Hegar's dilators. A median of two procedures were required to treat stenoses until resolution of symptoms. Rectal stenosis following TEM excision is rare. It is predictable in patients with circumferential lesions but is rare in patients with non-circumferential lesions with a maximum diameter ≥ 5 cm. It is effectively treated with surgical or balloon dilatation. Most patients require repeated treatments.

  19. Preoperative Chemoradiotherapy for Rectal Cancer in Patients Aged 75 Years and Older: Acute Toxicity, Compliance with Treatment, and Early Results.

    PubMed

    Guimas, Valentine; Boustani, Jihane; Schipman, Benjamin; Lescut, Nicolas; Puyraveau, Marc; Bosset, Jean François; Servagi-Vernat, Stéphanie

    2016-06-01

    Treatment of locally advanced rectal cancer (T3-T4 or N+) is based on short-course radiotherapy (RT) or chemoradiotherapy (CRT) followed by surgery. It is estimated that 30-40 % of rectal cancer occurs in patients aged 75 years or more. Data on adherence to neoadjuvant CRT and its safety remain poor owing to the under-representation of older patients in randomized clinical trials and the discordance in the results from retrospective studies. The aim of this study was to assess adherence with preoperative CRT and tolerability in older patients with a stage II/III unresectable rectal cancer. Patients aged 75 years or more with stage II/III rectal cancer treated with preoperative CRT at the University Hospital of Besancon from 1993 to 2011 were included. Feasibility, toxicities, overall survival, and local recurrence rates were studied. Fifty-six patients with a Charlson score from 2 to 6 were included. The mean age was 78 years. The compliance rates for RT and chemotherapy were 91 and 41.1 %, respectively. Two patients stopped CRT; one for hemostatic surgery, and one for severe sepsis. For CRT, the rate of grade ≥3 toxicity was 14.29 %, mainly the digestive type. Fifty-two patients underwent tumor resection, including 76.79 % total mesorectal excision resection with 84.6 % complete resection, and a rate of postoperative complications of 39.6 %. At 2 years, the overall survival and local recurrences rates were 87.3 and 7.8 %, respectively. In older patients, selected preoperative CRT, with an adapted chemotherapy dose, is well tolerated. The main toxicity was gastrointestinal. Adherence to RT is comparable to that of younger patients.

  20. Beclomethasone Dipropionate in Preventing Acute Graft-Versus-Host Disease in Patients Undergoing a Donor Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2015-03-05

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Graft Versus Host Disease; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Disease, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma

  1. Paclitaxel and Carboplatin With or Without Bevacizumab in Treating Patients With Stage II, Stage III, or Stage IV Ovarian Epithelial Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-12-28

    Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinofibroma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Ovarian Carcinoma

  2. Deferasirox in Treating Iron Overload Caused By Blood Transfusions in Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2017-12-22

    Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Langerhans Cell Histiocytosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Mast Cell Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Myeloid/NK-cell Acute Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelofibrosis; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Waldenstrom Macroglobulinemia

  3. Carboplatin and Paclitaxel With or Without Bevacizumab in Treating Patients With Stage III or Stage IV Ovarian Epithelial, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-10-23

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  4. Atezolizumab and CYT107 in Treating Participants With Locally Advanced, Inoperable, or Metastatic Urothelial Carcinoma

    ClinicalTrials.gov

    2018-05-18

    Metastatic Bladder Urothelial Carcinoma; Metastatic Renal Pelvis Urothelial Carcinoma; Metastatic Ureter Urothelial Carcinoma; Metastatic Urethral Urothelial Carcinoma; Metastatic Urothelial Carcinoma; Recurrent Bladder Urothelial Carcinoma; Recurrent Renal Pelvis Urothelial Carcinoma; Recurrent Ureter Urothelial Carcinoma; Recurrent Urethral Urothelial Carcinoma; Stage III Bladder Cancer AJCC v8; Stage III Renal Pelvis Cancer AJCC v8; Stage III Ureter Cancer AJCC v8; Stage III Urethral Cancer AJCC v8; Stage IV Bladder Cancer AJCC v8; Stage IV Renal Pelvis Cancer AJCC v8; Stage IV Ureter Cancer AJCC v8; Stage IV Urethral Cancer AJCC v8; Stage IVA Bladder Cancer AJCC v8; Stage IVB Bladder Cancer AJCC v8

  5. Image-guided intensity-modulated radiotherapy for prostate cancer: Dose constraints for the anterior rectal wall to minimize rectal toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Jennifer L., E-mail: peterson.jennifer2@mayo.edu; Buskirk, Steven J.; Heckman, Michael G.

    2014-04-01

    Rectal adverse events (AEs) are a major concern with definitive radiotherapy (RT) treatment for prostate cancer. The anterior rectal wall is at the greatest risk of injury as it lies closest to the target volume and receives the highest dose of RT. This study evaluated the absolute volume of anterior rectal wall receiving a high dose to identify potential ideal dose constraints that can minimize rectal AEs. A total of 111 consecutive patients with Stage T1c to T3a N0 M0 prostate cancer who underwent image-guided intensity-modulated RT at our institution were included. AEs were graded according to the Common Terminologymore » Criteria for Adverse Events, version 4.0. The volume of anterior rectal wall receiving 5 to 80 Gy in 2.5-Gy increments was determined. Multivariable Cox regression models were used to identify cut points in these volumes that led to an increased risk of early and late rectal AEs. Early AEs occurred in most patients (88%); however, relatively few of them (13%) were grade ≥2. At 5 years, the cumulative incidence of late rectal AEs was 37%, with only 5% being grade ≥2. For almost all RT doses, we identified a threshold of irradiated absolute volume of anterior rectal wall above which there was at least a trend toward a significantly higher rate of AEs. Most strikingly, patients with more than 1.29, 0.73, or 0.45 cm{sup 3} of anterior rectal wall exposed to radiation doses of 67.5, 70, or 72.5 Gy, respectively, had a significantly increased risk of late AEs (relative risks [RR]: 2.18 to 2.72; p ≤ 0.041) and of grade ≥ 2 early AEs (RR: 6.36 to 6.48; p = 0.004). Our study provides evidence that definitive image-guided intensity-modulated radiotherapy (IG-IMRT) for prostate cancer is well tolerated and also identifies dose thresholds for the absolute volume of anterior rectal wall above which patients are at greater risk of early and late complications.« less

  6. Comparison of Digital Rectal Examination and Serum Prostate Specific Antigen in the Early Detection of Prostate Cancer: Results of a Multicenter Clinical Trial of 6,630 Men.

    PubMed

    Catalona, William J; Richie, Jerome P; Ahmann, Frederick R; Hudson, M'Liss A; Scardino, Peter T; Flanigan, Robert C; DeKernion, Jean B; Ratliff, Timothy L; Kavoussi, Louis R; Dalkin, Bruce L; Waters, W Bedford; MacFarlane, Michael T; Southwick, Paula C

    2017-02-01

    To compare the efficacy of digital rectal examination and serum prostate specific antigen (PSA) in the early detection of prostate cancer, we conducted a prospective clinical trial at 6 university centers of 6,630 male volunteers 50 years old or older who underwent PSA determination (Hybritech Tandom-E or Tandem-R assays) and digital rectal examination. Quadrant biopsies were performed if the PSA level was greater than 4 μg./l. or digital rectal examination was suspicious, even if transrectal ultrasonography revealed no areas suspicious for cancer. The results showed that 15% of the men had a PSA level of greater than 4 μg./l., 15% had a suspicious digital rectal examination and 26% had suspicious findings on either or both tests. Of 1,167 biopsies performed cancer was detected in 264. PSA detected significantly more tumors (82%, 216 of 264 cancers) than digital rectal examination (55%, 146 of 264, p = 0.001). The cancer detection rate was 3.2% for digital rectal examination, 4.6% for PSA and 5.8% for the 2 methods combined. Positive predictive value was 32% for PSA and 21% for digital rectal examination. Of 160 patients who underwent radical prostatectomy and pathological staging 114 (71%) had organ confined cancer: PSA detected 85 (75%) and digital rectal examination detected 64 (56%, p = 0.003). Use of the 2 methods in combination increased detection of organ confined disease by 78% (50 of 64 cases) over digital rectal examination alone. If the performance of a biopsy would have required suspicious transrectal ultrasonography findings, nearly 40% of the tumors would have been missed. We conclude that the use of PSA in conjunction with digital rectal examination enhances early prostate cancer detection. Prostatic biopsy should be considered if either the PSA level is greater than 4 μg./l. or digital rectal examination is suspicious for cancer, even in the absence of abnormal transrectal ultrasonography findings. Copyright © 1994 American Urological Association, Inc. Published by Elsevier Inc. All rights reserved.

  7. Bladder urothelial carcinoma extending to rectal mucosa and presenting with rectal bleeding

    PubMed Central

    Aneese, Andrew M; Manuballa, Vinayata; Amin, Mitual; Cappell, Mitchell S

    2017-01-01

    An 87-year-old-man with prostate-cancer-stage-T1c-Gleason-6 treated with radiotherapy in 1996, recurrent prostate cancer treated with leuprolide hormonal therapy in 2009, and bladder-urothelial-carcinoma in situ treated with Bacillus-Calmette-Guerin and adriamycin in 2010, presented in 2015 with painless, bright red blood per rectum coating stools daily for 5 mo. Rectal examination revealed bright red blood per rectum; and a hard, fixed, 2.5 cm × 2.5 cm mass at the normal prostate location. The hemoglobin was 7.6 g/dL (iron saturation = 8.4%, indicating iron-deficiency-anemia). Abdominopelvic-CT-angiography revealed focal wall thickening at the bladder neck; a mass containing an air cavity replacing the normal prostate; and adjacent rectal invasion. Colonoscopy demonstrated an ulcerated, oozing, multinodular, friable, 2.5 cm × 2.5 cm mass in anterior rectal wall, at the usual prostate location. Histologic and immunohistochemical analysis of colonoscopic biopsies of the mass revealed poorly-differentiated-carcinoma of urothelial origin. At visceral angiography, the right-superior-rectal-artery was embolized to achieve hemostasis. The patient subsequently developed multiple new metastases and expired 13 mo post-embolization. Comprehensive literature review revealed 16 previously reported cases of rectal involvement from bladder urothelial carcinoma, including 11 cases from direct extension and 5 cases from metastases. Patient age averaged 63.7 ± 9.6 years (all patients male). Rectal involvement was diagnosed on average 13.5 ± 11.8 mo after initial diagnosis of bladder urothelial carcinoma. Symptoms included constipation/gastrointestinal obstruction-6, weight loss-5, diarrhea-3, anorexia-3, pencil thin stools-3, tenesmus-2, anorectal pain-2, and other-5. Rectal examination in 9 patients revealed annular rectal constriction-6, and rectal mass-3. The current patient had the novel presentation of daily bright red blood per rectum coating the stools simulating hemorrhoidal bleeding; the novel mechanism of direct bladder urothelial carcinoma extension into rectal mucosa via the prostate; and the novel aforementioned colonoscopic findings underlying the clinical presentation. PMID:28690772

  8. Infection Prophylaxis and Management in Treating Cytomegalovirus (CMV) Infection in Patients With Hematologic Malignancies Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2015-06-03

    Hematopoietic/Lymphoid Cancer; Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Splenic Marginal Zone Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenstrom Macroglobulinemia

  9. Dose Constraint for Minimizing Grade 2 Rectal Bleeding Following Brachytherapy Combined With External Beam Radiotherapy for Localized Prostate Cancer: Rectal Dose-Volume Histogram Analysis of 457 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Yutaka; Yorozu, Atsunori; Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp

    2011-11-01

    Purpose: To determine the rectal tolerance to Grade 2 rectal bleeding after I-125 seed brachytherapy combined with external beam radiotherapy (EBRT), based on the rectal dose-volume histogram. Methods and Materials: A total of 458 consecutive patients with stages T1 to T3 prostate cancer received combined modality treatment consisting of I-125 seed implantation followed by EBRT to the prostate and seminal vesicles. The prescribed doses of brachytherapy and EBRT were 100 Gy and 45 Gy in 25 fractions, respectively. The rectal dosimetric factors were analyzed for rectal volumes receiving >100 Gy and >150 Gy (R100 and R150) during brachytherapy and formore » rectal volumes receiving >30 Gy to 40 Gy (V30-V40) during EBRT therapy in 373 patients for whom datasets were available. The patients were followed from 21 to 72 months (median, 45 months) after the I-125 seed implantation. Results: Forty-four patients (9.7%) developed Grade 2 rectal bleeding. On multivariate analysis, age (p = 0.014), R100 (p = 0.002), and V30 (p = 0.001) were identified as risk factors for Grade 2 rectal bleeding. The rectal bleeding rate increased as the R100 increased: 5.0% (2/40 patients) for 0 ml; 7.5% (20/267 patients) for >0 to 0.5 ml; 11.0% (11/100 patients) for >0.5 to 1 ml; 17.9% (5/28 patients) for >1 to 1.5 ml; and 27.3% (6/22 patients) for >1.5 ml (p = 0.014). Grade 2 rectal bleeding developed in 6.4% (12/188) of patients with a V30 {<=}35% and in 14.1% (26/185) of patients with a V30 >35% (p = 0.02). When these dose-volume parameters were considered in combination, the Grade 2 rectal bleeding rate was 4.2% (5/120 patients) for a R100 {<=}0.5 ml and a V30 {<=}35%, whereas it was 22.4% (13/58 patients) for R100 of >0.5 ml and V30 of >35%. Conclusion: The risk of rectal bleeding was found to be significantly volume-dependent in patients with prostate cancer who received combined modality treatment. Rectal dose-volume analysis is a practical method for predicting the risk of development of Grade 2 rectal bleeding.« less

  10. Association Between Geographic Access to Cancer Care and Receipt of Radiation Therapy for Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun Chieh, E-mail: anna.lin@cancer.org; Bruinooge, Suanna S.; Kirkwood, M. Kelsey

    Purpose: Trimodality therapy (chemoradiation and surgery) is the standard of care for stage II/III rectal cancer but nearly one third of patients do not receive radiation therapy (RT). We examined the relationship between the density of radiation oncologists and the travel distance to receipt of RT. Methods and Materials: A retrospective study based on the National Cancer Data Base identified 26,845 patients aged 18 to 80 years with stage II/III rectal cancer diagnosed from 2007 to 2010. Radiation oncologists were identified through the Physician Compare dataset. Generalized estimating equations clustering by hospital service area was used to examine the association betweenmore » geographic access and receipt of RT, controlling for patient sociodemographic and clinical characteristics. Results: Of the 26,845 patients, 70% received RT within 180 days of diagnosis or within 90 days of surgery. Compared with a travel distance of <12.5 miles, patients diagnosed at a reporting facility who traveled ≥50 miles had a decreased likelihood of receipt of RT (50-249 miles, adjusted odds ratio 0.75, P<.001; ≥250 miles, adjusted odds ratio 0.46; P=.002), all else being equal. The density level of radiation oncologists was not significantly associated with the receipt of RT. Patients who were female, nonwhite, and aged ≥50 years and had comorbidities were less likely to receive RT (P<.05). Patients who were uninsured but self-paid for their medical services, initially diagnosed elsewhere but treated at a reporting facility, and resided in Midwest had an increased the likelihood of receipt of RT (P<.05). Conclusions: An increased travel burden was associated with a decreased likelihood of receiving RT for patients with stage II/III rectal cancer, all else being equal; however, radiation oncologist density was not. Further research of geographic access and establishing transportation assistance programs or lodging services for patients with an unmet need might help decrease geographic barriers and improve the quality of rectal cancer care.« less

  11. Association Between Geographic Access to Cancer Care and Receipt of Radiation Therapy for Rectal Cancer.

    PubMed

    Lin, Chun Chieh; Bruinooge, Suanna S; Kirkwood, M Kelsey; Hershman, Dawn L; Jemal, Ahmedin; Guadagnolo, B Ashleigh; Yu, James B; Hopkins, Shane; Goldstein, Michael; Bajorin, Dean; Giordano, Sharon H; Kosty, Michael; Arnone, Anna; Hanley, Amy; Stevens, Stephanie; Olsen, Christine

    2016-03-15

    Trimodality therapy (chemoradiation and surgery) is the standard of care for stage II/III rectal cancer but nearly one third of patients do not receive radiation therapy (RT). We examined the relationship between the density of radiation oncologists and the travel distance to receipt of RT. A retrospective study based on the National Cancer Data Base identified 26,845 patients aged 18 to 80 years with stage II/III rectal cancer diagnosed from 2007 to 2010. Radiation oncologists were identified through the Physician Compare dataset. Generalized estimating equations clustering by hospital service area was used to examine the association between geographic access and receipt of RT, controlling for patient sociodemographic and clinical characteristics. Of the 26,845 patients, 70% received RT within 180 days of diagnosis or within 90 days of surgery. Compared with a travel distance of <12.5 miles, patients diagnosed at a reporting facility who traveled ≥50 miles had a decreased likelihood of receipt of RT (50-249 miles, adjusted odds ratio 0.75, P<.001; ≥250 miles, adjusted odds ratio 0.46; P=.002), all else being equal. The density level of radiation oncologists was not significantly associated with the receipt of RT. Patients who were female, nonwhite, and aged ≥50 years and had comorbidities were less likely to receive RT (P<.05). Patients who were uninsured but self-paid for their medical services, initially diagnosed elsewhere but treated at a reporting facility, and resided in Midwest had an increased the likelihood of receipt of RT (P<.05). An increased travel burden was associated with a decreased likelihood of receiving RT for patients with stage II/III rectal cancer, all else being equal; however, radiation oncologist density was not. Further research of geographic access and establishing transportation assistance programs or lodging services for patients with an unmet need might help decrease geographic barriers and improve the quality of rectal cancer care. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Pazopanib Hydrochloride in Treating Patients With Stage IV or Recurrent Nasopharyngeal Cancer

    ClinicalTrials.gov

    2015-11-16

    Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  13. Ofatumumab and Bendamustine Hydrochloride With or Without Bortezomib in Treating Patients With Untreated Follicular Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-04-17

    Ann Arbor Stage III Grade 1 Follicular Lymphoma; Ann Arbor Stage III Grade 2 Follicular Lymphoma; Ann Arbor Stage III Grade 3 Follicular Lymphoma; Ann Arbor Stage IV Grade 1 Follicular Lymphoma; Ann Arbor Stage IV Grade 2 Follicular Lymphoma; Ann Arbor Stage IV Grade 3 Follicular Lymphoma; Grade 3a Follicular Lymphoma

  14. Predictors of circumferential resection margin involvement in surgically resected rectal cancer: A retrospective review of 23,464 patients in the US National Cancer Database.

    PubMed

    Al-Sukhni, Eisar; Attwood, Kristopher; Gabriel, Emmanuel; Nurkin, Steven J

    2016-04-01

    The circumferential resection margin (CRM) is a key prognostic factor after rectal cancer resection. We sought to identify factors associated with CRM involvement (CRM+). A retrospective review was performed of the National Cancer Database, 2004-2011. Patients with rectal cancer who underwent radical resection and had a recorded CRM were included. Multivariable analysis of the association between clinicopathologic characteristics and CRM was performed. Tumor <1 mm from the cut margin defined CRM+. Of 23,464 eligible patients, 13.3% were CRM+. Factors associated with CRM+ were diagnosis later in the study period, lack of insurance, advanced stage, higher grade, undergoing APR, and receiving radiation. Nearly half of CRM+ patients did not receive neoadjuvant therapy. CRM+ patients who did not receive neoadjuvant therapy were more likely to be female, older, with more comorbidities, smaller tumors, earlier clinical stage, advanced pathologic stage, and CEA-negative disease compared to those who received it. Factors associated with CRM+ include features of advanced disease, undergoing APR, and lack of health insurance. Half of CRM+ patients did not receive neoadjuvant treatment. These represent cases where CRM status may be modifiable with appropriate pre-operative selection and multidisciplinary management. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  15. Quantification of functional abilities in Rett syndrome: a comparison between stages III and IV

    PubMed Central

    Monteiro, Carlos BM; Savelsbergh, Geert JP; Smorenburg, Ana RP; Graciani, Zodja; Torriani-Pasin, Camila; de Abreu, Luiz Carlos; Valenti, Vitor E; Kok, Fernando

    2014-01-01

    We aimed to evaluate the functional abilities of persons with Rett syndrome (RTT) in stages III and IV. The group consisted of 60 females who had been diagnosed with RTT: 38 in stage III, mean age (years) of 9.14, with a standard deviation of 5.84 (minimum 2.2/maximum 26.4); and 22 in stage IV, mean age of 12.45, with a standard deviation of 6.17 (minimum 5.3/maximum 26.9). The evaluation was made using the Pediatric Evaluation of Disability Inventory, which has 197 items in the areas of self-care, mobility, and social function. The results showed that in the area of self-care, stage III and stage IV RTT persons had a level of 24.12 and 18.36 (P=0.002), respectively. In the area of mobility, stage III had 37.22 and stage IV had 14.64 (P<0.001), while in the area of social function, stage III had 17.72 and stage IV had 12.14 (P=0.016). In conclusion, although persons with stage III RTT have better functional abilities when compared with stage IV, the areas of mobility, self-care, and social function are quite affected, which shows a great functional dependency and need for help in basic activities of daily life. PMID:25061307

  16. Effects of Dexrazoxane Hydrochloride on Biomarkers Associated With Cardiomyopathy and Heart Failure After Cancer Treatment

    ClinicalTrials.gov

    2017-10-27

    Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Refractory Childhood Hodgkin Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult T-Cell Leukemia/Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Hodgkin Lymphoma

  17. Primary Tumor Thickness is a Prognostic Factor in Stage IV Melanoma: A Retrospective Study of Primary Tumor Characteristics.

    PubMed

    Luen, Stephen; Wong, Siew Wei; Mar, Victoria; Kelly, John W; McLean, Catriona; McArthur, Grant A; Haydon, Andrew

    2018-01-01

    Stage IV melanoma exhibits a diverse range of tumor biology from indolent to aggressive disease. Many important prognostic factors have already been identified. Despite this, the behavior of metastatic melanoma remains difficult to predict. We sought to determine if any primary tumor characteristics affect survival following the diagnosis of stage IV melanoma. All patients diagnosed with stage IV melanoma between January 2003 and December 2012 were identified from the Victorian Melanoma Service database. Retrospective chart review was performed to collect data on primary tumor characteristics (thickness, ulceration, mitotic rate, melanoma subtype, or occult primary). Known and suspected prognostic factors were additionally collected (time to diagnosis of stage IV disease, age, sex, stage, receipt of chemotherapy, and era of recurrence). The effect of primary tumor characteristics on overall survival from the date of diagnosis of stage IV disease was assessed. A total of 227 patients with a median follow-up of 5 years from diagnosis of stage IV disease were identified. Median overall survival of the cohort was 250 days.Of the primary tumor characteristics assessed, only tumor thickness affected survival from diagnosis of stage IV disease, hazard ratio=1.09 (1.02 to 1.16), P=0.008. This remained significant in multivariate analysis, P=0.007. Other primary tumor characteristics did not significantly influence survival. Primary tumor thickness is a significant prognostic factor in stage IV melanoma. Our data suggest that the biology of the primary melanoma may persist to influence the behavior of metastatic disease.

  18. Histopathological report of colorectal carcinoma resections: A 5-year audit in Lagos.

    PubMed

    Badmos, Kabir Bolarinwa; Rotimi, Olorunda; Lawal, Abdulrazzaq Oluwagbemiga; Osinowo, Adedapo O; Habeebu, Mohammed Y; Abdulkareem, Fatimah Biade

    2018-01-01

    Complete and accurate pathology reporting of colorectal carcinoma (CRC) resection specimen is critical to clinical management of individual patients. The study aims to audit colorectal cancer histopathology reporting in Lagos between 2011 and 2015 before the adoption of the Society for Gastroenterology and Hepatology in Nigeria pro forma in 2016. All resected CRC cases were identified from the Histopathology record of our Department and that of a private Laboratory in Lagos over a 5-year from 2011 to 2015. The dataset as contained in the pro forma was extracted from the reports and analysed using SPSS version 16 software. A total of 92 colorectal resections were received during the 5-year period consisting of 90 colonic and 2 rectal tumours. Data inclusiveness on tumour differentiation, extent of primary tumour, total lymph node and lymph node involvement were 96.7%, 91.3%, 83.7% and 92.4%, respectively. Tumour perforation, level of venous involvement and distant metastasis were reported in 73.9%, 21.7% and 96.7% respectively. The circumferential resection margin (CRM) in the 2 rectal tumours had 100% inclusiveness. Tumour node metastasis staging was complete in 87% of cases while Dukes staging was documented in 8.7% of the reports. None of the data items was 100% complete except the CRM for rectal carcinoma. Free text reporting results in incomplete data resulting in improper staging, especially the lymph node status. This highlights the need for pro forma reporting to ensure and maintain consistent reporting of important parameters required for proper staging and management of patients with colorectal cancer.

  19. Diclofenac rectal suppository: an effective modality for perineal pain.

    PubMed

    Naz, Shabnam; Memon, Naila Yousuf; Sattar, Asma; Baloch, Rafia

    2016-08-01

    To determine the frequency of perineal pain after childbirth after a single dose of diclofenac rectal suppository. This cross-sectional study was conducted at Shaikh Zayed Women Hospital, Larkana, Pakistan, from April to September 2014, and comprised patients who were admitted to the labour room for normal vaginal delivery. A single dose of rectal diclofenac suppository of 100mg was given to the patients delivered vaginally or by second-stage emergency Caesarean section. Post-partum pain was noted after 12 and 24 hours of the administration of analgesia. SPSS 16 was used for data analysis. Of the 169 subjects, 63(37.28%) were aged 20 years or less, 85(50.3%) between 21 and 30 years, and 21(12.43%) between 31 and 40 years. Frequency of perineal pain was predominantly mild in 95(56%) patients, moderate in 60(35.5%) and severe in 14(8.28%). The use of non-steroidal anti-inflammatory rectal suppositories was found to be a simple and highly effective modality of reducing the perineal pain.

  20. Deep infiltrating endometriosis: Should rectal and vaginal opacification be systematically used in MR imaging?

    PubMed

    Uyttenhove, F; Langlois, C; Collinet, P; Rubod, C; Verpillat, P; Bigot, J; Kerdraon, O; Faye, N

    2016-06-01

    To evaluate the interest of rectal and vaginal filling in vaginal and recto-sigmoid endometriosis with MR imaging. To compare the results between a senior and a junior radiologist review. Sixty-seven patients with clinically suspected deep infiltrating endometriosis were included in our MRI protocol consisting of repeated T2-weigthed sequences (axial and sagittal) before and after rectal and vaginal marking with ultrasonography gel. Vaginal and recto-sigmoid endometriosis lesions were analyzed before and after opacification. The inter-reader agreement between senior and junior scores was studied. Concerning vaginal and muscularis and beyond colonic involvement, no significant difference (P=0.32) was observed and the inter-reader agreement was excellent (K=0.96 and 0.97 respectively). Concerning serosa colonic lesions, a significant difference was observed (P=0.01) and the inter-reader agreement was poor (K=0). Rectal and vaginal filling in endometriosis staging with MRI is not necessary no matter the reader experiment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Helicobacter pylori-Negative Primary Rectal MALT Lymphoma: Complete Remission after Radiotherapy

    PubMed Central

    Okamura, Takuma; Suga, Tomoaki; Iwaya, Yugo; Ito, Tetsuya; Yokosawa, Shuichi; Arakura, Norikazu; Ota, Hiroyoshi; Tanaka, Eiji

    2012-01-01

    Rectal mucosa-associated lymphoid tissue (MALT) lymphoma is a rare condition. Although the majority of patients undergo surgical resection, a definitive treatment for rectal MALT lymphoma has not yet been established. In the present study, we report the outcome of radiotherapy in 3 patients with rectal MALT lymphoma. Our cohort ranged from 56 to 65 years of age. The male/female ratio was 1:2, and all patients were in stage I (Lugano classification) of the disease. Endoscopic findings revealed elevated lesions resembling submucosal tumors in 2 patients, and a sessile elevated lesion with a nodular surface in 1 patient. One of the 3 patients underwent magnifying endoscopy with crystal violet staining that demonstrated a type I pit pattern (Kudo's classification) lesion with a broad intervening area caused by the upthrust of the tumor from the submucosa. All patients tolerated radiotherapy at doses of 30 Gy without major complications and achieved complete remission. Follow-up ranged from 13 to 75 months (mean 51.0 months), revealing no recurrence of MALT lymphoma. As such, we propose radiotherapy to be a safe and effective means for treating rectal MALT lymphoma. PMID:22754493

  2. [Effectiveness of Irinotecan, S-1, and Bevacizumab for Rectal Cancer with Lung and Skin Metastases after Adjuvant Chemotherapy].

    PubMed

    Hagihara, Kiyotaka; Ikeda, Masataka; Maeda, Sakae; Uemura, Mamoru; Yamamoto, Kazuyoshi; Miyake, Masakazu; Hama, Naoki; Nishikawa, Kazuhiro; Miyamoto, Atsushi; Omiya, Hideyasu; Miyazaki, Michihiko; Hirao, Motohiro; Takami, Koji; Nakamori, Shoji; Sekimoto, Mitsugu

    2016-11-01

    A 50-year-old woman with a chief complaint of bloody stools was diagnosed with rectal cancer via colonoscopy. Laparoscopic rectal anterior resection with D3 lymph node dissection was performed in June 2014. The pathological diagnosis was pStage III a(Ra, pT3, N1)cancer, and the patient received 8 courses of XELOX as postoperative adjuvant chemotherapy. During follow-up at 12 months after surgery, chest computed tomography revealed a mass in the left lingular segment measuring 25mm in diameter and multiple small nodules in both the lungs, indicating lung metastases. We found several subcutaneous nodules with a maximum diameter of 10mm in her abdomen and the back of head. We removed 3 subcutaneous nodules for the purpose of diagnosis and treatment in June of 2015. The pathological findings were consistent with cutaneous metastases of rectal cancer. The patient received a 1 course of IRIS and 5 courses of IRIS plus bevacizumab. Subsequently, the lung metastases disappeared and no new skin lesions were detected. We suggest that this case could be a good reference in determining the appropriate treatment for rectal cancer having lung or cutaneous metastases.

  3. Renaissance of contact x-ray therapy for treating rectal cancer.

    PubMed

    Gérard, Jean-Pierre; Myint, Arthur Sun; Croce, Olivier; Lindegaard, Jacob; Jensen, Anie; Myerson, Robert; Hannoun-Lévi, Jean-Michel; Marcie, Serge

    2011-07-01

    Contact x-ray therapy (CXRT) with 50 kV has proven to be an efficient radiation therapy technique to achieve local control and rectal preservation for early rectal adenocarcinoma. Despite these results, CXRT has not been used due to the shortage of the no longer manufactured Philips RT 50™ unit. Recently, a new CXRT machine (Papillon 50™) became available on the market. This machine delivers a beam of 50 kV with a dose rate close to 15 Gy/min and has a percentage depth dose of 50% at 6-7 mm. The applicator size varies from 2-3 cm in diameter. Due to the original design of the main tube, treatment delivery is quick and more comfortable for the patients. An online viewing system incorporated in the tube allows a good visualization of the tumor with improved accuracy of radiation delivery. An international collaborative trial (Contact Endoscopic Microsurgery [CONTEM]) was set up to accrue approximately 300 cases of rectal adenocarcinoma staged T1, T2 or early T3 tumors in the UK, France, Denmark and Sweden. This trial should confirm the role of CXRT in curative treatment with organ preservation for early rectal cancers.

  4. Combination Chemotherapy and Lenalidomide in Treating Patients With Newly Diagnosed Stage II-IV Peripheral T-cell Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2017-07-07

    Anaplastic Large Cell Lymphoma, ALK-Negative; Anaplastic Large Cell Lymphoma, ALK-Positive; Hepatosplenic T-Cell Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Stage II Angioimmunoblastic T-cell Lymphoma; Stage II Enteropathy-Associated T-Cell Lymphoma; Stage III Angioimmunoblastic T-cell Lymphoma; Stage III Enteropathy-Associated T-Cell Lymphoma; Stage IV Angioimmunoblastic T-cell Lymphoma; Stage IV Enteropathy-Associated T-Cell Lymphoma

  5. Vaccine Therapy in Treating Patients With Stage IIIC-IV Ovarian Epithelial, Fallopian Tube, or Primary Peritoneal Cavity Cancer Following Surgery and Chemotherapy

    ClinicalTrials.gov

    2017-10-12

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Tumor; Fallopian Tube Mucinous Neoplasm; Fallopian Tube Serous Neoplasm; Fallopian Tube Transitional Cell Carcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  6. Surgical timing after chemoradiotherapy for rectal cancer, analysis of technique (STARRCAT): results of a feasibility multi-centre randomized controlled trial.

    PubMed

    Foster, J D; Ewings, P; Falk, S; Cooper, E J; Roach, H; West, N P; Williams-Yesson, B A; Hanna, G B; Francis, N K

    2016-10-01

    The optimal time of rectal resection after long-course chemoradiotherapy (CRT) remains unclear. A feasibility study was undertaken for a multi-centre randomized controlled trial evaluating the impact of the interval after chemoradiotherapy on the technical complexity of surgery. Patients with rectal cancer were randomized to either a 6- or 12-week interval between CRT and surgery between June 2012 and May 2014 (ISRCTN registration number: 88843062). For blinded technical complexity assessment, the Observational Clinical Human Reliability Analysis technique was used to quantify technical errors enacted within video recordings of operations. Other measured outcomes included resection completeness, specimen quality, radiological down-staging, tumour cell density down-staging and surgeon-reported technical complexity. Thirty-one patients were enrolled: 15 were randomized to 6 and 16-12 weeks across 7 centres. Fewer eligible patients were identified than had been predicted. Of 23 patients who underwent resection, mean 12.3 errors were observed per case at 6 weeks vs. 10.7 at 12 weeks (p = 0.401). Other measured outcomes were similar between groups. The feasibility of measurement of operative performance of rectal cancer surgery as an endpoint was confirmed in this exploratory study. Recruitment of sufficient numbers of patients represented a challenge, and a proportion of patients did not proceed to resection surgery. These results suggest that interval after CRT may not substantially impact upon surgical technical performance.

  7. Veliparib and Irinotecan Hydrochloride in Treating Patients With Cancer That Is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-12

    Advanced Malignant Solid Neoplasm; Estrogen Receptor Negative; HER2/Neu Negative; Hodgkin Lymphoma; Metastatic Malignant Neoplasm; Metastatic Malignant Solid Neoplasm; Non-Hodgkin Lymphoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Colon Cancer AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Colon Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Colon Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIC Breast Cancer AJCC v7; Stage IIIC Colon Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Colon Cancer AJCC v7; Stage IV Lung Cancer AJCC v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Colon Cancer AJCC v7; Stage IVB Colon Cancer AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Malignant Neoplasm; Unresectable Solid Neoplasm

  8. Vaccine Therapy With or Without Sirolimus in Treating Patients With NY-ESO-1 Expressing Solid Tumors

    ClinicalTrials.gov

    2016-10-03

    Anaplastic Astrocytoma; Anaplastic Oligoastrocytoma; Anaplastic Oligodendroglioma; Estrogen Receptor Negative; Estrogen Receptor Positive; Glioblastoma; Hormone-Resistant Prostate Cancer; Metastatic Prostate Carcinoma; Metastatic Renal Cell Cancer; Recurrent Adult Brain Neoplasm; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Colorectal Carcinoma; Recurrent Esophageal Carcinoma; Recurrent Gastric Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Lung Carcinoma; Recurrent Melanoma; Recurrent Ovarian Carcinoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Uterine Corpus Carcinoma; Resectable Hepatocellular Carcinoma; Sarcoma; Stage IA Breast Cancer; Stage IA Ovarian Cancer; Stage IA Uterine Corpus Cancer; Stage IB Breast Cancer; Stage IB Ovarian Cancer; Stage IB Uterine Corpus Cancer; Stage IC Ovarian Cancer; Stage II Uterine Corpus Cancer; Stage IIA Breast Cancer; Stage IIA Lung Carcinoma; Stage IIA Ovarian Cancer; Stage IIB Breast Cancer; Stage IIB Esophageal Cancer; Stage IIB Lung Carcinoma; Stage IIB Ovarian Cancer; Stage IIB Skin Melanoma; Stage IIC Ovarian Cancer; Stage IIC Skin Melanoma; Stage IIIA Breast Cancer; Stage IIIA Esophageal Cancer; Stage IIIA Lung Carcinoma; Stage IIIA Ovarian Cancer; Stage IIIA Skin Melanoma; Stage IIIA Uterine Corpus Cancer; Stage IIIB Breast Cancer; Stage IIIB Esophageal Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Skin Melanoma; Stage IIIB Uterine Corpus Cancer; Stage IIIC Breast Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Skin Melanoma; Stage IIIC Uterine Corpus Cancer; Stage IV Bladder Urothelial Carcinoma; Stage IV Esophageal Cancer; Stage IV Ovarian Cancer; Stage IV Prostate Cancer; Stage IV Skin Melanoma; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer

  9. Quality of Life and Care Needs of Patients With Persistent or Recurrent Ovarian Cancer, Fallopian Tube Cancer, or Peritoneal Cancer

    ClinicalTrials.gov

    2017-05-03

    Anxiety; Fatigue; Nausea and Vomiting; Neurotoxicity Syndrome; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IB Fallopian Tube Cancer; Stage IC Fallopian Tube Cancer; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIB Fallopian Tube Cancer; Stage IIC Fallopian Tube Cancer; Stage III Ovarian Cancer; Stage III Primary Peritoneal Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIC Fallopian Tube Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  10. Metronidazole stewardship initiative at Christchurch hospitals-achievable with immediate benefits.

    PubMed

    Gardiner, Sharon J; Metcalf, Sarah Cl; Chin, Paul Kl; Doogue, Matthew P; Dalton, Simon C; Chambers, Stephen T

    2018-04-13

    To evaluate an antimicrobial stewardship (AMS) initiative to change hospital prescribing practice for metronidazole. In October 2015, the Canterbury District Health Board (CDHB) AMS committee changed advice for metronidazole to promote two times daily dosing for most indications, prioritisation of the oral route and avoidance of double anaerobic cover. Adoption of the initiative was facilitated via change in prescribing guidelines, education and ongoing pharmacy support. Usage and expenditure on metronidazole for adult inpatients were compared for the five years pre- and two years post-change. Other district health boards (DHBs) were surveyed to determine their dosing recommendation for metronidazole IV. Mean annual metronidazole IV use, as defined daily doses per 1,000 occupied bed days, decreased by 43% post-initiative. Use of non-IV (oral or rectal) formulations increased by 104%. Total savings associated with the initiative were approximately $33,400 in drug costs plus $78,200 per annum in IV giving sets and post-dose flushes. Twelve of 20 (60%) DHBs (including CDHB) endorse twice daily IV dosing. In addition to financial savings, reduction in IV doses has potential benefits, including avoidance of IV catheter-associated complications such as bloodstream infections. Approaches to metronidazole dosing vary across DHBs and could benefit from national coordination.

  11. Changes in Brain Function in Patients With Stage I, Stage II, Stage III, or Stage IV Ovarian, Primary Peritoneal, or Fallopian Tube Cancer Who Are Receiving Chemotherapy

    ClinicalTrials.gov

    2018-04-11

    Cognitive Side Effects of Cancer Therapy; Malignant Ovarian Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Carcinosarcoma; Ovarian Choriocarcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Dysgerminoma; Ovarian Embryonal Carcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Mucinous Cystadenocarcinoma; Ovarian Polyembryoma; Ovarian Sarcoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Stage I Ovarian Cancer; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IC Ovarian Germ Cell Tumor; Stage II Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cancer; Undifferentiated Ovarian Carcinoma

  12. Tacrolimus and Mycophenolate Mofetil in Preventing Graft-Versus-Host Disease in Patients Who Have Undergone Total-Body Irradiation With or Without Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant for Hematologic Cancer

    ClinicalTrials.gov

    2017-12-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; Testicular Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  13. Recombinant EphB4-HSA Fusion Protein With Standard Chemotherapy Regimens in Treating Patients With Advanced or Metastatic Solid Tumors

    ClinicalTrials.gov

    2017-07-15

    Head and Neck Squamous Cell Carcinoma; Metastatic Pancreatic Adenocarcinoma; Non-Resectable Cholangiocarcinoma; Pancreatic Adenocarcinoma; Recurrent Gallbladder Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Stage III Pancreatic Cancer; Stage IIIA Gallbladder Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Gallbladder Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Gallbladder Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IV Pancreatic Cancer; Unresectable Gallbladder Carcinoma; Unresectable Pancreatic Cancer

  14. Gemcitabine Hydrochloride and Eribulin Mesylate in Treating Patients With Bladder Cancer That is Advanced or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-23

    Metastatic Ureteral Neoplasm; Metastatic Urethral Neoplasm; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma

  15. Quality of Life and Survivorship Care in Patients Undergoing Hyperthermic Intraperitoneal Chemotherapy (HIPEC)

    ClinicalTrials.gov

    2017-05-25

    Advanced Malignant Mesothelioma; Carcinoma of the Appendix; Ovarian Sarcoma; Ovarian Stromal Cancer; Pseudomyxoma Peritonei; Recurrent Colon Cancer; Recurrent Malignant Mesothelioma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage III Colon Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage IV Colon Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  16. Akt Inhibitor MK2206, Lapatinib Ditosylate, and Trastuzumab in Treating Patients With Locally Advanced or Metastatic HER2-Positive Breast , Gastric, or Gastroesophageal Cancer That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2013-09-27

    Adenocarcinoma of the Gastroesophageal Junction; HER2-positive Breast Cancer; Male Breast Cancer; Recurrent Breast Cancer; Recurrent Esophageal Cancer; Recurrent Gastric Cancer; Stage IIIC Breast Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Gastric Cancer; Stage IV Breast Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer

  17. High cost of stage IV pressure ulcers.

    PubMed

    Brem, Harold; Maggi, Jason; Nierman, David; Rolnitzky, Linda; Bell, David; Rennert, Robert; Golinko, Michael; Yan, Alan; Lyder, Courtney; Vladeck, Bruce

    2010-10-01

    The aim of this study was to calculate and analyze the cost of treatment for stage IV pressure ulcers. A retrospective chart analysis of patients with stage IV pressure ulcers was conducted. Hospital records and treatment outcomes of these patients were followed up for a maximum of 29 months and analyzed. Costs directly related to the treatment of pressure ulcers and their associated complications were calculated. Nineteen patients with stage IV pressure ulcers (11 hospital-acquired and 8 community-acquired) were identified and their charts were reviewed. The average hospital treatment cost associated with stage IV pressure ulcers and related complications was $129,248 for hospital-acquired ulcers during 1 admission, and $124,327 for community-acquired ulcers over an average of 4 admissions. The costs incurred from stage IV pressure ulcers are much greater than previously estimated. Halting the progression of early stage pressure ulcers has the potential to eradicate enormous pain and suffering, save thousands of lives, and reduce health care expenditures by millions of dollars. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Development of a synoptic MRI report for primary rectal cancer.

    PubMed

    Spiegle, Gillian; Leon-Carlyle, Marisa; Schmocker, Selina; Fruitman, Mark; Milot, Laurent; Gagliardi, Anna R; Smith, Andy J; McLeod, Robin S; Kennedy, Erin D

    2009-12-02

    Although magnetic resonance imaging (MRI) is an important imaging modality for pre-operative staging and surgical planning of rectal cancer, to date there has been little investigation on the completeness and overall quality of MRI reports. This is important because optimal patient care depends on the quality of the MRI report and clear communication of these reports to treating physicians. Previous work has shown that the use of synoptic pathology reports improves the quality of pathology reports and communication between physicians. The aims of this project are to develop a synoptic MRI report for rectal cancer and determine the enablers and barriers toward the implementation of a synoptic MRI report for rectal cancer in the clinical setting. A three-step Delphi process with an expert panel will extract the key criteria for the MRI report to guide pre-operative chemoradiation and surgical planning following a review of the literature, and a synoptic template will be developed. Furthermore, standardized qualitative research methods will be used to conduct interviews with radiologists to determine the enablers and barriers to the implementation and sustainability of the synoptic MRI report in the clinic setting. Synoptic MRI reports for rectal cancer are currently not used in North America and may improve the overall quality of MRI report and communication between physicians. This may, in turn, lead to improved patient care and outcomes for rectal cancer patients.

  19. YKL-40 in Serum Samples From Patients With Newly Diagnosed Stage III-IV Ovarian Epithelial, Primary Peritoneal Cavity, or Fallopian Tube Cancer Receiving Chemotherapy

    ClinicalTrials.gov

    2018-05-21

    Fallopian Tube Adenocarcinoma; Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Brenner Tumor; Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Endometrioid Tumor; Malignant Ovarian Mixed Epithelial Tumor; Malignant Ovarian Mucinous Tumor; Malignant Ovarian Neoplasm; Malignant Ovarian Serous Tumor; Malignant Ovarian Transitional Cell Tumor; Ovarian Adenocarcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  20. Long-term direct visualization of passively transferred fluorophore-conjugated antibodies.

    PubMed

    Schneider, Jeffrey R; Carias, Ann M; Bastian, Arangaserry R; Cianci, Gianguido C; Kiser, Patrick F; Veazey, Ronald S; Hope, Thomas J

    2017-11-01

    The use of therapeutic antibodies, delivered by intravenous (IV) instillation, is a rapidly expanding area of biomedical treatment for a variety of conditions. However, little is known about how the antibodies are anatomically distributed following infusion and the underlying mechanism mediating therapeutic antibody distribution to specific anatomical sites remains to be elucidated. Current efforts utilize low resolution and sensitivity methods such as ELISA and indirect labeling imaging techniques, which often leads to high background and difficulty in assessing biodistribution. Here, using the in vivo non-human primate model, we demonstrate that it is possible to utilize the fluorophores Cy5 and Cy3 directly conjugated to antibodies for direct visualization and quantification of passively transferred antibodies in plasma, tissue, and in mucosal secretions. Antibodies were formulated with 1-2 fluorophores per antibody to minimally influence antibody function. Fluorophore conjugated Gamunex-C (pooled human IgG) were tested for binding to protein A, via surface plasmon resonance, and showed similar levels of binding when compared to unlabeled Gamunex-C. In order to assess the effect fluorophore labeling has on turnover and localization, rhesus macaques were IV infused with either labeled or unlabeled Gamunex-C. Plasma, vaginal Weck-Cel fluid, cervicovaginal mucus, and vaginal/rectal tissue biopsies were collected up to 8weeks. Similar turnover and biodistribution was observed between labeled and unlabeled antibodies, showing that the labeling process did not have an obvious deleterious effect on localization or turnover. Cy5 and Cy3 labeled antibodies were readily detected in the same pattern regardless of fluorophore. Tissue distribution was measured in macaque vaginal and rectal biopsies. The labeled antibody in macaque biopsies was found to have similar biodistribution pattern to endogenous antibodies in macaque and human tissues. In the vaginal and rectal mucosa, endogenous and infused antibodies were found primarily within the lamina propria. In the mucosal squamous epithelium of the vaginal vault, significant antibody was also observed in a striated pattern in the superficial, nonviable, stratum corneum. Endogenous antibody distribution in both human and macaque squamous tissues exhibited a similar pattern as seen with the labeled and unlabeled antibodies. This proof-of-principle study reveals that the labeled antibody is stable and physiologically similar relative to endogenous antibody setting the stage for future work to better understand the mechanisms of how antibodies reach unique anatomical sites. Direct visualization of fluorophore-conjugated antibodies following passive infusion can be utilized to assess the kinetics of biodistribution of infused antibodies and may be a useful approach to monitor and predict efficacy of therapeutic antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Anti-CD22 CAR-T Therapy for CD19-refractory or Resistant Lymphoma Patients

    ClinicalTrials.gov

    2017-03-08

    Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Stage III/IV Adult Diffuse Large Cell Lymphoma; Stage III/IV Follicular Lymphoma; Stage III/IV Mantle Cell Lymphoma

  2. Watch and wait approach to rectal cancer: A review

    PubMed Central

    Pozo, Marcos E; Fang, Sandy H

    2015-01-01

    In 2014, there were an estimated 136800 new cases of colorectal cancer, making it the most common gastrointestinal malignancy. It is the second leading cause of cancer death in both men and women in the United States and over one-third of newly diagnosed patients have stage III (node-positive) disease. For stage II and III colorectal cancer patients, the mainstay of curative therapy is neoadjuvant therapy, followed by radical surgical resection of the rectum. However, the consequences of a proctectomy, either by low anterior resection or abdominoperineal resection, can lead to very extensive comorbidities, such as the need for a permanent colostomy, fecal incontinence, sexual and urinary dysfunction, and even mortality. Recently, trends of complete regression of the rectal cancer after neoadjuvant chemoradiation therapy have been confirmed by clinical and radiographic evaluation-this is known as complete clinical response (cCR). The “watch and wait” approach was first proposed by Dr. Angelita Habr-Gama in Brazil in 2009. Those patients with cCR are followed with close surveillance physical examinations, endoscopy, and imaging. Here, we review management of rectal cancer, the development of the “watch and wait” approach and its outcomes. PMID:26649153

  3. Sunitinib in Treating Patients With Thyroid Cancer That Did Not Respond to Iodine I 131 and Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2017-08-18

    Recurrent Thyroid Gland Carcinoma; Stage III Thyroid Gland Follicular Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IV Thyroid Gland Follicular Carcinoma; Stage IV Thyroid Gland Medullary Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma; Stage IVA Thyroid Gland Follicular Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVA Thyroid Gland Papillary Carcinoma; Stage IVB Thyroid Gland Follicular Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Papillary Carcinoma; Stage IVC Thyroid Gland Follicular Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Papillary Carcinoma; Thyroid Gland Oncocytic Follicular Carcinoma

  4. Rectal cancer survival in the United States by race and stage, 2001 to 2009: Findings from the CONCORD-2 study.

    PubMed

    Joseph, Djenaba A; Johnson, Chris J; White, Arica; Wu, Manxia; Coleman, Michel P

    2017-12-15

    In the first CONCORD study, 5-year survival for patients with diagnosed with rectal cancer between 1990 and 1994 was <60%, with large racial disparities noted in the majority of participating states. We have updated these findings to 2009 by examining population-based survival by stage of disease at the time of diagnosis, race, and calendar period. Data from the CONCORD-2 study were used to compare survival among individuals aged 15 to 99 years who were diagnosed in 37 states encompassing up to 80% of the US population. We estimated net survival up to 5 years after diagnosis correcting for background mortality with state-specific and race-specific life table. Survival estimates were age-standardized with the International Cancer Survival Standard weights. We present survival estimates by race (all, black, and white) for 2001 through 2003 and 2004 through 2009 to account for changes in collecting the data for Surveillance, Epidemiology, and End Results Summary Stage 2000. There was a small increase in 1-year, 3-year, and 5-year net survival between 2001-2003 (84.6%, 70.7%, and 63.2%, respectively), and 2004-2009 (85.1%, 71.5%, and 64.1%, respectively). Black individuals were found to have lower 1-year, 3-year, and 5-year survival than white individuals in both periods; the absolute difference in survival between black and white individuals declined only for 5-year survival. Black patients had lower 5-year survival than whites at each stage at the time of diagnosis in both time periods. There was little improvement noted in net survival for patients with rectal cancer, with persistent disparities noted between black and white individuals. Additional investigation is needed to identify and implement effective interventions to ensure the consistent and equitable use of high-quality screening, diagnosis, and treatment to improve survival for patients with rectal cancer. Cancer 2017;123:5037-58. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Cyclophosphamide or Denileukin Diftitox Followed By Expanding a Patient's Own T Cells in the Laboratory in Treating Patients With HER-2/Neu Overexpressing Metastatic Breast Cancer, Ovarian Cancer, or Non-Small Cell Lung Cancer Previously Treated With HER-2/Neu Vaccine

    ClinicalTrials.gov

    2014-11-07

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  6. The relationship between right-sided tumour location, tumour microenvironment, systemic inflammation, adjuvant therapy and survival in patients undergoing surgery for colon and rectal cancer.

    PubMed

    Patel, Meera; McSorley, Stephen T; Park, James H; Roxburgh, Campbell S D; Edwards, Joann; Horgan, Paul G; McMillan, Donald C

    2018-03-06

    There has been an increasing interest in the role of tumour location in the treatment and prognosis of patients with colorectal cancer (CRC), specifically in the adjuvant setting. Together with genomic data, this has led to the proposal that right-sided and left-sided tumours should be considered as distinct biological and clinical entities. The aim of the present study was to examine the relationship between tumour location, tumour microenvironment, systemic inflammatory response (SIR), adjuvant chemotherapy and survival in patients undergoing potentially curative surgery for stage I-III colon and rectal cancer. Clinicopathological characteristics were extracted from a prospective database. MMR and BRAF status was determined using immunohistochemistry. The tumour microenvironment was assessed using routine H&E pathological sections. SIR was assessed using modified Glasgow Prognostic Score (mGPS), neutrophil:lymphocyte ratio (NLR), neutrophil:platelet score (NPS) and lymphocyte:monocyte ratio (LMR). Overall, 972 patients were included. The majority were over 65 years (68%), male (55%), TNM stage II/III (82%). In all, 40% of patients had right-sided tumours and 31% had rectal cancers. Right-sided tumour location was associated with older age (P=0.001), deficient MMR (P=0.005), higher T stage (P<0.001), poor tumour differentiation (P<0.001), venous invasion (P=0.021), and high CD3 + within cancer cell nests (P=0.048). Right-sided location was consistently associated with a high SIR, mGPS (P<0.001) and NPS (P<0.001). There was no relationship between tumour location, adjuvant chemotherapy (P=0.632) or cancer-specific survival (CSS; P=0.377). In those 275 patients who received adjuvant chemotherapy, right-sided location was not associated with the MMR status (P=0.509) but was associated with higher T stage (P=0.001), venous invasion (P=0.036), CD3 + at the invasive margin (P=0.033) and CD3 + within cancer nests (P=0.012). There was no relationship between tumour location, SIR or CSS in the adjuvant group. Right-sided tumour location was associated with an elevated tumour lymphocytic infiltrate and an elevated SIR. There was no association between tumour location and survival in the non-adjuvant or adjuvant setting in patients undergoing potentially curative surgery for stage I-III colon and rectal cancer.

  7. Intravital Microscopy for Identifying Tumor Vessels in Patients With Stage IA-IV Melanoma That is Being Removed by Surgery

    ClinicalTrials.gov

    2017-06-05

    Recurrent Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma

  8. Surgery and Chemotherapy With or Without Chemotherapy After Surgery in Treating Patients With Ovarian, Fallopian Tube, Uterine, or Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-26

    Recurrent Uterine Corpus Cancer; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Cancer; Recurrent Primary Peritoneal Cancer; Stage IIIA Uterine Corpus Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Uterine Corpus Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cavity Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer

  9. Akt Inhibitor MK2206 and Hydroxychloroquine in Treating Patients With Advanced Solid Tumors, Melanoma, Prostate or Kidney Cancer

    ClinicalTrials.gov

    2018-05-15

    Adult Solid Neoplasm; Hormone-Resistant Prostate Carcinoma; Recurrent Melanoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Prostate Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7

  10. Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2018-06-27

    Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  11. Ruxolitinib Phosphate, Paclitaxel, and Carboplatin in Treating Patients With Stage III-IV Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-02-14

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Serous Neoplasm; High Grade Ovarian Serous Adenocarcinoma; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Primary Peritoneal Serous Adenocarcinoma; Stage III Fallopian Tube Cancer AJCC v7; Stage III Ovarian Cancer AJCC v6 and v7; Stage III Primary Peritoneal Cancer AJCC v7; Stage IIIA Fallopian Tube Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIA Primary Peritoneal Cancer AJCC v7; Stage IIIB Fallopian Tube Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIB Primary Peritoneal Cancer AJCC v7; Stage IIIC Fallopian Tube Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IIIC Primary Peritoneal Cancer AJCC v7; Stage IV Fallopian Tube Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Primary Peritoneal Cancer AJCC v7

  12. Stages of Rectal Cancer

    MedlinePlus

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...

  13. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-01-12

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  14. Rectal cancer confined to the bowel wall: the role of 3 Tesla phased-array MR imaging in T categorization.

    PubMed

    Çolakoğlu Er, Hale; Peker, Elif; Erden, Ayşe; Erden, İlhan; Geçim, Ethem; Savaş, Berna

    2018-02-01

    To determine the diagnostic value of 3 Tesla MR imaging in detection of mucosal (Tis), submucosal (T 1 ) and muscularis propria (T 2 ) invasion in patients with early rectal cancer. A total of 50 consecutive patients who underwent 3 Tesla MR imaging and curative-intent intervention for MRI-staged Tis/T 1 /T 2 rectal cancer from March 2012 to December 2016 were included. The radiological T category of each rectal tumour was compared retrospectively with histopathological results assessed according to the tumor, node, metastasis (TNM) classification. The sensitivities, specificities, and overall accuracy rates of 3 Tesla MR imaging for Tis, T 1 , and T 2 cases were calculated using MedCalc statistical software v. 16. The sensitivity, specificity, PPV, NPV of 3 Tesla MR imaging in T categorization for T 2 were: 93.7% [95% CI (0.79-0.99)], 77.7% [95% CI (0.52-0.93)], 88.2% [95% CI (0.75-0.94)] and 87.5% [95% CI (0.64-0.96)]; for T 1 were 92% [95% CI (0.63-0.99)], 91.8% [95% CI (0.78-0.98)], 80% [95% CI (0.57-0.92)] and 97.1% [95% CI (0.83-0.99)]; for Tis were: 20% [95% CI (0.51-0.71)], 100% [95% CI (0.92-1)], 100%, 91.8% [95% CI (0.87-0.94)], respectively. MR categorization accuracy rates for T 2 , T 1 and Tis were calculated as 88, 92 and 92%, respectively. 3 Tesla MR imaging seems to be useful for accurate categorization of T-stage in early rectal cancer, especially for T 1 cancers. The method is not a reliable tool to detect Tis cases. The potential for overstaging and understaging of the technique should be realized and taken into consideration when tailoring the treatment protocol for each patient. Advances in knowledge: High-resolution MR with phased-array coil is being increasingly used in the pre-operative assessment of rectal cancer. 3 Tesla high-resolution MR imaging allows improved definition of bowel wall and tumour infiltration.

  15. A Phase 2 Study of Cediranib in Combination With Olaparib in Advanced Solid Tumors

    ClinicalTrials.gov

    2018-06-04

    Estrogen Receptor Negative; HER2/Neu Negative; Metastatic Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage III Small Cell Lung Carcinoma AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Small Cell Lung Carcinoma AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Small Cell Lung Carcinoma AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IV Small Cell Lung Carcinoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Pancreatic Carcinoma

  16. Axitinib in Treating Patients With Melanoma That is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-08

    Extraocular Extension Melanoma; Metastatic Intraocular Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage IIIA Intraocular Melanoma; Stage IIIA Melanoma; Stage IIIB Intraocular Melanoma; Stage IIIB Melanoma; Stage IIIC Intraocular Melanoma; Stage IIIC Melanoma; Stage IV Intraocular Melanoma; Stage IV Melanoma

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, P; Wang, J; Zhong, H

    Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less

  18. [Association between serum levels of S100A8/S100A9 and clinical features of colorectal cancer patients].

    PubMed

    Shu, Peng; Zhao, Lian; Wagn, Jing; Shen, Xiaohua; Zhang, Xuemei; Shen, Shourong; Ma, Jian; Li, Xiayu

    2016-06-28

    To analyze the association between serum levels of S100A8/S100A9 and clinicopathological features of colorectal cancer patients.
 A total of 82 patients with CRC and 14 healthy controls were enrolled for this study. The levels of S100A8 and S100A9 in serum were detected by ELISA assay. The association between S100A8/S100A9 and clinicopathological features was analyzed by student-t test and one-way ANOVA. Receiver Operating Characteristic curve was used to analyze diagnostic efficiency of serum S100A8 and S100A9 for colon rectal cancer. Logistic regression model was also established to analyze the possible risk factors for elevation of S100A8/S100A9.
 The levels of S100A8 and S100A9 were (1 403.3±593.7) and (2 890.3±994.9) pg/mL in patients with colon cancer, and (712.8±265.3) and (1 492.7±564.6) pg/mL in controls, respectively, with significant difference between the two groups (P<0.01). The similar results were found in rectal cancer patients, with a level of S100A8 and S100A9 at (1 417.7±666.5) and (3 026.7±887.6) pg/mL, respectively. Diagnostic sensitivity and specificity of S100A8 and S100A9 are better than traditional biomarkers. The levels of S100A9 in serum of CRC patients were correlated with clinical stages and distant metastasis. Serum levels of S100A9 in patients of stage III [(3 111.9±178.5) pg/mL] and stage IV [(3 831.4±278.5) pg/mL] were significantly (P<0.01) higher than that in stage I [(2 276.1±167.4) pg/mL], whereas there was significant change in S100A8 levels. Logistic regression showed the possible risk factors for the elevation of S100A9, including depth of invasion, lymphatic metastasis and degree of differentiation (P<0.05).
 Serum level of S100A8 and S100A9 in CRC patients were significantly increased and serum level of S100A9 was positively correlated with the malignant features of CRC.

  19. OPT-821 With or Without Vaccine Therapy in Treating Patients With Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Peritoneal Cancer in Second or Third Complete Remission

    ClinicalTrials.gov

    2017-09-12

    Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  20. Loading the Saturn I S-IV Stage into Pregnant Guppy

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The photograph shows the loading operation of the Saturn I S-IV stage (second stage) into the Pregnant Guppy at the Redstone Airfield, Huntsville, Alabama. The Pregnant Guppy was a Boeing B-377 Stratocruiser modified to transport various stages of Saturn launch vehicles. The modification project called for lengthening the fuselage to accommodate the S-IV stage. After the flight test of that modification, phase two called for the enlargement of the plane's cabin section to approximately double its normal volume. The fuselage separated just aft of the wing's trailing edge to load and unload the S-IV and other cargoes.

  1. Treatment Options by Stage (Rectal Cancer)

    MedlinePlus

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...

  2. Adjuvant therapy sparing in rectal cancer achieving complete response after chemoradiation

    PubMed Central

    García-Albéniz, Xabier; Gallego, Rosa; Hofheinz, Ralf Dieter; Fernández-Esparrach, Gloria; Ayuso-Colella, Juan Ramón; Bombí, Josep Antoni; Conill, Carles; Cuatrecasas, Miriam; Delgado, Salvadora; Ginés, Angels; Miquel, Rosa; Pagés, Mario; Pineda, Estela; Pereira, Verónica; Sosa, Aarón; Reig, Oscar; Victoria, Iván; Feliz, Luis; María de Lacy, Antonio; Castells, Antoni; Burkholder, Iris; Hochhaus, Andreas; Maurel, Joan

    2014-01-01

    AIM: To evaluate the long-term results of conventional chemoradiotherapy and laparoscopic mesorectal excision in rectal adenocarcinoma patients without adjuvant therapy. METHODS: Patients with biopsy-proven adenocarcinoma of the rectum staged cT3-T4 by endoscopic ultrasound or magnetic resonance imaging received neoadjuvant continuous infusion of 5-fluorouracil for five weeks and concomitant radiotherapy. Laparoscopic surgery was planned after 5-8 wk. Patients diagnosed with ypT0N0 stage cancer were not treated with adjuvant therapy according to the protocol. Patients with ypT1-2N0 or ypT3-4 or N+ were offered 5-fluorouracil-based adjuvant treatment on an individual basis. An external cohort was used as a reference for the findings. RESULTS: One hundred and seventy six patients were treated with induction chemoradiotherapy and 170 underwent total mesorectal excision. Cancer staging of ypT0N0 was achieved in 26/170 (15.3%) patients. After a median follow-up of 58.3 mo, patients with ypT0N0 had five-year disease-free and overall survival rates of 96% (95%CI: 77-99) and 100%, respectively. We provide evidence about the natural history of patients with localized rectal cancer achieving a complete response after preoperative chemoradiation. The inherent good prognosis of these patients will have implications for clinical trial design and care of patients. CONCLUSION: Withholding adjuvant chemotherapy after complete response following standard neoadjuvant chemoradiotherapy and laparoscopic mesorectal excision might be safe within an experienced multidisciplinary team. PMID:25400468

  3. Lymph node harvest in colon and rectal cancer: Current considerations

    PubMed Central

    McDonald, James R; Renehan, Andrew G; O’Dwyer, Sarah T; Haboubi, Najib Y

    2012-01-01

    The prognostic significance of identifying lymph node (LN) metastases following surgical resection for colon and rectal cancer is well recognized and is reflected in accurate staging of the disease. An established body of evidence exists, demonstrating an association between a higher total LN count and improved survival, particularly for node negative colon cancer. In node positive disease, however, the lymph node ratios may represent a better prognostic indicator, although the impact of this on clinical treatment has yet to be universally established. By extension, strategies to increase surgical node harvest and/or laboratory methods to increase LN yield seem logical and might improve cancer staging. However, debate prevails as to whether or not these extrapolations are clinically relevant, particularly when very high LN counts are sought. Current guidelines recommend a minimum of 12 nodes harvested as the standard of care, yet the evidence for such is questionable as it is unclear whether an increasing the LN count results in improved survival. Findings from modern treatments, including down-staging in rectal cancer using pre-operative chemoradiotherapy, paradoxically suggest that lower LN count, or indeed complete absence of LNs, are associated with improved survival; implying that using a specific number of LNs harvested as a measure of surgical quality is not always appropriate. The pursuit of a sufficient LN harvest represents good clinical practice; however, recent evidence shows that the exhaustive searching for very high LN yields may be unnecessary and has little influence on modern approaches to treatment. PMID:22347537

  4. Development and implementation of a synoptic MRI report for preoperative staging of rectal cancer on a population-based level.

    PubMed

    Kennedy, Erin D; Milot, Laurent; Fruitman, Mark; Al-Sukhni, Eisar; Heine, Gabrielle; Schmocker, Selina; Brown, Gina; McLeod, Robin S

    2014-06-01

    Colorectal cancer physician champions across the province of Ontario, Canada, reported significant concern about appropriate selection of patients for preoperative chemoradiotherapy because of perceived variation in the completeness and consistency of MRI reports. The purpose of this work was to develop, pilot test, and implement a synoptic MRI report for preoperative staging of rectal cancer. This was an integrated knowledge translation project. This study was conducted in Ontario, Canada. Surgeons, radiologists, radiation oncologists, medical oncologists, and pathologists treating patients with rectal cancer were included in this study. A multifaceted knowledge translation strategy was used to develop, pilot test, and implement a synoptic MRI report. This strategy included physician champions, audit and feedback, assessment of barriers, and tailoring to the local context. A radiology webinar was conducted to pilot test the synoptic MRI report. Seventy-three (66%) of 111 Ontario radiologists participated in the radiology webinar and evaluated the synoptic MRI report. A total of 78% and 90% radiologists expressed that the synoptic MRI report was easy to use and included all of the appropriate items; 82% noted that the synoptic MRI report improved the overall quality of their information, and 83% indicated they would consider using this report in their clinical practice. An MRI report audit after implementation of the synoptic MRI report showed a 39% improvement in the completeness of MRI reports and a 37% uptake of the synoptic MRI report format across the province. Radiologists evaluating the synoptic MRI report and participating in the radiology webinar may not be representative of gastroenterologic radiologists in other geographic jurisdictions. The evaluation of completeness and uptake of the synoptic MRI reports is limited because of unmeasured differences that may occur before and after the MRI. A synoptic MRI report for preoperative staging of rectal cancer was successfully developed and pilot tested in the province of Ontario, Canada.

  5. Rectal cancer delivery of radiotherapy in adequate time and with adequate dose is influenced by treatment center, treatment schedule, and gender and is prognostic parameter for local control: Results of study CAO/ARO/AIO-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fietkau, Rainer; Roedel, Claus; Hohenberger, Werner

    2007-03-15

    Purpose: The impact of the delivery of radiotherapy (RT) on treatment results in rectal cancer patients is unknown. Methods and Materials: The data from 788 patients with rectal cancer treated within the German CAO/AIO/ARO-94 phase III trial were analyzed concerning the impact of the delivery of RT (adequate RT: minimal radiation RT dose delivered, 4300 cGy for neoadjuvant RT or 4700 cGy for adjuvant RT; completion of RT in <44 days for neoadjuvant RT or <49 days for adjuvant RT) in different centers on the locoregional recurrence rate (LRR) and disease-free survival (DFS) at 5 years. The LRR, DFS, andmore » delivery of RT were analyzed as endpoints in multivariate analysis. Results: A significant difference was found between the centers and the delivery of RT. The overall delivery of RT was a prognostic factor for the LRR (no RT, 29.6% {+-} 7.8%; inadequate RT, 21.2% {+-} 5.6%; adequate RT, 6.8% {+-} 1.4%; p = 0.0001) and DFS (no RT, 55.1% {+-} 9.1%; inadequate RT, 57.4% {+-} 6.3%; adequate RT, 69.1% {+-} 2.3%; p = 0.02). Postoperatively, delivery of RT was a prognostic factor for LRR on multivariate analysis (together with pathologic stage) but not for DFS (independent parameters, pathologic stage and age). Preoperatively, on multivariate analysis, pathologic stage, but not delivery of RT, was an independent prognostic parameter for LRR and DFS (together with adequate chemotherapy). On multivariate analysis, the treatment center, treatment schedule (neoadjuvant vs. adjuvant RT), and gender were prognostic parameters for adequate RT. Conclusion: Delivery of RT should be regarded as a prognostic factor for LRR in rectal cancer and is influenced by the treatment center, treatment schedule, and patient gender.« less

  6. Correlation between quantitative and semiquantitative parameters in DCE-MRI with a blood pool agent in rectal cancer: can semiquantitative parameters be used as a surrogate for quantitative parameters?

    PubMed

    Dijkhoff, Rebecca A P; Maas, Monique; Martens, Milou H; Papanikolaou, Nikolaos; Lambregts, Doenja M J; Beets, Geerard L; Beets-Tan, Regina G H

    2017-05-01

    The aim of this study was to assess correlation between quantitative and semiquantitative parameters in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal cancer patients, both in a primary staging and restaging setting. Nineteen patients were included with DCE-MRI before and/or after neoadjuvant therapy. DCE-MRI was performed with gadofosveset trisodium (Ablavar ® , Lantheus Medical Imaging, North Billerica, Massachusetts, USA). Regions of interest were placed in the tumor and quantitative parameters were extracted with Olea Sphere 2.2 software permeability module using the extended Tofts model. Semiquantitative parameters were calculated on a pixel-by-pixel basis. Spearman rank correlation tests were used for assessment of correlation between parameters. A p value ≤0.05 was considered statistically significant. Strong positive correlations were found between mean peak enhancement and mean K trans : 0.79 (all patients, p<0.0001), 0.83 (primary staging, p = 0.003), and 0.81 (restaging, p = 0.054). Mean wash-in correlated significantly with mean V p and K ep (0.79 and 0.58, respectively, p<0.0001 and p = 0.009) in all patients. Mean wash-in showed a significant correlation with mean K ep (0.67, p = 0.033) in the primary staging group. On the restaging MRI, mean wash-in only strongly correlated with mean V p (0.81, p = 0.054). This study shows a strong correlation between quantitative and semiquantitative parameters in DCE-MRI for rectal cancer. Peak enhancement correlates strongly with K trans and wash-in showed strong correlation with V p and K ep . These parameters have been reported to predict tumor aggressiveness and response in rectal cancer. Therefore, semiquantitative analyses might be a surrogate for quantitative analyses.

  7. Patients with pathological stage N2 rectal cancer treated with early adjuvant chemotherapy have a lower treatment failure rate.

    PubMed

    Feng, Yan-Ru; Jin, Jing; Ren, Hua; Wang, Xin; Wang, Shu-Lian; Wang, Wei-Hu; Song, Yong-Wen; Liu, Yue-Ping; Tang, Yuan; Li, Ning; Liu, Xin-Fan; Fang, Hui; Yu, Zi-Hao; Li, Ye-Xiong

    2017-03-09

    In this era of oxaliplatin-based adjuvant therapy, the optimal sequence in which chemoradiotherapy should be administered for pathological stage N2 rectal cancer is unknown. The aim of this study was to investigate this sequence. In the primary adjuvant concurrent chemoradiotherapy (A-CRT) group (n = 71), postoperative concurrent chemoradiotherapy was administered before adjuvant chemotherapy. In the primary adjuvant chemotherapy (A-CT) group (n = 43), postoperative concurrent chemoradiotherapy was administered during or after adjuvant chemotherapy. Postoperative radiotherapy comprised 45-50.4 Gy in 25-28 fractions. Concurrent chemotherapy comprised two cycles of oral capecitabine (1,600 mg/m 2 ) on days 1-14 and 22-35. Patients receiving adjuvant chemotherapy with four or more cycles of XELOX (oxaliplatin plus capecitabine) or eight or more cycles of FOLFOX (fluorouracil, leucovorin, and oxaliplatin) were included. Between June 2005 and December 2013, data for 114 qualified rectal cancer patients were analyzed. The percentages of patients in whom treatment failed in the A-CRT and A-CT groups were 33.8% and 16.3%, respectively (p = 0.042). More patients had distant metastases in the A-CRT group than in the A-CT group (32.4% vs. 14.3%, p = 0.028). Multivariate analysis indicated that the sequence in which chemoradiotherapy was administered (A-CT vs. A-CRT) was an independent prognostic factor for both estimated disease-free survival [hazard ratio (HR) 0.345, 95% confidence interval (CI) 0.137-0.868, p = 0.024] and estimated distant metastasis-free survival (HR 0.366, 95% CI 0.143-0.938, p = 0.036). In pathological stage N2 rectal cancer patients, administering adjuvant chemotherapy before chemoradiotherapy led to a lower rate of treatment failure, especially with respect to distant metastasis. Adjuvant chemotherapy prescribed as early as possible might benefit this cohort of patients in this era of oxaliplatin-based adjuvant therapy.

  8. Alemtuzumab, Fludarabine Phosphate, and Low-Dose Total Body Irradiation Before Donor Stem Cell Transplantation in Treating Patients With Hematological Malignancies

    ClinicalTrials.gov

    2018-05-24

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Progressive Hairy Cell Leukemia, Initial Treatment; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Diffuse Small Cleaved Cell Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Marginal Zone Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage I Small Lymphocytic Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Waldenström Macroglobulinemia

  9. Afatinib in Advanced Refractory Urothelial Cancer

    ClinicalTrials.gov

    2017-09-28

    Distal Urethral Cancer; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Urethral Cancer; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Stage IV Urethral Cancer; Ureter Cancer

  10. Carboplatin and Paclitaxel or Oxaliplatin and Capecitabine With or Without Bevacizumab as First-Line Therapy in Treating Patients With Newly Diagnosed Stage II-IV or Recurrent Stage I Epithelial Ovarian or Fallopian Tube Cancer

    ClinicalTrials.gov

    2017-08-21

    Borderline Ovarian Mucinous Tumor; Ovarian Mucinous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Cancer; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer

  11. Factors associated with use of pre-operative chemoradiation therapy for rectal cancer in the Cancer Care Outcomes Research and Surveillance Consortium

    PubMed Central

    Charlton, Mary E.; Lin, Chi; Jiang, Dingfeng; Stitzenberg, Karyn B.; Halfdanarson, Thorvardur R.; Pendergast, Jane F.; Chrischilles, Elizabeth A.; Wallace, Robert B.

    2012-01-01

    Purpose Pre-operative (pre-op) chemoradiation therapy (CRT) improves local control and reduces toxicity more than post-operative (post-op) CRT for the treatment of stages II/III rectal cancer, but studies suggest many patients still receive post-op CRT. We examined patient beliefs, and clinical and provider characteristics associated with receipt of recommended therapy. Methods We identified stage II/III rectal cancer patients who had primary site resection and CRT among subjects in the Cancer Care Outcomes Research and Surveillance Consortium, a population- and health system-based prospective cohort of newly diagnosed colorectal cancer patients from 2003 to 2005. Patient surveys and abstracted medical records were used to construct variables and determine sequence of CRT and surgery. Logistic regression was used to model the association between predictors and receipt of pre-op CRT. Results Of the 201 patients, 66% received pre-op and 34% received post-op CRT. Those visiting a medical oncologist and/or radiation oncologist prior to a surgeon had a 96% (95% CI, 92% to 100%) predicted probability of receiving pre-op CRT, compared to 48% (95% CI, 41% to 55%) for those visiting a surgeon first. Among those visiting a surgeon first, documentation of recommended staging procedures was associated with receiving pre-op CRT. Conclusion Sequence of provider visits and documentation of recommended staging procedures were important predictors of receiving pre-op CRT. Initial multidisciplinary evaluation led to better adherence to CRT guidelines. Further evaluation of provider characteristics, referral patterns and related health system processes should be undertaken to inform targeted interventions to reduce variation from recommended care. PMID:22992624

  12. Differences in late-stage diagnosis, treatment, and colorectal cancer-related death between rural and urban African Americans and whites in Georgia.

    PubMed

    Hines, Robert B; Markossian, Talar W

    2012-01-01

    Disparities in health outcomes due to a diagnosis of colorectal cancer (CRC) have been reported for a number of demographic groups. This study was conducted to examine the outcomes of late-stage diagnosis, treatment, and cancer-related death according to race and geographic residency status (rural vs urban). This study utilized cross-sectional and follow-up data from the Surveillance, Epidemiology, and End Results (SEER) Program for all incident colon and rectal tumors diagnosed for the Atlanta and Rural Georgia Cancer Registries for the years 1992-2007. Compared to whites, African Americans had a 40% increased odds (OR, 1.40; 95% CI, 1.30-1.51) of late-stage diagnosis, a 50% decreased odds (OR, 0.50; 95% CI, 0.37-0.68) of having surgery for colon cancer, and a 67% decreased odds (OR, 0.33; 95% CI, 0.25-0.44) of receiving surgery for rectal cancer. Rural residence was not associated with late stage at diagnosis or receipt of treatment. African Americans had a slightly increased risk of death from colon cancer (HR, 1.11; 95% CI, 1.00-1.24) and a larger increased risk of death due to rectal cancer (HR, 1.24; 95% CI, 1.14-1.35). Rural residents experienced a 15% increased risk of death (HR, 1.15; 95% CI, 1.01-1.32) due to colon cancer. Further investigations should target African Americans and rural residents to gain insight into the etiologic mechanisms responsible for the poorer CRC outcomes experienced by these 2 segments of the population. © 2011 National Rural Health Association.

  13. [A Long-Term Disease-Free Survival Case of Synchronous Pulmonary and Liver Metastasis of Rectal Cancer with Systemic Chemotherapy and Radiofrequency Ablation Therapy for Liver Metastasis].

    PubMed

    Enomoto, Masaya; Katsumata, Kenji; Kasahara, Kenta; Kuwabara, Hiroshi; Matsudo, Takaaki; Shigoka, Masatoshi; Enomoto, Masanobu; Ishizaki, Tetsuo; Tsuchida, Akihiko

    2017-11-01

    A 55-year-old woman underwent laparoscopic anterior resection and D2 lymph node dissection for recto-sigmoid colon cancer in November 2014, which was diagnosed as T3N1M1(H3, PUL2), stage IV , for the purpose of preserving the ileus. FOLFOX therapy with panitumumab(Pmab)was started in January 2015.A t the end of 11 courses, pulmonary metastasis changed to CR, and liver metastasis was down-graded to H2 on the CT.Because of the risk of hepatic dysfunction with advanced fatty liver due to chemotherapy and extrahepatic lesions, we chose radiofrequency ablation(RFA)therapy for liver metastasis.Pmab combined FOLFIRI therapy was administered, and maintenance therapy was initiated.This patient is alive 2 years and 7 months after surgery and 10 months after RFA without relapse.It is suggested that RFA therapy for liver metastasis of colon cancer with pulmonary metastasis combined with chemotherapy could be an effective treatment strategy.

  14. Oblimersen Sodium and Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage I, Stage II, Stage III, or Stage IV Diffuse Large B-Cell Lymphoma

    ClinicalTrials.gov

    2012-10-11

    Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma

  15. Vorinostat, Rituximab, and Combination Chemotherapy in Treating Patients With Newly Diagnosed Stage II, Stage III, or Stage IV Diffuse Large B-Cell Lymphoma

    ClinicalTrials.gov

    2017-09-12

    Stage II Contiguous Adult Diffuse Large Cell Lymphoma; Stage II Non-Contiguous Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma

  16. Alvocidib and Oxaliplatin With or Without Fluorouracil and Leucovorin Calcium in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2017-01-20

    Recurrent Extragonadal Seminoma; Recurrent Malignant Extragonadal Germ Cell Tumor; Recurrent Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage III Testicular Cancer; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  17. Massage Therapy Given by Caregiver in Treating Quality of Life of Young Patients Undergoing Treatment for Cancer

    ClinicalTrials.gov

    2018-05-24

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Undifferentiated Leukemia; Angioimmunoblastic T-cell Lymphoma; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Mantle Cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Essential Thrombocythemia; Extramedullary Plasmacytoma; Intraocular Lymphoma; Isolated Plasmacytoma of Bone; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Meningeal Chronic Myelogenous Leukemia; Noncontiguous Stage II Mantle Cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Primary Myelofibrosis; Primary Systemic Amyloidosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Hodgkin Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Multiple Myeloma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Hodgkin Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Hodgkin Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Multiple Myeloma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Hodgkin Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  18. Performance on a Stage IV Object-Permanence Task with Standard and Nonstandard Covers.

    ERIC Educational Resources Information Center

    And Others; Rader, Nancy

    1979-01-01

    Examined the role of perceptual-motor development in a typical Stage IV task. The performance of ten infants was compared on a Stage IV object permanence task when a cloth cover was used and when a small card cover was used. (JMB)

  19. Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma

    ClinicalTrials.gov

    2018-06-07

    Advanced Pleural Malignant Mesothelioma; HLA-A*0201 Positive Cells Present; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Pleural Malignant Mesothelioma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Pleural Malignant Mesothelioma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Pleural Malignant Mesothelioma AJCC v7; WT1 Positive

  20. Veliparib, Cisplatin, and Gemcitabine Hydrochloride in Treating Patients With Advanced Biliary, Pancreatic, Urothelial, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-07-01

    Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  1. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    PubMed Central

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schröder, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinhäusel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer. PMID:26335606

  2. Whither papillon? Future directions for contact radiotherapy in rectal cancer.

    PubMed

    Lindegaard, J; Gerard, J P; Sun Myint, A; Myerson, R; Thomsen, H; Laurberg, S

    2007-11-01

    Although contact radiotherapy was developed 70 years ago, and is highly effective with cure rates of over 90% for early rectal cancer, there are few centres that offer this treatment today. One reason is the lack of replacement of ageing contact X-ray machines, many of which are now over 30 years old. To address this problem, the International Contact Radiotherapy Evaluation (ICONE) group was formed at a meeting in Liverpool in 2005 with the aim of developing a new contact X-ray unit and to establish clinical protocols that would enable the new machine to safely engage in the treatment of rectal cancer. As a result of these efforts, a European company is starting production of the new Papillon RT-50 machine, which will be available shortly. In addition, the ICONE group is planning an observational study on contact X-ray and transanal endoscopic microsurgery (CONTEM) for curative treatment of rectal cancer. This protocol will ensure standardised diagnostic procedures, patient selection and treatment in centres across the world and the data will be collected prospectively for analysis and audit. It is hoped that the CONTEM trial will provide the scientific evidence that is needed to obtain a broader acceptance of local contact radiotherapy as a treatment option for selected cases with early stage rectal cancer.

  3. Intravital Microscopy in Evaluating Patients With Primary Peritoneal, Fallopian Tube, or Stage IA-IV Ovarian Cancer

    ClinicalTrials.gov

    2018-06-20

    Fallopian Tube Carcinoma; Primary Peritoneal Carcinoma; Stage I Ovarian Cancer; Stage IA Ovarian Cancer; Stage IB Ovarian Cancer; Stage IC Ovarian Cancer; Stage II Ovarian Cancer; Stage IIA Ovarian Cancer; Stage IIB Ovarian Cancer; Stage IIC Ovarian Cancer; Stage III Ovarian Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Ovarian Cancer; Stage IV Ovarian Cancer

  4. Rectal bioavailability of delta-9-tetrahydrocannabinol from the hemisuccinate ester in monkeys.

    PubMed

    ElSohly, M A; Stanford, D F; Harland, E C; Hikal, A H; Walker, L A; Little, T L; Rider, J N; Jones, A B

    1991-10-01

    Oral administration of delta-9-tetrahydrocannabinal (delta 9-THC) was shown to result in low and erratic bioavailability, while the drug showed no bioavailability from various suppository formulations. delta 9-THC-Hemisuccinate was formulated as a prodrug for delta 9-THC in suppositories using Witepsol H15 base. The bioavailability of delta 9-THC from this formulation was evaluated in monkeys. The plasma levels of delta 9-THC and its metabolite 11-nor-delta 9-THC-9-COOH were determined using GC/MS analysis. The calculated bioavailability of delta 9-THC from this formulation was found to be 13.5%. Non-compartmental analysis of the plasma concentration data using statistical moments showed the mean residence time (MRT) for delta 9-THC in the body to be 3 h following iv administration of delta 9-THC or its hemisuccinate ester (3.4 and 2.7 h, respectively), as compared with 5.8 h following rectal administration of the delta 9-THC hemisuccinate. The observed rectal bioavailability of delta 9-THC from suppositories containing the hemisuccinate ester as a prodrug is of significant importance in developing an alternative approach to oral administration of the drug.

  5. Acute Toxicity and Tumor Response in Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy With Shortening of the Overall Treatment Time Using Intensity-Modulated Radiation Therapy With Simultaneous Integrated Boost: A Phase 2 Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    But-Hadzic, Jasna, E-mail: jbut@onko-i.si; Anderluh, Franc; Brecelj, Erik

    Background and Purpose: This phase 2 study investigated the efficacy and safety of preoperative intensity modulated radiation therapy with a simultaneous integrated boost (IMRT-SIB) without dose escalation, concomitant with standard capecitabine chemotherapy in locally advanced rectal cancer. Methods and Materials: Between January 2014 and March 2015, 51 patients with operable stage II-III rectal adenocarcinoma received preoperative IMRT with pelvic dose of 41.8 Gy and simultaneously delivered 46.2 Gy to T2/3 and 48.4 Gy to T4 tumor in 22 fractions, concomitant with capecitabine, 825 mg/m{sup 2}/12 hours, including weekends. The primary endpoint was pathologic complete response (pCR). Results: Fifty patients completed preoperative treatment according to themore » protocol, and 47 underwent surgical resection. The sphincter preservation rate for the low rectal tumors was 62%, and the resection margins were free in all but 1 patient. Decrease in tumor and nodal stage was observed in 32 (68%) and 39 (83%) patients, respectively, with pCR achieved in 12 (25.5%) patients. There were only 2 G ≥ 3 acute toxicities, with infectious enterocolitis in 1 patient and dermatitis over the sacral area caused by the bolus effect of the treatment table in the second patient. Conclusions: Preoperative IMRT-SIB without dose escalation is well tolerated, with a low acute toxicity profile, and can achieve a high rate of pCR and downstaging.« less

  6. Causes and outcomes of emergency presentation of rectal cancer.

    PubMed

    Comber, Harry; Sharp, Linda; de Camargo Cancela, Marianna; Haase, Trutz; Johnson, Howard; Pratschke, Jonathan

    2016-09-01

    Emergency presentation of rectal cancer carries a relatively poor prognosis, but the roles and interactions of causative factors remain unclear. We describe an innovative statistical approach which distinguishes between direct and indirect effects of a number of contextual, patient and tumour factors on emergency presentation and outcome of rectal cancer. All patients diagnosed with rectal cancer in Ireland 2004-2008 were included. Registry information, linked to hospital discharge data, provided data on patient demographics, comorbidity and health insurance; population density and deprivation of area of residence; tumour type, site, grade and stage; treatment type and optimality; and emergency presentation and hospital caseload. Data were modelled using a structural equation model with a discrete-time survival outcome, allowing us to estimate direct and mediated effects of the above factors on hazard, and their inter-relationships. Two thousand seven hundred and fifty patients were included in the analysis. Around 12% had emergency presentations, which increased hazard by 80%. Affluence, private patient status and being married reduced hazard indirectly by reducing emergency presentation. Older patients had more emergency presentations, while married patients, private patients or those living in less deprived areas had fewer than expected. Patients presenting as an emergency were less likely to receive optimal treatment or to have this in a high caseload hospital. Apart from stage, emergency admission was the strongest determinant of poor survival. The factors contributing to emergency admission in this study are similar to those associated with diagnostic delay. The socio-economic gradient found suggests that patient education and earlier access to endoscopic investigation for public patients could reduce emergency presentation. © 2016 UICC.

  7. Acute Toxicity and Tumor Response in Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy With Shortening of the Overall Treatment Time Using Intensity-Modulated Radiation Therapy With Simultaneous Integrated Boost: A Phase 2 Trial.

    PubMed

    But-Hadzic, Jasna; Anderluh, Franc; Brecelj, Erik; Edhemovic, Ibrahim; Secerov-Ermenc, Ajra; Hudej, Rihard; Jeromen, Ana; Kozelj, Miran; Krebs, Bojan; Oblak, Irena; Omejc, Mirko; Vogrin, Andrej; Velenik, Vaneja

    2016-12-01

    This phase 2 study investigated the efficacy and safety of preoperative intensity modulated radiation therapy with a simultaneous integrated boost (IMRT-SIB) without dose escalation, concomitant with standard capecitabine chemotherapy in locally advanced rectal cancer. Between January 2014 and March 2015, 51 patients with operable stage II-III rectal adenocarcinoma received preoperative IMRT with pelvic dose of 41.8 Gy and simultaneously delivered 46.2 Gy to T2/3 and 48.4 Gy to T4 tumor in 22 fractions, concomitant with capecitabine, 825 mg/m 2 /12 hours, including weekends. The primary endpoint was pathologic complete response (pCR). Fifty patients completed preoperative treatment according to the protocol, and 47 underwent surgical resection. The sphincter preservation rate for the low rectal tumors was 62%, and the resection margins were free in all but 1 patient. Decrease in tumor and nodal stage was observed in 32 (68%) and 39 (83%) patients, respectively, with pCR achieved in 12 (25.5%) patients. There were only 2 G ≥ 3 acute toxicities, with infectious enterocolitis in 1 patient and dermatitis over the sacral area caused by the bolus effect of the treatment table in the second patient. Preoperative IMRT-SIB without dose escalation is well tolerated, with a low acute toxicity profile, and can achieve a high rate of pCR and downstaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-05-16

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Lymphocyte Predominant Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; B-cell Adult Acute Lymphoblastic Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; Contiguous Stage II Small Lymphocytic Lymphoma; Cytomegalovirus Infection; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extramedullary Plasmacytoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Isolated Plasmacytoma of Bone; Monoclonal Gammopathy of Undetermined Significance; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Primary Myelofibrosis; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Hodgkin Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage I Multiple Myeloma; Stage I Small Lymphocytic Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Adult Hodgkin Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Multiple Myeloma; Stage IIA Mycosis Fungoides/Sezary Syndrome; Stage IIB Mycosis Fungoides/Sezary Syndrome; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IIIA Mycosis Fungoides/Sezary Syndrome; Stage IIIB Mycosis Fungoides/Sezary Syndrome; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Small Lymphocytic Lymphoma; Stage IVA Mycosis Fungoides/Sezary Syndrome; Stage IVB Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Hairy Cell Leukemia; Waldenström Macroglobulinemia

  9. Vorinostat, Fludarabine Phosphate, Cyclophosphamide, and Rituximab in Treating Patients With Previously Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2018-01-12

    Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  10. Is the Distance Worth It? Patients With Rectal Cancer Traveling to High-Volume Centers Experience Improved Outcomes.

    PubMed

    Xu, Zhaomin; Becerra, Adan Z; Justiniano, Carla F; Boodry, Courtney I; Aquina, Christopher T; Swanger, Alex A; Temple, Larissa K; Fleming, Fergal J

    2017-12-01

    It is unclear whether traveling long distances to high-volume centers would compensate for travel burden among patients undergoing rectal cancer resection. The purpose of this study was to determine whether operative volume outweighs the advantages of being treated locally by comparing the outcomes of patients with rectal cancer treated at local, low-volume centers versus far, high-volume centers. This was a population-based study. The National Cancer Database was queried for patients with rectal cancer. Patients with stage II or III rectal cancer who underwent surgical resection between 2006 and 2012 were included. The outcomes of interest were margins, lymph node yield, receipt of neoadjuvant chemoradiation, adjuvant chemotherapy, readmission within 30 days, 30-day and 90-day mortality, and 5-year overall survival. A total of 18,605 patients met inclusion criteria; 2067 patients were in the long-distance/high-volume group and 1362 in the short-distance/low-volume group. The median travel distance was 62.6 miles for the long-distance/high-volume group and 2.3 miles for the short-distance/low-volume group. Patients who were younger, white, privately insured, and stage III were more likely to have traveled to a high-volume center. When controlled for patient factors, stage, and hospital factors, patients in the short-distance/low-volume group had lower odds of a lymph node yield ≥12 (OR = 0.51) and neoadjuvant chemoradiation (OR = 0.67) and higher 30-day (OR = 3.38) and 90-day mortality (OR = 2.07) compared with those in the long-distance/high-volume group. The short-distance/low-volume group had a 34% high risk of overall mortality at 5 years compared with the long-distance/high-volume group. We lacked data regarding patient and physician decision making and surgeon-specific factors. Our results indicate that when controlled for patient, tumor, and hospital factors, patients who traveled a long distance to a high-volume center had improved lymph node yield, neoadjuvant chemoradiation receipt, and 30- and 90-day mortality compared with those who traveled a short distance to a low-volume center. They also had improved 5-year survival. See Video Abstract at http://links.lww.com/DCR/A446.

  11. Organ Preservation in Rectal Adenocarcinoma: a phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management.

    PubMed

    Smith, J Joshua; Chow, Oliver S; Gollub, Marc J; Nash, Garrett M; Temple, Larissa K; Weiser, Martin R; Guillem, José G; Paty, Philip B; Avila, Karin; Garcia-Aguilar, Julio

    2015-10-23

    Treatment of patients with non-metastatic, locally advanced rectal cancer (LARC) includes pre-operative chemoradiation, total mesorectal excision (TME) and post-operative adjuvant chemotherapy. This trimodality treatment provides local tumor control in most patients; but almost one-third ultimately die from distant metastasis. Most survivors experience significant impairment in quality of life (QoL), due primarily to removal of the rectum. A current challenge lies in identifying patients who could safely undergo rectal preservation without sacrificing survival benefit and QoL. This multi-institutional, phase II study investigates the efficacy of total neoadjuvant therapy (TNT) and selective non-operative management (NOM) in LARC. Patients with MRI-staged Stage II or III rectal cancer amenable to TME will be randomized to receive FOLFOX/CAPEOX: a) before induction neoadjuvant chemotherapy (INCT); or b) after consolidation neoadjuvant chemotherapy (CNCT), with 5-FU or capecitabine-based chemoradiation. Patients in both arms will be re-staged after completing all neoadjuvant therapy. Those with residual tumor at the primary site will undergo TME. Patients with clinical complete response (cCR) will receive non-operative management (NOM). NOM patients will be followed every 3 months for 2 years, and every 6 months thereafter. TME patients will be followed according to NCCN guidelines. All will be followed for at least 5 years from the date of surgery or--in patients treated with NOM--the last day of treatment. The studies published thus far on the safety of NOM in LARC have compared survival between select groups of patients with a cCR after NOM, to patients with a pathologic complete response (pCR) after TME. The current study compares 3-year disease-free survival (DFS) in an entire population of patients with LARC, including those with cCR and those with pCR. We will compare the two arms of the study with respect to organ preservation at 3 years, treatment compliance, adverse events and surgical complications. We will measure QoL in both groups. We will analyze molecular indications that may lead to more individually tailored treatments in the future. This will be the first NOM trial utilizing a regression schema for response assessment in a prospective fashion. NCT02008656.

  12. Talimogene Laherparepvec and Pembrolizumab in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2018-06-18

    Recurrent Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  13. Phase 2 Sequential and Concurrent Chemoradiation for Advanced Nasopharyngeal Carcinoma (NPC)

    ClinicalTrials.gov

    2016-12-09

    Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  14. Effect of preoperative treatment strategies on the outcome of patients with clinical T3, non-metastasized rectal cancer: A comparison between Dutch and Canadian expert centers.

    PubMed

    Breugom, A J; Vermeer, T A; van den Broek, C B M; Vuong, T; Bastiaannet, E; Azoulay, L; Dekkers, O M; Niazi, T; van den Berg, H A; Rutten, H J T; van de Velde, C J H

    2015-08-01

    High-dose-rate brachytherapy (HDRBT) appears to be associated with less treatment-related toxicity compared with external beam radiotherapy in patients with rectal cancer. The present study compared the effect of preoperative treatment strategies on overall survival, cancer-specific deaths, and local recurrences between a Dutch and Canadian expert center with different preoperative treatment strategies. We included 145 Dutch and 141 Canadian patients with cT3, non-metastasized rectal cancer. All patients from Canada were preoperatively treated with HDRBT. The preoperative treatment strategy for Dutch patients consisted of either no preoperative treatment, short-course radiotherapy, or chemoradiotherapy. Cox proportional hazards models were used to estimate hazard ratios (HR) with 95% confidence intervals (CIs) comparing overall survival. We adjusted for age, cN stage, (y)pT stage, comorbidity, and type of surgery. Primary endpoint was overall survival. Secondary endpoints were cancer-specific deaths and local recurrences. Five-year overall survival was 70.9% (95% CI 62.6%-77.7%) in Dutch patients compared with 86.9% (80.1%-91.6%) in Canadian patients, resulting in an adjusted HR of 0.70 (95% CI 0.39-1.26; p = 0.233). Of 145 Dutch patients, 6.9% (95% CI 2.8%-11.0%) had a local recurrence and 17.9% (95% CI 11.7%-24.2%) patients died of rectal cancer, compared with 4.3% (95% CI 0.9%-7.5%) local recurrences and 10.6% (95% CI 5.5%-15.7%) rectal cancer deaths out of 141 Canadian patients. We did not detect statistically significant differences in overall survival between a Dutch and Canadian expert center with different treatment strategies. This finding needs to be further investigated in a randomized controlled trial. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Normal tissue complication probability (NTCP) models for late rectal bleeding, stool frequency and fecal incontinence after radiotherapy in prostate cancer patients.

    PubMed

    Schaake, Wouter; van der Schaaf, Arjen; van Dijk, Lisanne V; Bongaerts, Alfons H H; van den Bergh, Alfons C M; Langendijk, Johannes A

    2016-06-01

    Curative radiotherapy for prostate cancer may lead to anorectal side effects, including rectal bleeding, fecal incontinence, increased stool frequency and rectal pain. The main objective of this study was to develop multivariable NTCP models for these side effects. The study sample was composed of 262 patients with localized or locally advanced prostate cancer (stage T1-3). Anorectal toxicity was prospectively assessed using a standardized follow-up program. Different anatomical subregions within and around the anorectum were delineated. A LASSO logistic regression analysis was used to analyze dose volume effects on toxicity. In the univariable analysis, rectal bleeding, increase in stool frequency and fecal incontinence were significantly associated with a large number of dosimetric parameters. The collinearity between these predictors was high (VIF>5). In the multivariable model, rectal bleeding was associated with the anorectum (V70) and anticoagulant use, fecal incontinence was associated with the external sphincter (V15) and the iliococcygeal muscle (V55). Finally, increase in stool frequency was associated with the iliococcygeal muscle (V45) and the levator ani (V40). No significant associations were found for rectal pain. Different anorectal side effects are associated with different anatomical substructures within and around the anorectum. The dosimetric variables associated with these side effects can be used to optimize radiotherapy treatment planning aiming at prevention of specific side effects and to estimate the benefit of new radiation technologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Poster - 47: A parametrized prediction model of rectal toxicity in focal SBRT of low risk prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Todd; Bauman, Glenn

    There has been a recent trend towards watchful waiting in place of intervention for early stage prostate cancer (CaP). However, this approach can allow for disease progression, and subsequent whole-gland therapies such as prostatectomy and whole gland irradiation can result in functional deficits or rectal toxicities or both. A controversial alternative approach for this patient cohort is the use of focal therapy, where the treatment is focussed on an identified dominant index lesion (DIL). This work aims to investigate the treatment parameters for focal SBRT of the prostate under which clinically acceptable rectal NTCP levels can be achieved. For eachmore » of 25 low risk CaP patients, a hypothetical 2 cc DIL was modeled in the right-posterior quadrant of the prostate, and was used to build a PTV as the target for SBRT simulation. An SBRT prescriptions of 41 Gy and 37 Gy in 5 fractions were chosen, corresponding to the boost levels used in previous CaP dose escalation studies. DVH data were exported and used to calculate rectal NTCP values based on the Lyman-Kutcher-Burman (LKB) model using the QUANTEC reccommended model parameters. Rectal NTCP dependence on DIL-to-rectum separation, dose level, and DIL volume were investigated. The final goal of this ongoing work is to create a map of the maximum allowable prescription dose for a given patient geometry that achieves a clinically acceptable rectal NTCP level.« less

  17. A Feasibility Study of Neoadjuvant XELOX Without Radiotherapy for Locally Advanced Lower Rectal Cancer.

    PubMed

    Ueki, Takashi; Manabe, Tatsuya; Inoue, Shigetaka; Ienaga, Jun; Yamanaka, Naoki; Egami, Takuya; Ishikawa, Mikimasa; Konomi, Hiroyuki; Ikubo, Akashi; Nagayoshi, Kinuko; Nakamura, Masafumi; Tanaka, Masao

    2016-02-01

    This study was planned to evaluate the efficacy and safety of preoperative capecitabine and oxaliplatin (XELOX) without radiation in patients with locally advanced lower rectal cancer. Patients with clinical stage II/III lower rectal cancer underwent three cycles of XELOX followed by radical surgery. The primary end-point was the R0 resection rate. Thirty-one patients were recruited between February 2012 and August 2014. The completion rate of neoadjuvant chemotherapy was 96.5% among the 29 patients who received it; the remaining two refused chemotherapy and underwent immediate surgery. Grade 3-4 adverse events occurred in nine patients (31%). All 29 patients who received chemotherapy underwent radical resection. The R0 resection rate was 96.5% among these 29 patients. Pathological complete responses were achieved in three patients (10.3%) and downstaging occurred in 13 (44.8%). This pilot study found that neoadjuvant XELOX for locally advanced lower rectal cancer is feasible and safe. This neoadjuvant treatment improved resection margin status. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Initial Treatment for Newly Diagnosed Elderly Colorectal Cancer Patients: Patterns of Care in Italy and the United States

    PubMed Central

    2013-01-01

    Cancer is a major component of health-care expenditures in most developed countries. The costs of cancer care are expected to increase due to rising incidence (as the population ages) and increasing use of targeted anticancer therapies. However, epidemiological analysis of patterns of care may be required prior to empirically well-grounded cost analyses. Additionally, comparisons of care between health-care delivery systems and countries can identify opportunities to improve practice. They can also increase understanding of patient outcomes and economic consequences of differences in policies related to cancer screening, treatment, and programs of care. In this study, we compared patterns of colorectal cancer treatment during the first year following diagnosis in two cohorts of elderly patients from some areas of Italy and the United States using cancer registry linked to administrative data. We evaluated hospital use, initial treatments (surgery, chemotherapy, and radiation), and timeliness of surgery and adjuvant therapy, taking into account patient characteristics and clinical features, such as stage at diagnosis and the cancer subsite. We observed greater use of adjuvant chemotherapy in stage III and IV colon cancer patients and adjuvant therapy in all stages of rectal cancer patients in the US cohort. We found a higher rate of open surgeries in the Italian cohort, a similar rate of hospitalization, but a higher number of hospital days in the Italian cohort. However, in spite of structural differences between the United States and Italy in health-care organization and delivery as well as in data collection, patterns of care and the timing of care in the year after diagnosis are generally similar among patients within stage of disease at diagnosis. Comparative studies of the costs associated with patterns of cancer care will be important for future research. PMID:23962512

  19. Postsurgical Disparity in Survival between African Americans and Caucasians with Colonic Adenocarcinoma

    PubMed Central

    Alexander, Dominik; Chatla, Chakrapani; Funkhouser, Ellen; Meleth, Sreelatha; Grizzle, William E.; Manne, Upender

    2009-01-01

    BACKGROUND Studies of colorectal adenocarcinoma (CRC) indicate a higher mortality rate for African Americans compared with Caucasians in the United States. In the current study, the authors evaluated the racial differences in survival based on tumor location and pathologic stage between African-American patients and Caucasian patients who underwent surgery alone for CRC. METHODS All 199 African American patients and 292 randomly selected, non-Hispanic Caucasian patients who underwent surgery between 1981 and 1993 for first primary sporadic CRC at the University of Alabama–Birmingham (Birmingham, AL) or an affiliated Veterans Affairs hospital were assessed for differences in survival. None of these patients received preoperative or postoperative neoadjuvant or adjuvant therapy. Survival curves were generated using the Kaplan–Meier method, and hazard ratios with 95% confidence intervals (95% CI) were estimated from Cox proportional hazards models, adjusting for demographic and tumor characteristics. RESULTS African Americans were 1.67 (95% CI, 1.21–2.33) and 1.52 (95% CI, 1.12–2.07) times more likely to die of colonic adenocarcinoma (CAC) within 5 years and 10 years of surgery, respectively, compared with Caucasians. Racial differences in survival were observed among patients with Stage II, III, and IV CAC; however, the strongest and statistically significant association was observed among patients with Stage II CAC. There were no significant racial differences in survival in patients with rectal adenocarcinomas. CONCLUSIONS The current findings suggest that the decreased overall survival at 5 years and 10 years postsurgery observed in African-American patients with CAC may not be attributable to tumor stage at diagnosis or treatment but may be due to differences in other biologic or genetic characteristics between African-American patients and Caucasian patients. PMID:15221990

  20. Screening vs. non-screening detected colorectal cancer: Differences in pre-therapeutic work up and treatment.

    PubMed

    Saraste, D; Martling, A; Nilsson, P J; Blom, J; Törnberg, S; Janson, M

    2017-06-01

    Objectives To compare preoperative staging, multidisciplinary team-assessment, and treatment in patients with screening detected and non-screening detected colorectal cancer. Methods Data on patient and tumour characteristics, staging, multidisciplinary team-assessment and treatment in patients with screening and non-screening detected colorectal cancer from 2008 to 2012 were collected from the Stockholm-Gotland screening register and the Swedish Colorectal Cancer Registry. Results The screening group had a higher proportion of stage I disease (41 vs. 15%; p < 0.001), a more complete staging of primary tumour and metastases and were more frequently multidisciplinary team-assessed than the non-screening group ( p < 0.001). In both groups, patients with endoscopically resected cancers were less completely staged and multidisciplinary team-assessed than patients with surgically resected cancers ( p < 0.001). No statistically significant differences were observed between the screening and non-screening groups in the use of neoadjuvant treatment in rectal cancer (68 vs.76%), surgical treatment with local excision techniques in stage I rectal cancer (6 vs. 9%) or adjuvant chemotherapy in stages II and III disease (46 vs. 52%). Emergency interventions for colorectal cancer occurred in 4% of screening participants vs. 11% of non-compliers. Conclusions Screening detected cancer patients were staged and multidisciplinary team assessed more extensively than patients with non-screening detected cancers. Staging and multidisciplinary team assessment prior to endoscopic resection was less complete compared with surgical resection. Extensive surgical and (neo)adjuvant treatment was given in stage I disease. Participation in screening reduced the risk of emergency surgery for colorectal cancer.

  1. Alvocidib in Treating Patients With B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-01

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  2. Bevacizumab, Cisplatin, Radiation Therapy, and Fluorouracil in Treating Patients With Stage IIB, Stage III, Stage IVA, or Stage IVB Nasopharyngeal Cancer

    ClinicalTrials.gov

    2018-01-04

    Stage II Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage III Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage III Nasopharyngeal Undifferentiated Carcinoma AJCC v7; Stage IV Nasopharyngeal Keratinizing Squamous Cell Carcinoma AJCC v7; Stage IV Nasopharyngeal Undifferentiated Carcinoma AJCC v7

  3. Study of Kidney Tumors in Younger Patients

    ClinicalTrials.gov

    2017-11-27

    Clear Cell Sarcoma of the Kidney; Congenital Mesoblastic Nephroma; Diffuse Hyperplastic Perilobar Nephroblastomatosis; Rhabdoid Tumor of the Kidney; Stage I Renal Cell Cancer; Stage I Wilms Tumor; Stage II Renal Cell Cancer; Stage II Wilms Tumor; Stage III Renal Cell Cancer; Stage III Wilms Tumor; Stage IV Renal Cell Cancer; Stage IV Wilms Tumor; Stage V Wilms Tumor

  4. Aldesleukin and Pembrolizumab in Treating Patients With Stage III-IV Melanoma

    ClinicalTrials.gov

    2018-05-23

    Metastatic Melanoma; Stage III Mucosal Melanoma of the Head and Neck; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Skin Melanoma; Stage IVA Mucosal Melanoma of the Head and Neck; Stage IVB Mucosal Melanoma of the Head and Neck; Stage IVC Mucosal Melanoma of the Head and Neck

  5. Trametinib and Navitoclax in Treating Patients With Advanced or Metastatic Solid Tumors

    ClinicalTrials.gov

    2018-06-08

    Advanced Malignant Solid Neoplasm; KRAS Gene Mutation; Metastatic Malignant Solid Neoplasm; NRAS Gene Mutation; Recurrent Colorectal Carcinoma; Recurrent Lung Carcinoma; Recurrent Malignant Solid Neoplasm; Recurrent Pancreatic Carcinoma; Stage III Colorectal Cancer AJCC v7; Stage III Lung Cancer AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IV Lung Cancer AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7; Unresectable Malignant Neoplasm

  6. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    ClinicalTrials.gov

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  7. Glembatumumab Vedotin, Nivolumab, and Ipilimumab in Treating Patients With Advanced Metastatic Solid Tumors That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-11

    Advanced Malignant Solid Neoplasm; Estrogen Receptor Negative; GPNMB Positive; HER2/Neu Negative; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Progesterone Receptor Negative; Stage III Breast Cancer AJCC v7; Stage III Cutaneous Melanoma AJCC v7; Stage III Uveal Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Uveal Melanoma AJCC v7; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  8. Paclitaxel and Carboplatin Before Radiation Therapy With Paclitaxel in Treating HPV-Positive Patients With Stage III-IV Oropharynx, Hypopharynx, or Larynx Cancer

    ClinicalTrials.gov

    2017-04-19

    Human Papilloma Virus Infection; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Verrucous Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Larynx

  9. Tositumomab and Iodine I 131 Tositumomab in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma in First Remission

    ClinicalTrials.gov

    2017-10-10

    Lymphoid Leukemia in Remission; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  10. Prepare to Care, A Supported Self-Management Intervention for Head and Neck Cancer CaregiversHead and Neck Cancer

    ClinicalTrials.gov

    2018-04-26

    Caregiver; Malignant Head and Neck Neoplasm; Paranasal Sinus Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage I Hypopharyngeal Squamous Cell Carcinoma; Stage I Laryngeal Squamous Cell Carcinoma; Stage I Lip and Oral Cavity Squamous Cell Carcinoma; Stage I Oropharyngeal Squamous Cell Carcinoma; Stage II Hypopharyngeal Squamous Cell Carcinoma; Stage II Laryngeal Squamous Cell Carcinoma; Stage II Lip and Oral Cavity Squamous Cell Carcinoma; Stage II Oropharyngeal Squamous Cell Carcinoma; Stage III Hypopharyngeal Squamous Cell Carcinoma; Stage III Laryngeal Squamous Cell Carcinoma; Stage III Lip and Oral Cavity Squamous Cell Carcinoma; Stage III Oropharyngeal Squamous Cell Carcinoma; Stage IV Hypopharyngeal Squamous Cell Carcinoma; Stage IV Laryngeal Squamous Cell Carcinoma; Stage IV Lip and Oral Cavity Squamous Cell Carcinoma; Stage IV Oropharyngeal Squamous Cell Carcinoma; Stage IVA Hypopharyngeal Squamous Cell Carcinoma; Stage IVA Laryngeal Squamous Cell Carcinoma; Stage IVA Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVA Oropharyngeal Squamous Cell Carcinoma; Stage IVB Hypopharyngeal Squamous Cell Carcinoma; Stage IVB Laryngeal Squamous Cell Carcinoma; Stage IVB Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVB Oropharyngeal Squamous Cell Carcinoma; Stage IVC Hypopharyngeal Squamous Cell Carcinoma; Stage IVC Laryngeal Squamous Cell Carcinoma; Stage IVC Lip and Oral Cavity Squamous Cell Carcinoma; Stage IVC Oropharyngeal Squamous Cell Carcinoma

  11. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariados, Neil, E-mail: nmariados@ampofny.com; Sylvester, John; Shah, Dhiren

    2015-08-01

    Purpose: Perirectal spacing, whereby biomaterials are placed between the prostate and rectum, shows promise in reducing rectal dose during prostate cancer radiation therapy. A prospective multicenter randomized controlled pivotal trial was performed to assess outcomes following absorbable spacer (SpaceOAR system) implantation. Methods and Materials: Overall, 222 patients with clinical stage T1 or T2 prostate cancer underwent computed tomography (CT) and magnetic resonance imaging (MRI) scans for treatment planning, followed with fiducial marker placement, and were randomized to receive spacer injection or no injection (control). Patients received postprocedure CT and MRI planning scans and underwent image guided intensity modulated radiation therapymore » (79.2 Gy in 1.8-Gy fractions). Spacer safety and impact on rectal irradiation, toxicity, and quality of life were assessed throughout 15 months. Results: Spacer application was rated as “easy” or “very easy” 98.7% of the time, with a 99% hydrogel placement success rate. Perirectal spaces were 12.6 ± 3.9 mm and 1.6 ± 2.0 mm in the spacer and control groups, respectively. There were no device-related adverse events, rectal perforations, serious bleeding, or infections within either group. Pre-to postspacer plans had a significant reduction in mean rectal V70 (12.4% to 3.3%, P<.0001). Overall acute rectal adverse event rates were similar between groups, with fewer spacer patients experiencing rectal pain (P=.02). A significant reduction in late (3-15 months) rectal toxicity severity in the spacer group was observed (P=.04), with a 2.0% and 7.0% late rectal toxicity incidence in the spacer and control groups, respectively. There was no late rectal toxicity greater than grade 1 in the spacer group. At 15 months 11.6% and 21.4% of spacer and control patients, respectively, experienced 10-point declines in bowel quality of life. MRI scans at 12 months verified spacer absorption. Conclusions: Spacer application was well tolerated. Increased perirectal space reduced rectal irradiation, reduced rectal toxicity severity, and decreased rates of patients experiencing declines in bowel quality of life. The spacer appears to be an effective tool, potentially enabling advanced prostate RT protocols.« less

  12. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy.

    PubMed

    Mariados, Neil; Sylvester, John; Shah, Dhiren; Karsh, Lawrence; Hudes, Richard; Beyer, David; Kurtzman, Steven; Bogart, Jeffrey; Hsi, R Alex; Kos, Michael; Ellis, Rodney; Logsdon, Mark; Zimberg, Shawn; Forsythe, Kevin; Zhang, Hong; Soffen, Edward; Francke, Patrick; Mantz, Constantine; Rossi, Peter; DeWeese, Theodore; Hamstra, Daniel A; Bosch, Walter; Gay, Hiram; Michalski, Jeff

    2015-08-01

    Perirectal spacing, whereby biomaterials are placed between the prostate and rectum, shows promise in reducing rectal dose during prostate cancer radiation therapy. A prospective multicenter randomized controlled pivotal trial was performed to assess outcomes following absorbable spacer (SpaceOAR system) implantation. Overall, 222 patients with clinical stage T1 or T2 prostate cancer underwent computed tomography (CT) and magnetic resonance imaging (MRI) scans for treatment planning, followed with fiducial marker placement, and were randomized to receive spacer injection or no injection (control). Patients received postprocedure CT and MRI planning scans and underwent image guided intensity modulated radiation therapy (79.2 Gy in 1.8-Gy fractions). Spacer safety and impact on rectal irradiation, toxicity, and quality of life were assessed throughout 15 months. Spacer application was rated as "easy" or "very easy" 98.7% of the time, with a 99% hydrogel placement success rate. Perirectal spaces were 12.6 ± 3.9 mm and 1.6 ± 2.0 mm in the spacer and control groups, respectively. There were no device-related adverse events, rectal perforations, serious bleeding, or infections within either group. Pre-to postspacer plans had a significant reduction in mean rectal V70 (12.4% to 3.3%, P<.0001). Overall acute rectal adverse event rates were similar between groups, with fewer spacer patients experiencing rectal pain (P=.02). A significant reduction in late (3-15 months) rectal toxicity severity in the spacer group was observed (P=.04), with a 2.0% and 7.0% late rectal toxicity incidence in the spacer and control groups, respectively. There was no late rectal toxicity greater than grade 1 in the spacer group. At 15 months 11.6% and 21.4% of spacer and control patients, respectively, experienced 10-point declines in bowel quality of life. MRI scans at 12 months verified spacer absorption. Spacer application was well tolerated. Increased perirectal space reduced rectal irradiation, reduced rectal toxicity severity, and decreased rates of patients experiencing declines in bowel quality of life. The spacer appears to be an effective tool, potentially enabling advanced prostate RT protocols. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Fludarabine Phosphate, Melphalan, Total-Body Irradiation, Donor Stem Cell Transplant in Treating Patients With Hematologic Cancer or Bone Marrow Failure Disorders

    ClinicalTrials.gov

    2017-11-29

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Aplastic Anemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Fanconi Anemia; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Waldenström Macroglobulinemia

  14. Fatigue Interventions in Cancer (Exercise Intervention)

    ClinicalTrials.gov

    2018-01-29

    Sedentary Lifestyle; Stage III Breast Cancer AJCC v7; Stage III Prostate Cancer AJCC v7; Stage IIIA Breast Cancer AJCC v7; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7; Stage IV Prostate Cancer AJCC v7

  15. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2018-01-24

    Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage II Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult T-Cell Leukemia/Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  16. HIV-Resistant Gene Modified Stem Cells and Chemotherapy in Treating Patients With Lymphoma With HIV Infection

    ClinicalTrials.gov

    2017-11-08

    Human Immunodeficiency Virus 1 Positive; Stage I Adult Hodgkin Lymphoma; Stage I Adult Non-Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage II Adult Non-Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Non-Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Non-Hodgkin Lymphoma

  17. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  18. The proportion cured of patients diagnosed with Stage III-IV cutaneous malignant melanoma in Sweden 1990-2007: A population-based study.

    PubMed

    Eriksson, Hanna; Lyth, Johan; Andersson, Therese M-L

    2016-06-15

    The survival in cutaneous malignant melanoma (CMM) is highly dependent on the stage of the disease. Stage III-IV CMM patients are at high risk of relapse with a heterogeneous outcome, but not all experience excess mortality due to their disease. This group is referred to as the cure proportion representing the proportion of patients who experience the same mortality rate as the general population. The aim of this study was to estimate the cure proportion of patients diagnosed with Stage III-IV CMM in Sweden. From the population-based Swedish Melanoma Register, we included 856 patients diagnosed with primary Stage III-IV CMM, 1990-2007, followed-up through 2013. We used flexible parametric cure models to estimate cure proportions and median survival times (MSTs) of uncured by sex, age, tumor site, ulceration status (in Stage III patients) and disease stage. The standardized (over sex, age and site) cure proportion was lower in Stage IV CMMs (0.15, 95% CI 0.09-0.22) than non-ulcerated Stage III CMMs (0.48, 95% CI 0.41-0.55) with a statistically significant difference of 0.33 (95% CI = 0.24-0.41). Ulcerated Stage III CMMs had a cure proportion of 0.27 (95% CI 0.21-0.32) with a statistically significant difference compared to non-ulcerated Stage III CMMs (difference 0.21; 95% CI = 0.13-0.30). The standardized MST of uncured was approximately 9-10 months longer for non-ulcerated versus ulcerated Stage III CMMs. We could demonstrate a significantly better outcome in patients diagnosed with non-ulcerated Stage III CMMs compared to ulcerated Stage III CMMs and Stage IV disease after adjusting for age, sex and tumor site. © 2016 UICC.

  19. Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2018-02-26

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Grade III Lymphomatoid Granulomatosis; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Renal Cell Carcinoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Clear Cell Renal Cell Carcinoma; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Juvenile Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Renal Cell Cancer; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Relapsing Chronic Myelogenous Leukemia; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Adult T-cell Leukemia/Lymphoma; Stage I Childhood Anaplastic Large Cell Lymphoma; Stage I Childhood Large Cell Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Childhood Small Noncleaved Cell Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage II Adult T-cell Leukemia/Lymphoma; Stage II Childhood Anaplastic Large Cell Lymphoma; Stage II Childhood Large Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Childhood Small Noncleaved Cell Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Childhood Anaplastic Large Cell Lymphoma; Stage III Childhood Large Cell Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Childhood Small Noncleaved Cell Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Childhood Anaplastic Large Cell Lymphoma; Stage IV Childhood Large Cell Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Childhood Small Noncleaved Cell Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Renal Cell Cancer; T-cell Large Granular Lymphocyte Leukemia; Type 1 Papillary Renal Cell Carcinoma; Type 2 Papillary Renal Cell Carcinoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies; Waldenström Macroglobulinemia

  20. Bortezomib in Treating Patients With Stage IIIB or Stage IV Lung Cancer

    ClinicalTrials.gov

    2014-08-04

    Adenocarcinoma of the Lung; Bronchoalveolar Cell Lung Cancer; Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  1. Palbociclib With Cisplatin or Carboplatin in Advanced Solid Tumors

    ClinicalTrials.gov

    2017-11-22

    Solid Neoplasm; Stage III Pancreatic Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Non-Small Cell Lung Cancer; Stage IVA Pancreatic Cancer; Stage IVB Pancreatic Cancer; Sarcoma; Colorectal Cancer; Head and Neck Cancer; Cancer of Unknown Primary; Bladder Cancer; Ovarian Cancer

  2. Acute pandysautonomia: mass spectrometric and histopathological studies of the sympathetic nervous system during long term L-threo-3,4-dihydroxyphenylserine treatment.

    PubMed Central

    Ushiyama, M; Ikeda, S; Suzuki, T; Yazawa, M; Yanagisawa, N; Tsujino, S

    1996-01-01

    Stable isotope labelled L-threo-3,4-dihydroxyphenylserine (L-DOPS) infusion tests and histopathological studies of the rectal autonomic nerves were performed in a patient with acute pandysautonomia. A pronounced increase in blood pressure occurred and stable isotope labelled noradrenaline appeared in the plasma during L-DOPS infusion in the acute stage, but decreased during the next three years. Noradrenergic nerve fibres in the rectal mucosa showed no recovery, and so clinical improvement had occurred without apparent significant regeneration of the peripheral autonomic nerves. Images PMID:8676171

  3. Clinical outcome in women with HER2-positive de novo or recurring stage IV breast cancer receiving trastuzumab-based therapy.

    PubMed

    Rossi, Valentina; Nolè, Franco; Redana, Stefania; Adamoli, Laura; Martinello, Rossella; Aurilio, Gaetano; Verri, Elena; Sapino, Anna; Viale, Giuseppe; Aglietta, Massimo; Montemurro, Filippo

    2014-02-01

    Five to 10% of women with newly diagnosed breast cancer have synchronous metastases (de novo stage IV). A further 20% will develop metastases during follow-up (recurring stage IV). We compared the clinical outcomes of women with HER2-positive metastatic breast cancer (MBC) receiving first-line trastuzumab-based therapy according to type of metastatic presentation. Retrospective analysis of 331 MBC patients receiving first-line trastuzumab-based treatment. Response rates (RR) were compared by the chi-square test. Time-to progression (TTP) and overall survival (OS) curves were compared by the log-rank test. Cox-proportional hazards models were used to study predictors of PFS and OS, including the type of metastatic presentation. Seventy-seven patients (23%) had de novo stage IV disease. Forty-six of these patients underwent surgery of the primary ("de novo/surgery"). Response rates to first-line trastuzumab-based therapy and median progression-free survival did not differ in patients with "recurring", "de novo/surgery" and "de novo" without surgery ("de novo/no surgery) stage IV breast cancer. However, women with "de novo/surgery" stage IV breast cancer had the longest median OS (60 months), and those with "de novo/no surgery" stage IV breast cancer the shortest (26 months). For women with recurring metastatic breast cancer median OS was 40 months (overall log-rank test, p < 0.01). Multivariate analysis confirmed these findings. Our analysis shows that response rates and PFS to first-line trastuzumab-based therapy do not differ significantly between de novo and recurring stage IV, HER2 positive breast cancer. The observed difference in OS favoring women with de novo stage IV disease submitted to surgery of the primary tumor could be the result of a selection bias. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Resection of synchronous liver metastases between radiotherapy and definitive surgery for locally advanced rectal cancer: short-term surgical outcomes, overall survival and recurrence-free survival.

    PubMed

    Labori, K J; Guren, M G; Brudvik, K W; Røsok, B I; Waage, A; Nesbakken, A; Larsen, S; Dueland, S; Edwin, B; Bjørnbeth, B A

    2017-08-01

    There is debate as to the correct treatment algorithm sequence for patients with locally advanced rectal cancer with liver metastases. The aim of the study was to assess safety, resectability and survival after a modified 'liver-first' approach. This was a retrospective study of patients undergoing preoperative radiotherapy for the primary rectal tumour, followed by liver resection and, finally, resection of the primary tumour. Short-term surgical outcome, overall survival and recurrence-free survival are reported. Between 2009 and 2013, 45 patients underwent liver resection after preoperative radiotherapy. Thirty-four patients (76%) received neoadjuvant chemotherapy, 24 (53%) concomitant chemotherapy during radiotherapy and 17 (43%) adjuvant chemotherapy. The median time interval from the last fraction of radiotherapy to liver resection and rectal surgery was 21 (range 7-116) and 60 (range 31-156) days, respectively. Rectal resection was performed in 42 patients but was not performed in one patient with complete response and two with progressive metastatic disease. After rectal surgery three patients did not proceed to a planned second stage liver (n = 2) or lung (n = 1) resection due to progressive disease. Clavien-Dindo ≥Grade III complications developed in 6.7% after liver resection and 19% after rectal resection. The median overall survival and recurrence-free survival in the patients who completed the treatment sequence (n = 40) were 49.7 and 13.0 months, respectively. Twenty of the 30 patients who developed recurrence underwent further treatment with curative intent. The modified liver-first approach is safe and efficient in patients with locally advanced rectal cancer and allows initial control of both the primary tumour and the liver metastases. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  5. Cisplatin and Flavopiridol in Treating Patients With Advanced Ovarian Epithelial Cancer or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2014-05-06

    Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  6. Radiation Therapy, Amifostine, and Chemotherapy in Treating Young Patients With Newly Diagnosed Nasopharyngeal Cancer

    ClinicalTrials.gov

    2017-05-15

    Stage I Lymphoepithelioma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx

  7. Aflibercept in Treating Patients With Recurrent and/or Metastatic Thyroid Cancer That Did Not Respond to Radioactive Iodine Therapy

    ClinicalTrials.gov

    2017-01-24

    Recurrent Thyroid Gland Carcinoma; Stage III Thyroid Gland Follicular Carcinoma; Stage III Thyroid Gland Papillary Carcinoma; Stage IV Thyroid Gland Follicular Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma

  8. VEGF Trap in Treating Patients With Recurrent Stage III or Stage IV Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-26

    Ciliary Body and Choroid Melanoma, Medium/Large Size; Extraocular Extension Melanoma; Iris Melanoma; Metastatic Intraocular Melanoma; Recurrent Intraocular Melanoma; Recurrent Melanoma; Stage III Melanoma; Stage IV Melanoma

  9. Rituximab and Dexamethasone in Treating Patients With Low-Grade Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2017-04-14

    Contiguous Stage II Grade 1 Follicular Lymphoma; Contiguous Stage II Grade 2 Follicular Lymphoma; Contiguous Stage II Marginal Zone Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Splenic Marginal Zone Lymphoma; Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage I Marginal Zone Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Marginal Zone Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Marginal Zone Lymphoma; Waldenstrom Macroglobulinemia

  10. Improving Goals of Care Discussion in Advanced Cancer Patients

    ClinicalTrials.gov

    2017-08-23

    Primary Stage IV Hepatobiliary; Esophageal; Colorectal Cancer; Glioblastoma; Cancer of Stomach; Cancer of Pancreas; Melanoma; Head or Neck Cancer; Stage III; Stage IV; Lung Cancers; Pancreatic Cancers

  11. Anti-SEMA4D Monoclonal Antibody VX15/2503 With Nivolumab or Ipilimumab in Treating Patients With Stage III or IV Melanoma

    ClinicalTrials.gov

    2018-06-15

    Metastatic Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  12. Everolimus and Vatalanib in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2018-01-12

    Gastrinoma; Glucagonoma; Insulinoma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Melanoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Pheochromocytoma; Recurrent Renal Cell Cancer; Somatostatinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Thyroid Gland Medullary Carcinoma; Unspecified Adult Solid Tumor, Protocol Specific

  13. RO4929097 and Whole-Brain Radiation Therapy or Stereotactic Radiosurgery in Treating Patients With Brain Metastases From Breast Cancer

    ClinicalTrials.gov

    2015-01-22

    Estrogen Receptor-negative Breast Cancer; Extensive Stage Small Cell Lung Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Tumors Metastatic to Brain; Unspecified Adult Solid Tumor, Protocol Specific

  14. Brentuximab Vedotin and Combination Chemotherapy in Treating Patients With Stage II-IV HIV-Associated Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-06-11

    AIDS-Related Hodgkin Lymphoma; Ann Arbor Stage II Hodgkin Lymphoma; Ann Arbor Stage IIA Hodgkin Lymphoma; Ann Arbor Stage IIB Hodgkin Lymphoma; Ann Arbor Stage III Hodgkin Lymphoma; Ann Arbor Stage IIIA Hodgkin Lymphoma; Ann Arbor Stage IIIB Hodgkin Lymphoma; Ann Arbor Stage IV Hodgkin Lymphoma; Ann Arbor Stage IVA Hodgkin Lymphoma; Ann Arbor Stage IVB Hodgkin Lymphoma; Classic Hodgkin Lymphoma; HIV Infection

  15. Ofatumumab, Pentostatin, and Cyclophosphamide in Treating Patients With Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2014-10-30

    Hematopoietic/Lymphoid Cancer; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  16. Results of Neoadjuvant Short-Course Radiation Therapy Followed by Transanal Endoscopic Microsurgery for T1-T2 N0 Extraperitoneal Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arezzo, Alberto, E-mail: alberto.arezzo@unito.it; Arolfo, Simone; Allaix, Marco Ettore

    Purpose: This study was undertaken to assess the short-term outcomes of neoadjuvant short-course radiation therapy (SCRT) followed by transanal endoscopic microsurgery (TEM) for T1-T2 N0 extraperitoneal rectal cancer. Recent studies suggest that neoadjuvant radiation therapy followed by TEM is safe and has results similar to those with abdominal rectal resection for the treatment of extraperitoneal early rectal cancer. Methods and Materials: We planned a prospective pilot study including 25 consecutive patients with extraperitoneal T1-T2 N0 M0 rectal adenocarcinoma undergoing SCRT followed by TEM 4 to 10 weeks later (SCRT-TEM). Safety, efficacy, and acceptability of this treatment modality were compared with historicalmore » groups of patients with similar rectal cancer stage and treated with long-course radiation therapy (LCRT) followed by TEM (LCRT-TEM), TEM alone, or laparoscopic rectal resection with total mesorectal excision (TME) at our institution. Results: The study was interrupted after 14 patients underwent SCRT of 25 Gy in 5 fractions followed by TEM. Median time between SCRT and TEM was 7 weeks (range: 4-10 weeks). Although no preoperative complications occurred, rectal suture dehiscence was observed in 7 patients (50%) at 4 weeks follow-up, associated with an enterocutaneous fistula in the sacral area in 2 cases. One patient required a colostomy. Quality of life at 1-month follow-up, according to European Organization for Research and Treatment of Cancer QLQ-C30 survey score, was significantly worse in SCRT-TEM patients than in LCRT-TEM patients (P=.0277) or TEM patients (P=.0004), whereas no differences were observed with TME patients (P=.604). At a median follow-up of 10 months (range: 6-26 months), we observed 1 (7%) local recurrence at 6 months that was treated with abdominoperineal resection. Conclusions: SCRT followed by TEM for T1-T2 N0 rectal cancer is burdened by a high rate of painful dehiscence of the suture line and enterocutaneous fistula, compared to TEM alone and TEM following LCRT, which forced us to stop the study.« less

  17. Perioperative FOLFOX4 plus bevacizumab for initially unresectable advanced colorectal cancer (NAVIGATE-CRC-01).

    PubMed

    Suenaga, Mitsukuni; Fujimoto, Yoshiya; Matsusaka, Satoshi; Shinozaki, Eiji; Akiyoshi, Takashi; Nagayama, Satoshi; Fukunaga, Yosuke; Oya, Masatoshi; Ueno, Masashi; Mizunuma, Nobuyuki; Yamaguchi, Toshiharu

    2015-01-01

    Perioperative chemotherapy combined with surgery for liver metastases is considered an active strategy in metastatic colorectal cancer (CRC). However, its impact on initially unresectable, previously untreated advanced CRC, regardless of concurrent metastases, remains to be clarified. A Phase II study was conducted to evaluate the safety and efficacy of perioperative FOLFOX4 plus bevacizumab for initially unresectable advanced CRC. Patients with previously untreated advanced colon or rectal cancer initially diagnosed as unresectable advanced CRC (TNM stage IIIb, IIIc, or IV) but potentially resectable after neoadjuvant chemotherapy (NAC) were studied. Preoperatively, patients received six cycles of NAC (five cycles of neoadjuvant FOLFOX4 plus bevacizumab followed by one cycle of FOLFOX4 alone). The interval between the last dose of bevacizumab and surgery was at least 5 weeks. Six cycles of adjuvant FOLFOX4 plus bevacizumab were given after surgery. The completion rate of NAC and feasibility of curative surgery were the primary endpoints. An interim analysis was performed at the end of NAC in the 12th patient to assess the completion rate of NAC. The median follow-up time was 56 months. The characteristics of the patients were as follows: sex, eight males and four females; tumor location, sigmoid colon in three, ascending colon in one, and rectum (above the peritoneal reflection) in eight; stage, III in eight and IV in four (liver or lymph nodes). All patients completed six cycles of NAC. There were no treatment-related severe adverse events or deaths. An objective response to NAC was achieved in nine patients (75%), and no disease progression was observed. Eleven patients underwent curative tumor resection, including metastatic lesions. In December 2012, this Phase II study was terminated because of slow registration. Perioperative FOLFOX4 plus bevacizumab is well tolerated and has a promising response rate leading to curative surgery, which offers a survival benefit in initially unresectable advanced CRC with concurrent metastatic lesions.

  18. Eribulin Mesylate and Gemcitabine Hydrochloride in Treating Patients With Metastatic Solid Tumors or Solid Tumors That Cannot be Removed by Surgery

    ClinicalTrials.gov

    2017-09-19

    Adult Solid Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Uterine Corpus Carcinoma; Stage III Ovarian Cancer; Stage III Uterine Corpus Cancer; Stage IV Ovarian Cancer; Stage IV Uterine Corpus Cancer

  19. Adjuvant chemoradiotherapy instead of revision radical resection after local excision for high-risk early rectal cancer.

    PubMed

    Jeong, Jae-Uk; Nam, Taek-Keun; Kim, Hyeong-Rok; Shim, Hyun-Jeong; Kim, Yong-Hyub; Yoon, Mee Sun; Song, Ju-Young; Ahn, Sung-Ja; Chung, Woong-Ki

    2016-09-05

    After local excision of early rectal cancer, revision radical resection is recommended for patients with high-risk pathologic stage T1 (pT1) or pT2 cancer, but the revision procedure has high morbidity rates. We evaluated the efficacy of adjuvant concurrent chemoradiotherapy (CCRT) for reducing recurrence after local excision in these patients. Eighty-three patients with high-risk pT1 or pT2 rectal cancer underwent postoperative adjuvant CCRT after local excision. We defined high-risk features as pT1 having tumor size ≤3 cm, and/or resection margin (RM) ≤3 mm, and/or lymphovascular invasion (LVI), and/or non-full thickness excision such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD), or unknown records regarding those features, or pT2 cancer. Radiotherapy was administered with a median dose of 50.4 Gy in 1.8 Gy fraction size over 5-7 weeks. Concurrent 5-fluorouracil and leucovorin were administered for 4 days in the first and fifth weeks of radiotherapy. The median interval between local excision and radiotherapy was 34 (range, 11-104) days. Fifteen patients (18.1 %) had stage pT2 tumors, 22 (26.5 %) had RM of ≥3 mm, and 21 (25.3 %) had tumors of ≥3 cm in size. Thirteen patients (15.7 %) had LVI. Transanal excision was performed in 58 patients (69.9 %) and 25 patients (30.1 %) underwent EMR or ESD. The median follow-up was 61 months. The 5-year overall survival (OS), locoregional relapse-free survival (LRFS), and disease-free survival (DFS) rates for all patients were 94.9, 91.0, and 89.8 %, respectively. Multivariate analysis did not identify any significant factors for OS or LRFS, but the only significant factor affecting DFS was the pT stage (p = 0.027). In patients with high-risk pT1 rectal cancer, adjuvant CCRT after local excision could be an effective alternative treatment instead of revision radical resection. However, patients with pT2 stage showed inferior DFS compared to pT1.

  20. EF5 in Finding Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Cervical, Endometrial, or Ovarian Epithelial Cancer

    ClinicalTrials.gov

    2013-01-15

    Primary Peritoneal Cavity Cancer; Stage I Endometrial Carcinoma; Stage I Ovarian Epithelial Cancer; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Endometrial Carcinoma; Stage II Ovarian Epithelial Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Ovarian Epithelial Cancer; Stage IV Endometrial Carcinoma; Stage IV Ovarian Epithelial Cancer; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  1. Pembrolizumab and Combination Chemotherapy in Treating Patients With Previously Untreated Diffuse Large B-cell Lymphoma or Grade 3b Follicular Lymphoma

    ClinicalTrials.gov

    2017-10-24

    Composite Lymphoma; Grade 3b Follicular Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage I Follicular Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage II Follicular Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage III Follicular Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma; Stage IV Follicular Lymphoma

  2. Cyclophosphamide, Alvocidib, and Rituximab in Treating Patients With High Risk B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2015-11-10

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  3. Preoperative high-resolution magnetic resonance imaging can identify good prognosis stage I, II, and III rectal cancer best managed by surgery alone: a prospective, multicenter, European study.

    PubMed

    Taylor, Fiona G M; Quirke, Philip; Heald, Richard J; Moran, Brendan; Blomqvist, Lennart; Swift, Ian; Sebag-Montefiore, David J; Tekkis, Paris; Brown, Gina

    2011-04-01

    To assess local recurrence, disease-free survival, and overall survival in magnetic resonance imaging (MRI)-predicted good prognosis tumors treated by surgery alone. The MERCURY study reported that high-resolution MRI can accurately stage rectal cancer. The routine policy in most centers involved in the MERCURY study was primary surgery alone in MRI-predicted stage II or less and in MRI "good prognosis" stage III with selective avoidance of neoadjuvant therapy. Data were collected prospectively on all patients included in the MERCURY study who were staged as MRI-defined "good" prognosis tumors. "Good" prognosis included MRI-predicted safe circumferential resection margins, with MRI-predicted T2/T3a/T3b (less than 5 mm spread from muscularis propria), regardless of MRI N stage. None received preoperative or postoperative radiotherapy. Overall survival, disease-free survival, and local recurrence were calculated. Of 374 patients followed up in the MERCURY study, 122 (33%) were defined as "good prognosis" stage III or less on MRI. Overall and disease-free survival for all patients with MRI "good prognosis" stage I, II and III disease at 5 years was 68% and 85%, respectively. The local recurrence rate for this series of patients predicted to have a good prognosis tumor on MRI was 3%. The preoperative identification of good prognosis tumors using MRI will allow stratification of patients and better targeting of preoperative therapy. This study confirms the ability of MRI to select patients who are likely to have a good outcome with primary surgery alone.

  4. Variability and Reproducibility of 3rd-generation dual-source dynamic volume perfusion CT Parameters in Comparison to MR-perfusion Parameters in Rectal Cancer.

    PubMed

    Sudarski, Sonja; Henzler, Thomas; Floss, Teresa; Gaa, Tanja; Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O; Attenberger, Ulrike I

    2018-05-02

    To compare in patients with untreated rectal cancer quantitative perfusion parameters calculated from 3 rd -generation dual-source dynamic volume perfusion CT (dVPCT) with 3-Tesla-MR-perfusion with regard to data variability and tumour differentiation. In MR-perfusion, plasma flow (PF), plasma volume (PV) and mean transit time (MTT) were assessed in two measurements (M1 and M2) by the same reader. In dVPCT, blood flow (BF), blood volume (BV), MTT and permeability (PERM) were assessed respectively. CT dose values were calculated. 20 patients (60 ± 13 years) were analysed. Intra-individual and intra-reader variability of duplicate MR-perfusion measurements was higher compared to duplicate dVPCT measurements. dVPCT-derived BF, BV and PERM could differentiate between tumour and normal rectal wall (significance level for M1 and M2, respectively, regarding BF: p < 0.0001*/0.0001*; BV: p < 0.0001*/0.0001*; MTT: p = 0.93/0.39; PERM: p < 0.0001*/0.0001*), with MR-perfusion this was true for PF and PV (p-values M1/M2 for PF: p = 0.04*/0.01*; PV: p = 0.002*/0.003*; MTT: p = 0.70/0.27*). Mean effective dose of CT-staging incl. dVPCT was 29 ± 6 mSv (20 ± 5 mSv for dVPCT alone). In conclusion, dVPCT has a lower data variability than MR-perfusion while both dVPCT and MR-perfusion could differentiate tumour tissue from normal rectal wall. With 3 rd -generation dual-source CT dVPCT could be included in a standard CT-staging without exceeding national dose reference values.

  5. Treatment-Related Morbidity in Prostate Cancer: A Comparison of 3-Dimensional Conformal Radiation Therapy With and Without Image Guidance Using Implanted Fiducial Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jasmeet, E-mail: drsingh.j@gmail.com; Greer, Peter B.; White, Martin A.

    Purpose: To estimate the prevalence of rectal and urinary dysfunctional symptoms using image guided radiation therapy (IGRT) with fiducials and magnetic resonance planning for prostate cancer. Methods and Materials: During the implementation stages of IGRT between September 2008 and March 2010, 367 consecutive patients were treated with prostatic irradiation using 3-dimensional conformal radiation therapy with and without IGRT (non-IGRT). In November 2010, these men were asked to report their bowel and bladder symptoms using a postal questionnaire. The proportions of patients with moderate to severe symptoms in these groups were compared using logistic regression models adjusted for tumor and treatmentmore » characteristic variables. Results: Of the 282 respondents, the 154 selected for IGRT had higher stage tumors, received higher prescribed doses, and had larger volumes of rectum receiving high dosage than did the 128 selected for non-IGRT. The follow-up duration was 8 to 26 months. Compared with the non-IGRT group, improvement was noted in all dysfunctional rectal symptoms using IGRT. In multivariable analyses, IGRT improved rectal pain (odds ratio [OR] 0.07 [0.009-0.7], P=.02), urgency (OR 0.27 [0.11-0.63], P=<.01), diarrhea (OR 0.009 [0.02-0.35], P<.01), and change in bowel habits (OR 0.18 [0.06-0.52], P<.010). No correlation was observed between rectal symptom levels and dose-volume histogram data. Urinary dysfunctional symptoms were similar in both treatment groups. Conclusions: In comparison with men selected for non-IGRT, a significant reduction of bowel dysfunctional symptoms was confirmed in men selected for IGRT, even though they had larger volumes of rectum treated to higher doses.« less

  6. Efficacy and safety of neoadjuvant chemotherapy with oxaliplatin, 5-fluorouracil, and levofolinate for T3 or T4 stage II/III rectal cancer: the FACT trial.

    PubMed

    Koike, Junichi; Funahashi, Kimihiko; Yoshimatsu, Kazuhiko; Yokomizo, Hajime; Kan, Hayato; Yamada, Takeshi; Ishida, Hideyuki; Ishibashi, Keiichiro; Saida, Yoshihisa; Enomoto, Toshiyuki; Katsumata, Kenji; Hisada, Masayuki; Hasegawa, Hirotoshi; Koda, Keiji; Ochiai, Takumi; Sakamoto, Kazuhiro; Shiokawa, Hiroyuki; Ogawa, Shimpei; Itabashi, Michio; Kameoka, Shingo

    2017-03-01

    A multicenter phase II clinical study was performed in patients with T3 or T4 stage II/III rectal cancer to evaluate the efficacy and safety of neoadjuvant chemotherapy with 5-fluorouracil, levofolinate, and oxaliplatin (mFOLFOX6). Patients received four 2-week cycles of mFOLFOX6 therapy (oxaliplatin at 85 mg/m 2  + leucovorin at 200 mg/m 2  + fluorouracil as a 400 mg/m 2 bolus followed by infusion of 2400 mg/m 2 over 46 h, all on Day 1). They were evaluated by computed tomography after completion of the fourth cycle. If there was no disease progression, two additional cycles were administered and then surgery was performed. Adjuvant chemotherapy was generally administered for 6 months using appropriate regimens at the discretion of the physician. mFOLFOX6 therapy was given to 52 patients with locally advanced rectal cancer. The preoperative response rate was 48.8% and the operation rate was 80.8%. Serious adverse events of Grade 3-4 were neutropenia (n = 5), leukopenia (n = 1), thrombocytopenia (n = 1), febrile neutropenia (n = 1), nausea (n = 1), vomiting (n = 1), and peripheral neuropathy (n = 2). The R0 resection rate, pathologic complete response rate, and sphincter preservation rate were 91.0, 11.9, and 73.8%, respectively. Postoperative complications were tolerable. The present results suggested that neoadjuvant therapy with mFOLFOX6 is safe and effective, representing a reasonable treatment option for locally advanced rectal cancer.

  7. Re-Staging Following Long-Course Chemoradiotherapy For Rectal Cancer: Does It Influence Management?

    PubMed

    McBrearty, A; McCallion, K; Moorehead, R J; McAllister, I; Mulholland, K; Gilliland, R; Campbell, W J

    2016-09-01

    In patients with locally advanced or low rectal cancers, long-course chemoradiotherapy (LCCRT) is recommended prior to surgical management. 1 The need for restaging afterwards has been questioned as it may be difficult to interpret imaging due to local tissue effects of chemoradiotherapy. The purpose of this study was to determine if restaging affected the management of patients receiving long-course chemoradiotherapy for rectal cancer. A retrospective review of patients with rectal cancer discussed at the South Eastern Health and Social Care Trust Lower Gastrointestinal Multi-Disciplinary Team Meeting (LGIMDT) in 2013 who had received long-course chemoradiotherapy was performed. Patients were identified from the Trust Audit Department, LGIMDT notes and patient records. Imaging results and outcomes from meetings were obtained through the Northern Ireland Picture Archiving and Communications System ® (NIPACS) and Electronic Care Record ® (ECR). Data including patient demographics, initial radiological staging and LGIMDT discussion, restaging modality and result, outcome from post-treatment LGIMDT discussion and recorded changes in management plans were documented using a proforma. Seventy-one patients with rectal cancer were identified as having LCCRT in 2013 (M:F 36:35; age range 31 - 85 years). Fifty-nine patients were restaged following long-course treatment with computed tomography (CT) and magnetic resonance imaging (MRI). Twelve patients did not undergo restaging. Data was not available for 6 patients, one patient underwent emergency surgery, two patients were not fit for treatment, one failed to attend for restaging and two patients died prior to completion of treatment. Of the 59 patients restaged, 19 patients (32%) had their management plan altered from that which had been proposed at the initial LGIMDT discussion. The most common change in plan was not to operate. Ten patients had a complete clinical and radiological response to treatment and have undergone intensive follow-up. Nine patients had disease progression, with 3 requiring palliative surgery and 6 referred for palliative care. Of those patients who were restaged, 32% had their management plan altered from that recorded at the initial LGIMDT discussion. Seventeen per cent of patients in this group had a complete clinical and radiological response to treatment. Fifteen percent demonstrated disease progression. We recommend, therefore, that patients with rectal cancer be restaged with CT and MRI following long-course chemoradiotherapy as surgery may be avoided in up to 27% of cases.

  8. MRI assessment and outcomes in patients receiving neoadjuvant chemotherapy only for primary rectal cancer: long-term results from the GEMCAD 0801 trial.

    PubMed

    Patel, U B; Brown, G; Machado, I; Santos-Cores, J; Pericay, C; Ballesteros, E; Salud, A; Isabel-Gil, M; Montagut, C; Maurel, J; Ramón-Ayuso, J; Martin, N; Estevan, R; Fernandez-Martos, C

    2017-02-01

    Primary chemotherapy has been tested as a possible approach for patients with high risk features but predicted clear mesorectal margins on preoperative MRI assessment. This study investigates the prognostic relevance of baseline and post-treatment MRI and pathology staging in rectal cancer patients undergoing primary chemotherapy. Forty-six patients with T3 tumour > =2 mm from the mesorectal fascia were prospectively treated with Neoadjuvant Capecitabine, Oxaliplatin and Bevacizumab prior to surgery between 2009 and 2011. The baseline and post-treatment MRI: T, Nodal and Extra-mural venous invasion (EMVI) status were recorded as well as post-treatment MRI Tumour regression grade (TRG) and modified-RECIST assessment of tumour length. The post-treatment pathology (yp) assessments of T3 substage, N, EMVI and TRG status were also recorded. Three-year disease-free survival (DFS) and cumulative incidence of recurrence were estimated by using the Kaplan-Meier product-limit method, and Cox proportional hazards models were used to determine associations between staging and response on MRI and pathology with survival outcomes. About 46 patients underwent neoadjuvant chemotherapy alone for high risk margin safe primary rectal cancer. The median follow-up was 41 months, 5 patients died and 11 patients experienced relapse (2 local, 8 distant and 1 both). In total 23/46 patients were identified with MRI features of EMVI at baseline. mrEMVI positive status carried independent prognostic significance for DFS (P = 0.0097) with a hazard ratio of 31.33 (95% CI: 2.3-425.4). The histopathologic factor that was of independent prognostic importance was a final ypT downstage of ypT3a or less, hazard ratio: 14.0 (95% CI: 1.5-132.5). mrEMVI is an independent prognostic factor at baseline for poor outcomes in rectal cancer treated with neoadjuvant chemotherapy while ≤ypT3a is associated with an improvement in DFS. Future preoperative therapy evaluation in rectal cancer patients will need to stratify treatment according to baseline EMVI status as a crucial risk factor for recurrence in patients with predicted CRM clear rectal cancer. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Use of Valtrac™-Secured Intracolonic Bypass in Laparoscopic Rectal Cancer Resection

    PubMed Central

    Ye, Feng; Chen, Dong; Wang, Danyang; Lin, Jianjiang; Zheng, Shusen

    2014-01-01

    Abstract The occurrence of anastomotic leakage (AL) remains a major concern in the early postoperative stage. Because of the relatively high morbidity and mortality of AL in patients with laparoscopic low rectal cancer who receive an anterior resection, a fecal diverting method is usually introduced. The Valtrac™-secured intracolonic bypass (VIB) was used in open rectal resection, and played a role of protecting the anastomotic site. This study was designed to assess the efficacy and safety of the VIB in protecting laparoscopic low rectal anastomosis and to compare the efficacy and complications of VIB with those of loop ileostomy (LI). Medical records of the 43 patients with rectal cancer who underwent elective laparoscopic low anterior resection and received VIB procedure or LI between May 2011 and May 2013 were retrospectively analyzed, including the patients’ demographics, clinical features, and operative data. Twenty-four patients received a VIB and 19 patients a LI procedure. Most of the demographics and clinical features of the groups, including Dukes stages, were similar. However, the median distance of the tumor edge from the anus verge in the VIB group was significantly longer (7.5 cm; inter-quartile range [IQR] 7.0–9.5 cm) than that of the L1 group (6.0 cm; IQR 6.0–7.0 cm). None of the patients developed clinical AL. The comparisons between the LI and the VIB groups were adjusted for the significant differences in the tumor level of the groups. After adjustment, the LI group experienced longer overall postoperative hospital stay (14.0 days, IQR: 12.0, 16.0 days; P < 0.001) and incurred higher costs ($6300 (IQR: $5900, $6600)) than the VIB group (7.0 days, $4800; P < 0.05). Stoma-related complications in the ileostomy group included dermatitis (n = 2), stoma bleeding (n = 1), and wound infection after closure (n = 2). No BAR-related complications occurred. The mean time to Valtrac™ ring loosening was 14.1 ± 3.2 days. The VIB procedure, as a good partner with the laparoscopic rectal cancer resection, appears to be a safe and effective, but time-limited, diverting technique to protect an elective low colorectal anastomosis. PMID:25546660

  10. Nivolumab and Ipilimumab With or Without Sargramostim in Treating Patients With Stage III-IV Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-20

    Recurrent Melanoma of the Skin; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  11. Conventional (CH) vs. stapled hemorrhoidectomy (SH) in surgical treatment of hemorrhoids. Ten years experience.

    PubMed

    Manfredelli, Simone; Montalto, Gioacchino; Leonetti, Giovanni; Covotta, Marco; Amatucci, Chiara; Covotta, Alfredo; Forte, Angelo

    2012-01-01

    Interest about hemorrhoids is related to its high incidence and elevated social costs that derive from its treatment. Several comparative studies are reported in Literature to define a standard for ideal treatment of hemorrhoidal disease. Radical surgery is the only therapeutic option in case of III and IV stage haemorrhoids. Hemorrhoids surgical techniques are classified as Open, Closed and Stapled ones. We report our decennial experience on surgical treatment focusing on early, middle and late complications, indications and contraindications, satisfaction level of each surgical procedure for hemorrhoids. Four hundred forty-eight patients have been hospitalized in our department fom 1st January to 31st December 2008. Of these 241 underwent surgery with traditional open or closed technique and 207 with the SH technique according to Longo. This retrospective study includes only patients with symptomatic hemorrhoids at III or IV stage. There were no differences between CH and SH about both pre and post surgery hospitalization and intraoperative length. Pain is the most frequently observed early complication with a statistically significant difference in favour of SH. We obtain good results in CH group using anoderma sparing and perianal anaesthetic infiltration at the end of the surgery. In all cases, pain relief was obtained only with standard analgesic drugs (NSAIDs). We also observed that pain level influences the outcome after surgical treatment. No chronic pain cases were observed in both groups. Bleeding is another relevant early complication in particular after SH: we reported 2 cases of immediate surgical reintenvention and 2 cases treated with blood transfusion. Only in SH group we report also 5 cases of thrombosis of external haemorrhoids and 7 perianal hematoma both solved with medical therapy There were no statistical significant differences between two groups about fever, incontinence to flatus, urinary retention, fecal incontinence, substenosis and anal burning. No cases of anal stenosis were observed. About late complications, most frequently observed were rectal prolapse and hemorrhoidal recurrence, especially after SH. Our experience confirms the validity of both CH and SH. Failure may be related to wrong surgical indication or technical execution. Certainly CH procedure is more invasive and slightly more painfull in immediate postoperative period than SH surgery, which is slightly more expensive and has more complications. In our opinion the high risk of possible early and immediate complications after surgery requires at least a 24 hours hospitalization length. SH is the gold standard for III grade haemorrhoids with mucous prolapse while CH is suggested in IV grade cases. Hemorrhoidal arterial ligation operation (HALO) technique in III and IV degree needs further validations.

  12. Rituximab With or Without Yttrium Y-90 Ibritumomab Tiuxetan in Treating Patients With Untreated Follicular Lymphoma

    ClinicalTrials.gov

    2018-02-05

    Stage I Grade 1 Follicular Lymphoma; Stage I Grade 2 Follicular Lymphoma; Stage II Grade 1 Contiguous Follicular Lymphoma; Stage II Grade 1 Non-Contiguous Follicular Lymphoma; Stage II Grade 2 Contiguous Follicular Lymphoma; Stage II Grade 2 Non-Contiguous Follicular Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma

  13. Impact of dementia on cancer discovery and pain.

    PubMed

    Iritani, Shuji; Tohgi, Mizuho; Miyata, Hiroaki; Ohi, Gen

    2011-03-01

    Dementia is clinically noted to influence both reporting and experience of cancer pains. However, no systemic evaluation of this aspect has been reported. The aim of the present study was to retrospectively evaluate how dementia modified the cancer discovery process, frequency of cancer pain reports and analgesic-narcotic use at a large psychiatric hospital. We reviewed all the records of cancer patients with and without dementia treated at the surgical ward of Matsuzawa Hospital from 1993 to 2004. Psychiatric diseases other than dementia, brain metastasis and alcoholism, as well as leukaemia and skin cancer, were excluded. Patients' communicativeness as to pain was ascertained from nursing records. A total of 134 cancer patients with and without dementia (50 demented and 84 non-demented) were included. Demented patients were accidentally discovered to have cancer (48%) or by an unexpected unfolding of clinical signs (44%), whereas most non-demented patients (63%) voluntarily sought medical evaluation (P= 0.000). Overall, 76% of non-demented patients had cancer pains (stages I and II, 64%; stages III and IV, 84%), whereas just 22% of demented patients had cancer pains (stages I and II, 16%; stages III and IV, 26%; P= 0.000). Non-demented patients showed stage-dependent requirements for both non-narcotic analgesics (stages I and II, 64%; stages III and IV, 84%) and narcotics (stages I and II, 0%; stages III and IV, 41%). Demented patients required much less analgesics (stages I and II, 11%; stages III and IV, 13%), with only one stage IV patient requiring narcotics (P= 0.000). Dementia greatly modifies the cancer discovery process, reduces prevalence of cancer pain and analgesic requirement. © 2011 The Authors. Psychogeriatrics © 2011 Japanese Psychogeriatric Society.

  14. Active Surveillance, Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients With Germ Cell Tumors

    ClinicalTrials.gov

    2017-06-02

    Adult Germ Cell Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Germ Cell Tumor; Extragonadal Embryonal Carcinoma; Grade 2 Immature Ovarian Teratoma; Grade 3 Immature Ovarian Teratoma; Malignant Germ Cell Tumor; Stage I Ovarian Choriocarcinoma; Stage I Ovarian Embryonal Carcinoma; Stage I Ovarian Teratoma; Stage I Ovarian Yolk Sac Tumor; Stage I Testicular Choriocarcinoma; Stage I Testicular Embryonal Carcinoma; Stage I Testicular Yolk Sac Tumor; Stage II Ovarian Choriocarcinoma; Stage II Ovarian Embryonal Carcinoma; Stage II Ovarian Yolk Sac Tumor; Stage II Testicular Choriocarcinoma; Stage II Testicular Embryonal Carcinoma; Stage II Testicular Yolk Sac Tumor; Stage III Ovarian Choriocarcinoma; Stage III Ovarian Embryonal Carcinoma; Stage III Ovarian Yolk Sac Tumor; Stage III Testicular Choriocarcinoma; Stage III Testicular Embryonal Carcinoma; Stage III Testicular Yolk Sac Tumor; Stage IV Ovarian Choriocarcinoma; Stage IV Ovarian Embryonal Carcinoma; Stage IV Ovarian Yolk Sac Tumor; Testicular Mixed Choriocarcinoma and Embryonal Carcinoma; Testicular Mixed Choriocarcinoma and Teratoma; Testicular Mixed Choriocarcinoma and Yolk Sac Tumor

  15. Olfactory Training in Improving Sense of Smell After Radiation Therapy in Patients With Paranasal Sinus or Nasopharyngeal Cancer

    ClinicalTrials.gov

    2017-07-11

    Stage 0 Nasopharyngeal Carcinoma; Stage 0 Paranasal Sinus Cancer; Stage I Nasopharyngeal Carcinoma; Stage I Paranasal Sinus Cancer; Stage II Nasopharyngeal Carcinoma; Stage II Paranasal Sinus Cancer; Stage IIA Nasopharyngeal Carcinoma; Stage IIB Nasopharyngeal Carcinoma; Stage III Nasopharyngeal Carcinoma; Stage III Paranasal Sinus Cancer; Stage IV Nasopharyngeal Carcinoma; Stage IV Paranasal Sinus Cancer; Stage IVA Nasopharyngeal Carcinoma; Stage IVA Paranasal Sinus Cancer; Stage IVB Nasopharyngeal Carcinoma; Stage IVB Paranasal Sinus Cancer; Stage IVC Nasopharyngeal Carcinoma; Stage IVC Paranasal Sinus Cancer

  16. Brentuximab Vedotin and Combination Chemotherapy in Treating Older Patients With Previously Untreated Stage II-IV Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-02-01

    Adult Lymphocyte Depletion Hodgkin Lymphoma; Adult Lymphocyte Predominant Hodgkin Lymphoma; Adult Mixed Cellularity Hodgkin Lymphoma; Adult Nodular Sclerosis Hodgkin Lymphoma; Stage II Adult Hodgkin Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage IV Adult Hodgkin Lymphoma

  17. Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 and Temsirolimus in Treating Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2014-05-29

    Endometrial Papillary Serous Carcinoma; Recurrent Endometrial Carcinoma; Recurrent Renal Cell Cancer; Stage III Endometrial Carcinoma; Stage III Renal Cell Cancer; Stage IV Endometrial Carcinoma; Stage IV Renal Cell Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  18. Iodine I-131 With or Without Selumetinib in Treating Patients With Recurrent or Metastatic Thyroid Cancer

    ClinicalTrials.gov

    2018-05-15

    Metastatic Thyroid Gland Carcinoma; Poorly Differentiated Thyroid Gland Carcinoma; Recurrent Thyroid Gland Carcinoma; Stage IV Thyroid Gland Follicular Carcinoma; Stage IV Thyroid Gland Papillary Carcinoma; Stage IVA Thyroid Gland Follicular Carcinoma; Stage IVA Thyroid Gland Papillary Carcinoma; Stage IVB Thyroid Gland Follicular Carcinoma; Stage IVB Thyroid Gland Papillary Carcinoma; Stage IVC Thyroid Gland Follicular Carcinoma; Stage IVC Thyroid Gland Papillary Carcinoma

  19. C-Met Inhibitor AMG 337, Oxaliplatin, Leucovorin Calcium, and Fluorouracil in Treating Patients With Advanced Stomach or Esophageal Cancer

    ClinicalTrials.gov

    2017-10-17

    Adenocarcinoma of the Esophagus; Adenocarcinoma of the Gastroesophageal Junction; Diffuse Adenocarcinoma of the Stomach; Gastrointestinal Cancer; Intestinal Adenocarcinoma of the Stomach; Mixed Adenocarcinoma of the Stomach; Stage IIIA Esophageal Cancer; Stage IIIA Gastric Cancer; Stage IIIB Esophageal Cancer; Stage IIIB Gastric Cancer; Stage IIIC Esophageal Cancer; Stage IIIC Gastric Cancer; Stage IV Esophageal Cancer; Stage IV Gastric Cancer

  20. Interleukin-12 and Interleukin-2 in Treating Patients With Mycosis Fungoides

    ClinicalTrials.gov

    2013-01-15

    Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage I Mycosis Fungoides/Sezary Syndrome; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage II Mycosis Fungoides/Sezary Syndrome; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome

  1. Combination Chemotherapy, Radiation Therapy, and/or Surgery in Treating Patients With High-Risk Kidney Tumors

    ClinicalTrials.gov

    2017-06-22

    Childhood Renal Cell Carcinoma; Clear Cell Renal Cell Carcinoma; Clear Cell Sarcoma of the Kidney; Papillary Renal Cell Carcinoma; Rhabdoid Tumor of the Kidney; Stage I Renal Cell Cancer; Stage I Renal Wilms Tumor; Stage II Renal Cell Cancer; Stage II Renal Wilms Tumor; Stage III Renal Cell Cancer; Stage III Renal Wilms Tumor; Stage IV Renal Cell Cancer; Stage IV Renal Wilms Tumor

  2. Laparoscopic surgery is feasible for the treatment of rectal cancer after neoadjuvant chemoradiotherapy.

    PubMed

    Ju, Wencui; Luo, Xiaoyong; Han, Baowei

    2016-09-01

    This case-control study aimed to clarify the short- and long-term outcomes of laparoscopic surgery for rectal cancer after neoadjuvant chemo radiotherapy compared with conventional open resection. Between January 2008 and December 2014, a series of 227 patients with rectal cancer underwent radical surgery after neoadjuvant chemo radiotherapy. Age, gender, American Society of Anesthesiologists score, clinical stage, and type of resection were matched by propensity scoring and 106 patients (53 patients with laparoscopic total mesorectal excision and 53 patients with open resection) were selected for analysis. There were no significant differences in the clinicopathological features between the two groups. With regard to short-term outcomes, blood loss, postoperative analgesia and hospital stay were significantly shorter in the laparoscopy group than in the open group, whereas operative time was significantly longer in the laparoscopy group than in the open group. The overall morbidity was similar in the two groups. There were no significant differences in the 5-year overall and disease-free survival rates between the two groups. In summary, laparoscopic surgery may be both feasible and efficient compared with open resection for rectal cancer after neoadjuvant chemo radiotherapy.

  3. Impact of SciELO and MEDLINE indexing on submissions to Jornal de Pediatria.

    PubMed

    Blank, Danilo; Buchweitz, Claudia; Procianoy, Renato S

    2005-01-01

    To evaluate the impact of SciELO and MEDLINE indexing on the number of articles submitted to Jornal de Pediatria. Analysis of total article submission, submission of articles from foreign countries and acceptance figures in the following periods: stage I - pre-website (Jan 2000-Mar 2001); stage II - website (Apr 2001-Jul 2002); stage III - SciELO (Aug 2002-Aug 2003); stage IV - MEDLINE (Sep 2003-Dec 2004). There was a significant trend toward linear increase in the number of submissions along the study period (p = 0.009). The number of manuscripts submitted in stages I through IV was 184, 240, 297, and 482, respectively. The number of submissions was similar in stages I and II (p = 0.148), but statistically higher in Stage III (p < 0.001 vs. Stage I and p = 0.006 vs. Stage II) and Stage IV (p < 0.001 vs. stages I and II, and p < 0.05 vs. stage III). The rate of article acceptance decreased during the study period. The number of original articles published has been stable since the 2001 March/April issue (n = 10), when the journal reached a printed page limit, leading to stricter judgment criteria and a relative decrease in acceptance rate. The number of foreign submissions in stages I through IV was 1, 2, zero and 17, respectively, with p < 0.001 for the comparison of stage IV with previous stages. SciELO indexing was associated with an increase in Brazilian manuscript submissions to Jornal de Pediatria, whereas MEDLINE indexing led to an increase in both Brazilian and foreign submissions.

  4. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-24

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  5. APN401 in Treating Patients With Recurrent or Metastatic Pancreatic Cancer, Colorectal Cancer, or Other Solid Tumors That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-03-29

    Metastatic Malignant Neoplasm in the Brain; Metastatic Solid Neoplasm; Recurrent Colorectal Carcinoma; Recurrent Pancreatic Carcinoma; Recurrent Solid Neoplasm; Stage IV Colorectal Cancer; Stage IV Pancreatic Cancer; Stage IVA Colorectal Cancer; Stage IVA Pancreatic Cancer; Stage IVB Colorectal Cancer; Stage IVB Pancreatic Cancer; Unresectable Solid Neoplasm

  6. Dabrafenib and Trametinib in Treating Patients With Stage III-IV BRAF Mutant Melanoma That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-06-25

    BRAF V600E Mutation Present; BRAF V600K Mutation Present; Recurrent Melanoma; Stage III Cutaneous Melanoma AJCC v7; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7

  7. Carboplatin and Gemcitabine Hydrochloride With or Without ATR Kinase Inhibitor VX-970 in Treating Patients With Recurrent and Metastatic Ovarian, Primary Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2018-03-16

    High Grade Ovarian Serous Adenocarcinoma; Ovarian Endometrioid Tumor; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IV Fallopian Tube Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Primary Peritoneal Cancer AJCC v7

  8. Vaccine Therapy and IDO1 Inhibitor INCB024360 in Treating Patients With Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer Who Are in Remission

    ClinicalTrials.gov

    2013-12-17

    Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Primary Peritoneal Cavity Cancer; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Epithelial Cancer; Stage IA Primary Peritoneal Cavity Cancer; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Epithelial Cancer; Stage IB Primary Peritoneal Cavity Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Epithelial Cancer; Stage IC Primary Peritoneal Cavity Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Primary Peritoneal Cavity Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Primary Peritoneal Cavity Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Primary Peritoneal Cavity Cancer

  9. Ziv-aflibercept in Treating Patients With Locally Advanced, Unresectable, or Metastatic Gynecologic Soft Tissue Sarcoma

    ClinicalTrials.gov

    2015-12-03

    Fallopian Tube Cancer; Female Reproductive Cancer; Ovarian Carcinosarcoma; Ovarian Sarcoma; Recurrent Ovarian Epithelial Cancer; Recurrent Uterine Sarcoma; Stage III Ovarian Epithelial Cancer; Stage III Uterine Sarcoma; Stage IV Ovarian Epithelial Cancer; Stage IV Uterine Sarcoma; Uterine Carcinosarcoma; Uterine Leiomyosarcoma

  10. Patient, Physician, and Nurse Factors Associated With Entry Onto Clinical Trials and Finishing Treatment in Patients With Primary or Recurrent Uterine, Endometrial, or Cervical Cancer

    ClinicalTrials.gov

    2018-04-11

    Recurrent Cervical Carcinoma; Recurrent Uterine Corpus Carcinoma; Recurrent Uterine Corpus Sarcoma; Stage I Uterine Corpus Cancer; Stage I Uterine Sarcoma; Stage IA Cervical Cancer; Stage IB Cervical Cancer; Stage II Uterine Corpus Cancer; Stage II Uterine Sarcoma; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage III Uterine Corpus Cancer; Stage III Uterine Sarcoma; Stage IV Uterine Corpus Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer

  11. Guadecitabine and Durvalumab in Treating Patients With Advanced Liver, Pancreatic, Bile Duct, or Gallbladder Cancer

    ClinicalTrials.gov

    2018-04-27

    Extrahepatic Bile Duct Adenocarcinoma, Biliary Type; Gallbladder Adenocarcinoma, Biliary Type; Metastatic Pancreatic Adenocarcinoma; Recurrent Cholangiocarcinoma; Recurrent Gallbladder Carcinoma; Recurrent Hepatocellular Carcinoma; Recurrent Intrahepatic Cholangiocarcinoma; Recurrent Pancreatic Carcinoma; Stage III Gallbladder Cancer AJCC V7; Stage III Hepatocellular Carcinoma AJCC v7; Stage III Intrahepatic Cholangiocarcinoma AJCC v7; Stage III Pancreatic Cancer AJCC v6 and v7; Stage IIIA Gallbladder Cancer AJCC v7; Stage IIIA Hepatocellular Carcinoma AJCC v7; Stage IIIB Gallbladder Cancer AJCC v7; Stage IIIB Hepatocellular Carcinoma AJCC v7; Stage IIIC Hepatocellular Carcinoma AJCC v7; Stage IV Gallbladder Cancer AJCC v7; Stage IV Hepatocellular Carcinoma AJCC v7; Stage IV Pancreatic Cancer AJCC v6 and v7; Stage IVA Gallbladder Cancer AJCC v7; Stage IVA Hepatocellular Carcinoma AJCC v7; Stage IVA Intrahepatic Cholangiocarcinoma AJCC v7; Stage IVB Gallbladder Cancer AJCC v7; Stage IVB Hepatocellular Carcinoma AJCC v7; Stage IVB Intrahepatic Cholangiocarcinoma AJCC v7; Unresectable Gallbladder Carcinoma; Unresectable Pancreatic Carcinoma

  12. Chronic radiation proctopathy: A practical review of endoscopic treatment.

    PubMed

    Lenz, Luciano; Rohr, Rachel; Nakao, Frank; Libera, Ermelindo; Ferrari, Angelo

    2016-02-27

    Chronic radiation proctopathy (CRP) is a troublesome complication of pelvic radiotherapy. The most common presentation is rectal bleeding. CRP symptoms interfere with daily activities and decrease quality of life. Rectal bleeding management in patients with CRP represents a conundrum for practitioners. Medical therapy is ineffective in general and surgical approach has a high morbid-mortality. Endoscopy has a role in the diagnosis, staging and treatment of this disease. Currently available endoscopic modalities are formalin, potassium titanyl phosphate laser, neodymium:yttrium-aluminum-garnet laser, argon laser, bipolar electrocoagulation (BiCAP), heater probe, band ligation, cryotherapy, radiofrequency ablation and argon plasma coagulation (APC). Among these options, APC is the most promising.

  13. Postoperative adjuvant chemotherapy in rectal cancer operated for cure.

    PubMed

    Petersen, Sune Høirup; Harling, Henrik; Kirkeby, Lene Tschemerinsky; Wille-Jørgensen, Peer; Mocellin, Simone

    2012-03-14

    Colorectal cancer is one of the most common types of cancer in the Western world. Apart from surgery - which remains the mainstay of treatment for resectable primary tumours - postoperative (i.e., adjuvant) chemotherapy with 5-fluorouracil (5-FU) based regimens is now the standard treatment in Dukes' C (TNM stage III) colon tumours i.e. tumours with metastases in the regional lymph nodes but no distant metastases. In contrast, the evidence for recommendations of adjuvant therapy in rectal cancer is sparse. In Europe it is generally acknowledged that locally advanced rectal tumours receive preoperative (i.e., neoadjuvant) downstaging by radiotherapy (or chemoradiotion), whereas in the US postoperative chemoradiotion is considered the treatment of choice in all Dukes' C rectal cancers. Overall, no universal consensus exists on the adjuvant treatment of surgically resectable rectal carcinoma; moreover, no formal systematic review and meta-analysis has been so far performed on this subject. We undertook a systematic review of the scientific literature from 1975 until March 2011 in order to quantitatively summarize the available evidence regarding the impact of postoperative adjuvant chemotherapy on the survival of patients with surgically resectable rectal cancer. The outcomes of interest were overall survival (OS) and disease-free survival (DFS). CCCG standard search strategy in defined databases with the following supplementary search. 1. Rect* or colorect* - 2. Cancer or carcinom* or adenocarc* or neoplasm* or tumour - 3. Adjuv* - 4. Chemother* - 5. Postoper* Randomised controlled trials (RCT) comparing patients undergoing surgery for rectal cancer who received no adjuvant chemotherapy with those receiving any postoperative chemotherapy regimen. Two authors extracted data and a third author performed an independent search for verification. The main outcome measure was the hazard ratio (HR) between the risk of event between the treatment arm (adjuvant chemotherapy) and the control arm (no adjuvant chemotherapy). The survival data were either entered directly in RevMan or extrapolated from Kaplan-Meier plots and then entered in RevMan. Due to expected clinical heterogeneity a random effects model was used for creating the pooled estimates of treatment efficacy. A total of 21 eligible RCTs were identified and used for meta-analysis purposes. Overall, 16,215 patients with colorectal cancer were enrolled, 9,785 being affected with rectal carcinoma. Considering patients with rectal cancer only, 4,854 cases were randomized to receive potentially curative surgery of the primary tumour plus adjuvant chemotherapy and 4,367 to receive surgery plus observation. The mean number of patients enrolled was 466 (range: 54-1,243 cases). 11 RCTs had been performed in Western countries and 10 in Japan. All trials used fluoropyrimidine-based chemotherapy (no modern drugs - such as oxaliplatin, irinotecan or biological agents - were tested).Overall survival (OS) data were available in 21 RCTs and the data available for meta-analysis regarded 9,221 patients: of these, 4854 patients were randomized to adjuvant chemotherapy (treatment arm) and 4,367 patients did not receive adjuvant chemotherapy (control arm). The meta-analysis of these RCTs showed a significant reduction in the risk of death (17%) among patients undergoing postoperative chemotherapy as compared to those undergoing observation (HR=0.83, CI: 0.76-0.91). Between-study heterogeneity was moderate (I-squared=30%) but significant (P=0.09) at the 10% alpha level.Disease-free survival (DFS) data were reported in 20 RCTs, and the data suitable for meta-analysis included 8,530 patients. Of these, 4,515 patients were randomized to postoperative chemotherapy (treatment arm) and 4,015 patients received no postoperative chemotherapy (control arm). The meta-analysis of these RCTs showed a reduction in the risk of disease recurrence (25%) among patients undergoing adjuvant chemotherapy as compared to those undergoing observation (HR=0.75, CI: 0.68-0.83). Between-study heterogeneity was moderate (I-squared=41%) but significant (P=0.03).While analyzing both OS and DFS data, sensitivity analyses did not find any difference in treatment effect based on trial sample size or geographical region (Western vs Japanese). Available data were insufficient to investigate on the effect of adjuvant chemotherapy separately in different TNM stages in terms of both OS and DFS. No plausible source of heterogeneity was formally identified, although variability in treatment regimens and TNM stages of enrolled patients might have played a significant role in the difference of reported results. The results of this meta-analysis support the use of 5-FU based postoperative adjuvant chemotherapy for patients undergoing apparently radical surgery for non-metastatic rectal carcinoma. Available data do not allow us to define whether the efficacy of this treatment is highest in one specific TNM stage. The implementation of modern anti-cancer agents in the adjuvant setting is warranted to improve the results shown by this meta-analysis. Randomized trials of adjuvant chemotherapy for patients receiving preoperative neoadjuvant therapy are also needed in order to define the role of postoperative chemotherapy in the multimodal treatment of resectable rectal cancer.

  14. A Pilot Study to Evaluate the Co-Infusion of Ex Vivo Expanded Cord Blood Cells With an Unmanipulated Cord Blood Unit in Patients Undergoing Cord Blood Transplant for Hematologic Malignancies

    ClinicalTrials.gov

    2015-02-10

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Contiguous Stage II Adult Burkitt Lymphoma; Contiguous Stage II Adult Diffuse Large Cell Lymphoma; Contiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Contiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Contiguous Stage II Adult Lymphoblastic Lymphoma; Contiguous Stage II Grade 3 Follicular Lymphoma; Contiguous Stage II Mantle Cell Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Previously Treated Myelodysplastic Syndromes; Prolymphocytic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage I Adult Burkitt Lymphoma; Stage I Adult Diffuse Large Cell Lymphoma; Stage I Adult Diffuse Mixed Cell Lymphoma; Stage I Adult Immunoblastic Large Cell Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage I Childhood Lymphoblastic Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage I Mantle Cell Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  15. TORC1/2 Inhibitor MLN0128 and Bevacizumab in Treating Patients With Recurrent Glioblastoma or Advanced Solid Tumors

    ClinicalTrials.gov

    2018-05-14

    Adult Glioblastoma; Endometrial Clear Cell Adenocarcinoma; Endometrial Serous Adenocarcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Solid Neoplasm; Stage IIIA Fallopian Tube Cancer AJCC v7; Stage IIIA Ovarian Cancer AJCC v6 and v7; Stage IIIA Primary Peritoneal Cancer AJCC v7; Stage IIIB Fallopian Tube Cancer AJCC v7; Stage IIIB Ovarian Cancer AJCC v6 and v7; Stage IIIB Primary Peritoneal Cancer AJCC v7; Stage IIIC Fallopian Tube Cancer AJCC v7; Stage IIIC Ovarian Cancer AJCC v6 and v7; Stage IIIC Primary Peritoneal Cancer AJCC v7; Stage IV Fallopian Tube Cancer AJCC v6 and v7; Stage IV Ovarian Cancer AJCC v6 and v7; Stage IV Primary Peritoneal Cancer AJCC v7

  16. Fulvestrant With or Without Lapatinib in Treating Postmenopausal Women With Stage III or Stage IV Breast Cancer That is Hormone Receptor-Positive

    ClinicalTrials.gov

    2018-06-01

    Estrogen Receptor Positive; HER2 Positive Breast Carcinoma; HER2/Neu Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIB Breast Cancer AJCC v7; Stage IIIC Breast Cancer AJCC v7; Stage IV Breast Cancer AJCC v6 and v7

  17. Carfilzomib, Rituximab, Ifosfamide, Carboplatin, and Etoposide in Treating Patients With Relapsed or Refractory Stage I-IV Diffuse Large B-cell Lymphoma

    ClinicalTrials.gov

    2018-03-28

    CD20 Positive; Recurrent Diffuse Large B-Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma

  18. Therapeutic Angiotensin-(1-7) in Treating Patients With Metastatic Sarcoma That Cannot Be Removed By Surgery

    ClinicalTrials.gov

    2018-02-27

    Bone Cancer; Chondrosarcoma; Clear Cell Sarcoma of the Kidney; Metastatic Osteosarcoma; Ovarian Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Osteosarcoma; Recurrent Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Uterine Sarcoma; Stage IV Adult Soft Tissue Sarcoma; Stage IV Uterine Sarcoma

  19. VSV-hIFNbeta-NIS in Treating Patients With Stage IV or Recurrent Endometrial Cancer

    ClinicalTrials.gov

    2018-05-09

    Endometrial Clear Cell Adenocarcinoma; Endometrial Mixed Adenocarcinoma; Endometrial Serous Adenocarcinoma; Endometrial Undifferentiated Carcinoma; Metastatic Endometrioid Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Recurrent Endometrial Serous Adenocarcinoma; Recurrent Uterine Corpus Carcinoma; Stage IV Uterine Corpus Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer

  20. Paclitaxel, Nab-paclitaxel, or Ixabepilone With or Without Bevacizumab in Treating Patients With Stage IIIC or Stage IV Breast Cancer

    ClinicalTrials.gov

    2016-11-14

    Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; HER2/Neu Positive; Male Breast Carcinoma; Progesterone Receptor Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIC Breast Cancer AJCC v6; Stage IV Breast Cancer

Top