Science.gov

Sample records for staggered tube bundle

  1. Direct numerical simulation of transitional flow in a staggered tube bundle

    NASA Astrophysics Data System (ADS)

    Linton, D.; Thornber, B.

    2016-02-01

    A series of Direct Numerical Simulations (DNS) of the flow through a staggered tube bundle has been performed over the range 1030 ≤ Rem ≤ 5572 to capture the flow transition that occurs at the matrix transition point of Rem ≈ 3000. The matrix transition is the point at which a second frequency becomes prominent in tube bundles. To date, this is the highest published Reynolds number at which a DNS has been performed on cross-flow over a tube bundle. This study describes the flow behaviour in terms of: the mean flow field, Strouhal numbers, vortex shedding, 3-D flow features, and turbulence properties. These results support the hypothesis that the transition in the vortex shedding behaviour at Rem ≈ 3000 is similar to that which occurs in single cylinder flow at the equivalent Reynolds number. The visualisations presented also demonstrate the nature of the shedding mechanisms before and after the matrix transition point.

  2. Heat transfer characteristics of staggered wing-shaped tubes bundle at different angles of attack

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Ibrahiem, Emad Z.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2014-08-01

    An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 × 102 and at from 1.8 × 103 to 9.7 × 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ɛ) in terms of Rea and design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer increased with the angle of attack in the range from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence the efficiency η of studied bundle occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  3. Experimental study of turbulence intensity influence for turbulent cross flow in staggered tube bundle using grooved cylinder

    NASA Astrophysics Data System (ADS)

    Sahli, Ouissem; Adjlout, Lahouari; Ladjedel, Omar; Amine Ghazi, Mohamed

    2016-03-01

    The present work is an experimental investigation on the effect of the turbulence intensity variation in a staggered tube bundle equipped with grooves at 90° and 270°.The experiments were carried out in a subsonic wind tunnel. Three Reynolds numbers and three turbulence levels were tested. The pressure distributions and drag forces were measured. Surface visualizations were also performed. The obtained results show that the turbulence intensity for different Reynolds number has an influence on the reduction of the drag coefficient.

  4. Tube bundle system

    PubMed Central

    Marchewka, W.; Mohamed, K.; Addis, J.; Karnack, F.

    2015-01-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine PMID:26306052

  5. Development boiling to sprinkled tube bundle

    NASA Astrophysics Data System (ADS)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  6. A thermal mixing model of crossflow in tube bundles for use with the porous body approximation

    SciTech Connect

    Ashcroft, J.; Kaminski, D.A.

    1996-06-01

    Diffusive thermal mixing in a heated tube bundle with a cooling fluid in crossflow was analyzed numerically. From the results of detailed two-dimensional models, which calculated the diffusion of heat downstream of one heated tube in an otherwise adiabatic flow field, a diffusion model appropriate for use with the porous body method was developed. The model accounts for both molecular and turbulent diffusion of heat by determining the effective thermal conductivity in the porous region. The model was developed for triangular shaped staggered tube bundles with pitch to diameter ratios between 1.10 and 2.00 and for Reynolds numbers between 1,000 and 20,000. The tubes are treated as nonconducting. Air and water were considered as working fluids. The effective thermal conductivity was found to be linearly dependent on the tube Reynolds number and fluid Prandtl number, and dependent on the bundle geometry. The porous body thermal mixing model was then compared against numerical models for flows with multiple heated tubes with very good agreement.

  7. Combustor having mixing tube bundle with baffle arrangement for directing fuel

    DOEpatents

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    2016-08-23

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  8. System for supporting bundled tube segments within a combustor

    DOEpatents

    Melton, Patrick Benedict

    2016-03-01

    A system for supporting bundled tube segments within a combustor includes an annular sleeve that extends circumferentially and axially within the combustor, a support lug that extends radially inward from the annular sleeve and an annular support frame that is disposed within the annular sleeve. The annular support frame includes an inner ring portion, an outer ring portion and a plurality of spokes that extend radially between the inner and outer ring portions. The inner ring portion, the outer ring portion and the plurality of spokes define an annular array of openings for receiving a respective bundled tube segment. The inner ring portion is connected to each bundled tube segment and the outer ring portion is coupled to the support lug.

  9. Acoustic resonance in heat exchanger tube bundles

    SciTech Connect

    Blevins, R.D. )

    1994-02-01

    A series of experiments has been made on aeroacoustic tones produced by flow over tubes in a duct. The sound is characterized by the onset of a loud and persistent acoustic resonance. The acoustic resonance occurs at the frequency of the acoustic modes. The magnitude and extent of the resonance are functions of tube pattern and tube pitch. The sound levels increase in proportion with Mach number, dynamic head and pressure drop. A design procedure for predicting the magnitude of the sound within the tube array is presented. Methods of resonance avoidance are illustrated. An example is made for a large petrochemical heat exchanger.

  10. Bundled multi-tube nozzle for a turbomachine

    DOEpatents

    Lacy, Benjamin Paul; Ziminsky, Willy Steve; Johnson, Thomas Edward; Zuo, Baifang; York, William David; Uhm, Jong Ho

    2015-09-22

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a cap member having a first surface that extends to a second surface. The cap member further includes a plurality of openings. A plurality of bundled mini-tube assemblies are detachably mounted in the plurality of openings in the cap member. Each of the plurality of bundled mini-tube assemblies includes a main body section having a first end section and a second end section. A fluid plenum is arranged within the main body section. A plurality of tubes extend between the first and second end sections. Each of the plurality of tubes is fluidly connected to the fluid plenum.

  11. A review on saturated boiling of liquids on tube bundles

    NASA Astrophysics Data System (ADS)

    Swain, Abhilas; Das, Mihir Kumar

    2014-05-01

    A review of recent investigation on boiling of saturated liquids over plain and enhanced tube bundles has been carried out taking the earlier review works as reference point. The experimental observations of various geometry and performance parameters studied by researchers are analyzed keeping current demand of industries in design and development of compact, efficient heat exchanging devices. The study shows that tube spacing plays an important role in determination of compactness of the heat exchanger.

  12. Cap assembly for a bundled tube fuel injector

    DOEpatents

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  13. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    SciTech Connect

    Devaru, C.B.; Kolar, A.K.

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  14. Pool boiling of R-114/oil mixtures from single tubes and tube bundles. Master's thesis

    SciTech Connect

    Murphy, T.J.

    1987-09-01

    An apparatus was designed, fabricated, and operated for the testing of horizontal tube bundles for boiling of R-114 with various concentrations of oil. Preliminary data were taken on the top tube in the bundle, with and without the other tubes in operation. Results showed up to a 37% increase in the boiling heat-transfer coefficient as a result of the favorable bundle effect. In a separate single-tube apparatus, three enhanced tubes were tested at a saturation temperature of 2.2 C with oil mass concentrations of 0, 1, 2, 3, 6 and 10%. The tubes were: 1) a finned tube with 1024 fins per meter, 2) a finned tube with 1575 fins per meter and 3) a Turbo-B tube. These tubes resulted in enhancement ratios in pure refrigerant of 2.8, 3.8 and 5.2, respectively, at a practical heat flux of 30 kW/sq. meter. With 3% oil, these ratios were decreased to 2.6, 3.5 and 5, while with 10% oil, these ratios were further reduced to 2.6, 3.2 and 4.7, respectively. Based on these results, the use of Turbo-B tubes is expected to result in significant savings in weight and size of evaporators over the finned tubes presently in use on board some naval vessels.

  15. Maximum allowable heat flux for a submerged horizontal tube bundle

    SciTech Connect

    McEligot, D.M. |

    1996-12-31

    For application to industrial heating of large pools by immersed heat exchangers, the so called maximum allowable (or critical) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. This is the condition at which vapor blanketing is expected to be initiated. Phenomenological considerations demonstrate why the maximum allowable heat flux would be expected to be less than for single tubes. Hydrodynamic theory is applied to extend the results of Lienhard and Dhir to large submerged bundles and the consequent correlation is compared to the correlation of Palen and Small and the limited data available for saturated conditions. To date the main conclusion is that estimates of q{double_prime}{sub chf} are highly uncertain for this configuration.

  16. Convective heat transfer in foams under laminar flow in pipes and tube bundles

    PubMed Central

    Attia, Joseph A.; McKinley, Ian M.; Moreno-Magana, David; Pilon, Laurent

    2014-01-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux. PMID:25552745

  17. Experiments on condensation over in-line and staggered condenser tubes in the presence of non-condensable gases

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of the forced film condensation heat transfer of pure steam and steam-air mixture flowing downward a tier of horizontal cylinders is investigated experimentally. An experimental setup was manufactured and mounted at Middle East Technical University workshop. A set of experiments were conducted to observe the condensation heat transfer phenomenon and to verify the theoretical results. The results of the experimental investigation are presented to show the effect of different parameters on the film condensation heat transfer phenomenon over bundle of tubes. These parameters include; free stream velocity, free stream non-condensable gas (air) mass fractions, free stream temperature to wall temperature difference, the angle of inclination. heat transfer coefficients are evaluated at different working conditions for both inline and staggered arrangements. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed when very small amounts of air mass fractions present in the vapor. In addition, it decreases by increasing the temperature difference. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Although some discrepancies are noticed, the present study results are inline and in a reasonable agreement with the theory and experiment in the literature.

  18. Boiling heat transfer enhancement of water on tubes in compact in-line bundles

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Hua; Qiu, Yu-Hao

    2006-01-01

    In desalinization devices and some heat exchangers making use of low-quality heat energy, both wall temperatures and wall heat fluxes of the heated tubes are generally quite low; hence they cannot cause boiling in flooded tube-bundle evaporators with common large tube spacing. However, when the tube spacing is very small, the incipient boiling in restricted spaces can generate and results in higher heat transfer than that of pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes and test pressures on the boiling heat transfer of water in restricted spaces of the compact in-line bundles consisting of smooth horizontal tubes. The experimental results show that tube spacing and tube position have significant effects on the boiling heat transfer in a compact tube bundle. There is an optimum tube spacing that provides the largest heat transfer coefficient at the same heat flux.

  19. Fluidic delivery of homogeneous solutions through carbon tube bundles

    NASA Astrophysics Data System (ADS)

    Srikar, R.; Yarin, A. L.; Megaridis, C. M.

    2009-07-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (~1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 µm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  20. a Numerical Study of Unsteady Fluid Flow in In-Line and Staggered Tube Banks

    NASA Astrophysics Data System (ADS)

    Beale, S. B.; Spalding, D. B.

    1999-08-01

    This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30-3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0.26 and 0.35, or from -21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0.09 and 0.12, or about 20-40% lower than experimental values.

  1. Vibration Analysis of a Multi-span Tube in a Bundle

    SciTech Connect

    Khushnood, Shahab; Khan, Zaffar M.; Afzaal Malik, M.; Zafar Ullah Koreshi; Mehmood Anwer Khan

    2002-07-01

    Nuclear and process industry has seen tube bundle failures more frequently in recent years. There is some concern that the practice of structural configuration has not advanced as rapidly as thermal design of heat exchangers. Catastrophic vibration of tube in a bundle can be avoided if the tube natural frequency is kept well above the estimated existing turbulent buffeting frequencies. Flow distribution and partial admission in to the tube bundle due to upstream piping further complicates the system. In this paper, tube in a bundle has been modeled as a beam on multiple supports. Effects of damping and motion of boundaries have also been considered. Governing equations have been solved analytically for natural as well as forced vibrations. The model has been extended for a bundle of tubes by developing and implementing a computer code. Subsequent experimental verification of results on a research heat exchanger bundle has been carried. The proposed model is expected to prove a useful guide in predicting the vibration behavior of tube bundles. (authors)

  2. Numerical investigation of the convective heat transfer coefficient with longitudinal pitch variation in a staggered tube bank

    NASA Astrophysics Data System (ADS)

    Alfandi, Ashraf; Yoon, Juhyeon; Abusaleem, Khalifeh; Albati, Mohammad; Khafaji, Salih

    2015-11-01

    In this study, the effect on a shell-side heat transfer coefficient is investigated using the CFD code FLUENT with a variation in longitudinal pitch to diameter ratio, SL, in the range of 1.15 to 2.6 with a fixed transverse pitch to diameter ratio. For the benchmark purposes with the available empirical correlation, typical thermal-hydraulic conditions for the Zukauskas correlation are assumed. Many sensitivity calculations for different mesh sizes and turbulent models are performed to check the accuracy of the numerical solution. A realizable κ- ɛ turbulence model was found to be in good agreement with results of the Zukauskas correlation among the other turbulence models, at least for the staggered tube bank. It was found that the average heat transfer coefficient of a crossflow over a staggered tube bank calculated using FLUENT is in good agreement with the Zukauskas correlation-calculated heat transfer coefficient in the range of 1.15 - 2.6. For a staggered tube bank, using the Zukauskas correlation seems to be valid down to SL = 1.15.

  3. Reynolds number effects on pressure loss and turbulence characteristics of four tube-bundle heat exchangers

    NASA Technical Reports Server (NTRS)

    Gentry, L., Jr.; Gentry, C. L., Jr.

    1983-01-01

    The aerodynamic characteristics of pressure loss and turbulence on four tube-bundle configurations representing heat-exchanger geometries with nominally the same heat capacity were measured as a function of Reynolds numbers from about 4000 to 400,000 based on tube hydraulic diameter. Two configurations had elliptical tubes, the other two had round tubes, and all four had plate fins. The elliptical-tube configurations had lower pressure loss and turbulence characteristics than the round-tube configurations over the entire Reynolds number range.

  4. System for supporting a bundled tube fuel injector within a combustor

    DOEpatents

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  5. The More the Tubular: Dynamic Bundling of Actin Filaments for Membrane Tube Formation

    PubMed Central

    Weichsel, Julian; Geissler, Phillip L.

    2016-01-01

    Tubular protrusions are a common feature of living cells, arising from polymerization of stiff protein filaments against a comparably soft membrane. Although this process involves many accessory proteins in cells, in vitro experiments indicate that similar tube-like structures can emerge without them, through spontaneous bundling of filaments mediated by the membrane. Using theory and simulation of physical models, we have elaborated how nonequilibrium fluctuations in growth kinetics and membrane shape can yield such protrusions. Enabled by a new grand canonical Monte Carlo method for membrane simulation, our work reveals a cascade of dynamical transitions from individually polymerizing filaments to highly cooperatively growing bundles as a dynamical bottleneck to tube formation. Filament network organization as well as adhesion points to the membrane, which bias filament bending and constrain membrane height fluctuations, screen the effective attractive interactions between filaments, significantly delaying bundling and tube formation. PMID:27384915

  6. Methods for numerical study of tube bundle vibrations in cross-flows

    NASA Astrophysics Data System (ADS)

    Longatte, E.; Bendjeddou, Z.; Souli, M.

    2003-11-01

    In many industrial applications, mechanical structures like heat exchanger tube bundles are subjected to complex flows causing possible vibrations and damage. Part of fluid forces are coupled with tube motion and the so-called fluid-elastic forces can affect the structure dynamic behaviour generating possible instabilities and leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics, numerical simulation of flow-induced vibrations is now practicable for industrial purposes. The present paper is devoted to the numerical identification of fluid-elastic effects affecting tube bundle motion in presence of fluid at rest and one-phase cross-flows. What is the numerical process? When fluid-elastic effects are not significant and are restricted to added mass effects, there is no strong coupling between structure and fluid motions. The structure displacement is not supposed to affect flow patterns. Thus it is possible to solve flow and structure problems separately by using a fixed nonmoving mesh for the fluid dynamic computation. Power spectral density and time record of lift and drag forces acting on tube bundles can be computed numerically by using an unsteady fluid computation involving for example a large Eddy simulation. Fluid force spectra or time record can then be introduced as inlet conditions into the structure code providing the tube dynamic response generated by flow. Such a computation is not possible in presence of strong flow structure coupling. When fluid-elastic effects cannot be neglected, in presence of tube bundles subjected to cross-flows for example, a coupling between flow and structure computations is required. Appropriate numerical methods are investigated in the present work. The purpose is to be able to provide a numerical

  7. Spray evaporation heat transfer performance in R-123 in tube bundles

    SciTech Connect

    Moeykens, S.; Kelly, J.E.; Pate, M.B.

    1996-12-31

    This study focuses on evaluating the heat transfer performance of refrigerant R-123 in the spray evaporation environment for pure refrigerant and for the case of lubricant addition. Tests were conducted with triangular-pitch tube bundles made from enhanced boiling tubes, enhanced condensation tubes, and plain-surface tubes. A second enhanced boiling surface tube bundle, made with a square-pitch tube alignment, was also tested so a comparison could be made between the square- and triangular-pitch geometries. In addition to pure refrigerant work, experiments were performed with small concentrations of a 305 SUS naphthenic mineral oil to evaluate its effect on falling-film heat transfer performance. Two different refrigerant supply rates were used in this work so the effects of film-feed supply rate could be interpreted from the data. Refrigerant was introduced to the test section via low-pressure-drop, wide-angle nozzles located directly over the tube bundle. Data were taken over a heat flux range of 40 kW/m{sup 2} (12,688 Btu/[h{center_dot}ft{sup 2}]) to 19 kW/m{sup 2} (6,027 Btu/[h{center_dot}ft{sup 2}]), while the refrigerant supply rate remained fixed. Collector tests were performed in parallel with the heat transfer experiments so the amount of refrigerant bypassing the tube bundle could be determined. It was found that the heat transfer coefficients were dependent upon film-feed supply rate, oil concentration, and heat flux. The enhanced boiling surface yielded higher heat transfer coefficients than either the enhanced condensation surface or the plain surface.

  8. Acoustic resonance in tube bundles -- Comparison of full scale and laboratory test results

    SciTech Connect

    Eisinger, F.L.

    1995-12-01

    Full scale operational data from steam generator tube bundles exposed to hot gases in crossflow are compared with small scale laboratory test results with cold air. Vibration thresholds based on input energy, acoustic particle velocity and effective damping are evaluated and compared. It is shown that these parameters play an important role in the development, or suppression of acoustic resonance.

  9. Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Song, Yong Jae

    The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet

  10. Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle

    SciTech Connect

    Desbonnets, Quentin; Broc, Daniel

    2012-07-01

    It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier

  11. Vibration of a tube bundle in two-phase Freon cross-flow

    SciTech Connect

    Pettigrew, M.J.; Taylor, C.E.; Jong, J.H.; Currie, I.G.

    1995-11-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.

  12. Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle

    SciTech Connect

    Li, Tingwen; Dietiker, Jean-Francois; Zhang, Yongmin; Shahnam, Mehrdad

    2011-12-01

    In this paper, the flow hydrodynamics in a bubbling fluidized bed with submerged horizontal tube bundle was numerically investigated with an open-source code: Multiphase Flow with Interphase eXchange (MFIX). A newly implemented cut-cell technique was employed to deal with the curved surface of submerged tubes. A series of 2D simulations were conducted to study the effects of gas velocity and tube arrangement on the flow pattern. Hydrodynamic heterogeneities on voidage, particle velocity, bubble fraction, and frequency near the tube circumferential surface were successfully predicted by this numerical method, which agrees qualitatively with previous experimental findings and contributes to a sounder understanding of the non-uniform heat transfer and erosion around a horizontal tube. A 3D simulation was also conducted. Significant differences between 2D and 3D simulations were observed with respect to bed expansion, bubble distribution, voidage, and solids velocity profiles. Hence, the 3D simulation is needed for quantitative prediction of flow hydrodynamics. On the other hand, the flow characteristics and bubble behavior at the tube surface are similar under both 2D and 3D simulations as far as the bubble frequency and bubble phase fraction are concerned. Comparison with experimental data showed that qualitative agreement was obtained in both 2D and 3D simulations for the bubble characteristics at the tube surface.

  13. Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle -- Part 2: R-134a

    SciTech Connect

    Tatara, R.A.; Payvar, P.

    2000-07-01

    Local, experimental heat transfer coefficients have been obtained for boiling refrigerant flowing up and across a tube bundle segment representing a full flooded evaporator tube bundle. R-134a data with a structured enhanced boiling tube are available. This tube has reentrant cavities designed for higher saturation pressure of refrigerants. The refrigerant enters at 15% vapor quality and exits at nearly 100% vapor in order to simulate an actual evaporator bundle. Both heat flux, 2,607 to 10,427 Btu/h{center_dot}f{sup 2} (8,224 to 32,893 W/m{sup 2}), and oil content, 0--12% (by weight), are varied; the mass flux is not an independent variable but determined by the heat flux. Local tube and bulk fluid temperatures are measured directly, by thermocouples, to calculate the refrigerant-side heat transfer coefficients. The bundle segment saturation temperature setpoint (taken at the top of the tube bundle) is 40 F (4.4 C).

  14. Self-sustained oscillation limit of tube bundle resonant noise. (Phase 1: Evaluation equation of oscillation limit)

    SciTech Connect

    Nishimura, M.; Fujita, K.; Hasegawa, N.

    1995-12-01

    Self-sustained oscillation limit of tube bundle resonant noise is studied in this paper. Excited acoustic energy and dissipating one in tube bundle are derived theoretically. In the exciting stage, the acoustic field is considered to be fed back to the flow field as the inlet flow fluctuation. And the acoustic damping is considered to induce the dissipating energy. Based on the energy balance of both and dimensional analysis, a new simple evaluation equation of self-sustained oscillation limit is proposed concerning on tube bundle resonant noise. A typical experimental results are evaluated based on this equation. The results are roughly good, but this suggests that model analysis of both exciting energy and dissipating one is necessary for more precise evaluation.

  15. Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR

    SciTech Connect

    Gruszczynski, M.J.; Viskanta, R.

    1983-01-01

    The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

  16. Assessment of CCFL model of RELAP5/MOD3 against simple vertical tubes and rod bundle tests. International Agreement Report

    SciTech Connect

    Cho, S.; Arne, N.; Chung, B.D.; Kim, H.J.

    1993-06-01

    The CCFL model used in RELAP5/MOD3 version 5m5 has been assessed against simple vertical tubes and bundle tests performed at a facility of Korea Atomic Energy Research Institute. The effect of changes in tube diameter and nodalization of tube section were investigated. The roles of interfacial drags on the flooding characteristics are discussed. Differences between the calculation and the experiment are also discussed. A comparison between model assessment results and the test data showed that the calculated value lay well on the experimental flooding curve specified by user, but the pressure jump before onset of flooding was not calculated.

  17. Staggered baryons

    NASA Astrophysics Data System (ADS)

    Bailey, Jon Andrew

    The strong force binds protons and neutrons within nuclei and quarks within mesons and baryons. Calculations of the masses of the light-quark baryons from the theory of the strong force, quantum chromodynamics (QCD), require numerical methods in which continuous Minkowski spacetime is replaced by a discrete Euclidean spacetime lattice. Finite computational resources and theoretical constraints impose significant limitations on lattice calculations. The price of perhaps the fastest formulation of lattice QCD, rooted staggered QCD, includes quark degrees of freedom called tastes, associated discretization effects called taste violations, and the rooting conjecture for eliminating the tastes in the continuum limit. Empirically successful rooted staggered QCD calculations of the baryon spectrum would constitute numerical evidence for the rooting conjecture and further vindication of QCD as the theory of the strong force. With such calculations as the goal, I discuss expected features of the staggered baryon spectrum, examine the spectra of interpolating operators transforming irreducibly under the staggered lattice symmetry group, construct such a set of baryon operators, and show how they could allow for particularly clean calculations of the masses of the nucleon, Delta, Sigma*, Ξ*, and O-. To quantify taste violations in baryonic quantities, I develop staggered chiral perturbation theory for light-quark baryons by mapping the Symanzik action into heavy baryon chiral perturbation theory, calculate the masses of flavor-symmetric nucleons to third order in partially quenched and fully dynamical staggered chiral perturbation theory, and discuss in detail the pattern of taste symmetry breaking and the resulting baryon degeneracies and mixings. The resulting chiral forms could be used with interpolating operators already in use to study the restoration of taste symmetry in the continuum limit.

  18. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions. [LMFBR

    SciTech Connect

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions.

  19. Ensemble phase averaging equations for multiphase flows in porous media, part I: the bundle-of-tubes model

    SciTech Connect

    Yang, Dali; Zhang, Duan; Currier, Robert

    2008-01-01

    A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

  20. The analysis of two-dimensional two-phase flow in horizontal heated tube bundles using drift flux model

    NASA Astrophysics Data System (ADS)

    Yang, Ruichang; Zheng, Rongchuan; Wang, Yanwu

    This paper presents the experimental study and numerical simulation of two-dimensional two-phase flow in horizontal heated tube bundles. In the experiments, two advanced measuring systems with a single-fibre optical probe and a tri-fibre-optical-probe were developed to measure respectively the local void fraction and vapor bubble velocities among the heated tube bundles. In accordance with the internal circulation characteristics of two-phase flow in the tube bundles, a mathematical model of two-dimensional two-phase low Reynolds number turbulent flow based on the modified drift flux model and the numerical simulation method to analyze the two-phase flow structures have been developed. The modified drift flux model in which both the acceleration by gravity and the acceleration of the average volumetric flow are taken into account for the calculation of the drift velocities enables its application to the analysis of multi-dimensional two-phase flow. In the analysis the distributions of the vapor-phase velocity, liquid-phase velocity and void fraction were numerically obtained by using the modified drift flux model and conventional drift flux model respectively and compared with the experimental results. The numerical analysis results by using the modified drift flux model agree reasonably well with the experimental investigation. It is confirmed that the modified drift flux model has the capability of correctly simulating the two-dimensional two-phase flow.

  1. Experimental determination of turbulent buffeting effects in tube bundles: Final report

    SciTech Connect

    Johnson, J.E.; Simonis, J.C.

    1988-05-01

    Dynamic lift and drag force correlations for the first and second row of tubes of a square pitch tube array (P/D=1.44) are presented for upstream turbulence intensity and integral scale lengths. These correlations were developed from experimental testing of full scale heat exchanger tubes in water under controlled and measured turbulent flow conditions. Turbulent buffeting effects for upstream turbulence intensities up to 15% and scale lengths of /1/2/ to 1 tube diameter are discussed.

  2. Characterization of flaws in a tube bundle mock-up for reliability studies

    SciTech Connect

    Kupperman, D.S.; Bakhtiari, S.

    1997-02-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes.

  3. Fluid-elastic excitation in heat exchanger tube bundles. Final report

    SciTech Connect

    Moretti, P.M.

    1995-07-01

    The present research is concerned with the instability of flow around a single cylinder, a normal cylinder pair, a tube row, and four-row tube arrays in cross flow. Flow visualization by dye injection technique was used to highlight the important features and structures of the flow field. A hot-film anemometer with the help of high speed data acquisition was used to perform measurements of the time-mean velocity, turbulence intensity, and vortex shedding frequency in the flow field of interest. Complex instability was observed in and behind closely-spaced tube rows and tube arrays. It was caused by the emerging jets grouping, with the flow pattern switching from one quasi-stable pattern to another one at irregular time intervals. Lock-in behavior of a single cylinder and a normal cylinder pair was also investigated. Slanted onion-shaped lock-in boundaries for a single cylinder with transverse force vibration were discovered. The lock-in behavior of a large pitch-ratio cylinder pair is similar to that of the single cylinder. For closely spaced cylinder pair, the lock-in region for even-numbered superharmonic of the shedding frequency are dominant. This phenomenon is in contrast to the single cylinder case, which has lock-in for odd-number superharmonic.

  4. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  5. Mitigation of thermal transients by tube bundle inlet plenum design. [LMFBR

    SciTech Connect

    Oras, J.J.; Kasza, K.E.

    1984-06-01

    A multiphase program aimed at investigating the importance of thermal buoyancy to LMFBR steam-generator and heat-exchanger thermal hydraulics under low-flow transient conditions is being conducted in the Argonne Mixing Components Test Facility (MCTF) on a 60/sup 0/ sector shell-side flow model of the Westinghouse straight-tube steam generator being developed under the US/DOE large-component development program. A series of shell-side constant-flow thermal-downramp transient tests have been conducted focusing on the phenomenon of thermal-buoyancy-induced-flow channeling. In addition, it was discovered that a shell-inlet flow-distribution plenum can play a significant role in mitigating the severity of a thermal transient entering a steam generator or heat exchanger.

  6. Staggered eigenvalue mimicry

    SciTech Connect

    Duerr, Stephan; Hoelbling, Christian; Wenger, Urs

    2004-11-01

    We study the infrared part of the spectrum for UV-filtered staggered Dirac operators and compare them to the overlap counterpart. With sufficient filtering and at small enough lattice spacing the staggered spectra manage to 'mimic' the overlap version. They show a 4-fold near degeneracy, and a clear separation between would-be zero modes and nonzero modes. This suggests an approximate index theorem for filtered staggered fermions and a correct sensitivity to the topology of QCD. Moreover, it supports square-rooting the staggered determinant to obtain dynamical ensembles with N{sub f}=2.

  7. Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes.

    PubMed

    Jásik, Ján; Mičieta, Karol; Siao, Wei; Voigt, Boris; Stuchlík, Stanislav; Schmelzer, Elmon; Turňa, Ján; Baluška, František

    2016-01-01

    The dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes. Importantly, we have documented very active actin polymerization at the cell periphery, especially in the bulging area during pollen germination and in the apical clear zone. Expression of the Lifeact reporter under control of the pollen-specific Actin3 promoter revealed 2 new aspects: (i) long F-actin bundles in pollen tube shanks are dynamic, showing undulating movements, (ii) subapical 'actin collars' or 'fringes' are absent.

  8. Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes

    PubMed Central

    Jásik, Ján; Mičieta, Karol; Siao, Wei; Voigt, Boris; Stuchlík, Stanislav; Schmelzer, Elmon; Turňa, Ján; Baluška, František

    2016-01-01

    ABSTRACT The dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes. Importantly, we have documented very active actin polymerization at the cell periphery, especially in the bulging area during pollen germination and in the apical clear zone. Expression of the Lifeact reporter under control of the pollen-specific Actin3 promoter revealed 2 new aspects: (i) long F-actin bundles in pollen tube shanks are dynamic, showing undulating movements, (ii) subapical ‘actin collars’ or ‘fringes’ are absent. PMID:26980067

  9. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  10. Subsea flowlines-1: J-tube pull-in theory is applied to North Sea's Troll flowline bundles

    SciTech Connect

    Maten, G.J.

    1985-09-23

    This article discusses the mechanics of the behavior of flowlines in a J-tube during pull-in and the theoretical models available to forecast the pull-in forces. The test program did not pretend to develop general design guidelines, but concentrated on the Troll field conditions only. The results may, however, be applicable to the design of J-tubes and flowline risers for a range of different conditions. Practical aspects with regard to J-tube connections are discussed, a design for the riser hang-off and the bellmouth sealing is presented, and the proposed method of tie-in operation is described.

  11. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    SciTech Connect

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  12. Proceedings of steam generator sludge deposition in recirculating and once through steam generator upper tube bundle and support plates

    SciTech Connect

    Baker, R.L. ); Harvego, E.A. )

    1992-01-01

    The development of remedial measures of shot peening have given nuclear utilities viable measures to address primary water stress corrosion cracking to extend steam generator life. The nuclear utility industry is now faced with potential replacement of steam generators in nuclear power plants due to stress corrosion cracking and intergranular attach in crevice locations on the secondary side of steam generators at tube support plates and at the crevice at the top of the tube sheet. Significant work has been done on developing and understanding of the effects of sludge buildup on the corrosion process at these locations. This session was envisioned to provide a forum for the development of an understanding of the mechanisms which control the transport and deposition of sludge on the secondary side of steam generators. It is hoped that this information will aid utilities in monitoring the progression of fouling of these crevices by further knowledge in where to look for the onset of support plate crevice fouling. An understanding of the progression of fouling from upper tube support plates to those lower in the steam generator where higher temperatures cause the corrosion process to initiate first can aid the nuclear utility industry in developing remedial measures for this condition and in providing a forewarning of when to apply such remedial measures.

  13. Staggered chiral random matrix theory

    SciTech Connect

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  14. QCD with rooted staggered fermions

    NASA Astrophysics Data System (ADS)

    Goltermann, M.

    In this talk, I will give an overview of the theoretical status of staggered Lattice QCD with the “fourth-root trick.” In this regularization of QCD, a separate staggered quark field is used for each physical flavor, and the inherent four-fold multiplicity that comes with the use of staggered fermions is removed by taking the fourth root of the staggered determinant for each flavor. At nonzero lattice spacing, the resulting theory is nonlocal and not unitary, but there are now strong arguments that this disease is cured in the continuum limit. In addition, the approach to the continuum limit can be understood in detail in the framework of effective field theories such as staggered chiral perturbation theory.

  15. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    SciTech Connect

    Barsamian, H.R.; Hassan, Y.A.

    1996-12-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization.

  16. STAGGERS IN SHEEP IN PATAGONIA

    PubMed Central

    Jones, F. S.; Arnold, J. F.

    1917-01-01

    After observations and experimental work both in the field and laboratory, the following conclusions seem justified. 1. Staggers is a non-infectious disorder affecting horses, cattle, and sheep. 2. The disease is characterized by weakness, muscular twitching, irregular movements of the head, stiffness of the limbs, and transient motor paralysis, accompanied with spastic spasms on excitement. There is also a derangement of vision and conjunctivitis. 3. The postmortem lesions are not characteristic. 4. We readily produced the disease by feeding susceptible sheep on a coarse tuft grass commonly known as coiron or pampa grass (Poa argentina). 5. The time required to produce definite symptoms by feeding the grass varied. Two animals developed typical staggers after two feedings; in another instance a period of 21 days of feeding was required. The average time for the production of unmistakable symptoms in our experiments was 10 days. 6. Many sheep recover from staggers spontaneously. A complete change of diet will usually effect a cure within 2 weeks. 7. Older .animals that have pastured for long periods on lands where the grass grows become tolerant and are rarely affected with staggers. 8. The grass is toxic to sheep at all seasons of the year. We fed late winter and early spring grass and grass in flower, and produced staggers in every instance. The young green grass is as toxic as any edible portion of the plant. PMID:19868185

  17. Taste changing in staggered quarks

    SciTech Connect

    Quentin Mason et al.

    2004-01-05

    The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.

  18. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    SciTech Connect

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  19. On staggered indecomposable Virasoro modules

    NASA Astrophysics Data System (ADS)

    Kytölä, Kalle; Ridout, David

    2009-12-01

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the "left module," and that the quotient by this submodule yields another highest weight module, the "right module." Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.

  20. Bundled monocapillary optics

    DOEpatents

    Hirsch, Gregory

    2002-01-01

    A plurality of glass or metal wires are precisely etched to form the desired shape of the individual channels of the final polycapillary optic. This shape is created by carefully controlling the withdrawal speed of a group of wires from an etchant bath. The etched wires undergo a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation being used. This reflective surface may be a single layer of material, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The collection of individual wires is assembled into a close-packed multi-wire bundle, and the wires are bonded together in a manner which preserves the close-pack configuration, irrespective of the local wire diameter. The initial wires are then removed by either a chemical etching procedure or mechanical force. In the case of chemical etching, the bundle is generally segmented by cutting a series of etching slots. Prior to removing the wire, the capillary array is typically bonded to a support substrate. The result of the process is a bundle of precisely oriented radiation-reflecting hollow channels. The capillary optic is used for efficiently collecting and redirecting the radiation from a source of radiation which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, a synchrotron radiation source, a reactor or spallation source of neutrons, or some other source.

  1. A tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  2. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  3. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  4. Staggering towards a calculation of weak amplitudes

    SciTech Connect

    Sharpe, S.R.

    1988-09-01

    An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.

  5. Possible Aoki phase for staggered fermions

    SciTech Connect

    Aubin, C.; Wang Qinghai

    2004-12-01

    The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste-symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered-Aoki phase. As for near-future simulations with more-improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.

  6. The effect of staggering a biplane

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1921-01-01

    This investigation was carried out by request of the United States Air Service at the Massachusetts Institute of Technology wind tunnel in 1918. As the data collected may be of general interest, they are published here by the National Advisory Committee for Aeronautics. The lift, drag, and center of pressure travel are determined for a biplane with a stagger varying from +100% to -100%. It is found that the efficiency and the maximum lift increase with positive stagger. With large positive staggers the center of pressure is far forward and has a very slight travel with changes in lift coefficient.

  7. Pseudoscalar flavor-singlets and staggered fermions

    NASA Astrophysics Data System (ADS)

    Gregory, Eric

    2006-12-01

    The Asqtad improved staggered fermion formalism has been a valuable tool in successfully cal- culating the non-singlet parts of the hadronic spectrum. We are engaged in a project to calculate the spectrum of the pseudoscalar singlet mesons with 2 + 1-flavor Asqtad staggered gauge con- figurations. Propagators of flavor-singlet states incorporate contributions from both disconnected and connected diagrams, and hence are sensitive to any differences in the actions governing the sea and valence fermions on the lattice. As such, they also present the possibility of a probe of the validity of the "fourth-root trick" in the staggered fermion formulation. We present an update on our progress toward measuring the η mass on 2 + 1-flavor Asqtad staggered gauge configura- tions, including a review of methods and preliminary results. We also show a strong correlation between Tr(γ5 ⊗ 1) and the topological charge in these configurations, as predicted by the index theorem.

  8. The Not-so-Staggering Effect of Staggered Animated Transitions on Visual Tracking.

    PubMed

    Chevalier, Fanny; Dragicevic, Pierre; Franconeri, Steven

    2014-12-01

    Interactive visual applications often rely on animation to transition from one display state to another. There are multiple animation techniques to choose from, and it is not always clear which should produce the best visual correspondences between display elements. One major factor is whether the animation relies on staggering-an incremental delay in start times across the moving elements. It has been suggested that staggering may reduce occlusion, while also reducing display complexity and producing less overwhelming animations, though no empirical evidence has demonstrated these advantages. Work in perceptual psychology does show that reducing occlusion, and reducing inter-object proximity (crowding) more generally, improves performance in multiple object tracking. We ran simulations confirming that staggering can in some cases reduce crowding in animated transitions involving dot clouds (as found in, e.g., animated 2D scatterplots). We empirically evaluated the effect of two staggering techniques on tracking tasks, focusing on cases that should most favour staggering. We found that introducing staggering has a negligible, or even negative, impact on multiple object tracking performance. The potential benefits of staggering may be outweighed by strong costs: a loss of common-motion grouping information about which objects travel in similar paths, and less predictability about when any specific object would begin to move. Staggering may be beneficial in some conditions, but they have yet to be demonstrated. The present results are a significant step toward a better understanding of animation pacing, and provide direction for further research.

  9. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  10. Staggered heavy baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  11. Implementing sepsis bundles

    PubMed Central

    Jozwiak, Mathieu; Monnet, Xavier

    2016-01-01

    Sepsis bundles represent key elements of care regarding the diagnosis and treatment of patients with septic shock and allow ones to convert complex guidelines into meaningful changes in behavior. Sepsis bundles endorsed the early goal-directed therapy (EGDT) and their implementation resulted in an improved outcome of septic shock patients. They induced more consistent and timely application of evidence-based care and reduced practice variability. These benefits mainly depend on the compliance with sepsis bundles, highlighting the importance of dedicated performance improvement initiatives, such as multifaceted educational programs. Nevertheless, the interest of early goal directed therapy in septic shock patients compared to usual care has recently been questioned, leading to an update of sepsis bundles in 2015. These new sepsis bundles may also exhibit, as the previous bundles, some limits and pitfalls and the effects of their implementation still needs to be evaluated. PMID:27713890

  12. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  13. Scalar meson spectroscopy with lattice staggered fermions

    SciTech Connect

    Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa

    2007-11-01

    With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.

  14. Kaon decay amplitudes using staggered fermions

    SciTech Connect

    Sharpe, S.R.

    1986-12-01

    A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K ..-->.. ..pi pi..,. Semi-quantitative results are found for the imaginary parts, and these suggest that epsilon' might be smaller than previously expected in the standard model.

  15. Preparing for bundled payments.

    PubMed

    Ambres, Cynthia; Jamilkowski, Mark

    2015-06-01

    Providers that are preparing for bundled payments should focus on five areas: Data analytics and benchmarks. Technological components. Care delivery guidelines. Care system redesign. Contractual considerations.

  16. Staggered solution procedures for multibody dynamics simulation

    NASA Astrophysics Data System (ADS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-04-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange

  17. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  18. "Bundling" in Learning.

    ERIC Educational Resources Information Center

    Spiegel, U.; Templeman, J.

    1996-01-01

    Applies the literature of bundling, tie-in sales, and vertical integration to higher education. Students are often required to purchase a package of courses, some of which are unrelated to their major. This kind of bundling policy can be utilized as a profit-maximizing strategy for universities exercising a degree of monopolistic power. (12…

  19. Fan Stagger Angle for Dirt Rejection

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  20. Fiber bundle endocytoscopy

    PubMed Central

    Hughes, Michael; Chang, Tou Pin; Yang, Guang-Zhong

    2013-01-01

    Endocytoscopy is an optical biopsy technique which uses a miniaturized camera to capture white light microscopy images through an endoscope. We have developed an alternative design that instead relays images to an external camera via a coherent fiber bundle. In this paper we characterize the device and demonstrate microscopy of porcine tissue ex vivo. One advantage of our approach is the ease with which other bundle-compatible imaging modalities can be deployed simultaneously. We show this by acquiring quasi-simultaneous endocytoscopy and fluorescence confocal endomicroscopy images through a single fiber bundle. This opens up possibilities for multi-modal endomicroscopy, combining white light and fluorescence imaging. PMID:24409380

  1. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  2. Bundle Binding in Polyelectrolyte Solutions

    SciTech Connect

    Stevens, M.J.

    1999-01-21

    Stiff polyelectrolytes are found to spontaneously form oriented bundles. Conditions under which bundling occurs are found. Molecular dynamics simulations show that divalent counterions are necessary, and the chains must be sufficiently long and stiff. No aggregation occurs for monovalent counterions. For flexible or short chains aggregation occurs, but bundle formation does not. Due to dynamical constraints the systems tend to order into a network of connected bundles, not a single bundle.

  3. Infrared imaging with fiber optic bundles

    NASA Astrophysics Data System (ADS)

    Hilton, Albert R., Sr.; McCord, James; Thompson, W. S.; LeBlanc, Richard A.

    2003-09-01

    Efforts have resumed to improve the image quality of infrared imaging bundles formed at AMI using the ribbon stacking method. The C4 glass has been used to reduce core size, increase packing density and improve flexibility. Ribbons are formed from unclad fiber wound on a drum with pitch, ribbon count and spacing between ribbons computer controlled. A small portion of each ribbon is compressed and fused using thin, dilute Epoxy. Unfortunately, the Epoxy, serving as a clad, absorbs most all the LWIR energy making the bundles unsuited for 8-12 μm cameras. The ribbons are removed from the drum and stacked, one on top of the other observing proper orientation to form the bundle. A typical 1 meter bundle is formed from 50-70 count ribbons for a total of 2500-4900 fibers, made from 2.5-4.9 Km of C4 fiber. Typical core diameters are 60-80 μm. Active surface area ranges from 60-70%. Infrared resolution images formed using a NIR tube camera equipped with a special relay lens demonstrates the resolution limit for the bundle. Currently, the limit is about 10 lp/mm. The bundle end is imaged in the 3-5 μm Agema 210 camera using an Amtir 1 F/1 meniscus, coated 3-5 μm. Video images taken in natural light of an individual, easily recognizable at 50 feet, will be shown. Results of careful evaluation carried out at Lockheed Martin in Orlando using a high performance Raytheon Galileo camera will be presented.

  4. Tube vibration in industrial-size test heat exchanger (90/sup 0/ square layout)

    SciTech Connect

    Halle, H.; Wambsganss, M.W.

    1983-02-01

    Tube vibrations in heat exchangers are being systematically investigated in a series of tests performed with an industrial-size test exchanger. Results from waterflow tests of eleven different tube bundles, in six- and eight-crosspass configurations on a 90/sup 0/ square layout with a pitch-to-diameter ratio of 1.25 are reported. The test cases include full tube bundles, no-tubes-in-window bundles, finned tube bundles, and proposed field and design fixes. The testing focused on identification of the lowest critical flowrate to initiate fluidelastic instability (large amplitude tube motion) and the location within the bundle of the tubes which first experience instability. The test results are tabulated to permit comparison with results obtained from previous tests with a 30/sup 0/ triangular layout tube bundle. Instability criteria are evaluated preliminarily. Pressure drop data are also generated and reported.

  5. Staggered fermion matrix elements using smeared operators

    NASA Astrophysics Data System (ADS)

    Kilcup, Greg; Gupta, Rajan; Sharpe, Stephen R.

    1998-02-01

    We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 44 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0, 6.2, and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2 GeV)=0.62+/-0.02(stat)+/-0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one loop. We do not include any estimate of the errors due to quenching or to the use of degenerate s and d quarks. For the ΔI=3/2 electromagnetic penguin operators we find B(3/2)7=0.62+/-0.03+/-0.06 and B(3/2)8=0.77+/-0.04+/-0.04. We also use the ratio of unsmeared to smeared operators to make a partially nonperturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be αMS¯(q*=1/a).

  6. Manual tube-to-tubesheet welding torch

    DOEpatents

    Kiefer, Joseph H.; Smith, Danny J.

    1982-01-01

    A welding torch made of a high temperature plastic which fits over a tube intermediate the ends thereof for welding the juncture between the tube and the back side of a tube plate and has a ballooned end in which an electrode, filler wire guide, fiber optic bundle, and blanketing gas duct are disposed.

  7. A comparative study of staggered and cell-centered Lagrangian formulation for multimaterial hydrodynamics

    SciTech Connect

    Francois, Marianne M; Shashkov, Misha J; Lowrie, Robert B; Dendy, Edward D

    2010-10-13

    We compare a staggered Lagrangian formulation with a cell-centered Lagrangian formulation for a two-material compressible flow. In both formulation, we assume a single velocity field and rely on pressure relaxation techniques to close the system of equations. We employ Tipton's mixture model for both formulation. However, for the cell-centered formulation, employing Tipton's model for the mixture cell results in loss of conservation of total energy. We propose a numerical algorithm to correct this energy discrepancy. We test both algorithms on the two-materials Sod shock tube test problem and compare the results with the analytical solution.

  8. Reductions in transformer losses achieved by staggering lamination layers

    NASA Astrophysics Data System (ADS)

    Albir, R. S.; Moses, A. J.

    1989-05-01

    The total loss of identical 3-phase, 3-limb, mitred and staggered cores assembled from 0.3 mm thick, conventional high permeability and laser scribed grain oriented silicon iron have been compared. The croes built from conventional material produced the best improvements when staggered and these were chosen to carry out further investigation to examine the effect of the stacking number and the T-joint design on the power loss of the cores. The power loss generally increased as the stagger length was increased, but an optimum stagger length range was determined at which the power loss was lowest. The percentage improvement in the power loss due to the introduction of the staggered technique is dependent upon the orientation of the material and the T-joint design. The best loss reduction compared to a mitred core of the same rating was around 5% using a core assembled from conventional material.

  9. Power module assemblies with staggered coolant channels

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  10. Penguin diagrams for improved staggered fermions

    SciTech Connect

    Lee, Weonjong

    2005-01-01

    We calculate, at the one-loop level, penguin diagrams for improved staggered fermion operators constructed using various fat links. The main result is that diagonal mixing coefficients with penguin operators are identical between the unimproved operators and the improved operators using such fat links as Fat7, Fat7+Lepage, Fat7, HYP (I) and HYP (II). In addition, it turns out that the off-diagonal mixing vanishes for those constructed using fat links of Fat7, Fat7 and HYP (II). This is a consequence of the fact that the improvement by various fat links changes only the mixing with higher dimension operators and off-diagonal operators. The results of this paper, combined with those for current-current diagrams, provide complete matching at the one-loop level with all corrections of O(g{sup 2}) included.

  11. Thermal Protection System with Staggered Joints

    NASA Technical Reports Server (NTRS)

    Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)

    2014-01-01

    The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.

  12. Price bundling packs pitfalls.

    PubMed

    Jaklevic, M C

    1995-02-27

    Hospitals thought bundling of healthcare services under one all-inclusive price would have great appeal to payers, bringing in more business. But instead, the concept has brought disappointment as the expected boost in patient volume has failed to materialize. PMID:10140286

  13. The Logic of Bundles

    NASA Astrophysics Data System (ADS)

    Harding, John; Yang, Taewon

    2015-12-01

    Since the work of Crown (J. Natur. Sci. Math. 15(1-2), 11-25 1975) in the 1970's, it has been known that the projections of a finite-dimensional vector bundle E form an orthomodular poset ( omp) {P}(E). This result lies in the intersection of a number of current topics, including the categorical quantum mechanics of Abramsky and Coecke (2004), and the approach via decompositions of Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996). Moreover, it provides a source of omps for the quantum logic program close to the Hilbert space setting, and admitting a version of tensor products, yet having important differences from the standard logics of Hilbert spaces. It is our purpose here to initiate a basic investigation of the quantum logic program in the vector bundle setting. This includes observations on the structure of the omps obtained as {P}(E) for a vector bundle E, methods to obtain states on these omps, and automorphisms of these omps. Key theorems of quantum logic in the Hilbert setting, such as Gleason's theorem and Wigner's theorem, provide natural and quite challenging problems in the vector bundle setting.

  14. Investigating the influences of two position (non-staggered and staggered) of wind turbine arrays to produce power in a wind farm

    NASA Astrophysics Data System (ADS)

    Ismail, Kamal, Samsul; Purnomo, Sarjiya

    2016-06-01

    This investigation was conducted to identify the influences of the two positions (non-staggered and staggered) of wind turbine arrays. Identification on down-scaled size wind turbine arrays was carried out in an open circuit, suction-type wind tunnel. Based on the results of the experiment, empirical relations for the centreline velocity deficit, tipline velocity deficit and wake radius are proposed. The non-staggered position results are larger power generated than that of the staggered position, this influenced by the trend deficit in velocity that makes wind turbine generated power difference between staggered position and non-stagger position. The area used non-staggered position larger than staggered position. Result staggered position has become one of the solutions to harness wind farms confined areas.

  15. The possibility for a short-period hybrid staggered undulator.

    SciTech Connect

    Sasaki, S.; Experimental Facilities Division

    2005-01-01

    A short-period hybrid-type staggered undulator is proposed. A proper combination of vanadium Permendur (VP) pole and NdFeB magnet provide approximately 40% larger peak field strength than a conventional staggered undulator. The peak field of a 15-mm-period hybrid staggered undulator exceeds 0.8 T at a gap of 6 mm. Also, by using dysprosium as a pole and PrFeB as a magnet at liquid nitrogen temperature (77K), even higher peak field ({approx} 0.94 T) can be achieved at the same gap.

  16. Engineering oscillating microtubule bundles.

    PubMed

    Sanchez, Timothy; Dogic, Zvonimir

    2013-01-01

    From motility of simple protists to determining the handedness of complex vertebrates, highly conserved eukaryotic cilia and flagella are essential for the reproduction and survival of many biological organisms. Despite extensive studies, the exact mechanism by which individual components coordinate their activity to produce ciliary beating patterns remains unknown. We describe a novel approach toward studying ciliary beating. Instead of deconstructing a fully functional organelle from the top-down, we describe a process by which synthetic cilia-like structures are assembled from the bottom-up and we present methods for engineering such structures. We demonstrate how simple mixtures of microtubules, kinesin clusters, and a bundling agent assemble into structures that produce spontaneous oscillations, suggesting that self-organized beating may be a generic feature of internally driven bundles. Synthetic cilia-like structures can be assembled at high density, leading to synchronization and metachronal traveling waves, reminiscent of the waves seen in biological ciliary fields.

  17. Optimal Designs of Staggered Dean Vortex Micromixers

    PubMed Central

    Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei

    2011-01-01

    A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°. PMID:21747691

  18. Rooted staggered fermions: good, bad or ugly?

    NASA Astrophysics Data System (ADS)

    Sharpe, Stephen

    2006-12-01

    I give a status report on the validity of the so-called "fourth-root trick", i.e. the procedure of representing the determinant for a single fermion by the fourth root of the staggered fermion determinant. This has been used by the MILC collaboration to create a large ensemble of lattices using which many quantities of physical interest have been and are being calculated. It is also used extensively in studies of QCD thermodynamics. The main question is whether the theory so defined has the correct continuum limit. There has been significant recent progress towards answering this question. After recalling the issue, and putting it into a broader context of results from statistical mechanics, I critically review the new work. I also address the related issue of the impact of treating valence and sea quarks differently in rooted simulations, discuss whether rooted simulations at finite temperature and density are subject to additional concerns, and briefly update results for quark masses using the MILC configurations. An answer to the question in the title is proposed in the summary.

  19. Non-perturbative Renormalization with Staggered Fermions

    NASA Astrophysics Data System (ADS)

    Lytle, Andrew

    Lattice studies of Standard Model phenomenology frequently require knowledge of matching factors, or "Z-factors," that convert lattice operators defined at the lattice scale to operators in a continuum scheme at a scale mu. We make the first non-perturbative determinations of Z-factors for improved, fully dynamical staggered fermions. We compute the mass renormalization factor Zm for the Asqtad action, which is the action used by the MILC collaboration[1]. We find the strange quark mass to be mMSs (2 GeV) = 103(3) MeV; significantly larger than the result obtained using the perturbative Z-factor[2]. We compute all 256 bilinear Z-factors for the HYP-smeared action, which provides a laboratory for comparison to the results of one-loop perturbation theory[3]. Our results indicate broad agreement for ratios of Z-factors, at the few percent level, while the Z-factors themselves differ at around the ten percent level. The bilinear calculations are a stepping stone towards computation of the four-Fermi Z-factors relevant for an ongoing precision calculation of BK[4, 5, 6, 7], the knowledge of which is used to constrain the CKM matrix. Uncertainty in the required matching factors constitutes the dominant source of error.

  20. Rail coal transportation under the Staggers Act

    SciTech Connect

    Carpenter, A.R.

    1984-01-01

    The Stagger's Act of 1980 offered railroads the opportunity to accelerate growth along with the coal industry in efforts to increase market for both the product (coal) and the service provided. It provides for cost recovery indexing allowing railroads to stay abreast of inflation and flexibility in setting and changing rates. It also allows railroads to enter directly into contract agreements with shippers. Railroads have used extreme caution in implementing these liberties so that the coal industry would not be severely impacted by these changes. They could have raised rates by as much as 52.3% under the new guidelines, but only raised them by 31.6% in the Eastern market and by 21.3% for export coal. The president of CSX Railroads stresses the symbiotic relationship existing between railroads and the coal industry. He suggests that separate sectors of the coal industry stop pointing fingers at one another and join hands to solve coal's competitive problems in the overseas export market. He calls for the formation of a blue-ribbon panel representing all of the parties with a stake in coal to implement such a cooperative effort. (DMC)

  1. Efficiency and optimal allocation in the staggered entry design

    USGS Publications Warehouse

    Link, W.A.

    1993-01-01

    The staggered entry design for survival analysis specifies that r left-truncated samples are to be used in estimation of a population survival function. The ith sample is taken at time Bi, from the subpopulation of individuals having survival time exceeding Bi. This paper investigates the performance of the staggered entry design relative to the usual design in which all samples have a common time origin. The staggered entry design is shown to be an attractive alternative, even when not necessitated by logistical constraints. The staggered entry design allows for increased precision in estimation of the right tail of the survival function, especially when some of the data may be censored. A trade-off between the range of values for which the increased precision occurs and the magnitude of the increased precision is demonstrated.

  2. A staggered-grid convolutional differentiator for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  3. Topological susceptibility in staggered fermion chiral perturbation theory

    SciTech Connect

    Billeter, Brian; DeTar, Carleton; Osborn, James

    2004-10-01

    The topological susceptibility of the vacuum in quantum chromodynamics has been simulated numerically using the Asqtad improved staggered fermion formalism. At nonzero lattice spacing, the residual fermion doublers (fermion tastes) in the staggered fermion formalism give contributions to the susceptibility that deviate from conventional continuum chiral perturbation theory. In this brief report, we estimate the taste-breaking artifact and compare it with results of recent simulations, finding that it accounts for roughly half of the scaling violation.

  4. Effective field theories for QCD with rooted staggered fermions

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal

    2008-04-01

    Even highly improved variants of lattice QCD with staggered fermions show significant violations of taste symmetry at currently accessible lattice spacings. In addition, the 'rooting trick' is used in order to simulate with the correct number of light sea quarks, and this makes the lattice theory nonlocal, even though there is good reason to believe that the continuum limit is in the correct universality class. In order to understand scaling violations, it is thus necessary to extend the construction of the Symanzik effective theory to include rooted staggered fermions. We show how this can be done, starting from a generalization of the renormalization-group approach to rooted staggered fermions recently developed by one of us. We then explain how the chiral effective theory follows from the Symanzik action, and show that it leads to 'rooted' staggered chiral perturbation theory as the correct chiral theory for QCD with rooted staggered fermions. We thus establish a direct link between the renormalization-group based arguments for the correctness of the continuum limit and the success of rooted staggered chiral perturbation theory in fitting numerical results obtained with the rooting trick. In order to develop our argument, we need to assume the existence of a standard partially-quenched chiral effective theory for any local partially-quenched theory. Other technical, but standard, assumptions are also required.

  5. Managing bundled payments.

    PubMed

    Draper, Andrew

    2011-04-01

    Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system. PMID:21548437

  6. Lattice Boltzmann simulation on liquid flow and mass transport in a bioreactor with cylinder bundle for hydrogen production

    NASA Astrophysics Data System (ADS)

    Liao, Qiang; Yang, Yan-Xia; Zhu, Xun; Wang, Hong; Ding, Yu-Dong

    2015-06-01

    The lattice Boltzmann method is adopted to simulate hydrodynamics and mass transfer accompanying with biochemical reaction in a channel with cylinder bundle, which is the scenario of biohydrogen production by photosynthetic bacteria in the biofilm attached on the surface of cylinder bundle in photobioreactor. The effects of cylinder spacing, Reynolds number and cylinder arrangement are investigated. The numerical results reveal that highest glucose concentration and the lowest hydrogen concentration are obtained at the front of the first row cylinders for all cases. The staggered arrangement leads to an increment in average drag coefficient, Sherwood number and consumption efficiency of substrate under a given condition, and the increment in Sherwood number reaches up to 30 %, while that in drag coefficient is around 1 %, moreover, the increment in consumption efficiency reaches the maximum value of 12 %. The results indicate that the staggered arrangement is beneficial to the mass transfer and biochemical reaction.

  7. Staggered chiral perturbation theory and the fourth-root trick

    NASA Astrophysics Data System (ADS)

    Bernard, C.

    2006-06-01

    Staggered chiral perturbation theory (SχPT) takes into account the “fourth-root trick” for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. An apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular, the restoration of taste symmetry, SχPT then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a mixed theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of SχPT, so that a variety of possible new routes for testing this validity are opened.

  8. Staggered chiral perturbation theory and the fourth-root trick

    SciTech Connect

    Bernard, C.

    2006-06-01

    Staggered chiral perturbation theory (S{chi}PT) takes into account the 'fourth-root trick' for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, n{sub F}=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces n{sub F}=4 to n{sub F}=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of n{sub F}=3, 2, or 1. An apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular, the restoration of taste symmetry, S{chi}PT then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a mixed theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of S{chi}PT, so that a variety of possible new routes for testing this validity are opened.

  9. Bundle Security Protocol for ION

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  10. Heavy-light semileptonic decays in staggered chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Aubin, C.; Bernard, C.

    2007-07-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.

  11. Artificial staggered magnetic field for ultracold atoms in optical lattices

    SciTech Connect

    Lim, Lih-King; Smith, C. Morais; Hemmerich, Andreas

    2010-02-15

    A time-dependent optical lattice with staggered particle current in the tight-binding regime was considered that can be described by a time-independent effective lattice model with an artificial staggered magnetic field. The low-energy description of a single-component fermion in this lattice at half-filling is provided by two copies of ideal two-dimensional massless Dirac fermions. The Dirac cones are generally anisotropic and can be tuned by the external staggered flux {phi}. For bosons, the staggered flux modifies the single-particle spectrum such that in the weak coupling limit, depending on the flux {phi}, distinct superfluid phases are realized. Their properties are discussed, the nature of the phase transitions between them is established, and Bogoliubov theory is used to determine their excitation spectra. Then the generalized superfluid-Mott-insulator transition is studied in the presence of the staggered flux and the complete phase diagram is established. Finally, the momentum distribution of the distinct superfluid phases is obtained, which provides a clear experimental signature of each phase in ballistic expansion experiments.

  12. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  13. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  14. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  15. Structures and characterizations of bundles of collapsed double-walled carbon nanotubes.

    PubMed

    Zhong, X H; Wang, R; Liu, L B; Kang, M; Wen, Y Y; Hou, F; Feng, J M; Li, Y L

    2012-12-21

    The performance of carbon nanotube fibers (CNTFs) significantly depends on the packing styles of carbon nanotube (CNT) bundles. Revealing the structures and characterizations of CNT bundles is contributive to understanding the structures, properties and even the formation of CNTFs during chemical vapor deposition (CVD) processing. In this paper, bundles consisting of collapsed double-walled carbon nanotubes (CDWNT) in continuous CNTFs fabricated from CVD processing were characterized and analyzed by transmission electronic microscopy (TEM) and x-ray diffraction (XRD). TEM observations show that the continuous CNTFs are composed of CDWNT-bundle units. CDWNT-bundle units of 10-20 nm in thickness contain near numbers of collapsed tubes. The degree of collapse of the CDWNTs varies with their location in the bundle and their own diameter. CDWNT-bundle units pack side by side or face to face, assembling into super-bundles with diameters of 200-300 nm. XRD patterns show that three novel and strong peaks appear at 10°-15°, 21.3° and 23.7°, respectively, corresponding to CDWNT two side pores (10°-15°) and CDWNT layers (21.3° and 23.7°), which indicates the collapsed tube structures in CNTFs are common characterizations. Finally, a collapse mechanism is discussed from the observation and analysis. PMID:23196759

  16. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  17. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    NASA Technical Reports Server (NTRS)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  18. Staggered chiral perturbation theory for heavy-light mesons

    NASA Astrophysics Data System (ADS)

    Aubin, C.; Bernard, C.

    2006-01-01

    We incorporate heavy-light mesons into staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light SχPT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the “fourth root trick” to reduce four staggered tastes to one, and of the SχPT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.

  19. Staggered fermions, zero modes, and flavor-singlet mesons

    SciTech Connect

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.

  20. Staggered fermions, zero modes, and flavor-singlet mesons

    DOE PAGES

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less

  1. Staggered chiral perturbation theory in the two-flavor case

    SciTech Connect

    Du Xining

    2010-07-01

    I study two-flavor staggered chiral perturbation theory in the light pseudoscalar sector. The pion mass and decay constant are calculated through next-to-leading order in the partially-quenched case. In the limit where the strange quark mass is large compared to the light quark masses and the taste splittings, I show that the SU(2) staggered chiral theory emerges from the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low energy constants and taste-violating parameters are given. The results are useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from varying strange quark masses.

  2. Stiffness of the Extrafibrillar Phase in Staggered Biological Arrays

    NASA Astrophysics Data System (ADS)

    Bar-On, Benny; Wagner, H. Daniel

    2012-08-01

    A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue.

  3. Stiffness of the extrafibrillar phase in staggered biological arrays.

    PubMed

    Bar-On, Benny; Wagner, H Daniel

    2012-08-17

    A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue. PMID:23006404

  4. Boundary conditions in a meshless staggered particle code

    SciTech Connect

    Libersky, L.D.; Randles, P.W.

    1998-07-01

    A meshless method utilizing two sets of particles and generalized boundary conditions is introduced. Companion sets of particles, one carrying velocity and the other carrying stress, are employed to reduce the undesirable effects of colocation of all field variables and increase accuracy. Boundary conditions implemented within this staggered framework include contact, stress-free, stress, velocity, and symmetry constraints. Several test problems are used to evaluate the method. Of particular importance is the motion of stress particles relative to velocity particles in higher dimensions. Early results show promise, but difficulties remain that must be overcome if the staggered technique is to be successful.

  5. Evaluating big deal journal bundles.

    PubMed

    Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A

    2014-07-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish. PMID:24979785

  6. Evaluating big deal journal bundles

    PubMed Central

    Bergstrom, Theodore C.; Courant, Paul N.; McAfee, R. Preston; Williams, Michael A.

    2014-01-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish. PMID:24979785

  7. Feeding Tubes

    MedlinePlus

    ... administer the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via ... down through the esophagus into the stomach. The NG tube can be used to empty the stomach ...

  8. Ear Tubes

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  9. Improved staggered eigenvalues and epsilon regime universality in SU(2)

    NASA Astrophysics Data System (ADS)

    Hart, Alistair

    2006-12-01

    We study the low-lying modes of staggered Dirac operators for quenched SU(2) and show that improvement changes the distribution from lattice-like to continuum-like at lattice spacings rep- resentative of current dynamical SU(3) simulations. Epsilon regime universality predicts different distributions for the low-lying eigenvalues of the continuum and lattice staggered Dirac operators. At lattice spacings around 0.07 fm we show that improved staggered eigenvalues have the continuum distribution (as predicted by the chiral Orthogonal Ensemble of random matrices), whilst unimproved fall on the discrete distribution (as per the chiral Symplectic Ensemble). The crossover is much more rapid than for SU(3). In addition, improved staggered fermions give a good approximation to the Atiyah-Singer index theorem, appear to satisfy the Banks-Casher relation and show clear taste-degeneracy for the non- zero modes. All this indicates that taste-changing interactions are well under control at lattice spacings 0.07 - 0.13 fm, matching our findings for SU(3).

  10. Atrio-His bundle tracts.

    PubMed Central

    Brechenmacher, C

    1975-01-01

    The atrio-His bundle tracts are very rare; only two have been found in 687 hearts studied histologically. These tracts have a similar appearance to those of the atrioventricular bundle and form a complete bypass of the atrioventricular node. In their presence the electrocardiogram may show a short or normal PR interval. They may be responsible for some cases of very rapid ventricular response to supraventricular arrhythmias. Images PMID:1191446

  11. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices

    PubMed Central

    Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.

    2011-01-01

    Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706

  12. Reaction mechanisms and staggering in S+Ni collisions

    NASA Astrophysics Data System (ADS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V. L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad. R.

    2011-07-01

    The reactions S32+Ni58 and S32+Ni64 are studied at 14.5 A MeV. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. Close to the multifragmentation threshold this staggering appears hidden by the rapid variation of the production yields with the fragment size. Once this effect is accounted for, the staggering appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of the production yields as a function of the neutron excess N-Z, reveals that odd-even effects cannot be explained by pairing effects in the nuclear masses alone, but depend in a more complex way on the de-excitation chain.

  13. Regularizing QCD with staggered fermions and the fourth root trick

    NASA Astrophysics Data System (ADS)

    Bernard, Claude

    2006-12-01

    We investigate the properties of staggered-fermion lattice QCD in which the fourth root of the fermion determinant is taken. We show that this theory is non-local at non-zero lattice spacing a, and that the non-locality is caused by the breaking of taste symmetry at a = 0. We then present a renormalization-group based argument that the theory restores taste symmetry in the continuum limit. As a consequence the theory is local in that limit, and falls into the correct universality class. Finally, we argue that the correct effective theory for the physics of Goldstone bosons at a = 0 is given by staggered chiral perturbation theory with the replica trick.

  14. Future of Lattice Calculations with Staggered Sea Quarks

    SciTech Connect

    Gottlieb, Steven

    2011-05-23

    The MILC collaboration for some years has been creating gauge ensembles with 2+1 flavors of asqtad or improved staggered quarks. There are some 40 ensembles covering a wide range of quark mass and lattice spacing, thus allowing control of the chiral and continuum limits. An extensive review of that program has been published in Reviews of Modern Physics. Recently, MILC has begun a new program using HPQCD's highly improved staggered quark (HISQ) action. This action has smaller taste symmetry breaking than asqtad and improved scaling properties. We also include a dynamical charm quark in these calculations. We summarize the achievements of the asqtad program, what has been done so far with HISQ quarks, and then consider what future ensembles will be created and their impact.

  15. B{sub K} in staggered chiral perturbation theory

    SciTech Connect

    Water, Ruth S. van de; Sharpe, Stephen R.

    2006-01-01

    We calculate the kaon B parameter, B{sub K}, to next-to-leading order in staggered chiral perturbation theory. We find expressions for partially quenched QCD with three sea quarks, quenched QCD, and full QCD with m{sub u}=m{sub d}{ne}m{sub s}. We extend the usual power counting to include the effects of using perturbative (rather than nonperturbative) matching factors. Taste breaking enters through the O(a{sup 2}) terms in the effective action, through O(a{sup 2}) terms from the discretization of operators, and through the truncation of matching factors. These effects cause mixing with several additional operators, complicating the chiral and continuum extrapolations. In addition to the staggered expressions, we present B{sub K} at next-to-leading order in continuum PQ{chi}PT for N{sub f}=3 sea quarks with m{sub u}=m{sub d}{ne}m{sub s}.

  16. Cascaded, stagger-tuned, broadband, low-ripple optical amplifiers.

    PubMed

    Saleh, A A; Jopson, R M

    1988-11-01

    We show theoretically that the gain spectrum obtained by cascading two or more semiconductor optical amplifiers can have a ripple amplitude that is significantly smaller than that currently attainable with a single stage of optical amplification. For example, by cascading two stagger-tuned amplifiers, each having 10 dB of coupling loss and facet reflectivities of 10(-3), one can achieve a net (fiber-to-fiber) gain of 30 dB with less than 2 dB of ripple amplitude. We also show that, under some conditions, simple cascading of optical amplifiers, without the stagger tuning and associated control, can lead to low-ripple, high-gain optical amplification.

  17. LES investigation of infinite staggered wind-turbine arrays

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2014-12-01

    The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays.

  18. Bundle Formation in Biomimetic Hydrogels.

    PubMed

    Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J

    2016-08-01

    Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.

  19. Stimulated emission of electron beam in nanotube bundles

    NASA Astrophysics Data System (ADS)

    Batrakov, K. G.; Kuzhir, P. P.; Maksimenko, S. A.

    2008-05-01

    Recently, a hypothetical nanoscale lasing device exploiting the emission of electromagnetic waves by electron beam in an isolated carbon nanotube (CNT) has been proposed [K.G. Batrakov, P.P. Kuzhir, S.A. Maksimenko, in: A. Lakhtakia, S.A. Maksimenko (Eds.), Proceedings of the SPIE, vol. 6328, 2006, p. 63280Z]. The present work considers the stimulated emission of an electron beam in CNT bundles. It is shown that the modification of electron wavefunction in CNT bundle as compared with isolated CNT can result in a significant change of the electron beam propagation in nanotubes. Two cases of the CNT collection arrangement-a “square” lattice and a densely packed bundle of CNTs-are discussed. The distribution of the electron density corresponding to four- and six-wave diffraction in the CNT collection is presented. The ranges where the electron scattering is suppressed are found to be preferable for lasing. The proposed way to increase the generation length extends substantially the potentiality of CNT bundle as a basic element of the nanoscale analog of the traveling wave tube (TWT), backward oscillator (BWO) and free-electron laser (FEL).

  20. An interpretation of staggering effects by correlation observables

    NASA Astrophysics Data System (ADS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V. L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad. R.

    2012-07-01

    The reactions 32S+58,64Ni are studied at 14.5 A MeV. Evidence is found for odd-even effects in isotopic observables of the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique, showing that odd-even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.

  1. New insights into the Young's modulus of staggered biological composites.

    PubMed

    Bar-On, Benny; Wagner, H Daniel

    2013-03-01

    This communication presents a simplified "mechanics-of-materials" approach for describing the mechanics of staggered composite architectures, such as those arising in a variety of biological tissues. This analysis calculates the effective modulus of the bio-composite and provides physical insights into its elastic behavior. Simplified expressions for high- and low-mineralized tissues are then proposed and the effects of the mineral thickness ratio and aspect ratio on the modulus are demonstrated.

  2. Baryons with Ginsparg-Wilson quarks in a staggered sea

    SciTech Connect

    Tiburzi, Brian C.

    2005-11-01

    We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral expansion. Expressions derived for masses and magnetic moments are required for addressing lattice artifacts in mixed-action simulations of these observables.

  3. Staggered baryon operators with flavor SU(3) quantum numbers

    SciTech Connect

    Bailey, Jon A.

    2007-06-01

    The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.

  4. Staggered chiral perturbation theory at next-to-leading order

    SciTech Connect

    Sharpe, Stephen R.; Van de Water, Ruth S.

    2005-06-01

    We study taste and Euclidean rotational symmetry violation for staggered fermions at nonzero lattice spacing using staggered chiral perturbation theory. We extend the staggered chiral Lagrangian to O(a{sup 2}p{sup 2}), O(a{sup 4}), and O(a{sup 2}m), the orders necessary for a full next-to-leading order calculation of pseudo-Goldstone boson masses and decay constants including analytic terms. We then calculate a number of SO(4) taste-breaking quantities, which involve only a small subset of these next-to-leading order operators. We predict relationships between SO(4) taste-breaking splittings in masses, pseudoscalar decay constants, and dispersion relations. We also find predictions for a few quantities that are not SO(4) breaking. All these results hold also for theories in which the fourth root of the fermionic determinant is taken to reduce the number of quark tastes; testing them will therefore provide evidence for or against the validity of this trick.

  5. Staggered chiral perturbation theory for heavy-light mesons

    SciTech Connect

    Aubin, C.; Bernard, C.

    2006-01-01

    We incorporate heavy-light mesons into staggered chiral perturbation theory (S{chi}PT), working to leading order in 1/m{sub Q}, where m{sub Q} is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light S{chi}PT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the 'fourth root trick' to reduce four staggered tastes to one, and of the S{chi}PT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.

  6. Taste symmetry breaking with hypercubic-smeared staggered fermions

    SciTech Connect

    Bae, Taegil; Adams, David H.; Kim, Hyung-Jin; Kim, Jongjeong; Kim, Kwangwoo; Lee, Weonjong; Jung, Chulwoo; Sharpe, Stephen R.

    2008-05-01

    We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable to the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<

  7. Staggers in horses grazing paspalum infected with Claviceps paspali.

    PubMed

    Cawdell-Smith, A J; Scrivener, C J; Bryden, W L

    2010-10-01

    Invasion of the flowering heads of grasses by Claviceps spp. can produce sclerotia (ergots) containing several toxins. Ingestion of these toxins, through the consumption of paspalum (Paspalum dilatatum), can induce a range of clinical symptoms, including staggers. Cattle are the most commonly affected species, but although sheep and horses have been reported affected there are no published descriptions of paspalum staggers in horses. We describe two occurrences of paspalum staggers, the first in three Australian Stockhorse foals and the second in mature Standardbred horses. All three foals presented with ataxia in all limbs after consuming infected paspalum. One foal died from misadventure and the other two recovered within 1 week of removal from the infected paddock. In the second case, two of eight mares and geldings grazing in an irrigation channel developed hindquarter paresis. After removal of all horses from the area, one of the affected horses continued to deteriorate. Both horses were treated with antibiotics. The more severely affected horse was also treated with fluids and electrolytes, but had to be euthanased. The second affected horse recovered after 2 days. Paspalum pastures should inspected for Claviceps paspali infection before the introduction of horses. PMID:20854295

  8. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  9. RBMK pressure tube rupture assessment

    SciTech Connect

    Schmitt, B.E.; Tsiklauri, G.V.

    1994-08-01

    The Russian RBMK reactor core design consists of multiple parallel pressure tube channels that contain Zr clad, UO{sub 2} fuel pin bundles. These parallel channels are contained within graphite moderator blocks which are, in turn, contained within a sealed core cavity. Current safety evaluation efforts of the RBMK reactors have been concentrating in the area of tube ruptures within the core cavity and, in particular, multiple tube ruptures that could threaten the reactor core integrity. Tube rupture events result in a pressurization of the reactor core cavity. The original design overpressure for the cavity region was based on a single tube rupture, resulting in considerable margin to the top plate lift pressure. The top plate lift pressure is 3.1 bar, and a single tube rupture would result in approximately 1.4 bar. RBMK plant specific cavity pressure relief designs provide for between three and in simultaneous tube ruptures before exceeding the top plate lift pressure. Thus, current safety evaluations have begun to examine the potential for multiple tube ruptures that could exceed the current cavity pressure relief designs. One such scenario being examined is a partial rupture in a group distribution header that results in stagnated (low) flow to up to 40 pressure tubes. The subsequent fuel heatup in these reduced flow tubes could result in multiple tube ruptures beyond the design relief capacity of the core cavity. This paper examines several key issues in evaluating this transient, including: (1) the effects of low flow, (2) the effects of axial peaking, and (3) the effects of radial peaking, all relative to the time to tube rupture. These issues each play a significant role in attempting to evaluate the likelihood and severity of multiple tube ruptures for a partial group distribution header break.

  10. Metal wastage analysis of carbon steel tubes in FBC environment

    SciTech Connect

    Sethi, V.K.; Puentes, E. ); Natesan, K. )

    1989-01-01

    The TVA 20-MW AFBC Pilot Plant located near Paducah, Kentucky began operations in March 1982, and it operated with the same in-bed evaporator tubes (tube bundle B1) for {approximately}13,625 h through the end of 1985. During January-February 1986, the evaporator tubes were removed to test a new tube bundle configuration (tube bundle C1). After only a short period of operation, tube diameter measurements show that tube wastage rates for bundle C1 were almost an order of magnitude larger than those recorded for B1. Although several other changes could have been responsible for this increase, the consensus at the TVA was that the increase probably occurred because the pilot plant switched coals from a low chlorine (0.02%) to a high chlorine ({approximately}0.30%) KY No. 9 coal. In order to determine the validity of the role of chlorine in increasing the tube wastage, several tube sections were cut out from the plant and analyzed. The results of the chemical and metallographic examination are reported.

  11. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    DOEpatents

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  12. Medical catheters thermally manipulated by fiber optic bundles

    DOEpatents

    Chastagner, Philippe

    1992-01-01

    A maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.

  13. Medical catheters thermally manipulated by fiber optic bundles

    DOEpatents

    Chastagner, P.

    1992-10-06

    A maneuverable medical catheter comprising a flexible tube having a functional tip is described. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts. 10 figs.

  14. Exploring Bundling Theory with Geometry

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  15. IR imaging bundles for HWIL testing

    NASA Astrophysics Data System (ADS)

    Shaw, Brandon; Gibson, Dan; Nguyen, Vinh; Gattass, Rafael; Sanghera, Jas; Aggarwal, Ishwar

    2011-06-01

    We report on development and characterization of square registered infrared imaging bundles fabricated from As2S3fiber for HWIL applications. Bundle properties and cross-talk measurements are presented.

  16. Interpretation of electron diffraction from carbon nanotube bundles presenting precise helicity

    NASA Astrophysics Data System (ADS)

    Colomer, J.-F.; Henrard, L.; Launois, P.; van Tendeloo, G.; Lucas, A. A.; Lambin, Ph.

    2004-08-01

    The structure of bundles of carbon nanotubes produced by catalytic chemical vapor deposition has been studied by electron diffraction. The experimental results were analyzed with the kinematical theory of diffraction. An interpretation of the diffraction patterns demonstrates unambiguously that some bundles are made of double-walled carbon nanotubes, and not single-walled nanotubes as previously reported in Phys. Rev. B 64, 125425 (2001). In this previous work, we have focused our attention on bundles presenting one or two helicities. The interpretation of our diffraction data based on the assumption of double-walled nanotubes is shown to fit remarkably with experiment. In the present paper, the detailed analysis of an electron diffraction pattern from a small bundle exhibiting two helicities is made and we deduced the most probable wrapping indices of the two tubes constituting the double-walled nanotubes.

  17. Load sharing in the growth of bundled biopolymers

    PubMed Central

    Wang, Ruizhe; Carlsson, A. E.

    2014-01-01

    To elucidate the nature of load sharing in the growth of multiple biopolymers, we perform stochastic simulations of the growth of biopolymer bundles against obstacles under a broad range of conditions and varying assumptions. The obstacle motion due to thermal fluctuations is treated explicitly. We assume the “Perfect Brownian Ratchet” (PBR) model, in which the polymerization rate equals the free-filament rate as soon as the filament-obstacle distance exceeds the monomer size. Accurate closed-form formulas are obtained for the case of a rapidly moving obstacle. We find the following: (1) load sharing is usually sub-perfect in the sense that polymerization is slower than for a single filament carrying the same average force; (2) the sub-perfect behavior becomes significant at a total force proportional to the logarithm or the square root of the number of filaments, depending on the alignment of the filaments; (3) for the special case of slow barrier diffusion and low opposing force, an enhanced obstacle velocity for an increasing number of filaments is possible; (4) the obstacle velocity is very sensitive to the alignment of the filaments in the bundle, with a staggered alignment being an order of magnitude faster than an unstaggered one at forces of only 0.5 pN per filament for 20 filaments; (5) for large numbers of filaments, the power is maximized at a force well below 1 pN per filament; (6) for intermediate values of the obstacle diffusion coefficient, the shape of the force velocity relation is very similar to that for rapid obstacle diffusion. PMID:25489273

  18. Towards an understanding of staggering effects in dissipative binary collisions

    NASA Astrophysics Data System (ADS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V. L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad. R.

    2012-02-01

    The reactions S32+58Ni are studied at 14.5 A MeV. Evidence is found for important odd-even effects in isotopic observables of selected peripheral collisions corresponding to the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique. It is shown that this method is a powerful tool to get experimental information on the evaporation chain, in order to constrain model calculations. Specifically, we show that odd-even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.

  19. Pion and kaon masses in staggered chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Aubin, C.; Bernard, C.

    2003-08-01

    We show how to compute chiral logarithms that take into account both the O(a2) taste-symmetry breaking of staggered fermions and the fourth-root trick that produces one taste per flavor. The calculation starts from the Lee-Sharpe Lagrangian generalized to multiple flavors. An error in a previous treatment by one of us is explained and corrected. The one loop chiral logarithm corrections to the pion and kaon masses in the full (unquenched), partially quenched, and quenched cases are computed as examples.

  20. Survival analysis in telemetry studies: The staggered entry design

    USGS Publications Warehouse

    Pollock, K.H.; Winterstein, S.R.; Bunck, C.M.; Curtis, P.D.

    1989-01-01

    A simple description of the Kaplan-Meier procedure is presented with an example using northern bobwhite quail survival data. The Kaplan- Meier procedure was then generalized to allow gradual (or staggered) entry of animals into the study, allowing animals being lost (or censored) due to radio failure, radio loss, or emigration of the animal from the study area. Additionally, the applicability and generalization of the log rank test, a test to compare two survival distributions, was demonstrated. Computer program was developed and is available from authors.

  1. Observations on staggered fermions at nonzero lattice spacing

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal

    2006-06-01

    We show that the use of the fourth-root trick in lattice QCD with staggered fermions corresponds to a nonlocal theory at nonzero lattice spacing, but argue that the nonlocal behavior is likely to go away in the continuum limit. We give examples of this nonlocal behavior in the free theory, and for the case of a fixed topologically nontrivial background gauge field. In both special cases, the nonlocal behavior indeed disappears in the continuum limit. Our results invalidate a recent claim that at nonzero lattice spacing an additive mass renormalization is needed because of taste-symmetry breaking.

  2. Turbulent Flow Properties Around a Staggered Wind Farm

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo P.; Arndt, R. E. A.; Sotiropoulos, Fotis

    2011-12-01

    The fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel. The wind farm consisted of a series of 10 rows by 2-3 columns of miniature wind turbines spaced 5 and 4 rotor diameters in the streamwise and spanwise directions respectively. It was placed in a boundary-layer flow developed over a smooth surface under thermally neutral conditions. Cross-wire anemometry was used to obtain high resolution measurements of streamwise and vertical velocity components at various locations within and above the wind farm. The results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions. This leads to improved power output of the overall wind farm. A simplified analysis suggests that the difference in power output between the two configurations is on the order of 10%. The maximum levels of turbulence intensity in the staggered wind farm were found to be very similar to that observed in the wake of a single wind turbine, differing substantially with that observed in an aligned configuration with similar spacing. The dramatic changes in momentum and turbulence characteristics in the two configurations show the importance of turbine layout in engineering design. Lateral homogenization of the turbulence statistics above the wind farm allows for the development of simple parametrizations for the adjustment of flow properties, similar to the case of a surface roughness transition. The development of an internal boundary layer was observed at the upper edge of the wind farm within which the flow statistics are affected by the superposition of the ambient flow and the flow disturbance induced by the wind turbines. The adjustment of the flow in this layer is much slower in the staggered situation (with respect to its aligned

  3. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate. PMID:11460645

  4. Metal wastage analysis of carbon steel tubes in FBC environment

    SciTech Connect

    Sethi, V.K.; Puentes, E.; Natesan, K.; Argonne National Lab., IL )

    1988-11-01

    The TVA 20-MW AFBC Pilot Plant located near Paducah, Kentucky began operations in March 1982, and it operated with the same in-bed evaporator tubes (tube bundle B1) for {approximately}13,625 h through the end of 1985. During January--February 1986, the evaporator tubes were removed to test a new tube bundle configuration (tube bundle C1). After only a short period of operation, tube diameter measurements showed that tube wastage rates for bundle C1 were almost an order of magnitude larger than those recorded for B1. Although several other changes could have been responsible for this increase, the consensus at the TVA was that the increase probably occurred because the pilot plant switched coals from a low chlorine (0.02%) to a high chlorine ({approximately}0.30%) KY 9 coal. In order to determine the validity of the role of chlorine in increasing the tube wastage, several tube sections were cut out from the plant and analyzed at the Kentucky Energy Cabinet Laboratory (KECL) and at Argonne National Laboratory (ANL). The results of the chemical and metallographic examination showed that wastage could be attributed to erosive wear of chlorine-impregnated iron oxide scales. Corrosion component (oxidation) could have been altered by the presence of elements such as chlorine, sulfur, and potassium in the combustion gases. The results also showed that, in order to understand the complex deposition/corrosion phenomena that occur in FBC systems, it is imperative to characterize the local environment in the vicinity of the tube bundles. 5 refs., 16 figs.

  5. Compressibility enhancement in an almost staggered interacting Harper model

    NASA Astrophysics Data System (ADS)

    Friedman, Bat-el; Berkovits, Richard

    2015-03-01

    We discuss the compressibility in the almost staggered fermionic Harper model with repulsive interactions in the vicinity of half-filling. It has been shown by Kraus et al. [Phys. Rev. B 89, 161106(R) (2014)], 10.1103/PhysRevB.89.161106 that for spinless electrons and nearest neighbors electron-electron interactions the compressibility in the central band is enhanced by repulsive interactions. Here we would like to investigate the sensitivity of this conclusion to the spin degree of freedom and longer range interactions. We use the Hartree-Fock (HF) approximation, as well as the density matrix renormalization group (DMRG) calculation to evaluate the compressibility. In the almost staggered Harper model, the central energy band is essentially flat and separated from the other bands by a large gap and therefore, the HF approximation is rather accurate. In both cases the compressibility of the system is enhanced compared to the noninteracting case, although the enhancement is weaker due to the inclusion of Hubbard and longer ranged interactions. We also show that the entanglement entropy is suppressed when the compressibility of the system is enhanced.

  6. Magnetic-free non-reciprocity based on staggered commutation

    PubMed Central

    Reiskarimian, Negar; Krishnaswamy, Harish

    2016-01-01

    Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time. PMID:27079524

  7. Artificial Staggered Magnetic Field for Ultracold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Morais Smith, Cristiane

    2011-03-01

    Uniform magnetic fields are ubiquitous in nature, but this is not the case for staggered magnetic fields. In this talk, I will discuss an experimental set-up for cold atoms recently proposed by us, which allows for the realization of a ``staggered gauge field'' in a 2D square optical lattice. If the lattice is loaded with bosons, it may be described by an effective Bose-Hubbard Hamiltonian, with complex and anisotropic hopping coefficients. A very rich phase diagram emerges: besides the usual Mott-insulator and zero-momentum condensate, a new phase with a finite momentum condensate becomes the ground-state at strong gauge fields. By using the technique of Feshbach resonance, the dynamics of a coherent superposition of a vortex-carrying atomic condensate and a conventional zero-momentum molecular condensate can also be studied within the same scheme. On the other hand, if the lattice is loaded with fermions, a highly tunable, graphene-like band structure can be realized, without requiring the honeycomb lattice symmetry. When the system is loaded with a mixture of bosons and two-species fermions, several features of the high-Tc phase diagram can be reproduced. A dome-shaped unconventional superconducting region arises, surrounded by a non-Fermi liquid and a Fermi liquid at low and high doping, respectively. We acknowledge financial support from the Netherlands Organization for Scientific Research (NWO).

  8. A subzone reconstruction algorithm for efficient staggered compatible remapping

    SciTech Connect

    Starinshak, D.P. Owen, J.M.

    2015-09-01

    Staggered-grid Lagrangian hydrodynamics algorithms frequently make use of subzonal discretization of state variables for the purposes of improved numerical accuracy, generality to unstructured meshes, and exact conservation of mass, momentum, and energy. For Arbitrary Lagrangian–Eulerian (ALE) methods using a geometric overlay, it is difficult to remap subzonal variables in an accurate and efficient manner due to the number of subzone–subzone intersections that must be computed. This becomes prohibitive in the case of 3D, unstructured, polyhedral meshes. A new procedure is outlined in this paper to avoid direct subzonal remapping. The new algorithm reconstructs the spatial profile of a subzonal variable using remapped zonal and nodal representations of the data. The reconstruction procedure is cast as an under-constrained optimization problem. Enforcing conservation at each zone and node on the remapped mesh provides the set of equality constraints; the objective function corresponds to a quadratic variation per subzone between the values to be reconstructed and a set of target reference values. Numerical results for various pure-remapping and hydrodynamics tests are provided. Ideas for extending the algorithm to staggered-grid radiation-hydrodynamics are discussed as well as ideas for generalizing the algorithm to include inequality constraints.

  9. Failure analysis of brass tubes

    SciTech Connect

    Lawrence, S.J.; Bodnar, R.L.

    1997-02-01

    The 1996 Jacquet Lucas Award for Excellence in Metallography was won by Samuel J. Lawrence and Richard L. Bodnar for their analysis of cracks in Admiralty brass cooling tubes, which are part of a heat exchanger in a turbogenerator that provides electricity to a manufacturing plant. A mixture of non-recirculating city and spring pit water flows through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. This award-winning entry in the ASM/IMS competition shows how the metallographers analyzed the cracks, and what the results were.

  10. N and Z odd-even staggering in Kr+Sn collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Barlini, S.; Bini, M.; Carboni, S.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdrè, S.; Bougault, R.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Pârlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twaróg, T.; Alba, R.; Maiolino, C.; Santonocito, D.

    2013-12-01

    The odd-even staggering of the yield of final reaction products has been studied as a function of proton (Z) and neutron (N) numbers for the collisions 84Kr+112Sn and 84Kr+124Sn at 35 MeV/nucleon in a wide range of elements (up to Z≈20). The experimental data show that staggering effects rapidly decrease with increasing size of the fragments. Moreover the staggering in N is definitely larger than the one in Z. Similar general features are qualitatively reproduced by the gemini code. Concerning the comparison of the two systems, the staggering in N is in general rather similar, being slightly larger only for the lightest fragments produced in the n-rich system. In contrast the staggering in Z, although smaller than that in N, is sizably larger for the n-poor system with respect to the n-rich one.

  11. Effect of initial stagger selection on the handedness of Amyloid beta helical fibrils

    SciTech Connect

    Ghattyvenkatakrishna, Pavan K; Cheng, Xiaolin; Uberbacher, Edward C

    2013-01-01

    Various structural models for Amyloid $\\beta$ fibrils derived from a variety of experimental techniques are currently available. However, this data cannot differentiate between the relative position of the two arms of the $\\beta$ hairpin called the stagger. Amyloid fibrils of various heirarchical levels form left--handed helices composed of $\\beta$ sheets. However it is unclear if positive, negative and neutral staggers all form the macroscopic left--handed helices. Studying this is important since the success of computational approaches to develop drugs for amyloidic diseases will depend on selecting the physiologically relevant structure of the sheets. To address this issue we have conducted extensive molecular dynamics simulations of Amyloid$\\beta$ sheets of various staggers and show that only negative staggers generate the experimentally observed left--handed helices while positive staggers generate the incorrect right--handed helices. The implications of this result extend in to all amyloidic--aggregation type diseases.

  12. Effect of ultraviolet light irradiation on macroscopic single-walled carbon nanotube bundles

    SciTech Connect

    Miko, Cs.; Milas, M.; Seo, J.W.; Gaal, R.; Kulik, A.; Forro, L.

    2006-04-10

    We have measured the electrical conductivity and the Young modulus of macroscopic oriented ropes containing single-walled carbon nanotubes under ultraviolet (UV) irradiation. We found that UV irradiation increases both the electrical conductivity and the strength of the macroscopic bundle. These phenomena are explained by the generation of cross-links between the tubes in the macroscopic bundle due to the UV-induced interaction between the solvent dimethyl-formamide and the free radicals present on the surface of carbon nanotubes. Transmission electron microscopy investigation shows that the wall structure of nanotubes is preserved during this process, which is a valuable advantage compared to electron irradiation.

  13. Proposal of a Bulk HTSC Staggered Array Undulator

    SciTech Connect

    Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.; Sonobe, Taro; Higashimura, Keisuke; Masuda, Kai; Ohgaki, Hideaki; Yoshida, Kyohei; Zen, Heisyun

    2010-06-23

    We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on the Bean mode for a type-II superconductor were compared.

  14. Persistent current in an almost staggered Harper model

    NASA Astrophysics Data System (ADS)

    Vasserman, A.; Berkovits, R.

    2015-08-01

    In this paper we study the persistent current (PC) of a staggered Harper model, close to the half-filling. The Harper model is different than other one dimensional disordered systems which are always localized, since it is a quasi-periodic system with correlated disorder resulting in the fact that it can be in the metallic regime. Nevertheless, the PC for a wide range of parameters of the Harper model does not show typical metallic behavior, although the system is in the metallic regime. This is a result of the nature of the central band states, which are a hybridization of Gaussian states localized in superlattice points. When the superlattice is not commensurate with the system length, the PC behaves as an insulator. Thus even in the metallic regime a typical finite Harper model may exhibit a PC expected from an insulator.

  15. Studying the ρ resonance parameters with staggered fermions

    NASA Astrophysics Data System (ADS)

    Fu, Ziwen; Wang, Lingyun

    2016-08-01

    We deliver a lattice study of ρ resonance parameters with p -wave π π scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six lattice ensembles from the MILC Collaboration with pion masses ranging from 346 to 176 MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region; this allows us to extract ρ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions (L =64 ) and small light u /d quarks. Numerical computations are carried out at two lattice spacings, a ≈0.12 and 0.09 fm.

  16. 't Hooft vertices, partial quenching, and rooted staggered QCD

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal; Sharpe, Stephen R.

    2008-06-01

    We discuss the properties of 't Hooft vertices in partially quenched and rooted versions of QCD in the continuum. These theories have a physical subspace, equivalent to ordinary QCD, that is contained within a larger space that includes many unphysical correlation functions. We find that the 't Hooft vertices in the physical subspace have the expected form, despite the presence of unphysical 't Hooft vertices appearing in correlation functions that have an excess of valence quarks (or ghost quarks). We also show that, due to the singular behavior of unphysical correlation functions as the massless limit is approached, order parameters for nonanomalous symmetries can be nonvanishing in finite volume if these symmetries act outside of the physical subspace. Using these results, we demonstrate that arguments recently given by Creutz - claiming to disprove the validity of rooted staggered QCD - are incorrect. In particular, the unphysical 't Hooft vertices do not present an obstacle to the recovery of taste symmetry in the continuum limit.

  17. Parallel transport on principal bundles over stacks

    NASA Astrophysics Data System (ADS)

    Collier, Brian; Lerman, Eugene; Wolbert, Seth

    2016-09-01

    In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldorf from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorf's original definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.

  18. Staggering Inflation To Stabilize Attitude of a Solar Sail

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; West, John

    2007-01-01

    A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.

  19. Decontamination of BWR fuel bundles

    SciTech Connect

    Ocken, H.

    1988-01-01

    Decontamination of individual systems in operating reactors, such as recirculation piping in boiling water reactors (BWRs) and steam generators in pressurized water reactors, is becoming an accepted technique to reduce radiation fields and occupational radiation exposure. Because a significant inventory of radioactivity resides on the reactor core, a longer term goal is to effect full plant decontamination with the fuel in place. Full plant decontamination has proved effective in CANDU and steam-generating heavy water reactor plants, but only recently have US plants begun to consider seriously the merits of such an approach. Clearly, a first step is to show that exposure to commercial decontamination solvents of highly irradiated core components will not induce any adverse effects. This paper describes a study of the application of the LOMI and CANDECON solvents to three-cycle discharged fuel bundles from the Quad Cities-2 BWR. Highly irradiated stainless steel specimens cut from a section of a LaCrosse BWR control blade also were decontaminated at the same time as the fuel bundles. CANDECON was selected as being representative of dilute chelant process and LOMI as representative of more strongly reducing processes. Both processes were preceded by the application of an oxidizing alkaline permanganate (AP) oxidizing step to help dissolve chromium.

  20. Microtubule Bundling and Shape Transitions

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel

    2005-03-01

    Microtubules (MTs) are hollow cylindrical polymers composed of heterodimers of the protein tubulin that align end-to-end in the MT wall, forming linear protofilaments that interact laterally. Placing MTs under osmotic pressure causes them to reversibly buckle to a noncircular shape and pack into rectangular bundles at a critical osmotic pressure; further increases in pressure continue to distort MTs elastically. At higher osmotic pressures stressing polymers may be forced into the MT lumen causing the MTs to revert to a circle cross-section and pack into hexagonal bundles. This SAXRD-osmotic stress study provides a probe of the inter-protofilament bond strength and gives insight into the mechanisms by which microtubule associated proteins and the cancer chemotherapeutic drug Taxol stabilize MTs. We present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the microtubule lumen. Supported by NSF DMR- 0203755, NIH GM-59288 and NS-13560, and CTS-0103516. SSRL is supported by the U.S. DOE.

  1. Sperm bundle and reproductive organs of carabid beetles tribe Pterostichini (Coleoptera: Carabidae)

    NASA Astrophysics Data System (ADS)

    Sasakawa, Kôji

    2007-05-01

    The morphological characteristics of sperm and reproductive organs may offer clues as to how reproductive systems have evolved. In this paper, the morphologies of the sperm and male reproductive organs of carabid beetles in the tribe Pterostichini (Coleoptera: Carabidae) are described, and the morphological associations among characters are examined. All species form sperm bundles in which the head of the sperm was embedded in a rod-shaped structure, i.e., spermatodesm. The spermatodesm shape (left-handed spiral, right-handed spiral, or without conspicuous spiral structure) and the condition of the sperm on the spermatodesm surface (with the tail free-moving or forming a thin, sheetlike structure) vary among species. In all species, the spiral directions of the convoluted seminal vesicles and vasa deferentia are the same on both sides of the body; that is, they show an asymmetric structure. The species in which the sperm bundle and the seminal vesicles both have a spiral structure could be classified into two types, with significant differences in sperm-bundle length between the two types. The species with a sperm-bundle spiral and seminal-vesicle spiral of almost the same diameter have longer sperm bundles than the species with a sperm-bundle spiral and seminal-vesicle tube of almost the same diameter. In the former type, the spiral directions of the sperm bundles and seminal vesicles are inevitably the same, whereas they differ in some species with the later type. Therefore, increased sperm bundle length appears to have been facilitated by the concordance of the sperm bundle’s coiling direction with the coiling direction of the seminal vesicle.

  2. Analytical Deriving of the Field Capacity through Soil Bundle Model

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Viola, F.; Antinoro, C.; Noto, L. V.

    2015-12-01

    The concept of field capacity as soil hydraulic parameter is widely used in many hydrological applications. Althought its recurring usage, its definition is not univocal. Traditionally, field capacity has been related to the amount of water that remains in the soil after the excess water has drained away and the water downward movement experiences a significant decresase. Quantifying the drainage of excess of water may be vague and several definitions, often subjective, have been proposed. These definitions are based on fixed thresholds either of time, pressure, or flux to which the field capacity condition is associated. The flux-based definition identifies the field capacity as the soil moisture value corresponding to an arbitrary fixed threshold of free drainage flux. Recently, many works have investigated the flux-based definition by varying either the drainage threshold, the geometry setting and mainly the description of the drainage flux. Most of these methods are based on the simulation of the flux through a porous medium by using the Darcy's law or Richard's equation. Using the above-mentioned flux-based definition, in this work we propose an alternative analytical approach for deriving the field capacity based on a bundle-of-tubes model. The pore space of a porous medium is conceptualized as a bundle of capillary tubes of given length of different radii, derived from a known distribution. The drainage from a single capillary tube is given by the analytical solution of the differential equation describing the water height evolution within the capillary tube. This equation is based on the Poiseuille's law and describes the drainage flux with time as a function of tube radius. The drainage process is then integrated for any portion of soil taking into account the tube radius distribution which in turns depends on the soil type. This methodology allows to analytically derive the dynamics of drainage water flux for any soil type and consequently to define the

  3. Evaluation of commercial enhanced tubes in pool boiling: Topical report

    SciTech Connect

    Jung, C.; Bergles, A.E.

    1989-03-01

    In support of a study of shellside boiling with enhanced tubes, a pool boiling apparatus was developed and used to test single tubes with various structured boiling surfaces in R-113. The basic design of the tube-bundle test section was carried out and certain critical design features were tested experimentally. Copper tubes, 3/4 in. o.d. and 4 in. long, were selected with 1/4 in. diameter cartridge heaters. Four thermocouples were inserted in 3/32 in. diameter, 2 in. long holes. The pool boiling characteristics of a plain tube agree well with previous tests. Wolverine Turbo-B tubes with small, medium, and large features performed identically for a heat flux greater than 20 kW/m/sup 2/. For lower heat flux, however, the Turbo-B S was slightly superior. In general, the Wolverine Turbo-B tubes had more favorable boiling characteristics than the single Wieland Gewa-T tube that was tested. The test procedure is deemed entirely adequate for screening enhanced tubes to see which ones should be used in the tube-bundle test section. Three different ways of mounting the tubes were tested in R-113 at 65/degree/C and 5 bar gage pressure. As all three constructions sealed well, the simplest design is recommended in which a snap ring fixes the tube to the wall and an O-ring seals against the pressure. The general design features of the tube bundle test chamber are also presented. 14 refs.

  4. Delay Tolerant Networking - Bundle Protocol Simulation

    NASA Technical Reports Server (NTRS)

    SeGui, John; Jenning, Esther

    2006-01-01

    In this paper, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the useof MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions.

  5. Damping Properties of the Hair Bundle

    NASA Astrophysics Data System (ADS)

    Baumgart, Johannes; Kozlov, Andrei S.; Risler, Thomas; Hudspeth, A. J.

    2011-11-01

    The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we constructed a detailed finite-element model of the hair bundle. Based on data from the hair bundle of the bullfrog's sacculus, this model treats the interaction of stereocilia both with the surrounding liquid and with the liquid in the narrow gaps between the individual stereocilia. The investigation revealed that grouping stereocilia in a bundle dramatically reduces the total drag. During hair-bundle deflections, the tip links potentially induce drag by causing small but very dissipative relative motions between stereocilia; this effect is offset by the horizontal top connectors that restrain such relative movements at low frequencies. For higher frequencies the coupling liquid is sufficient to assure that the hair bundle moves as a unit with a low total drag. This work reveals the mechanical characteristics originating from hair-bundle morphology and shows quantitatively how a hair bundle is adapted for sensitive mechanotransduction.

  6. Fock modules and noncommutative line bundles

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni

    2016-09-01

    To a line bundle over a noncommutative space there is naturally associated a Fock module. The algebra of corresponding creation and annihilation operators is the total space algebra of a principal U(1) -bundle over the noncommutative space. We describe the general construction and illustrate it with examples.

  7. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.

    PubMed

    Kis, A; Csányi, G; Salvetat, J-P; Lee, Thien-Nga; Couteau, E; Kulik, A J; Benoit, W; Brugger, J; Forró, L

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes. PMID:14991016

  8. Line bundle embeddings for heterotic theories

    NASA Astrophysics Data System (ADS)

    Nibbelin, Stefan Groot; Ruehle, Fabian

    2016-04-01

    In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E8 × E8 or SO(32) for the supersymmetric heterotic string theories and SO(16) × SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.

  9. Row effect for R-11 condensation on enhanced tubes

    SciTech Connect

    Webb, R.L.; Murawski, C.G. )

    1990-08-01

    Experimental results of a condensation row effect study on enhanced tubes are presented. A test cell was constructed to condense Refrigerant-11 on the shell side of a vertical bank of five horizontal tubes. Four distinctly different commercially available tubes were tested. The tubes are a 1024-fpm integral fin, the Wolverine Tube-C, Wieland GEWA-SC, and the Tred-D. A modified Turbo-C tube was also tested. Experimental and visual observations are used to understand the row effect due to condensate loading. By plotting the data in the form of the local condensation coefficient versus condensate Reynolds number, the results may be interpreted for any number of tube rows, up to the maximum Reynolds numbers tested. Bundle average condensation coefficients may be established by integrating the h versus Re values over the number of tube rows.

  10. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... A nasogastric tube (NG tube) is a special tube that carries food and medicine to the stomach through the nose. It can be ...

  11. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  12. Staggered Local Density of States around the Vortex in Underdoped Cuprates

    SciTech Connect

    Kishine, Jun-ichiro; Lee, Patrick A.; Wen, Xiao-Gang

    2001-06-04

    We have studied a single vortex with the staggered flux (SF) core based on the SU(2) slave-boson theory of high T{sub c} superconductors. We find that, whereas the center in the vortex core is a SF state, as one moves away from the core center a correlated staggered modulation of the hopping amplitude {chi} and pairing amplitude {Delta} becomes predominant. We predict that in this region the local density of states exhibits staggered modulation when measured on the bonds, which may be directly detected by STM experiments.

  13. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  14. Gap and stagger effects on the aerodynamic performance and the wake behind a biplane with endplates

    NASA Astrophysics Data System (ADS)

    Kang, Hantae

    Modern flow diagnostics applied to a very old aerodynamic problem has produced a number of intriguing new results and new insight into previous results. The aerodynamic performance and associated flow physics of the biplane with endplates as a function of variation in gap and stagger were analytically and experimentally investigated. A combination of vortex lattice method, integrated force measurement, streamwise PIV, and Trefftz plane Stereo PIV were used to better understand the flowfield around the biplane with endplates. This study was performed to determine the configuration with the optimal aerodynamic performance and to understand the fluid mechanics behind optimal and suboptimal performance of the configuration. The Vortex Lattice code (AVL) shows that the gap and stagger have the most dramatic effects out of the six parameters studied: gap, stagger, dihedral, decalage, sweep and overhang. The force balance measurements with fourteen biplane configurations of different gaps and staggers show that as gap and stagger increase, the lift efficiency also increases at all angles of attack tested at both Re 60,000 and 120,000. Using the force balance data, a generalized empirical method for the prediction of lift coefficient as a function of gap, stagger and angle of attack has been determined and validated when combined with existing relations for CL--α adjustments for AR and taper effects. The resulting empirical approach allows for a rapid determination of CL for a biplane having different gap, stagger, AR and taper without the need for a complete flowfield analysis. Two Dimensional PIV results show a distinctive pattern in the downwash angle for the different gap and stagger configurations tested. The downwash angle increases with increasing gap and stagger. It is also evident that the change in downwash angle is directly proportional to the change in lift coefficient as would be expected. Increasing gap spacing increases the downwash angle as well. Based on

  15. Characterization of oxides on Bruce A NGS liner tubes and steam generator tubes

    SciTech Connect

    Miller, D.G.; Burrill, K.A.

    1998-12-31

    Oxide deposits on end-fitting liner tubes and steam generator tubes from the Bruce A Nuclear Generating Station (NGS) were characterized in advance of the decontamination of the heat transport system (HTS) of Bruce Unit 2. Oxide loadings, and Co-60 surface activities and specific activities were determined for the oxides on inlet and outlet end-fitting liner tubes from Bruce Unit l, Bruce Unit 2 and Bruce Unit 4. Oxides on the inner surfaces of steam generator tubes from Bruce NGS Units 1 and 2 were also characterized. The consistency in the deposit characteristics on the inlet liner tubes and steam generator tubes from Bruce A, along with the absence of magnetite on the outlet liner tubes has led to the development of a model for iron transport in the HTS of pressurized heavy water reactors (PHWRs). The activity transport/fouling mechanism involves flow-accelerated corrosion of the outlet feeder pipes, followed by deposition of iron in the steam generators, along the inlet feeder pipes, on the inlet end fittings, on the inlet fuel bundles and on the inlet region of the pressure tube. The results of loop experiments using decontamination solutions indicated that the oxide was rapidly removed from inlet liner tubes. However, removal of the Cr-rich oxide from the outlet liner tubes was less efficient, requiring the Alkaline Permangante (AP) oxidizing pre-treatment that is typically used in light water reactors (LWRs). The steam generator tubes were effectively decontaminated.

  16. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Astrophysics Data System (ADS)

    Vanfossen, G. J.

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  17. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Astrophysics Data System (ADS)

    Vanfossen, G. J.

    1981-03-01

    Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  18. Axially staggered seed-blanket reactor fuel module construction

    DOEpatents

    Cowell, Gary K.; DiGuiseppe, Carl P.

    1985-01-01

    A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.

  19. Odd-even staggering in neutron drip line nuclei

    NASA Astrophysics Data System (ADS)

    Changizi, S. A.; Qi, Chong

    2016-07-01

    We have done systematic Hartree-Fock-Bogoliubov calculations in coordinate space on the one-quasi-particle energies and binding energy odd-even staggering (OES) in semi-magic nuclei with the zero-range volume, mixed and surface pairing forces in order to explore the influence of their density dependence. The odd-N isotopes are calculated within the blocking scheme. The strengths for the pairing forces are determined in two schemes by fitting locally to reproduce pairing gap in 120Sn and globally to all available data on the OES of semi-magic nuclei with Z ≥ 8. In the former calculations, there is a noticeable difference between the neutron mean gaps in neutron-rich O, Ca, Ni and Sn isotopes calculated with the surface pairing and those with the mixed and volume pairing. The difference gets much smaller if the globally optimized pairing strengths are employed. The heavier Pb isotopes show the opposite trend. Moreover, large differences between the mean gap and the OES may be expected in both calculations when one goes towards the neutron drip line.

  20. Rashba coupling amplification by a staggered crystal field

    PubMed Central

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-01-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869

  1. Investigation and improvement of the staggered labyrinth seal

    NASA Astrophysics Data System (ADS)

    Lin, Zhirong; Wang, Xudong; Yuan, Xin; Shibukawa, Naoki; Noguchi, Taro

    2015-03-01

    Recent studies on staggered labyrinth seals have focused on the effects of different parameters, such as the pressure ratio and rotational speed on the leakage flow rate. However, few investigations pay sufficient attention to flow details and the sealing mechanism, which would be of practical importance in designing seals having higher performance. This paper establishes a theoretical model to study the seal mechanism, thus revealing that leakage is determined by the pressure ratio and geometric structure. Numerical simulation is implemented to illustrate details of the flow field within the seal structure. Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance, revealing that orifices and stagnation points are the most important positions in the seal structure, generating the most dissipation. The orifice is carefully studied by using the theoretical model. Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation, verifying the theoretical model and analysis of the seal mechanism. Three new designs, based on a good understanding of the seal mechanism, are presented, with one reducing leakage by 24.5%.

  2. Prioritary omalous bundles on Hirzebruch surfaces

    NASA Astrophysics Data System (ADS)

    Aprodu, Marian; Marchitan, Marius

    2016-01-01

    An irreducible algebraic stack is called unirational if there exists a surjective morphism, representable by algebraic spaces, from a rational variety to an open substack. We prove unirationality of the stack of prioritary omalous bundles on Hirzebruch surfaces, which implies also the unirationality of the moduli space of omalous H-stable bundles for any ample line bundle H on a Hirzebruch surface (compare with Costa and Miro-Ŕoig, 2002). To this end, we find an explicit description of the duals of omalous rank-two bundles with a vanishing condition in terms of monads. Since these bundles are prioritary, we conclude that the stack of prioritary omalous bundles on a Hirzebruch surface different from P1 ×P1 is dominated by an irreducible section of a Segre variety, and this linear section is rational (Ionescu, 2015). In the case of the space quadric, the stack has been explicitly described by N. Buchdahl. As a main tool we use Buchdahl's Beilinson-type spectral sequence. Monad descriptions of omalous bundles on hypersurfaces in P4, Calabi-Yau complete intersection, blowups of the projective plane and Segre varieties have been recently obtained by A.A. Henni and M. Jardim (Henni and Jardim, 2013), and monads on Hirzebruch surfaces have been applied in a different context in Bartocci et al. (2015).

  3. Preliminary report: NIF laser bundle review

    SciTech Connect

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-08-31

    As requested in the guidance memo {sup 1}, this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1{times}4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high {times} 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2{times}2, 4{times}2, and 4{times}4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline.

  4. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling

    PubMed Central

    1995-01-01

    Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

  5. Spectral properties and chiral symmetry violations of (staggered) domain wall fermions in the Schwinger model

    NASA Astrophysics Data System (ADS)

    Hoelbling, Christian; Zielinski, Christian

    2016-07-01

    We follow up on a suggestion by Adams and construct explicit domain wall fermion operators with staggered kernels. We compare different domain wall formulations, namely the standard construction as well as Boriçi's modified and Chiu's optimal construction, utilizing both Wilson and staggered kernels. In the process, we generalize the staggered kernels to arbitrary even dimensions and introduce both truncated and optimal staggered domain wall fermions. Some numerical investigations are carried out in the (1 +1 )-dimensional setting of the Schwinger model, where we explore spectral properties of the bulk, effective and overlap Dirac operators in the free-field case, on quenched thermalized gauge configurations and on smooth topological configurations. We compare different formulations using the effective mass, deviations from normality and violations of the Ginsparg-Wilson relation as measures of chirality.

  6. Theoretical Foundation for the Index Theorem on the Lattice with Staggered Fermions

    SciTech Connect

    Adams, David H.

    2010-04-09

    A way to identify the would-be zero modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accordance with the index theorem. The key idea is to consider the spectral flow of a certain Hermitian version of the staggered Dirac operator. The staggered fermion index thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a numerical study in U(1) backgrounds in two dimensions it is found to perform as well as the Wilson index while being computationally more efficient. It can also be expressed as the index of an overlap Dirac operator with a new staggered fermion kernel.

  7. Reply to 'Comment on ''t Hooft vertices, partial quenching, and rooted staggered QCD''

    SciTech Connect

    Bernard, Claude; Golterman, Maarten; Shamir, Yigal; Sharpe, Stephen R.

    2008-10-01

    We reply to Creutz's comments on our paper ''t Hooft vertices, partial quenching, and rooted staggered QCD'. We show that his criticisms are incorrect and result from a misunderstanding both of our work, and of the related work of Adams.

  8. Examining B(M1) staggering as a fingerprint for chiral doublet bands

    SciTech Connect

    Qi, B.; Yao, J. M.; Zhang, S. Q.; Wang, S. Y.; Meng, J.

    2009-04-15

    The electromagnetic transitions of the doublet bands with different triaxiality parameter {gamma} are discussed in the particle rotor model with {pi}h{sub 11/2} x {nu}h{sub 11/2}{sup -1} configuration. It is found that B(M1) staggering as well as the resulting B(M1)/B(E2) and B(M1){sub in}/B(M1){sub out} staggering are sensitive to the triaxiality parameter {gamma}, and they associate strongly with the characters of nuclear chirality for 15 deg. {<=}{gamma}{<=}30 deg., i.e., the staggering is weak in the chiral vibration region while strong in the static chirality region. For partner bands with near degenerate energy spectra and similar B(M1) and B(E2) transitions, the strong B(M1) staggering can be used as a fingerprint for the static chirality.

  9. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  10. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  11. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Park, K. C.; Dubois-Pelerin, Yves

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one- and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  12. Finite volume effects in B{sub K} with improved staggered fermions

    SciTech Connect

    Kim, Jangho; Kim, Hyung-Jin; Lee, Weonjong; Jung, Chulwoo; Sharpe, Stephen R.

    2011-06-01

    We extend our recent unquenched (N{sub f}=2+1 flavor) calculation of B{sub K} using improved staggered fermions by including in the fits the finite volume shift predicted by one-loop staggered chiral perturbation theory. The net result is to lower the result in the continuum limit by 0.6%. This shift is slightly smaller than our previous estimate of finite volume effects based on a direct comparison between different volumes.

  13. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    SciTech Connect

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  14. Theoretical and practical considerations for staggered production of crops in a BLSS

    NASA Astrophysics Data System (ADS)

    Stutte, G. W.; Mackowiak, C. L.; Yorio, N. C.; Wheeler, A.

    1997-01-01

    A functional Bioregenerative Life Support System (BLSS) will generate oxygen, remove excess carbon dioxide, purify water, and produce food on a continuous basis for long periods of operation. In order to minimize fluctuations in gas exchange, water purification, and yield that are inherent in batch systems, staggered planting and harvesting of the crop is desirable. A 418-d test of staggered production of potato cv. Norland (26-d harvest cycles) using nutrients recovered from inedible biomass was recently completed at Kennedy Space Center. The results indicate that staggered production can be sustained without detrimental effects on life support functions in a CELSS. System yields of H_2O, O_2 and food were higher in staggered than batch plantings. Plants growing in staggered production or batch production on ``aged'' solution initiated tubers earlier, and were shorter than plants grown on ``fresh'' solution. This morphological response required an increase in planting density to maintain full canopy coverage. Plants grown in staggered production used available light more efficiently than the batch planting due to increased sidelighting.

  15. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  16. Sealed fiber-optic bundle feedthrough

    SciTech Connect

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  17. Torsional Behavior of Axonal Microtubule Bundles

    PubMed Central

    Lazarus, Carole; Soheilypour, Mohammad; Mofrad, Mohammad R.K.

    2015-01-01

    Axonal microtubule (MT) bundles crosslinked by microtubule-associated protein (MAP) tau are responsible for vital biological functions such as maintaining mechanical integrity and shape of the axon as well as facilitating axonal transport. Breaking and twisting of MTs have been previously observed in damaged undulated axons. Such breaking and twisting of MTs is suggested to cause axonal swellings that lead to axonal degeneration, which is known as “diffuse axonal injury”. In particular, overstretching and torsion of axons can potentially damage the axonal cytoskeleton. Following our previous studies on mechanical response of axonal MT bundles under uniaxial tension and compression, this work seeks to characterize the mechanical behavior of MT bundles under pure torsion as well as a combination of torsional and tensile loads using a coarse-grained computational model. In the case of pure torsion, a competition between MAP tau tensile and MT bending energies is observed. After three turns, a transition occurs in the mechanical behavior of the bundle that is characterized by its diameter shrinkage. Furthermore, crosslink spacing is shown to considerably influence the mechanical response, with larger MAP tau spacing resulting in a higher rate of turns. Therefore, MAP tau crosslinking of MT filaments protects the bundle from excessive deformation. Simultaneous application of torsion and tension on MT bundles is shown to accelerate bundle failure, compared to pure tension experiments. MAP tau proteins fail in clusters of 10–100 elements located at the discontinuities or the ends of MT filaments. This failure occurs in a stepwise fashion, implying gradual accumulation of elastic tensile energy in crosslinks followed by rupture. Failure of large groups of interconnecting MAP tau proteins leads to detachment of MT filaments from the bundle near discontinuities. This study highlights the importance of torsional loading in axonal damage after traumatic brain injury

  18. Simulating Topological Defects in Twisted Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac R.; Grason, Gregory M.

    2012-02-01

    Twisted bundles are a common motif found in naturally occurring structures of self-assembled fibers, such as collagen and fibrin. By understanding the general principles governing such organizations, new synthetic materials--from the nano to the macroscale--may also be realized. Recently, continuum elasticity theory has been applied to describe generic twisted fiber bundles. This has revealed a relation between a bundle's twist and the presence of topological defects in the cross-sectional packing of the fibers. Here we employ numerical simulations to examine this interdependence. We model a bundle's cross-section as beads confined to a plane. The interactions between beads is governed by a modified Lennard-Jones potential that accounts for the effects of twist. We observe configurations that range from perfect hexagonal packing for cases of no twist, to defect populated structures above a critical amount of twist. For small bundles of less than ˜100 beads, there exists a discrete spectrum of energy ground states corresponding to integer numbers of five-fold disclinations. For larger bundles, we hope to uncover what types of defect arrangements effectively screen the stresses caused by twist, and compare these to current predictions of the internal organization of collagen fibrils.

  19. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  20. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  1. Ear tube insertion

    MedlinePlus

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  2. Mechanism of Actin Filament Bundling by Fascin

    SciTech Connect

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  3. Buckling Behavior of Individual and Bundled Microtubules

    PubMed Central

    Soheilypour, Mohammad; Peyro, Mohaddeseh; Peter, Stephen J.; Mofrad, Mohammad R.K.

    2015-01-01

    As the major structural constituent of the cytoskeleton, microtubules (MTs) serve a variety of biological functions that range from facilitating organelle transport to maintaining the mechanical integrity of the cell. Neuronal MTs exhibit a distinct configuration, hexagonally packed bundles of MT filaments, interconnected by MT-associated protein (MAP) tau. Building on our previous work on mechanical response of axonal MT bundles under uniaxial tension, this study is focused on exploring the compression scenarios. Intracellular MTs carry a large fraction of the compressive loads sensed by the cell and therefore, like any other column-like structure, are prone to substantial bending and buckling. Various biological activities, e.g., actomyosin contractility and many pathological conditions are driven or followed by bending, looping, and buckling of MT filaments. The coarse-grained model previously developed in our lab has been used to study the mechanical behavior of individual and bundled in vivo MT filaments under uniaxial compression. Both configurations show tip-localized, decaying, and short-wavelength buckling. This behavior highlights the role of the surrounding cytoplasm and MAP tau on MT buckling behavior, which allows MT filaments to bear much larger compressive forces. It is observed that MAP tau interconnections improve this effect by a factor of two. The enhanced ability of MT bundles to damp buckling waves relative to individual MT filaments, may be interpreted as a self-defense mechanism because it helps axonal MTs to endure harsher environments while maintaining their function. The results indicate that MT filaments in a bundle do not buckle simultaneously implying that the applied stress is not equally shared among the MT filaments, that is a consequence of the nonuniform distribution of MAP tau proteins along the bundle length. Furthermore, from a pathological perspective, it is observed that axonal MT bundles are more vulnerable to failure in

  4. Nerve Bundles and Deep Dyspareunia in Endometriosis.

    PubMed

    Williams, Christina; Hoang, Lien; Yosef, Ali; Alotaibi, Fahad; Allaire, Catherine; Brotto, Lori; Fraser, Ian S; Bedaiwy, Mohamed A; Ng, Tony L; Lee, Anna F; Yong, Paul J

    2016-07-01

    The etiology of deep dyspareunia in endometriosis is unclear. Our objective was to determine whether nerve bundle density in the cul-de-sac/uterosacrals (zone II) is associated with deep dyspareunia in women with endometriosis. We conducted a blinded retrospective immunohistochemistry study (n = 58) at a tertiary referral center (2011-2013). Patients were stringently phenotyped into a study group and 2 control groups. The study group (tender endometriosis, n = 29) consisted of patients with deep dyspareunia, a tender zone II on examination, and an endometriosis lesion in zone II excised at surgery. Control group 1 (nontender endometriosis, n = 17) consisted of patients without deep dyspareunia, a nontender zone II on examination, and an endometriosis lesion in zone II excised at surgery. Control group 2 (tender nonendometriosis, n = 12) consisted of patients with deep dyspareunia, a tender zone II on examination, and a nonendometriosis lesion (eg, normal histology) in zone II excised at surgery. Protein gene product 9.5 (PGP9.5) immunohistochemistry was performed to identify nerve bundles (nerve fibers surrounded by perineurium) in the excised zone II lesion. PGP9.5 nerve bundle density (bundles/high powered field [HPF]) was then scored by a pathologist blinded to the group. We found a significant difference in PGP9.5 nerve bundle density between the 3 groups (analysis of variance, F2,55 = 6.39, P = .003). Mean PGP9.5 nerve bundle density was significantly higher in the study group (1.16 ± 0.56 bundles/HPF [±standard deviation]) compared to control group 1 (0.65 ± 0.36, Tukey test, P = .005) and control group 2 (0.72 ± 0.56, Tukey test, P = .044). This study provides evidence that neurogenesis in the cul-de-sac/uterosacrals may be an etiological factor for deep dyspareunia in endometriosis.

  5. FAS multigrid calculations of three dimensional flow using non-staggered grids

    NASA Technical Reports Server (NTRS)

    Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.

    1993-01-01

    Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.

  6. Studying the local character of Raman features of single-walled carbon nanotubes along a bundle using TERS

    PubMed Central

    2011-01-01

    Here, we show that the Raman intensity of the G-mode in tip-enhanced Raman spectroscopy (TERS) is strongly dependent on the height of the bundle. Moreover, using TERS we are able to position different single-walled carbon nanotubes along a bundle, by correlating the observed radial breathing mode (RBM) with the AFM topography at the measuring point. The frequency of the G- mode behaves differently in TERS as compared to far-field Raman. Using the RBM frequency, the diameters of the tubes were calculated and a very good agreement with the G--mode frequency was observed. PMID:21711681

  7. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  8. Photothermal imaging through coherent infrared bundles

    NASA Astrophysics Data System (ADS)

    Milstein, Yonat; Tepper, Michal; Harrington, James A.; Ben David, Moshe; Gannot, Israel

    2011-03-01

    This study aims to develop a photothermal imaging system through a coherent infrared bundle. This system will be used to determine the oxygenation level of various tissues, suspected malignant tissues in particular. The oxygenation estimation is preformed using a computerized algorithm. In order to evaluate the system, different bundle configurations were used for the determination of the optimal one. Bundle transmittance and the algorithm's estimation ability were measured, measurements were performed using agar phantoms consisting of varying ratios of Methylene Blue and ICG. A bundle consisting of 19 Teflon waveguides with a of 1.1mm was found to be the optimal configuration with an RMS of the error of 9.38%. At a second stage the system was validated on blood samples with varying oxygenation levels and there oxygenation levels were estimated. This stage had an RMS of the error of 10.16% for the oxygenation level estimation for samples with a 50% oxygenation level and higher. Once the basic system was validated successfully on agar phantoms and blood samples a portable system was designed and built in order to fit the system for portable use. The portable system consists of a white light illuminating source followed by filters transmitting certain wavelengths, a transmitting fiber, a thermal imaging bundle and a portable thermal camera. This portable system will be evaluated in order to have an adequate portable system for implementing the method out of the lab.

  9. A Kinetic Model of Active Extensile Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Chakraborty, Bulbul; Baskaran, Aparna

    Recent experiments in active filament networks reveal interesting rheological properties (Dan Chen: APS March Meeting 2015 D49.00001). This system consumes ATP to produce an extensile motion in bundles of microtubules. This extension then leads to self generated stresses and spontaneous flows. We propose a minimal model where the activity is modeled by self-extending bundles that are part of a cross linked network. This network can reorganize itself through buckling of extending filaments and merging events that alter the topology of the network. We numerically simulate this minimal kinetic model and examine the emergent rheological properties and determine how stresses are generated by the extensile activity. We will present results that focus on the effects of confinement and network connectivity of the bundles on stress fluctuations and response of an active gel.

  10. Extremal Bundles on Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Gao, Peng; He, Yang-Hui; Yau, Shing-Tung

    2015-06-01

    We study constructions of stable holomorphic vector bundles on Calabi-Yau threefolds, especially those with exact anomaly cancellation which we call extremal. By going through the known databases we find that such examples are rare in general and can be ruled out for the spectral cover construction for all elliptic threefolds. We then introduce a general Hartshorne-Serre construction and use it to find extremal bundles of general ranks and study their stability, as well as computing their Chern numbers. Based on both existing and our new constructions, we revisit the DRY conjecture for the existence of stable sheaves on Calabi-threefolds, and provide theoretical and numerical evidence for its correctness. Our construction can be easily generalized to bundles with no extremal conditions imposed.

  11. Effects of cold acclimation on the energetic metabolism of the staggerer mutant mouse.

    PubMed

    Bertin, R; Guastavino, J M; Portet, R

    1990-02-01

    Staggerer mutant mice are lean despite their hyperphagia. Brown adipose tissue activity may be implicated in this phenomenon. The aim of this work is to determine the energetic metabolism and to detail some characteristics of the brown adipose tissue of Staggerer mutant mice born and reared either at 28 degrees C (within the thermoneutral zone) or 22 degrees C (cold temperature) compared to nonmutant control mice. In mutant mice reared at thermoneutrality the resting metabolism was found to be higher than that of controls, and further the activity of the brown adipose tissue increased as indicated in relative mass, composition and cytochrome oxydase activity. A stimulatory effect of cold exposure was observed in both mutant and nonmutant mice. It is suggested that Staggerer mice may provide a good model for the study of the cold-induced or diet-induced mechanisms of brown fat stimulation.

  12. Production of tremorgenic toxins by Penicillium janthinellum Biourge: a possible aetiological factor in ryegrass staggers.

    PubMed

    Lanigan, G W; Payne, A L; Cockrum, P A

    1979-02-01

    Topsoil, herbage and faeces collected during an outbreak of ryegrass staggers in sheep were examined for tremorgenic penicillia. No such fungi were recovered from the plant material, but they were found among the predominant fungi in the soil and faecal samples. The commonest species of Penicillium, and almost the only tremorgenic species encountered, was Penicillium janthinellum Biourge. When fed to sheep, the mycelium of this fungus evoked a number of the clinical signs seen in field cases of ryegrass staggers. Two tremorgenic toxins were isolated from the mycelial felts and available evidence indicates that they are verruculogen and fumitremorgin A. P. janthinellum also produced these tremorgens when cultured in moist, autoclaved soil, but not in unheated soil. The results obtained from this study are in accord with the hypothesis that ryegrass staggers is caused by tremorgenic mycotoxins. PMID:475667

  13. Perturbative matching of the staggered four-fermion operators for {epsilon}'/{epsilon}

    SciTech Connect

    Lee, Weonjong

    2001-09-01

    Using staggered fermions, we calculate the perturbative corrections to the bilinear and four-fermion operators that are used in the numerical study of weak matrix elements for {epsilon}'/{epsilon}. We present results for one-loop matching coefficients between continuum operators, calculated in the naive dimensional regularization (NDR) scheme, and gauge invariant staggered fermion operators. In particular, we concentrate on Feynman diagrams of the current-current insertion type. We also present results for the tadpole improved operators. These results, combined with existing results for penguin diagrams, provide a complete one-loop renormalization of the staggered four-fermion operators. Therefore, using our results, it is possible to match a lattice calculation of K{sup 0}-{bar K}{sup 0} mixing and K{yields}{pi}{pi} decays to the continuum NDR results with all corrections of O(g{sup 2}) included.

  14. Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Tiwari, Radhey Shyam; Srivastava, Onkar Nath

    2011-12-01

    Practical application of aligned carbon nanotubes (ACNTs) would have to be determined by a matter of its economical and large-scale preparation. In this study, neem oil (also named Margoaa oil, extracted from the seeds of the neem-- Azadirachta indica) was used as carbon source to fabricate the bundles of ACNTs. ACNTs have been synthesized by spray pyrolysis of neem oil and ferrocene mixture at 825°C. The major components of neem oil are hydrocarbon with less amount of oxygen, which provided the precursor species in spray pyrolysis growth of CNTs. The bundles of ACNTs have been grown directly inside the quartz tube. The as-grown ACNTs have been characterized through Raman spectroscopy, scanning and transmission electron microscopic (SEM/TEM) techniques. SEM images reveal that the bundles of ACNTs are densely packed and are of several microns in length. High-resolution TEM analysis reveals these nanotubes to be multi-walled CNTs. These multi-walled CNTs were found to have inner diameter between 15 and 30 nm. It was found that present technique gives high yield with high density of bundles of ACNTs.

  15. Angular glass tubing drawn from round tubing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Round glass tubing softened in a furnace is drawn over a shaped plug or mandel to form shapes with other than a circular cross section. Irregularly shaped tubing is formed without limitations on tube length or wall thickness.

  16. Chiral transition and deconfinement transition in QCD with the highly improved staggered quark (HISQ) action

    SciTech Connect

    Petreczky P.; Bazavov, A.

    2011-10-11

    We report preliminary results on the chiral and deconfinement aspects of the QCD transition at finite temperature using the Highly Improved Staggered Quark (HISQ) action on lattices with temporal extent of N{sub {tau}} = 6 and 8. The chiral aspects of the transition are studied in terms of quark condensates and the disconnected chiral susceptibility. We study the deconfinement transition in terms of the strange quark number susceptibility and the renormalized Polyakov loop. We made continuum estimates for some quantities and find reasonably good agreement between our results and the recent continuum extrapolated results obtained with the stout staggered quark action.

  17. Topological index theorem on the lattice through the spectral flow of staggered fermions

    NASA Astrophysics Data System (ADS)

    Azcoiti, V.; Follana, E.; Vaquero, A.; Di Carlo, G.

    2015-05-01

    We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic (quenched) gauge configurations. We obtain clear numerical evidence that the definition works as expected: there is a clear separation between crossings near and far away from the origin, and the topological charge defined through the crossings near the origin agrees, for most configurations, with the one defined through the near-zero modes of large taste-singlet chirality of the staggered Dirac operator. The crossings are much closer to the origin if we improve the Dirac operator used in the definition, and they move towards the origin as we decrease the lattice spacing.

  18. Performance of staggered quadrature modulations over nonlinear satellite channels with uplink noise and intersymbol interference

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.; Omura, J. K.

    1982-01-01

    In this paper, the performance of staggered quadrature modulations over nonlinear satellite channels is analyzed. The effects of uplink noise and intersymbol interference caused by transmitter filtering are included. The approach taken employs computational techniques based on moments of the interference. The expressions for the system bit error rate are derived for a general transponder model characterized by AM-AM and AM-PM conversion characteristics. Specific numerical results are presented for a hard-limited satellite repeater using staggered quadrature overlapped raised cosine (SQORC) and minimum-shift-keying (MSK) modulations.

  19. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    PubMed

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  20. Differentiation operation in the wave equation for the pseudospectral method with a staggered mesh

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Xu, J.; Horiuchi, S.

    2001-05-01

    In the present analysis we introduced a calculation strategy of the staggered grid differentiation by using the real value FFT and real inverted FFT for the pseudospectral method and applied the technique to seismic wave simulation. The calculation method introduced here is one third faster on average than the traditional differentiation method by using the complex FFT. The introduced differentiation strategy is very efficient in economy. For example we apply the staggered grid differentiation by real valued FFT to the simulation of seismic wave propagation in inhomogeneous medium. The results show the validity of the present method.

  1. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  2. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  3. Electron tube

    DOEpatents

    Suyama, Motohiro; Fukasawa, Atsuhito; Arisaka, Katsushi; Wang, Hanguo

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  4. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    NASA Astrophysics Data System (ADS)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  5. Does the posterolateral bundle influence rotational movement more than the anteromedial bundle in anterior cruciate ligament reconstruction?: a clinical study.

    PubMed

    Komzák, M; Hart, R; Okál, F; Safi, A

    2012-10-01

    The biomechanical function of the anteromedial (AM) and posterolateral (PL) bundles of the anterior cruciate ligament (ACL) remains controversial. Some studies report that the AM bundle stabilises the knee joint in anteroposterior (AP) translation and rotational movement (both internal and external) to the same extent as the PL bundle. Others conclude that the PL bundle is more important than the AM in controlling rotational movement. The objective of this randomised cohort study involving 60 patients (39 men and 21 women) with a mean age of 32.9 years (18 to 53) was to evaluate the function of the AM and the PL bundles of the ACL in both AP and rotational movements of the knee joint after single-bundle and double-bundle ACL reconstruction using a computer navigation system. In the double-bundle group the patients were also randomised to have the AM or the PL bundle tensioned first, with knee laxity measured after each stage of reconstruction. All patients had isolated complete ACL tears, and the presence of a meniscal injury was the only supplementary pathology permitted for inclusion in the trial. The KT-1000 arthrometer was used to apply a constant load to evaluate the AP translation and the rolimeter was used to apply a constant rotational force. For the single-bundle group deviation was measured before and after ACL reconstruction. In the double-bundle group deviation was measured for the ACL-deficient, AM- or PL-reconstructed first conditions and for the total reconstruction. We found that the AM bundle in the double-bundle group controlled rotation as much as the single-bundle technique, and to a greater extent than the PL bundle in the double-bundle technique. The double-bundle technique increases AP translation and rotational stability in internal rotation more than the single-bundle technique.

  6. Tube Feeding Troubleshooting Guide

    MedlinePlus

    ... profile tube also has a stem length). Note: NG and NJ tubes (that go through a person’s ... Immediate Action: • Discontinue feeding. • If you have an NG or NJ tube, and the tube is curled ...

  7. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  8. Strategies for prevention of ventilator-associated pneumonia: bundles, devices, and medications for improved patient outcomes.

    PubMed

    Alroumi, Fahad; Sarwar, Akmal; Grgurich, Philip E; Lei, Yuxiu; Hudcova, Jana; Craven, Donald E

    2012-02-01

    Ventilator-associated pneumonia is associated with significant patient morbidity, mortality, and increased health care costs. In the current economic climate, it is crucial to implement cost-effective prevention strategies that have proven efficacy. Multiple prevention measures have been proposed by various expert panels. Global strategies have focused on infection control, and reduction of lower airway colonization with bacterial pathogens, intubation, duration of mechanical ventilation, and length of stay in the intensive care unit. Routine use of the Institute for Healthcare Improvement ventilator care bundle is widespread, and has been clearly demonstrated to be an effective method for reducing the incidence of ventilator-associated pneumonia. In this article, we examine specific aspects of the Institute for Healthcare Improvement bundle, better-designed endotracheal tubes, use of antibiotics and probiotics, and treatment of ventilator-associated tracheobronchitis to prevent ventilator-associated pneumonia.

  9. Optimization of a bundle divertor for FED

    SciTech Connect

    Hively, L.M.; Rothe, K.E.; Minkoff, M.

    1982-01-01

    Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.

  10. Mobility of Taxol in Microtubule Bundles

    NASA Astrophysics Data System (ADS)

    Ross, J.

    2003-06-01

    Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching (FRAP) on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With > 63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k_{off}. It was found that 10*k_{off} (GMPCPP) ~ k_{off} (GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With < 63% sites occupied, recovery times decreased as ~ [Tax]^{-1/5} for both types of microtubules. We conclude that the diffusion of taxol along the microtubule interior is hindered by rebinding events when open sites are within ~7 nm of each other.

  11. Meromorphic Higgs bundles and related geometries

    NASA Astrophysics Data System (ADS)

    Dalakov, Peter

    2016-11-01

    The present note is mostly a survey on the generalised Hitchin integrable system and moduli spaces of meromorphic G-Higgs bundles. We also fill minor gaps in the existing literature, outline a calculation of the infinitesimal period map and review some related geometries.

  12. The unintended consequences of bundled payments.

    PubMed

    Weeks, William B; Rauh, Stephen S; Wadsworth, Eric B; Weinstein, James N

    2013-01-01

    Consensus is building that episode-based bundled payments can produce substantial Medicare savings, and the Center for Medicare & Medicaid Innovation's Bundled Payment Initiative endorses this concept. The program generates potential cost savings by reducing the historic cost of time-defined episodes of care, provided through a discount. Although bundled payments can reduce waste primarily in the postacute care setting, concerns arise that, in an effort to maintain income levels that are necessary to cover fixed costs, providers may change their behaviors to increase the volume of episodes. Such actions would mitigate the savings that Medicare might have accrued and may perpetuate the fee-for-service payment mechanism, with episodes of care becoming the new service. Although bundled payments have some advantages over the current reimbursement system, true cost-savings to Medicare will be realized only when the federal government addresses the use issue that underlies much of the waste inherent in the system and provides ample incentives to eliminate capacity and move toward capitation.

  13. The unintended consequences of bundled payments.

    PubMed

    Weeks, William B; Rauh, Stephen S; Wadsworth, Eric B; Weinstein, James N

    2013-01-01

    Consensus is building that episode-based bundled payments can produce substantial Medicare savings, and the Center for Medicare & Medicaid Innovation's Bundled Payment Initiative endorses this concept. The program generates potential cost savings by reducing the historic cost of time-defined episodes of care, provided through a discount. Although bundled payments can reduce waste primarily in the postacute care setting, concerns arise that, in an effort to maintain income levels that are necessary to cover fixed costs, providers may change their behaviors to increase the volume of episodes. Such actions would mitigate the savings that Medicare might have accrued and may perpetuate the fee-for-service payment mechanism, with episodes of care becoming the new service. Although bundled payments have some advantages over the current reimbursement system, true cost-savings to Medicare will be realized only when the federal government addresses the use issue that underlies much of the waste inherent in the system and provides ample incentives to eliminate capacity and move toward capitation. PMID:23277901

  14. Social Bundles: Thinking through the Infant Body

    ERIC Educational Resources Information Center

    Brownlie, Julie; Leith, Valerie M. Sheach

    2011-01-01

    Drawing on a UK research study on immunization, this article investigates parents' understandings of the relationship between themselves, their infants, other bodies, the state, and cultural practices--material and symbolic. The article argues that infant bodies are best thought of as always social bundles, rather than as biobundles made social…

  15. Density functional calculations of a staggered FeSe monolayer on a SrTiO3 (110) surface

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Dai, Xia; Liang, Yi; Le, Congcong; Fan, Heng; Hu, Jiangping

    2016-07-01

    We investigate the electronic and magnetic properties of FeSe monolayer on the anisotropic SrTiO3 (110) surface. With compressive strain along the [1 1 ¯0 ] direction from the substrate, the monolayer FeSe possesses a staggered bipartite iron lattice with a height difference around 0.06 Å along the out-of-plane direction. The staggering causes stronger magnetic frustration among the collinear, stagger-dimer, and stagger-trimer antiferromagnetic orders, and the strain elongates one electron and two hole pockets along the strain direction and the remaining hole pocket along the orthogonal direction. The strain-induced band splitting at Γ can also result in a band inversion to drive the system into a topologically nontrivial phase. The absence of strong superconducting suppression on the staggered lattice suggests that the superconducting pairings may be insensitive to the modification of interactions and hopping parameters between two Fe sublattices.

  16. Mixed action simulations on a staggered background: Interpretation and result for the 2-flavor QCD chiral condensate

    SciTech Connect

    Hasenfratz, Anna; Hoffmann, Roland

    2006-12-01

    Growing evidence indicates that in the continuum limit the rooted staggered action is in the correct QCD universality class, the nonlocal terms arising from taste breaking can be viewed as lattice artifacts. In this paper we consider the 2-flavor Asqtad staggered action at lattice spacing a{approx_equal}0.13 fm and probe the properties of the staggered configurations by an overlap valence Dirac operator. By comparing the distribution of the overlap eigenmodes to continuum QCD predictions we investigate if/when the lattice artifacts are small as a function of the staggered quark mass. We define a matching overlap quark mass where the lattice corrections are minimal for the topological susceptibility and from the eigenmode distribution we predict the 2-flavor chiral condensate. Our results indicate that the staggered configurations are consistent with 2-flavor continuum QCD up to small lattice artifacts, and predict a consistent value for the infinite volume chiral condensate.

  17. Bundling dynamics regulates the active mechanics and transport in carbon nanotube networks and their nanocomposites

    NASA Astrophysics Data System (ADS)

    Hahm, Myung Gwan; Wang, Hailong; Jung, Hyun Young; Hong, Sanghyun; Lee, Sung-Goo; Kim, Sung-Ryong; Upmanyu, Moneesh; Jung, Yung Joon

    2012-05-01

    High-density carbon nanotube networks (CNNs) continue to attract interest as active elements in nanoelectronic devices, nanoelectromechanical systems (NEMS) and multifunctional nanocomposites. The interplay between the network nanostructure and its properties is crucial, yet current understanding remains limited to the passive response. Here, we employ a novel superstructure consisting of millimeter-long vertically aligned single walled carbon nanotubes (SWCNTs) sandwiched between polydimethylsiloxane (PDMS) layers to quantify the effect of two classes of mechanical stimuli, film densification and stretching, on the electronic and thermal transport across the network. The network deforms easily with an increase in the electrical and thermal conductivities, suggestive of a floppy yet highly reconfigurable network. Insight from atomistically informed coarse-grained simulations uncover an interplay between the extent of lateral assembly of the bundles, modulated by surface zipping/unzipping, and the elastic energy associated with the bent conformations of the nanotubes/bundles. During densification, the network becomes highly interconnected yet we observe a modest increase in bundling primarily due to the reduced spacing between the SWCNTs. The stretching, on the other hand, is characterized by an initial debundling regime as the strain accommodation occurs via unzipping of the branched interconnects, followed by rapid rebundling as the strain transfers to the increasingly aligned bundles. In both cases, the increase in the electrical and thermal conductivity is primarily due to the increase in bundle size; the changes in network connectivity have a minor effect on the transport. Our results have broad implications for filamentous networks of inorganic nanoassemblies composed of interacting tubes, wires and ribbons/belts.High-density carbon nanotube networks (CNNs) continue to attract interest as active elements in nanoelectronic devices, nanoelectromechanical systems

  18. Interplanetary Overlay Network Bundle Protocol Implementation

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.

  19. 3D Numerical heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with electrohydrodynamic enhancement

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Wen; Jang, Jiin-Yuh

    2005-05-01

    Three-dimensional laminar fluid flow and heat transfer over a four-row plate-fin and tube heat exchanger with electrohydrodynamic (EHD) wire electrodes are studied numerically. The effects of different electrode arrangements (square and diagonal), tube pitch arrangements (in-line and staggered) and applied voltage (VE=0-16 kV) are investigated in detail for the Reynolds number range (based on the fin spacing and frontal velocity) ranging from 100 to 1,000. It is found that the EHD enhancement is more effective for lower Re and higher applied voltage. The case of staggered tube pitch with square wire electrode arrangement gives the best heat transfer augmentation. For VE=16 kV and Re = 100, this study identifies a maximum improvement of 218% in the average Nusselt number and a reduction in fin area of 56% as compared that without EHD enhancement.

  20. Strategic Alliances between Chinese and Foreign Universities: Was a Staggered Form of Entry Used?

    ERIC Educational Resources Information Center

    Willis, Mike

    2001-01-01

    Explored whether foreign universities moved through levels of alliance with China as a form of staggered market entry. Found almost no movement between levels of alliance, and that high levels of commitment were required at all levels to make an alliance successful. This indicates that foreign universities should be careful to establish alliances…

  1. Odd-even staggering in the neutron-proton interaction and nuclear mass models

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhao, Y. M.; Arima, A.

    2015-02-01

    In this paper we study odd-even staggering of the empirical neutron-proton interaction between the last neutron and the last proton, denoted as δ V1 n -1 p , and its consequence in the Garvey-Kelson mass relations (GKs) and nuclear mass models. The root-mean-squared deviations of predicted masses respectively for even-A and odd-A nuclei by using two combinatorial GKs suggest a large odd-even staggering of δ V1 n -1 p between even-odd and odd-even nuclei, while the odd-even difference of δ V1 n -1 p between even-even and odd-odd nuclei is much smaller. The contribution of the odd-even staggering of δ V1 n -1 p between even-A and odd-A nuclei in deviations of theoretical δ V1 n -1 p values of the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model are well represented by an isospin-dependent term. The consideration of this odd-even staggering improves our description of binding energies and one-neutron separation energies in both the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model.

  2. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    SciTech Connect

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  3. Aerodynamic characteristics of a square cylinder with a rod in a staggered arrangement

    NASA Astrophysics Data System (ADS)

    Zhang, P. F.; Wang, J. J.; Lu, S. F.; Mi, J.

    2005-04-01

    The aerodynamic characteristics of a square cylinder with an upstream rod in a staggered arrangement were examined. The pressure measurement was conducted in a wind tunnel at a Reynolds number of ReD=82,000 (based on the width of the square cylinder) and the flow visualization was carried out in a water tunnel with the hydrogen bubble technique at ReD=5,200. When the rod and the square cylinder were in tandem, the reduction of drag was mainly caused by the increase of the rear suction pressure. When the staggered angle was introduced, the shield and disturbance effect of the rod on the square cylinder diminished, which results in the increase of the cylinder drag. The side force induced by the staggered angle is small (the maximum value is 20% of the drag of the isolate square cylinder). There were six different flow modes with various staggered angles and spacing ratios, and the corresponding flow patterns are presented in present paper.

  4. The use of circumferentially varying stagger guide vanes in an axial flow pump or compressor

    NASA Astrophysics Data System (ADS)

    Horlock, J. H.

    1990-04-01

    An actuator disk analysis is given of the flow through a guide vane and rotor combination. It is shown that changes in total pressure across the rotor are, in general, related to circumferential variations in guide vane outlet angle. In particular, known variations in inlet total pressure may be eliminated by suitable circumferential changes in guide vane stagger.

  5. PQChPT with Staggered Sea and Valence Ginsparg-Wilson Quarks: Vector Meson Masses

    SciTech Connect

    Hovhannes R. Grigoryan; Anthony W. Thomas

    2005-09-16

    We consider partially quenched, mixed chiral perturbation theory with staggered sea and Ginsparg-Wilson valence quarks in order to extract a chiral-continuum extrapolation expression for the vector meson mass up to order O(a{sup 2}), at one-loop level. Based on general principles, we accomplish the task without explicitly constructing a sophisticated, heavy vector meson chiral Lagrangian.

  6. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-01

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs. PMID:27505782

  7. Pharmacokinetic interaction between simvastatin and fenofibrate with staggered and simultaneous dosing: Does it matter?

    PubMed

    Winsemius, Anneke; Ansquer, Jean-Claude; Olbrich, Matthias; van Amsterdam, Peter; Aubonnet, Patrick; Beckmann, Katrin; Driessen, Stefan; van Assche, Hanneke; Piskol, Gabi; Lehnick, Dirk; Mihara, Katsuhiro

    2014-09-01

    Simvastatin and fenofibrate are frequently co-prescribed at staggered intervals for the treatment of dyslipidemia. Since a drug-drug interaction has been reported when the two drugs are given simultaneously, it is of clinical interest to know whether the interaction differs between simultaneous and staggered combinations. A study, assessing the impact of both combinations on the interaction, was conducted with 7-day treatment regimens using simvastatin 40 mg and fenofibrate 145 mg: (A) simvastatin only (evening), (B) simvastatin and fenofibrate (both in evening), and (C) simvastatin (evening) and fenofibrate (morning). Eighty-five healthy subjects received the respective treatments in a randomized, 3-way cross-over study. The pharmacokinetics of simvastatin and the active metabolite simvastatin acid were determined. There was a limited reduction in the AUC0-24h of simvastatin acid of 21 and 29% for simultaneous and staggered combination, respectively. The geometric mean AUC0-24h ratio of simvastatin acid for the two combined dosing regimens (B/C) and 90% confidence interval were 111% (102-121). The interaction apparently had no impact on lipid markers. The findings imply that the observed pharmacokinetic interaction is unlikely clinically relevant, and support the combined use of simvastatin and fenofibrate not only given at staggered interval but also given simultaneously.

  8. The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.

    1995-01-01

    Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.

  9. Experimental Study of Aligned and Staggered Wind Farms in a Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando

    2011-11-01

    Wind farm-atmosphere interaction is complicated by turbine configuration and thermal effects on momentum and kinetic energy fluxes. Wind farms of finite length have been modeled as increased surface roughness or as a sparse canopy; however it is not clear which approach is more appropriate. Experiments were conducted in a thermally controlled boundary layer wind tunnel, using a custom x-wire/cold wire and surface heat flux sensors, to understand the effect of aligned versus staggered turbine configurations on momentum absorption and flow adjustment in a convective boundary layer (CBL). Results for experiments of a large farm show the span-wise averaged flow statistics exhibit similar turbulent transport properties to that of canopy flows. The wake adjusts within and grows over the farm more quickly for a staggered compared to an aligned farm. Using canopy flow scaling, we show that the flow equilibrates faster and the overall momentum absorption is higher in a staggered compared to an aligned farm. Wake recovery behind a single turbine is facilitated by buoyancy in a CBL (Zhang et al. under review). We find a similar effect in wind farms resulting in reduced effective roughness and momentum absorption. We also find a reduction of surface heat flux for both wind farms, but greater for the staggered farm.

  10. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  11. Turkish and Native English Academic Writers' Use of Lexical Bundles

    ERIC Educational Resources Information Center

    Öztürk, Yusuf; Köse, Gül Durmusoglu

    2016-01-01

    Lexical bundles such as "on the other hand" and "as a result of" are extremely common and important in academic discourse. The appropriate use of lexical bundles typical of a specific academic discipline is important for writers and the absence of such bundles may not sound fluent and native-like. Recent studies (e.g. Adel…

  12. Bundling dynamics regulates the active mechanics and transport in carbon nanotube networks and their nanocomposites.

    PubMed

    Hahm, Myung Gwan; Wang, Hailong; Jung, Hyun Young; Hong, Sanghyun; Lee, Sung-Goo; Kim, Sung-Ryong; Upmanyu, Moneesh; Jung, Yung Joon

    2012-06-01

    High-density carbon nanotube networks (CNNs) continue to attract interest as active elements in nanoelectronic devices, nanoelectromechanical systems (NEMS) and multifunctional nanocomposites. The interplay between the network nanostructure and its properties is crucial, yet current understanding remains limited to the passive response. Here, we employ a novel superstructure consisting of millimeter-long vertically aligned single walled carbon nanotubes (SWCNTs) sandwiched between polydimethylsiloxane (PDMS) layers to quantify the effect of two classes of mechanical stimuli, film densification and stretching, on the electronic and thermal transport across the network. The network deforms easily with an increase in the electrical and thermal conductivities, suggestive of a floppy yet highly reconfigurable network. Insight from atomistically informed coarse-grained simulations uncover an interplay between the extent of lateral assembly of the bundles, modulated by surface zipping/unzipping, and the elastic energy associated with the bent conformations of the nanotubes/bundles. During densification, the network becomes highly interconnected yet we observe a modest increase in bundling primarily due to the reduced spacing between the SWCNTs. The stretching, on the other hand, is characterized by an initial debundling regime as the strain accommodation occurs via unzipping of the branched interconnects, followed by rapid rebundling as the strain transfers to the increasingly aligned bundles. In both cases, the increase in the electrical and thermal conductivity is primarily due to the increase in bundle size; the changes in network connectivity have a minor effect on the transport. Our results have broad implications for filamentous networks of inorganic nanoassemblies composed of interacting tubes, wires and ribbons/belts.

  13. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  14. Collapse Tubes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02154 Collapse Tubes

    The discontinuous channels in this image are collapsed lava tubes.

    Image information: VIS instrument. Latitude -19.7N, Longitude 317.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Comparison of river-water fouling rates for spirally indented and plain tubes

    SciTech Connect

    Rabas, T.J.; Panchal, C.B.; Sasscer, D.C.; Schaefer, R.

    1993-10-01

    This article presents river-water fouling rates at 12 Tennessee Valley Authority (TVA) power plant condensers, nine of which were retubed with a commercially available enhanced tube. Four were located on the Cumberland River, six on the Ohio and two on the Clinch River. The overall heat transfer coefficients were calculated from logged field data taken over periods extending from 1 to 10 years. The fouling resistances were next calculated with the separate resistance method and with a bundle correction factor to the condensing, single-tube Nusselt prediction. The bundle correction factor was determined for each condenser using the data taken within 1,000 hours after each cleaning. With the use of this new bundle factor method, fouling rate data can be obtained even with variable operating conditions. The fouling rates with the enhanced tubes ranged from about the same as to about twice that of the plain tubes. However, the thermal performance with the enhanced tubes remained superior to that obtained with plain tubes for more than a year without cleaning. Also after one year of operation, the enhanced-tube fouling resistance values were always less than one-half of this value. After shutdown and brush and/or acid cleaning the thermal performance values for both the plain and enhanced tubes were restored to essentially the new, clean levels.

  16. Numerical study of a round tube heat exchanger with louvered fins and delta winglets

    NASA Astrophysics Data System (ADS)

    Huisseune, H.; T'Joen, C.; De Jaeger, P.; Ameel, B.; De Paepe, M.

    2012-11-01

    Louvered fin and round tube heat exchangers are widely used in air conditioning devices and heat pumps. In this study the effect of punching delta winglet vortex generators in the louvered fin surface is studied numerically. The delta winglets are located in a common-flow-down orientation behind each tube of the staggered tube layout. It is shown that the generated vortices significantly reduce the size of the tube wakes. Three important heat transfer enhancement mechanisms can be distinguished: a better flow mixing, boundary layer thinning and a delay in flow separation from the tube surface. The compound heat exchanger has a better thermal hydraulic performance then when only louvers or only delta winglets are used. Comparison to other enhanced fin designs clearly shows its potential, especially for low Reynolds number applications.

  17. Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres.

    PubMed

    Kim, Young-Jin; Yamamoto, Seiichiro; Takahashi, Haruko; Sasaki, Naruo; Matsunaga, Yukiko T

    2016-08-19

    This work describes the fabrication and characterization of hydroxypropyl cellulose (HPC)-based biomimetic bundled gel fibres. The bundled gel fibres were reinforced with multiwalled carbon nanotubes (MWCNTs). A phase-separated aqueous solution with MWCNT and HPC was transformed into a bundled fibrous structure after being injected into a co-flow microfluidic device and applying the sheath flow. The resulting MWCNT-bundled gel fibres consist of multiple parallel microfibres. The mechanical and electrical properties of MWCNT-bundled gel fibres were improved and their potential for tissue engineering applications as a cell scaffold was demonstrated. PMID:27200527

  18. Anatomic Double-Bundle Posterior Cruciate Ligament Reconstruction.

    PubMed

    Chahla, Jorge; Nitri, Marco; Civitarese, David; Dean, Chase S; Moulton, Samuel G; LaPrade, Robert F

    2016-02-01

    The posterior cruciate ligament (PCL) is known to be the main posterior stabilizer of the knee. Anatomic single-bundle PCL reconstruction, focusing on reconstruction of the larger anterolateral bundle, is the most commonly performed procedure. Because of the residual posterior and rotational tibial instability after the single-bundle procedure and the inability to restore the normal knee kinematics, an anatomic double-bundle PCL reconstruction has been proposed in an effort to re-create the native PCL footprint more closely and to restore normal knee kinematics. We detail our technique for an anatomic double-bundle PCL reconstruction using Achilles and anterior tibialis tendon allografts. PMID:27284530

  19. A Comparison between Clinical Results of Selective Bundle and Double Bundle Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Yoo, Yon-Sik; Song, Si Young; Yang, Cheol Jung; Ha, Jong Mun; Kim, Yoon Sang

    2016-01-01

    Purpose The purpose of this study was to compare the clinical outcomes of arthroscopic anatomical double bundle (DB) anterior cruciate ligament (ACL) reconstruction with either selective anteromedial (AM) or posterolateral (PL) bundle reconstruction while preserving a relatively healthy ACL bundle. Materials and Methods The authors evaluated 98 patients with a mean follow-up of 30.8±4.0 months who had undergone DB or selective bundle ACL reconstructions. Of these, 34 cases underwent DB ACL reconstruction (group A), 34 underwent selective AM bundle reconstruction (group B), and 30 underwent selective PL bundle reconstructions (group C). These groups were compared with respect to Lysholm and International Knee Documentation Committee (IKDC) score, side-to-side differences of anterior laxity measured by KT-2000 arthrometer at 30 lbs, and stress radiography and Lachman and pivot shift test results. Pre- and post-operative data were objectively evaluated using a statistical approach. Results The preoperative anterior instability measured by manual stress radiography at 90° of knee flexion in group A was significantly greater than that in groups B and C (all p<0.001). At last follow-up, mean side-to-side instrumented laxities measured by the KT-2000 and manual stress radiography were significantly improved from preoperative data in all groups (all p<0.001). There were no significant differences between the three groups in anterior instability measured by KT-2000 arthrometer, pivot shift, or functional scores. Conclusion Selective bundle reconstruction in partial ACL tears offers comparable clinical results to DB reconstruction in complete ACL tears. PMID:27401652

  20. Phase Slips in Oscillatory Hair Bundles

    PubMed Central

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  1. Phase slips in oscillatory hair bundles.

    PubMed

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  2. Covariance and the hierarchy of frame bundles

    NASA Technical Reports Server (NTRS)

    Estabrook, Frank B.

    1987-01-01

    This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.

  3. Heterotic String Compactification and New Vector Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Wu, Baosen; Yau, Shing-Tung

    2016-07-01

    We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by branched double covers of twistor spaces. In this construction we use the twistor spaces of four-manifolds with self-dual conformal structures, with the examples of connected sum of n {mathbb{P}2}s. We also construct K3-fibered Calabi-Yau manifolds from the branched double covers of the blow-ups of the twistor spaces. These manifolds can be used in heterotic string compactifications to four dimensions. We also construct stable and polystable vector bundles. Some classes of these vector bundles can give rise to supersymmetric grand unified models with three generations of quarks and leptons in four dimensions.

  4. Phase Slips in Oscillatory Hair Bundles

    NASA Astrophysics Data System (ADS)

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-01

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production.

  5. Motor-induced sliding of microtubule and actin bundles

    PubMed Central

    Zemel, Assaf; Mogilner, Alex

    2009-01-01

    Interactions of multiple molecular motors with bundles of actin and microtubule filaments form the basis for many cytoskeletal processes including axonal growth, muscle contraction, cell division and platelet formation. Continuum models based on generalized diffusion equations have been suggested to quantify the dynamics of such active bundles. In highly cross-linked and densely packed filament bundles, however, a major complication arises due to the multiple interactions that each filament forms with its neighbors. To explore the effects of these interactions, we used detailed computer simulations and studied the bundles with different types of motors at different densities and boundary conditions. We found that highly cross-linked bundles exhibit effects of long-ranged interactions that are sensitive to the boundary conditions. In open bundles, these give rise to ‘telescopic’ patterns resulting in significant acceleration of the filaments at the edges. In contrast, in ringed bundles, the long-ranged interactions ‘lock’ filaments and slow down their movements. The filaments in loosely connected bundles, on the other hand, undergo local diffusion-drift dynamics consistent with previous continuum models. Our simulations also demonstrate the sorting phenomena in the mixed-polarity bundles and reveal characteristic scales and conditions for spontaneous pattern formation in the bundle. We discuss the relevance of our results for cytoskeleton systems such as microtubules in axons, platelet formation, kinetochore fibers and actin bundles in motile cells. PMID:19506757

  6. Hierarchical scaling law for the strength of composite fibre bundles

    NASA Astrophysics Data System (ADS)

    Pimenta, Soraia; Pinho, Silvestre T.

    2013-06-01

    This paper presents an analytical model for size effects on the longitudinal tensile strength of composite fibre bundles. The strength of individual fibres is modelled by a Weibull distribution, while the matrix (or fibre-matrix interface) is represented through a perfectly plastic shear-lag model. A probabilistic analysis of the failure process in hierarchical bundles (bundles of bundles) is performed, so that a scaling law relating the strength distributions and characteristic lengths of consecutive bundle levels is derived. An efficient numerical scheme (based on asymptotic limits) is proposed, hence coupon-sized bundle strength distributions are obtained almost instantaneously. Parametric studies show that both fibre and matrix properties are critical for bundle strength; model predictions at different scales are validated against experimental results available in the literature.

  7. Deformations of Fell bundles and twisted graph algebras

    NASA Astrophysics Data System (ADS)

    Raeburn, Iain

    2016-11-01

    We consider Fell bundles over discrete groups, and the C*-algebra which is universal for representations of the bundle. We define deformations of Fell bundles, which are new Fell bundles with the same underlying Banach bundle but with the multiplication deformed by a two-cocycle on the group. Every graph algebra can be viewed as the C*-algebra of a Fell bundle, and there are are many cocycles of interest with which to deform them. We thus obtain many of the twisted graph algebras of Kumjian, Pask and Sims. We demonstate the utility of our approach to these twisted graph algebras by proving that the deformations associated to different cocycles can be assembled as the fibres of a C*-bundle.

  8. Quantized Mechanics of Nanotubes and Bundles

    NASA Astrophysics Data System (ADS)

    Pugno, Nicola M.

    In this chapter, the mechanics of carbon nanotubes and related bundles is reviewed, with an eye to their application as ultra-sharp tips for scanning probe "nanoscopy". In particular, the role of thermodynamically unavoidable, atomistic defects with different sizes and shapes on the fracture strength, fatigue life, and elasticity is quantified, thanks to new quantized fracture mechanics approaches. The reader is introduced in a simple way to such innovative treatments at the beginning of the chapter.

  9. Uncovering Ecosystem Service Bundles through Social Preferences

    PubMed Central

    Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos

    2012-01-01

    Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006

  10. Parafermions in an Interacting Nanowire Bundle

    NASA Astrophysics Data System (ADS)

    Klinovaja, Jelena; Loss, Daniel

    2014-06-01

    We propose a scheme to induce Z3 parafermion modes, exotic zero-energy bound states that possess non-Abelian statistics. We consider a minimal setup consisting of a bundle of four tunnel coupled nanowires hosting spinless electrons that interact strongly with each other. The hallmark of our setup is that it relies only on simple one-dimensional wires, a uniform magnetic field, and strong interactions, but does not require the presence of superconductivity or exotic quantum Hall phases.

  11. Parafermions in an interacting nanowire bundle.

    PubMed

    Klinovaja, Jelena; Loss, Daniel

    2014-06-20

    We propose a scheme to induce Z(3) parafermion modes, exotic zero-energy bound states that possess non-Abelian statistics. We consider a minimal setup consisting of a bundle of four tunnel coupled nanowires hosting spinless electrons that interact strongly with each other. The hallmark of our setup is that it relies only on simple one-dimensional wires, a uniform magnetic field, and strong interactions, but does not require the presence of superconductivity or exotic quantum Hall phases. PMID:24996098

  12. Alpha1 LASSO data bundles Lamont, OK

    DOE Data Explorer

    Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)

    2016-08-03

    A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.

  13. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  14. An analytical fiber bundle model for pullout mechanics of root bundles

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without

  15. Turbulent flow and scalar flux through and over aligned and staggered wind farms

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.

    2012-04-01

    Wind farm-atmosphere interaction is complicated by the effect of turbine array configuration on momentum, scalar and kinetic energy fluxes. Wind turbine arrays are often arranged in rectilinear grids and, depending on the wind direction, may be perfectly aligned or perfectly staggered. The two extreme configurations make up the end members of a spectrum of infinite possible layouts. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux, including heat, evaporation and trace gas (e.g. CO2) fluxes affected by wind farms, need to be properly parameterized in large-scale models. Experiments involving model wind farms in aligned and staggered configurations, consisting of 13 rows with equivalent turbine density, were conducted in a thermally-controlled boundary-layer wind tunnel. Measurements of the turbulent flow were made using a custom x-wire/cold wire within and over the wind farms. Particular focus was placed on studying the effect of wind farm layout on flow adjustment, momentum and scalar fluxes, and turbulent kinetic energy distribution. Results show that the turbulence statistics of the flow exhibit similar turbulent transport properties to those of canopy flows, but retain some characteristic surface layer properties in a limited region above the wind farms as well. The initial wake growth over columns of turbines in the aligned wind farm is faster. However, the overall wake adjusts within and grows more rapidly over the staggered farm. The effective roughness of the staggered farm was found to be significantly larger than that of the aligned farm. The flow equilibrates faster, and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling. Lower surface heat flux was found for the wind farms compared to the boundary

  16. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Schafer, Rachel; Rouse, Andrew R.; Gmitro, Arthur F.

    2012-02-01

    Recent evidence suggests that epithelial ovarian cancer may originate in the fimbriated end of the fallopian tube1. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. We have previously reported on a rigid confocal microlaparoscope system that is currently undergoing a clinical trial to image the epithelial surface of the ovary2. In order to gain in vivo access to the fallopian tubes we have developed a new confocal microlaparoscope with an articulating distal tip. The new instrument builds upon the technology developed for the existing confocal microlaparoscope. It has an ergonomic handle fabricated by a rapid prototyping printer. While maintaining compatibility with a 5 mm trocar, the articulating distal tip of the instrument consists of a 2.2 mm diameter bare fiber bundle catheter with automated dye delivery for fluorescence imaging. This small and flexible catheter design should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Early ex vivo mages of human fallopian tube and in vivo imaging results from recent open surgeries using the rigid confocal microlaparoscope system are presented. Ex vivo images from animal models using the new articulating bare fiber system are also presented. These high quality images collected by the new flexible system are similar in quality to those obtained from the epithelial surface of ovaries with the rigid clinical confocal microlaparoscope.

  17. Confocal microlaparoscope for imaging the fallopian tube

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  18. Bundled payment fails to gain a foothold In California: the experience of the IHA bundled payment demonstration.

    PubMed

    Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S

    2014-08-01

    To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives.

  19. The Synergism Between Heat and Mass Transfer Additive and Advanced Surfaces in Aqueous LiBr Horizontal Tube Absorbers

    SciTech Connect

    Miller, W.A.

    1999-03-24

    Experiments were conducted in a laboratory to investigate the absorption of water vapor into a falling-film of aqueous lithium bromide (LiBr). A mini-absorber test stand was used to test smooth tubes and a variety of advanced tube surfaces placed horizontally in a single-row bundle. The bundle had six copper tubes; each tube had an outside diameter of 15.9-mm and a length of 0.32-m. A unique feature of the stand is its ability to operate continuously and support testing of LiBr brine at mass fractions {ge} 0.62. The test stand can also support testing to study the effect of the failing film mass flow rate, the coolant mass flow rate, the coolant temperature, the absorber pressure and the tube spacing. Manufacturers of absorption chillers add small quantities of a heat and mass transfer additive to improve the performance of the absorbers. The additive causes surface stirring which enhances the transport of absorbate into the bulk of the film. Absorption may also be enhanced with advanced tube surfaces that mechanically induce secondary flows in the falling film without increasing the thickness of the film. Several tube geometry's were identified and tested with the intent of mixing the film and renewing the interface with fresh solution from the tube wall. Testing was completed on a smooth tube and several different externally enhanced tube surfaces. Experiments were conducted over the operating conditions of 6.5 mm Hg absorber pressure, coolant temperatures ranging from 20 to 35 C and LiBr mass fractions ranging from 0.60 through 0.62. Initially the effect of tube spacing was investigated for the smooth tube surface, tested with no heat and mass transfer additive. Test results showed the absorber load and the mass absorbed increased as the tube spacing increased because of the improved wetting of the tube bundle. However, tube spacing was not a critical factor if heat and mass transfer additive was active in the mini-absorber. The additive dramatically affected

  20. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  1. Two-Phase Flow Patterns in a Four by Four Rod Bundle

    SciTech Connect

    Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama

    2006-07-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, and , in the present experiments were 0.1 < < 2.0 m/s and 0.04 < < 8.85 m/s, which covered typical two-phase flow patterns appearing in a fuel bundle of a boiling water nuclear reactor. As a result, the following conclusions were obtained: (1) the region of slug flow in the - flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)

  2. Shape control of lipid bilayer membranes by confined actin bundles.

    PubMed

    Tsai, Feng-Ching; Koenderink, Gijsje Hendrika

    2015-12-01

    In living cells, lipid membranes and biopolymers determine each other's conformation in a delicate force balance. Cellular polymers such as actin filaments are strongly confined by the plasma membrane in cell protrusions such as lamellipodia and filopodia. Conversely, protrusion formation is facilitated by actin-driven membrane deformation and these protrusions are maintained by dense actin networks or bundles of actin filaments. Here we investigate the mechanical interplay between actin bundles and lipid bilayer membranes by reconstituting a minimal model system based on cell-sized liposomes with encapsulated actin filaments bundled by fascin. To address the competition between the deformability of the membrane and the enclosed actin bundles, we tune the bundle stiffness (through the fascin-to-actin molar ratio) and the membrane rigidity (through protein decoration). Using confocal microscopy and quantitative image analysis, we show that actin bundles deform the liposomes into a rich set of morphologies. For liposomes having a small membrane bending rigidity, the actin bundles tend to generate finger-like membrane protrusions that resemble cellular filopodia. Stiffer bundles formed at high crosslink density stay straight in the liposome body, whereas softer bundles formed at low crosslink density are bent and kinked. When the membrane has a large bending rigidity, membrane protrusions are suppressed. In this case, membrane enclosure forces the actin bundles to organize into cortical rings, to minimize the energy cost associated with filament bending. Our results highlight the importance of taking into account mechanical interactions between the actin cytoskeleton and the membrane to understand cell shape control.

  3. Fourth-Order Accurate IDO Scheme Using Gradient-Staggered Interpolation

    NASA Astrophysics Data System (ADS)

    Imai, Yohsuke; Aoki, Takayuki

    An Interpolated Differential Operator (IDO) scheme using a new interpolation function is proposed. The gradient of the dependent variable is calculated at the position shifted by a half grid size from that of the physical value. A fourth-order Hermite-interpolation function is constructed locally using both the value and the gradient defined at staggered positions. The numerical solutions for the Poisson, diffusion, advection and wave equations have fourth-order accuracy in space. In particular, for the Poisson and diffusion equations, the Gradient-Staggered (G-S) IDO scheme shows better accuracy than the original IDO scheme. As a practical application, the Direct Numerical Simulation (DNS) for two-dimensional isotropic homogeneous turbulence is examined and a comparable result with that of the original IDO scheme is obtained. The G-S IDO scheme clearly contributes to high-accurate computations for solving partial differential equations in computational mechanics.

  4. Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.

    PubMed

    Follana, E; Hart, A; Davies, C T H

    2004-12-10

    We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.

  5. Numerical simulation of dam-break problem using staggered finite volume method

    NASA Astrophysics Data System (ADS)

    Budiasih, L. K.; Wiryanto, L. H.

    2016-02-01

    A problem in a dam-break is when a wall separating two sides of water is removed. A shock wave occurs and propagates. The behavior of the wave is interesting to be investigated with respect to the water depth and its wave speed. The aim of this research is to model dam-break problem using the non-linear shallow water equations and solve them numerically using staggered finite volume method. The solution is used to simulate the dam-break on a wet bed. Our numerical solution will be compared to the analytical solution of shallow water equations for dam-break problem. The momentum non-conservative finite volume scheme on a staggered grid will give a good agreement for dam-break problem on a wet bed, for depth ratios greater than 0.25.

  6. Optimal overlap length in staggered architecture composites under dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun; Miklavcic, Milan

    2013-01-01

    Hybrid staggered architecture composites, like nacre and bone, are known for two discernible aspects: superior strength and synergistic toughness. What is lacking is the scientific rationale proving suitability of these materials under impact/time dependent loading. The current investigation aims to address the structure-property correlationship of these materials by development of an analytical model under dynamic rates of loading. Existing literature studies address behavior of staggered materials under quasi-static loading conditions. Critical overlap length was computed for three natural composites-nacre, spider-silk and, collagen in bone/tendon, and showed reasonable agreement with experimental data. Applicability of the analytical approach to predict lap-joint strength has been briefly discussed and quantified against experimental data. Choice of nanometer sized building blocks in natural composites has been addressed and explained from shear transfer efficiency point of view. The potentiality of these composites for use as biomimetic protective material under impact loading has been addressed as well.

  7. Rooting issue for a lattice fermion formulation similar to staggered fermions but without taste mixing

    SciTech Connect

    Adams, David H.

    2008-05-15

    To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalar meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.

  8. On preservation of symmetry in r-z staggered Lagrangian schemes

    NASA Astrophysics Data System (ADS)

    Váchal, Pavel; Wendroff, Burton

    2016-02-01

    In the focus of this work are symmetry preservation, conservation of energy and volume, and other important properties of staggered Lagrangian hydrodynamic schemes in cylindrical (r-z) geometry. It is well known that on quadrilateral cells in r-z, preservation of spherical symmetry, perfect satisfaction of the Geometrical Conservation Law (GCL), and total energy conservation are incompatible even on conforming grids. This paper suggests a novel staggered grid approach that preserves symmetry, conserves total energy by construction and tries to do its best by diminishing the GCL error to the order of entropy error. In particular, the forces from an existing volume consistent scheme are corrected so that spherical symmetry is preserved. The incorporation of subcell pressure mechanism to reduce spurious grid deformations is described and the relation of the new scheme to popular area-weighted and control volume approaches studied.

  9. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  10. Asymmetric edge modes by staggered potential in honeycomb lattice: Spin splitter

    SciTech Connect

    Chen, Son-Hsien; Sun, Shih-Jye; Su, Yu-Hsin; Chang, Ching-Ray

    2015-05-07

    In honeycomb lattice with staggered potential such as silicene nanoribbon (SN) as used for illustrations here, we show that the lack of inversion symmetry due to buckled structure can lead to asymmetric edge modes where only one edge is utilized in transport, yielding no cross-walk (due to size effect) between edges. We also find asymmetric Hall accumulations formed because of the presence of staggered potential. Applying two opposite out-of-plane electric fields to two adjacent SNs appropriately, so that cross-walk occurs between two internal edge states, the bulk states serve as a spin-splitter that splits two specious of spins (spin-up and spin-down) into those two SNs. The spin-splitter proposed here does not require any magnetic field and thus manipulates spins in a full electric manner.

  11. Hadron spectrum with domain-wall valence quarks on an improved staggered sea

    SciTech Connect

    Richards, David; Edwards, Robert; Orginos, Konstantinos

    2006-07-23

    The hadron spectrum is computed in full QCD using domain-wall valence fermions on an improved staggered sea, for pion masses down to around $350{approx}(/rm MeV)$. Emphasis is laid on the low-lying baryon spectrum. All possible baryon correlators obtainable from local and quasi-local quark sources are computed, using lattice group-theory methods Results are presented for the lowest-lying states in each isospin channel.

  12. The running of the Schroedinger functional coupling from four-flavour lattice QCD with staggered quarks

    SciTech Connect

    Rubio, Paula Perez; Sint, Stefan

    2011-05-23

    We present preliminary results for the running coupling in the Schroedinger functional scheme in QCD with four flavours. A single-component staggered quark field is used on lattices of size (L/a){sup 3}x(L/a{+-}1). This provides us with 2 different regularisations of the same renormalized coupling, and thus some control over the size of lattice artefacts. These are found to be comparatively large, calling for a more refined analysis, which still remains to be done.

  13. A METHOD OF TREATING UNSTRUCTURED CONCAVE CELLS IN STAGGERED-GRID LAGRANGIAN HYDRODYNAMICS

    SciTech Connect

    C. ROUSCULP; D. BURTON

    2000-12-01

    A method is proposed for the treatment of concave cells in staggered-grid Lagrangian hydrodynamics. The method is general enough to be applied to two- and three-dimensional unstructured cells. Instead of defining a cell-point as the geometric average of its nodes (a cell-center), the cell-point is that which equalizes the triangular/tetrahedral area/volume in two/three dimensions. Examples are given.

  14. Chiral perturbation theory for staggered sea quarks and Ginsparg-Wilson valence quarks

    SciTech Connect

    Baer, Oliver; Bernard, Claude; Rupak, Gautam; Shoresh, Noam

    2005-09-01

    We study lattice QCD with staggered sea and Ginsparg-Wilson valence quarks. The Symanzik effective action for this mixed lattice theory, including the lattice spacing contributions of O(a{sup 2}), is derived. Using this effective theory we construct the leading-order chiral Lagrangian. The masses and decay constants of pseudoscalars containing two Ginsparg-Wilson valence quarks are computed at one-loop order.

  15. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  16. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  17. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.

  18. Effects of staggered fermions and mixed actions on the scalar correlator

    SciTech Connect

    Prelovsek, S.

    2006-01-01

    We provide the analytic predictions for the flavor nonsinglet scalar correlator, which will enable determination of the scalar meson mass from the lattice scalar correlator. We consider simulations with 2+1 staggered sea quarks and staggered or chiral valence quarks. At small u/d masses the correlator is dominated by the bubble contribution, which is the intermediate state with two pseudoscalar mesons. We determine the bubble contribution within staggered and mixed chiral perturbation theory. Its effective mass is smaller than the mass of {pi}{eta}, which is the lightest intermediate state in proper 2+1 QCD. The unphysical effective mass is a consequence of the taste breaking that makes possible the intermediate state with mass 2M{sub {pi}}. We find that the scalar correlator can be negative in the simulations with mixed quark actions if the sea- and valence-quark masses are tuned by matching the pion masses M{sub val,val}=M{sub {pi}{sub 5}}.

  19. Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2015-01-01

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  20. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    NASA Technical Reports Server (NTRS)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  1. Historical dynamics in ecosystem service bundles.

    PubMed

    Renard, Delphine; Rhemtulla, Jeanine M; Bennett, Elena M

    2015-10-27

    Managing multiple ecosystem services (ES), including addressing trade-offs between services and preventing ecological surprises, is among the most pressing areas for sustainability research. These challenges require ES research to go beyond the currently common approach of snapshot studies limited to one or two services at a single point in time. We used a spatiotemporal approach to examine changes in nine ES and their relationships from 1971 to 2006 across 131 municipalities in a mixed-use landscape in Quebec, Canada. We show how an approach that incorporates time and space can improve our understanding of ES dynamics. We found an increase in the provision of most services through time; however, provision of ES was not uniformly enhanced at all locations. Instead, each municipality specialized in providing a bundle (set of positively correlated ES) dominated by just a few services. The trajectory of bundle formation was related to changes in agricultural policy and global trends; local biophysical and socioeconomic characteristics explained the bundles' increasing spatial clustering. Relationships between services varied through time, with some provisioning and cultural services shifting from a trade-off or no relationship in 1971 to an apparent synergistic relationship by 2006. By implementing a spatiotemporal perspective on multiple services, we provide clear evidence of the dynamic nature of ES interactions and contribute to identifying processes and drivers behind these changing relationships. Our study raises questions about using snapshots of ES provision at a single point in time to build our understanding of ES relationships in complex and dynamic social-ecological systems. PMID:26460005

  2. Historical dynamics in ecosystem service bundles.

    PubMed

    Renard, Delphine; Rhemtulla, Jeanine M; Bennett, Elena M

    2015-10-27

    Managing multiple ecosystem services (ES), including addressing trade-offs between services and preventing ecological surprises, is among the most pressing areas for sustainability research. These challenges require ES research to go beyond the currently common approach of snapshot studies limited to one or two services at a single point in time. We used a spatiotemporal approach to examine changes in nine ES and their relationships from 1971 to 2006 across 131 municipalities in a mixed-use landscape in Quebec, Canada. We show how an approach that incorporates time and space can improve our understanding of ES dynamics. We found an increase in the provision of most services through time; however, provision of ES was not uniformly enhanced at all locations. Instead, each municipality specialized in providing a bundle (set of positively correlated ES) dominated by just a few services. The trajectory of bundle formation was related to changes in agricultural policy and global trends; local biophysical and socioeconomic characteristics explained the bundles' increasing spatial clustering. Relationships between services varied through time, with some provisioning and cultural services shifting from a trade-off or no relationship in 1971 to an apparent synergistic relationship by 2006. By implementing a spatiotemporal perspective on multiple services, we provide clear evidence of the dynamic nature of ES interactions and contribute to identifying processes and drivers behind these changing relationships. Our study raises questions about using snapshots of ES provision at a single point in time to build our understanding of ES relationships in complex and dynamic social-ecological systems.

  3. Synchronization of Spontaneous Active Motility of Hair Cell Bundles

    PubMed Central

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  4. Synchronization of Spontaneous Active Motility of Hair Cell Bundles.

    PubMed

    Zhang, Tracy-Ying; Ji, Seung; Bozovic, Dolores

    2015-01-01

    Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor. PMID:26540409

  5. Trivalent Cation Induced Bundle Formation of Filamentous fd Phages.

    PubMed

    Korkmaz Zirpel, Nuriye; Park, Eun Jin

    2015-09-01

    Bacteriophages are filamentous polyelectrolyte viral rods infecting only bacteria. In this study, we investigate the bundle formation of fd phages with trivalent cations having different ionic radii (Al(3+) , La(3+) and Y(3+) ) at various phage and counterion concentrations, and at varying bundling times. Aggregated phage bundles were detected at relatively low trivalent counterion concentrations (1 mM). Although 10 mM and 100 mM Y(3+) and La(3+) treatments formed larger and more intertwined phage bundles, Al(3+) and Fe(3+) treatments lead to the formation of networking filaments. Energy dispersive X-ray spectroscopy (EDX) analyses confirmed the presence of C, N and O peaks on densely packed phage bundles. Immunofluorescence labelling and ELISA analyses with anti-p8 antibodies showed the presence of phage filaments after bundling.

  6. Compression of a bundle of light rays.

    PubMed

    Marcuse, D

    1971-03-01

    The performance of ray compression devices is discussed on the basis of a phase space treatment using Liouville's theorem. It is concluded that the area in phase space of the input bundle of rays is determined solely by the required compression ratio and possible limitations on the maximum ray angle at the output of the device. The efficiency of tapers and lenses as ray compressors is approximately equal. For linear tapers and lenses the input angle of the useful rays must not exceed the compression ratio. The performance of linear tapers and lenses is compared to a particular ray compressor using a graded refractive index distribution.

  7. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  8. NUMERICAL SIMULATIONS OF MULTIPLE SCATTERING OF THE f-MODE BY FLUX TUBES

    SciTech Connect

    Felipe, T.; Crouch, A.; Birch, A.

    2013-09-20

    We use numerical simulations to study the absorption and phase shift of surface-gravity waves caused by groups of magnetic flux tubes. The dependence of the scattering coefficients on the distance between the tubes and their positions is analyzed for several cases with two or three flux tubes embedded in a quiet Sun atmosphere. The results are compared with those obtained neglecting completely or partially multiple scattering effects. We show that multiple scattering has a significant impact on the absorption measurements and tends to reduce the phase shift. We also consider more general cases of ensembles of randomly distributed flux tubes, and we have evaluated the effects on the scattering measurements of changing the number of tubes included in the bundle and the average distance between flux tubes. We find that for the longest wavelength incoming waves, multiple scattering enhances the absorption, and its efficiency increases with the number of flux tubes and the reduction of the distance between them.

  9. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  10. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  11. Bundle formation in parallel aligned polymers with competing interactions

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Benetatos, P.; Jho, Y. S.

    2016-04-01

    Aggregation of like-charged polymers is widely observed in biological- and soft-matter systems. In many systems, bundles are formed when a short-range attraction of diverse physical origin like charge bridging, hydrogen bonding or hydrophobic interaction, overcomes the longer-range charge repulsion. In this letter, we present a general mechanism of bundle formation in these systems as the breaking of the translational invariance in parallel aligned polymers with competing interactions of this type. We derive a criterion for finite-sized bundle formation as well as for macroscopic phase separation (formation of infinite bundles).

  12. Robust Mapping of Incoherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.

    2007-01-01

    A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.

  13. Airside performances of finned eight-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming

    2016-11-01

    For applications in the relatively low temperature refrigeration systems with large constant temperature bath, the present work performed the experimental studies on the airside performances of the staggered finned eight-tube heat exchangers with large fin pitches. The airside heat transfer coefficients and pressure drops for three fin types and two fin pitches are obtained and analyzed. The heat transfer enhancement with louver fins is 11-16 % higher than the flat fins and that with sinusoidal corrugated fins is 1.1-3.4 % higher than the flat fins. Higher Re brings larger enhancement for various fins. Fin pitches show weak influence on heat transfer for eight tube rows. However, effects of fin pitch on heat transfer for both the sinusoidal corrugation and the louvered fin are larger than the flat fins and they are different from those for N ≤ 6. Airside Colburn j factor are compared with previous and it could be concluded that the airside j factor is almost constant for finned tube heat exchangers with eight tubes and large fin pitches, when Re is from 250 to 2500. The results are different from previous studies for fewer tube rows.

  14. Studies of the steam generator degraded tubes behavior on BRUTUS test loop

    SciTech Connect

    Chedeau, C.; Rassineux, B.

    1997-04-01

    Studies for the evaluation of steam generator tube bundle cracks in PWR power plants are described. Global tests of crack leak rates and numerical calculations of crack opening area are discussed in some detail. A brief overview of thermohydraulic studies and the development of a mechanical probabilistic design code is also given. The COMPROMIS computer code was used in the studies to quantify the influence of in-service inspections and maintenance work on the risk of a steam generator tube rupture.

  15. Constrained ripple optimization of Tokamak bundle divertors

    SciTech Connect

    Hively, L.M.; Rome, J.A.; Lynch, V.E.; Lyon, J.F.; Fowler, R.H.; Peng, Y-K.M.; Dory, R.A.

    1983-02-01

    Magnetic field ripple from a tokamak bundle divertor is localized to a small toroidal sector and must be treated differently from the usual (distributed) toroidal field (TF) coil ripple. Generally, in a tokamak with an unoptimized divertor design, all of the banana-trapped fast ions are quickly lost due to banana drift diffusion or to trapping between the 1/R variation in absolute value vector B ..xi.. B and local field maxima due to the divertor. A computer code has been written to optimize automatically on-axis ripple subject to these constraints, while varying up to nine design parameters. Optimum configurations have low on-axis ripple (<0.2%) so that, now, most banana-trapped fast ions are confined. Only those ions with banana tips near the outside region (absolute value theta < or equal to 45/sup 0/) are lost. However, because finite-sized TF coils have not been used in this study, the flux bundle is not expanded.

  16. Emitters of N-photon bundles

    NASA Astrophysics Data System (ADS)

    Muñoz, C. Sánchez; Del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J. J.; Laussy, F. P.

    2014-07-01

    Controlling the output of a light emitter is one of the basic tasks in photonics, with landmarks such as the development of the laser and single-photon sources. The ever growing range of quantum applications is making it increasingly important to diversify the available quantum sources. Here, we propose a cavity quantum electrodynamics scheme to realize emitters that release their energy in groups (or `bundles') of N photons (where N is an integer). Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state-of-the-art samples. The emission can be tuned with the system parameters so that the device behaves as a laser or as an N-photon gun. Here, we develop the theoretical formalism to characterize such emitters, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.

  17. Confinement-dependent friction in peptide bundles.

    PubMed

    Erbaş, Aykut; Netz, Roland R

    2013-03-19

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity.

  18. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    SciTech Connect

    Sundaralingam, N.

    1993-06-08

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth`s surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10{sup 5}TeV. The events are detected using the Soudan 2 experiment`s fine grained tracking calorimeter which is surrounded by a 14 m {times}10 m {times} 31 m proportional tube array (the ``active shield``). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ``knee`` region (10{sup 3} {minus} 10{sup 4} TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events.

  19. Transfer-matrix simulations of field emission from bundles of open and closed (5,5) carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Miskovsky, N. M.; Cutler, P. H.; Lambin, Ph.

    2003-12-01

    We present simulations of field emission from bundles of metallic (5,5) carbon nanotubes, which are either ideally open or closed. The scattering calculations are achieved using a transfer-matrix methodology for consideration of three-dimensional aspects of both the emitting structure and the surface barrier. Band-structure effects are reproduced by using pseudopotentials and enforcing the incident states to first travel through a periodic repetition of the tubes’ basic cell before entering the region containing the fields. The bundles consist of three and six identical structures, which are placed at the corners of equilateral triangles. In all cases, the closed emitters are found to emit less current than the open ones and to be more sensitive to the electric field in their response to neighboring tubes. Due to the enhanced screening of the electric field, the bundles’ emission rates are reduced compared to those of the isolated tubes. It turns out that the rates characterizing bundle and isolated emitters are related by a simple formula, whose dependence on the electric field suggests deviations from the Fowler-Nordheim equation at high fields. Finally, the position of peaks associated with quasilocalized states on top of the closed emitters appears to be a strong indicator of the tubes’ environment.

  20. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  1. As Can Be Seen: Lexical Bundles and Disciplinary Variation

    ERIC Educational Resources Information Center

    Hyland, Ken

    2008-01-01

    An important component of fluent linguistic production is control of the multi-word expressions referred to as clusters, chunks or bundles. These are extended collocations which appear more frequently than expected by chance, helping to shape meanings in specific contexts and contributing to our sense of coherence in a text. Bundles have begun to…

  2. Hair bundle profiles along the chick basilar papilla

    PubMed Central

    DUNCAN, R. K.; ILE, K. E.; DUBIN, M. G.; SAUNDERS, J. C.

    2001-01-01

    Cochlear hair cells play a central role in the transduction of sound into neural output. Anatomical descriptions of these cells, and their protruding hair bundles, are of fundamental interest since hair cell transduction is dependent on hair bundle micromechanics and hair bundle micromechanics depends on hair bundle morphology. In this paper, we describe quantitatively changes in the staircase profile of the hair bundle along the apical portion of the chick's basilar papilla. Images of hair cells from 8 discretely dissected segments of the apical 3rd of the basilar papilla were archived, and the profile contour outlined by the tips of the stereocilia was digitised and curves were fitted by linear and power equations. The hair bundles of tall hair cells exhibited both linear and curvilinear profiles, which were equally distributed along the papilla. All short hair cells in our sample had straight contours. The differences in hair bundle shape among the tall hair cells may lead to differential susceptibility to injury and some variance in the current-displacement transduction curves due to differences in the translation of forces throughout the hair bundle. PMID:11215761

  3. 76 FR 61365 - Bundled Payments for Care Improvement Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... 25, 2011 we published a notice requesting applications in the Federal Register [76 FR 53137] to... HUMAN SERVICES Centers for Medicare & Medicaid Services Bundled Payments for Care Improvement Initiative.... SUMMARY: This notice extends the deadlines for the submission of the Bundled Payments for Care...

  4. Molecular Architecture of the Chick Vestibular Hair Bundle

    PubMed Central

    Shin, Jung-Bum; Krey, Jocelyn F.; Hassan, Ahmed; Metlagel, Zoltan; Tauscher, Andrew N.; Pagana, James M.; Sherman, Nicholas E.; Jeffery, Erin D.; Spinelli, Kateri J.; Zhao, Hongyu; Wilmarth, Phillip A.; Choi, Dongseok; David, Larry L.; Auer, Manfred; Barr-Gillespie, Peter G.

    2012-01-01

    Hair bundles of the inner ear have a unique structure and protein composition that underlies their sensitivity to mechanical stimulation. Using mass spectrometry, we identified and quantified >1100 proteins, present from a few to 400,000 copies per stereocilium, from purified chick bundles; 336 of these were significantly enriched in bundles. Bundle proteins that we detected have been shown to regulate cytoskeleton structure and dynamics, energy metabolism, phospholipid synthesis, and cell signaling. Three-dimensional imaging using electron tomography allowed us to count the number of actin-actin crosslinkers and actin-membrane connectors; these values compared well to those obtained from mass spectrometry. Network analysis revealed several hub proteins, including RDX (radixin) and SLC9A3R2 (NHERF2), which interact with many bundle proteins and may perform functions essential for bundle structure and function. The quantitative mass spectrometry of bundle proteins reported here establishes a framework for future characterization of dynamic processes that shape bundle structure and function. PMID:23334578

  5. Strength distribution of planar local load-sharing bundles.

    PubMed

    Habeeb, C N Irfan; Mahesh, Sivasambu

    2015-08-01

    Monte Carlo simulations and probabilistic modeling are employed to understand the strength distribution of a planar bundle of local load-sharing fibers. The fibers are distributed randomly within a unit square according to a Poisson process, and the fiber strengths are Weibull distributed with exponent ρ. Monte Carlo failure simulations of bundles comprised of up to 10(5) fibers suggests that the bundle strength distribution obeys weakest-link scaling for all ρ. Also, a probabilistic model of the weakest-link event is proposed. This model introduces a failure event at a size scale between that of the fiber and that of the bundle, whose failure statistics follows that of equal load-sharing bundles. The weakest-link event is modelled as the growth of a tight cluster of these equal load-sharing bundles. The size of the equal load-sharing bundles increases with decreasing ρ. The simulated bundle strength distributions and those predicted by the model are compared, and excellent agreement is obtained. PMID:26382362

  6. Amplitude death of coupled hair bundles with stochastic channel noise

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Joong; Ahn, Kang-Hun

    2014-04-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles (stereocilia) can be spontaneously oscillating or quiescent. Recently an amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, 10, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between nonidentical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as interbundle coupling strength increases. In its stochastic dynamics, the formation of the amplitude death state of coupled hair bundles can be seen as a sudden suppression of the displacement fluctuation of the hair bundles as the coupling strength increases. The enhancement of the signal-to-noise ratio through the amplitude death phenomenon is clearly seen in the stochastic dynamics. Our numerical results demonstrate that the multiple number of transduction channels per hair bundle is an important factor to the amplitude death phenomenon, because the phenomenon may disappear for a small number of transduction channels due to strong gating noise.

  7. Presenting Lexical Bundles for Explicit Noticing with Schematic Linguistic Representation

    ERIC Educational Resources Information Center

    Thomson, Haidee Elizabeth

    2016-01-01

    Lexical bundles are essential for fluency, but their incompleteness is a stumbling block for learners. In this study, two presentation methods to increase awareness of lexical bundles through explicit noticing are explored and compared with incidental exposure. The three conditions in this study were as follows: noticing with schematic linguistic…

  8. Stable Bundles on Non-Kähler Elliptic Surfaces

    NASA Astrophysics Data System (ADS)

    Brînzănescu, Vasile; Moraru, Ruxandra

    2005-03-01

    In this paper, we study the moduli spaces of stable rank-2 vector bundles on non-Kähler elliptic surfaces, thus giving a classification of these bundles; in the case of Hopf and Kodaira surfaces, these moduli spaces admit the structure of an algebraically completely integrable Hamiltonian system.

  9. Lexical Bundles in L1 and L2 Academic Writing

    ERIC Educational Resources Information Center

    Chen, Yu-Hua; Baker, Paul

    2010-01-01

    This paper adopts an automated frequency-driven approach to identify frequently-used word combinations (i.e., "lexical bundles") in academic writing. Lexical bundles retrieved from one corpus of published academic texts and two corpora of student academic writing (one L1, the other L2), were investigated both quantitatively and qualitatively.…

  10. Higgs fields on spinor gauge-natural bundles

    NASA Astrophysics Data System (ADS)

    Palese, Marcella; Winterroth, Ekkehart

    2013-01-01

    We show that the Lie derivative of spinor fields is parametrized by Higgs fields defined by the kernel of a gauge-natural Jacobi morphism associated with the Einstein-Cartan- Dirac Lagrangian. In particular, the generalized Kosmann lift to the total bundle of the theory is constrained by variational Higgs fields on gauge-natural bundles.

  11. His bundle pacing: Initial experience and lessons learned.

    PubMed

    Deshmukh, Amrish; Deshmukh, Pramod

    2016-01-01

    Direct His bundle pacing provides the most physiologic means of artificial pacing of the ventricles with a preserved His-Purkinje system and may play a role in patients with a diseased intrinsic conduction system. We describe our initial motivations and experience with permanent direct His bundle pacing and important lessons learned since that time. PMID:27591359

  12. Persistence of odd-even staggering in charged-fragment yields from 112Sn + 58Ni collisions at 35 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Casini, G.; Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Barlini, S.; Benelli, M.; Bini, M.; Calviani, M.; Marini, P.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bruno, M.; Morelli, L.; Kravchuk, V. L.; Amorini, F.; Auditore, L.; Cardella, G.; De Filippo, E.; Galichet, E.; La Guidara, E.; Lanzalone, G.; Lanzanó, G.; Maiolino, C.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifiró, A.; Trimarchi, M.

    2012-07-01

    Odd-even staggering effects on charge distributions are investigated for fragments produced in semiperipheral and central collisions of 112Sn+58Ni at 35 MeV/nucleon. For fragments with Z≤16 one observes a clear overproduction of even charges, which decreases for heavier fragments. Staggering persists up to Z˜30. The staggering appears to be substantially independent of the centrality of the collisions, suggesting that it is mainly related to the last few steps in the decay of hot nuclei.

  13. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    NASA Astrophysics Data System (ADS)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  14. Vision, healing brush, and fiber bundles

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor

    2005-03-01

    The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.

  15. Theories of the dorsal bundle extinction effect.

    PubMed

    Mason, S T; Iversen, S D

    1979-07-01

    Selective destruction of the noradrenaline systems in the rat brain using the neurotoxin 6-hydroxydopamine has been found to cause resistance to extinction in a number of behavioural situations. Several theories concerning the behavioural mechanism altered by the lesion, and hence about the role of noradrenaline in normal brain functioning, are proposed and evaluated. Theories suggesting a role for noradrenaline in activity, perseveration, internal inhibition, frustrative non-reward, motivation, or secondary reinforcement, fail to explain all the available evidence and direct tests of each theory fails to support its predictions. A model which suggests that noreadrenaline is involved in attentional behaviour, specifically in filtering out or learning to ignore irrelevant environmental stimuli, is successful in explaining all available data and direct tests of the lesioned rats' attentional capacity serve to confirm many of the predictions of an attentional theory of the dorsal bundle extinction effect.

  16. Bundled automobile insurance coverage and accidents.

    PubMed

    Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang

    2013-01-01

    This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.

  17. Voltage- and calcium-dependent motility of saccular hair bundles

    NASA Astrophysics Data System (ADS)

    Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2015-12-01

    Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.

  18. Fiber bundle model under fluid pressure

    NASA Astrophysics Data System (ADS)

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.

  19. Birefringence of single and bundled microtubules.

    PubMed Central

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses. PMID:9449366

  20. Historical dynamics in ecosystem service bundles

    PubMed Central

    Renard, Delphine; Rhemtulla, Jeanine M.; Bennett, Elena M.

    2015-01-01

    Managing multiple ecosystem services (ES), including addressing trade-offs between services and preventing ecological surprises, is among the most pressing areas for sustainability research. These challenges require ES research to go beyond the currently common approach of snapshot studies limited to one or two services at a single point in time. We used a spatiotemporal approach to examine changes in nine ES and their relationships from 1971 to 2006 across 131 municipalities in a mixed-use landscape in Quebec, Canada. We show how an approach that incorporates time and space can improve our understanding of ES dynamics. We found an increase in the provision of most services through time; however, provision of ES was not uniformly enhanced at all locations. Instead, each municipality specialized in providing a bundle (set of positively correlated ES) dominated by just a few services. The trajectory of bundle formation was related to changes in agricultural policy and global trends; local biophysical and socioeconomic characteristics explained the bundles’ increasing spatial clustering. Relationships between services varied through time, with some provisioning and cultural services shifting from a trade-off or no relationship in 1971 to an apparent synergistic relationship by 2006. By implementing a spatiotemporal perspective on multiple services, we provide clear evidence of the dynamic nature of ES interactions and contribute to identifying processes and drivers behind these changing relationships. Our study raises questions about using snapshots of ES provision at a single point in time to build our understanding of ES relationships in complex and dynamic social-ecological systems. PMID:26460005

  1. Fiber bundle model under fluid pressure.

    PubMed

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting. PMID:27078437

  2. Heterojunction effect on contact resistance minimization in staggered pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhong, Ya-Nan; Gao, Xu; Wang, Chen-Huan; Xu, Jian-Long; Wang, Sui-Dong

    2016-11-01

    The MoO3/pentacene heterojunction is demonstrated to be effective for reducing the contact resistance in staggered organic thin-film transistors. The heterojunction-induced doping is nondestructive and may form a top conducting channel close to the pentacene surface. Contact interface doping and channel doping both significantly reduced the contact resistance. The effect of channel doping was prominent at low gate bias values, which is ascribed to the negligible access resistance owing to the presence of the top channel. Interface doping and channel doping were combined to obtain a complete heterojunction, which exhibited minimized contact resistance for a wide range of gate bias values.

  3. Generalized parton distributions from domain wall valence quarks and staggered sea quarks

    SciTech Connect

    Renner, Dru; Bratt, Jonathan; Edwards, Robert; Engelhardt, Michael; Fleming, George; Haegler, Philipp; Musch, Bernhard; Negele, John; Orginos, Konstantinos; Pochinsky, Andrew; Richards, David; Schroers, Wolfram

    2007-11-01

    Moments of the generalized parton distributions of the nucleon, calculated with a mixed action of domain wall valence quarks and asqtad staggered sea quarks, are presented for pion masses extending down to 359 MeV. Results for the moments of the unpolarized, helicity, and transversity distributions are given and compared to the available experimental measurements. Additionally, a selection of the generalized form factors are shown and the implications for the spin decomposition and transverse structure of the nucleon are discussed. Particular emphasis is placed on understanding systematic errors in the lattice calculation and exploring a variety of chiral extrapolations.

  4. A simplified design of the staggered herringbone micromixer for practical applications

    PubMed Central

    Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong

    2010-01-01

    We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584

  5. A staggered mesh finite difference scheme for the computation of hypersonic Euler flows

    NASA Technical Reports Server (NTRS)

    Sanders, Richard

    1991-01-01

    A shock capturing finite difference method for systems of hyperbolic conservation laws is presented which avoids the need to solve Riemann problems while being competitive in performance with other current methods. A staggered spatial mesh is employed, so that complicated nonlinear waves generated at cell interfaces are averaged over cell interiors at the next time level. The full method combines to form a conservative version of the modified method of characteristics. The advantages of the method are discussed, and numerical results are presented for the two-dimensional double ellipse problem.

  6. Critical behavior in N{sub t}=4 staggered fermion thermodynamics

    SciTech Connect

    Bernard, Claude; DeTar, Carleton; Gottlieb, Steven; Heller, Urs M.; Hetrick, James; Rummukainen, Kari; Sugar, Robert L.; Toussaint, Doug

    2000-03-01

    Quantum chromodynamics with two zero mass flavors is expected to exhibit a phase transition with O(4) critical behavior. Fixing the universality class is important for phenomenology and for facilitating the extrapolation of simulation data to physical quark mass values. Other groups have reported results from lattice QCD simulations with dynamical staggered quarks at N{sub t}=4, which suggest a departure from the expected critical behavior. We have pushed simulations to the largest volumes and smallest quark mass to date. Strong discrepancies in critical exponents and the scaling equation of state persist. (c) 2000 The American Physical Society.

  7. Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1991-01-01

    The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.

  8. Big things come in bundled packages: implications of bundled payment systems in health care reimbursement reform.

    PubMed

    Delisle, Dennis R

    2013-01-01

    With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.

  9. Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes.

    PubMed

    Arenal, Raul; Wang, Ming-Sheng; Xu, Zhi; Loiseau, Annick; Golberg, Dmitri

    2011-07-01

    The Young modulus of individual single-walled boron nitride nanotubes (SW-BNNTs) was determined using a high-resolution transmission-electron microscope (HRTEM)-atomic force microscope (AFM) set-up. The Young modulus and maximum stress for these NTs were deduced from the analysis of the stress-strain curves, and discussed as a function of the considered value for the shell thickness of an SW-BNNT. The elastic properties of bundles of SW-BNNTs were also investigated. All these experiments revealed that SW-BNNTs are very flexible. Furthermore, the electrical behavior of these SW-BNNTs was also analyzed employing a scanning tunneling microscope (STM) holder integrated with the same HRTEM. I/V curves were measured on individual tubes as well as on bundles of SW-BNNTs.

  10. DESIGN OF WIRE-WRAPPED ROD BUNDLE MATCHED INDEX-OF-REFRACTION EXPERIMENTS

    SciTech Connect

    Hugh McIlroy; Hongbin Zhang; Kurt Hamman

    2008-05-01

    Experiments will be conducted in the Idaho National Laboratory (INL) Matched Index-of-Refraction (MIR) Flow Facility [1] to characterize the three-dimensional velocity and turbulence fields in a wire-wrapped rod bundle typically employed in liquid-metal cooled fast reactors and to provide benchmark data for computer code validation. Sodium cooled fast reactors are under consideration for use in the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program. The experiment model will be constructed of quartz components and the working fluid will be mineral oil. Accurate temperature control (to within 0.05 oC) matches the index-of-refraction of mineral oil with that of quartz and renders the model transparent to the wavelength of laser light employed for optical measurements. The model will be a scaled 7-pin rod bundle enclosed in a hexagonal canister. Flow field measurements will be obtained with a LaVision 3-D particle image velocimeter (PIV) and complimented by near-wall velocity measurements obtained from a 2-D laser Doppler velocimeter (LDV). These measurements will be used as benchmark data for computational fluid dynamics (CFD) validation. The rod bundle model dimensions will be scaled up from the typical dimensions of a fast reactor fuel assembly to provide the maximum Reynolds number achievable in the MIR flow loop. A range of flows from laminar to fully-turbulent will be available with a maximum Reynolds number, based on bundle hydraulic diameter, of approximately 22,000. The fuel pins will be simulated by 85 mm diameter quartz tubes (closed on the inlet ends) and the wire-wrap will be simulated by 25 mm diameter quartz rods. The canister walls will be constructed from quartz plates. The model will be approximately 2.13 m in length. Bundle pressure losses will also be measured and the data recorded for code comparisons. The experiment design and preliminary CFD calculations, which will be used to provide qualitative hydrodynamic

  11. Tracheostomy tube - speaking

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  12. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  13. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  14. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  15. Feeding tube - infants

    MedlinePlus

    ... tube is misplaced and not in the proper position, the baby may have problems with: An abnormally slow heart rate (bradycardia) Breathing Spitting up Rarely, the feeding tube can puncture the stomach.

  16. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOEpatents

    Zafred, Paolo R.; Gillett, James E.

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  17. Mott Transitions and Staggered Orders in the Three-Component Fermionic System: Variational Cluster Approach

    NASA Astrophysics Data System (ADS)

    Hasunuma, Takumi; Kaneko, Tatsuya; Miyakoshi, Shohei; Ohta, Yukinori

    2016-07-01

    The variational cluster approximation is used to study the ground-state properties and single-particle spectra of the three-component fermionic Hubbard model defined on the two-dimensional square lattice at half filling. First, we show that either a paired Mott state or color-selective Mott state is realized in the paramagnetic system, depending on the anisotropy in the interaction strengths, except around the SU(3) symmetric point, where a paramagnetic metallic state is maintained. Then, by introducing Weiss fields to observe spontaneous symmetry breakings, we show that either a color-density-wave state or color-selective antiferromagnetic state is realized depending on the interaction anisotropy and that the first-order phase transition between these two states occurs at the SU(3) point. We moreover show that these staggered orders originate from the gain in potential energy (or Slater mechanism) near the SU(3) point but originate from the gain in kinetic energy (or Mott mechanism) when the interaction anisotropy is strong. The staggered orders near the SU(3) point disappear when the next-nearest-neighbor hopping parameters are introduced, indicating that these orders are fragile, protected only by the Fermi surface nesting.

  18. An experimental investigation of wind flow over tall towers in staggered form

    NASA Astrophysics Data System (ADS)

    Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad

    2016-07-01

    In this research work an experiment is conducted to see the effect of wind loading on square, pentagonal and Hexagonal shape cylinders in staggered form. The experiment is done in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform throughout the experiment at 14.3 m/s. The test has been conducted for single cylinders first and then in staggered form. Angle of attack is chosen at a definite interval. The static pressure at different locations of the cylinder is measured by inclined multi-manometer. From the surface static pressure readings pressure coefficients are calculated first, then drag and lift coefficients are calculated using numerical Integration Method. These results will surely help engineers to design buildings with such shapes more efficiently. All the results are expressed in non-dimensional form, so they can be applied for prototype buildings and determine the wind loading at any wind speed on structures of similar external shapes.

  19. Interaction induced staggered spin-orbit order in two-dimensional electron gas

    SciTech Connect

    Das, Tanmoy

    2012-06-05

    Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.

  20. A modified analysis for thermal-mechanical properties of staggered structure in biomimetic materials.

    PubMed

    Jia, Yun-Fei; Xuan, Fu-Zhen; Tu, Shan-Tung

    2012-12-01

    The thermal-mechanical stress distributions and equivalent coefficient of thermal expansion (CTE) of the staggered arrangement of mineral platelets wrapped by soft matrix are analyzed, which exist in numerous natural biological and biomimetic materials. Two analytical models, 'Stress model' and 'Displacement model', were established from the ways of stress and displacement solution based on the modification of classical shear-lag model. Complementary finite element analysis (FEA) was used to verify the analytical models. Results reveal that, compared to 'Displacement model', 'Stress model' gives a better prediction of the stress distributions within the staggered structure referring to FEA. The equivalent CTE predicted by both models reach constant as the aspect ratio and volume fraction of platelets exceeding the critical values. Nevertheless, the relative error between the results from different models increases with the increase of the ratio of overlap to length of platelets. These provide a benchmark to the optimum design of micro/nano-structure in bio-inspired materials suffering to temperature fluctuation and applied loading. PMID:23158216

  1. Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.

  2. Odd-even staggering of binding energy for nuclei in the s d shell

    NASA Astrophysics Data System (ADS)

    Fu, G. J.; Cheng, Y. Y.; Jiang, H.; Zhao, Y. M.; Arima, A.

    2016-08-01

    In this paper we study odd-even staggering phenomena of binding energy in the framework of the nuclear shell model for nuclei in the s d shell. We decompose the USDB effective interaction into the monopole interaction and multipole (residual) interactions. We extract the empirical proton-neutron interaction, the Wigner energy, and the one-neutron separation energy using calculated binding energies. The monopole interaction, which represents the spherical mean field, provides contributions to the empirical proton-neutron interaction, the symmetry energy, and the Wigner energy. It does not induce odd-even staggering of the empirical proton-neutron interaction or the one-neutron separation energy. Isovector monopole and quadrupole pairing interactions and isoscalar spin-1 pairing interactions play a key role in reproducing an additional binding energy in both even-even and odd-odd nuclei. The Wigner energy coefficients are sensitive to residual two-body interactions. The nuclear shell structure has a strong influence on the evolution of the one-neutron separation energy, but not on empirical proton-neutron interactions. The so-called three-point formula is a good probe of the shell structure.

  3. Staggered scheduling of sensor estimation and fusion for tracking over long-haul links

    DOE PAGES

    Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin

    2016-08-01

    Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimalmore » tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.« less

  4. Test of {Delta}I = 2 staggering in the superdeformed bands of {sup 194}Hg

    SciTech Connect

    Kruecken, R.; Deleplanque, M.A.; Hackman, G.

    1996-11-01

    Superdeformed (SD) states in {sup 194}Hg were populated in {sup 150}Nd({sup 48}Ca,4n) using a 201 MeV {sup 48}Ca beam from the 88- inch cyclotron. A high statistics experiment was done to test for the previously reported evidence for a {Delta}I = 2 staggering in the three SD bands in {sup 194}Hg. The transition energies were determined with a precision of at least 60 eV for most transitions. From this improvement, we cannot confirm evidence for an extended regular {Delta}I = 2 staggering in any of the three SD bands of {sup 194}Hg. However, we observe deviations from a smooth reference in the SD bands 2 and 3 which differ from previous results. Oscillation patterns of the {gamma}-ray energies that can be induced by a simple band crossing or level shift are discussed. Even though such level shifts would explain the observed effects, other experimental signatures, such as a crossing band, are needed to fully understand the results of the present work; no such band was found.

  5. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  6. Computational imaging from non-uniform degradation of staggered TDI thermal infrared imager.

    PubMed

    Sun, Tao; Liu, Jian Guo; Shi, Yan; Chen, Wangli; Qin, Qianqing; Zhang, Zijian

    2015-09-21

    For the Time Delay Integration (TDI) staggered line-scanning thermal infrared imager, a Computational Imaging (CI) approach is developed to achieve higher spatial resolution images. After a thorough analysis of the causes of non-uniform image displacement and degradation for multi-channel staggered TDI arrays, the study aims to approach one-dimensional (1D) sub-pixel displacement estimation and superposition of images from time-division multiplexing scanning lines. Under the assumption that a thermal image is 2D piecewise C(2) smooth, a sparse-and-smooth deconvolution algorithm with L1-norm regularization terms combining the first and second order derivative operators is proposed to restore high frequency components and to suppress aliasing simultaneously. It is theoretically and experimentally demonstrated, with simulation and airborne thermal infrared images, that this is a state-of-the-art practical CI method to reconstruct clear images with higher frequency components from raw thermal images that are subject to instantaneous distortion and blurring. PMID:26406660

  7. Staggered grid lagrangian method with local structured adaptive mesh refinement for modeling shock hydrodynamics

    SciTech Connect

    Anderson, R W; Pember, R B; Elliot, N S

    2000-09-26

    A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.

  8. Parametric modeling and stagger angle optimization of an axial flow fan

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  9. A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity

    NASA Astrophysics Data System (ADS)

    Areias, P.; Samaniego, E.; Rabczuk, T.

    2016-02-01

    We develop an algorithm and computational implementation for simulation of problems that combine Cahn-Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo-mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is proposed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of strain in concentration, and (iv) lithiation. We analyze convergence with respect to spatial and time discretization and found that very good results are achievable using both a staggered scheme and approximated strain interpolation.

  10. CaFeAs2: A staggered intercalation of quantum spin Hall and high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Qin, Shengshan; Liang, Yi; Le, Congcong; Fan, Heng; Hu, Jiangping

    2015-02-01

    We predict that CaFeAs2, a newly discovered iron-based high-temperature (Tc) superconductor, is a staggered intercalation compound that integrates topological quantum spin Hall (QSH) and superconductivity (SC). CaFeAs2 has a structure with staggered CaAs and FeAs layers. While the FeAs layers are known to be responsible for high Tc superconductivity, we show that with spin orbital coupling each CaAs layer is a Z2 topologically nontrivial two-dimensional QSH insulator and the bulk is a three-dimensional weak topological insulator. In the superconducting state, the edge states in the CaAs layer are natural one-dimensional topological superconductors. The staggered intercalation of QSH and SC provides us a unique opportunity to realize and explore physics, such as Majorana modes and Majorana fermion chains.

  11. Note: Double-beveled multilayer stagger-split die for a large volume high-pressure apparatus.

    PubMed

    Wang, Bolong; Li, Mingzhe; Yang, Yunfei; Liu, Zhiwei

    2015-08-01

    A high-pressure device with a large cavity was investigated using finite-element analysis. This device is called a double-beveled multilayer stagger-split die, and consists of two supported rings and a multilayer divided body assemblage. Each divided cylinder body has two bevels in the pressurized surface. We simulated the pressure capacity of this device according to different failure criteria. The results were compared with those of a multilayer stagger-split die and belt type die. The bearing capacity of the double-beveled multilayer stagger-split die was more than 7.3 GPa. A group of comparative experiments were conducted to validate the simulated results, and the experimental results show the actual pressure capacity was higher than the simulation.

  12. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  13. Stochastic Molecular Transport on Microtubule Bundles with Structural Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, M. W.; Tabei, S. M. Ali

    Intracellular transport involves complex coordination of multiple components such as: the cytoskeletal network and molecular motors. Perturbations in this process can amplify over time and space, thereby affecting transport. One little studied component of transport are structural defects in the cytoskeletal network. In this talk we will present a stochastic model of the interaction of the molecular motor, kinesin-1, and a bundled cystoskeletal network of microtubules, and explicitly explore the role of microtubule ends (a type of defect) on long-range transport. We will show how different types of end distributions can ultimately result in the same observed transport behavior for bundles. We compare transport on completely uniform bundles, found in the axon, to completely random bundles, found in dendrites. Because of the un-biased random bundle nature, defects affect transport on dendrite bundles more than on uniform bundles in the axon. Further, defects act as large spatial-scale traps that result in random wait-times which have been assumed in previous models.

  14. Effectiveness of Hair Bundle Motility as the Cochlear Amplifier

    PubMed Central

    Sul, Bora; Iwasa, Kuni H.

    2009-01-01

    Abstract The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is ∼10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear. PMID:19917218

  15. Mechanical Amplification Exhibited by Quiescent Saccular Hair Bundles

    PubMed Central

    Roongthumskul, Yuttana; Bozovic, Dolores

    2015-01-01

    Spontaneous oscillations exhibited by free-standing hair bundles from the Bullfrog sacculus suggest the existence of an active process that might underlie the exquisite sensitivity of the sacculus to mechanical stimulation. However, this spontaneous activity is suppressed by coupling to an overlying membrane, which applies a large mechanical load on the bundle. How a quiescent hair bundle utilizes its active process is still unknown. We studied the dynamics of motion of individual hair bundles under different offsets in the bundle position, and observed the occurrence of spikes in hair-bundle motion, associated with the generation of active work. These mechanical spikes can be evoked by a sinusoidal stimulus, leading to an amplified movement of the bundle with respect to the passive response. Amplitude gain reached as high as 100-fold at small stimulus amplitudes. Amplification of motion decreased with increasing amplitude of stimulation, ceasing at ∼6–12 pN stimuli. Results from numerical simulations suggest that the adaptation process, mediated by myosin 1c, is not required for the production of mechanical spikes. PMID:25564852

  16. Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus

    PubMed Central

    Martin, Pascal; Bozovic, D.; Choe, Y.; Hudspeth, A. J.

    2007-01-01

    One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair-bundle motility probably constitutes the active process of non-mammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacoustic emissions. When maintained in the ear's normal ionic milieu, many bundles oscillated spontaneously through distances as great as 80 nm at frequencies of 5-50 Hz. Whole-cell recording disclosed that the positive phase of movement was associated with the opening of transduction channels. Gentamicin, which blocks transduction channels, reversibly arrested oscillation; drugs that affect the cAMP phosphorylation pathway and might influence myosin's activity altered the rate of oscillation. Increasing the Ca2+ concentration rendered oscillations faster and smaller until they were suppressed; lowering the Ca2+ concentration moderately with chelators had the opposite effect. When a bundle was offset with a stimulus fiber, oscillations were transiently suppressed but gradually resumed. Loading a bundle by partial displacement clamping, which simulated the presence of the accessory structures to which a bundle is ordinarily attached, increased the frequency and diminished the magnitude of oscillation. These observations accord with a model in which oscillations arise from the interplay of the hair bundle's negative stiffness with the activity of adaptation motors and with Ca2+-dependent relaxation of gating springs. PMID:12805294

  17. Mechanical amplification exhibited by quiescent saccular hair bundles.

    PubMed

    Roongthumskul, Yuttana; Bozovic, Dolores

    2015-01-01

    Spontaneous oscillations exhibited by free-standing hair bundles from the Bullfrog sacculus suggest the existence of an active process that might underlie the exquisite sensitivity of the sacculus to mechanical stimulation. However, this spontaneous activity is suppressed by coupling to an overlying membrane, which applies a large mechanical load on the bundle. How a quiescent hair bundle utilizes its active process is still unknown. We studied the dynamics of motion of individual hair bundles under different offsets in the bundle position, and observed the occurrence of spikes in hair-bundle motion, associated with the generation of active work. These mechanical spikes can be evoked by a sinusoidal stimulus, leading to an amplified movement of the bundle with respect to the passive response. Amplitude gain reached as high as 100-fold at small stimulus amplitudes. Amplification of motion decreased with increasing amplitude of stimulation, ceasing at ∼6-12 pN stimuli. Results from numerical simulations suggest that the adaptation process, mediated by myosin 1c, is not required for the production of mechanical spikes. PMID:25564852

  18. Bundling actin filaments from membranes: some novel players

    PubMed Central

    Thomas, Clément

    2012-01-01

    Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling. PMID:22936939

  19. Shellside flow-induced tube vibration in typical heat exchanger configurations: Overview of a research program

    NASA Astrophysics Data System (ADS)

    Halle, H.; Chenoweth, J. M.; Wambsganss, M. W.

    A comprehensive research program is being conducted to develop the necessary criteria to assist designers and operators of shell-and-tube heat exchangers to avoid detrimental flow-induced tube vibration. This paper presents an overview of the insights gained from shellside water-flow testing on a horizontal, industrial-sized test exchanger that can be configured in many ways using interchangeable tube bundles and replaceable nozzles. Nearly 50 different configurations have been tested representing various combinations of triangular, square, rotated-triangular, and rotated-square tubefield layouts; odd and even numbers of crosspasses; and both single- and double-segmental baffles with different cut sizes and orientations. The results are generally consistent with analytical relationships that predict tube vibration response by the combined reinforcing effect of the vibration mode shape and flow velocity distribution. An understanding of the vibration and instability performance is facilitated by recognizing that the excitation is induced by three separate, though sometimes interacting, flow conditions. These are the crossflows that generate classic fluidelastic instabilities in the interior of the tube bundle, the entrance and exit bundle flow from and into the shell nozzles, and the localized high velocity bypass and leakage stream flows. The implications to design and/or possible field remedies to avoid vibration problems are discussed.

  20. Two-state approach to stochastic hair bundle dynamics.

    PubMed

    Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2008-04-01

    Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski, Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model. PMID:18517650

  1. Two-state approach to stochastic hair bundle dynamics

    NASA Astrophysics Data System (ADS)

    Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2008-04-01

    Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski , Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model.

  2. Heat exchanger performance calculations for enhanced-tube condenser applications

    SciTech Connect

    Rabas, T.J.

    1992-01-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  3. Heat exchanger performance calculations for enhanced-tube condenser applications

    SciTech Connect

    Rabas, T.J.

    1992-07-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  4. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  5. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  6. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  7. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  8. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  9. The potential and reality of permanent his bundle pacing.

    PubMed

    Barba-Pichardo, Rafael; Moriña-Vázquez, Pablo; Venegas-Gamero, José; Frutos-López, Manuel; Moreno-Lozano, Valle; Herrera-Carranza, Manuel

    2008-10-01

    Right ventricular apex pacing can have deleterious effects. Our aims were to investigate how many patients referred for permanent pacing were suitable candidates for permanent His bundle pacing, and to determine the proportion in whom such pacing was successful. All cases of suprahisian block and most cases of infrahisian block (71.4%) were corrected by temporary His bundle pacing. However, permanent His bundle pacing was achieved in only 55% of cases in which it was attempted, and in only 35.4% of all possible cases. PMID:18817687

  10. Systematic evaluation of bundled SPC water for biomolecular simulations.

    PubMed

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-01

    In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water

  11. Bundle duct interaction studies for fuel assemblies. [LMFBR

    SciTech Connect

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant.

  12. Characterization of a space orbited incoherent fiber optic bundle

    NASA Technical Reports Server (NTRS)

    Dewalt, Stephen A.; Taylor, Edward W.

    1993-01-01

    The results of a study performed to determine the effects of adverse space environments on a bundle of over 1800 optical fibers orbited for 69 months are reported. Experimental results are presented on an incoherent fiber optic bundle oriented in low Earth orbit aboard the Long Duration Exposure Facility (LDEF) satellite as part of the Space Environment Effects Experiment (M0006). Measurements were performed to determine if space induced radiation effects changed the fiber bundle characteristics. Data demonstrating the success of light transmitting fibers to withstand the adverse space environment are presented.

  13. Structural Transitions of F-Actin:Espin Bundles

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin; Bartles, James; Wong, Gerard

    2006-03-01

    Espin is an actin bundling protein involved in the formation of the parallel bundles of filamentous actin in hair cell stereocilia. Mutations in espin are implicated in deafness phenotypes in mice and humans. We present measurements of the F-actin structures induced by wild type and by mutated espin obtained via small angle x-ray scattering and fluorescence microscopy. We found that wild type espin induced a paracrystalline hexagonal array of twisted F-actin, whereas the mutated espin only condensed the F-actin into a nematic-like phase. The possibility of coexisting nematic and bundled actin in mixtures containing both mutant and wild type espins was also investigated.

  14. Renormalization-group approach to quantum Fisher information in an XY model with staggered Dzyaloshinskii-Moriya interaction

    PubMed Central

    Liu, X. M.; Cheng, W. W.; Liu, J. -M.

    2016-01-01

    We investigate the quantum Fisher information and quantum phase transitions of an XY spin chain with staggered Dzyaloshinskii-Moriya interaction using the quantum renormalization-group method. The quantum Fisher information, its first-derivatives, and the finite-size scaling behaviors are rigorously calculated respectively. The singularity of the derivatives at the phase transition point as a function of lattice size is carefully discussed and it is revealed that the scaling exponent for quantum Fisher information at the critical point can be used to describe the correlation length of this model, addressing the substantial role of staggered Dzyaloshinskii-Moriya interaction in modulating quantum phase transitions. PMID:26780973

  15. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  16. The effect of hair bundle shape on hair bundle hydrodynamics of inner ear hair cells at low and high frequencies.

    PubMed

    Shatz, L F

    2000-03-01

    The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.

  17. A Hybrid Vortex Method for Two-Dimensional Flow Over Tube Bundles

    SciTech Connect

    Strickland, J.H.; Wolfe, W.P.

    1998-11-13

    A hybrid vortex method is presented for computing flows about objects that accurately resolves the boundary layer details while keeping the number of free vortices at a reasonable level. The method uses a wall layer model close to the body surface and discrete vortex blobs in the free wake. Details of the wall layer implementation are presented, and results of sample calculations are compared with known analytical solutions and with calculations from other vortex codes. These results show that the computed boundary layer details are accurate to approximately 0.3 percent of analytical solutions while using three orders of magnitude fewer vortices than other vortex simulations.

  18. Concise Care Bundles In Acute Medicine

    PubMed Central

    Kivlin, Jude; Altemimi, Harith

    2015-01-01

    The Queen Elizabeth Hospital in King's Lynn, Norfolk is a 488 bed hospital providing services to approximately 331,000 people across 750 square miles. In 2012 a need was recognised for documentation (pathways) in a practical format to increase usage of national guidelines and facilitate adherence to best practice (gold standards of care) that could be easily version controlled, auditable and provide support in clinical decision-making by junior doctors. BMJ Action Sets[1] fulfilled the brief with expert knowledge, version control and support, though they were deemed too lengthy and unworkable in fast paced settings like the medical assessment unit; they formed the base creation of concise care bundles (CCB). CCB were introduced for 21 clinical presentations and one procedure. Outcomes were fully audited and showed significant improvement in a range of measures, including an increase in completions of CHADVASC score in atrial fibrillation, antibiotics prescribed per protocol in chronic obstructive pulmonary disease (COPD), and Blatchford score recorded for patients presenting with upper gastrointestinal bleed. PMID:26734437

  19. Modeling of the energy savings of variable recruitment McKibben muscle bundles

    NASA Astrophysics Data System (ADS)

    Meller, Michael A.; Chipka, Jordan B.; Bryant, Matthew J.; Garcia, Ephrahim

    2015-03-01

    McKibben artificial muscles are often utilized in mobile robotic applications that require compliant and light weight actuation capable of producing large forces. In order to increase the endurance of these mobile robotic platforms, actuation efficiency must be addressed. Since pneumatic systems are rarely more than 30% efficient due to the compressibility of the working fluid, the McKibben muscles are hydraulically powered. Additionally, these McKibben artificial muscles utilize an inelastic bladder to reduce the energy losses associated with elastic energy storage in the usual rubber tube bladders. The largest energy losses in traditional valve-controlled hydraulic systems are found in the valving implementation to match the required loads. This is performed by throttling, which results in large pressure drops over the control valves and significant fluid power being wasted as heat. This paper discusses how these throttling losses are reduced by grouping multiple artificial muscles to form a muscle bundle where, like in skeletal muscle, more elements that make up the muscle bundle are recruited to match the load. This greatly lessens the pressure drops by effectively changing the actuator area, leading to much higher efficiencies over a broader operation envelope. Simulations of several different loading scenarios are discussed that reveal the benefits of such an actuation scheme.

  20. In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle

    SciTech Connect

    Charles A. Gentile; John J. Parker; Stewart J. Zweben

    2001-11-12

    Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged.

  1. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  2. NEI You Tube Videos: Amblyopia

    MedlinePlus

    ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube NEI ...

  3. 15. VIEW OF SHINGLES BUNDLED, PLACED ON PALLET, AND READIED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF SHINGLES BUNDLED, PLACED ON PALLET, AND READIED FOR FORKLIFT OPERATOR TO MOVE PALLET OF SHINGLES TO LOADING DOCK - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  4. Mechanical Models of Microtubule Bundle Collapse in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Sendek, Austin; Singh, Rajiv; Cox, Daniel

    2013-03-01

    Amyloid-beta aggregates initiate Alzheimer's disease, and downstream trigger degradation of tau proteins that act as microtubule bundle stabilizers and mechanical spacers. Currently it is unclear which of tau cutting by proteases, tau phosphorylation, or tau aggregation are responsible for cytoskeleton degradation., We construct a percolation simulation of the microtubule bundle using a molecular spring model for the taus and including depletion force attraction between microtubules and membrane/actin cytoskeletal surface tension. The simulation uses a fictive molecular dynamics to model the motion of the individual microtubules within the bundle as a result of random tau removal, and calculates the elastic modulus of the bundle as the tau concentration falls. We link the tau removal steps to kinetic tau steps in various models of tau degradation. Supported by US NSF Grant DMR 1207624

  5. National Partnership for Maternal Safety: Consensus Bundle on Venous Thromboembolism.

    PubMed

    D'Alton, Mary E; Friedman, Alexander M; Smiley, Richard M; Montgomery, Douglas M; Paidas, Michael J; D'Oria, Robyn; Frost, Jennifer L; Hameed, Afshan B; Karsnitz, Deborah; Levy, Barbara S; Clark, Steven L

    2016-10-01

    Obstetric venous thromboembolism is a leading cause of severe maternal morbidity and mortality. Maternal death from thromboembolism is amenable to prevention, and thromboprophylaxis is the most readily implementable means of systematically reducing the maternal death rate. Observational data support the benefit of risk-factor-based prophylaxis in reducing obstetric thromboembolism. This bundle, developed by a multidisciplinary working group and published by the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care, supports routine thromboembolism risk assessment for obstetric patients, with appropriate use of pharmacologic and mechanical thromboprophylaxis. Safety bundles outline critical clinical practices that should be implemented in every maternity unit. The safety bundle is organized into four domains: Readiness, Recognition, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. PMID:27636577

  6. National Partnership for Maternal Safety: Consensus Bundle on Venous Thromboembolism.

    PubMed

    D'Alton, Mary E; Friedman, Alexander M; Smiley, Richard M; Montgomery, Douglas M; Paidas, Michael J; D'Oria, Robyn; Frost, Jennifer L; Hameed, Afshan B; Karsnitz, Deborah; Levy, Barbara S; Clark, Steven L

    2016-01-01

    Obstetric venous thromboembolism is a leading cause of severe maternal morbidity and mortality. Maternal death from thromboembolism is amenable to prevention, and thromboprophylaxis is the most readily implementable means of systematically reducing the maternal death rate. Observational data support the benefit of risk-factor-based prophylaxis in reducing obstetric thromboembolism. This bundle, developed by a multidisciplinary working group and published by the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care, supports routine thromboembolism risk assessment for obstetric patients, with appropriate use of pharmacologic and mechanical thromboprophylaxis. Safety bundles outline critical clinical practices that should be implemented in every maternity unit. The safety bundle is organized into four domains: Readiness, Recognition, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. PMID:27619099

  7. Assembly of hair bundles, an amazing problem for cell biology

    PubMed Central

    Barr-Gillespie, Peter-G.

    2015-01-01

    The hair bundle—the sensory organelle of inner-ear hair cells of vertebrates—exemplifies the ability of a cell to assemble complex, elegant structures. Proper construction of the bundle is required for proper mechanotransduction in response to external forces and to transmit information about sound and movement. Bundles contain tightly controlled numbers of actin-filled stereocilia, which are arranged in defined rows of precise heights. Indeed, many deafness mutations that disable hair-cell cytoskeletal proteins also disrupt bundles. Bundle assembly is a tractable problem in molecular and cellular systems biology; the sequence of structural changes in stereocilia is known, and a modest number of proteins may be involved. PMID:26229154

  8. Effects of Tau on Flow-Aligned Microtubule Bundles

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer L.; Kuchnir Fygenson, D.

    2003-03-01

    Microtubules are cylindrical crystals of the protein tubulin with 17nm inner diameter and 25nm outer diameter. Recent structural studies suggest that the microtubule wall may be porous to small molecules. We have investigated the mobility of molecules in bundles of flow aligned microtubules. We find the spacing between the microtubules in the bundle is increased by the addition of tau, a microtubule associated protein. In the absence of tau, flow can be used to make tightly packed bundles of microtubules. Adding tau causes the tight bundles to swell and separate. We use fluorescence recovery after photobleaching (FRAP) to quantify the mobility of a taxol, a small drug that binds to the microtubule interior.

  9. National Partnership for Maternal Safety: Consensus Bundle on Obstetric Hemorrhage.

    PubMed

    Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S

    2015-07-01

    Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and System Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation. PMID:26241269

  10. National Partnership for Maternal Safety: consensus bundle on obstetric hemorrhage.

    PubMed

    Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S

    2015-07-01

    Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and System Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation. PMID:26091046

  11. Bundles of Norms About Teen Sex and Pregnancy.

    PubMed

    Mollborn, Stefanie; Sennott, Christie

    2015-09-01

    Teen pregnancy is a cultural battleground in struggles over morality, education, and family. At its heart are norms about teen sex, contraception, pregnancy, and abortion. Analyzing 57 interviews with college students, we found that "bundles" of related norms shaped the messages teens hear. Teens did not think their communities encouraged teen sex or pregnancy, but normative messages differed greatly, with either moral or practical rationalizations. Teens readily identified multiple norms intended to regulate teen sex, contraception, abortion, childbearing, and the sanctioning of teen parents. Beyond influencing teens' behavior, norms shaped teenagers' public portrayals and post hoc justifications of their behavior. Although norm bundles are complex to measure, participants could summarize them succinctly. These bundles and their conflicting behavioral prescriptions create space for human agency in negotiating normative pressures. The norm bundles concept has implications for teen pregnancy prevention policies and can help revitalize social norms for understanding health behaviors.

  12. Conformal Geometry of the Supercotangent and Spinor Bundles

    NASA Astrophysics Data System (ADS)

    Michel, J.-P.

    2012-06-01

    We study the actions of local conformal vector fields {X \\in conf(M,g)} on the spinor bundle of ( M, g) and on its classical counterpart: the supercotangent bundle {{M}} of ( M, g). We first deal with the classical framework and determine the Hamiltonian lift of conf ( M, g) to {{M}} . We then perform the geometric quantization of the supercotangent bundle of ( M, g), which constructs the spinor bundle as the quantum representation space. The Kosmann Lie derivative of spinors is obtained by quantization of the comoment map. The quantum and classical actions of conf ( M, g) turn, respectively, the space of differential operators acting on spinor densities and the space of their symbols into conf ( M, g)-modules. They are filtered and admit a common associated graded module. In the conformally flat case, the latter helps us determine the conformal invariants of both conf ( M, g)-modules, in particular the conformally odd powers of the Dirac operator.

  13. [Myotonic dystrophy and bundle-branch re-entrant tachycardia].

    PubMed

    Ramírez, Carlos J; Rodríguez, Diego A; Velasco, Víctor M; Rosas, Fernando

    2002-10-01

    We report the case of a 37-year-old man diagnosed with myotonic dystrophy who presented atrial fibrillation with high ventricular rate. While being treated with amiodarone, he suffered cardiac arrest. The electrophysiological study disclosed bundle-branch reentrant ventricular tachycardia and ventricular fibrillation. Catheter ablation of the right bundle branch was performed and a bicameral defibrillator was implanted. The mechanisms and treatment of arrhythmias in these patients are discussed. PMID:12383397

  14. In vitro assembly of filopodia-like bundles.

    PubMed

    Vignjevic, Danijela; Peloquin, John; Borisy, Gary G

    2006-01-01

    A breakthrough in understanding the mechanism of lamellipodial protrusion came from development of an in vitro model system, namely the rocketing movement of microbes and activated beads driven by actin comet tails (Cameron et al., 1999, 2000; Loisel et al., 1999; Theriot et al., 1994). As a model for investigation of the other major protrusive organelle, the filopodium, we developed in vitro systems for producing filopodia-like bundles (Vignjevic et al., 2003), one of which uses cytoplasmic extracts and another that reconstitutes like-like bundles from purified proteins. Beads coated with Arp2/3-activating proteins can induce two distinct types of actin organization in cytoplasmic extracts: (1) comet tails or clouds displaying a dendritic array of actin filaments and (2) stars with filament bundles radiating from the bead. Actin filaments in star bundles, like those in filopodia, are long, unbranched, aligned, uniformly polar, and grow at the barbed end. Like filopodia, star bundles are enriched in fascin and lack Arp2/3 complex and capping protein. Similar to cells, the transition from a dendritic (lamellipodial) to a bundled (filopodial) organization is induced by depletion of capping protein, and add-back of this protein restores the dendritic mode. By use of purified proteins, a small number of components are sufficient for the assembly of filopodia-like bundles: WASP-coated beads, actin, Arp2/3 complex, and fascin. On the basis of analysis of this system, we proposed a model for filopodial formation in which actin filaments of a preexisting dendritic network are elongated by inhibition of capping and subsequently cross-linked into bundles by fascin.

  15. Forced convection of water in rod-bundles

    SciTech Connect

    Su, Bingjing; El-Genk, M.S. )

    1993-03-01

    Heat transfer of water in rod-bundles is of particular importance in many engineering applications. Although numerous experimental studies have been conducted to develop heat transfer correlations for forced convection in rod-bundles, with either a square or a triangular lattice, most data was taken at high Reynolds numbers (Re > 6,000); only a few data points had been reported at lower Reynolds number [1-5]. Recently, El Genk and co-workers have performed a series of heat transfer experiments of forced convection of water at the low and high Reynolds numbers as well as of natural and combined convection in uniformly heated, triangularly and square arrayed rod-bundles with P/D = 1.25, 1.38, and 1.5 [6-10]. Like all other investigators, they correlated the heat transfer data for square lattice and triangular lattice separately, with P/D as a parameter. This paper shows that forced convection data for both square and triangularly arrayed rod-bundles, when expressed in terms of the bundle porosity, can be represented by a single correlation, one each for forced turbulent convection land forced laminar convection. Also, the experimental values of the Reynolds number at the transition between these two convection regimes is expressed in terms of the bundle porosity, regardless of the lattice type and rod diameter. This approach reduces the number and simplifies the form of the forced convection correlations, making them easy to use in potential engineering applications. Although the effect of the rod diameter and the type of lattice in the bundles is implicit in the expressions of the bundle porosity, it is explicit in the definition of the heated equivalent diameter in both Re and Nu, and hence will influence the heat transfer coefficient.

  16. Optimal spacing within a tubed, volumetric, cavity receiver suitable for modular molten salt solar towers

    NASA Astrophysics Data System (ADS)

    Turner, Peter

    2016-05-01

    A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.

  17. An evaluation of the impact of the ventilator care bundle.

    PubMed

    Crunden, Eddie; Boyce, Carolyn; Woodman, Helen; Bray, Barbara

    2005-01-01

    A number of interventions have been shown to improve the outcomes of patients who are invasively ventilated in intensive care units (ICUs). However, significant problems still exist in implementing research findings into clinical practice. The aim of this study was to assess whether the systematic and methodical implementation of evidence-based interventions encapsulated in a care bundle influenced length of ventilation and ICU length of stay (LOS). A ventilator care bundle was introduced within a general ICU and evaluated 1 year later. The care bundle was composed of four protocols that consisted of prophylaxis against peptic ulceration, prophylaxis against deep vein thrombosis, daily cessation of sedation and elevation of the patient's head and chest to at least 30 degrees to the horizontal. Compliance with the bundle was assessed, as was ICU LOS, ICU mortality and ICU/high-dependency unit patient throughput. Mean ICU LOS was reduced from 13-75 [standard deviation (SD) 19.11] days to 8.36 (SD 10.21) days (p<0.05). Mean ventilator days were reduced from 10.8 (SD 15.58) days to 6.1 (SD 8.88) days. Unit patient throughput increased by 30.1% and the number of invasively ventilated patients increased by 39.5%. Care bundles encourage the consistent and systematic application of evidence-based protocols used in particular treatment regimes. Since the introduction of the ventilator care bundle, length of ventilation and ICU LOS have reduced significantly. PMID:16161379

  18. Plantain fibre bundles isolated from Colombian agro-industrial residues.

    PubMed

    Gañán, Piedad; Zuluaga, Robin; Restrepo, Adriana; Labidi, Jalel; Mondragon, Iñaki

    2008-02-01

    Comestible fruit production from Musaceas plants is an important economical activity in developing countries like Colombia. However, it generates a large amount of agro-industrial residues. Some of them are a potential resource of natural fibres, which can be used as reinforcement for composite materials. In this work, a series of commercial plantain (Musa AAB, cv "Dominico Harton") fibre bundles extracted from pseudostem, leaf sheath and rachis agricultural wastes were analyzed. Mechanical decortication and biological retting processes were used during fiber extraction. No significant differences in composition of vascular bundles were observed for both extraction processes. Gross morphological characteristics and mechanical behavior have been evaluated. Conducting tissues with spiral-like arrangement are observed attached to fibre bundles. This fact suggests a big amount of these tissues in commercial plantain plants. Both used extraction methods are not enough to remove them. Pseudostem fibre bundles have higher specific strength and modulus and lower strain at break than leaf sheath and rachis fibre bundles, having values comparable to other lignocellulosic fibres bundles. PMID:17350832

  19. BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.

    PubMed

    Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren

    2016-01-01

    Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.

  20. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles.

    PubMed

    Nadkarni, Seemantini K; Bouma, Brett E; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J

    2008-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  1. Plantain fibre bundles isolated from Colombian agro-industrial residues.

    PubMed

    Gañán, Piedad; Zuluaga, Robin; Restrepo, Adriana; Labidi, Jalel; Mondragon, Iñaki

    2008-02-01

    Comestible fruit production from Musaceas plants is an important economical activity in developing countries like Colombia. However, it generates a large amount of agro-industrial residues. Some of them are a potential resource of natural fibres, which can be used as reinforcement for composite materials. In this work, a series of commercial plantain (Musa AAB, cv "Dominico Harton") fibre bundles extracted from pseudostem, leaf sheath and rachis agricultural wastes were analyzed. Mechanical decortication and biological retting processes were used during fiber extraction. No significant differences in composition of vascular bundles were observed for both extraction processes. Gross morphological characteristics and mechanical behavior have been evaluated. Conducting tissues with spiral-like arrangement are observed attached to fibre bundles. This fact suggests a big amount of these tissues in commercial plantain plants. Both used extraction methods are not enough to remove them. Pseudostem fibre bundles have higher specific strength and modulus and lower strain at break than leaf sheath and rachis fibre bundles, having values comparable to other lignocellulosic fibres bundles.

  2. A Radiologist's Primer on Bundles and Care Episodes.

    PubMed

    Seidenwurm, David; Lexa, Frank James

    2016-09-01

    Bundled or episode payments are among the most heavily emphasized approaches to aligning incentives and promoting care coordination, efficiency, and accountability in health care redesign. Bundled or episode payments price a market basket of services for an entire episode of care with both a clearly defined trigger and termination. Because the radiologist is "ancillary" in many bundles, the specialty is often unaware of the phenomenon. This is likely to change rapidly. Radiology is pivotal in high-prevalence, high-impact care areas such as low back pain and stroke that are focuses of widely used system performance metrics. More important, radiology is central to the diagnosis and management of a wide range of important diagnostic issues in areas such as breast cancer, pulmonary nodules, and incidental findings. Three models of bundled care will probably involve radiology intimately in the near future. Pure radiology bundles might be constructed for breast cancer screening and diagnosis, and these could be priced on the basis of guideline-based best-practice frequencies of care events such as recall and biopsy. Clinical bundles, for example low back pain, could be priced on the basis of optimal imaging frequencies. Finally, pricing of imaging studies might include evidence-based frequencies of follow-up imaging for incidental findings. PMID:27210231

  3. Implementation of An Implicit Unsplit Staggered Mesh MHD Solver in FLASH

    NASA Astrophysics Data System (ADS)

    Xia, G.; Lee, D.

    2010-11-01

    FLASH is a publicly available community code designed to solve highly compressible multi-physics reactive flows. We have been adding capabilities to FLASH to make it an open science code for the academic HEDP community. A key need is to provide a computationally efficient time-stepping integration method that overcomes the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To address this problem, we are developing a fully implicit solver based on a Jacobian-Free Newton-Krylov implicit formulation. The method has been integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver. We are also integrating this solver into an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines, and into a treatment of the Biermann Battery effect that accounts for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

  4. B and D meson decay constants from 2+1 flavor improved staggered simulations

    SciTech Connect

    Neil, E.T.; Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.; Gamiz, E.

    2011-12-01

    We give an update on simulation results for the decay constants f{sub B}; f{sub B{sub s}}, f{sub D} and f{sub D{sub s}}. These decay constants are important for precision tests of the standard model, in particular entering as inputs to the global CKM unitarity triangle fit. The results presented here make use of the MILC (2+1)-flavor asqtad ensembles, with heavy quarks incorporated using the clover action with the Fermilab method. Partially quenched, staggered chiral perturbation theory is used to extract the decay constants at the physical point. In addition, we give error projections for a new analysis in progress, based on an extended data set.

  5. Phase substitution of spare converter for a failed one of parallel phase staggered converters

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Wester, G. W. (Inventor)

    1977-01-01

    Failure detection and substitution of a spare module is provided in a system having a plurality of phase staggered modules connected in parallel to deliver regulated voltage from an unregulated source. Phase control signals applied to the active converter modules are applied to the spare module through NOR gates associated with and disabled by the power output of respective modules such that failure of any one enables its phase control signal to be applied to the spare module, thus controlling the spare module to operate in the phase position of the failed module. A NAND gate detects when any one active module fails and enables a gate in the spare module, thus activating the spare module.

  6. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields

    NASA Astrophysics Data System (ADS)

    Roy, P. E.; Otxoa, R. M.; Wunderlich, J.

    2016-07-01

    Ultrafast electrical switching by current-induced staggered spin-orbit fields, with minimal risk of overshoot is shown in layered easy-plane antiferromagnets with basal-plane anisotropies. Reliable switching is due to the fieldlike torque, relaxing stringent requirements with respect to precision in the duration of the excitation pulse. Focus is put on a system with weak planar biaxial anisotropy. We investigate the switching as a function of the spin-orbit field strength, pulse duration, rise and fall times, and damping using atomistic spin dynamics simulations and an effective equation for the antiferromagnetic order parameter. The critical spin-orbit field strength required for switching a biaxial system is determined, and we show that writing is possible at feasible current magnitudes. Finally, we discuss switching of systems exhibiting a dominant uniaxial basal-plane anisotropy.

  7. Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies

    SciTech Connect

    Litvinov, Yu.A.; Geissel, H.; Buervenich, T.J.; Novikov, Yu.N.; Patyk, Z.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Franzke, B.; Klepper, O.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Radon, T.; Steck, M.; Typel, S.; Audi, G.; Falch, M.

    2005-07-22

    The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30{<=}Z{<=}92) were obtained with a typical uncertainty of 30 {mu}u. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.

  8. A free surface capturing discretization for the staggered grid finite difference scheme

    NASA Astrophysics Data System (ADS)

    Duretz, T.; May, D. A.; Yamato, P.

    2016-03-01

    The coupling that exists between surface processes and deformation within both the shallow crust and the deeper mantle-lithosphere has stimulated the development of computational geodynamic models that incorporate a free surface boundary condition. We introduce a treatment of this boundary condition that is suitable for staggered grid, finite difference schemes employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free surface boundary condition via an interface that conforms with the edges of control volumes (e.g. a `staircase' representation) and requires only local stencil modifications to be performed. Comparisons with analytic solutions verify that the method is first-order accurate. Additional intermodel comparisons are performed between known reference models to further validate our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver to our free surface methodology and demonstrate that the local stencil modifications do not strongly influence the convergence of the iterative solver.

  9. Odd-Even Mass Staggering Described by Relativistic Hartree-Fock Theory

    NASA Astrophysics Data System (ADS)

    Wang, Long Jun; Long, Wen Hui

    2013-11-01

    The neutron and proton odd-even mass staggering (OES) are systematically studied within the density-dependent relativistic Hartree-Fock-Bogoliubov (DDRHFB) theory and the density-dependent relativistic Hartree-Bogoliubov (DDRHB) theory. In terms of the finite-range Gogny D1S as the pairing force, both DDRHFB and DDRHB theories can well reproduce the experimental OES, including C, O, Ca, Ni, Zr, Sn, Ce, Gd and Pb isotopes, and N = 50 and 82 isotones. In addition, the optimizations on the pairing force with the prefix factors bring systematical improvements on the OES for the light and heavy nuclei. It is also found that the pairing effects are essentially related with the appropriate description of the nuclear structures, in which the ρ-tensor correlations play an important role.

  10. Axially staggered seed-blanket reactor-fuel-module construction. [LWBR

    DOEpatents

    Cowell, G.K.; DiGuiseppe, C.P.

    1982-10-28

    A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.

  11. A staggered coupling strategy for the finite element analysis of warm deep drawing process

    NASA Astrophysics Data System (ADS)

    Martins, J. M. P.; Cunha, P. M.; Neto, D. M.; Alves, J. L.; Oliveira, M. C.; Laurent, H.; Menezes, L. F.

    2016-08-01

    The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.

  12. Spectrum of the Dirac operator and multigrid algorithm with dynamical staggered fermions

    SciTech Connect

    Kalkreuter, T. Fachbereich Physik , Humboldt-Universitaet, Invalidenstrasse 110, D-10099 Berlin )

    1995-02-01

    Complete spectra of the staggered Dirac operator [ital ];sD are determined in quenched four-dimensional SU(2) gauge fields, and also in the presence of dynamical fermions. Periodic as well as antiperiodic boundary conditions are used. An attempt is made to relate the performance of multigrid (MG) and conjugate gradient (CG) algorithms for propagators with the distribution of the eigenvalues of [ital ];sD. The convergence of the CG algorithm is determined only by the condition number [kappa] and by the lattice size. Since [kappa]'s do not vary significantly when quarks become dynamic, CG convergence in unquenched fields can be predicted from quenched simulations. On the other hand, MG convergence is not affected by [kappa] but depends on the spectrum in a more subtle way.

  13. Staggered fermions and chiral symmetry breaking in transverse lattice regulated QED

    SciTech Connect

    Griffin, P.A.

    1992-07-01

    Staggered fermions are constructed for the transverse lattice regularization scheme. The weak perturbation theory of transverse lattice non-compact QED is developed in light-cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. However, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for g{sup 2}(a) > 4{pi}, where g(a) is the bare (lattice) QED coupling constant. We conjecture that this is the critical point of the chiral symmetry breaking phase transition in QED. Non-perturbative chiral symmetry breaking is then studied in the strong coupling limit. The discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground state to lowest order in the strong coupling expansion corresponds to the classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.

  14. Biomarkers, Bundled Payments, and Colorectal Cancer Care

    PubMed Central

    Lynch, Patrick; Raju, Gottumukkala; Rodriguez, Alma; Burke, Thomas; Hafemeister, Lisa; Hawk, Ernest; Wu, Xifeng; DuBois, Raymond N.

    2012-01-01

    Changes in the management of cancers such as colorectal cancer (CRC) are urgently needed, as such cancers continue to be one of the most commonly diagnosed cancers; CRC accounts for 21% of all cancers and is responsible for mortalities second only to lung cancer in the United States. A comprehensive science-driven approach towards markedly improved early detection/screening to efficacious targeted therapeutics with clear diagnostic and prognostic markers is essential. In addition, further changes addressing rising costs, stemming from recent health care reform measures, will be brought about in part by changes in how care is reimbursed. For oncology, the advances in genomics and biomarkers have the potential to define subsets of patients who have a prognosis or response to a particular type of therapy that differs from the mean. Better definition of a cancer’s behavior will facilitate developing care plans tailored to the patient. One method under study is episode-based payment or bundling, where one payment is made to a provider organization to cover all expenses associated with a discrete illness episode. Payments will be based on the average cost of care, with providers taking on a risk for overutilization and outliers. For providers to thrive in this environment, they will need to know what care a patient will require and the costs of that care. A science-driven “personalized approach” to cancer care has the potential to produce better outcomes with reductions in the use of ineffectual therapies and costs. This promising scenario is still in the future, but progress is being made, and the shape of things to come for cancer care in the age of genomics is becoming clearer. PMID:22893787

  15. Investigation of analog/RF performance of staggered heterojunctions based nanowire tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avik; Sarkar, Angsuman

    2015-04-01

    In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.

  16. BK using HYP-smeared staggered fermions in Nf = 2 + 1 unquenched QCD

    SciTech Connect

    Jung, C.; Bae, T.; Jang, Y-C.; Kim, H-J.; Kim, J.; Kim, K; Lee, W.; Sharpe, S.; Yoon, B.

    2010-12-20

    We present results for the kaon mixing parameter B{sub K} calculated using HYP (hypercubic fat link)-smeared improved staggered fermions on the asqtad lattices generated by the MILC collaboration. We use three lattice spacings (a{approx} 0.12, 0.09 and 0.06 fm), ten different valence-quark masses (m {approx} m{sub s}/10-m{sub s}), and several light sea-quark masses in order to control the continuum and chiral extrapolations. We derive the next-to-leading order staggered chiral perturbation theory (SChPT) results necessary to fit our data, and use these results to do extrapolations based both on SU(2) and SU(3) SChPT. The SU(2) fitting is particularly straightforward because parameters related to taste breaking and matching errors appear only at next-to-next-to-leading order. We match to the continuum renormalization scheme [naive dimensional regularization (NDR)] using one-loop perturbation theory. Our final result is from the SU(2) analysis, with the SU(3) result providing a (less accurate) cross check. We find B{sub K}(NDR, {mu} = 2 GeV) = 0.529 {+-} 0.009 {+-} 0.032 and B{sub K} = B{sub K}(RGI) = 0.724 {+-} 0.012 {+-} 0.043, where the first error is statistical and the second systematic. The error is dominated by the truncation error in the matching factor. Our results are consistent with those obtained using valence domain-wall fermions on lattices generated with asqtad or domain-wall sea quarks.

  17. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  18. FIMBRIN1 Is Involved in Lily Pollen Tube Growth by Stabilizing the Actin Fringe[C][W][OA

    PubMed Central

    Su, Hui; Zhu, Jinsheng; Cai, Chao; Pei, Weike; Wang, Jiaojiao; Dong, Huaijian; Ren, Haiyun

    2012-01-01

    An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes. PMID:23150633

  19. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  20. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  1. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  2. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  3. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  4. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  5. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  6. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    SciTech Connect

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I.; Susi, T.; Nasibulin, A. G.

    2015-07-06

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  7. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    NASA Astrophysics Data System (ADS)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.

    2015-07-01

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  8. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G.W.

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.

  9. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G. Wayne

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90.degree. by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  10. Process and apparatus for sensing defects on a smooth cylindrical surface in tubing

    DOEpatents

    Dutton, G.W.

    1985-08-05

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  11. Anatomy of the anterior cruciate ligament with regard to its two bundles.

    PubMed

    Petersen, Wolf; Zantop, Thore

    2007-01-01

    The anterior cruciate ligament (ACL) consists of two major fiber bundles, namely the anteromedial and posterolateral bundle. When the knee is extended, the posterolateral bundle (PL) is tight and the anteromedial (AM) bundle is moderately lax. As the knee is flexed, the femoral attachment of the ACL becomes a more horizontal orientation; causing the AM bundle to tighten and the PL bundle to relax. There is some degree of variability for the femoral origin of the anterome-dial and posterolateral bundle. The anteromedial bundle is located proximal and anterior in the femoral ACL origin (high and deep in the notch when the knee is flexed at 90 degrees ); the posterolateral bundle starts in the distal and posterior aspect of the femoral ACL origin (shallow and low when the knee is flexed at 90 degrees ). In the frontal plane the anteromedial bundle origin is in the 10:30 clock position and the postero-lateral bundle origin in the 9:30 clock position. At the tibial insertion the ACL fans out to form the foot region. The anteromedial bundle insertion is in the anterior part of the tibial ACL footprint, the posterolateral bundle in the posterior part. While the anteromedial bundle is the primary restraint against anterior tibial translation, the posterolateral bundle tends to stabilize the knee near full extension, particularly against rotatory loads.

  12. Risk Adjustment for Medicare Total Knee Arthroplasty Bundled Payments.

    PubMed

    Clement, R Carter; Derman, Peter B; Kheir, Michael M; Soo, Adrianne E; Flynn, David N; Levin, L Scott; Fleisher, Lee

    2016-09-01

    The use of bundled payments is growing because of their potential to align providers and hospitals on the goal of cost reduction. However, such gain sharing could incentivize providers to "cherry-pick" more profitable patients. Risk adjustment can prevent this unintended consequence, yet most bundling programs include minimal adjustment techniques. This study was conducted to determine how bundled payments for total knee arthroplasty (TKA) should be adjusted for risk. The authors collected financial data for all Medicare patients (age≥65 years) undergoing primary unilateral TKA at an academic center over a period of 2 years (n=941). Multivariate regression was performed to assess the effect of patient factors on the costs of acute inpatient care, including unplanned 30-day readmissions. This analysis mirrors a bundling model used in the Medicare Bundled Payments for Care Improvement initiative. Increased age, American Society of Anesthesiologists (ASA) class, and the presence of a Medicare Major Complications/Comorbid Conditions (MCC) modifier (typically representing major complications) were associated with increased costs (regression coefficients, $57 per year; $729 per ASA class beyond I; and $3122 for patients meeting MCC criteria; P=.003, P=.001, and P<.001, respectively). Differences in costs were not associated with body mass index, sex, or race. If the results are generalizable, Medicare bundled payments for TKA encompassing acute inpatient care should be adjusted upward by the stated amounts for older patients, those with elevated ASA class, and patients meeting MCC criteria. This is likely an underestimate for many bundling models, including the Comprehensive Care for Joint Replacement program, incorporating varying degrees of postacute care. Failure to adjust for factors that affect costs may create adverse incentives, creating barriers to care for certain patient populations. [Orthopedics. 2016; 39(5):e911-e916.]. PMID:27359282

  13. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  14. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development.

    PubMed

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4',6'-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma.

  15. Peanut witches' broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development

    PubMed Central

    Liu, Chi-Te; Huang, Hsin-Mei; Hong, Syuan-Fei; Kuo-Huang, Ling-Long; Yang, Chiao-Yin; Lin, Yen-Yu; Lin, Chan-Pin; Lin, Shih-Shun

    2015-01-01

    The peanut witches' broom (PnWB) phytoplasma causes virescence symptoms such as phyllody (leafy flower) in infected peanuts. However, the obligate nature of phytoplasma limits the study of host-pathogen interactions, and the detailed anatomy of PnWB-infected plants has yet to be reported. Here, we demonstrate that 4′,6′-diamidino-2-phenylindole (DAPI) staining can be used to track PnWB infection. The DAPI-stained phytoplasma cells were observed in phloem/internal phloem tissues, and changes in vascular bundle morphology, including increasing pith rays and thinner cell walls in the xylem, were found. We also discerned the cell types comprising PnWB in infected sieve tube members. These results suggest that the presence of PnWB in phloem tissue facilitates the transmission of phytoplasma via sap-feeding insect vectors. In addition, PnWB in sieve tube members and changes in vascular bundle morphology might strongly promote the ability of phytoplasmas to assimilate nutrients. These data will help further an understanding of the obligate life cycle and host-pathogen interactions of phytoplasma. PMID:26492318

  16. External Verification of the Bundle Adjustment in Photogrammetric Software Using the Damped Bundle Adjustment Toolbox

    NASA Astrophysics Data System (ADS)

    Börlin, Niclas; Grussenmeyer, Pierre

    2016-06-01

    The aim of this paper is to investigate whether the Matlab-based Damped Bundle Adjustment Toolbox (DBAT) can be used to provide independent verification of the BA computation of two popular software—PhotoModeler (PM) and PhotoScan (PS). For frame camera data sets with lens distortion, DBAT is able to reprocess and replicate subsets of PM results with high accuracy. For lens-distortion-free data sets, DBAT can furthermore provide comparative results between PM and PS. Data sets for the discussed projects are available from the authors. The use of an external verification tool such as DBAT will enable users to get an independent verification of the computations of their software. In addition, DBAT can provide computation of quality parameters such as estimated standard deviations, correlation between parameters, etc., something that should be part of best practice for any photogrammetric software. Finally, as the code is free and open-source, users can add computations of their own.

  17. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  18. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Your child has a gastrostomy tube (G-tube). This is a soft, plastic tube placed into your child's stomach. It delivers nutrition (food) and medicines until your ...

  19. Hologram recording tubes

    NASA Technical Reports Server (NTRS)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  20. Time-dependent fiber bundles with local load sharing

    NASA Astrophysics Data System (ADS)

    Newman, W. I.; Phoenix, S. L.

    2001-02-01

    Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent ρ. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of ρ that yield drastically different behavior as N increases. For 1/2<=ρ<=1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at ρ=1) with approximate Gaussian bundle lifetime statistics and a finite limiting

  1. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    PubMed

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-01-01

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles. PMID:27623216

  2. Hair-bundle friction from transduction channels' gating forces

    NASA Astrophysics Data System (ADS)

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2015-12-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. We have shown recently that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle and thus provide a major source of damping [2]. We develop here a physical theory of passive hair-bundle mechanics that explains the origin of channel friction. We show that channel friction can be understood quantitatively by coupling the dynamics of the conformational change associated with channel gating to tip-link tension. As a result, varying channel properties affects friction, with faster channels producing smaller friction. The analysis emphasizes the dual role of transduction channels' gating forces, which affect both hair-bundle stiffness and drag. Friction originating from gating of ion channels is a general concept that is relevant to all mechanosensitive channels.

  3. Sigmoidal bundles and other tidal features, Curtis Formation (Jurassic), Utah

    SciTech Connect

    Kreisa, R.D.; Moiola, R.J.

    1984-04-01

    Recently, a new suite of tide-generated sedimentary structures has been described, principally from sandy shoals and large excavations associated with flood-control structures in tidal estuaries of the Dutch coast. These sedimentary structures can be less ambiguous than criteria previously used to recognized in the North Sea can be applied to the rock record, in this case the Curtis Formation (Jurassic), San Rafael swell, Utah, to significantly enhance our ability to interpret tidal facies. Our discussion centers on the recognition of tidal bundles, the lateral succession of cross-strata generated by the migration of a large-scale bedform during one dominant tidal episode. Tidal bundles in the Curtis consist of two gently dipping sigmoid-shaped pause planes which enclose avalanche forests. They are up to 80 cm (30 in.) thick and 11 m (36 ft) long. Pause planes may be accentuated by erosion of the megaripple by the subordinate tide, by generation of ripples or small megaripples with opposed inclinations, and/or by a drape of fine sediment which settles during slack water. Systematic variability that occurs within bundles is due to increasing then waning current velocity during a tidal episode. Systematic variability among tidal bundles results from regular fluctuations of tidal current velocities during a lunar month (neap/spring cycles). These include changes in bundle thickness, dip of forest, internal geometry, and lateral extent. Recognition of these features in the Curtis leads to an uncontestable interpretation of its tidal origin.

  4. Dynamic response of fiber bundle under transverse impact.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo

    2010-03-01

    There has been a very high demand in developing efficient soft body armors to protect the military and law enforcement personnel from ballistic or explosive attack. As a basic component in the soft body armor, fibers or fiber bundles play a key role in the performance against ballistic impact. In order to study the ballistic-resistant mechanism of the soft body armor, it is desirable to understand the dynamic response of the fiber bundle under transverse impact. Transverse wave speed is one important parameter because a faster transverse wave speed can make the impact energy dissipate more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) to generate constant high-speed impact on a Kevlar fiber bundle in the transverse direction. The deformation of the fiber bundle was photographed with high-speed digital cameras. The transverse wave speeds were experimentally measured at various transverse impact velocities. The experimental results can also be used to quantitatively verify the current analytical models or to develop new models to describe the dynamic response of fiber bundle under transverse impact.

  5. CRYPTOCHROME2 in Vascular Bundles Regulates Flowering in Arabidopsis

    PubMed Central

    Endo, Motomu; Mochizuki, Nobuyoshi; Suzuki, Tomomi; Nagatani, Akira

    2007-01-01

    Plants make full use of light signals to determine the timing of flowering. In Arabidopsis thaliana, a blue/UV-A photoreceptor, CRYPTOCHROME 2 (cry2), and a red/far-red photoreceptor, PHYTOCHROME B (phyB), are two major photoreceptors that control flowering. The light stimuli for the regulation of flowering are perceived by leaves. We have recently shown that phyB expression in mesophyll but not in vascular bundles suppresses the expression of a key flowering regulator, FLOWERING LOCUS T (FT), in vascular bundles. In this study, we asked where in the leaf cry2 perceives light stimuli to regulate flowering. To answer this question, we established transgenic Arabidopsis lines in which the cry2–green fluorescent protein (GFP) fusion was expressed under the control of organ/tissue-specific promoters in a cry2-deficient mutant background. Analysis of these lines revealed that expression of cry2-GFP in vascular bundles, but not in epidermis or mesophyll, rescued the late flowering phenotype. We further confirmed that cry2-GFP expressed in vascular bundles increased FT expression only in vascular bundles. Hence, in striking contrast with phyB, cry2 most likely regulates FT expression in a cell-autonomous manner. PMID:17259260

  6. Geometry of the double tangent bundles of Banach manifolds

    NASA Astrophysics Data System (ADS)

    Suri, Ali

    2013-12-01

    In this paper for a vector bundle (v.b.) (p,E,M), we show that at the presence of a (possibly nonlinear) connection on (p,E.M), TE on M admits a v.b. structure. This fact is followed by a suitable converse which asserts that a v.b. structure for TE over M yields a linear connection on the original bundle (p,E,M). Moreover we clarify the relation between v.b. structures and also the induced bundle morphisms which will be used for classification of these v.b. structures. Afterwards the concept of second order connections on a manifold M is introduced which leads us to interesting geometric tools on the bundle of accelerations. In fact by using the v.b. structure for σ:TTM⟶M, we will study the geometric tools on the second order tangent bundle. The concepts of second order covariant derivative, first and second order auto-parallel curve, the appropriate exponential mapping and second order Lie derivative are introduced.

  7. Reaction–diffusion model of hair-bundle morphogenesis

    PubMed Central

    Jacobo, Adrian; Hudspeth, A. J.

    2014-01-01

    The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle’s morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction–diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle’s shape. The interaction of two proteins forms a hexagonal Turing pattern—a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants—that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle. PMID:25313064

  8. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  9. Adhesion-driven buckling of single-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Ke, Changhong; Zheng, Meng; Bae, In-Tae; Zhou, Guangwen

    2010-05-01

    Buckling of a thin single-walled carbon nanotube (SWNT) bundle that is partially bound on another straight free-standing SWNT bundle is reported. The buckling of the SWNT bundle is purely due to the adhesion interaction between two SWNT bundles. The deformation curvature of the buckled SWNT bundle is experimentally measured by transmission electron microscopy, and is theoretically modeled by a continuum model based on nonlinear elastica theory. Our results reveal that the binding strength of the bundle interface and the bulk elastic modulus of the SWNT bundle can be associated by its buckling curvature. Our results show that the bulk elastic moduli of the tested SWNT bundles are significantly lower than the Young's modulus of individual SWNTs. The reported adhesion-driven nanotube buckling provides a potential new approach to quantify the elastic modulus and the binding strength of bundled nanotubes.

  10. A new 19-metal-atom cluster [(Me2PhP)10Au12Ag7(NO3)9] with a nearly staggered-staggered M5 ring configuration.

    PubMed

    Nunokawa, Keiko; Ito, Mitsuhiro; Sunahara, Tetsuya; Onaka, Satoru; Ozeki, Tomoji; Chiba, Hirokazu; Funahashi, Yasuhiro; Masuda, Hideki; Yonezawa, Tetsu; Nishihara, Hiroshi; Nakamoto, Masami; Yamamoto, Mari

    2005-08-21

    New mixed metal clusters with M19 metal frameworks have been synthesized by NaBH4 reduction of Au(NO3)(PMe2Ph) together with AgNO3 in ethanol. Single crystal X-ray diffraction has revealed Au12Ag7 and Au17Ag2 metal skeletons for these clusters, which are best described in terms of bicapped pentagonal antiprismatic cages with a staggered-staggered M(5) ring configuration. These clusters connect the missing link between M13 icosahedral and M25 biicosahedral clusters providing a view of the cluster growth process. A TEM image of this cluster has been observed, which has clearly demonstrated single-sized nano-particles of less than 1.0 nm.

  11. A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook

    2013-06-01

    In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (2009) 952-975] to a full 3D MHD scheme. The scheme is a finite-volume Godunov method consisting of a constrained transport (CT) method and an efficient and accurate single-step, directionally unsplit multidimensional data reconstruction-evolution algorithm, which extends Colella's original 2D corner transport upwind (CTU) method [P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 446-466]. We present two types of data reconstruction-evolution algorithms for 3D: (1) a reduced CTU scheme and (2) a full CTU scheme. The reduced 3D CTU scheme is a variant of a simple 3D extension of Collela's 2D CTU method and is considered as a direct extension from the 2D USM scheme. The full 3D CTU scheme is our primary 3D solver which includes all multidimensional cross-derivative terms for stability. The latter method is logically analogous to the 3D unsplit CTU method by Saltzman [J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys. 115 (1994) 153-168]. The major novelties in our algorithms are twofold. First, we extend the reduced CTU scheme to the full CTU scheme which is able to run with CFL numbers close to unity. Both methods utilize the transverse update technique developed in the 2D USM algorithm to account for transverse fluxes without solving intermediate Riemann problems, which in turn gives cost-effective 3D methods by reducing the total number of Riemann solves. The proposed algorithms are simple and efficient especially when including multidimensional MHD terms that maintain in-plane magnetic field dynamics. Second, we introduce a new CT scheme that makes use of proper upwind information in taking averages of electric fields. Our 3D USM schemes can be easily

  12. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  13. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  14. Cilia-Like Beating of Active Microtubule Bundles

    PubMed Central

    Sanchez, Timothy; Welch, David; Nicastro, Daniela; Dogic, Zvonimir

    2011-01-01

    The mechanism that drives the regular beating of individual cilia and flagella, as well as dense ciliary fields, remains unclear. We describe a minimal model system, composed of microtubules and molecular motors, which self-assemble into active bundles exhibiting beating patterns reminiscent of those found in eukaryotic cilia and flagella. These observations suggest that hundreds of molecular motors, acting within an elastic microtubule bundle, spontaneously synchronize their activity to generate large-scale oscillations. Furthermore, we also demonstrate that densely packed, actively bending bundles spontaneously synchronize their beating patterns to produce collective behavior similar to metachronal waves observed in ciliary fields. The simple in vitro system described here could provide insights into beating of isolated eukaryotic cilia and flagella, as well as their synchronization in dense ciliary fields. PMID:21778400

  15. DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning

    PubMed Central

    Lei, Tao; Fan, Yangyu; Zhang, Xiuwei

    2016-01-01

    Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance. PMID:27774455

  16. Stable parabolic Higgs bundles as asymptotically stable decorated swamps

    NASA Astrophysics Data System (ADS)

    Beck, Nikolai

    2016-06-01

    Parabolic Higgs bundles can be described in terms of decorated swamps, which we studied in a recent paper. This description induces a notion of stability of parabolic Higgs bundles depending on a parameter, and we construct their moduli space inside the moduli space of decorated swamps. We then introduce asymptotic stability of decorated swamps in order to study the behaviour of the stability condition as one parameter approaches infinity. The main result is the existence of a constant, such that stability with respect to parameters greater than this constant is equivalent to asymptotic stability. This implies boundedness of all decorated swamps which are semistable with respect to some parameter. Finally, we recover the usual stability condition of parabolic Higgs bundles as asymptotic stability.

  17. A class of Poisson Nijenhuis structures on a tangent bundle

    NASA Astrophysics Data System (ADS)

    Sarlet, W.; Vermeire, F.

    2004-06-01

    Equipping the tangent bundle TQ of a manifold with a symplectic form coming from a regular Lagrangian L, we explore how to obtain a Poisson-Nijenhuis structure from a given type (1, 1) tensor field J on Q. It is argued that the complete lift Jc of J is not the natural candidate for a Nijenhuis tensor on TQ, but plays a crucial role in the construction of a different tensor R, which appears to be the pullback under the Legendre transform of the lift of J to T*Q. We show how this tangent bundle view brings new insights and is capable also of producing all important results which are known from previous studies on the cotangent bundle, in the case when Q is equipped with a Riemannian metric. The present approach further paves the way for future generalizations.

  18. Betti numbers of graded modules and cohomology of vector bundles

    NASA Astrophysics Data System (ADS)

    Eisenbud, David; Schreyer, Frank-Olaf

    2009-07-01

    In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Soederberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.

  19. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles

    PubMed Central

    2016-01-01

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials. PMID:26821214

  20. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    PubMed

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.