Vertex Models of Epithelial Morphogenesis
Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.
2014-01-01
The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108
Markov branching in the vertex splitting model
NASA Astrophysics Data System (ADS)
Örn Stefánsson, Sigurdur
2012-04-01
We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree D, we find a one parameter model, with parameter \\alpha \\in [0,1] which has a so-called Markov branching property. When D=\\infty we find a two parameter model with an additional parameter \\gamma \\in [0,1] which also has this feature. In the case D = 3, the model bears resemblance to Ford's α-model of phylogenetic trees and when D=\\infty it is similar to its generalization, the αγ-model. For α = 0, the model reduces to the well known model of preferential attachment. In the case α > 0, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is 1/α. When γ = 0 the model reduces to a model of growing caterpillar graphs in which case we prove that the Hausdorff dimension is almost surely 1/α and that the spectral dimension is almost surely 2/(1 + α). We comment briefly on the distribution of vertex degrees and correlations between degrees of neighbouring vertices.
A staggered-grid convolutional differentiator for elastic wave modelling
NASA Astrophysics Data System (ADS)
Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun
2015-11-01
The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.
Dynamical Vertex Approximation for the Hubbard Model
NASA Astrophysics Data System (ADS)
Toschi, Alessandro
A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.
Compressibility enhancement in an almost staggered interacting Harper model
NASA Astrophysics Data System (ADS)
Friedman, Bat-el; Berkovits, Richard
2015-03-01
We discuss the compressibility in the almost staggered fermionic Harper model with repulsive interactions in the vicinity of half-filling. It has been shown by Kraus et al. [Phys. Rev. B 89, 161106(R) (2014)], 10.1103/PhysRevB.89.161106 that for spinless electrons and nearest neighbors electron-electron interactions the compressibility in the central band is enhanced by repulsive interactions. Here we would like to investigate the sensitivity of this conclusion to the spin degree of freedom and longer range interactions. We use the Hartree-Fock (HF) approximation, as well as the density matrix renormalization group (DMRG) calculation to evaluate the compressibility. In the almost staggered Harper model, the central energy band is essentially flat and separated from the other bands by a large gap and therefore, the HF approximation is rather accurate. In both cases the compressibility of the system is enhanced compared to the noninteracting case, although the enhancement is weaker due to the inclusion of Hubbard and longer ranged interactions. We also show that the entanglement entropy is suppressed when the compressibility of the system is enhanced.
Persistent current in an almost staggered Harper model
NASA Astrophysics Data System (ADS)
Vasserman, A.; Berkovits, R.
2015-08-01
In this paper we study the persistent current (PC) of a staggered Harper model, close to the half-filling. The Harper model is different than other one dimensional disordered systems which are always localized, since it is a quasi-periodic system with correlated disorder resulting in the fact that it can be in the metallic regime. Nevertheless, the PC for a wide range of parameters of the Harper model does not show typical metallic behavior, although the system is in the metallic regime. This is a result of the nature of the central band states, which are a hybridization of Gaussian states localized in superlattice points. When the superlattice is not commensurate with the system length, the PC behaves as an insulator. Thus even in the metallic regime a typical finite Harper model may exhibit a PC expected from an insulator.
Generalized emptiness formation probability in the six-vertex model
NASA Astrophysics Data System (ADS)
Colomo, F.; Pronko, A. G.; Sportiello, A.
2016-10-01
In the six-vertex model with domain wall boundary conditions, the emptiness formation probability is the probability that a rectangular region in the top left corner of the lattice is frozen. We generalize this notion to the case where the frozen region has the shape of a generic Young diagram. We derive here a multiple integral representation for this correlation function.
Exactly solvable interacting spin-ice vertex model.
Ferreira, Anderson A; Alcaraz, Francisco C
2006-07-01
A special family of solvable five-vertex model is introduced on a square lattice. In addition to the usual nearest-neighbor interactions, the vertices defining the model also interact along one of the diagonals of the lattice. This family of models includes in a special limit the standard six-vertex model. The exact solution of these models is an application of the matrix product ansatz introduced recently and applied successfully in the solution of quantum chains. The phase diagram and the free energy of the models are calculated in the thermodynamic limit. The models exhibit massless phases, and our analytical and numerical analyses indicate that such phases are governed by a conformal field theory with central charge c=1 and continuously varying critical exponents.
3-state Hamiltonians associated to solvable 33-vertex models
NASA Astrophysics Data System (ADS)
Crampé, N.; Frappat, L.; Ragoucy, E.; Vanicat, M.
2016-09-01
Using the nested coordinate Bethe ansatz, we study 3-state Hamiltonians with 33 non-vanishing entries, or 33-vertex models, where only one global charge with degenerate eigenvalues exists and each site possesses three internal degrees of freedom. In the context of Markovian processes, they correspond to diffusing particles with two possible internal states which may be exchanged during the diffusion (transmutation). The first step of the nested coordinate Bethe ansatz is performed providing the eigenvalues in terms of rapidities. We give the constraints ensuring the consistency of the computations. These rapidities also satisfy Bethe equations involving 4 × 4 R-matrices, solutions of the Yang-Baxter equation which implies new constraints on the models. We solve them allowing us to list all the solvable 33-vertex models.
NASA Astrophysics Data System (ADS)
Hoelbling, Christian; Zielinski, Christian
2016-07-01
We follow up on a suggestion by Adams and construct explicit domain wall fermion operators with staggered kernels. We compare different domain wall formulations, namely the standard construction as well as Boriçi's modified and Chiu's optimal construction, utilizing both Wilson and staggered kernels. In the process, we generalize the staggered kernels to arbitrary even dimensions and introduce both truncated and optimal staggered domain wall fermions. Some numerical investigations are carried out in the (1 +1 )-dimensional setting of the Schwinger model, where we explore spectral properties of the bulk, effective and overlap Dirac operators in the free-field case, on quenched thermalized gauge configurations and on smooth topological configurations. We compare different formulations using the effective mass, deviations from normality and violations of the Ginsparg-Wilson relation as measures of chirality.
Odd-even staggering in the neutron-proton interaction and nuclear mass models
NASA Astrophysics Data System (ADS)
Cheng, Y. Y.; Zhao, Y. M.; Arima, A.
2015-02-01
In this paper we study odd-even staggering of the empirical neutron-proton interaction between the last neutron and the last proton, denoted as δ V1 n -1 p , and its consequence in the Garvey-Kelson mass relations (GKs) and nuclear mass models. The root-mean-squared deviations of predicted masses respectively for even-A and odd-A nuclei by using two combinatorial GKs suggest a large odd-even staggering of δ V1 n -1 p between even-odd and odd-even nuclei, while the odd-even difference of δ V1 n -1 p between even-even and odd-odd nuclei is much smaller. The contribution of the odd-even staggering of δ V1 n -1 p between even-A and odd-A nuclei in deviations of theoretical δ V1 n -1 p values of the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model are well represented by an isospin-dependent term. The consideration of this odd-even staggering improves our description of binding energies and one-neutron separation energies in both the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model.
Form factors of the spin-1 analogue of the eight-vertex model
NASA Astrophysics Data System (ADS)
Quano, Yas-Hiro
2015-12-01
The twenty-one-vertex model, the spin-1 analogue of the eight-vertex model, is considered on the basis of free-field representations of vertex operators in the 2× 2-fold fusion solid on solid (SOS) model and vertex-face transformation. The tail operators, which translate corner transfer matrices of the twenty-one-vertex model into those of the fusion SOS model, are constructed by using free bosons and fermions for both diagonal and off-diagonal matrix elements with respect to the ground-state sectors. Form factors of any local operators are therefore obtained in terms of multiple integral formulae, in principle. As the simplest example, the two-particle form factor of the spin operator is calculated explicitly.
19-vertex version of the fully frustrated XY model
NASA Astrophysics Data System (ADS)
Knops, Yolanda M. M.; Nienhuis, Bernard; Knops, Hubert J. F.; Blöte, Henk W. J.
1994-07-01
We investigate a 19-vertex version of the two-dimensional fully frustrated XY (FFXY) model. We construct Yang-Baxter equations for this model and show that there is no solution. Therefore we have chosen a numerical approach based on the transfer matrix. The results show that a coupled XY Ising model is in the same universality class as the FFXY model. We find that the phase coupling over an Ising wall is irrelevant at criticality. This leads to a correction of earlier determinations of the dimension x*h,Is of the Ising disorder operator. We find x*h,Is=0.123(5) and a conformal anomaly c=1.55(5). These results are consistent with the hypothesis that the FFXY model behaves as a superposition of an Ising model and an XY model. However, the dimensions associated with the energy, xt=0.77(3), and with the XY magnetization xh,XY~=0.17, refute this hypothesis.
NASA Astrophysics Data System (ADS)
Zhang, Pu; Heyne, Mary A.; To, Albert C.
2015-10-01
We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.
Q-Operators for Higher Spin Eight Vertex Models with an Even Number of Sites
NASA Astrophysics Data System (ADS)
Takebe, Takashi
2016-03-01
We construct the Q-operator for generalised eight vertex models associated to higher spin representations of the Sklyanin algebra, following Baxter's 1973 paper. As an application, we prove the sum rule for the Bethe roots.
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
NASA Astrophysics Data System (ADS)
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.
A Vertex Model of Drosophila Ventral Furrow Formation
Spahn, Philipp; Reuter, Rolf
2013-01-01
Ventral furrow formation in Drosophila is an outstanding model system to study the mechanisms involved in large-scale tissue rearrangements. Ventral cells accumulate myosin at their apical sides and, while being tightly coupled to each other via apical adherens junctions, execute actomyosin contractions that lead to reduction of their apical cell surface. Thereby, a band of constricted cells along the ventral epithelium emerges which will form a tissue indentation along the ventral midline (the ventral furrow). Here we adopt a 2D vertex model to simulate ventral furrow formation in a surface view allowing easy comparison with confocal live-recordings. We show that in order to reproduce furrow morphology seen in vivo, a gradient of contractility must be assumed in the ventral epithelium which renders cells more contractile the closer they lie to the ventral midline. The model predicts previous experimental findings, such as the gain of eccentric morphology of constricting cells and an incremental fashion of apical cell area reduction. Analysis of the model suggests that this incremental area reduction is caused by the dynamical interplay of cell elasticity and stochastic contractility as well as by the opposing forces from contracting neighbour cells. We underpin results from the model through in vivo analysis of ventral furrow formation in wildtype and twi mutant embryos. Our results show that ventral furrow formation can be accomplished as a “tug-of-war” between stochastically contracting, mechanically coupled cells and may require less rigorous regulation than previously thought. Summary For the developmental biologist it is a fascinating question how cells can coordinate major tissue movements during embryonic development. The so-called ventral furrow of the Drosophila embryo is a well-studied example of such a process when cells from a ventral band, spanning nearly the entire length of the embryo, undergo dramatic shape change by contracting their tips and
Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.
1991-01-01
The computational dispersion properties of horizontally and time-horizontally staggered grids utilizing corresponding centered-difference techniques for approximation of the adjustment, or gravity wave equations, are examined in terms of their group velocity characteristics. Results are acquired for oceanic and atmospheric models, the former being characterized by a much smaller Rossby radius of deformation. For all grids considered additional filtering is required to control and even eliminate waves with poor computational dispersion characteristics. Computational dispersion properties along with other computational characteristics and requirements give some guidance for an optimal selection of an appropriate grid for an ocean or atmospheric model.
NASA Astrophysics Data System (ADS)
Bailey, Jon Andrew
The strong force binds protons and neutrons within nuclei and quarks within mesons and baryons. Calculations of the masses of the light-quark baryons from the theory of the strong force, quantum chromodynamics (QCD), require numerical methods in which continuous Minkowski spacetime is replaced by a discrete Euclidean spacetime lattice. Finite computational resources and theoretical constraints impose significant limitations on lattice calculations. The price of perhaps the fastest formulation of lattice QCD, rooted staggered QCD, includes quark degrees of freedom called tastes, associated discretization effects called taste violations, and the rooting conjecture for eliminating the tastes in the continuum limit. Empirically successful rooted staggered QCD calculations of the baryon spectrum would constitute numerical evidence for the rooting conjecture and further vindication of QCD as the theory of the strong force. With such calculations as the goal, I discuss expected features of the staggered baryon spectrum, examine the spectra of interpolating operators transforming irreducibly under the staggered lattice symmetry group, construct such a set of baryon operators, and show how they could allow for particularly clean calculations of the masses of the nucleon, Delta, Sigma*, Ξ*, and O-. To quantify taste violations in baryonic quantities, I develop staggered chiral perturbation theory for light-quark baryons by mapping the Symanzik action into heavy baryon chiral perturbation theory, calculate the masses of flavor-symmetric nucleons to third order in partially quenched and fully dynamical staggered chiral perturbation theory, and discuss in detail the pattern of taste symmetry breaking and the resulting baryon degeneracies and mixings. The resulting chiral forms could be used with interpolating operators already in use to study the restoration of taste symmetry in the continuum limit.
Parametric modeling and stagger angle optimization of an axial flow fan
NASA Astrophysics Data System (ADS)
Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.
2013-12-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.
Arctic Curves of the Six-Vertex Model on Generic Domains: The Tangent Method
NASA Astrophysics Data System (ADS)
Colomo, F.; Sportiello, A.
2016-09-01
We revisit the problem of determining the Arctic curve in the six-vertex model with domain wall boundary conditions. We describe an alternative method, by which we recover the previously conjectured analytic expression in the square domain. We adapt the method to work for a large class of domains, and for other models exhibiting limit shape phenomena. We study in detail some examples, and derive, in particular, the Arctic curve of the six-vertex model in a triangoloid domain at the ice point.
Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential
NASA Astrophysics Data System (ADS)
Nag, Tanay; Sen, Diptiman; Dutta, Amit
2015-06-01
We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.
Anderson, R W; Pember, R B; Elliot, N S
2000-09-26
A new method for the solution of the unsteady Euler equations has been developed. The method combines staggered grid Lagrangian techniques with structured local adaptive mesh refinement (AMR). This method is a precursor to a more general adaptive arbitrary Lagrangian Eulerian (ALE-AMR) algorithm under development, which will facilitate the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required. Many of the core issues involved in the development of the ALE-AMR method hinge upon the integration of AMR with a Lagrange step, which is the focus of the work described here. The novel components of the method are mainly driven by the need to reconcile traditional AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. These new algorithmic components are first developed in one dimension and are then generalized to two dimensions. Solutions of several model problems involving shock hydrodynamics are presented and discussed.
The monodromy matrix in the F-basis for arbitrary six-vertex models
NASA Astrophysics Data System (ADS)
Martins, M. J.; Zuparic, M.
2011-10-01
We present the expressions for the monodromy matrix elements of the six-vertex model in the F-basis for arbitrary Boltzmann weights. The results rely solely on the property of unitarity and Yang-Baxter relations, avoiding any specific parameterization of the weights. This allows us to write complete algebraic expressions for the inner products and the underlying domain wall partition functions in the case of arbitrary rapidities. We then apply our results for the trigonometric six-vertex model in the presence of inhomogeneous electric fields and obtain a determinant formula for the respective on-shell scalar products.
Vertex displacements for acausal particles: testing the Lee-Wick standard model at the LHC
NASA Astrophysics Data System (ADS)
Álvarez, Ezequiel; Da Rold, Leandro; Schat, Carlos; Szynkman, Alejandro
2009-10-01
We propose to search for wrong displaced vertices, where decay products of the secondary vertex move towards the primary vertex instead of away from it, as a signature for microscopic violation of causality. We analyze in detail the leptonic sector of the recently proposed Lee-Wick Standard Model, which provides a well motivated framework to study acausal effects. We find that, assuming Minimal Flavor Violation, the Lee-Wick partners of the electron, tilde le and tilde e, can produce measurable wrong vertices at the LHC, the most promising channel being qbar qlongrightarrowblte_ltelongrightarrowe+e-jjjj. A Monte-Carlo simulation using MadGraph/MadEvent suggests that for Mllesssim450 GeV the measurement of these acausal vertex displacements should be accessible in the LHC era.
Liu, X. M.; Cheng, W. W.; Liu, J. -M.
2016-01-01
We investigate the quantum Fisher information and quantum phase transitions of an XY spin chain with staggered Dzyaloshinskii-Moriya interaction using the quantum renormalization-group method. The quantum Fisher information, its first-derivatives, and the finite-size scaling behaviors are rigorously calculated respectively. The singularity of the derivatives at the phase transition point as a function of lattice size is carefully discussed and it is revealed that the scaling exponent for quantum Fisher information at the critical point can be used to describe the correlation length of this model, addressing the substantial role of staggered Dzyaloshinskii-Moriya interaction in modulating quantum phase transitions. PMID:26780973
Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell
2013-01-01
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.
Dynamics for a 2-vertex quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2010-12-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
Domino tilings and the six-vertex model at its free-fermion point
NASA Astrophysics Data System (ADS)
Ferrari, Patrik L.; Spohn, Herbert
2006-08-01
At the free-fermion point, the six-vertex model with domain wall boundary conditions (DWBC) can be related to the Aztec diamond, a domino tiling problem. We study the mapping on the level of complete statistics for general domains and boundary conditions. This is obtained by associating with both models a set of non-intersecting lines in the Lindström-Gessel-Viennot (LGV) scheme. One of the consequences for DWBC is that the boundaries of the ordered phases are described by the Airy process in the thermodynamic limit.
Vertex-element models for anisotropic growth of elongated plant organs
Fozard, John A.; Lucas, Mikaël; King, John R.; Jensen, Oliver E.
2013-01-01
New tools are required to address the challenge of relating plant hormone levels, hormone responses, wall biochemistry and wall mechanical properties to organ-scale growth. Current vertex-based models (applied in other contexts) can be unsuitable for simulating the growth of elongated organs such as roots because of the large aspect ratio of the cells, and these models fail to capture the mechanical properties of cell walls in sufficient detail. We describe a vertex-element model which resolves individual cells and includes anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division whilst still being computationally efficient. We show that detailed consideration of the cell walls in the plane of a 2D simulation is necessary when cells have large aspect ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid anomalous transverse swelling. We explore how differences in the mechanical properties of cells across an organ can result in bending and how cellulose microfibril orientation affects macroscale growth. We also demonstrate that the model can be used to simulate growth on realistic geometries, for example that of the primary root apex, using moderate computational resources. The model shows how macroscopic root shape can be sensitive to fine-scale cellular geometries. PMID:23847638
Symmetry classes of alternating sign matrices in a nineteen-vertex model
NASA Astrophysics Data System (ADS)
Hagendorf, Christian; Morin-Duchesne, Alexi
2016-05-01
The nineteen-vertex model of Fateev and Zamolodchikov on a periodic lattice with an anti-diagonal twist is investigated. Its inhomogeneous transfer matrix is shown to have a simple eigenvalue, with the corresponding eigenstate displaying intriguing combinatorial features. Similar results were previously found for the same model with a diagonal twist. The eigenstate for the anti-diagonal twist is explicitly constructed using the quantum separation of variables technique. A number of sum rules and special components are computed and expressed in terms of Kuperberg’s determinants for partition functions of the inhomogeneous six-vertex model. The computations of some components of the special eigenstate for the diagonal twist are also presented. In the homogeneous limit, the special eigenstates become eigenvectors of the Hamiltonians of the integrable spin-one XXZ chain with twisted boundary conditions. Their sum rules and special components for both twists are expressed in terms of generating functions arising in the weighted enumeration of various symmetry classes of alternating sign matrices (ASMs). These include half-turn symmetric ASMs, quarter-turn symmetric ASMs, vertically symmetric ASMs, vertically and horizontally perverse ASMs and double U-turn ASMs. As side results, new determinant and pfaffian formulas for the weighted enumeration of various symmetry classes of alternating sign matrices are obtained.
NASA Astrophysics Data System (ADS)
Mellbin, Y.; Hallberg, H.; Ristinmaa, M.
2015-06-01
A mesoscale model of microstructure evolution is formulated in the present work by combining a crystal plasticity model with a graph-based vertex algorithm. This provides a versatile formulation capable of capturing finite-strain deformations, development of texture and microstructure evolution through recrystallization. The crystal plasticity model is employed in a finite element setting and allows tracing of stored energy build-up in the polycrystal microstructure and concurrent reorientation of the crystal lattices in the grains. This influences the progression of recrystallization as nucleation occurs at sites with sufficient stored energy and since the grain boundary mobility and energy is allowed to vary with crystallographic misorientation across the boundaries. The proposed graph-based vertex model describes the topological changes to the grain microstructure and keeps track of the grain inter-connectivity. Through homogenization, the macroscopic material response is also obtained. By the proposed modeling approach, grain structure evolution at large deformations as well as texture development are captured. This is in contrast to most other models of recrystallization which are usually limited by assumptions of one or the other of these factors. In simulation examples, the model is in the present study shown to capture the salient features of dynamic recrystallization, including the effects of varying initial grain size and strain rate on the transitions between single-peak and multiple-peak oscillating flow stress behavior. Also the development of recrystallization texture and the influence of different assumptions on orientation of recrystallization nuclei are investigated. Further, recrystallization kinetics are discussed and compared to classical JMAK theory. To promote computational efficiency, the polycrystal plasticity algorithm is parallelized through a GPU implementation that was recently proposed by the authors.
tbW vertex in the littlest Higgs model with T parity
Penunuri, F.; Larios, F.
2009-01-01
A study of the effective tbW vertex is done in the littlest Higgs model with T parity that includes the one-loop induced weak dipole coefficient f{sub 2R}. The top's width and the W-boson helicity in the t{yields}bW{sup +} decay as well as the t-channel and the s-channel modes of single top quark production at the LHC are then obtained for the tbW coupling. Our calculation is done in the Feynman-'t Hooft gauge, and we provide details of the analysis, like exact formulas (to all orders of the expansion variable v/f) of masses and mixing angles of all of the particles involved. Also, a complete and exact diagonalization (and normalization) of the scalar sector of the model is made.
A combinatorial interpretation of the free-fermion condition of the six-vertex model
NASA Astrophysics Data System (ADS)
Brak, R.; Owczarek, A.
1999-05-01
The free-fermion condition of the six-vertex model provides a five-parameter sub-manifold on which the Bethe ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalized Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of intersecting walk, and hence express the partition function of N such walks starting and finishing at fixed endpoints in terms of the single-walk partition functions.
Lueth, V.
1992-07-01
The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.
VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. IV. (Magic+, 2015)
NASA Astrophysics Data System (ADS)
Magic, Z.; Chiavassa, A.; Collet, R.; Asplund, M.
2014-10-01
We compute the emergent stellar spectra from the UV to far infrared for different viewing angles using realistic 3D model atmospheres for a large range in stellar parameters to predict the stellar limb darkening. We have computed full 3D LTE synthetic spectra based on 3D radiative hydrodynamic atmosphere models from the Stagger-grid in the ranges: Teff from 4000 to 7000K, logg from 1.5 to 5.0, and [Fe/H], from -4.0 to +0.5. From the resulting intensities at different wavelength, we derived coefficients for the standard limb darkening laws considering a number of often-used photometric filters. Furthermore, we calculated theoretical transit light curves, in order to quantify the differences between predictions by the widely used 1D model atmosphere and our 3D models. (1 data file).
Modeling one-mode projection of bipartite networks by tagging vertex information
NASA Astrophysics Data System (ADS)
Qiao, Jian; Meng, Ying-Ying; Chen, Hsinchun; Huang, Hong-Qiao; Li, Guo-Ying
2016-09-01
Traditional one-mode projection models are less informative than their original bipartite networks. Hence, using such models cannot control the projection's structure freely. We proposed a new method for modeling the one-mode projection of bipartite networks, which thoroughly breaks through the limitations of the available one-mode projecting methods by tagging the vertex information of bipartite networks in their one-mode projections. We designed a one-mode collaboration network model by using the method presented in this paper. The simulation results show that our model matches three real networks very well and outperforms the available collaboration network models significantly, which reflects the idea that our method is ideal for modeling one-mode projection models of bipartite graphs and that our one-mode collaboration network model captures the crucial mechanisms of the three real systems. Our study reveals that size growth, individual aging, random collaboration, preferential collaboration, transitivity collaboration and multi-round collaboration are the crucial mechanisms of collaboration networks, and the lack of some of the crucial mechanisms is the main reason that the other available models do not perform as well as ours.
Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith
2005-05-01
This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.
NASA Astrophysics Data System (ADS)
Mellbin, Y.; Hallberg, H.; Ristinmaa, M.
2016-10-01
A multiscale modeling framework, combining a graph-based vertex model of microstructure evolution with a GPU-parallelized crystal plasticity model, was recently proposed by the authors. Considering hot rolling of copper, the full capabilities of the model are demonstrated in the present work. The polycrystal plasticity model captures the plastic response and the texture evolution during materials processing while the vertex model provides central features of grain structure evolution through dynamic recrystallization, such as nucleation and growth of individual crystals. The multiscale model makes it possible to obtain information regarding grain size and texture development throughout the workpiece, capturing the effects of recrystallization and heterogeneous microstructure evolution. Recognizing that recrystallization is a highly temperature dependent phenomenon, simulations are performed at different process temperatures. The results show that the proposed modeling framework is capable of simultaneously capturing central aspects of material behavior at both the meso- and macrolevel. Detailed investigation of the evolution of texture, grain size distribution and plastic deformation during the different processing conditions are performed, using the proposed model. The results show a strong texture development, but almost no recrystallization, for the lower of the investigated temperatures, while at higher temperatures an increased recrystallization is shown to weaken the development of a typical rolling texture. The simulations also show the influence of the shear deformation close to the rolling surface on both texture development and recrystallization.
Duerr, Stephan; Hoelbling, Christian; Wenger, Urs
2004-11-01
We study the infrared part of the spectrum for UV-filtered staggered Dirac operators and compare them to the overlap counterpart. With sufficient filtering and at small enough lattice spacing the staggered spectra manage to 'mimic' the overlap version. They show a 4-fold near degeneracy, and a clear separation between would-be zero modes and nonzero modes. This suggests an approximate index theorem for filtered staggered fermions and a correct sensitivity to the topology of QCD. Moreover, it supports square-rooting the staggered determinant to obtain dynamical ensembles with N{sub f}=2.
Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics
NASA Astrophysics Data System (ADS)
Mathiazhagan, S.; Anup, S.
2016-08-01
Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
NASA Astrophysics Data System (ADS)
Li, Y.; Han, B.; Métivier, L.; Brossier, R.
2016-09-01
We investigate an optimal fourth-order staggered-grid finite-difference scheme for 3D frequency-domain viscoelastic wave modeling. An anti-lumped mass strategy is incorporated to minimize the numerical dispersion. The optimal finite-difference coefficients and the mass weighting coefficients are obtained by minimizing the misfit between the normalized phase velocities and the unity. An iterative damped least-squares method, the Levenberg-Marquardt algorithm, is utilized for the optimization. Dispersion analysis shows that the optimal fourth-order scheme presents less grid dispersion and anisotropy than the conventional fourth-order scheme with respect to different Poisson's ratios. Moreover, only 3.7 grid-points per minimum shear wavelength are required to keep the error of the group velocities below 1%. The memory cost is then greatly reduced due to a coarser sampling. A parallel iterative method named CARP-CG is used to solve the large ill-conditioned linear system for the frequency-domain modeling. Validations are conducted with respect to both the analytic viscoacoustic and viscoelastic solutions. Compared with the conventional fourth-order scheme, the optimal scheme generates wavefields having smaller error under the same discretization setups. Profiles of the wavefields are presented to confirm better agreement between the optimal results and the analytic solutions.
NASA Astrophysics Data System (ADS)
Etemadsaeed, Leila; Moczo, Peter; Kristek, Jozef; Ansari, Anooshiravan; Kristekova, Miriam
2016-10-01
We investigate the problem of finite-difference approximations of the velocity-stress formulation of the equation of motion and constitutive law on the staggered grid (SG) and collocated grid (CG). For approximating the first spatial and temporal derivatives, we use three approaches: Taylor expansion (TE), dispersion-relation preserving (DRP), and combined TE-DRP. The TE and DRP approaches represent two fundamental extremes. We derive useful formulae for DRP and TE-DRP approximations. We compare accuracy of the numerical wavenumbers and numerical frequencies of the basic TE, DRP and TE-DRP approximations. Based on the developed approximations, we construct and numerically investigate 14 basic TE, DRP and TE-DRP finite-difference schemes on SG and CG. We find that (1) the TE second-order in time, TE fourth-order in space, 2-point in time, 4-point in space SG scheme (that is the standard (2,4) VS SG scheme, say TE-2-4-2-4-SG) is the best scheme (of the 14 investigated) for large fractions of the maximum possible time step, or, in other words, in a homogeneous medium; (2) the TE second-order in time, combined TE-DRP second-order in space, 2-point in time, 4-point in space SG scheme (say TE-DRP-2-2-2-4-SG) is the best scheme for small fractions of the maximum possible time step, or, in other words, in models with large velocity contrasts if uniform spatial grid spacing and time step are used. The practical conclusion is that in computer codes based on standard TE-2-4-2-4-SG, it is enough to redefine the values of the approximation coefficients by those of TE-DRP-2-2-2-4-SG for increasing accuracy of modelling in models with large velocity contrast between rock and sediments.
Establishing the equivalence between Szegedy's and coined quantum walks using the staggered model
NASA Astrophysics Data System (ADS)
Portugal, Renato
2016-04-01
Coined quantum walks (QWs) are being used in many contexts with the goal of understanding quantum systems and building quantum algorithms for quantum computers. Alternative models such as Szegedy's and continuous-time QWs were proposed taking advantage of the fact that quantum theory seems to allow different quantized versions based on the same classical model, in this case the classical random walk. In this work, we show the conditions upon which coined QWs are equivalent to Szegedy's QWs. Those QW models have in common a large class of instances, in the sense that the evolution operators are equal when we convert the graph on which the coined QW takes place into a bipartite graph on which Szegedy's QW takes place, and vice versa. We also show that the abstract search algorithm using the coined QW model can be cast into Szegedy's searching framework using bipartite graphs with sinks.
3D change detection in staggered voxels model for robotic sensing and navigation
NASA Astrophysics Data System (ADS)
Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.
2016-05-01
3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.
Dynamic inversion method based on the time-staggered stereo-modeling scheme and its acceleration
NASA Astrophysics Data System (ADS)
Jing, Hao; Yang, Dinghui; Wu, Hao
2016-09-01
A set of second-order differential equations describing the space-time behavior of derivatives of displacement with respect to model parameters (i.e. waveform sensitivities) is obtained via taking the derivative of the original wave equations. The dynamic inversion method obtains sensitivities of the seismic displacement field with respect to earth properties directly by solving differential equations for them instead of constructing sensitivities from the displacement field itself. In this study, we have taken a new perspective on the dynamic inversion method and used acceleration approaches to reduce the computational time and memory usage to improve its ability of performing high-resolution imaging. The dynamic inversion method, which can simultaneously use different waves and multi-component observation data, is appropriate for directly inverting elastic parameters, medium density or wave velocities. Full wave-field information is utilized as much as possible at the expense of a larger amount of calculations. To mitigate the computational burden, two ways are proposed to accelerate the method from a computer-implementation point of view. One is source encoding which uses a linear combination of all shots, and the other is to reduce the amount of calculations on forward modeling. We applied a new finite difference method to the dynamic inversion to improve the computational accuracy and speed up the performance. Numerical experiments indicated that the new finite difference method can effectively suppress the numerical dispersion caused by the discretization of wave equations, resulting in enhanced computational efficiency with less memory cost for seismic modeling and inversion based on the full wave equations. We present some inversion results to demonstrate the validity of this method through both checkerboard and Marmousi models. It shows that this method is also convergent even with big deviations for the initial model. Besides, parallel calculations can be
Staggered fermions, zero modes, and flavor-singlet mesons
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.
2011-09-12
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.
Staggered fermions, zero modes, and flavor-singlet mesons
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.
2011-09-12
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less
NASA Astrophysics Data System (ADS)
Magic, Z.; Weiss, A.; Asplund, M.
2015-01-01
Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http
Interacting dimers on the honeycomb lattice: an exact solution of the five-vertex model
NASA Astrophysics Data System (ADS)
Huang, H. Y.; Wu, F. Y.; Kunz, H.; Kim, D.
1996-02-01
The problem of close-packed dimers on the honeycomb lattice was solved by Kasteleyn in 1963. Here we extend the solution to include interactions between neighboring dimers in two spatial lattice directions. The solution is obtained by using the method of Bethe ansatz and by converting the dimer problem into a five-vertex problem. The complete phase diagram is obtained and it is found that a new frozen phase, in which the attracting dimers prevail, arises when the interaction is attractive. For repulsive dimer interactions a new first-order line separating two frozen phases occurs. The transitions are continuous and the critical behavior in the disorder regime is found to be the same as in the case of noninteracting dimers characterized by a specific heat exponent α = {1}/{2}.
NASA Astrophysics Data System (ADS)
Bohlen, Thomas; Wittkamp, Florian
2016-03-01
We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.
Staggered chiral random matrix theory
Osborn, James C.
2011-02-01
We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.
Strube, Jan; Graf, Norman; /SLAC
2006-03-03
This document describes the implementation of the topological vertex finding algorithm ZVTOP within the org.lcsim reconstruction and analysis framework. At the present date, Java vertexing tools allow users to perform topological vertexing on tracks that have been obtained from a Fast MC simulation. An implementation that will be able to handle fully reconstructed events is being designed from the ground up for longevity and maintainability.
NASA Astrophysics Data System (ADS)
Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.
2013-12-01
Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are
Kaon decay amplitudes using staggered fermions
Sharpe, S.R.
1986-12-01
A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K ..-->.. ..pi pi..,. Semi-quantitative results are found for the imaginary parts, and these suggest that epsilon' might be smaller than previously expected in the standard model.
QCD with rooted staggered fermions
NASA Astrophysics Data System (ADS)
Goltermann, M.
In this talk, I will give an overview of the theoretical status of staggered Lattice QCD with the “fourth-root trick.” In this regularization of QCD, a separate staggered quark field is used for each physical flavor, and the inherent four-fold multiplicity that comes with the use of staggered fermions is removed by taking the fourth root of the staggered determinant for each flavor. At nonzero lattice spacing, the resulting theory is nonlocal and not unitary, but there are now strong arguments that this disease is cured in the continuum limit. In addition, the approach to the continuum limit can be understood in detail in the framework of effective field theories such as staggered chiral perturbation theory.
NASA Astrophysics Data System (ADS)
Kaus, B.; Popov, A.
2014-12-01
The complexity of lithospheric rheology and the necessity to resolve the deformation patterns near the free surface (faults and folds) sufficiently well places a great demand on a stable and scalable modeling tool that is capable of efficiently handling nonlinearities. Our code LaMEM (Lithosphere and Mantle Evolution Model) is an attempt to satisfy this demand. The code utilizes a stable and numerically inexpensive finite difference discretization with the spatial staggering of velocity, pressure, and temperature unknowns (a so-called staggered grid). As a time discretization method the forward Euler, or a combination of the predictor-corrector and the fourth-order Runge-Kutta can be chosen. Elastic stresses are rotated on the markers, which are also used to track all relevant material properties and solution history fields. The Newtonian nonlinear iteration, however, is handled at the level of the grid points to avoid spurious averaging between markers and grid. Such an arrangement required us to develop a non-standard discretization of the effective strain-rate second invariant. Important feature of the code is its ability to handle stress-free and open-box boundary conditions, in which empty cells are simply eliminated from the discretization, which also solves the biggest problem of the sticky-air approach - namely large viscosity jumps near the free surface. We currently support an arbitrary combination of linear elastic, nonlinear viscous with multiple creep mechanisms, and plastic rheologies based on either a depth-dependent von Mises or pressure-dependent Drucker-Prager yield criteria.LaMEM is being developed as an inherently parallel code. Structurally all its parts are based on the building blocks provided by PETSc library. These include Jacobian-Free Newton-Krylov nonlinear solvers with convergence globalization techniques (line search), equipped with different linear preconditioners. We have also implemented the coupled velocity-pressure multigrid
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Thermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models
Enciso, Alberto; Finkel, Federico; Gonzalez-Lopez, Artemio
2012-11-15
We study the thermodynamic properties of spin chains of Haldane-Shastry type associated with the A{sub N-1} root system in the presence of a uniform external magnetic field. To this end, we exactly compute the partition function of these models for an arbitrary finite number of spins. We then show that these chains are equivalent to a suitable inhomogeneous classical Ising model in a spatially dependent magnetic field, generalizing the results of Basu-Mallick et al. for the zero magnetic field case. Using the standard transfer matrix approach, we are able to compute in closed form the free energy per site in the thermodynamic limit. We perform a detailed analysis of the chains' thermodynamics in a unified way, with special emphasis on the zero field and zero temperature limits. Finally, we provide a novel interpretation of the thermodynamic quantities of spin chains of Haldane-Shastry type as weighted averages of the analogous quantities over an ensemble of classical Ising models. - Highlights: Black-Right-Pointing-Pointer Partition function of spin chains of Haldane-Shastry type in magnetic field. Black-Right-Pointing-Pointer Equivalence to classical inhomogeneous Ising models. Black-Right-Pointing-Pointer Free energy per site, other thermodynamic quantities in thermodynamic limit. Black-Right-Pointing-Pointer Zero field, zero temperature limits. Black-Right-Pointing-Pointer Thermodynamic equivalence with ensemble of classical Ising models.
Karmanov, V. A.; Smirnov, A. V.; Mathiot, J.-F.
2007-02-15
In light-front dynamics, the regularization of amplitudes by traditional cutoffs imposed on the transverse and longitudinal components of particle momenta corresponds to restricting the integration volume by a nonrotationally invariant domain. The result depends not only on the size of this domain (i.e., on the cutoff values), but also on its orientation determined by the position of the light-front plane. Explicitly covariant formulation of light-front dynamics allows us to parametrize the latter dependence in a very transparent form. If we decompose the regularized amplitude in terms of independent invariant amplitudes, extra (nonphysical) terms should appear, with spin structures which explicitly depend on the orientation of the light-front plane. The number of form factors, i.e., the coefficients of this decomposition, therefore also increases. The spin-1/2 fermion self-energy is determined by three scalar functions, instead of the two standard ones, while for the elastic electromagnetic vertex the number of form factors increases from two to five. In the present paper we calculate perturbatively all these form factors in the Yukawa model. Then we compare the results obtained in the two following ways: (i) by using the light-front dynamics graph technique rules directly; (ii) by integrating the corresponding Feynman amplitudes in terms of the light-front variables. For each of these methods, we use two types of regularization: the transverse and longitudinal cutoffs, and the Pauli-Villars regularization. In the latter case, the dependence of amplitudes on the light-front plane orientation vanishes completely provided enough Pauli-Villars subtractions are made.
Beyond the percolation universality class: the vertex split model for tetravalent lattices
NASA Astrophysics Data System (ADS)
Nachtrab, Susan; Hoffmann, Matthias J. F.; Kapfer, Sebastian C.; Schröder-Turk, Gerd E.; Mecke, Klaus
2015-04-01
We propose a statistical model defined on tetravalent three-dimensional lattices in general and the three-dimensional diamond network in particular where the splitting of randomly selected nodes leads to a spatially disordered network, with decreasing degree of connectivity. The terminal state, that is reached when all nodes have been split, is a dense configuration of self-avoiding walks on the diamond network. Starting from the crystallographic diamond network, each of the four-coordinated nodes is replaced with probability p by a pair of two edges, each connecting a pair of the adjacent vertices. For all values 0≤slant p≤slant 1 the network percolates, yet the fraction fp of the system that belongs to a percolating cluster drops sharply at pc = 1 to a finite value fpc. This transition is reminiscent of a percolation transition yet with distinct differences to standard percolation behaviour, including a finite mass fpc\\gt 0 of the percolating clusters at the critical point. Application of finite size scaling approach for standard percolation yields scaling exponents for p\\to {{p}c} that are different from the critical exponents of the second-order phase transition of standard percolation models. This transition significantly affects the mechanical properties of linear-elastic realizations (e.g. as custom-fabricated models for artificial bone scaffolds), obtained by replacing edges with solid circular struts to give an effective density ϕ. Finite element methods demonstrate that, as a low-density cellular structure, the bulk modulus K shows a cross-over from a compression-dominated behaviour, K(φ )\\propto {{φ }κ } with κ ≈ 1, at p = 0 to a bending-dominated behaviour with κ ≈ 2 at p = 1.
STAGGERS IN SHEEP IN PATAGONIA
Jones, F. S.; Arnold, J. F.
1917-01-01
After observations and experimental work both in the field and laboratory, the following conclusions seem justified. 1. Staggers is a non-infectious disorder affecting horses, cattle, and sheep. 2. The disease is characterized by weakness, muscular twitching, irregular movements of the head, stiffness of the limbs, and transient motor paralysis, accompanied with spastic spasms on excitement. There is also a derangement of vision and conjunctivitis. 3. The postmortem lesions are not characteristic. 4. We readily produced the disease by feeding susceptible sheep on a coarse tuft grass commonly known as coiron or pampa grass (Poa argentina). 5. The time required to produce definite symptoms by feeding the grass varied. Two animals developed typical staggers after two feedings; in another instance a period of 21 days of feeding was required. The average time for the production of unmistakable symptoms in our experiments was 10 days. 6. Many sheep recover from staggers spontaneously. A complete change of diet will usually effect a cure within 2 weeks. 7. Older .animals that have pastured for long periods on lands where the grass grows become tolerant and are rarely affected with staggers. 8. The grass is toxic to sheep at all seasons of the year. We fed late winter and early spring grass and grass in flower, and produced staggers in every instance. The young green grass is as toxic as any edible portion of the plant. PMID:19868185
Taste changing in staggered quarks
Quentin Mason et al.
2004-01-05
The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.
On staggered indecomposable Virasoro modules
NASA Astrophysics Data System (ADS)
Kytölä, Kalle; Ridout, David
2009-12-01
In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the "left module," and that the quotient by this submodule yields another highest weight module, the "right module." Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.
Vertex Detector Cable Considerations
Cooper, William E.; /Fermilab
2009-02-01
Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.
Artificial staggered magnetic field for ultracold atoms in optical lattices
Lim, Lih-King; Smith, C. Morais; Hemmerich, Andreas
2010-02-15
A time-dependent optical lattice with staggered particle current in the tight-binding regime was considered that can be described by a time-independent effective lattice model with an artificial staggered magnetic field. The low-energy description of a single-component fermion in this lattice at half-filling is provided by two copies of ideal two-dimensional massless Dirac fermions. The Dirac cones are generally anisotropic and can be tuned by the external staggered flux {phi}. For bosons, the staggered flux modifies the single-particle spectrum such that in the weak coupling limit, depending on the flux {phi}, distinct superfluid phases are realized. Their properties are discussed, the nature of the phase transitions between them is established, and Bogoliubov theory is used to determine their excitation spectra. Then the generalized superfluid-Mott-insulator transition is studied in the presence of the staggered flux and the complete phase diagram is established. Finally, the momentum distribution of the distinct superfluid phases is obtained, which provides a clear experimental signature of each phase in ballistic expansion experiments.
Jaspers, Stijn; Verbeke, Geert; Böhning, Dankmar; Aerts, Marc
2016-01-01
In the last decades, considerable attention has been paid to the collection of antimicrobial resistance data, with the aim of monitoring non-wild-type isolates. This monitoring is performed based on minimum inhibition concentration (MIC) values, which are collected through dilution experiments. We present a semi-parametric mixture model to estimate the entire MIC density on the continuous scale. The parametric first component is extended with a non-parametric second component and a new back-fitting algorithm, based on the Vertex Exchange Method, is proposed. Our data example shows how to estimate the MIC density for Escherichia coli tested for ampicillin and how to use this estimate for model-based classification. A simulation study was performed, showing the promising behavior of the new method, both in terms of density estimation as well as classification.
Magnetic wormholes and vertex operators
Singh, H. )
1994-10-15
We consider wormhole solutions in 2+1 Euclidean dimensions. A duality transformation is introduced to derive a new action from the magnetic wormhole action of Gupta, Hughes, Preskill, and Wise. The classical solution is presented. The vertex operators corresponding to the wormhole are derived. Conformally coupled scalars and spinors are considered in the wormhole background and the vertex operators are computed.
On Making a Distinguished Vertex Minimum Degree by Vertex Deletion
NASA Astrophysics Data System (ADS)
Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf; Uhlmann, Johannes
For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-hard when parameterized by the graph's feedback arc set number, whereas it becomes fixed-parameter tractable when combining the parameters "feedback vertex set number" and "number of vertices to delete". For the so far unstudied undirected case, we show that the problem is NP-hard and W[1]-hard when parameterized by the "number of vertices to delete". On the positive side, we show fixed-parameter tractability for several parameterizations measuring tree-likeness, including a vertex-linear problem kernel with respect to the parameter "feedback edge set number". On the contrary, we show a non-existence result concerning polynomial-size problem kernels for the combined parameter "vertex cover number and number of vertices to delete", implying corresponding nonexistence results when replacing vertex cover number by treewidth or feedback vertex set number.
Effect of initial stagger selection on the handedness of Amyloid beta helical fibrils
Ghattyvenkatakrishna, Pavan K; Cheng, Xiaolin; Uberbacher, Edward C
2013-01-01
Various structural models for Amyloid $\\beta$ fibrils derived from a variety of experimental techniques are currently available. However, this data cannot differentiate between the relative position of the two arms of the $\\beta$ hairpin called the stagger. Amyloid fibrils of various heirarchical levels form left--handed helices composed of $\\beta$ sheets. However it is unclear if positive, negative and neutral staggers all form the macroscopic left--handed helices. Studying this is important since the success of computational approaches to develop drugs for amyloidic diseases will depend on selecting the physiologically relevant structure of the sheets. To address this issue we have conducted extensive molecular dynamics simulations of Amyloid$\\beta$ sheets of various staggers and show that only negative staggers generate the experimentally observed left--handed helices while positive staggers generate the incorrect right--handed helices. The implications of this result extend in to all amyloidic--aggregation type diseases.
Staggering towards a calculation of weak amplitudes
Sharpe, S.R.
1988-09-01
An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.
Possible Aoki phase for staggered fermions
Aubin, C.; Wang Qinghai
2004-12-01
The phase diagram for staggered fermions is discussed in the context of the staggered chiral Lagrangian, extending previous work on the subject. When the discretization errors are significant, there may be an Aoki-like phase for staggered fermions, where the remnant SO(4) taste-symmetry is broken down to SO(3). We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss qualitatively the 2+1-flavor case. From numerical results we find that current simulations are outside the staggered-Aoki phase. As for near-future simulations with more-improved versions of the staggered action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass, although the evidence is not conclusive.
The CDF silicon vertex tracker
A. Cerri et al.
2000-10-10
Real time pattern recognition is becoming a key issue in many position sensitive detector applications. The CDF collaboration is building SVT: a specialized electronic device designed to perform real time track reconstruction using the silicon vertex detector (SVX II). This will strongly improve the CDF capability of triggering on events containing b quarks, usually characterized by the presence of a secondary vertex. SVT is designed to reconstruct in real time charged particles trajectories using data coming from the Silicon Vertex detector and the Central Outer Tracker drift chamber. The SVT architecture and algorithm have been specially tuned to minimize processing time without degrading parameter resolution.
The formation of a yield-surface vertex in rock
Olsson, W.A.
1992-01-01
Microstructural models of deformation of polycrystalline materials suggest that inelastic deformation leads to the formation of a corner or vertex at the current load point. This vertex can cause the response to non-proportional loading to be more compliant than predicted by the smooth yield-surface idealization. Combined compression-torsion experiments on Tennessee marble indicate that a vertex forms during inelastic flow. An important implication is that strain localization by bifurcation occurs earlier than predicted by bifurcation analysis using isotropic hardening.
Complex growing networks with intrinsic vertex fitness
Bedogne, C.; Rodgers, G. J.
2006-10-15
One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution {rho}(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a rate f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined.
The effect of staggering a biplane
NASA Technical Reports Server (NTRS)
Norton, F H
1921-01-01
This investigation was carried out by request of the United States Air Service at the Massachusetts Institute of Technology wind tunnel in 1918. As the data collected may be of general interest, they are published here by the National Advisory Committee for Aeronautics. The lift, drag, and center of pressure travel are determined for a biplane with a stagger varying from +100% to -100%. It is found that the efficiency and the maximum lift increase with positive stagger. With large positive staggers the center of pressure is far forward and has a very slight travel with changes in lift coefficient.
Pseudoscalar flavor-singlets and staggered fermions
NASA Astrophysics Data System (ADS)
Gregory, Eric
2006-12-01
The Asqtad improved staggered fermion formalism has been a valuable tool in successfully cal- culating the non-singlet parts of the hadronic spectrum. We are engaged in a project to calculate the spectrum of the pseudoscalar singlet mesons with 2 + 1-flavor Asqtad staggered gauge con- figurations. Propagators of flavor-singlet states incorporate contributions from both disconnected and connected diagrams, and hence are sensitive to any differences in the actions governing the sea and valence fermions on the lattice. As such, they also present the possibility of a probe of the validity of the "fourth-root trick" in the staggered fermion formulation. We present an update on our progress toward measuring the η mass on 2 + 1-flavor Asqtad staggered gauge configura- tions, including a review of methods and preliminary results. We also show a strong correlation between Tr(γ5 ⊗ 1) and the topological charge in these configurations, as predicted by the index theorem.
Spin wave Feynman diagram vertex computation package
NASA Astrophysics Data System (ADS)
Price, Alexander; Javernick, Philip; Datta, Trinanjan
Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
NASA Astrophysics Data System (ADS)
Belich, H.; Cuba, G.; Paunov, R.
1998-10-01
We study the relation between the group-algebraic approach and the dressing symmetry one to the soliton solutions of the An(1) Toda field theory in 1+1 dimensions. Originally, solitons in the affine Toda models were found by Olive, Turok, and Underwood. Single solitons are created by exponentials of elements which ad-diagonalize the principal Heisenberg subalgebra. Alternatively, Babelon and Bernard exploited the dressing symmetry to reproduce the known expressions for the fundamental tau functions in the sine-Gordon model. In this paper we show the equivalence between these two methods to construct solitons in the An(1) Toda models.
Hessian and graviton propagator of the proper vertex
NASA Astrophysics Data System (ADS)
Chaharsough Shirazi, Atousa; Engle, Jonathan; Vilensky, Ilya
2016-10-01
The proper spin-foam vertex amplitude is obtained from the EPRL vertex by projecting out all but a single gravitational sector, in order to achieve correct semi-classical behavior. In this paper we calculate the gravitational two-point function predicted by the proper spin-foam vertex to lowest order in the vertex expansion. We find the same answer as in the EPRL case in the ‘continuum spectrum’ limit, so that the theory is consistent with the predictions of linearized gravity in the regime of small curvature. The method for calculating the two-point function is similar to that used in prior works: we cast it in terms of an action integral and use stationary phase methods. Thus, the calculation of the Hessian matrix plays a key role. Once the Hessian is calculated, it is used not only to calculate the two-point function, but also to calculate the coefficient appearing in the semi-classical limit of the proper vertex amplitude itself. This coefficient is the effective discrete ‘measure factor’ encoded in the spin-foam model. Through a non-trivial cancellation of different factors, we find that this coefficient is the same as the coefficient in front of the term in the asymptotics of the EPRL vertex corresponding to the selected gravitational sector.
Anomalous pseudoscalar-photon vertex in and out of equilibrium
Kumar, S. Prem; Boyanovsky, Daniel; Vega, Hector J. de
2000-03-15
The anomalous pseudoscalar-photon vertex is studied in real time in and out of equilibrium in a constituent quark model. The goal is to understand the in-medium modifications of this vertex, exploring the possibility of enhanced isospin breaking by electromagnetic effects as well as the formation of neutral pion condensates in a rapid chiral phase transition in peripheral, ultrarelativistic heavy-ion collisions. In equilibrium the effective vertex is afflicted by infrared and pinch singularities that require hard thermal loop and width corrections of the quark propagator. The resumed effective equilibrium vertex vanishes near the chiral transition in the chiral limit. In a strongly out of equilibrium chiral phase transition we find that the chiral condensate drastically modifies the quark propagators and the effective vertex. The ensuing dynamics for the neutral pion results in a potential enhancement of isospin breaking and the formation of {pi}{sup 0} condensates. While the anomaly equation and the axial Ward identity are not modified by the medium in or out of equilibrium, the effective real-time pseudoscalar-photon vertex is sensitive to low energy physics. (c) 2000 The American Physical Society.
Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.
1987-07-01
The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.
The Not-so-Staggering Effect of Staggered Animated Transitions on Visual Tracking.
Chevalier, Fanny; Dragicevic, Pierre; Franconeri, Steven
2014-12-01
Interactive visual applications often rely on animation to transition from one display state to another. There are multiple animation techniques to choose from, and it is not always clear which should produce the best visual correspondences between display elements. One major factor is whether the animation relies on staggering-an incremental delay in start times across the moving elements. It has been suggested that staggering may reduce occlusion, while also reducing display complexity and producing less overwhelming animations, though no empirical evidence has demonstrated these advantages. Work in perceptual psychology does show that reducing occlusion, and reducing inter-object proximity (crowding) more generally, improves performance in multiple object tracking. We ran simulations confirming that staggering can in some cases reduce crowding in animated transitions involving dot clouds (as found in, e.g., animated 2D scatterplots). We empirically evaluated the effect of two staggering techniques on tracking tasks, focusing on cases that should most favour staggering. We found that introducing staggering has a negligible, or even negative, impact on multiple object tracking performance. The potential benefits of staggering may be outweighed by strong costs: a loss of common-motion grouping information about which objects travel in similar paths, and less predictability about when any specific object would begin to move. Staggering may be beneficial in some conditions, but they have yet to be demonstrated. The present results are a significant step toward a better understanding of animation pacing, and provide direction for further research.
Examining B(M1) staggering as a fingerprint for chiral doublet bands
Qi, B.; Yao, J. M.; Zhang, S. Q.; Wang, S. Y.; Meng, J.
2009-04-15
The electromagnetic transitions of the doublet bands with different triaxiality parameter {gamma} are discussed in the particle rotor model with {pi}h{sub 11/2} x {nu}h{sub 11/2}{sup -1} configuration. It is found that B(M1) staggering as well as the resulting B(M1)/B(E2) and B(M1){sub in}/B(M1){sub out} staggering are sensitive to the triaxiality parameter {gamma}, and they associate strongly with the characters of nuclear chirality for 15 deg. {<=}{gamma}{<=}30 deg., i.e., the staggering is weak in the chiral vibration region while strong in the static chirality region. For partner bands with near degenerate energy spectra and similar B(M1) and B(E2) transitions, the strong B(M1) staggering can be used as a fingerprint for the static chirality.
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Staggered heavy baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
Non-perturbative Renormalization with Staggered Fermions
NASA Astrophysics Data System (ADS)
Lytle, Andrew
Lattice studies of Standard Model phenomenology frequently require knowledge of matching factors, or "Z-factors," that convert lattice operators defined at the lattice scale to operators in a continuum scheme at a scale mu. We make the first non-perturbative determinations of Z-factors for improved, fully dynamical staggered fermions. We compute the mass renormalization factor Zm for the Asqtad action, which is the action used by the MILC collaboration[1]. We find the strange quark mass to be mMSs (2 GeV) = 103(3) MeV; significantly larger than the result obtained using the perturbative Z-factor[2]. We compute all 256 bilinear Z-factors for the HYP-smeared action, which provides a laboratory for comparison to the results of one-loop perturbation theory[3]. Our results indicate broad agreement for ratios of Z-factors, at the few percent level, while the Z-factors themselves differ at around the ten percent level. The bilinear calculations are a stepping stone towards computation of the four-Fermi Z-factors relevant for an ongoing precision calculation of BK[4, 5, 6, 7], the knowledge of which is used to constrain the CKM matrix. Uncertainty in the required matching factors constitutes the dominant source of error.
Calculus of twisted vertex operators
Lepowsky, J.
1985-01-01
Starting from an arbitrary isometry of an arbitrary even lattice, twisted and shifted vertex operators are introduced. Under commutators, these operators provide realizations of twisted affine Lie algebras. This construction, generalizing a number of known ones, is based on a self-contained “calculus.” PMID:16593635
NASA Astrophysics Data System (ADS)
Popov, Anton; Kaus, Boris
2015-04-01
This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of
A Novel Vertex Affinity for Community Detection
Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot
2015-10-05
We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.
Staggered Multiple-PRF Ultrafast Color Doppler.
Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien
2016-06-01
Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.
Scalar meson spectroscopy with lattice staggered fermions
Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa
2007-11-01
With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.
Belle II silicon vertex detector
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-09-01
The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.
Universal vertex-IRF transformation for quantum affine algebras
Buffenoir, E.; Roche, Ph.; Terras, V.
2012-10-15
We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-faces (IRF) height model.
STAR Vertex Detector Upgrade Development
Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu,Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming
2008-01-28
We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented.
Refining the shifted topological vertex
Drissi, L. B.; Jehjouh, H.; Saidi, E. H.
2009-01-15
We study aspects of the refining and shifting properties of the 3d MacMahon function C{sub 3}(q) used in topological string theory and BKP hierarchy. We derive the explicit expressions of the shifted topological vertex S{sub {lambda}}{sub {mu}}{sub {nu}}(q) and its refined version T{sub {lambda}}{sub {mu}}{sub {nu}}(q,t). These vertices complete results in literature.
NASA Astrophysics Data System (ADS)
Aganagic, Mina; Klemm, Albrecht; Mariño, Marcos; Vafa, Cumrun
2005-03-01
We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kähler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
Nonintersecting string model and graphical approach: equivalence with a Potts model
Perk, J.H.H.; Wu, F.Y.
1986-03-01
Using a graphical method the authors establish the exact equivalence of the partition function of a q-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced lattice with that of a q/sub 2/-state Potts model on a relaxed lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagome lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition for q greater than 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model the authors discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases.
Nonintersecting string model and graphical approach: Equivalence with a Potts model
NASA Astrophysics Data System (ADS)
Perk, J. H. H.; Wu, F. Y.
1986-03-01
Using a graphical method we establish the exact equivalence of the partition function of a q-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced, lattice with that of a q2-state Potts model on a related lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagomé lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition for q > 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model we discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases.
Staggered solution procedures for multibody dynamics simulation
NASA Astrophysics Data System (ADS)
Park, K. C.; Chiou, J. C.; Downer, J. D.
1990-04-01
The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange
Towards an understanding of staggering effects in dissipative binary collisions
NASA Astrophysics Data System (ADS)
D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V. L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad. R.
2012-02-01
The reactions S32+58Ni are studied at 14.5 A MeV. Evidence is found for important odd-even effects in isotopic observables of selected peripheral collisions corresponding to the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique. It is shown that this method is a powerful tool to get experimental information on the evaporation chain, in order to constrain model calculations. Specifically, we show that odd-even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.
NASA Astrophysics Data System (ADS)
Alipour Tehrani, Niloufar
2016-07-01
A vertex detector concept is under development for the proposed multi-TeV linear e+e- Compact Linear Collider (CLIC). To perform precision physics measurements in a challenging environment, the CLIC vertex detector pushes the technological requirements to the limits. This paper reviews the requirements for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensor, readout, powering and cooling.
Fan Stagger Angle for Dirt Rejection
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)
2015-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.
NASA Astrophysics Data System (ADS)
Tan, Sirui; Huang, Lianjie
2014-11-01
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.
Tan, Sirui; Huang, Lianjie
2014-11-01
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.
Interaction vertex for classical spinning particles
NASA Astrophysics Data System (ADS)
Rempel, Trevor; Freidel, Laurent
2016-08-01
We consider a model of the classical spinning particle in which the coadjoint orbits of the Poincaré group are parametrized by two pairs of canonically conjugate four-vectors, one representing the standard position and momentum variables, and the other encoding the spinning degrees of freedom. This "dual phase space model" is shown to be a consistent theory of both massive and massless particles and allows for coupling to background fields such as electromagnetism. The on-shell action is derived and shown to be a sum of two terms, one associated with motion in spacetime, and the other with motion in "spin space." Interactions between spinning particles are studied, and a necessary and sufficient condition for consistency of a three-point vertex is established.
Effects of cold acclimation on the energetic metabolism of the staggerer mutant mouse.
Bertin, R; Guastavino, J M; Portet, R
1990-02-01
Staggerer mutant mice are lean despite their hyperphagia. Brown adipose tissue activity may be implicated in this phenomenon. The aim of this work is to determine the energetic metabolism and to detail some characteristics of the brown adipose tissue of Staggerer mutant mice born and reared either at 28 degrees C (within the thermoneutral zone) or 22 degrees C (cold temperature) compared to nonmutant control mice. In mutant mice reared at thermoneutrality the resting metabolism was found to be higher than that of controls, and further the activity of the brown adipose tissue increased as indicated in relative mass, composition and cytochrome oxydase activity. A stimulatory effect of cold exposure was observed in both mutant and nonmutant mice. It is suggested that Staggerer mice may provide a good model for the study of the cold-induced or diet-induced mechanisms of brown fat stimulation.
Critical behavior of two-dimensional models with spatially modulated phases: Analytic results
NASA Astrophysics Data System (ADS)
Ruján, P.
1981-12-01
The two-dimensional Elliott [or axial next-nearest-neighbor Ising (ANNNI)] model is mapped into an eight-vertex model with direct and staggered fields. With the use of the transfer-matrix approach it is shown that the dual of the ANNNI model belongs to the universality class of the one-dimensional quantum XY model in a staggered field at T=0. The phase structure is investigated by high- and low-temperature expansions of the correlation length and by spin-wave-like approximations valid in first order at low and high temperatures, respectively. The fact that the phase diagram obtained at low temperatures agrees qualitatively with recent results by Villain and Bak and by Coppersmith et al. shows that the paramagnetic phase extends until T=0. The role of the umklapp scattering in determining the critical wave vector in the modulated phase and in stabilizing the <2> antiphase is pointed out. In the eight-vertex representation the critical indices are identified in the floating, massless phase. The dislocations destabilizing this incommensurate phase correspond to the energy operator of the eight-vertex model. Finally, it is argued that the apparent contradiction between the low-temperature results on one hand, and the Monte Carlo simulations and high-temperature-expansion results on the other hand, is probably due to the strong oscillatory behavior of spin-spin correlation functions in the massive paramagnetic region.
Proposal for a CLEO precision vertex detector
Not Available
1991-01-01
Fermilab experiment E691 and CERN experiment NA32 have demonstrated the enormous power of precision vertexing for studying heavy quark physics. Nearly all collider experiments now have or are installing precision vertex detectors. This is a proposal for a precision vertex detector for CLEO, which will be the pre-eminent heavy quark experiment for at least the next 5 years. The purpose of a precision vertex detector for CLEO is to enhance the capabilities for isolating B, charm, and tau decays and to make it possible to measure the decay time. The precision vertex detector will also significantly improve strange particle identification and help with the tracking. The installation and use of this detector at CLEO is an important step in developing a vertex detector for an asymmetric B factory and therefore in observing CP violation in B decays. The CLEO environment imposes a number of unique conditions and challenges. The machine will be operating near the {gamma} (4S) in energy. This means that B's are produced with a very small velocity and travel a distance about {1/2} that of the expected vertex position resolution. As a consequence B decay time information will not be useful for most physics. On the other hand, the charm products of B decays have a higher velocity. For the long lived D{sup +} in particular, vertex information can be used to isolate the charm particle on an event-by-event basis. This helps significantly in reconstructing B's. The vertex resolution for D's from B's is limited by multiple Coulomb scattering of the necessarily rather low momentum tracks. As a consequence it is essential to minimize the material, as measured in radiation lengths, in the beam pip and the vertex detector itself. It is also essential to build the beam pipe and detector with the smallest possible radius.
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.; Omura, J. K.
1982-01-01
In this paper, the performance of staggered quadrature modulations over nonlinear satellite channels is analyzed. The effects of uplink noise and intersymbol interference caused by transmitter filtering are included. The approach taken employs computational techniques based on moments of the interference. The expressions for the system bit error rate are derived for a general transponder model characterized by AM-AM and AM-PM conversion characteristics. Specific numerical results are presented for a hard-limited satellite repeater using staggered quadrature overlapped raised cosine (SQORC) and minimum-shift-keying (MSK) modulations.
The CDF silicon vertex trigger
B. Ashmanskas; A. Barchiesi; A. Bardi
2003-06-23
The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and output, a common inter-board data link, and a universal ''Merger'' board for data fan-in/fan-out. Speed and adaptability are enhanced by use of modern FPGAs.
Proposed proper Engle-Pereira-Rovelli-Livine vertex amplitude
NASA Astrophysics Data System (ADS)
Engle, Jonathan
2013-04-01
As established in a prior work of the author, the linear simplicity constraints used in the construction of the so-called “new” spin-foam models mix three of the five sectors of Plebanski theory as well as two dynamical orientations, and this is the reason for multiple terms in the asymptotics of the Engle-Pereira-Rovelli-Livine vertex amplitude as calculated by Barrett et al. Specifically, the term equal to the usual exponential of i times the Regge action corresponds to configurations either in sector (II+) with positive orientation or sector (II-) with negative orientation. The presence of the other terms beyond this cause problems in the semiclassical limit of the spin-foam model when considering multiple 4-simplices due to the fact that the different terms for different 4-simplices mix in the semiclassical limit, leading in general to a non-Regge action and hence non-Regge and nongravitational configurations persisting in the semiclassical limit. To correct this problem, we propose to modify the vertex so its asymptotics include only the one term of the form eiSRegge. To do this, an explicit classical discrete condition is derived that isolates the desired gravitational sector corresponding to this one term. This condition is quantized and used to modify the vertex amplitude, yielding what we call the “proper Engle-Pereira-Rovelli-Livine vertex amplitude.” This vertex still depends only on standard SU(2) spin-network data on the boundary, is SU(2) gauge-invariant, and is linear in the boundary state, as required. In addition, the asymptotics now consist in the single desired term of the form eiSRegge, and all degenerate configurations are exponentially suppressed. A natural generalization to the Lorentzian signature is also presented.
Staggered fermion matrix elements using smeared operators
NASA Astrophysics Data System (ADS)
Kilcup, Greg; Gupta, Rajan; Sharpe, Stephen R.
1998-02-01
We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 44 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0, 6.2, and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2 GeV)=0.62+/-0.02(stat)+/-0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one loop. We do not include any estimate of the errors due to quenching or to the use of degenerate s and d quarks. For the ΔI=3/2 electromagnetic penguin operators we find B(3/2)7=0.62+/-0.03+/-0.06 and B(3/2)8=0.77+/-0.04+/-0.04. We also use the ratio of unsmeared to smeared operators to make a partially nonperturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be αMS¯(q*=1/a).
Edge union of networks on the same vertex set
NASA Astrophysics Data System (ADS)
Loe, Chuan Wen; Jeldtoft Jensen, Henrik
2013-06-01
Random network generators such as Erdős-Rényi, Watts-Strogatz and Barabási-Albert models are used as models to study real-world networks. Let G1(V, E1) and G2(V, E2) be two such networks on the same vertex set V. This paper studies the degree distribution and clustering coefficient of the resultant networks, G(V, E1∪E2).
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
Matevosyan, Hrayr H.; Thomas, Anthony W.; Tandy, Peter C.
2007-04-15
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied from the u/d region to the b region.
A spin glass approach to the directed feedback vertex set problem
NASA Astrophysics Data System (ADS)
Zhou, Hai-Jun
2016-07-01
A directed graph (digraph) is formed by vertices and arcs (directed edges) from one vertex to another. A feedback vertex set (FVS) is a set of vertices that contains at least one vertex of every directed cycle in this digraph. The directed feedback vertex set problem aims at constructing a FVS of minimum cardinality. This is a fundamental cycle-constrained hard combinatorial optimization problem with wide practical applications. In this paper we construct a spin glass model for the directed FVS problem by converting the global cycle constraints into local arc constraints, and study this model through the replica-symmetric (RS) mean field theory of statistical physics. We then implement a belief propagation-guided decimation (BPD) algorithm for single digraph instances. The BPD algorithm slightly outperforms the simulated annealing algorithm on large random graph instances. The RS mean field results and algorithmic results can be further improved by working on a more restrictive (and more difficult) spin glass model.
Reductions in transformer losses achieved by staggering lamination layers
NASA Astrophysics Data System (ADS)
Albir, R. S.; Moses, A. J.
1989-05-01
The total loss of identical 3-phase, 3-limb, mitred and staggered cores assembled from 0.3 mm thick, conventional high permeability and laser scribed grain oriented silicon iron have been compared. The croes built from conventional material produced the best improvements when staggered and these were chosen to carry out further investigation to examine the effect of the stacking number and the T-joint design on the power loss of the cores. The power loss generally increased as the stagger length was increased, but an optimum stagger length range was determined at which the power loss was lowest. The percentage improvement in the power loss due to the introduction of the staggered technique is dependent upon the orientation of the material and the T-joint design. The best loss reduction compared to a mitred core of the same rating was around 5% using a core assembled from conventional material.
Vertex amplitudes in spin foam loop quantum cosmology
NASA Astrophysics Data System (ADS)
Craig, David
2016-03-01
We discuss properties of the vertex expansion for homogeneous, isotropic loop quantum cosmological models sourced by a massless, minimally coupled scalar field, which in this model plays the role of an internal matter ``clock''. We show that the vertex expansion, first written down by Ashtekar, Campiglia and Henderson, must be thought of as a short-time expansion in the sense that the amplitude for volume transitions is constrained both by the order of the expansion and by the elapsed scalar field. To calculate the amplitude for significant volume changes or between large differences in the value of the scalar field requires the expansion be evaluated to very high order. This contribution describes work in collaboration with P. Singh.
Proposal of a Bulk HTSC Staggered Array Undulator
Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.; Sonobe, Taro; Higashimura, Keisuke; Masuda, Kai; Ohgaki, Hideaki; Yoshida, Kyohei; Zen, Heisyun
2010-06-23
We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on the Bean mode for a type-II superconductor were compared.
Power module assemblies with staggered coolant channels
Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D
2013-07-16
A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.
Penguin diagrams for improved staggered fermions
Lee, Weonjong
2005-01-01
We calculate, at the one-loop level, penguin diagrams for improved staggered fermion operators constructed using various fat links. The main result is that diagonal mixing coefficients with penguin operators are identical between the unimproved operators and the improved operators using such fat links as Fat7, Fat7+Lepage, Fat7, HYP (I) and HYP (II). In addition, it turns out that the off-diagonal mixing vanishes for those constructed using fat links of Fat7, Fat7 and HYP (II). This is a consequence of the fact that the improvement by various fat links changes only the mixing with higher dimension operators and off-diagonal operators. The results of this paper, combined with those for current-current diagrams, provide complete matching at the one-loop level with all corrections of O(g{sup 2}) included.
Thermal Protection System with Staggered Joints
NASA Technical Reports Server (NTRS)
Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)
2014-01-01
The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.
Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.
Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo
2016-08-01
Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs. PMID:27505782
Experimental Study of Aligned and Staggered Wind Farms in a Convective Boundary Layer
NASA Astrophysics Data System (ADS)
Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando
2011-11-01
Wind farm-atmosphere interaction is complicated by turbine configuration and thermal effects on momentum and kinetic energy fluxes. Wind farms of finite length have been modeled as increased surface roughness or as a sparse canopy; however it is not clear which approach is more appropriate. Experiments were conducted in a thermally controlled boundary layer wind tunnel, using a custom x-wire/cold wire and surface heat flux sensors, to understand the effect of aligned versus staggered turbine configurations on momentum absorption and flow adjustment in a convective boundary layer (CBL). Results for experiments of a large farm show the span-wise averaged flow statistics exhibit similar turbulent transport properties to that of canopy flows. The wake adjusts within and grows over the farm more quickly for a staggered compared to an aligned farm. Using canopy flow scaling, we show that the flow equilibrates faster and the overall momentum absorption is higher in a staggered compared to an aligned farm. Wake recovery behind a single turbine is facilitated by buoyancy in a CBL (Zhang et al. under review). We find a similar effect in wind farms resulting in reduced effective roughness and momentum absorption. We also find a reduction of surface heat flux for both wind farms, but greater for the staggered farm.
Staggering Inflation To Stabilize Attitude of a Solar Sail
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; West, John
2007-01-01
A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.
The quark-gluon vertex in Landau gauge bound-state studies
NASA Astrophysics Data System (ADS)
Williams, Richard
2015-05-01
We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations.
NASA Astrophysics Data System (ADS)
Ismail, Kamal, Samsul; Purnomo, Sarjiya
2016-06-01
This investigation was conducted to identify the influences of the two positions (non-staggered and staggered) of wind turbine arrays. Identification on down-scaled size wind turbine arrays was carried out in an open circuit, suction-type wind tunnel. Based on the results of the experiment, empirical relations for the centreline velocity deficit, tipline velocity deficit and wake radius are proposed. The non-staggered position results are larger power generated than that of the staggered position, this influenced by the trend deficit in velocity that makes wind turbine generated power difference between staggered position and non-stagger position. The area used non-staggered position larger than staggered position. Result staggered position has become one of the solutions to harness wind farms confined areas.
The possibility for a short-period hybrid staggered undulator.
Sasaki, S.; Experimental Facilities Division
2005-01-01
A short-period hybrid-type staggered undulator is proposed. A proper combination of vanadium Permendur (VP) pole and NdFeB magnet provide approximately 40% larger peak field strength than a conventional staggered undulator. The peak field of a 15-mm-period hybrid staggered undulator exceeds 0.8 T at a gap of 6 mm. Also, by using dysprosium as a pole and PrFeB as a magnet at liquid nitrogen temperature (77K), even higher peak field ({approx} 0.94 T) can be achieved at the same gap.
Optimal Designs of Staggered Dean Vortex Micromixers
Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei
2011-01-01
A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°. PMID:21747691
Rooted staggered fermions: good, bad or ugly?
NASA Astrophysics Data System (ADS)
Sharpe, Stephen
2006-12-01
I give a status report on the validity of the so-called "fourth-root trick", i.e. the procedure of representing the determinant for a single fermion by the fourth root of the staggered fermion determinant. This has been used by the MILC collaboration to create a large ensemble of lattices using which many quantities of physical interest have been and are being calculated. It is also used extensively in studies of QCD thermodynamics. The main question is whether the theory so defined has the correct continuum limit. There has been significant recent progress towards answering this question. After recalling the issue, and putting it into a broader context of results from statistical mechanics, I critically review the new work. I also address the related issue of the impact of treating valence and sea quarks differently in rooted simulations, discuss whether rooted simulations at finite temperature and density are subject to additional concerns, and briefly update results for quark masses using the MILC configurations. An answer to the question in the title is proposed in the summary.
Rail coal transportation under the Staggers Act
Carpenter, A.R.
1984-01-01
The Stagger's Act of 1980 offered railroads the opportunity to accelerate growth along with the coal industry in efforts to increase market for both the product (coal) and the service provided. It provides for cost recovery indexing allowing railroads to stay abreast of inflation and flexibility in setting and changing rates. It also allows railroads to enter directly into contract agreements with shippers. Railroads have used extreme caution in implementing these liberties so that the coal industry would not be severely impacted by these changes. They could have raised rates by as much as 52.3% under the new guidelines, but only raised them by 31.6% in the Eastern market and by 21.3% for export coal. The president of CSX Railroads stresses the symbiotic relationship existing between railroads and the coal industry. He suggests that separate sectors of the coal industry stop pointing fingers at one another and join hands to solve coal's competitive problems in the overseas export market. He calls for the formation of a blue-ribbon panel representing all of the parties with a stake in coal to implement such a cooperative effort. (DMC)
Efficiency and optimal allocation in the staggered entry design
Link, W.A.
1993-01-01
The staggered entry design for survival analysis specifies that r left-truncated samples are to be used in estimation of a population survival function. The ith sample is taken at time Bi, from the subpopulation of individuals having survival time exceeding Bi. This paper investigates the performance of the staggered entry design relative to the usual design in which all samples have a common time origin. The staggered entry design is shown to be an attractive alternative, even when not necessitated by logistical constraints. The staggered entry design allows for increased precision in estimation of the right tail of the survival function, especially when some of the data may be censored. A trade-off between the range of values for which the increased precision occurs and the magnitude of the increased precision is demonstrated.
Turbulent flow and scalar flux through and over aligned and staggered wind farms
NASA Astrophysics Data System (ADS)
Markfort, C. D.; Zhang, W.; Porté-Agel, F.
2012-04-01
Wind farm-atmosphere interaction is complicated by the effect of turbine array configuration on momentum, scalar and kinetic energy fluxes. Wind turbine arrays are often arranged in rectilinear grids and, depending on the wind direction, may be perfectly aligned or perfectly staggered. The two extreme configurations make up the end members of a spectrum of infinite possible layouts. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux, including heat, evaporation and trace gas (e.g. CO2) fluxes affected by wind farms, need to be properly parameterized in large-scale models. Experiments involving model wind farms in aligned and staggered configurations, consisting of 13 rows with equivalent turbine density, were conducted in a thermally-controlled boundary-layer wind tunnel. Measurements of the turbulent flow were made using a custom x-wire/cold wire within and over the wind farms. Particular focus was placed on studying the effect of wind farm layout on flow adjustment, momentum and scalar fluxes, and turbulent kinetic energy distribution. Results show that the turbulence statistics of the flow exhibit similar turbulent transport properties to those of canopy flows, but retain some characteristic surface layer properties in a limited region above the wind farms as well. The initial wake growth over columns of turbines in the aligned wind farm is faster. However, the overall wake adjusts within and grows more rapidly over the staggered farm. The effective roughness of the staggered farm was found to be significantly larger than that of the aligned farm. The flow equilibrates faster, and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling. Lower surface heat flux was found for the wind farms compared to the boundary
Topological susceptibility in staggered fermion chiral perturbation theory
Billeter, Brian; DeTar, Carleton; Osborn, James
2004-10-01
The topological susceptibility of the vacuum in quantum chromodynamics has been simulated numerically using the Asqtad improved staggered fermion formalism. At nonzero lattice spacing, the residual fermion doublers (fermion tastes) in the staggered fermion formalism give contributions to the susceptibility that deviate from conventional continuum chiral perturbation theory. In this brief report, we estimate the taste-breaking artifact and compare it with results of recent simulations, finding that it accounts for roughly half of the scaling violation.
Effective field theories for QCD with rooted staggered fermions
Bernard, Claude; Golterman, Maarten; Shamir, Yigal
2008-04-01
Even highly improved variants of lattice QCD with staggered fermions show significant violations of taste symmetry at currently accessible lattice spacings. In addition, the 'rooting trick' is used in order to simulate with the correct number of light sea quarks, and this makes the lattice theory nonlocal, even though there is good reason to believe that the continuum limit is in the correct universality class. In order to understand scaling violations, it is thus necessary to extend the construction of the Symanzik effective theory to include rooted staggered fermions. We show how this can be done, starting from a generalization of the renormalization-group approach to rooted staggered fermions recently developed by one of us. We then explain how the chiral effective theory follows from the Symanzik action, and show that it leads to 'rooted' staggered chiral perturbation theory as the correct chiral theory for QCD with rooted staggered fermions. We thus establish a direct link between the renormalization-group based arguments for the correctness of the continuum limit and the success of rooted staggered chiral perturbation theory in fitting numerical results obtained with the rooting trick. In order to develop our argument, we need to assume the existence of a standard partially-quenched chiral effective theory for any local partially-quenched theory. Other technical, but standard, assumptions are also required.
Investigation and improvement of the staggered labyrinth seal
NASA Astrophysics Data System (ADS)
Lin, Zhirong; Wang, Xudong; Yuan, Xin; Shibukawa, Naoki; Noguchi, Taro
2015-03-01
Recent studies on staggered labyrinth seals have focused on the effects of different parameters, such as the pressure ratio and rotational speed on the leakage flow rate. However, few investigations pay sufficient attention to flow details and the sealing mechanism, which would be of practical importance in designing seals having higher performance. This paper establishes a theoretical model to study the seal mechanism, thus revealing that leakage is determined by the pressure ratio and geometric structure. Numerical simulation is implemented to illustrate details of the flow field within the seal structure. Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance, revealing that orifices and stagnation points are the most important positions in the seal structure, generating the most dissipation. The orifice is carefully studied by using the theoretical model. Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation, verifying the theoretical model and analysis of the seal mechanism. Three new designs, based on a good understanding of the seal mechanism, are presented, with one reducing leakage by 24.5%.
A Study of Topological Vertexing for Heavy Quark Tagging
Abe, Toshinori
2001-02-13
We compare heavy quark tagging and anti-tagging efficiencies for vertex detectors with different inner radii using the topological vertex technique developed at the SLC/SLD experiment. Charm tagging benefits by going to very small inner radii.
Lifetime tests for MAC vertex chamber
Nelson, H.N.
1986-07-01
A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)
Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac
2007-10-01
This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department
Staggered chiral perturbation theory and the fourth-root trick
NASA Astrophysics Data System (ADS)
Bernard, C.
2006-06-01
Staggered chiral perturbation theory (SχPT) takes into account the “fourth-root trick” for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. An apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular, the restoration of taste symmetry, SχPT then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a mixed theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of SχPT, so that a variety of possible new routes for testing this validity are opened.
Staggered chiral perturbation theory and the fourth-root trick
Bernard, C.
2006-06-01
Staggered chiral perturbation theory (S{chi}PT) takes into account the 'fourth-root trick' for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, n{sub F}=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces n{sub F}=4 to n{sub F}=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of n{sub F}=3, 2, or 1. An apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular, the restoration of taste symmetry, S{chi}PT then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a mixed theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of S{chi}PT, so that a variety of possible new routes for testing this validity are opened.
Numerical simulation of dam-break problem using staggered finite volume method
NASA Astrophysics Data System (ADS)
Budiasih, L. K.; Wiryanto, L. H.
2016-02-01
A problem in a dam-break is when a wall separating two sides of water is removed. A shock wave occurs and propagates. The behavior of the wave is interesting to be investigated with respect to the water depth and its wave speed. The aim of this research is to model dam-break problem using the non-linear shallow water equations and solve them numerically using staggered finite volume method. The solution is used to simulate the dam-break on a wet bed. Our numerical solution will be compared to the analytical solution of shallow water equations for dam-break problem. The momentum non-conservative finite volume scheme on a staggered grid will give a good agreement for dam-break problem on a wet bed, for depth ratios greater than 0.25.
Optimal overlap length in staggered architecture composites under dynamic loading conditions
NASA Astrophysics Data System (ADS)
Dutta, Abhishek; Tekalur, Srinivasan Arjun; Miklavcic, Milan
2013-01-01
Hybrid staggered architecture composites, like nacre and bone, are known for two discernible aspects: superior strength and synergistic toughness. What is lacking is the scientific rationale proving suitability of these materials under impact/time dependent loading. The current investigation aims to address the structure-property correlationship of these materials by development of an analytical model under dynamic rates of loading. Existing literature studies address behavior of staggered materials under quasi-static loading conditions. Critical overlap length was computed for three natural composites-nacre, spider-silk and, collagen in bone/tendon, and showed reasonable agreement with experimental data. Applicability of the analytical approach to predict lap-joint strength has been briefly discussed and quantified against experimental data. Choice of nanometer sized building blocks in natural composites has been addressed and explained from shear transfer efficiency point of view. The potentiality of these composites for use as biomimetic protective material under impact loading has been addressed as well.
Heavy-light semileptonic decays in staggered chiral perturbation theory
NASA Astrophysics Data System (ADS)
Aubin, C.; Bernard, C.
2007-07-01
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.
Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets
NASA Technical Reports Server (NTRS)
Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.
2016-01-01
The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.
Staggered chiral perturbation theory for heavy-light mesons
NASA Astrophysics Data System (ADS)
Aubin, C.; Bernard, C.
2006-01-01
We incorporate heavy-light mesons into staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light SχPT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the “fourth root trick” to reduce four staggered tastes to one, and of the SχPT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.
Staggered chiral perturbation theory in the two-flavor case
Du Xining
2010-07-01
I study two-flavor staggered chiral perturbation theory in the light pseudoscalar sector. The pion mass and decay constant are calculated through next-to-leading order in the partially-quenched case. In the limit where the strange quark mass is large compared to the light quark masses and the taste splittings, I show that the SU(2) staggered chiral theory emerges from the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low energy constants and taste-violating parameters are given. The results are useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from varying strange quark masses.
Stiffness of the Extrafibrillar Phase in Staggered Biological Arrays
NASA Astrophysics Data System (ADS)
Bar-On, Benny; Wagner, H. Daniel
2012-08-01
A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue.
Stiffness of the extrafibrillar phase in staggered biological arrays.
Bar-On, Benny; Wagner, H Daniel
2012-08-17
A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue. PMID:23006404
Optimized Vertex Method and Hybrid Reliability
NASA Technical Reports Server (NTRS)
Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.
2002-01-01
A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.
Michael H.L.S. Wang
2001-11-05
BTeV is a B-physics experiment that expects to begin collecting data at the C0 interaction region of the Fermilab Tevatron in the year 2006. Its primary goal is to achieve unprecedented levels of sensitivity in the study of CP violation, mixing, and rare decays in b and c quark systems. In order to realize this, it will employ a state-of-the-art first-level vertex trigger (Level 1) that will look at every beam crossing to identify detached secondary vertices that provide evidence for heavy quark decays. This talk will briefly describe the BTeV detector and trigger, focus on the software and hardware aspects of the Level 1 vertex trigger, and describe work currently being done in these areas.
Internal Alignment of the SLD Vertex Detector
Jackson, D.J.; Wickens, F.J.; Su, D.; /SLAC
2007-12-03
The tracking resolution and vertex finding capabilities of the SLD experiment depended upon a precise knowledge of the location and orientation of the elements of the SLD pixel vertex detector (VXD3) in 3D space. At the heart of the procedure described here to align the 96 CCDs is the matrix inversion technique of singular value decomposition (SVD). This tool was employed to unfold the detector geometry corrections from the track data in the VXD3. The algorithm was adapted to perform an optimal {chi}{sup 2} minimization by careful treatment of the track hit residual measurement errors. The tracking resolution obtained with the aligned geometry achieved the design performance. Comments are given on how this method could be used for other trackers.
Nonperturbative study of the four gluon vertex
NASA Astrophysics Data System (ADS)
Binosi, D.; Ibañez, D.; Papavassiliou, J.
2014-09-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
VXD3: the SLD vertex detector upgrade
NASA Astrophysics Data System (ADS)
Snyder, J. A.; SLD Vertex Detector Upgrade Group
1996-02-01
The SLD collaboration has built and installed a new CCD vertex detector (VXD3) incorporating 96 CCDs. Each 13 cm 2 CCD has 3.2 × 10 6 pixels for a total of 3.1 × 10 8 pixels in the detector. This system is an upgrade of the pioneering CCD vertex detector (VXD2) which has operated in SLD since 1992. The CCDs of VXD3 are mounted on beryllium substrates and arranged in three concentric cylinders, providing at least three space point measurements along each track. The resolution of the space points is approximately 5 μm in all three coordinates. The design and construction of VXD3 builds on three years of successful performance of VXD2. Significant improvements are expected with VXD3 in impact parameter resolution (approximately a factor of 2) and acceptance (about 20% additional) through optimized geometry and reduced material. New readout electronics have also been developed for this system. This new vertex detector will be commissioned in January 1996 and should commence running immediately thereafter.
Boundary conditions in a meshless staggered particle code
Libersky, L.D.; Randles, P.W.
1998-07-01
A meshless method utilizing two sets of particles and generalized boundary conditions is introduced. Companion sets of particles, one carrying velocity and the other carrying stress, are employed to reduce the undesirable effects of colocation of all field variables and increase accuracy. Boundary conditions implemented within this staggered framework include contact, stress-free, stress, velocity, and symmetry constraints. Several test problems are used to evaluate the method. Of particular importance is the motion of stress particles relative to velocity particles in higher dimensions. Early results show promise, but difficulties remain that must be overcome if the staggered technique is to be successful.
Upgrade of the LHCb Vertex Locator
NASA Astrophysics Data System (ADS)
Leflat, A.
2014-08-01
The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will
The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures.
Gao, Wei; Wang, Weifan
2015-01-01
Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513
The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures
Gao, Wei; Wang, Weifan
2015-01-01
Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513
Improved staggered eigenvalues and epsilon regime universality in SU(2)
NASA Astrophysics Data System (ADS)
Hart, Alistair
2006-12-01
We study the low-lying modes of staggered Dirac operators for quenched SU(2) and show that improvement changes the distribution from lattice-like to continuum-like at lattice spacings rep- resentative of current dynamical SU(3) simulations. Epsilon regime universality predicts different distributions for the low-lying eigenvalues of the continuum and lattice staggered Dirac operators. At lattice spacings around 0.07 fm we show that improved staggered eigenvalues have the continuum distribution (as predicted by the chiral Orthogonal Ensemble of random matrices), whilst unimproved fall on the discrete distribution (as per the chiral Symplectic Ensemble). The crossover is much more rapid than for SU(3). In addition, improved staggered fermions give a good approximation to the Atiyah-Singer index theorem, appear to satisfy the Banks-Casher relation and show clear taste-degeneracy for the non- zero modes. All this indicates that taste-changing interactions are well under control at lattice spacings 0.07 - 0.13 fm, matching our findings for SU(3).
Jia, Yun-Fei; Xuan, Fu-Zhen; Tu, Shan-Tung
2012-12-01
The thermal-mechanical stress distributions and equivalent coefficient of thermal expansion (CTE) of the staggered arrangement of mineral platelets wrapped by soft matrix are analyzed, which exist in numerous natural biological and biomimetic materials. Two analytical models, 'Stress model' and 'Displacement model', were established from the ways of stress and displacement solution based on the modification of classical shear-lag model. Complementary finite element analysis (FEA) was used to verify the analytical models. Results reveal that, compared to 'Displacement model', 'Stress model' gives a better prediction of the stress distributions within the staggered structure referring to FEA. The equivalent CTE predicted by both models reach constant as the aspect ratio and volume fraction of platelets exceeding the critical values. Nevertheless, the relative error between the results from different models increases with the increase of the ratio of overlap to length of platelets. These provide a benchmark to the optimum design of micro/nano-structure in bio-inspired materials suffering to temperature fluctuation and applied loading. PMID:23158216
NASA Astrophysics Data System (ADS)
Agamalieva, L. A.; Gadjiev, S. A.; Jafarov, R. G.
2016-03-01
An asymptotic expression for the vertex function in the region of large momenta in quantum electrodynamics is investigated in the ladder approximation. To formulate a calculational model in the ladder approximation, an iterative scheme has been used to solve the Schwinger-Dyson equation in the formalism of a bilocal source of fields. For the chirally symmetric leading approximation, the Edwards equation for the electron-positron-photon vertex has been obtained in the case of arbitrary values of the photon momentum. Our primary task is to develop a method to solve the vertex equation in the region of large momenta. Nontrivial behavior of the vertex function in the deeply inelastic region of momenta has been revealed.
Francois, Marianne M; Shashkov, Misha J; Lowrie, Robert B; Dendy, Edward D
2010-10-13
We compare a staggered Lagrangian formulation with a cell-centered Lagrangian formulation for a two-material compressible flow. In both formulation, we assume a single velocity field and rely on pressure relaxation techniques to close the system of equations. We employ Tipton's mixture model for both formulation. However, for the cell-centered formulation, employing Tipton's model for the mixture cell results in loss of conservation of total energy. We propose a numerical algorithm to correct this energy discrepancy. We test both algorithms on the two-materials Sod shock tube test problem and compare the results with the analytical solution.
The ZEUS micro-vertex detector
NASA Astrophysics Data System (ADS)
Chiochia, V.; ZEUS MVD Group
2003-03-01
During the HERA luminosity shutdown period 2000/2001 the tracking system of the ZEUS experiment has been upgraded with a silicon micro-vertex detector. The barrel part of the detector consists of three layers of single-sided silicon strip detectors, while the forward section is composed of four wheels. In this report we shortly present the assembly procedure and in more details the test beam results on the spatial resolution of half modules. The first results of a cosmic ray test are presented and the radiation monitor system is described.
RESEARCH NOTE FROM COLLABORATION: Adaptive vertex fitting
NASA Astrophysics Data System (ADS)
Waltenberger, Wolfgang; Frühwirth, Rudolf; Vanlaer, Pascal
2007-12-01
Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors. A robust, adaptive method is presented that is able to cope with contaminated data. The method is formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima in the optimization. For the initialization of the adaptive filter a robust algorithm is presented that turns out to perform well in a wide range of applications. The tuning of the annealing schedule and of the cut-off parameter is described using simulated data from the CMS experiment. Finally, the adaptive property of the method is illustrated in two examples.
Construction of the CDF silicon vertex detector
Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S.; Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.; Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Amidei, D.; Derwent, P.; Gold, M.; Matthews, J.; Bacchetta, N.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Bedeschi, F.; Bolognesi, V.; Dell`Agnello, S.; Galeotti, S.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Risotri, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. |; Bailey, M.; Garfinkel, A.; Shaw, N.; Tipton, P.; Watts, G.
1992-04-01
Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.
30 years of newest vertex bisection
NASA Astrophysics Data System (ADS)
Mitchell, William F.
2016-06-01
One aspect of adaptive mesh refinement in the finite element method for solving partial differential equations is the method by which elements are refined. In the early 1980's the dominant method for refining triangles was the red-green algorithm of Bank and Sherman. The red refinements are the desired refinements, but will result in an incompatible grid when used alone. The green refinements are used to recover compatibility for stability of the finite element discretization, and are removed before the next adaptive step. Prof. Bob Skeel raised the question as to whether it is possible to perform adaptive refinement of triangles without this complicated patching/unpatching process. As a result, a new triangle refinement method, called newest vertex bisection, was devised as an alternative to red-green refinement in the mid 1980's. The new approach is simpler and maintains compatibility of the grid at all times, avoiding the patching/unpatching of the green refinement. We review the development of the newest vertex bisection method for adaptive refinement, and subsequent extensions of the method.
Reaction mechanisms and staggering in S+Ni collisions
NASA Astrophysics Data System (ADS)
D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V. L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad. R.
2011-07-01
The reactions S32+Ni58 and S32+Ni64 are studied at 14.5 A MeV. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. Close to the multifragmentation threshold this staggering appears hidden by the rapid variation of the production yields with the fragment size. Once this effect is accounted for, the staggering appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of the production yields as a function of the neutron excess N-Z, reveals that odd-even effects cannot be explained by pairing effects in the nuclear masses alone, but depend in a more complex way on the de-excitation chain.
Regularizing QCD with staggered fermions and the fourth root trick
NASA Astrophysics Data System (ADS)
Bernard, Claude
2006-12-01
We investigate the properties of staggered-fermion lattice QCD in which the fourth root of the fermion determinant is taken. We show that this theory is non-local at non-zero lattice spacing a, and that the non-locality is caused by the breaking of taste symmetry at a = 0. We then present a renormalization-group based argument that the theory restores taste symmetry in the continuum limit. As a consequence the theory is local in that limit, and falls into the correct universality class. Finally, we argue that the correct effective theory for the physics of Goldstone bosons at a = 0 is given by staggered chiral perturbation theory with the replica trick.
Future of Lattice Calculations with Staggered Sea Quarks
Gottlieb, Steven
2011-05-23
The MILC collaboration for some years has been creating gauge ensembles with 2+1 flavors of asqtad or improved staggered quarks. There are some 40 ensembles covering a wide range of quark mass and lattice spacing, thus allowing control of the chiral and continuum limits. An extensive review of that program has been published in Reviews of Modern Physics. Recently, MILC has begun a new program using HPQCD's highly improved staggered quark (HISQ) action. This action has smaller taste symmetry breaking than asqtad and improved scaling properties. We also include a dynamical charm quark in these calculations. We summarize the achievements of the asqtad program, what has been done so far with HISQ quarks, and then consider what future ensembles will be created and their impact.
B{sub K} in staggered chiral perturbation theory
Water, Ruth S. van de; Sharpe, Stephen R.
2006-01-01
We calculate the kaon B parameter, B{sub K}, to next-to-leading order in staggered chiral perturbation theory. We find expressions for partially quenched QCD with three sea quarks, quenched QCD, and full QCD with m{sub u}=m{sub d}{ne}m{sub s}. We extend the usual power counting to include the effects of using perturbative (rather than nonperturbative) matching factors. Taste breaking enters through the O(a{sup 2}) terms in the effective action, through O(a{sup 2}) terms from the discretization of operators, and through the truncation of matching factors. These effects cause mixing with several additional operators, complicating the chiral and continuum extrapolations. In addition to the staggered expressions, we present B{sub K} at next-to-leading order in continuum PQ{chi}PT for N{sub f}=3 sea quarks with m{sub u}=m{sub d}{ne}m{sub s}.
Cascaded, stagger-tuned, broadband, low-ripple optical amplifiers.
Saleh, A A; Jopson, R M
1988-11-01
We show theoretically that the gain spectrum obtained by cascading two or more semiconductor optical amplifiers can have a ripple amplitude that is significantly smaller than that currently attainable with a single stage of optical amplification. For example, by cascading two stagger-tuned amplifiers, each having 10 dB of coupling loss and facet reflectivities of 10(-3), one can achieve a net (fiber-to-fiber) gain of 30 dB with less than 2 dB of ripple amplitude. We also show that, under some conditions, simple cascading of optical amplifiers, without the stagger tuning and associated control, can lead to low-ripple, high-gain optical amplification.
LES investigation of infinite staggered wind-turbine arrays
NASA Astrophysics Data System (ADS)
Yang, Xiaolei; Sotiropoulos, Fotis
2014-12-01
The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays.
The Mark III vertex chamber and prototype test results
Grab, C.
1987-07-01
A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype.
Drift chamber vertex detectors for SLC/LEP
Hayes, K.G.
1987-03-01
The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers.
An interpretation of staggering effects by correlation observables
NASA Astrophysics Data System (ADS)
D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V. L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad. R.
2012-07-01
The reactions 32S+58,64Ni are studied at 14.5 A MeV. Evidence is found for odd-even effects in isotopic observables of the decay of a projectile-like source. The influence of secondary decays on the staggering is studied with a correlation function technique, showing that odd-even effects are due to interplay between pairing effects in the nuclear masses and in the level densities.
New insights into the Young's modulus of staggered biological composites.
Bar-On, Benny; Wagner, H Daniel
2013-03-01
This communication presents a simplified "mechanics-of-materials" approach for describing the mechanics of staggered composite architectures, such as those arising in a variety of biological tissues. This analysis calculates the effective modulus of the bio-composite and provides physical insights into its elastic behavior. Simplified expressions for high- and low-mineralized tissues are then proposed and the effects of the mineral thickness ratio and aspect ratio on the modulus are demonstrated.
Baryons with Ginsparg-Wilson quarks in a staggered sea
Tiburzi, Brian C.
2005-11-01
We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral expansion. Expressions derived for masses and magnetic moments are required for addressing lattice artifacts in mixed-action simulations of these observables.
Vertex Sensitivity in the Schwinger-Dyson Equations of QCD
David J. Wilson, Michael R. Pennington
2012-01-01
The nonperturbative gluon and ghost propagators in Landau gauge QCD are obtained using the Schwinger-Dyson equation approach. The propagator equations are solved in Euclidean space using Landau gauge with a range of vertex inputs. Initially we solve for the ghost alone, using a model gluon input, which leads us to favour a finite ghost dressing in the nonperturbative region. In order to then solve the gluon and ghost equations simultaneously, we find that non-trivial vertices are required, particularly for the gluon propagator in the small momentum limit. We focus on the properties of a number vertices and how these differences influence the final solutions. The self-consistent solutions we obtain are all qualitatively similar and contain a mass-like term in the gluon propagator dressing in agreement with related studies, supporting the long-held proposal of Cornwall.
Emergent reduced dimensionality by vertex frustration in artificial spin ice
NASA Astrophysics Data System (ADS)
Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter
2016-02-01
Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.
Staggered baryon operators with flavor SU(3) quantum numbers
Bailey, Jon A.
2007-06-01
The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.
Staggered chiral perturbation theory at next-to-leading order
Sharpe, Stephen R.; Van de Water, Ruth S.
2005-06-01
We study taste and Euclidean rotational symmetry violation for staggered fermions at nonzero lattice spacing using staggered chiral perturbation theory. We extend the staggered chiral Lagrangian to O(a{sup 2}p{sup 2}), O(a{sup 4}), and O(a{sup 2}m), the orders necessary for a full next-to-leading order calculation of pseudo-Goldstone boson masses and decay constants including analytic terms. We then calculate a number of SO(4) taste-breaking quantities, which involve only a small subset of these next-to-leading order operators. We predict relationships between SO(4) taste-breaking splittings in masses, pseudoscalar decay constants, and dispersion relations. We also find predictions for a few quantities that are not SO(4) breaking. All these results hold also for theories in which the fourth root of the fermionic determinant is taken to reduce the number of quark tastes; testing them will therefore provide evidence for or against the validity of this trick.
Staggered chiral perturbation theory for heavy-light mesons
Aubin, C.; Bernard, C.
2006-01-01
We incorporate heavy-light mesons into staggered chiral perturbation theory (S{chi}PT), working to leading order in 1/m{sub Q}, where m{sub Q} is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light S{chi}PT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the 'fourth root trick' to reduce four staggered tastes to one, and of the S{chi}PT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.
Taste symmetry breaking with hypercubic-smeared staggered fermions
Bae, Taegil; Adams, David H.; Kim, Hyung-Jin; Kim, Jongjeong; Kim, Kwangwoo; Lee, Weonjong; Jung, Chulwoo; Sharpe, Stephen R.
2008-05-01
We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable to the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<
Staggers in horses grazing paspalum infected with Claviceps paspali.
Cawdell-Smith, A J; Scrivener, C J; Bryden, W L
2010-10-01
Invasion of the flowering heads of grasses by Claviceps spp. can produce sclerotia (ergots) containing several toxins. Ingestion of these toxins, through the consumption of paspalum (Paspalum dilatatum), can induce a range of clinical symptoms, including staggers. Cattle are the most commonly affected species, but although sheep and horses have been reported affected there are no published descriptions of paspalum staggers in horses. We describe two occurrences of paspalum staggers, the first in three Australian Stockhorse foals and the second in mature Standardbred horses. All three foals presented with ataxia in all limbs after consuming infected paspalum. One foal died from misadventure and the other two recovered within 1 week of removal from the infected paddock. In the second case, two of eight mares and geldings grazing in an irrigation channel developed hindquarter paresis. After removal of all horses from the area, one of the affected horses continued to deteriorate. Both horses were treated with antibiotics. The more severely affected horse was also treated with fluids and electrolytes, but had to be euthanased. The second affected horse recovered after 2 days. Paspalum pastures should inspected for Claviceps paspali infection before the introduction of horses. PMID:20854295
Proposal for a CLEO precision vertex detector. [Progress report, 1991
Not Available
1991-12-31
Fermilab experiment E691 and CERN experiment NA32 have demonstrated the enormous power of precision vertexing for studying heavy quark physics. Nearly all collider experiments now have or are installing precision vertex detectors. This is a proposal for a precision vertex detector for CLEO, which will be the pre-eminent heavy quark experiment for at least the next 5 years. The purpose of a precision vertex detector for CLEO is to enhance the capabilities for isolating B, charm, and tau decays and to make it possible to measure the decay time. The precision vertex detector will also significantly improve strange particle identification and help with the tracking. The installation and use of this detector at CLEO is an important step in developing a vertex detector for an asymmetric B factory and therefore in observing CP violation in B decays. The CLEO environment imposes a number of unique conditions and challenges. The machine will be operating near the {gamma} (4S) in energy. This means that B`s are produced with a very small velocity and travel a distance about {1/2} that of the expected vertex position resolution. As a consequence B decay time information will not be useful for most physics. On the other hand, the charm products of B decays have a higher velocity. For the long lived D{sup +} in particular, vertex information can be used to isolate the charm particle on an event-by-event basis. This helps significantly in reconstructing B`s. The vertex resolution for D`s from B`s is limited by multiple Coulomb scattering of the necessarily rather low momentum tracks. As a consequence it is essential to minimize the material, as measured in radiation lengths, in the beam pip and the vertex detector itself. It is also essential to build the beam pipe and detector with the smallest possible radius.
Spin-glass phase transitions and minimum energy of the random feedback vertex set problem
NASA Astrophysics Data System (ADS)
Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun
2016-08-01
A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur. Phys. J. B 86, 455 (2013), 10.1140/epjb/e2013-40690-1]. In the present work we study the spin-glass phase transitions and the minimum energy density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory. For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature βl at which the replica-symmetric mean-field theory loses its local stability, the inverse temperature βd of the dynamical (clustering) phase transition, and the inverse temperature βs of the static (condensation) phase transition. These critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and βd is distinct from βs for regular random graphs of vertex degrees K >60 , while βd are identical to βs for Erdös-Rényi graphs at least up to mean vertex degree c =512 . We then derive the zero-temperature limit of the 1RSB theory and use it to compute the minimum FVS cardinality.
Spin-glass phase transitions and minimum energy of the random feedback vertex set problem.
Qin, Shao-Meng; Zeng, Ying; Zhou, Hai-Jun
2016-08-01
A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph. Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur. Phys. J. B 86, 455 (2013)EPJBFY1434-602810.1140/epjb/e2013-40690-1]. In the present work we study the spin-glass phase transitions and the minimum energy density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory. For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature β_{l} at which the replica-symmetric mean-field theory loses its local stability, the inverse temperature β_{d} of the dynamical (clustering) phase transition, and the inverse temperature β_{s} of the static (condensation) phase transition. These critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and β_{d} is distinct from β_{s} for regular random graphs of vertex degrees K>60, while β_{d} are identical to β_{s} for Erdös-Rényi graphs at least up to mean vertex degree c=512. We then derive the zero-temperature limit of the 1RSB theory and use it to compute the minimum FVS cardinality. PMID:27627285
Performance of the LHCb Vertex Locator
NASA Astrophysics Data System (ADS)
Aaij, R.; Affolder, A.; Akiba, K.; Alexander, M.; Ali, S.; Appleby, R. B.; Artuso, M.; Bates, A.; Bay, A.; Behrendt, O.; Benton, J.; van Beuzekom, M.; Bjørnstad, P. M.; Bogdanova, G.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; van den Brand, J.; Brown, H.; Buytaert, J.; Callot, O.; Carroll, J.; Casse, G.; Collins, P.; De Capua, S.; Doets, M.; Donleavy, S.; Dossett, D.; Dumps, R.; Eckstein, D.; Eklund, L.; Farinelli, C.; Farry, S.; Ferro-Luzzi, M.; Frei, R.; Garofoli, J.; Gersabeck, M.; Gershon, T.; Gong, A.; Gong, H.; Gordon, H.; Haefeli, G.; Harrison, J.; Heijne, V.; Hennessy, K.; Hulsbergen, W.; Huse, T.; Hutchcroft, D.; Jaeger, A.; Jalocha, P.; Jans, E.; John, M.; Keaveney, J.; Ketel, T.; Korolev, M.; Kraan, M.; Laštovička, T.; Lafferty, G.; Latham, T.; Lefeuvre, G.; Leflat, A.; Liles, M.; van Lysebetten, A.; MacGregor, G.; Marinho, F.; McNulty, R.; Merkin, M.; Moran, D.; Mountain, R.; Mous, I.; Mylroie-Smith, J.; Needham, M.; Nikitin, N.; Noor, A.; Oblakowska-Mucha, A.; Papadelis, A.; Pappagallo, M.; Parkes, C.; Patel, G. D.; Rakotomiaramanana, B.; Redford, S.; Reid, M.; Rinnert, K.; Rodrigues, E.; Saavedra, A. F.; Schiller, M.; Schneider, O.; Shears, T.; Silva Coutinho, R.; Smith, N. A.; Szumlak, T.; Thomas, C.; van Tilburg, J.; Tobin, M.; Velthuis, J.; Verlaat, B.; Viret, S.; Volkov, V.; Wallace, C.; Wang, J.; Webber, A.; Whitehead, M.; Zverev, E.
2014-09-01
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c.
Poves, A.; Nowacki, F.; Caurier, E.
2005-10-01
In an effort to understand the magical status of N=32 and N=34 at the very neutron rich edge, experiments have been carried out in the titanium isotopes up to A=56. The measured staggering of the B(E2)'s is not reproduced by the shell model calculations using the best effective interactions. We argue that this may be related to the choice of the isovector effective charge and to the value of the N=34 neutron gap.
Locking mechanisms in degree-4 vertex origami structures
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.
2016-04-01
Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.
NASA Astrophysics Data System (ADS)
Alfandi, Ashraf; Yoon, Juhyeon; Abusaleem, Khalifeh; Albati, Mohammad; Khafaji, Salih
2015-11-01
In this study, the effect on a shell-side heat transfer coefficient is investigated using the CFD code FLUENT with a variation in longitudinal pitch to diameter ratio, SL, in the range of 1.15 to 2.6 with a fixed transverse pitch to diameter ratio. For the benchmark purposes with the available empirical correlation, typical thermal-hydraulic conditions for the Zukauskas correlation are assumed. Many sensitivity calculations for different mesh sizes and turbulent models are performed to check the accuracy of the numerical solution. A realizable κ- ɛ turbulence model was found to be in good agreement with results of the Zukauskas correlation among the other turbulence models, at least for the staggered tube bank. It was found that the average heat transfer coefficient of a crossflow over a staggered tube bank calculated using FLUENT is in good agreement with the Zukauskas correlation-calculated heat transfer coefficient in the range of 1.15 - 2.6. For a staggered tube bank, using the Zukauskas correlation seems to be valid down to SL = 1.15.
RAVE—a Detector-independent vertex reconstruction toolkit
NASA Astrophysics Data System (ADS)
Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian
2007-10-01
A detector-independent toolkit for vertex reconstruction (RAVE ) is being developed, along with a standalone framework (VERTIGO ) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available. VERTIGO = "vertex reconstruction toolkit and interface to generic objects".
Hagino, K.; Sagawa, H.
2011-07-15
We investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a three-body model, respectively. We show that the odd-even staggering in the reaction cross sections of {sup 30,31,32}Ne and {sup 14,15,16}C are successfully reproduced, and thus the staggering can be attributed to the pairing anti-halo effect. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for s and p waves using the HFB wave functions.
NASA Astrophysics Data System (ADS)
Hasunuma, Takumi; Kaneko, Tatsuya; Miyakoshi, Shohei; Ohta, Yukinori
2016-07-01
The variational cluster approximation is used to study the ground-state properties and single-particle spectra of the three-component fermionic Hubbard model defined on the two-dimensional square lattice at half filling. First, we show that either a paired Mott state or color-selective Mott state is realized in the paramagnetic system, depending on the anisotropy in the interaction strengths, except around the SU(3) symmetric point, where a paramagnetic metallic state is maintained. Then, by introducing Weiss fields to observe spontaneous symmetry breakings, we show that either a color-density-wave state or color-selective antiferromagnetic state is realized depending on the interaction anisotropy and that the first-order phase transition between these two states occurs at the SU(3) point. We moreover show that these staggered orders originate from the gain in potential energy (or Slater mechanism) near the SU(3) point but originate from the gain in kinetic energy (or Mott mechanism) when the interaction anisotropy is strong. The staggered orders near the SU(3) point disappear when the next-nearest-neighbor hopping parameters are introduced, indicating that these orders are fragile, protected only by the Fermi surface nesting.
Odd-even staggering of binding energy for nuclei in the s d shell
NASA Astrophysics Data System (ADS)
Fu, G. J.; Cheng, Y. Y.; Jiang, H.; Zhao, Y. M.; Arima, A.
2016-08-01
In this paper we study odd-even staggering phenomena of binding energy in the framework of the nuclear shell model for nuclei in the s d shell. We decompose the USDB effective interaction into the monopole interaction and multipole (residual) interactions. We extract the empirical proton-neutron interaction, the Wigner energy, and the one-neutron separation energy using calculated binding energies. The monopole interaction, which represents the spherical mean field, provides contributions to the empirical proton-neutron interaction, the symmetry energy, and the Wigner energy. It does not induce odd-even staggering of the empirical proton-neutron interaction or the one-neutron separation energy. Isovector monopole and quadrupole pairing interactions and isoscalar spin-1 pairing interactions play a key role in reproducing an additional binding energy in both even-even and odd-odd nuclei. The Wigner energy coefficients are sensitive to residual two-body interactions. The nuclear shell structure has a strong influence on the evolution of the one-neutron separation energy, but not on empirical proton-neutron interactions. The so-called three-point formula is a good probe of the shell structure.
A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity
NASA Astrophysics Data System (ADS)
Areias, P.; Samaniego, E.; Rabczuk, T.
2016-02-01
We develop an algorithm and computational implementation for simulation of problems that combine Cahn-Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo-mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is proposed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of strain in concentration, and (iv) lithiation. We analyze convergence with respect to spatial and time discretization and found that very good results are achievable using both a staggered scheme and approximated strain interpolation.
Pion and kaon masses in staggered chiral perturbation theory
NASA Astrophysics Data System (ADS)
Aubin, C.; Bernard, C.
2003-08-01
We show how to compute chiral logarithms that take into account both the O(a2) taste-symmetry breaking of staggered fermions and the fourth-root trick that produces one taste per flavor. The calculation starts from the Lee-Sharpe Lagrangian generalized to multiple flavors. An error in a previous treatment by one of us is explained and corrected. The one loop chiral logarithm corrections to the pion and kaon masses in the full (unquenched), partially quenched, and quenched cases are computed as examples.
Survival analysis in telemetry studies: The staggered entry design
Pollock, K.H.; Winterstein, S.R.; Bunck, C.M.; Curtis, P.D.
1989-01-01
A simple description of the Kaplan-Meier procedure is presented with an example using northern bobwhite quail survival data. The Kaplan- Meier procedure was then generalized to allow gradual (or staggered) entry of animals into the study, allowing animals being lost (or censored) due to radio failure, radio loss, or emigration of the animal from the study area. Additionally, the applicability and generalization of the log rank test, a test to compare two survival distributions, was demonstrated. Computer program was developed and is available from authors.
Observations on staggered fermions at nonzero lattice spacing
Bernard, Claude; Golterman, Maarten; Shamir, Yigal
2006-06-01
We show that the use of the fourth-root trick in lattice QCD with staggered fermions corresponds to a nonlocal theory at nonzero lattice spacing, but argue that the nonlocal behavior is likely to go away in the continuum limit. We give examples of this nonlocal behavior in the free theory, and for the case of a fixed topologically nontrivial background gauge field. In both special cases, the nonlocal behavior indeed disappears in the continuum limit. Our results invalidate a recent claim that at nonzero lattice spacing an additive mass renormalization is needed because of taste-symmetry breaking.
Turbulent Flow Properties Around a Staggered Wind Farm
NASA Astrophysics Data System (ADS)
Chamorro, Leonardo P.; Arndt, R. E. A.; Sotiropoulos, Fotis
2011-12-01
The fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel. The wind farm consisted of a series of 10 rows by 2-3 columns of miniature wind turbines spaced 5 and 4 rotor diameters in the streamwise and spanwise directions respectively. It was placed in a boundary-layer flow developed over a smooth surface under thermally neutral conditions. Cross-wire anemometry was used to obtain high resolution measurements of streamwise and vertical velocity components at various locations within and above the wind farm. The results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions. This leads to improved power output of the overall wind farm. A simplified analysis suggests that the difference in power output between the two configurations is on the order of 10%. The maximum levels of turbulence intensity in the staggered wind farm were found to be very similar to that observed in the wake of a single wind turbine, differing substantially with that observed in an aligned configuration with similar spacing. The dramatic changes in momentum and turbulence characteristics in the two configurations show the importance of turbine layout in engineering design. Lateral homogenization of the turbulence statistics above the wind farm allows for the development of simple parametrizations for the adjustment of flow properties, similar to the case of a surface roughness transition. The development of an internal boundary layer was observed at the upper edge of the wind farm within which the flow statistics are affected by the superposition of the ambient flow and the flow disturbance induced by the wind turbines. The adjustment of the flow in this layer is much slower in the staggered situation (with respect to its aligned
Film cooling: case of double rows of staggered jets.
Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L
2001-05-01
An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate. PMID:11460645
Uncovering the triple omeron vertex from Wilson line formalism
Chirilli, G. A.; Szymanowski, L.; Wallon, S.
2011-01-01
We compute the triple omeron vertex from the Wilson line formalism, including both planar and nonplanar contributions, and get perfect agreement with the result obtained in the Extended Generalized Logarithmic Approximation based on Reggeon calculus.
Efficient variants of the vertex space domain decomposition algorithm
Chan, T.F.; Shao, J.P. . Dept. of Mathematics); Mathew, T.P. . Dept. of Mathematics)
1994-11-01
Several variants of the vertex space algorithm of Smith for two-dimensional elliptic problems are described. The vertex space algorithm is a domain decomposition method based on nonoverlapping subregions, in which the reduced Schur complement system on the interface is solved using a generalized block Jacobi-type preconditioner, with the blocks corresponding to the vertex space, edges, and a coarse grid. Two kinds of approximations are considered for the edge and vertex space subblocks, one based on Fourier approximation, and another based on an algebraic probing technique in which sparse approximations to these subblocks are computed. The motivation is to improve the efficiency of the algorithm without sacrificing the optimal convergence rate. Numerical and theoretical results on the performance of these algorithms, including variants of an algorithm of Bramble, Pasciak, and Schatz are presented.
The Structure of Parafermion Vertex Operator Algebras: General Case
NASA Astrophysics Data System (ADS)
Dong, Chongying; Wang, Qing
2010-11-01
The structure of the parafermion vertex operator algebra associated to an integrable highest weight module for any affine Kac-Moody algebra is studied. In particular, a set of generators for this algebra has been determined.
Linear Time Vertex Partitioning on Massive Graphs
Mell, Peter; Harang, Richard; Gueye, Assane
2016-01-01
The problem of optimally removing a set of vertices from a graph to minimize the size of the largest resultant component is known to be NP-complete. Prior work has provided near optimal heuristics with a high time complexity that function on up to hundreds of nodes and less optimal but faster techniques that function on up to thousands of nodes. In this work, we analyze how to perform vertex partitioning on massive graphs of tens of millions of nodes. We use a previously known and very simple heuristic technique: iteratively removing the node of largest degree and all of its edges. This approach has an apparent quadratic complexity since, upon removal of a node and adjoining set of edges, the node degree calculations must be updated prior to choosing the next node. However, we describe a linear time complexity solution using an array whose indices map to node degree and whose values are hash tables indicating the presence or absence of a node at that degree value. This approach also has a linear growth with respect to memory usage which is surprising since we lowered the time complexity from quadratic to linear. We empirically demonstrate linear scalability and linear memory usage on random graphs of up to 15000 nodes. We then demonstrate tractability on massive graphs through execution on a graph with 34 million nodes representing Internet wide router connectivity. PMID:27336059
Upgrade of the Belle Silicon Vertex Detector
NASA Astrophysics Data System (ADS)
Friedl, M.; Belle SVD Collaboration
2010-11-01
The Belle experiment at KEK (Tsukuba, Japan) was inaugurated in 1999 and has delivered excellent physics results since then, which were, for example, recognized in the Nobel Prize award 2008 to Kobayashi and Masukawa. An overall luminosity of 895 fb -1 has been recorded as of December 2008, and the present system will be running until 1 ab -1 is achieved. After that, a major upgrade is foreseen for both the KEK-B machine and the Belle detector. Already in 2004, the Letter of Intent for KEK Super B Factory was published. Intermediate steps of upgrade were considered for the Silicon Vertex Detector (SVD), which performs very well but already got close to its limit regarding the occupancy in the innermost layer and dead time. Eventually it was decided to keep the existing SVD2 system until 1 ab -1 and completely replace the silicon detector as well as its readout system for Super-Belle. The future SVD will be composed of double-sided silicon sensors as the present detector, but equipped with faster readout electronics, namely the APV25 chips originally made for CMS at CERN. Moreover, it will be enlarged by two additional layers and equipped with a double layer of DEPFET pixel detectors surrounding the beam pipe. The silicon sensors will be fabricated from 6 in. wafers (compared to the current 4 in. types) and the readout chain will be completely replaced, including front-end, repeaters and the back-end electronics in the counting house.
The vertex detector for the Lepton/Photon collaboration
Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.
1991-12-31
The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.
The vertex detector for the Lepton/Photon Collaboration
Sullivan, J.P.; Boissevain, J.G.; Fox, D.; van Hecke, H.; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.
1991-12-31
The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two concentric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity {eta} distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.
Magnetic-free non-reciprocity based on staggered commutation
Reiskarimian, Negar; Krishnaswamy, Harish
2016-01-01
Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time. PMID:27079524
Artificial Staggered Magnetic Field for Ultracold Atoms in Optical Lattices
NASA Astrophysics Data System (ADS)
Morais Smith, Cristiane
2011-03-01
Uniform magnetic fields are ubiquitous in nature, but this is not the case for staggered magnetic fields. In this talk, I will discuss an experimental set-up for cold atoms recently proposed by us, which allows for the realization of a ``staggered gauge field'' in a 2D square optical lattice. If the lattice is loaded with bosons, it may be described by an effective Bose-Hubbard Hamiltonian, with complex and anisotropic hopping coefficients. A very rich phase diagram emerges: besides the usual Mott-insulator and zero-momentum condensate, a new phase with a finite momentum condensate becomes the ground-state at strong gauge fields. By using the technique of Feshbach resonance, the dynamics of a coherent superposition of a vortex-carrying atomic condensate and a conventional zero-momentum molecular condensate can also be studied within the same scheme. On the other hand, if the lattice is loaded with fermions, a highly tunable, graphene-like band structure can be realized, without requiring the honeycomb lattice symmetry. When the system is loaded with a mixture of bosons and two-species fermions, several features of the high-Tc phase diagram can be reproduced. A dome-shaped unconventional superconducting region arises, surrounded by a non-Fermi liquid and a Fermi liquid at low and high doping, respectively. We acknowledge financial support from the Netherlands Organization for Scientific Research (NWO).
A subzone reconstruction algorithm for efficient staggered compatible remapping
Starinshak, D.P. Owen, J.M.
2015-09-01
Staggered-grid Lagrangian hydrodynamics algorithms frequently make use of subzonal discretization of state variables for the purposes of improved numerical accuracy, generality to unstructured meshes, and exact conservation of mass, momentum, and energy. For Arbitrary Lagrangian–Eulerian (ALE) methods using a geometric overlay, it is difficult to remap subzonal variables in an accurate and efficient manner due to the number of subzone–subzone intersections that must be computed. This becomes prohibitive in the case of 3D, unstructured, polyhedral meshes. A new procedure is outlined in this paper to avoid direct subzonal remapping. The new algorithm reconstructs the spatial profile of a subzonal variable using remapped zonal and nodal representations of the data. The reconstruction procedure is cast as an under-constrained optimization problem. Enforcing conservation at each zone and node on the remapped mesh provides the set of equality constraints; the objective function corresponds to a quadratic variation per subzone between the values to be reconstructed and a set of target reference values. Numerical results for various pure-remapping and hydrodynamics tests are provided. Ideas for extending the algorithm to staggered-grid radiation-hydrodynamics are discussed as well as ideas for generalizing the algorithm to include inequality constraints.
Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei
2016-07-01
One of the key functions of load-bearing biological materials, such as bone, dentin and sea shell, is to protect their inside fragile organs by effectively damping dynamic impact. How those materials achieve this remarkable function remains largely unknown. Using systematic finite element analyses, we study the stress wave propagation and attenuation in cortical bone at the nanoscale as a model material to examine the effects of protein viscosity, mineral fraction and staggered architecture on the elastic wave decay. It is found that the staggered arrangement, protein viscosity and mineral fraction work cooperatively to effectively attenuate the stress wave. For a typical mineral volume fraction and protein viscosity, an optimal staggered nanostructure with specific feature sizes and layouts is able to give rise to the fastest stress wave decay, and the optimal aspect ratio and thickness of mineral platelets are in excellent agreement with experimental measurements. In contrary, as the mineral volume fraction or the protein viscosity goes much higher, the structural arrangement is seen having trivial effect on the stress wave decay, suggesting that the damping properties of the composites go into the structure-insensitive regime from the structure-sensitive regime. These findings not only significantly add to our understanding of the structure-function relationship of load-bearing biological materials, and but also provide useful guidelines for the design of bio-inspired materials with superior resistance to impact loading.
Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies
Litvinov, Yu.A.; Geissel, H.; Buervenich, T.J.; Novikov, Yu.N.; Patyk, Z.; Scheidenberger, C.; Attallah, F.; Beckert, K.; Bosch, F.; Franzke, B.; Klepper, O.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Radon, T.; Steck, M.; Typel, S.; Audi, G.; Falch, M.
2005-07-22
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30{<=}Z{<=}92) were obtained with a typical uncertainty of 30 {mu}u. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.
A free surface capturing discretization for the staggered grid finite difference scheme
NASA Astrophysics Data System (ADS)
Duretz, T.; May, D. A.; Yamato, P.
2016-03-01
The coupling that exists between surface processes and deformation within both the shallow crust and the deeper mantle-lithosphere has stimulated the development of computational geodynamic models that incorporate a free surface boundary condition. We introduce a treatment of this boundary condition that is suitable for staggered grid, finite difference schemes employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free surface boundary condition via an interface that conforms with the edges of control volumes (e.g. a `staircase' representation) and requires only local stencil modifications to be performed. Comparisons with analytic solutions verify that the method is first-order accurate. Additional intermodel comparisons are performed between known reference models to further validate our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver to our free surface methodology and demonstrate that the local stencil modifications do not strongly influence the convergence of the iterative solver.
ERIC Educational Resources Information Center
Childers, Annie Burns; Vidakovic, Draga
2014-01-01
This paper explores sixty-six students' personal meaning and interpretation of the vertex of a quadratic function in relation to their understanding of quadratic functions in two different representations, algebraic and word problem. Several categories emerged from students' personal meaning of the vertex including vertex as maximum or…
N and Z odd-even staggering in Kr+Sn collisions at Fermi energies
NASA Astrophysics Data System (ADS)
Piantelli, S.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Barlini, S.; Bini, M.; Carboni, S.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Valdrè, S.; Bougault, R.; Bonnet, E.; Borderie, B.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Lopez, O.; Le Neindre, N.; Pârlog, M.; Rivet, M. F.; Vient, E.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Bruno, M.; Marchi, T.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Kozik, T.; Twaróg, T.; Alba, R.; Maiolino, C.; Santonocito, D.
2013-12-01
The odd-even staggering of the yield of final reaction products has been studied as a function of proton (Z) and neutron (N) numbers for the collisions 84Kr+112Sn and 84Kr+124Sn at 35 MeV/nucleon in a wide range of elements (up to Z≈20). The experimental data show that staggering effects rapidly decrease with increasing size of the fragments. Moreover the staggering in N is definitely larger than the one in Z. Similar general features are qualitatively reproduced by the gemini code. Concerning the comparison of the two systems, the staggering in N is in general rather similar, being slightly larger only for the lightest fragments produced in the n-rich system. In contrast the staggering in Z, although smaller than that in N, is sizably larger for the n-poor system with respect to the n-rich one.
Implementation of An Implicit Unsplit Staggered Mesh MHD Solver in FLASH
NASA Astrophysics Data System (ADS)
Xia, G.; Lee, D.
2010-11-01
FLASH is a publicly available community code designed to solve highly compressible multi-physics reactive flows. We have been adding capabilities to FLASH to make it an open science code for the academic HEDP community. A key need is to provide a computationally efficient time-stepping integration method that overcomes the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To address this problem, we are developing a fully implicit solver based on a Jacobian-Free Newton-Krylov implicit formulation. The method has been integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver. We are also integrating this solver into an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines, and into a treatment of the Biermann Battery effect that accounts for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.
B and D meson decay constants from 2+1 flavor improved staggered simulations
Neil, E.T.; Bailey, Jon A.; Bazavov, A.; Bernard, C.; Bouchard, C.M.; DeTar, C.; Di Pierro, M.; El-Khadra, A.X.; Evans, R.T.; Freeland, E.; Gamiz, E.
2011-12-01
We give an update on simulation results for the decay constants f{sub B}; f{sub B{sub s}}, f{sub D} and f{sub D{sub s}}. These decay constants are important for precision tests of the standard model, in particular entering as inputs to the global CKM unitarity triangle fit. The results presented here make use of the MILC (2+1)-flavor asqtad ensembles, with heavy quarks incorporated using the clover action with the Fermilab method. Partially quenched, staggered chiral perturbation theory is used to extract the decay constants at the physical point. In addition, we give error projections for a new analysis in progress, based on an extended data set.
Studying the ρ resonance parameters with staggered fermions
NASA Astrophysics Data System (ADS)
Fu, Ziwen; Wang, Lingyun
2016-08-01
We deliver a lattice study of ρ resonance parameters with p -wave π π scattering phases, which are extracted by finite-size methods at one center-of-mass frame and four moving frames for six lattice ensembles from the MILC Collaboration with pion masses ranging from 346 to 176 MeV. The effective range formula is applied to describe the scattering phases as a function of the energy covering the resonance region; this allows us to extract ρ resonance parameters and to investigate the quark-mass dependence. Lattice studies with three flavors of Asqtad-improved staggered fermions enable us to use the moving-wall source technique on large lattice spatial dimensions (L =64 ) and small light u /d quarks. Numerical computations are carried out at two lattice spacings, a ≈0.12 and 0.09 fm.
't Hooft vertices, partial quenching, and rooted staggered QCD
Bernard, Claude; Golterman, Maarten; Shamir, Yigal; Sharpe, Stephen R.
2008-06-01
We discuss the properties of 't Hooft vertices in partially quenched and rooted versions of QCD in the continuum. These theories have a physical subspace, equivalent to ordinary QCD, that is contained within a larger space that includes many unphysical correlation functions. We find that the 't Hooft vertices in the physical subspace have the expected form, despite the presence of unphysical 't Hooft vertices appearing in correlation functions that have an excess of valence quarks (or ghost quarks). We also show that, due to the singular behavior of unphysical correlation functions as the massless limit is approached, order parameters for nonanomalous symmetries can be nonvanishing in finite volume if these symmetries act outside of the physical subspace. Using these results, we demonstrate that arguments recently given by Creutz - claiming to disprove the validity of rooted staggered QCD - are incorrect. In particular, the unphysical 't Hooft vertices do not present an obstacle to the recovery of taste symmetry in the continuum limit.
The η ' g* g(*) vertex including the η '-meson mass
NASA Astrophysics Data System (ADS)
Ali, A.; Parkhomenko, A. Ya
2003-10-01
The η^' g^* g^{(*)} effective vertex function is calculated in the QCD hard-scattering approach, taking into account the η^'-meson mass. We work in the approximation in which only one non-leading Gegenbauer moment for both the quark-antiquark and the gluonic light-cone distribution amplitudes for the η^'-meson is kept. The vertex function with one off-shell gluon is shown to have the form (valid for \\vert q_1^2 \\vert > m_{η^'^2) F_{η^' g^* g} (q_1^2, 0, m_{η^'^2) = m_{η^'^2 H(q_1^2)/(q_1^2 - m_{η^'^2), where H( q 1 2) is a slowly varying function, derived analytically in this paper. The resulting vertex function is in agreement with the phenomenologically inferred form of this vertex obtained from an analysis of the CLEO data on the η^'-meson energy spectrum in the decay Upsilon(1S) to η^' X. We also present an interpolating formula for the vertex function F_{η^' g^* g} (q_1^2, 0, m_{η^'^2) for the space-like region of the virtuality q 1 2, which satisfies the QCD anomaly normalization for on-shell gluons and the perturbative QCD result for the gluon virtuality \\vert q_1^2\\vert gtrsim 2 GeV2.
Calculation of track and vertex errors for detector design studies
Harr, R.
1995-06-01
The Kalman Filter technique has come into wide use for charged track reconstruction in high-energy physics experiments. It is also well suited for detector design studies, allowing for the efficient estimation of optimal track covariance matrices without the need of a hit level Monte Carlo simulation. Although much has been published about the Kalman filter equations, there is a lack of previous literature explaining how to implement the equations. In this paper, the operators necessary to implement the Kalman filter equations for two common detector configurations are worked out: a central detector in a uniform solenoidal magnetic field, and a fixed-target detector with no magnetic field in the region of the interactions. With the track covariance matrices in hand, vertex and invariant mass errors are readily calculable. These quantities are particularly interesting for evaluating experiments designed to study weakly decaying particles which give rise to displaced vertices. The optimal vertex errors are obtained via a constrained vertex fit. Solutions are presented to the constrained vertex problem with and without kinematic constraints. Invariant mass errors are obtained via propagation of errors; the use of vertex constrained track parameters is discussed. Many of the derivations are new or previously unpublished.
Genus Ranges of 4-Regular Rigid Vertex Graphs
Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin
2016-01-01
A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges.
Plethystic vertex operators and boson-fermion correspondences
NASA Astrophysics Data System (ADS)
Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.
2016-10-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.
Simulations of silicon vertex tracker for star experiment at RHIC
Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W.; Liko, D.; Cramer, J.; Prindle, D.; Trainor, T.; Braithwaite, W.
1991-12-31
The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.
The RAVE/VERTIGO vertex reconstruction toolkit and framework
NASA Astrophysics Data System (ADS)
Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.
2008-07-01
A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS
Almquist, Zack W.; Butts, Carter T.
2015-01-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218
Staggered Local Density of States around the Vortex in Underdoped Cuprates
Kishine, Jun-ichiro; Lee, Patrick A.; Wen, Xiao-Gang
2001-06-04
We have studied a single vortex with the staggered flux (SF) core based on the SU(2) slave-boson theory of high T{sub c} superconductors. We find that, whereas the center in the vortex core is a SF state, as one moves away from the core center a correlated staggered modulation of the hopping amplitude {chi} and pairing amplitude {Delta} becomes predominant. We predict that in this region the local density of states exhibits staggered modulation when measured on the bonds, which may be directly detected by STM experiments.
Gap and stagger effects on the aerodynamic performance and the wake behind a biplane with endplates
NASA Astrophysics Data System (ADS)
Kang, Hantae
Modern flow diagnostics applied to a very old aerodynamic problem has produced a number of intriguing new results and new insight into previous results. The aerodynamic performance and associated flow physics of the biplane with endplates as a function of variation in gap and stagger were analytically and experimentally investigated. A combination of vortex lattice method, integrated force measurement, streamwise PIV, and Trefftz plane Stereo PIV were used to better understand the flowfield around the biplane with endplates. This study was performed to determine the configuration with the optimal aerodynamic performance and to understand the fluid mechanics behind optimal and suboptimal performance of the configuration. The Vortex Lattice code (AVL) shows that the gap and stagger have the most dramatic effects out of the six parameters studied: gap, stagger, dihedral, decalage, sweep and overhang. The force balance measurements with fourteen biplane configurations of different gaps and staggers show that as gap and stagger increase, the lift efficiency also increases at all angles of attack tested at both Re 60,000 and 120,000. Using the force balance data, a generalized empirical method for the prediction of lift coefficient as a function of gap, stagger and angle of attack has been determined and validated when combined with existing relations for CL--α adjustments for AR and taper effects. The resulting empirical approach allows for a rapid determination of CL for a biplane having different gap, stagger, AR and taper without the need for a complete flowfield analysis. Two Dimensional PIV results show a distinctive pattern in the downwash angle for the different gap and stagger configurations tested. The downwash angle increases with increasing gap and stagger. It is also evident that the change in downwash angle is directly proportional to the change in lift coefficient as would be expected. Increasing gap spacing increases the downwash angle as well. Based on
Nisoli, Cristiano; Li, Jiie; Ke, Xianglin; Lammert, Paul E; Schiffer, Peter; Crespi, Vincent H
2009-01-01
Frustrated arrays of interacting single-domain nanomagnets provide important model systems for statistical mechanics, because they map closely onto well-studied vertex models and are amenable to direct imaging and custom engineering. Although these systems are manifestly athermal, they demonstrate that the statistical properties of both hexagonal and square lattices can be described by an effective temperature based on the magnetostatic energy of the arrays. This temperature has predictive power for the moment configurations and is intimately related to how the moments are driven by an oscillating external field.
A vertex drift chamber for the VENUS detector at TRISTAN
NASA Astrophysics Data System (ADS)
Yamada, Y.; Hayashi, K.; Ishihara, N.; Nakamura, S.; Ohama, T.; Sakamoto, H.; Sumiyoshi, T.; Hinode, F.; Narita, Y.; Oyama, T.; Utsumi, M.; Yabuki, F.; Hemmi, Y.; Kurashige, H.; Miyake, K.; Okamoto, A.; Daigo, M.; Tamura, N.
1993-06-01
A high-precision drift chamber has been constructed in order to add vertex information to the VENUS detector at the TRISTAN e+e- collider. It is a jet-type drift chamber comprising 12 tilted drift sectors filled with pressurized slow gas. The structure and initial performance are described.
A neural network z-vertex trigger for Belle II
NASA Astrophysics Data System (ADS)
Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.
2015-05-01
We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.
W. K. H. Panofsky Prize Talk: The Silicon Vertex Trigger
NASA Astrophysics Data System (ADS)
Ristori, Luciano
2009-05-01
I will discuss the importance of real-time selection of events at a hadron collider, the ideas that led to the conception of the Silicon Vertex Trigger (SVT) and some historical notes on its construction and commissioning. I will also highlight some remarkable results obtained by CDF with the data selected by the SVT.
Vertex detector technology for the SSC (Superconducting Super Collider)
Skubic, P.; Kalbfleisch, G.; Kaplan, D.; Kuehler, J.; Lambrecht, M. ); Arens, J.; Jernigan, G. . Space Sciences Lab.); Attias, H.; Karchin, P.; Ross, W.; Sinnott, J.; Utku, S. ); Barger, K.; McCliment, E. ); Collins, T.; Kramer, G.; Worley, S. (Hughes Aircraft Co., Carlsbad, C
1990-12-01
An overview of a SSC R D program for silicon vertex detector development is presented. The current test program with silicon microstrip and pixel detectors is discussed and selected results of beam tests are presented including measurements of position resolution as a function of angle of incidence. Plans for future tests are also discussed. 10 refs., 4 figs.
Heat transfer coefficients for staggered arrays of short pin fins
NASA Astrophysics Data System (ADS)
Vanfossen, G. J.
Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
Heat transfer coefficients for staggered arrays of short pin fins
NASA Astrophysics Data System (ADS)
Vanfossen, G. J.
1981-03-01
Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
Axially staggered seed-blanket reactor fuel module construction
Cowell, Gary K.; DiGuiseppe, Carl P.
1985-01-01
A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.
Odd-even staggering in neutron drip line nuclei
NASA Astrophysics Data System (ADS)
Changizi, S. A.; Qi, Chong
2016-07-01
We have done systematic Hartree-Fock-Bogoliubov calculations in coordinate space on the one-quasi-particle energies and binding energy odd-even staggering (OES) in semi-magic nuclei with the zero-range volume, mixed and surface pairing forces in order to explore the influence of their density dependence. The odd-N isotopes are calculated within the blocking scheme. The strengths for the pairing forces are determined in two schemes by fitting locally to reproduce pairing gap in 120Sn and globally to all available data on the OES of semi-magic nuclei with Z ≥ 8. In the former calculations, there is a noticeable difference between the neutron mean gaps in neutron-rich O, Ca, Ni and Sn isotopes calculated with the surface pairing and those with the mixed and volume pairing. The difference gets much smaller if the globally optimized pairing strengths are employed. The heavier Pb isotopes show the opposite trend. Moreover, large differences between the mean gap and the OES may be expected in both calculations when one goes towards the neutron drip line.
Rashba coupling amplification by a staggered crystal field
Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea
2016-01-01
There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869
Theoretical Foundation for the Index Theorem on the Lattice with Staggered Fermions
Adams, David H.
2010-04-09
A way to identify the would-be zero modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accordance with the index theorem. The key idea is to consider the spectral flow of a certain Hermitian version of the staggered Dirac operator. The staggered fermion index thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a numerical study in U(1) backgrounds in two dimensions it is found to perform as well as the Wilson index while being computationally more efficient. It can also be expressed as the index of an overlap Dirac operator with a new staggered fermion kernel.
Reply to 'Comment on ''t Hooft vertices, partial quenching, and rooted staggered QCD''
Bernard, Claude; Golterman, Maarten; Shamir, Yigal; Sharpe, Stephen R.
2008-10-01
We reply to Creutz's comments on our paper ''t Hooft vertices, partial quenching, and rooted staggered QCD'. We show that his criticisms are incorrect and result from a misunderstanding both of our work, and of the related work of Adams.
Empty versus filled polyhedra: 11 vertex bare germanium clusters.
Uţă, Matei-Maria; King, Robert Bruce
2014-04-01
The structures and energetics of centered 10-vertex Ge@Ge₁₀(z) (z = -4, -2, 0, +2, +4) clusters have been investigated by density functional theory (DFT) for comparison with the previously studied isomeric empty 11-vertex Ge₁₁(z) clusters. For the cationic species (z = +2, +4) such centered Ge@Ge₁₀(z) structures are shown to be energetically competitive (within ∼1 kcal mol⁻¹) to the lowest energy isomeric empty Ge₁₁(z) structures. These Ge@Ge₁₀(z) structures can be derived from the lowest energy empty 10-vertex Ge₁₀(z-4) structures by inserting a Ge⁴⁺ ion in the center. The outer 10-vertex polyhedron in the lowest energy Ge@Ge₁₀²⁺ dication structure is the most spherical D(4d) bicapped square antiprism, which is also the lowest energy structure of the empty Ge₁₀²⁻ dianion, as expected from the Wade-Mingos skeletal electron counting rules. For the tetracationic Ge₁₁⁴⁺ /Ge@Ge₁₀⁴⁺ system the lowest energy centered Ge@Ge₁₀⁴⁺ structure can be obtained by inserting a Ge⁴⁺ ion in the center of a C(3v) deltahedral empty Ge10 cluster. Centered 10-vertex polyhedral Ge@Ge₁₀(z) structures were also found for the neutral (z = 0) and dianionic (z = -2) systems but at significantly higher energies than the lowest energy isomeric empty Ge₁₁(z) structures.
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Park, K. C.; Dubois-Pelerin, Yves
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one- and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
Finite volume effects in B{sub K} with improved staggered fermions
Kim, Jangho; Kim, Hyung-Jin; Lee, Weonjong; Jung, Chulwoo; Sharpe, Stephen R.
2011-06-01
We extend our recent unquenched (N{sub f}=2+1 flavor) calculation of B{sub K} using improved staggered fermions by including in the fits the finite volume shift predicted by one-loop staggered chiral perturbation theory. The net result is to lower the result in the continuum limit by 0.6%. This shift is slightly smaller than our previous estimate of finite volume effects based on a direct comparison between different volumes.
{Delta}I = 2 energy staggering in normal deformed dysprosium nuclei
Riley, M.A.; Brown, T.B.; Archer, D.E.
1996-12-31
Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.
Theoretical and practical considerations for staggered production of crops in a BLSS
NASA Astrophysics Data System (ADS)
Stutte, G. W.; Mackowiak, C. L.; Yorio, N. C.; Wheeler, A.
1997-01-01
A functional Bioregenerative Life Support System (BLSS) will generate oxygen, remove excess carbon dioxide, purify water, and produce food on a continuous basis for long periods of operation. In order to minimize fluctuations in gas exchange, water purification, and yield that are inherent in batch systems, staggered planting and harvesting of the crop is desirable. A 418-d test of staggered production of potato cv. Norland (26-d harvest cycles) using nutrients recovered from inedible biomass was recently completed at Kennedy Space Center. The results indicate that staggered production can be sustained without detrimental effects on life support functions in a CELSS. System yields of H_2O, O_2 and food were higher in staggered than batch plantings. Plants growing in staggered production or batch production on ``aged'' solution initiated tubers earlier, and were shorter than plants grown on ``fresh'' solution. This morphological response required an increase in planting density to maintain full canopy coverage. Plants grown in staggered production used available light more efficiently than the batch planting due to increased sidelighting.
Shape optimization of staggered ribs in a rotating equilateral triangular cooling channel
NASA Astrophysics Data System (ADS)
Moon, Mi-Ae; Park, Min-Jung; Kim, Kwang-Yong
2014-04-01
A rotating equilateral triangular cooling channel with staggered square ribs inside the leading edge of a turbine blade has been optimized in this work based on surrogate modeling. The fluid flow and heat transfer in the channel have been analyzed using three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations under uniform heat flux condition. Shear stress transport turbulence model has been used as a turbulence closure. Computational results for area-averaged Nusselt number have been validated compared to the experimental data. The objectives related to the heat transfer rate and pressure drop has been linearly combined with a weighting factor to define the objective function. The angle of the rib, the rib pitch-to-hydraulic diameter ratio, and the rib width-to-hydraulic diameter ratio have been selected as the design variables. Twenty-two design points have been generated by Latin Hypercube sampling, and the values of the objective function have been calculated by the RANS analysis at these points. The surrogate model for the objective function has been constructed using the radial basis neural network method. Through the optimization, the objective function value has been improved by 21.5 % compared to that of the reference geometry.
Design and construction of a Vertex Chamber and measurement of the average B-Hadron lifetime
Nelson, H.N.
1987-10-01
Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 ..mu..m thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 ..mu..m, and a resolution in extrapolation to the B-Hadron decay location of 87 ..mu..m. Its inner layer is 4.6 cm from e/sup +/e/sup -/ colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed botht he 94 pb/sup -1/ of integrated luminosity accumulated at ..sqrt..s = 29 GeV with the Vertex Chamber in place as well as the 210 pb/sup -1/ accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. 106 refs., 79 figs., 20 tabs.
On the zero crossing of the three-gluon vertex
NASA Astrophysics Data System (ADS)
Athenodorou, A.; Binosi, D.; Boucaud, Ph.; De Soto, F.; Papavassiliou, J.; Rodríguez-Quintero, J.; Zafeiropoulos, S.
2016-10-01
We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Vertex Exponents of Two-Colored Extremal Ministrong Digraphs
NASA Astrophysics Data System (ADS)
Suwilo, Saib
2011-06-01
The exponent of a vertex v in a two-colored digraph D(2) is the smallest positive integer h+k such that for each vertex x in D(2) there is a walk of length h+k consisting of h red arcs and k blue arcs. Let D(2) be a primitive two-colored extremalministrong digraphon n vertices. If D(2) has one blue arc, the exponent of the vertices of D(2) lieson the interval [n2-5n+8,n2-3n+1]. If D(2) has two blue arcs, the exponent of the vertices in D(2) lies on the interval [n2-4n+4,n2-n].
Development of pixel detectors for SSC vertex tracking
Kramer, G. . Electro-Optical and Data Systems Group); Atlas, E.L.; Augustine, F.; Barken, O.; Collins, T.; Marking, W.L.; Worley, S.; Yacoub, G.Y. ) Shapiro, S.L. ); Arens, J.F.; Jernigan, J.G. . Space Sciences Lab.); Nygren,
1991-04-01
A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 {times} 256 pixels, each 30 {mu}m square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs.
Vertex detectors: The state of the art and future prospects
Damerell, C.J.S.
1997-01-01
We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters over the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.
NASA Astrophysics Data System (ADS)
Che, Cheng-Xuan; Wang, Xiu-Ming; Lin, Wei-Jun
2010-06-01
Based on strong and weak forms of elastic wave equations, a Chebyshev spectral element method (SEM) using the Galerkin variational principle is developed by discretizing the wave equation in the spatial and time domains and introducing the preconditioned conjugate gradient (PCG)-element by element (EBE) method in the spatial domain and the staggered predictor/corrector method in the time domain. The accuracy of our proposed method is verified by comparing it with a finite-difference method (FDM) for a homogeneous solid medium and a double layered solid medium with an inclined interface. The modeling results using the two methods are in good agreement with each other. Meanwhile, to show the algorithm capability, the suggested method is used to simulate the wave propagation in a layered medium with a topographic traction free surface. By introducing the EBE algorithm with an optimized tensor product technique, the proposed SEM is especially suitable for numerical simulation of wave propagations in complex models with irregularly free surfaces at a fast convergence rate, while keeping the advantage of the finite element method.
Li, Juan; Wang, Yi-Fei; Gong, Chang-De
2011-04-20
We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagomé lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength φ, and a staggered-flux part with strength Δφ. Various properties of the Hall conductances and Hofstadter butterflies are studied. When φ is fixed, variation of Δφ leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero Δφs have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of Δφ = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by Δφ.
Charged Particle Tracking and Vertex Detection Group summary report
Hanson, G.; Meyer, D.
1984-09-01
Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10/sup 33/ cm/sup -2/ sec/sup -1/; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10/sup 31/ cm/sup -2/ sec/sup -1/. Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10/sup 32/ cm/sup -2/ sec/sup -1/ only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10/sup 33/ cm/sup -2/ sec/sup -1/ will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout.
FAS multigrid calculations of three dimensional flow using non-staggered grids
NASA Technical Reports Server (NTRS)
Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.
1993-01-01
Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.
NASA Astrophysics Data System (ADS)
OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław
2016-10-01
We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.
Progress in development of HEDP capabilities in FLASH's Unsplit Staggered Mesh MHD solver
NASA Astrophysics Data System (ADS)
Lee, D.; Xia, G.; Daley, C.; Dubey, A.; Gopal, S.; Graziani, C.; Lamb, D.; Weide, K.
2011-11-01
FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31-42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.
Zeng, Hong-Cheng; Chen, Jie; Liu, Wei; Yang, Wei
2015-01-01
In this work, the staggered SAR technique is employed for high-speed platform highly-squint SAR by varying the pulse repetition interval (PRI) as a linear function of range-walk. To focus the staggered SAR data more efficiently, a low-complexity modified Omega-k algorithm is proposed based on a novel method for optimal azimuth non-uniform interpolation, avoiding zero padding in range direction for recovering range cell migration (RCM) and saving in both data storage and computational load. An approximate model on continuous PRI variation with respect to sliding receive-window is employed in the proposed algorithm, leaving a residual phase error only due to the effect of a time-varying Doppler phase caused by staggered SAR. Then, azimuth non-uniform interpolation (ANI) at baseband is carried out to compensate the azimuth non-uniform sampling (ANS) effect resulting from continuous PRI variation, which is further followed by the modified Omega-k algorithm. The proposed algorithm has a significantly lower computational complexity, but with an equally effective imaging performance, as shown in our simulation results. PMID:25664433
Lanigan, G W; Payne, A L; Cockrum, P A
1979-02-01
Topsoil, herbage and faeces collected during an outbreak of ryegrass staggers in sheep were examined for tremorgenic penicillia. No such fungi were recovered from the plant material, but they were found among the predominant fungi in the soil and faecal samples. The commonest species of Penicillium, and almost the only tremorgenic species encountered, was Penicillium janthinellum Biourge. When fed to sheep, the mycelium of this fungus evoked a number of the clinical signs seen in field cases of ryegrass staggers. Two tremorgenic toxins were isolated from the mycelial felts and available evidence indicates that they are verruculogen and fumitremorgin A. P. janthinellum also produced these tremorgens when cultured in moist, autoclaved soil, but not in unheated soil. The results obtained from this study are in accord with the hypothesis that ryegrass staggers is caused by tremorgenic mycotoxins. PMID:475667
Perturbative matching of the staggered four-fermion operators for {epsilon}'/{epsilon}
Lee, Weonjong
2001-09-01
Using staggered fermions, we calculate the perturbative corrections to the bilinear and four-fermion operators that are used in the numerical study of weak matrix elements for {epsilon}'/{epsilon}. We present results for one-loop matching coefficients between continuum operators, calculated in the naive dimensional regularization (NDR) scheme, and gauge invariant staggered fermion operators. In particular, we concentrate on Feynman diagrams of the current-current insertion type. We also present results for the tadpole improved operators. These results, combined with existing results for penguin diagrams, provide a complete one-loop renormalization of the staggered four-fermion operators. Therefore, using our results, it is possible to match a lattice calculation of K{sup 0}-{bar K}{sup 0} mixing and K{yields}{pi}{pi} decays to the continuum NDR results with all corrections of O(g{sup 2}) included.
NASA Astrophysics Data System (ADS)
Takada, Yasutami; Higuchi, Takatoshi
1995-11-01
The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω0, are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation.
On vertex algebra representations of the Schrödinger-Virasoro Lie algebra
NASA Astrophysics Data System (ADS)
Unterberger, Jérémie
2009-12-01
The Schrödinger-Virasoro Lie algebra sv is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight 3/2 and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the invariance under time-translation — has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent z=2. We define in this article general Schrödinger-Virasoro primary fields by analogy with conformal field theory, characterized by a 'spin' index and a (non-relativistic) mass, and construct vertex algebra representations of sv out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter.
Petreczky P.; Bazavov, A.
2011-10-11
We report preliminary results on the chiral and deconfinement aspects of the QCD transition at finite temperature using the Highly Improved Staggered Quark (HISQ) action on lattices with temporal extent of N{sub {tau}} = 6 and 8. The chiral aspects of the transition are studied in terms of quark condensates and the disconnected chiral susceptibility. We study the deconfinement transition in terms of the strange quark number susceptibility and the renormalized Polyakov loop. We made continuum estimates for some quantities and find reasonably good agreement between our results and the recent continuum extrapolated results obtained with the stout staggered quark action.
Topological index theorem on the lattice through the spectral flow of staggered fermions
NASA Astrophysics Data System (ADS)
Azcoiti, V.; Follana, E.; Vaquero, A.; Di Carlo, G.
2015-05-01
We investigate numerically the spectral flow introduced by Adams for the staggered Dirac operator on realistic (quenched) gauge configurations. We obtain clear numerical evidence that the definition works as expected: there is a clear separation between crossings near and far away from the origin, and the topological charge defined through the crossings near the origin agrees, for most configurations, with the one defined through the near-zero modes of large taste-singlet chirality of the staggered Dirac operator. The crossings are much closer to the origin if we improve the Dirac operator used in the definition, and they move towards the origin as we decrease the lattice spacing.
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.
Differentiation operation in the wave equation for the pseudospectral method with a staggered mesh
NASA Astrophysics Data System (ADS)
Zhao, Z.; Xu, J.; Horiuchi, S.
2001-05-01
In the present analysis we introduced a calculation strategy of the staggered grid differentiation by using the real value FFT and real inverted FFT for the pseudospectral method and applied the technique to seismic wave simulation. The calculation method introduced here is one third faster on average than the traditional differentiation method by using the complex FFT. The introduced differentiation strategy is very efficient in economy. For example we apply the staggered grid differentiation by real valued FFT to the simulation of seismic wave propagation in inhomogeneous medium. The results show the validity of the present method.
Studies of vertex tracking with SOI pixel sensors for future lepton colliders
NASA Astrophysics Data System (ADS)
Battaglia, Marco; Contarato, Devis; Denes, Peter; Liko, Dietrich; Mattiazzo, Serena; Pantano, Devis
2012-07-01
This paper presents a study of vertex tracking with a beam hodoscope consisting of three layers of monolithic pixel sensors in SOI technology on high-resistivity substrate. We study the track extrapolation accuracy, two-track separation and vertex reconstruction accuracy in π- Cu interactions with 150 and 300 GeV/c pions at the CERN SPS. Results are discussed in the context of vertex tracking at future lepton colliders.
Recurrence relations of higher spin BPST vertex operators for open strings
NASA Astrophysics Data System (ADS)
Fu, Chih-Hao; Lee, Jen-Chi; Tan, Chung-I.; Yang, Yi
2013-08-01
We calculate higher-spin Brower-Polchinski-Strassler-Tan (BPST) vertex operators for an open bosonic string and express these operators in terms of a Kummer function of the second kind. We derive an infinite number of recurrence relations among BPST vertex operators of different string states. These recurrence relations among BPST vertex operators lead to the recurrence relations among Regge string scattering amplitudes discovered recently.
Lattice twist operators and vertex operators in sine-Gordon theory in one dimension
NASA Astrophysics Data System (ADS)
Nakamura, Masaaki; Voit, Johannes
2002-04-01
In one dimension, the exponential position operators introduced in a theory of polarization are identified with the twist operators appearing in the Lieb-Schultz-Mattis argument, and their finite-size expectation values z(q)L measure the overlap between the q-fold degenerate ground state and an excited state. Insulators are characterized by z∞≠0, and different states are distinguished by the sign of zL. We identify zL with ground-state expectation values of vertex operators in the sine-Gordon model. This allows an accurate detection of quantum phase transitions in the universality classes of the Gaussian and the SU(2)1 Wess-Zumino-Novikov-Witten models. We apply this theory to the half-filled extended Hubbard model and obtain agreement with the level-crossing method.
3D circuit integration for Vertex and other detectors
Yarema, Ray; /Fermilab
2007-09-01
High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.
The Belle II Silicon Vertex Detector readout chain
NASA Astrophysics Data System (ADS)
Friedl, M.; Bergauer, T.; Frankenberger, A.; Gfall, I.; Irmler, C.; Valentan, M.
2013-02-01
The Silicon Vertex Detector of the future Belle II experiment at KEK (Japan) will consist of 6'' double-sided strip sensors. Those are read out by APV25 chips (originally developed for CMS) which are powered by DC/DC converters with low voltages tied to the sensor bias potentials. The signals are transmitted by cable links of about 12 meters. In the back-end, the data are digitized and processed by FADC modules with powerful FPGAs, which are also capable of precisely measuring the hit time of each particle in order to discard off-time background.
Multiplicity distributions from branching equations with constant vertex probabilities
Durand, B.; Sarcevic, I.
1987-11-01
We present multiplicity distributions which are solutions to branching equations, based on the assumption that the shapes and energy dependence of multiplicity distributions are principally determined by hard parton scattering and subsequent branching. We consider the four processes g..-->..gg, q..-->..qg, g..-->..qq-bar, and in a few cases g..-->..ggg. All vertex probabilities for these processes are taken to be constant. In this simple approximation, we find that Koba-Nielsen-Olesen scaling is systemically violated. We compare the properties of branching distributions with the properties of the widely used negative-binomial distribution and of the stochastic approach.
Anomalous ω-Z-γ vertex from hidden local symmetry
NASA Astrophysics Data System (ADS)
Harada, Masayasu; Matsuzaki, Shinya; Yamawaki, Koichi
2011-08-01
We formulate the general form of the ω-Z-γ vertex in the framework based on the hidden local symmetry, which arises from the gauge-invariant terms for intrinsic parity-odd part of the effective action. Those terms are given as the homogeneous part of the general solution (having free parameters) to the Wess-Zumino anomaly equation and hence are not determined by the anomaly, in sharp contrast to the Harvey-Hill-Hill (HHH) action where the relevant vertex is claimed to be uniquely determined by the anomaly. We show that, even in the framework that HHH was based on, the ω-Z-γ vertex is actually not determined by the anomaly but by the homogeneous (anomaly-free) part of the general solution to the Wess-Zumino anomaly equation having free parameters in the same way as in the hidden local symmetry formulation: The HHH action is just a particular choice of the free parameters in the general solution. We further show that the ω-Z-γ vertex related to the neutrino (ν)-nucleon (N) scattering cross section σ(νN→νN(N')γ) is determined not by the anomaly but by the anomaly-free part of the general solution having free parameters. Nevertheless, we find that the cross section σ(νN→νN(N')γ) is related through the Ward-Takahashi identity to Γ(ω→π0γ) which has the same parameter dependence as that of σ(νN→νN(N')γ) and hence the ratio σ(νN→νN(N')γ)/Γ(ω→π0γ) is fixed independently of these free parameters. Other set of the free parameters of the general solution can be fixed to make the best fit of the ω→π0l+l- process, which substantially differs from the HHH action. This gives a prediction of the cross section σ(νN→νN(N')γ*(l+l-)) to be tested at ν-N collision experiments in the future.
and as Vertex Operator Extensionsof Dual Affine Algebras
NASA Astrophysics Data System (ADS)
Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.
We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.
Low-Mass Materials and Vertex Detector Systems
Cooper, William E.
2014-01-01
Physics requirements set the material budget and the precision and sta bility necessary in low - mass vertex detector sy s tems . Operational considerations, along with physics requirements , set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi - layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Fin ally, comments are made on future directions to be considered in using present materials effectively and in developing new materials.
Vertex Operators Arising from Jacobi-Trudi Identities
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Rozhkovskaya, Natasha
2016-09-01
We give an interpretation of the boson-fermion correspondence as a direct consequence of the Jacobi-Trudi identity. This viewpoint enables us to construct from a generalized version of the Jacobi-Trudi identity the action of a Clifford algebra on the polynomial algebras that arrive as analogues of the algebra of symmetric functions. A generalized Giambelli identity is also proved to follow from that identity. As applications, we obtain explicit formulas for vertex operators corresponding to characters of the classical Lie algebras, shifted Schur functions, and generalized Schur symmetric functions associated to linear recurrence relations.
Density functional calculations of a staggered FeSe monolayer on a SrTiO3 (110) surface
NASA Astrophysics Data System (ADS)
Wu, Xianxin; Dai, Xia; Liang, Yi; Le, Congcong; Fan, Heng; Hu, Jiangping
2016-07-01
We investigate the electronic and magnetic properties of FeSe monolayer on the anisotropic SrTiO3 (110) surface. With compressive strain along the [1 1 ¯0 ] direction from the substrate, the monolayer FeSe possesses a staggered bipartite iron lattice with a height difference around 0.06 Å along the out-of-plane direction. The staggering causes stronger magnetic frustration among the collinear, stagger-dimer, and stagger-trimer antiferromagnetic orders, and the strain elongates one electron and two hole pockets along the strain direction and the remaining hole pocket along the orthogonal direction. The strain-induced band splitting at Γ can also result in a band inversion to drive the system into a topologically nontrivial phase. The absence of strong superconducting suppression on the staggered lattice suggests that the superconducting pairings may be insensitive to the modification of interactions and hopping parameters between two Fe sublattices.
Hasenfratz, Anna; Hoffmann, Roland
2006-12-01
Growing evidence indicates that in the continuum limit the rooted staggered action is in the correct QCD universality class, the nonlocal terms arising from taste breaking can be viewed as lattice artifacts. In this paper we consider the 2-flavor Asqtad staggered action at lattice spacing a{approx_equal}0.13 fm and probe the properties of the staggered configurations by an overlap valence Dirac operator. By comparing the distribution of the overlap eigenmodes to continuum QCD predictions we investigate if/when the lattice artifacts are small as a function of the staggered quark mass. We define a matching overlap quark mass where the lattice corrections are minimal for the topological susceptibility and from the eigenmode distribution we predict the 2-flavor chiral condensate. Our results indicate that the staggered configurations are consistent with 2-flavor continuum QCD up to small lattice artifacts, and predict a consistent value for the infinite volume chiral condensate.
NASA Astrophysics Data System (ADS)
Rajpoot, Manoj K.; Bhaumik, Swagata; Sengupta, Tapan K.
2012-03-01
High accuracy solution of PDEs requires proper error analysis. Previous analysis for a non-dispersive system [T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis, J. Comput. Phys. 226 (2007) 1211-1218] identified sources of error correctly. Here, the aim is to extend the spectral analysis for the model linearized rotating shallow water equations (LRSWE), as an example of dispersive system. We perform the analysis when high accuracy compact schemes are used to solve the LRSWE relevant to geophysical fluid dynamics, using different grid arrangements proposed in Mesinger and Arakawa [F. Mesinger, A. Arakawa, Numerical Methods Used in Atmospheric Models, GARP Publ. Ser. No. 17, vol. 1, WMO, Geneva, 1976, pp. 43-64] and Randall [D.A. Randall, Geostrophic adjustment and the finite-difference shallow-water equations, Mon. Wea. Rev. 122 (1994) 1371-1377]. Compact schemes are used for fluid dynamical problem, as these afford near-spectral accuracy in solving non-periodic problems. However, higher accuracy methods also suffer from errors, those are often filtered by low order methods. For example, dispersion error is present in all numerical methods and extreme form of it leads to q-waves, which appear at higher wavenumbers for compact schemes as compared to lower order method. We also evaluate a compact scheme specifically designed for use with staggered grids. Here, two and four time-level temporal discretization methods have been compared for solving LRSWE by considering classical fourth-order, four-stage Runge-Kutta ( RK4), two time-level forward-backward (FB) and four time-level generalized FB temporal integration schemes.
Vercher-Martínez, Ana; Giner, Eugenio; Arango, Camila; Fuenmayor, F Javier
2015-02-01
In this work, a three-dimensional finite element model of the staggered distribution of the mineral within the mineralized collagen fibril has been developed to characterize the lamellar bone elastic behavior at the sub-micro length scale. Minerals have been assumed to be embedded in a collagen matrix, and different degrees of mineralization have been considered allowing the growth of platelet-shaped minerals both in the axial and the transverse directions of the fibril, through the variation of the lateral space between platelets. We provide numerical values and trends for all the elastic constants of the mineralized collagen fibril as a function of the volume fraction of mineral. In our results, we verify the high influence of the mineral overlapping on the mechanical response of the fibril and we highlight that the lateral distance between crystals is relevant to the mechanical behavior of the fibril and not only the mineral overlapping in the axial direction.
Vertex intrinsic fitness: how to produce arbitrary scale-free networks.
Servedio, Vito D P; Caldarelli, Guido; Buttà, Paolo
2004-11-01
We study a recent model of random networks based on the presence of an intrinsic character of the vertices called fitness. The vertex fitnesses are drawn from a given probability distribution density. The edges between pairs of vertices are drawn according to a linking probability function depending on the fitnesses of the two vertices involved. We study here different choices for the probability distribution densities and the linking functions. We find that, irrespective of the particular choices, the generation of scale-free networks is straightforward. We then derive the general conditions under which scale-free behavior appears. This model could then represent a possible explanation for the ubiquity and robustness of such structures. PMID:15600711
Vertex intrinsic fitness: How to produce arbitrary scale-free networks
Servedio, Vito D.P.; Caldarelli, Guido; Butta, Paolo
2004-11-01
We study a recent model of random networks based on the presence of an intrinsic character of the vertices called fitness. The vertex fitnesses are drawn from a given probability distribution density. The edges between pairs of vertices are drawn according to a linking probability function depending on the fitnesses of the two vertices involved. We study here different choices for the probability distribution densities and the linking functions. We find that, irrespective of the particular choices, the generation of scale-free networks is straightforward. We then derive the general conditions under which scale-free behavior appears. This model could then represent a possible explanation for the ubiquity and robustness of such structures.
On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids
NASA Astrophysics Data System (ADS)
Kaus, B.; Pusok, A. E.; Popov, A.
2015-12-01
The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation
Strategic Alliances between Chinese and Foreign Universities: Was a Staggered Form of Entry Used?
ERIC Educational Resources Information Center
Willis, Mike
2001-01-01
Explored whether foreign universities moved through levels of alliance with China as a form of staggered market entry. Found almost no movement between levels of alliance, and that high levels of commitment were required at all levels to make an alliance successful. This indicates that foreign universities should be careful to establish alliances…
Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes
Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan
2011-07-14
The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.
Aerodynamic characteristics of a square cylinder with a rod in a staggered arrangement
NASA Astrophysics Data System (ADS)
Zhang, P. F.; Wang, J. J.; Lu, S. F.; Mi, J.
2005-04-01
The aerodynamic characteristics of a square cylinder with an upstream rod in a staggered arrangement were examined. The pressure measurement was conducted in a wind tunnel at a Reynolds number of ReD=82,000 (based on the width of the square cylinder) and the flow visualization was carried out in a water tunnel with the hydrogen bubble technique at ReD=5,200. When the rod and the square cylinder were in tandem, the reduction of drag was mainly caused by the increase of the rear suction pressure. When the staggered angle was introduced, the shield and disturbance effect of the rod on the square cylinder diminished, which results in the increase of the cylinder drag. The side force induced by the staggered angle is small (the maximum value is 20% of the drag of the isolate square cylinder). There were six different flow modes with various staggered angles and spacing ratios, and the corresponding flow patterns are presented in present paper.
The use of circumferentially varying stagger guide vanes in an axial flow pump or compressor
NASA Astrophysics Data System (ADS)
Horlock, J. H.
1990-04-01
An actuator disk analysis is given of the flow through a guide vane and rotor combination. It is shown that changes in total pressure across the rotor are, in general, related to circumferential variations in guide vane outlet angle. In particular, known variations in inlet total pressure may be eliminated by suitable circumferential changes in guide vane stagger.
PQChPT with Staggered Sea and Valence Ginsparg-Wilson Quarks: Vector Meson Masses
Hovhannes R. Grigoryan; Anthony W. Thomas
2005-09-16
We consider partially quenched, mixed chiral perturbation theory with staggered sea and Ginsparg-Wilson valence quarks in order to extract a chiral-continuum extrapolation expression for the vector meson mass up to order O(a{sup 2}), at one-loop level. Based on general principles, we accomplish the task without explicitly constructing a sophisticated, heavy vector meson chiral Lagrangian.
Winsemius, Anneke; Ansquer, Jean-Claude; Olbrich, Matthias; van Amsterdam, Peter; Aubonnet, Patrick; Beckmann, Katrin; Driessen, Stefan; van Assche, Hanneke; Piskol, Gabi; Lehnick, Dirk; Mihara, Katsuhiro
2014-09-01
Simvastatin and fenofibrate are frequently co-prescribed at staggered intervals for the treatment of dyslipidemia. Since a drug-drug interaction has been reported when the two drugs are given simultaneously, it is of clinical interest to know whether the interaction differs between simultaneous and staggered combinations. A study, assessing the impact of both combinations on the interaction, was conducted with 7-day treatment regimens using simvastatin 40 mg and fenofibrate 145 mg: (A) simvastatin only (evening), (B) simvastatin and fenofibrate (both in evening), and (C) simvastatin (evening) and fenofibrate (morning). Eighty-five healthy subjects received the respective treatments in a randomized, 3-way cross-over study. The pharmacokinetics of simvastatin and the active metabolite simvastatin acid were determined. There was a limited reduction in the AUC0-24h of simvastatin acid of 21 and 29% for simultaneous and staggered combination, respectively. The geometric mean AUC0-24h ratio of simvastatin acid for the two combined dosing regimens (B/C) and 90% confidence interval were 111% (102-121). The interaction apparently had no impact on lipid markers. The findings imply that the observed pharmacokinetic interaction is unlikely clinically relevant, and support the combined use of simvastatin and fenofibrate not only given at staggered interval but also given simultaneously.
The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics
NASA Technical Reports Server (NTRS)
Nark, Douglas M.
1995-01-01
Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.
First results with prototype ISIS devices for ILC vertex detector
NASA Astrophysics Data System (ADS)
Damerell, C.; Zhang, Z.; Gao, R.; John John, Jaya; Li, Y.; Nomerotski, A.; Holland, A.; Seabroke, G.; Havranek, M.; Stefanov, K.; Kar-Roy, A.; Bell, R.; Burt, D.; Pool, P.
2010-12-01
The vertex detectors at the International Linear Collider (ILC) (there will be two of them, one for each of two general purpose detectors) will certainly be built with silicon pixel detectors, either monolithic or perhaps vertically integrated. However, beyond this general statement, there is a wide range of options supported by active R&D programmes all over the world. Pixel-based vertex detectors build on the experience at the SLAC large detector (SLD) operating at the SLAC linear collider (SLC), where a 307 Mpixel detector permitted the highest physics performance at LEP or SLC. For ILC, machine conditions demand much faster readout than at SLC, something like 20 time slices during the 1 ms bunch train. The approach of the image sensor with in-situ storage (ISIS) is unique in offering this capability while avoiding the undesirable requirement of 'pulsed power'. First results from a prototype device that approaches the pixel size of 20 μm square, needed for physics, are reported. The dimensional challenge is met by using a 0.18 μm imaging CMOS process, instead of a conventional CCD process.
NASA Astrophysics Data System (ADS)
Tyliszczak, Artur
2014-11-01
The paper presents a novel, efficient and accurate algorithm for laminar and turbulent flow simulations. The spatial discretisation is performed with help of the compact difference schemes (up to 10th order) for collocated and half-staggered grid arrangements. The time integration is performed by a predictor-corrector approach combined with the projection method for pressure-velocity coupling. At this stage a low order discretisation is introduced which considerably decreases the computational costs. It is demonstrated that such approach does not deteriorate the solution accuracy significantly. Following Boersma B.J. [13] the interpolation formulas developed for staggered uniform meshes are used also in the computations with a non-uniform strongly varying nodes distribution. In the proposed formulation of the projection method such interpolation is performed twice. It is shown that it acts implicitly as a high-order low pass filter and therefore the resulting algorithm is very robust. Its accuracy is first demonstrated based on simple 2D and 3D problems: an inviscid vortex advection, a decay of Taylor-Green vortices, a modified lid-driven cavity flow and a dipole-wall interaction. In periodic flow problems (the first two cases) the solution accuracy exhibits the 10th order behaviour, in the latter cases the 3rd and the 4th order is obtained. Robustness of the proposed method in the computations of turbulent flows is demonstrated for two classical cases: a periodic channel with Reτ=395 and Reτ=590 and a round jet with Re=21 000. The solutions are obtained without any turbulence model and also without any explicit techniques aiming to stabilise the solution. The results are in a very good agreement with literature DNS and LES data, both the mean and r.m.s. values are predicted correctly.
NASA Astrophysics Data System (ADS)
Janiš, Václav; Pokorný, Vladislav
2012-12-01
We propose a renormalization scheme of the Kubo formula for the electrical conductivity with multiple backscatterings contributing to the electron-hole irreducible vertex derived from the asymptotic limit to high spatial dimensions. We use this vertex to represent the two-particle Green function via a symmetrized Bethe-Salpeter equation in momentum space. We further utilize the dominance of a pole in the irreducible vertex to an approximate diagonalization of the Bethe-Salpeter equation and a non-perturbative representation of the electron-hole correlation function. The latter function is then used to derive a compact representation for the electrical conductivity at zero temperature without the necessity to evaluate separately the Drude term and vertex corrections. The electrical conductivity calculated in this way remains nonnegative also in the strongly disordered regime where the localization effects become significant and the negative vertex corrections in the standard Kubo formula overweight the Drude term.
D. phi. vertex drift chamber construction and test results
Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.
1991-05-01
A jet-cell based vertex chamber has been built for the D{O} experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO{sub 2}(95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with (9.74+8.68( E -1.25)) {mu}m/nsec where E is the electric field strength in (kV/cm < E z 1.6 kV/cm.) An intrinsic spatial resolution of 60 {mu}m or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 {mu}m. 8 refs., 6 figs., 1 tab.
The silicon vertex detector of HERA-B
Moshous, Basil
1998-02-01
HERA-B is an experiment to study CP violation in the B system using an internal target at the DESY HERA proton ring(820 GeV). The main goal is to measure the asymmetry in the 'gold plated' decays of B{sup 0}, B-bar{sup 0}{yields}J/{psi}K{sub s}{sup 0} yielding a measurement of the angle {beta} of the unitarity triangle. From the semileptonic decay channels of the b, b-bar-hadron produced in association with the B{sup 0},B-bar{sup 0} can be used to tag the flavor of the B{sup 0}. The purpose of the Vertex Detector System is to provide the track coordinates for reconstructing the J/{psi}{yields}e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} secondary decay vertices and the impact parameters of all tagging particles.
The silicon vertex detector of the Belle II experiment
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-07-01
The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.
Photoabsorption off nuclei with self-consistent vertex corrections
Riek, F.; Lutz, M. F. M.; Korpa, C. L.
2009-08-15
We study photoproduction off nuclei based on a self-consistent and covariant many-body approach for the pion and isobar propagation in infinite nuclear matter. For the first time the t-channel exchange of an in-medium pion is evaluated in the presence of vertex correction effects consistently. In particular the interference pattern with the s-channel in-medium nucleon and isobar exchange contribution is considered. Electromagnetic gauge invariance is kept as a consequence of various Ward identities obeyed by the computation. Adjusting the set of Migdal parameters to the data set we predict an attractive mass shift for the isobar of about 50 MeV at nuclear saturation density.
Performance of the CLAS12 Silicon Vertex Tracker modules
Antonioli, Mary Ann; Boiarinov, Serguie; Bonneau, Peter R.; Elouadrhiri, Latifa; Eng, Brian J.; Gotra, Yuri N.; Kurbatov, Evgeny O.; Leffel, Mindy A.; Mandal, Saptarshi; McMullen, Marc E.; Merkin, Mikhail M.; Raydo, Benjamin J.; Teachey, Robert W,; Tucker, Ross J.; Ungaro, Maurizio; Yegneswaran, Amrit S.; Ziegler, Veronique
2013-12-01
For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.
System software design for the CDF Silicon Vertex Detector
Tkaczyk, S.; Bailey, M.
1991-11-01
An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported.
Testing the RRPP vertex of effective Regge action
NASA Astrophysics Data System (ADS)
Kuraev, E. A.; Bytev, V. V.; Bakmaev, S.; Antonov, E. N.
2008-06-01
We discuss the possibility of checking the vertex with creation of two real gluons in collision of two reggeized ones (RRPP) which can reveal themselves in process of scalar meson production in high energy peripheral nucleon collisions. Numerical estimations of the cross section of a pair of charged pion production for the LHC facility give the value of an order of 10 mb. We also estimate the excess of production of positively charged muons (as a decay of pions) created by cosmic ray proton collisions with the atmosphere gas nuclei to be in reasonable agreement with modern data. The effects of higher orders which reveal themselves as a screening factor are considered in terms of impact parameter representation. We estimate the cross section of pion pair production in central region to fall faster than factorial σn ∼ 1 / (n2 n !).
Performance of the CLAS12 Silicon Vertex Tracker modules
NASA Astrophysics Data System (ADS)
Antonioli, M. A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B.; Gotra, Y.; Kurbatov, E.; Leffel, M.; Mandal, S.; McMullen, M.; Merkin, M.; Raydo, B.; Teachey, W.; Tucker, R.; Ungaro, M.; Yegneswaran, A.; Ziegler, V.
2013-12-01
For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156 μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.
Edge Currents and Vertex Operators for Chern-Simons Gravity
NASA Astrophysics Data System (ADS)
Bimonte, G.; Gupta, K. S.; Stern, A.
We apply elementary canonical methods for the quantization of 2+1 dimensional gravity, where the dynamics is given by E. Witten’s ISO(2, 1) Chern-Simons action. As in a previous work, our approach does not involve choice of gauge or clever manipulations of functional integrals. Instead, we just require the Gauss law constraint for gravity to be first class and also to be everywhere differentiable. When the spatial slice is a disc, the gravitational fields can either be unconstrained or constrained at the boundary of the disc. The unconstrained fields correspond to edge currents which carry a representation of the ISO(2, 1) Kac-Moody algebra. Unitary representations for such an algebra have been found using the method of induced representations. In the case of constrained fields, we can classify all possible boundary conditions. For several different boundary conditions, the field content of the theory reduces precisely to that of 1+1 dimensional gravity theories. We extend the above formalism to include sources. The sources take into account self-interactions. This is done by punching holes in the disc, and erecting an ISO(2, 1) Kac-Moody algebra on the boundary of each hole. If the hole is originally sourceless, a source can be created via the action of a vertex operator V. We give an explicit expression for V. We shall show that when acting on the vacuum state, it creates particles with a discrete mass spectrum. The lowest mass particle induces a cylindrical space-time geometry, while higher mass particles give an n fold covering of the cylinder. The vertex operator therefore creates cylindrical space-time geometries from the vacuum.
Cross flow induced vibrations in staggered arrays of cylindrical structures
Marn, J.
1991-12-31
Flow induced vibrations cause by instability is the subject of this investigation. The bulk of the work performed is theoretical in nature, the comparison with some of existing experimental data is given for each of four models described. First model encompasses the effects of prescribed motion on the cylinder. Such circumstances occur in the case of vortex shedding initiated instability. The reduced velocity within the cylinder array is low and there is no coupling between the adjacent cylinders. Second model assumes certain form of vibration and corresponding behavior of the perturbed velocity field in temporal and one of spatial coordinates thus transforming partial differential equations into ordinary differential equations and takes into account the motion of the neighboring cylinder. This corresponds to fluid elastic controlled instabilities. The resulting equations are solved analytically. The model is used for better understanding of the equations of cylinder motion as well as for quick estimates of threshold of instability. Third model relaxes an assumption about the form of vibration in spatial direction and uses the vorticity formulation of equation of fluid motion to account for fluid-solid interaction. This model analysis is of two phase (air-water mixture) flow. The void fraction distribution is found to be the single most decisive factor to determine the onset of instability for such a domain. In conclusion, two distinct mechanism were found to be responsible for flow induced vibration caused instabilities, (1) outside source controlled periodic excitation (such as vortex shedding) -- described by the first model and (2) fluid elastic forces -- described by second, third and fourth models. For the values of reduced velocity below 0.7 first model is proposed, for the values above 0.7, the rest.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
2016-07-01
Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of
Impact of nonlocal correlations over different energy scales: A dynamical vertex approximation study
NASA Astrophysics Data System (ADS)
Rohringer, G.; Toschi, A.
2016-09-01
In this paper, we investigate how nonlocal correlations affect, selectively, the physics of correlated electrons over different energy scales, from the Fermi level to the band edges. This goal is achieved by applying a diagrammatic extension of dynamical mean field theory (DMFT), the dynamical vertex approximation (D Γ A ), to study several spectral and thermodynamic properties of the unfrustrated Hubbard model in two and three dimensions. Specifically, we focus first on the low-energy regime by computing the electronic scattering rate and the quasiparticle mass renormalization for decreasing temperatures at a fixed interaction strength. This way, we obtain a precise characterization of the several steps through which the Fermi-liquid physics is progressively destroyed by nonlocal correlations. Our study is then extended to a broader energy range, by analyzing the temperature behavior of the kinetic and potential energy, as well as of the corresponding energy distribution functions. Our findings allow us to identify a smooth but definite evolution of the nature of nonlocal correlations by increasing interaction: They either increase or decrease the kinetic energy w.r.t. DMFT depending on the interaction strength being weak or strong, respectively. This reflects the corresponding evolution of the ground state from a nesting-driven (Slater) to a superexchange-driven (Heisenberg) antiferromagnet (AF), whose fingerprints are, thus, recognizable in the spatial correlations of the paramagnetic phase. Finally, a critical analysis of our numerical results of the potential energy at the largest interaction allows us to identify possible procedures to improve the ladder-based algorithms adopted in the dynamical vertex approximation.
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
NASA Astrophysics Data System (ADS)
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented
Fourth-Order Accurate IDO Scheme Using Gradient-Staggered Interpolation
NASA Astrophysics Data System (ADS)
Imai, Yohsuke; Aoki, Takayuki
An Interpolated Differential Operator (IDO) scheme using a new interpolation function is proposed. The gradient of the dependent variable is calculated at the position shifted by a half grid size from that of the physical value. A fourth-order Hermite-interpolation function is constructed locally using both the value and the gradient defined at staggered positions. The numerical solutions for the Poisson, diffusion, advection and wave equations have fourth-order accuracy in space. In particular, for the Poisson and diffusion equations, the Gradient-Staggered (G-S) IDO scheme shows better accuracy than the original IDO scheme. As a practical application, the Direct Numerical Simulation (DNS) for two-dimensional isotropic homogeneous turbulence is examined and a comparable result with that of the original IDO scheme is obtained. The G-S IDO scheme clearly contributes to high-accurate computations for solving partial differential equations in computational mechanics.
Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.
Follana, E; Hart, A; Davies, C T H
2004-12-10
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.
Adams, David H.
2008-05-15
To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalar meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.
On preservation of symmetry in r-z staggered Lagrangian schemes
NASA Astrophysics Data System (ADS)
Váchal, Pavel; Wendroff, Burton
2016-02-01
In the focus of this work are symmetry preservation, conservation of energy and volume, and other important properties of staggered Lagrangian hydrodynamic schemes in cylindrical (r-z) geometry. It is well known that on quadrilateral cells in r-z, preservation of spherical symmetry, perfect satisfaction of the Geometrical Conservation Law (GCL), and total energy conservation are incompatible even on conforming grids. This paper suggests a novel staggered grid approach that preserves symmetry, conserves total energy by construction and tries to do its best by diminishing the GCL error to the order of entropy error. In particular, the forces from an existing volume consistent scheme are corrected so that spherical symmetry is preserved. The incorporation of subcell pressure mechanism to reduce spurious grid deformations is described and the relation of the new scheme to popular area-weighted and control volume approaches studied.
Asymmetric edge modes by staggered potential in honeycomb lattice: Spin splitter
Chen, Son-Hsien; Sun, Shih-Jye; Su, Yu-Hsin; Chang, Ching-Ray
2015-05-07
In honeycomb lattice with staggered potential such as silicene nanoribbon (SN) as used for illustrations here, we show that the lack of inversion symmetry due to buckled structure can lead to asymmetric edge modes where only one edge is utilized in transport, yielding no cross-walk (due to size effect) between edges. We also find asymmetric Hall accumulations formed because of the presence of staggered potential. Applying two opposite out-of-plane electric fields to two adjacent SNs appropriately, so that cross-walk occurs between two internal edge states, the bulk states serve as a spin-splitter that splits two specious of spins (spin-up and spin-down) into those two SNs. The spin-splitter proposed here does not require any magnetic field and thus manipulates spins in a full electric manner.
Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation
Hrayr Matevosyan; Anthony Thomas; Peter Tandy
2007-04-01
We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.
The antiferromagnetic transition for the square-lattice Potts model
NASA Astrophysics Data System (ADS)
Jacobsen, Jesper L.; Saleur, Hubert
2006-05-01
We solve in this paper the problem of the antiferromagnetic transition for the Q-state Potts model (defined geometrically for Q generic using the loop/cluster expansion) on the square lattice. This solution is based on the detailed analysis of the Bethe ansatz equations (which involve staggered source terms of the type "real" and "anti-string") and on extensive numerical diagonalization of transfer matrices. It involves subtle distinctions between the loop/cluster version of the model, and the associated RSOS and (twisted) vertex models. The essential result is that the twisted vertex model on the transition line has a continuum limit described by two bosons, one which is compact and twisted, and the other which is not, with a total central charge c=2-6/t, for √{Q}=2cosπ/t. The non-compact boson contributes a continuum component to the spectrum of critical exponents. For Q generic, these properties are shared by the Potts model. For Q a Beraha number, i.e., Q=4cosπ/n with n integer, and in particular Q integer, the continuum limit is given by a "truncation" of the two boson theory, and coincides essentially with the critical point of parafermions Z. Moreover, the vertex model, and, for Q generic, the Potts model, exhibit a first-order critical point on the transition line—that is, the antiferromagnetic critical point is not only a point where correlations decay algebraically, but is also the locus of level crossings where the derivatives of the free energy are discontinuous. In that sense, the thermal exponent of the Potts model is generically equal to ν=1/2 >. Things are however profoundly different for Q a Beraha number. In this case, the antiferromagnetic transition is second order, with the thermal exponent determined by the dimension of the ψ parafermion, ν=t-2/2. As one enters the adjacent "Berker-Kadanoff" phase, the model flows, for t odd, to a minimal model of CFT with central charge c=1-6/(t-1)t, while for t even it becomes massive. This provides
Hadron spectrum with domain-wall valence quarks on an improved staggered sea
Richards, David; Edwards, Robert; Orginos, Konstantinos
2006-07-23
The hadron spectrum is computed in full QCD using domain-wall valence fermions on an improved staggered sea, for pion masses down to around $350{approx}(/rm MeV)$. Emphasis is laid on the low-lying baryon spectrum. All possible baryon correlators obtainable from local and quasi-local quark sources are computed, using lattice group-theory methods Results are presented for the lowest-lying states in each isospin channel.
Rubio, Paula Perez; Sint, Stefan
2011-05-23
We present preliminary results for the running coupling in the Schroedinger functional scheme in QCD with four flavours. A single-component staggered quark field is used on lattices of size (L/a){sup 3}x(L/a{+-}1). This provides us with 2 different regularisations of the same renormalized coupling, and thus some control over the size of lattice artefacts. These are found to be comparatively large, calling for a more refined analysis, which still remains to be done.
A METHOD OF TREATING UNSTRUCTURED CONCAVE CELLS IN STAGGERED-GRID LAGRANGIAN HYDRODYNAMICS
C. ROUSCULP; D. BURTON
2000-12-01
A method is proposed for the treatment of concave cells in staggered-grid Lagrangian hydrodynamics. The method is general enough to be applied to two- and three-dimensional unstructured cells. Instead of defining a cell-point as the geometric average of its nodes (a cell-center), the cell-point is that which equalizes the triangular/tetrahedral area/volume in two/three dimensions. Examples are given.
Chiral perturbation theory for staggered sea quarks and Ginsparg-Wilson valence quarks
Baer, Oliver; Bernard, Claude; Rupak, Gautam; Shoresh, Noam
2005-09-01
We study lattice QCD with staggered sea and Ginsparg-Wilson valence quarks. The Symanzik effective action for this mixed lattice theory, including the lattice spacing contributions of O(a{sup 2}), is derived. Using this effective theory we construct the leading-order chiral Lagrangian. The masses and decay constants of pseudoscalars containing two Ginsparg-Wilson valence quarks are computed at one-loop order.
NASA Technical Reports Server (NTRS)
Holdeman, James D.
2016-01-01
The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Schultz, A.
2011-12-01
The high computational cost of the forward solution for modeling low-frequency electromagnetic induction phenomena is one of the primary impediments against broad-scale adoption by the geoscience community of exploration techniques, such as magnetotellurics and geomagnetic depth sounding, that rely on fast and cheap forward solutions to make tractable the inverse problem. As geophysical observables, electromagnetic fields are direct indicators of Earth's electrical conductivity - a physical property independent of (but in some cases correlative with) seismic wavespeed. Electrical conductivity is known to be a function of Earth's physiochemical state and temperature, and to be especially sensitive to the presence of fluids, melts and volatiles. Hence, electromagnetic methods offer a critical and independent constraint on our understanding of Earth's interior processes. Existing methods for parallelization of time-harmonic electromagnetic simulators, as applied to geophysics, have relied heavily on a combination of strategies: coarse-grained decompositions of the model domain; and/or, a high-order functional decomposition across spectral components, which in turn can be domain-decomposed themselves. Hence, in terms of scaling, both approaches are ultimately limited by the growing communication cost as the granularity of the forward problem increases. In this presentation we examine alternate parallelization strategies based on OpenMP shared-memory parallelization and CUDA-based GPU parallelization. As a test case, we use two different numerical simulation packages, each based on a staggered Cartesian grid: FDM3D (Weiss, 2006) which solves the curl-curl equation directly in terms of the scattered electric field (available under the LGPL at www.openem.org); and APHID, the A-Phi Decomposition based on mixed vector and scalar potentials, in which the curl-curl operator is replaced operationally by the vector Laplacian. We describe progress made in modifying the code to
Effects of staggered fermions and mixed actions on the scalar correlator
Prelovsek, S.
2006-01-01
We provide the analytic predictions for the flavor nonsinglet scalar correlator, which will enable determination of the scalar meson mass from the lattice scalar correlator. We consider simulations with 2+1 staggered sea quarks and staggered or chiral valence quarks. At small u/d masses the correlator is dominated by the bubble contribution, which is the intermediate state with two pseudoscalar mesons. We determine the bubble contribution within staggered and mixed chiral perturbation theory. Its effective mass is smaller than the mass of {pi}{eta}, which is the lightest intermediate state in proper 2+1 QCD. The unphysical effective mass is a consequence of the taste breaking that makes possible the intermediate state with mass 2M{sub {pi}}. We find that the scalar correlator can be negative in the simulations with mixed quark actions if the sea- and valence-quark masses are tuned by matching the pion masses M{sub val,val}=M{sub {pi}{sub 5}}.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid
NASA Technical Reports Server (NTRS)
Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.
1995-01-01
In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.
Infrared behavior of the ghost-gluon vertex in Landau gauge Yang-Mills theory
Schleifenbaum, W.; Maas, A.; Wambach, J.; Alkofer, R.
2005-07-01
A semiperturbative calculation of the ghost-gluon vertex in Landau-gauge Yang-Mills theory in four and three Euclidean space-time dimensions is presented. Nonperturbative gluon and ghost propagators are employed, which have previously been calculated from a truncated set of Dyson-Schwinger equations and which are in qualitative and quantitative agreement with corresponding lattice results. Our results for the ghost-gluon vertex show only relatively small deviations from the tree-level one in agreement with recent lattice data. In particular, we do not see any sign for a singular behavior of the ghost-gluon vertex in the infrared.
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2013-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2011-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of
G-equivariant {phi}-coordinated quasi modules for quantum vertex algebras
Li, Haisheng
2013-05-15
This is a paper in a series to study quantum vertex algebras and their relations with various quantum algebras. In this paper, we introduce a notion of T-type quantum vertex algebra and a notion of G-equivariant {phi}-coordinated quasi module for a T-type quantum vertex algebra with an automorphism group G. We refine and extend several previous results and we obtain a commutator formula for G-equivariant {phi}-coordinated quasi modules. As an illustrating example, we study a special case of the deformed Virasoro algebra Vir{sub p,q} with q=-1, to which we associate a Clifford vertex superalgebra and its G-equivariant {phi}-coordinated quasi modules.
Novel integrated CMOS pixel structures for vertex detectors
Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene
2003-10-29
Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.
CDF Run IIb Silicon Vertex Detector DAQ Upgrade
S. Behari et al.
2003-12-18
The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.
Real time dynamic behavior of vertex frustrated artificial spin ice
NASA Astrophysics Data System (ADS)
Lao, Yuyang; Sklenar, Joseph; Gilbert, Ian; Carrasquilo, Isaac; Scholl, Andreas; Young, Anthony; Nisoli, Cristiano; Schiffer, Peter
Artificial spin ice systems comprise two dimensional arrays of nanoscale single domain ferromagnets designed to have frustrated interactions among the moments. By decimating islands from the common square artificial spin ice, one can design lattices with so called `vertex frustration'. In such lattices, the geometry prevents all vertices from occupying local ground states simultaneously. Using Photoemission Electron Microscopy (PEEM), we access the real time thermally induced dynamics of the moment behavior in those lattices. Operating at a proper temperature, the moment direction of each island fluctuates with a sufficiently slow frequency that it can be resolvable by acquiring successive PEEM images. We can extract information regarding the collective excitations of the moments and understand how they reflect the frustration of lattice. Supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under Grant No. DE-SC0010778. The work of C.N. was carried out under the auspices of the US Department of Energy at LANL under Contract no. DE-AC52-06NA253962. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231.
Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.
2016-07-01
The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.
Fast unmixing of multispectral optoacoustic data with vertex component analysis
NASA Astrophysics Data System (ADS)
Luís Deán-Ben, X.; Deliolanis, Nikolaos C.; Ntziachristos, Vasilis; Razansky, Daniel
2014-07-01
Multispectral optoacoustic tomography enhances the performance of single-wavelength imaging in terms of sensitivity and selectivity in the measurement of the biodistribution of specific chromophores, thus enabling functional and molecular imaging applications. Spectral unmixing algorithms are used to decompose multi-spectral optoacoustic data into a set of images representing distribution of each individual chromophoric component while the particular algorithm employed determines the sensitivity and speed of data visualization. Here we suggest using vertex component analysis (VCA), a method with demonstrated good performance in hyperspectral imaging, as a fast blind unmixing algorithm for multispectral optoacoustic tomography. The performance of the method is subsequently compared with a previously reported blind unmixing procedure in optoacoustic tomography based on a combination of principal component analysis (PCA) and independent component analysis (ICA). As in most practical cases the absorption spectrum of the imaged chromophores and contrast agents are known or can be determined using e.g. a spectrophotometer, we further investigate the so-called semi-blind approach, in which the a priori known spectral profiles are included in a modified version of the algorithm termed constrained VCA. The performance of this approach is also analysed in numerical simulations and experimental measurements. It has been determined that, while the standard version of the VCA algorithm can attain similar sensitivity to the PCA-ICA approach and have a robust and faster performance, using the a priori measured spectral information within the constrained VCA does not generally render improvements in detection sensitivity in experimental optoacoustic measurements.
NLO vertex for a forward jet plus a rapidity gap at high energies
NASA Astrophysics Data System (ADS)
Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio
2015-04-01
We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).
NASA Astrophysics Data System (ADS)
Xu, Min; He, Kang-Lin; Zhang, Zi-Ping; Wang, Yi-Fang; Bian, Jian-Ming; Cao, Guo-Fu; Cao, Xue-Xiang; Chen, Shen-Jian; Deng, Zi-Yan; Fu, Cheng-Dong; Gao, Yuan-Ning; Han, Lei; Han, Shao-Qing; He, Miao; Hu, Ji-Feng; Hu, Xiao-Wei; Huang, Bin; Huang, Xing-Tao; Jia, Lu-Kui; Ji, Xiao-Bin; Li, Hai-Bo; Li, Wei-Dong; Liang, Yu-Tie; Liu, Chun-Xiu; Liu, Huai-Min; Liu, Ying; Liu, Yong; Luo, Tao; Lü, Qi-Wen; Ma, Qiu-Mei; Ma, Xiang; Mao, Ya-Jun; Mao, Ze-Pu; Mo, Xiao-Hu; Ning, Fei-Peng; Ping, Rong-Gang; Qiu, Jin-Fa; Song, Wen-Bo; Sun, Sheng-Sen; Sun, Xiao-Dong; Sun, Yong-Zhao; Tian, Hao-Lai; Wang, Ji-Ke; Wang, Liang-Liang; Wen, Shuo-Pin; Wu, Ling-Hui; Wu, Zhi; Xie, Yu-Guang; Yan, Jie; Yan, Liang; Yao, Jian; Yuan, Chang-Zheng; Yuan, Ye; Zhang, Chang-Chun; Zhang, Jian-Yong; Zhang, Lei; Zhang, Xue-Yao; Zhang, Yao; Zheng, Yang-Heng; Zhu, Yong-Sheng; Zou, Jia-Heng
2009-06-01
This paper focuses mainly on the vertex reconstruction of resonance particles with a relatively long lifetime such as K0S, Λ, as well as on lifetime measurements using a 3-dimensional fit. The kinematic constraints between the production and decay vertices and the decay vertex fitting algorithm based on the least squares method are both presented. Reconstruction efficiencies including experimental resolutions are discussed. The results and systematic errors are calculated based on a Monte Carlo simulation.
Structural information content of networks: graph entropy based on local vertex functionals.
Dehmer, Matthias; Emmert-Streib, Frank
2008-04-01
In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating j-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. PMID:18243802
NASA Astrophysics Data System (ADS)
Gornushkin, Yu. A.; Dmitrievsky, S. G.; Chukanov, A. V.
2015-01-01
The OPERA experiment is designed for the direct observation of the appearance of ντ from νμ → ντ oscillation in a νμ beam. A description of the procedure of neutrino interaction vertex localization (Brick Finding) by electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and a determination of the target bricks with the highest probability to contain the vertex.
Hubble Space Telescope secondary mirror vertex radius/conic constant test
NASA Technical Reports Server (NTRS)
Parks, Robert
1991-01-01
The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.
Screenings and vertex operators of quantum superalgebra U{sub q}(sl-caret(N|1))
Kojima, Takeo
2012-08-15
We construct the screening currents of the quantum superalgebra U{sub q}(sl-caret(N|1)) for an arbitrary level k{ne}-N+ 1. We show that these screening currents commute with the superalgebra modulo total difference. We propose bosonizations of the vertex operators by using the screening currents. We check that these vertex operators are the intertwiners among the Fock-Wakimoto representation and the typical representation for rank N Less-Than-Or-Slanted-Equal-To 4.
Constructing scalar-photon three point vertex in massless quenched scalar QED
NASA Astrophysics Data System (ADS)
Fernández-Rangel, L. Albino; Bashir, Adnan; Gutiérrez-Guerrero, L. X.; Concha-Sánchez, Y.
2016-03-01
Nonperturbative studies of Schwinger-Dyson equations require their infinite, coupled tower to be truncated in order to reduce them to a practically solvable set. In this connection, a physically acceptable Ansatz for the three point vertex is the most favorite choice. Scalar quantum electrodynamics (sQED) provides a simple and neat platform to address this problem. The most general form of the three point scalar-photon vertex can be expressed in terms of only two independent form factors, a longitudinal and a transverse one. Ball and Chiu have demonstrated that the longitudinal vertex is fixed by requiring the Ward-Fradkin-Green-Takahashi identity while the transverse vertex remains undetermined. In massless quenched sQED, we construct the transverse part of the nonperturbative scalar-photon vertex. This construction (i) ensures multiplicative renormalizability of the scalar propagator in keeping with the Landau-Khalatnikov-Fradkin transformations, (ii) has the same transformation properties as the bare vertex under charge conjugation, parity and time reversal, (iii) has no kinematic singularities and (iv) reproduces the one-loop asymptotic result in the weak coupling regime of the theory.
Vertex dynamics in multi-soliton solutions of Kadomtsev-Petviashvili II equation
NASA Astrophysics Data System (ADS)
Zarmi, Yair
2014-06-01
A functional of the solution of the Kadomtsev-Petviashvili II equation maps multi-soliton solutions onto systems of vertices—structures that are localized around soliton junctions. A solution with one junction is mapped onto a single vertex, which emulates a free, spatially extended, particle. In solutions with several junctions, each junction is mapped onto a vertex. Moving in the x-y plane, the vertices collide, coalesce upon collision and then split up. When well separated, they emulate free particles. Multi-soliton solutions, whose structure does not change under space-time inversion as |t| → ∞, are mapped onto vertex systems that undergo elastic collisions. Solutions, whose structure does change, are mapped onto systems that undergo inelastic collisions. The inelastic vertex collisions generated from the infinite family of (M,1) solutions (M external solitons, (M - 2) Y-shaped soliton junctions, M ⩾ 4) play a unique role: the only definition of vertex mass consistent with momentum conservation in these collisions is the spatial integral of the vertex profile. This definition ensures, in addition, that, in these collisions, the total mass and kinetic energy due to the motion in the y-direction are conserved. In general, the kinetic energy due to the motion in the x-direction is not conserved in these collisions.
Statistical approaches to nonstationary EEGs for the detection of slow vertex responses.
Fujikake, M; Ninomija, S P; Fujita, H
1989-06-01
A slow vertex response (SVR) is an electric auditory evoked response used for an objective hearing power test. One of the aims of an objective hearing power test is to find infants whose hearing is less than that of normal infants. Early medical treatment is important for infants with a loss of hearing so that they do not have retarded growth. To measure SVRs, we generally use the averaged summation method of an electroencephalogram (EEG), because the signal-to-noise ratio (SVR to EEG and etc.) is very poor. To increase the reliability and stability of measured SVRs, and at the same time, to make the burden of testing light, it is necessary to device an effective measurement method of SVR. Two factors must be considered: (1) SVR waveforms change following the changes of EEGs caused by sleeping and (2) EEGs are considered as nonstationary data in prolonged measurement. In this paper, five statistical methods are used on two different models; a stationary model and a nonstationary model. Through the comparison of waves obtained by each method, we will clarify the statistical characteristics of the original data (EEGs including SVRs), and consider the conditions that effect the measurement method of an SVR. PMID:2794816
NASA Astrophysics Data System (ADS)
Atkinson, W. A.; Kampf, A. P.; Bulut, S.
2016-04-01
We study the emergence of charge-ordered phases within a π -loop-current (π LC ) model for the pseudogap based on a three-band model for underdoped cuprate superconductors. Loop currents and charge ordering are driven by distinct components of the short-range Coulomb interactions: loop currents result from the repulsion between nearest-neighbor copper and oxygen orbitals, while charge order results from repulsion between neighboring oxygen orbitals. We find that the leading π LC phase has an antiferromagnetic pattern similar to previously discovered staggered flux phases, and that it emerges abruptly at hole dopings p below the Van Hove filling. Subsequent charge-ordering tendencies in the π LC phase reveal that diagonal d -charge density waves (dCDWs) are suppressed by the loop currents while axial order competes more weakly. In some cases we find a wide temperature range below the loop-current transition, over which the susceptibility towards an axial dCDW is large. In these cases, short-range axial charge order may be induced by doping-related disorder. A unique feature of the coexisting dCDW and π LC phases is the emergence of an incommensurate modulation of the loop currents. If the dCDW is biaxial (checkerboard) then the resulting incommensurate current pattern breaks all mirror and time-reversal symmetries, thereby allowing for a polar Kerr effect.
NASA Astrophysics Data System (ADS)
Casini, G.; Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Barlini, S.; Benelli, M.; Bini, M.; Calviani, M.; Marini, P.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bruno, M.; Morelli, L.; Kravchuk, V. L.; Amorini, F.; Auditore, L.; Cardella, G.; De Filippo, E.; Galichet, E.; La Guidara, E.; Lanzalone, G.; Lanzanó, G.; Maiolino, C.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifiró, A.; Trimarchi, M.
2012-07-01
Odd-even staggering effects on charge distributions are investigated for fragments produced in semiperipheral and central collisions of 112Sn+58Ni at 35 MeV/nucleon. For fragments with Z≤16 one observes a clear overproduction of even charges, which decreases for heavier fragments. Staggering persists up to Z˜30. The staggering appears to be substantially independent of the centrality of the collisions, suggesting that it is mainly related to the last few steps in the decay of hot nuclei.
TECHNICAL DESIGN REPORT OF THE FORWARD SILICON VERTEX (FVTX)
PHENIX EXPERIMENT; OBRIEN,E.; PAK, R.; DREES, K.A.
2007-08-01
The main goal of the RHIC heavy ion program is the discovery of the novel ultra-hot high-density state of matter predicted by the fundamental theory of strong interactions and created in collisions of heavy nuclei, the Quark-Gluon Plasma (QGP). From measurements of the large elliptic flow of light mesons and baryons and their large suppression at high transverse momentum pT that have been made at RHIC, there is evidence that new degrees of freedom, characteristic of a deconfined QCD medium, drive the dynamics of nucleus-nucleus collisions. It has been recognized, however, that the potential of light quarks and gluons to characterize the properties of the QGP medium is limited and the next phase of the RHIC program calls for the precise determination of its density, temperature, opacity and viscosity using qualitatively new probes, such as heavy quarks. We propose the construction of two Forward Silicon Vertex Trackers (FVTX) for the PHENIX experiment that will directly identify and distinguish charm and beauty decays within the acceptance of the muon spectrometers. The FVTX will provide this essential coverage over a range of forward and backward rapidities (1.2 < |y| < 2.4)--a rapidity range coverage which not only brings significantly larger acceptance to PHENIX but which is critical for separating cold nuclear matter effects from QGP effects and is critical for measuring the proton spin contributions over a significant fraction of the kinematic range of interest. In addition, the FVTX will provide greatly reduced background and improved mass resolution for dimuon events, culminating in the first measurements of the {upsilon}{prime} and Drell-Yan at RHIC. These same heavy flavor and dimuon measurements in p+p collisions will allow us to place significant constraints on the gluon and sea quark contributions to the proton's spin and to make fundamentally new tests of the Sivers function universality.
NASA Astrophysics Data System (ADS)
Zhong, Ya-Nan; Gao, Xu; Wang, Chen-Huan; Xu, Jian-Long; Wang, Sui-Dong
2016-11-01
The MoO3/pentacene heterojunction is demonstrated to be effective for reducing the contact resistance in staggered organic thin-film transistors. The heterojunction-induced doping is nondestructive and may form a top conducting channel close to the pentacene surface. Contact interface doping and channel doping both significantly reduced the contact resistance. The effect of channel doping was prominent at low gate bias values, which is ascribed to the negligible access resistance owing to the presence of the top channel. Interface doping and channel doping were combined to obtain a complete heterojunction, which exhibited minimized contact resistance for a wide range of gate bias values.
Generalized parton distributions from domain wall valence quarks and staggered sea quarks
Renner, Dru; Bratt, Jonathan; Edwards, Robert; Engelhardt, Michael; Fleming, George; Haegler, Philipp; Musch, Bernhard; Negele, John; Orginos, Konstantinos; Pochinsky, Andrew; Richards, David; Schroers, Wolfram
2007-11-01
Moments of the generalized parton distributions of the nucleon, calculated with a mixed action of domain wall valence quarks and asqtad staggered sea quarks, are presented for pion masses extending down to 359 MeV. Results for the moments of the unpolarized, helicity, and transversity distributions are given and compared to the available experimental measurements. Additionally, a selection of the generalized form factors are shown and the implications for the spin decomposition and transverse structure of the nucleon are discussed. Particular emphasis is placed on understanding systematic errors in the lattice calculation and exploring a variety of chiral extrapolations.
A simplified design of the staggered herringbone micromixer for practical applications
Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong
2010-01-01
We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584
A staggered mesh finite difference scheme for the computation of hypersonic Euler flows
NASA Technical Reports Server (NTRS)
Sanders, Richard
1991-01-01
A shock capturing finite difference method for systems of hyperbolic conservation laws is presented which avoids the need to solve Riemann problems while being competitive in performance with other current methods. A staggered spatial mesh is employed, so that complicated nonlinear waves generated at cell interfaces are averaged over cell interiors at the next time level. The full method combines to form a conservative version of the modified method of characteristics. The advantages of the method are discussed, and numerical results are presented for the two-dimensional double ellipse problem.
Critical behavior in N{sub t}=4 staggered fermion thermodynamics
Bernard, Claude; DeTar, Carleton; Gottlieb, Steven; Heller, Urs M.; Hetrick, James; Rummukainen, Kari; Sugar, Robert L.; Toussaint, Doug
2000-03-01
Quantum chromodynamics with two zero mass flavors is expected to exhibit a phase transition with O(4) critical behavior. Fixing the universality class is important for phenomenology and for facilitating the extrapolation of simulation data to physical quark mass values. Other groups have reported results from lattice QCD simulations with dynamical staggered quarks at N{sub t}=4, which suggest a departure from the expected critical behavior. We have pushed simulations to the largest volumes and smallest quark mass to date. Strong discrepancies in critical exponents and the scaling equation of state persist. (c) 2000 The American Physical Society.
Garny, M.; Hohenegger, A.; Kartavtsev, A.; Lindner, M.
2009-12-15
The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic equations whose applicability to processes in the hot and expanding early universe is questionable. The approximations implied by the state-of-the-art description can be tested in a first-principle approach based on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases. Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In particular, this means that the structure of the equations automatically ensures that the asymmetry vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects that can be studied in the framework of nonequilibrium field theory.
NASA Astrophysics Data System (ADS)
Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.
2016-04-01
We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .
PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.
AKIBA,Y.
2004-03-30
We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx
An experimental investigation of wind flow over tall towers in staggered form
NASA Astrophysics Data System (ADS)
Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad
2016-07-01
In this research work an experiment is conducted to see the effect of wind loading on square, pentagonal and Hexagonal shape cylinders in staggered form. The experiment is done in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform throughout the experiment at 14.3 m/s. The test has been conducted for single cylinders first and then in staggered form. Angle of attack is chosen at a definite interval. The static pressure at different locations of the cylinder is measured by inclined multi-manometer. From the surface static pressure readings pressure coefficients are calculated first, then drag and lift coefficients are calculated using numerical Integration Method. These results will surely help engineers to design buildings with such shapes more efficiently. All the results are expressed in non-dimensional form, so they can be applied for prototype buildings and determine the wind loading at any wind speed on structures of similar external shapes.
Interaction induced staggered spin-orbit order in two-dimensional electron gas
Das, Tanmoy
2012-06-05
Decoupling spin and charge transports in solids is among the many prerequisites for realizing spin electronics, spin caloritronics, and spin-Hall effect. Beyond the conventional method of generating and manipulating spin current via magnetic knob, recent advances have expanded the possibility to optical and electrical method which are controllable both internally and externally. Yet, due to the inevitable presence of charge excitations and electrical polarizibility in these methods, the separation between spin and charge degrees of freedom of electrons remains a challenge. Here we propose and formulate an interaction induced staggered spin-orbit order as a new emergent phase of matter. We show that when some form of inherent spin-splitting via Rashba-type spin-orbit coupling renders two helical Fermi surfaces to become significantly nested, a Fermi surface instability arises. To lift this degeneracy, a spontaneous symmetry breaking spin-orbit density wave develops, causing a surprisingly large quasiparticle gapping with chiral electronic states, with no active charge excitations. Since the staggered spin-orbit order is associated with a condensation energy, quantified by the gap value, destroying such spin-orbit interaction costs sufficiently large perturbation field or temperature or de-phasing time. BiAg2 surface state is shown to be a representative system for realizing such novel spin-orbit interaction with tunable and large strength, and the spin-splitting is decoupled from charge excitations.
Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1991-01-01
A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.
Heat transfer characteristics of staggered wing-shaped tubes bundle at different angles of attack
NASA Astrophysics Data System (ADS)
Sayed Ahmed, Sayed Ahmed E.; Ibrahiem, Emad Z.; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2014-08-01
An experimental and numerical study has been conducted to clarify heat transfer characteristics and effectiveness of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 × 102 and at from 1.8 × 103 to 9.7 × 103, respectively. The tubes arrangements were employed with various angles of attack θ1,2,3 from 0° to 330° at the considered Rea range. Correlation of Nu, St, as well as the heat transfer per unit pumping power (ɛ) in terms of Rea and design parameters for the studied bundle were presented. The temperature fields around the staggered wing-shaped tubes bundle were predicted by using commercial CFD FLUENT 6.3.26 software package. Results indicated that the heat transfer increased with the angle of attack in the range from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The best thermal performance and hence the efficiency η of studied bundle occurred at the lowest Rea and/or zero angle of attack. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.
Staggered scheduling of sensor estimation and fusion for tracking over long-haul links
Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin
2016-08-01
Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimalmore » tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.« less
Test of {Delta}I = 2 staggering in the superdeformed bands of {sup 194}Hg
Kruecken, R.; Deleplanque, M.A.; Hackman, G.
1996-11-01
Superdeformed (SD) states in {sup 194}Hg were populated in {sup 150}Nd({sup 48}Ca,4n) using a 201 MeV {sup 48}Ca beam from the 88- inch cyclotron. A high statistics experiment was done to test for the previously reported evidence for a {Delta}I = 2 staggering in the three SD bands in {sup 194}Hg. The transition energies were determined with a precision of at least 60 eV for most transitions. From this improvement, we cannot confirm evidence for an extended regular {Delta}I = 2 staggering in any of the three SD bands of {sup 194}Hg. However, we observe deviations from a smooth reference in the SD bands 2 and 3 which differ from previous results. Oscillation patterns of the {gamma}-ray energies that can be induced by a simple band crossing or level shift are discussed. Even though such level shifts would explain the observed effects, other experimental signatures, such as a crossing band, are needed to fully understand the results of the present work; no such band was found.
Computational imaging from non-uniform degradation of staggered TDI thermal infrared imager.
Sun, Tao; Liu, Jian Guo; Shi, Yan; Chen, Wangli; Qin, Qianqing; Zhang, Zijian
2015-09-21
For the Time Delay Integration (TDI) staggered line-scanning thermal infrared imager, a Computational Imaging (CI) approach is developed to achieve higher spatial resolution images. After a thorough analysis of the causes of non-uniform image displacement and degradation for multi-channel staggered TDI arrays, the study aims to approach one-dimensional (1D) sub-pixel displacement estimation and superposition of images from time-division multiplexing scanning lines. Under the assumption that a thermal image is 2D piecewise C(2) smooth, a sparse-and-smooth deconvolution algorithm with L1-norm regularization terms combining the first and second order derivative operators is proposed to restore high frequency components and to suppress aliasing simultaneously. It is theoretically and experimentally demonstrated, with simulation and airborne thermal infrared images, that this is a state-of-the-art practical CI method to reconstruct clear images with higher frequency components from raw thermal images that are subject to instantaneous distortion and blurring. PMID:26406660
CaFeAs2: A staggered intercalation of quantum spin Hall and high-temperature superconductivity
NASA Astrophysics Data System (ADS)
Wu, Xianxin; Qin, Shengshan; Liang, Yi; Le, Congcong; Fan, Heng; Hu, Jiangping
2015-02-01
We predict that CaFeAs2, a newly discovered iron-based high-temperature (Tc) superconductor, is a staggered intercalation compound that integrates topological quantum spin Hall (QSH) and superconductivity (SC). CaFeAs2 has a structure with staggered CaAs and FeAs layers. While the FeAs layers are known to be responsible for high Tc superconductivity, we show that with spin orbital coupling each CaAs layer is a Z2 topologically nontrivial two-dimensional QSH insulator and the bulk is a three-dimensional weak topological insulator. In the superconducting state, the edge states in the CaAs layer are natural one-dimensional topological superconductors. The staggered intercalation of QSH and SC provides us a unique opportunity to realize and explore physics, such as Majorana modes and Majorana fermion chains.
Note: Double-beveled multilayer stagger-split die for a large volume high-pressure apparatus.
Wang, Bolong; Li, Mingzhe; Yang, Yunfei; Liu, Zhiwei
2015-08-01
A high-pressure device with a large cavity was investigated using finite-element analysis. This device is called a double-beveled multilayer stagger-split die, and consists of two supported rings and a multilayer divided body assemblage. Each divided cylinder body has two bevels in the pressurized surface. We simulated the pressure capacity of this device according to different failure criteria. The results were compared with those of a multilayer stagger-split die and belt type die. The bearing capacity of the double-beveled multilayer stagger-split die was more than 7.3 GPa. A group of comparative experiments were conducted to validate the simulated results, and the experimental results show the actual pressure capacity was higher than the simulation.
NH3-promoted ligand lability in eleven-vertex rhodathiaboranes.
Calvo, Beatriz; Roy, Beatriz; Macías, Ramón; Artigas, Maria Jose; Lahoz, Fernando J; Oro, Luis A
2014-12-01
The reaction of the 11-vertex rhodathiaborane, [8,8-(PPh3)2-nido-8,7-RhSB9H10] (1), with NH3 affords inmediately the adduct, [8,8,8-(NH3)(PPh3)2-nido-8,7-RhSB9H10] (4). The NH3-Rh interaction induces the labilization of the PPh3 ligands leading to the dissociation product, [8,8-(NH3)(PPh3)-nido-8,7-RhSB9H10] (5), which can then react with another molecule of NH3 to give [8,8,8-(NH3)2(PPh3)-nido-8,7-RhSB9H10] (6). These clusters have been characterized in situ by multielement NMR spectroscopy at different temeperatures. The variable temperature behavior of the system demonstrates that the intermediates 4-6 are in equilibrium, involving ligand exchange processes. On the basis of low intensity signals present in the (1)H NMR spectra of the reaction mixture, some species are tentatively proposed to be the bis- and tris-NH3 ligated clusters, [8,8-(NH3)2-nido-8,7-RhSB9H10] (7) and [8,8,8-(NH3)3-nido-8,7-RhSB9H10] (8). After evaporation of the solvent and the excess of NH3, the system containing species 4-8 regenerates the starting reactant, 1, thus closing a stoichiometric cycle of ammonia addition and loss. After 40 h at room temperature, the reaction of 1 with NH3 gives the hydridorhodathiaborane, [8,8,8-(H)(PPh3)2-nido-8,7-RhSB9H9] (2), as a single product. The reported rhodathiaboranes show reversible H3N-promoted ligand lability, which implies weak Rh-N interactions, leading to a rare case of metal complexes that circumvent "classical" Werner chemistry.
The MAPS based PXL vertex detector for the STAR experiment
NASA Astrophysics Data System (ADS)
Contin, G.; Anderssen, E.; Greiner, L.; Schambach, J.; Silber, J.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Vu, C.; Wieman, H.; Woodmansee, S.
2015-03-01
The Heavy Flavor Tracker (HFT) was installed in the STAR experiment for the 2014 heavy ion run of RHIC. Designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, the HFT is composed of three different silicon detectors based on CMOS monolithic active pixels (MAPS), pads and strips respectively, arranged in four concentric cylinders close to the STAR interaction point. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line, respectively, and accommodate 400 ultra-thin (50 μ m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m2. Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 μ m pixel pitch, providing a sensitive area of ~ 3.8 cm2. The architecture is based on a column parallel readout with amplification and correlated double sampling inside each pixel. Each column is terminated with a high precision discriminator, is read out in a rolling shutter mode and the output is processed through an integrated zero suppression logic. The results are stored in two SRAM with ping-pong arrangement for a continuous readout. The sensor features 185.6 μ s readout time and 170 mW/cm2 power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run.In addition to a detailed description of the detector characteristics, the experience of the first months of data taking will be presented in this paper, with a particular focus on sensor threshold calibration, latch-up protection procedures and general system operations aimed at stabilizing the running conditions. Issues faced during the 2014 run will be discussed together with the implemented solutions. A preliminary analysis of the detector performance
Graphical method for deriving an effective interaction with a new vertex function
Suzuki, K.; Okamoto, R.; Kumagai, H.; Fujii, S.
2011-02-15
Introducing a new vertex function, Z(E), of an energy variable E, we derive a new equation for the effective interaction. The equation is obtained by replacing the Q box in the Krenciglowa-Kuo (KK) method with Z(E). This new approach can be viewed as an extension of the KK method. We show that this equation can be solved both in iterative and noniterative ways. We observe that the iteration procedure with Z(E) brings about fast convergence compared to the usual KK method. It is shown that, as in the KK approach, the procedure of calculating the effective interaction can be reduced to determining the true eigenvalues of the original Hamiltonian H and they can be obtained as the positions of intersections of graphs generated from Z(E). We find that this graphical method yields always precise results and reproduces any of the true eigenvalues of H. The calculation in the present approach can be made regardless of overlaps with the model space and energy differences between unperturbed energies and the eigenvalues of H. We find also that Z(E) is a well-behaved function of E and has no singularity. These characteristics of the present approach ensure stability in actual calculations and would be helpful to resolve some difficulties due to the presence of poles in the Q box. Performing test calculations, we verify numerically theoretical predictions made in the present approach.
Mode and modulation characteristics for microsquare lasers with a vertex output waveguide
NASA Astrophysics Data System (ADS)
Long, Heng; Huang, YongZhen; Yang, YueDe; Zou, LingXiu; Xiao, JinLong; Xiao, ZhiXiong
2015-11-01
The mode and high-speed modulation characteristics are investigated for a microsquare laser with a side length of 16 μm and a 2-μm-wide output waveguide connected to one vertex. The longitudinal and transverse mode characteristics are analyzed by numerical simulation and light ray model, and compared with the lasing spectra for the microsquare laser. Up to the fifth transverse mode is observed clearly from the lasing spectra. Single mode operation with the side mode suppression ratio of 41 dB is realized at the injection current of 24 mA, and the maximum output power of 0.53 (0.18) mW coupled into the multiple (single) mode fiber is obtained at the current of 35 mA, for the microsquare laser at the temperature of 288 K. Furthermore, a flat small-signal modulation response is reached with the 3-dB bandwidth of 16.2 GHz and the resonant peak of 3.6 dB at the bias current of 34 mA. The K-factor of 0.22 ns is obtained by fitting the damping factor versus the resonant frequency, which implies a maximum intrinsic 3-dB bandwidth of 40 GHz.
Controllability and observability analysis for vertex domination centrality in directed networks
Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu
2014-01-01
Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137
Controllability and observability analysis for vertex domination centrality in directed networks
NASA Astrophysics Data System (ADS)
Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu
2014-06-01
Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.
Design and performance of the SLD Vertex Detector, a 120 Mpixel tracking system
Agnew, G.D.; Cotton, R.; Damerell, C.J.S.
1992-03-01
This paper describes the design, construction, and initial operation of the SLD Vertex Detector, the first device to employ charge coupled devices (CCDs) on a large scale in a high energy physics experiment. The Vertex Detector comprises 480 CCDs, with a total of 120 Mpixels. Each pixel functions as an independent particle detecting element, providing space point measurements of charged particle tracks with a typical precision of 5 {mu}m in each co-ordinate. The CCDs are arranged in four concentric cylinders just outside the beam pipe which surrounds the e{sup +}e{sup {minus}} collision point of the SLAC Linear Collider (SLC). The Vertex Detector is a powerful tool for distinguishing secondary vertex tracks, produced by decay in flight of heavy flavour hadrons or tau leptons, from tracks produced at the primary event vertex. Because the colliding beam environment imposes severe constraints on the design of such a detector, a six year R&D programme was needed to develop solutions to a number of problems. The requirements include a low-mass structure (to minimise multiple scattering) both for mechanical support and to provide signal paths for the CCDS; operation at low temperature with a high degree of mechanical stability; and relatively high speed CCD readout, signal processing, and data sparsification. The lessons learned through the long R&D period should be useful for the construction of large arrays of CCDs or smart pixel devices in the future, in a number of areas of science and technology.
Vertex evoked potentials in a rating-scale detection task: Relation to signal probability
NASA Technical Reports Server (NTRS)
Squires, K. C.; Squires, N. K.; Hillyard, S. A.
1974-01-01
Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.
Huh, Yong; Yu, Kiyun; Park, Woojin
2016-01-01
This paper proposes a method to detect corresponding vertex pairs between planar tessellation datasets. Applying an agglomerative hierarchical co-clustering, the method finds geometrically corresponding cell-set pairs from which corresponding vertex pairs are detected. Then, the map transformation is performed with the vertex pairs. Since these pairs are independently detected for each corresponding cell-set pairs, the method presents improved matching performance regardless of locally uneven positional discrepancies between dataset. The proposed method was applied to complicated synthetic cell datasets assumed as a cadastral map and a topographical map, and showed an improved result with the F-measures of 0.84 comparing to a previous matching method with the F-measure of 0.48. PMID:27348229
Application of laser differential confocal technique in back vertex power measurement for phoropters
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli
2012-10-01
A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.
Huh, Yong; Yu, Kiyun; Park, Woojin
2016-01-01
This paper proposes a method to detect corresponding vertex pairs between planar tessellation datasets. Applying an agglomerative hierarchical co-clustering, the method finds geometrically corresponding cell-set pairs from which corresponding vertex pairs are detected. Then, the map transformation is performed with the vertex pairs. Since these pairs are independently detected for each corresponding cell-set pairs, the method presents improved matching performance regardless of locally uneven positional discrepancies between dataset. The proposed method was applied to complicated synthetic cell datasets assumed as a cadastral map and a topographical map, and showed an improved result with the F-measures of 0.84 comparing to a previous matching method with the F-measure of 0.48. PMID:27348229
Running coupling from the four-gluon vertex in Landau gauge Yang-Mills theory
Kellermann, Christian; Fischer, Christian S.
2008-07-15
We consider the running coupling from the four-gluon vertex in Landau gauge, SU(N{sub c}) Yang-Mills theory as given by a combination of dressing functions of the vertex and the gluon propagator. We determine these functions numerically from a coupled set of Dyson-Schwinger equations. We reproduce asymptotic freedom in the ultraviolet momentum region and find a coupling of order one at mid-momenta. In the infrared we find a nontrivial (i.e. nonzero) fixed point which is 3 orders of magnitude smaller than the corresponding fixed point in the coupling of the ghost-gluon vertex. This result explains why the Dyson-Schwinger and the functional renormalization group equations for the two point functions can agree in the infrared, although their structure is quite different. Our findings also support Zwanziger's notion of an infrared effective theory driven by the Faddeev-Popov determinant.
Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces I
NASA Astrophysics Data System (ADS)
Mason, Geoffrey; Tuite, Michael P.
2010-12-01
We define the partition and n-point functions for a vertex operator algebra on a genus two Riemann surface formed by sewing two tori together. We obtain closed formulas for the genus two partition function for the Heisenberg free bosonic string and for any pair of simple Heisenberg modules. We prove that the partition function is holomorphic in the sewing parameters on a given suitable domain and describe its modular properties for the Heisenberg and lattice vertex operator algebras and a continuous orbifolding of the rank two fermion vertex operator super algebra. We compute the genus two Heisenberg vector n-point function and show that the Virasoro vector one point function satisfies a genus two Ward identity for these theories.
Orbifold Construction of Holomorphic Vertex Operator Algebras Associated to Inner Automorphisms
NASA Astrophysics Data System (ADS)
Lam, Ching Hung; Shimakura, Hiroki
2016-03-01
In this article, we construct three new holomorphic vertex operator algebras of central charge 24 using the {Z}2-orbifold construction associated to inner automorphisms. Their weight one subspaces have the Lie algebra structures D 7,3 A 3,1 G 2,1, E 7,3 A 5,1, and {A_{8,3}A_{2,1}^2}. In addition, we discuss the constructions of holomorphic vertex operator algebras with Lie algebras A 5,6 C 2,3 A 1,2 and {D_{6,5}A_{1,1}^2} from holomorphic vertex operator algebras with Lie algebras C 5,3 G 2,2 A 1,1 and {A_{4,5}^2}, respectively.
A Preliminary Measurement of Rb using the New SLD Vertex Detector
Coller, A
2004-01-23
We report a new measurement of R{sub b} using data obtained during the 1996 SLD run. This measurement uses a double tag technique, where the selection of a b hemisphere is based on the reconstructed mass of the B hadron decay vertex. The method utilizes the 3D vertexing capabilities of SLD's new CCD vertex detector and the small and stable SLC beams to obtain a high b tagging efficiency and purity of 47.9% and 97.6%, respectively. We obtain a preliminary result of R{sub b} = 0.2101 {+-} 0.0034{sub stat.} {+-} 0.0022{sub syst.} {+-} 0.0003{sub R{sub c}} for 1996 data. With our previous measurement from1993-95 data, we obtain a combined preliminary 93-96 result of R{sub b} = 0.2124 {+-} 0.0024{sub stat.} {+-} 0.0017{sub syst.}.
Migdal's theorem and electron-phonon vertex corrections in Dirac materials
NASA Astrophysics Data System (ADS)
Roy, Bitan; Sau, Jay D.; Das Sarma, S.
2014-04-01
Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.
Development and testing of novel stripixel detectors for the silicon vertex tracker at PHENIX
NASA Astrophysics Data System (ADS)
Haegemann, C.; Hoeferkamp, M.; Fields, D. E.; Zimmerman, A.; Turner, J.; Malik, M.; Edans, L.
2005-12-01
As a part of the upgrades for the PHENIX detector at RHIC,a silicon vertex tracking detector is planned. This detector will consist of two pixel layers followed by two strip-pixel layers in the barrel region,an d four mini-strip layers in the endcap region. As a part of the development phase of the vertex detector, we have set up three sensor testing facilities at Brookhaven National Laboratory, at State University of New York, Stonybrook, and at University of New Mexico to characterize the preproduction sensors, and develop our testing and quality assurance plans. Preliminary results from these test are presented here.
NLO vertex for a forward jet plus a rapidity gap at high energies
Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice; Vera, Agustín Sabio
2015-04-10
We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)
Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines
Hrayr Matevosyan; Anthony Thomas; Peter Tandy
2007-06-18
We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The guark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.
Phase substitution of spare converter for a failed one of parallel phase staggered converters
NASA Technical Reports Server (NTRS)
Mclyman, W. T.; Wester, G. W. (Inventor)
1977-01-01
Failure detection and substitution of a spare module is provided in a system having a plurality of phase staggered modules connected in parallel to deliver regulated voltage from an unregulated source. Phase control signals applied to the active converter modules are applied to the spare module through NOR gates associated with and disabled by the power output of respective modules such that failure of any one enables its phase control signal to be applied to the spare module, thus controlling the spare module to operate in the phase position of the failed module. A NAND gate detects when any one active module fails and enables a gate in the spare module, thus activating the spare module.
Direct numerical simulation of transitional flow in a staggered tube bundle
NASA Astrophysics Data System (ADS)
Linton, D.; Thornber, B.
2016-02-01
A series of Direct Numerical Simulations (DNS) of the flow through a staggered tube bundle has been performed over the range 1030 ≤ Rem ≤ 5572 to capture the flow transition that occurs at the matrix transition point of Rem ≈ 3000. The matrix transition is the point at which a second frequency becomes prominent in tube bundles. To date, this is the highest published Reynolds number at which a DNS has been performed on cross-flow over a tube bundle. This study describes the flow behaviour in terms of: the mean flow field, Strouhal numbers, vortex shedding, 3-D flow features, and turbulence properties. These results support the hypothesis that the transition in the vortex shedding behaviour at Rem ≈ 3000 is similar to that which occurs in single cylinder flow at the equivalent Reynolds number. The visualisations presented also demonstrate the nature of the shedding mechanisms before and after the matrix transition point.
Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields
NASA Astrophysics Data System (ADS)
Roy, P. E.; Otxoa, R. M.; Wunderlich, J.
2016-07-01
Ultrafast electrical switching by current-induced staggered spin-orbit fields, with minimal risk of overshoot is shown in layered easy-plane antiferromagnets with basal-plane anisotropies. Reliable switching is due to the fieldlike torque, relaxing stringent requirements with respect to precision in the duration of the excitation pulse. Focus is put on a system with weak planar biaxial anisotropy. We investigate the switching as a function of the spin-orbit field strength, pulse duration, rise and fall times, and damping using atomistic spin dynamics simulations and an effective equation for the antiferromagnetic order parameter. The critical spin-orbit field strength required for switching a biaxial system is determined, and we show that writing is possible at feasible current magnitudes. Finally, we discuss switching of systems exhibiting a dominant uniaxial basal-plane anisotropy.
Odd-Even Mass Staggering Described by Relativistic Hartree-Fock Theory
NASA Astrophysics Data System (ADS)
Wang, Long Jun; Long, Wen Hui
2013-11-01
The neutron and proton odd-even mass staggering (OES) are systematically studied within the density-dependent relativistic Hartree-Fock-Bogoliubov (DDRHFB) theory and the density-dependent relativistic Hartree-Bogoliubov (DDRHB) theory. In terms of the finite-range Gogny D1S as the pairing force, both DDRHFB and DDRHB theories can well reproduce the experimental OES, including C, O, Ca, Ni, Zr, Sn, Ce, Gd and Pb isotopes, and N = 50 and 82 isotones. In addition, the optimizations on the pairing force with the prefix factors bring systematical improvements on the OES for the light and heavy nuclei. It is also found that the pairing effects are essentially related with the appropriate description of the nuclear structures, in which the ρ-tensor correlations play an important role.
Axially staggered seed-blanket reactor-fuel-module construction. [LWBR
Cowell, G.K.; DiGuiseppe, C.P.
1982-10-28
A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.
A staggered coupling strategy for the finite element analysis of warm deep drawing process
NASA Astrophysics Data System (ADS)
Martins, J. M. P.; Cunha, P. M.; Neto, D. M.; Alves, J. L.; Oliveira, M. C.; Laurent, H.; Menezes, L. F.
2016-08-01
The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.
Spectrum of the Dirac operator and multigrid algorithm with dynamical staggered fermions
Kalkreuter, T. Fachbereich Physik , Humboldt-Universitaet, Invalidenstrasse 110, D-10099 Berlin )
1995-02-01
Complete spectra of the staggered Dirac operator [ital ];sD are determined in quenched four-dimensional SU(2) gauge fields, and also in the presence of dynamical fermions. Periodic as well as antiperiodic boundary conditions are used. An attempt is made to relate the performance of multigrid (MG) and conjugate gradient (CG) algorithms for propagators with the distribution of the eigenvalues of [ital ];sD. The convergence of the CG algorithm is determined only by the condition number [kappa] and by the lattice size. Since [kappa]'s do not vary significantly when quarks become dynamic, CG convergence in unquenched fields can be predicted from quenched simulations. On the other hand, MG convergence is not affected by [kappa] but depends on the spectrum in a more subtle way.
Staggered fermions and chiral symmetry breaking in transverse lattice regulated QED
Griffin, P.A.
1992-07-01
Staggered fermions are constructed for the transverse lattice regularization scheme. The weak perturbation theory of transverse lattice non-compact QED is developed in light-cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. However, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for g{sup 2}(a) > 4{pi}, where g(a) is the bare (lattice) QED coupling constant. We conjecture that this is the critical point of the chiral symmetry breaking phase transition in QED. Non-perturbative chiral symmetry breaking is then studied in the strong coupling limit. The discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground state to lowest order in the strong coupling expansion corresponds to the classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.
a Numerical Study of Unsteady Fluid Flow in In-Line and Staggered Tube Banks
NASA Astrophysics Data System (ADS)
Beale, S. B.; Spalding, D. B.
1999-08-01
This paper is concerned with the results of numerical calculations for transient flow in in-line-square and rotated-square tube banks with a pitch-to-diameter ratio of 2:1, in the Reynolds number range of 30-3000. Transient-periodic behaviour is induced by the consideration of two or more modules, with a sinusoidal span-wise perturbation being applied in the upstream module. There is a triode-like effect, whereby the downstream response to the stimulus is amplified, and there is a net gain in the crosswise flow component. When an appropriate feedback mechanism is provided, a stable transient behaviour is obtained, with alternate vortices being shed from each cylinder. Flow visualization studies of the results of the calculations are presented together with quantitative details of pressure drop, lift, drag and heat transfer. For the staggered bank, a wake-switching or Coanda effect was observed as the serpentine-shaped wake attached to alternate sides of the downstream cylinder. The induced response is independent of the amplitude and frequency of the applied disturbance, including the case of spontaneous behaviour with no excitation mechanism. For the in-line case where each cylinder is in the shadow of the previous one, the motion is less pronounced; however, a shear-layer instability associated with the alternating spin of shed vortices was observed. In this case, the response was found to be somewhat dependent on the frequency of the applied disturbance, and a transient motion could not be induced spontaneously in the absence of an explicit feedback mechanism. Calculated Strouhal numbers were in fair agreement with experimental data: for the staggered geometry, they had values of between 0.26 and 0.35, or from -21 to +6% higher than measured values, while for the in-line geometry, the Strouhal numbers ranged between 0.09 and 0.12, or about 20-40% lower than experimental values.
NASA Astrophysics Data System (ADS)
Chakraborty, Avik; Sarkar, Angsuman
2015-04-01
In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.
BK using HYP-smeared staggered fermions in Nf = 2 + 1 unquenched QCD
Jung, C.; Bae, T.; Jang, Y-C.; Kim, H-J.; Kim, J.; Kim, K; Lee, W.; Sharpe, S.; Yoon, B.
2010-12-20
We present results for the kaon mixing parameter B{sub K} calculated using HYP (hypercubic fat link)-smeared improved staggered fermions on the asqtad lattices generated by the MILC collaboration. We use three lattice spacings (a{approx} 0.12, 0.09 and 0.06 fm), ten different valence-quark masses (m {approx} m{sub s}/10-m{sub s}), and several light sea-quark masses in order to control the continuum and chiral extrapolations. We derive the next-to-leading order staggered chiral perturbation theory (SChPT) results necessary to fit our data, and use these results to do extrapolations based both on SU(2) and SU(3) SChPT. The SU(2) fitting is particularly straightforward because parameters related to taste breaking and matching errors appear only at next-to-next-to-leading order. We match to the continuum renormalization scheme [naive dimensional regularization (NDR)] using one-loop perturbation theory. Our final result is from the SU(2) analysis, with the SU(3) result providing a (less accurate) cross check. We find B{sub K}(NDR, {mu} = 2 GeV) = 0.529 {+-} 0.009 {+-} 0.032 and B{sub K} = B{sub K}(RGI) = 0.724 {+-} 0.012 {+-} 0.043, where the first error is statistical and the second systematic. The error is dominated by the truncation error in the matching factor. Our results are consistent with those obtained using valence domain-wall fermions on lattices generated with asqtad or domain-wall sea quarks.
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Clisset, James R.; Moder, Jeffrey P.
2010-01-01
The primary purpose of this jet-in-crossflow study was to calculate expected results for two configurations for which limited or no experimental results have been published: (1) cases of opposed rows of closely-spaced jets from inline and staggered round holes and (2) rows of jets from alternating large and small round holes. Simulations of these configurations were performed using an Excel (Microsoft Corporation) spreadsheet implementation of a NASA-developed empirical model which had been shown in previous publications to give excellent representations of mean experimental scalar results suggesting that the NASA empirical model for the scalar field could confidently be used to investigate these configurations. The supplemental Excel spreadsheet is posted with the current report on the NASA Glenn Technical Reports Server (http://gltrs.grc.nasa.gov) and can be accessed from the Supplementary Notes section as TM-2010-216100-SUPPL1.xls. Calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration. The jets from the larger holes dominate the mixture fraction for configurations with a row of large holes opposite a row of smaller ones although the jet penetration was about the same. For single and opposed rows with mixed hole sizes, jets from the larger holes penetrated farther. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance. However, at a given downstream distance, the variation between cases was small.
Yamakawa, Youichi; Kontani, Hiroshi
2015-06-26
We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena. PMID:26197139
Yamakawa, Youichi; Kontani, Hiroshi
2015-06-26
We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena.
Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R.
2016-01-01
Background A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Methods Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Results Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. Conclusion The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. PMID:26508284
A direct digital control of the temperature for the VENUS vertex chamber at TRISTAN
NASA Astrophysics Data System (ADS)
Ohama, T.; Ishihara, N.; Utsumi, M.; Yamada, Y.
1994-12-01
A trial to introduce a DDC (direct digital control) system has been carried out in order to stabilize the temperature of the VENUS vertex chamber so as to obtain a spatial resolution of better than 50 μm. The temperature is controlled to within 0.1°C in the gas near to the chamber endplates.
Silicon drift devices for track and vertex detection at the SSC
Chen, W.; Kraner, H.; Li, Z.; Ng, C.; Radeka, V.; Rehak, P.; Rescia, S. ); Clark, J.; Henderson, S.; Hsu, L.; Oliver, J.; Wilson, R. ); Clemen, M.; Humanic, T.; Kraus, D.; Vilkelis, G.; Yu, B. ); McDonald, K.; Lu, C.; Wall, M. ); Vacchi, A. ); Bert
1990-01-01
We report on the recent progress in the study of Semiconductor Drift (Memory) Detectors intended for an inner tracking and vertexing system for the SSC. The systematic studies and the calibration of the existing detectors and the simulated performance in the actual SSC environment are highlighted. 5 refs., 22 figs., 1 tab.
SPY: A monitoring system for the silicon vertex detector of CDF
Bedeschi, F.; Galeotti, S.; Gherarducci, F.; Mariotti, M.; Morsani, F.; Passuello, D.; Tartarelli, F.; Grieco, G.M.; Nelson, C.; Tkaczyk, S.; Harber, C.; Ristori, L.; Bailey, M.; Sciacca, G.F.; Turini, N.; Cei, M.
1993-12-01
The authors describe the basic principles and the fundamentals of the design of the system of monitoring the CDF silicon vertex detector. Also described are some results and possible future developments of this promising way of checking complex detectors with high amount of channels.
Selective attention and the auditory vertex potential. 1: Effects of stimulus delivery rate
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.; Galambos, R.
1975-01-01
Enhancement of the auditory vertex potentials with selective attention to dichotically presented tone pips was found to be critically sensitive to the range of inter-stimulus intervals in use. Only at the shortest intervals was a clear-cut enhancement of the latency component to stimuli observed for the attended ear.
Nunokawa, Keiko; Ito, Mitsuhiro; Sunahara, Tetsuya; Onaka, Satoru; Ozeki, Tomoji; Chiba, Hirokazu; Funahashi, Yasuhiro; Masuda, Hideki; Yonezawa, Tetsu; Nishihara, Hiroshi; Nakamoto, Masami; Yamamoto, Mari
2005-08-21
New mixed metal clusters with M19 metal frameworks have been synthesized by NaBH4 reduction of Au(NO3)(PMe2Ph) together with AgNO3 in ethanol. Single crystal X-ray diffraction has revealed Au12Ag7 and Au17Ag2 metal skeletons for these clusters, which are best described in terms of bicapped pentagonal antiprismatic cages with a staggered-staggered M(5) ring configuration. These clusters connect the missing link between M13 icosahedral and M25 biicosahedral clusters providing a view of the cluster growth process. A TEM image of this cluster has been observed, which has clearly demonstrated single-sized nano-particles of less than 1.0 nm.
NASA Astrophysics Data System (ADS)
Lee, Dongwook
2013-06-01
In this paper, we extend the unsplit staggered mesh scheme (USM) for 2D magnetohydrodynamics (MHD) [D. Lee, A.E. Deane, An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 228 (2009) 952-975] to a full 3D MHD scheme. The scheme is a finite-volume Godunov method consisting of a constrained transport (CT) method and an efficient and accurate single-step, directionally unsplit multidimensional data reconstruction-evolution algorithm, which extends Colella's original 2D corner transport upwind (CTU) method [P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 446-466]. We present two types of data reconstruction-evolution algorithms for 3D: (1) a reduced CTU scheme and (2) a full CTU scheme. The reduced 3D CTU scheme is a variant of a simple 3D extension of Collela's 2D CTU method and is considered as a direct extension from the 2D USM scheme. The full 3D CTU scheme is our primary 3D solver which includes all multidimensional cross-derivative terms for stability. The latter method is logically analogous to the 3D unsplit CTU method by Saltzman [J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys. 115 (1994) 153-168]. The major novelties in our algorithms are twofold. First, we extend the reduced CTU scheme to the full CTU scheme which is able to run with CFL numbers close to unity. Both methods utilize the transverse update technique developed in the 2D USM algorithm to account for transverse fluxes without solving intermediate Riemann problems, which in turn gives cost-effective 3D methods by reducing the total number of Riemann solves. The proposed algorithms are simple and efficient especially when including multidimensional MHD terms that maintain in-plane magnetic field dynamics. Second, we introduce a new CT scheme that makes use of proper upwind information in taking averages of electric fields. Our 3D USM schemes can be easily
Aoki phases in the lattice Gross-Neveu model with flavored mass terms
Creutz, Michael; Kimura, Taro; Misumi, Tatsuhiro
2011-05-01
We investigate the parity-broken phase structure for staggered and naive fermions in the Gross-Neveu model as a toy model of QCD. We consider a generalized staggered Gross-Neveu model including two types of four-point interactions. We use generalized mass terms to split the doublers for both staggered and naive fermions. The phase boundaries derived from the gap equations show that the mass splitting of tastes results in an Aoki phase both in the staggered and naive cases. We also discuss the continuum limit of these models and explore taking the chirally symmetric limit by fine-tuning a mass parameter and two-coupling constants. This supports the idea that in lattice QCD we can derive one- or two-flavor staggered fermions by tuning the mass parameter, which are likely to be less expensive than Wilson fermions in QCD simulation.
Conformal symmetry and differential regularization of the three-gluon vertex
NASA Astrophysics Data System (ADS)
Freedman, Daniel Z.; Grignani, Gianluca; Johnson, Kenneth; Rius, Nuria
1992-08-01
The conformal symmetry of the QCD Lagrangian for massless quarks is broken both by renormalization effects and the gauge fixing procedure. Renormalized primitive divergent amplitudes have the property that their form away from the overall coincident point singularity is fully determined by the bare Lagrangian, and scale dependence is restricted to δ-functions at the singularity. If gauge fixing could be ignored, one would expect these amplitudes to be conformal invariant for non-coincident points. We find that the one-loop three-gluon vertex function Г μvp(x, y, z) is conformal invariant in this sense, if calculated in the background field formalism using the Feynman gauge for internal gluons. It is not vet clear why the expected breaking due to gauge fixing is absent. The conformal property implies that the gluon, ghost, and quark loop contributions to Г μvp are each purely numerical combinations of two universal conformal tensors Dμvp( x, y, z) and Cμvp( x, y, z) whose explicit form is given in the text. Only Dμvp has an ultraviolet divergence, although Cμvp requires a careful definition to resolve the expected ambiguity of a formally linearly divergent quantity. Regularization is straightforward and leads to a renormalized vertex function which satisfies the required Ward identity, and from which the beta function is easily obtained. Exact conformal invariance is broken in higher-loop orders, but we outline a speculative scenario in which the perturbative structure of the vertex function is determined from a conformal invariant primitive core by interplay of the renormalization group equation and Ward identities. Other results which are relevant to the conformal property include the following: (1) An analytic calculation shows that the linear deviation from the Feynman gauge is not conformal invariant, and a separate computation using symbolic manipulation confirms that among Dμbμ background gauges, only the Feynman gauge is conformal invariant. (2
NASA Astrophysics Data System (ADS)
Kreim, S.; Beck, D.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Cocolios, T. E.; Gottberg, A.; Herfurth, F.; Kowalska, M.; Litvinov, Yu. A.; Lunney, D.; Manea, V.; Mendonca, T. M.; Naimi, S.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Stora, Th.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2014-08-01
The masses of Fr222,224,226-233 and Ra233,234 have been determined with the Penning-trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN, including the previously unknown mass and half-life of Fr233. We study the evolution of the odd-even staggering of binding energies along the francium and radium isotopic chains and of its lowest-order estimator, Δ3(N). An enhancement of the staggering of Δ3(N) is observed towards neutron number N =146, which points to contributions beyond pairing correlations. These contributions are investigated in the Hartree-Fock and Hartree-Fock-Bogoliubov approaches, emphasizing the connections to the single-particle level density and nuclear deformation.
NASA Astrophysics Data System (ADS)
Melaaen, M. C.
1992-02-01
Tensor calculus is presently employed to furnish both necessary coordinate and velocity transformations in the present use of two different finite-volume methods for discretization of conservation equations in 3D curvilinear nonorthogonal coordinates. While one method is based on the nonstaggered grid arrangement and employs Cartesian velocity components as dependent variables in the momentum equations, the other combines a staggered grid arrangement with physical covariant velocity projections in a locally fixed coordinate system. In the second part of this work, a comparative evaluation of the two methods indicates that while results of comparable accuracy are achieved after a similar number of iterations, the staggered method may be recommended for curvilinear nonorthogonal coordinate problems due to its reduced memory and computational requirements.
Hochman, Gadi; Yitzhaky, Yitzhak; Kopeika, Norman S; Lauber, Yair; Citroen, Meira; Stern, Adrian
2004-08-01
Staggered time delay and integration (TDI) scanning image acquisition systems are usually employed in low signal-to-noise situations such as thermal imaging. Analysis and restoration of images acquired by thermal staggered TDI sensors in the presence of mechanical vibrations that may cause space-variant image distortions (severe geometric warps and blur) are studied. The relative motion at each location in the degraded image is identified from the image when a differential technique is used. This information is then used to reconstruct the image by a technique of projection onto convex sets. The main novelty is the implementation of such methods to scanned images (columnwise). Restorations are performed with simulated and real mechanically degraded thermal images.
Lee, Christopher; Kim, Namshin; Roy, Meenakshi; Graveley, Brenton R
2010-01-01
The arthropod Down syndrome cell adhesion molecule (Dscam) gene can generate tens of thousands of protein isoforms via combinatorial splicing of numerous alternative exons encoding immunoglobulin variable domains organized into three clusters referred to as the exon 4, 6, and 9 clusters. Dscam protein diversity is important for nervous system development and immune functions. We have performed extensive phylogenetic analyses of Dscam from 20 arthropods (each containing between 46 and 96 alternative exons) to reconstruct the detailed history of exon duplication and loss events that built this remarkable system over 450 million years of evolution. Whereas the structure of the exon 4 cluster is ancient, the exon 6 and 9 clusters have undergone massive, independent expansions in each insect lineage. An analysis of nearly 2000 duplicated exons enabled detailed reconstruction of the timing, location, and boundaries of these duplication events. These data clearly show that new Dscam exons have arisen continuously throughout arthropod evolution and that this process is still occurring in the exon 6 and 9 clusters. Recently duplicated regions display boundaries corresponding to a single exon and the adjacent intron. The boundaries, homology, location, clustering, and relative frequencies of these duplication events strongly suggest that staggered homologous recombination is the major mechanism by which new Dscam exons evolve. These data provide a remarkably detailed picture of how complex gene structure evolves and reveal the molecular mechanism behind this process.
The molecular mechanism of "ryegrass staggers," a neurological disorder of K+ channels.
Imlach, Wendy L; Finch, Sarah C; Dunlop, James; Meredith, Andrea L; Aldrich, Richard W; Dalziel, Julie E
2008-12-01
"Ryegrass staggers" is a neurological condition of unknown mechanism that impairs motor function in livestock. It is caused by infection of perennial ryegrass pastures by an endophytic fungus that produces neurotoxins, predominantly the indole-diterpenoid compound lolitrem B. Animals grazing on such pastures develop uncontrollable tremors and become uncoordinated in their movement. Lolitrem B and the structurally related tremor inducer paxilline both act as potent large conductance calcium-activated potassium (BK) channel inhibitors. Using patch clamping, we show that their different apparent affinities correlate with their toxicity in vivo. To investigate whether the motor function deficits produced by lolitrem B and paxilline are due to inhibition of BK ion channels, their ability to induce tremor and ataxia in mice deficient in this ion channel (Kcnma1(-/-)) was examined. Our results show that mice lacking Kcnma1 are unaffected by these neurotoxins. Furthermore, doses of these substances known to be lethal to wild-type mice had no effect on Kcnma1(-/-) mice. These studies reveal the BK channel as the molecular target for the major components of the motor impairments induced by ryegrass neurotoxins. Unexpectedly, when the response to lolitrem B was examined in mice lacking the beta4 BK channel accessory subunit (Kcnmb4(-/-)), only low-level ataxia was observed. Our study therefore reveals a new role for the accessory BK beta4 subunit in motor control. The beta4 subunit could be considered as a potential target for treatment of ataxic conditions in animals and in humans.
Highly improved staggered quarks on the lattice with applications to charm physics
Follana, E.; Davies, C.; Wong, K.; Mason, Q.; Hornbostel, K.; Lepage, G. P.; Shigemitsu, J.; Trottier, H.
2007-03-01
We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a{sup 2} errors, and no tree-level order (am){sup 4} errors to leading order in the quark's velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are 3-4 times smaller than the widely used ASQTAD action. We show how to bound errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are likely no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am){sup 4} errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the {psi}-{eta}{sub c} mass splitting using the HISQ action on lattices where am{sub c}=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of 111(5) MeV which compares well with the experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D{sub s} mesons.
Mixed Meson Mass for Domain-Wall Valence and Staggered Sea Fermions
Konstantinos Orginos; Andre Walker-Loud
2007-05-01
Mixed action lattice calculations allow for an additive lattice spacing dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is the most important lattice artifact to determine for mixed action calculations: because it modifies the pion mass, it plays a central role in the low energy dynamics of all hadronic correlation functions. We determine the leading order and next to leading order additive mass renormalization of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and staggered sea fermions. We find that on the asqtad improved coarse MILC lattices, the leading order additive mass renormalization for the mixed mesons is Δ(am)^2 LO = 0.0409(11) which corresponds to a^2 Δ_Mix = (319 MeV)^2± (53 MeV)^2 for a = 0.125 fm. We also find significant next to leading order contributions which reduce the mass renormalization by a significant amount, such that for 0 < am_π ≤ 0.22 the mixed meson mass renormalization is well approximated by Δ(am)^2 = 0.0340 (23) or a^2δ_Mix = (290 MeV)^2 ± (76 MeV)^2. The full next-to-leading order analysis is presented in the text.
Development of an explicit non-staggered scheme for solving three-dimensional Maxwell's equations
NASA Astrophysics Data System (ADS)
Sheu, Tony W. H.; Chung, Y. W.; Li, J. H.; Wang, Y. C.
2016-10-01
An explicit finite-difference scheme for solving the three-dimensional Maxwell's equations in non-staggered grids is presented. We aspire to obtain time-dependent solutions of the Faraday's and Ampère's equations and predict the electric and magnetic fields within the discrete zero-divergence context (or Gauss's law). The local conservation laws in Maxwell's equations are numerically preserved using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme. Following the method of lines, the spatial derivative terms in the semi-discretized Faraday's and Ampère's equations are approximated theoretically to obtain a highly accurate numerical phase velocity. The proposed fourth-order accurate space-centered finite difference scheme minimizes the discrepancy between the exact and numerical phase velocities. This minimization process considerably reduces the dispersion and anisotropy errors normally associated with finite difference time-domain methods. The computational efficiency of getting the same level of accuracy at less computing time and the ability of preserving the symplectic property have been numerically demonstrated through several test problems.
Near-Wall Velocity and Temperature Measurements in the Meniscus Region for Staggered Glass Beads.
Wang, Zhaochun; Zhou, Leping; Du, Xiaoze; Yang, Yongping
2015-04-01
Velocity and temperature fields in the meniscus are crucial for the heat transfer mechanism in porous medium. The meniscus zone, however, is narrow so that it is difficult for observation. The velocimetry and thermometry in the near-wall region of the surface provide possible measurement methods with the development of micro/nanotechnology. Being exponentially decay in the intensity, the evanescent-wave illumination has the advantage of high spatial resolution and non-intrusion for these measurement methods. The multilayer nano-particle image velocimetry (MnPIV) uses the evanescent-wave illumination, decayed exponentially with the wall-normal distance, to obtain near-wall velocity data at different distances from the wall. The thermometry in the meniscus region could also use the evanescent-wave to illuminate the fluorescence dye, the emitted intensity of which changes with temperature. In this paper, these techniques are employed to measure the near-wall velocity and temperature between the porous media and the ITO heater, in order to explore the role of meniscus during convection of water. Near-wall velocity and temperature of the deionized water, seeded with 100 nm fluorescent colloidal tracers and flow in the staggered glass beads with diameters ranging from 2 mm to 6 mm, are obtained and discussed.
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Finite-difference staggered grids in GPUs for anisotropic elastic wave propagation simulation
NASA Astrophysics Data System (ADS)
Rubio, Felix; Hanzich, Mauricio; Farrés, Albert; de la Puente, Josep; María Cela, José
2014-09-01
The 3D elastic wave equations can be used to simulate the physics of waves traveling through the Earth more precisely than acoustic approximations. However, this improvement in quality has a counterpart in the cost of the numerical scheme. A possible strategy to mitigate that expense is using specialized, high-performing architectures such as GPUs. Nevertheless, porting and optimizing a code for such a platform require a deep understanding of both the underlying hardware architecture and the algorithm at hand. Furthermore, for very large problems, multiple GPUs must work concurrently, which adds yet another layer of complexity to the codes. In this work, we have tackled the problem of porting and optimizing a 3D elastic wave propagation engine which supports both standard- and fully-staggered grids to multi-GPU clusters. At the single GPU level, we have proposed and evaluated many optimization strategies and adopted the best performing ones for our final code. At the distributed memory level, a domain decomposition approach has been used which allows for good scalability thanks to using asynchronous communications and I/O.
Ginsparg-Wilson pions scattering in a sea of staggered quarks
NASA Astrophysics Data System (ADS)
Chen, Jiunn-Wei; O'Connell, Donal; van de Water, Ruth; Walker-Loud, André
2006-04-01
We calculate isospin 2 pion-pion scattering in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We point out that for some scattering channels, the power-law volume dependence of two-pion states in nonunitary theories such as partially quenched or mixed action QCD is identical to that of QCD. Thus one can extract infinite-volume scattering parameters from mixed action simulations. We then determine the scattering length for both 2 and 2+1 sea quarks in the isospin limit. The scattering length, when expressed in terms of the pion mass and the decay constant measured on the lattice, has no contributions from mixed valence-sea mesons, thus it does not depend upon the parameter, CMix, that appears in the chiral Lagrangian of the mixed theory. In addition, the contributions which nominally arise from operators appearing in the mixed action O(a2mq) Lagrangian exactly cancel when the scattering length is written in this form. This is in contrast to the scattering length expressed in terms of the bare parameters of the chiral Lagrangian, which explicitly exhibits all the sicknesses and lattice spacing dependence allowed by a partially quenched mixed action theory. These results hold for both 2 and 2+1 flavors of sea quarks.
Ginsparg-Wilson pions scattering in a sea of staggered quarks
Chen, J.-W.; O'Connell, Donal; Van de Water, Ruth; Walker-Loud, Andre
2006-04-01
We calculate isospin 2 pion-pion scattering in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We point out that for some scattering channels, the power-law volume dependence of two-pion states in nonunitary theories such as partially quenched or mixed action QCD is identical to that of QCD. Thus one can extract infinite-volume scattering parameters from mixed action simulations. We then determine the scattering length for both 2 and 2+1 sea quarks in the isospin limit. The scattering length, when expressed in terms of the pion mass and the decay constant measured on the lattice, has no contributions from mixed valence-sea mesons, thus it does not depend upon the parameter, C{sub Mix}, that appears in the chiral Lagrangian of the mixed theory. In addition, the contributions which nominally arise from operators appearing in the mixed action O(a{sup 2}m{sub q}) Lagrangian exactly cancel when the scattering length is written in this form. This is in contrast to the scattering length expressed in terms of the bare parameters of the chiral Lagrangian, which explicitly exhibits all the sicknesses and lattice spacing dependence allowed by a partially quenched mixed action theory. These results hold for both 2 and 2+1 flavors of sea quarks.
NASA Astrophysics Data System (ADS)
Uma, V. S.; Goel, Alpana
2015-06-01
Several signature partner pairs in super-deformed rotational bands in the A = 190 mass region have exhibited ΔI = 1 staggering effects in its transition energies. A total of twenty signature partner pairs of super-deformed (SD) rotational bands in the A = 190 mass region were investigated in this study. The intrinsic structure and the band head moment of inertia J 0 of these signature partner pairs were found to be identical. The band head spin I 0 and the band head moment of inertia J 0 of these pairs were assigned by using the VMI (variable moment of inertia) equation. The ΔI = 1 staggering was also examined through the staggering index S( I) formula, where interlinking transition energies between signature partner pairs were experimentally known. A large amplitude staggering was observed in these signature partner pairs. The paper indicates the possibility of a high signature splitting property and will be useful for further studies.
ERIC Educational Resources Information Center
Howard, Craig Dennis
2012-01-01
"Collaborative video annotation" (CVA) allows multiple users to annotate video and create a discussion asynchronously. This dissertation investigates 14 small-group CVA discussions held on YouTube in a pre-service teacher education course. Fourteen groups of 6-12 pre-service teachers (141 total) participated. Five of these groups (48…
B -> d* l nu and b -> d l nu form-factors in staggered chiral perturbation theory
Laiho, Jack; Van de Water, Ruth S.; /Fermilab
2005-12-01
We calculate the B {yields} D and B {yields} D* form factors at zero recoil in Staggered Chiral Perturbation Theory. We consider heavy-light mesons in which only the light (u, d, or s) quark is staggered; current lattice simulations generally use a highly improved action such as the Fermilab or NRQCD action for the heavy (b or c) quark. We work to lowest order in the heavy quark expansion and to next-to-leading order in the chiral expansion. We present results for a partially quenched theory with three sea quarks in which there are no mass degeneracies (the ''1+1+1'' theory) and for a partially quenched theory in which the u and d sea quark masses are equal (the ''2+1'' theory). We also present results for full (2+1) QCD, along with a numerical estimate of the size of staggered discretization errors. Finally, we calculate the finite volume corrections to the form factors and estimate their numerical size in current lattice simulations.
Application of an Electron-Tube Technique to the VENUS Vertex Chamber
NASA Astrophysics Data System (ADS)
Ohama, Taro
2001-09-01
This paper presents a new method to design and analyze drift chambers which are commonly used in high-energy physics experiments. The method is based on an analogy of the electron-tube theory; in particular, it treats the drift chamber with a grid wire plane as a “triode ion tube” filled with a gas. This method provides an analytical way in which to calculate the potential and/or charge of electrodes (wires) and the electric fields between them. The method also gives a semianalytic means to derive “X-T” relations in a chamber, and to calculate expected signal forms. This method has been developed specifically for designing a vertex chamber installed in the VENUS detector at the TRISTAN e+e- collider. The anode signal forms actually obtained by the VENUS vertex chamber are found to agree well with the predictions by this method.
Static transport properties of random alloys: Vertex corrections in conserving approximations
NASA Astrophysics Data System (ADS)
Turek, I.
2016-06-01
The theoretical formulation and numerical evaluation of the vertex corrections in multiorbital techniques of theories of electronic properties of random alloys are analyzed. It is shown that current approaches to static transport properties within the so-called conserving approximations lead to the inversion of a singular matrix as a direct consequence of the Ward identity relating the vertex corrections to one-particle self-energies. We propose a simple removal of the singularity for quantities (operators) with vanishing average values for electron states at the Fermi energy, such as the velocity or the spin torque; the proposed scheme is worked out in detail in the self-consistent Born approximation and the coherent-potential approximation. Applications involve calculations of the residual resistivity for various random alloys, including spin-polarized and relativistic systems, treated on an ab initio level, with particular attention paid to the role of different symmetries (inversion of space and time).
Genus Two Partition and Correlation Functions for Fermionic Vertex Operator Superalgebras I
NASA Astrophysics Data System (ADS)
Tuite, Michael P.; Zuevsky, Alexander
2011-09-01
We define the partition and n-point correlation functions for a vertex operator superalgebra on a genus two Riemann surface formed by sewing two tori together. For the free fermion vertex operator superalgebra we obtain a closed formula for the genus two continuous orbifold partition function in terms of an infinite dimensional determinant with entries arising from torus Szegő kernels. We prove that the partition function is holomorphic in the sewing parameters on a given suitable domain and describe its modular properties. Using the bosonized formalism, a new genus two Jacobi product identity is described for the Riemann theta series. We compute and discuss the modular properties of the generating function for all n-point functions in terms of a genus two Szegő kernel determinant. We also show that the Virasoro vector one point function satisfies a genus two Ward identity.
Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice
Mihara, A.; Cucchieri, A.; Mendes, T.
2004-12-02
It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings {beta} = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Example of Location and Staggering of Emergency Window Exits-Â§ 238.113 1 Figure 1 to Subpart B of Part 238 Transportation Other Regulations Relating to... of Part 238—Example of Location and Staggering of Emergency Window Exits—§ 238.113 ER01FE08.001...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-Â§Â§ 238.113 and 238.114 2 Figure 2 to Subpart B of Part 238... Window Location and Staggering Requirements—§§ 238.113 and 238.114 ER01FE08.005...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Example of Location and Staggering of Emergency Window Exits-Â§ 238.113 1 Figure 1 to Subpart B of Part 238 Transportation Other Regulations Relating to... of Part 238—Example of Location and Staggering of Emergency Window Exits—§ 238.113 ER01FE08.001...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-Â§Â§ 238.113 and 238.114 2 Figure 2 to Subpart B of Part 238... Window Location and Staggering Requirements—§§ 238.113 and 238.114 ER01FE08.005...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-Â§Â§ 238.113 and 238.114 2 Figure 2 to Subpart B of Part 238... Window Location and Staggering Requirements—§§ 238.113 and 238.114 ER01FE08.005...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Example of Location and Staggering of Emergency Window Exits-Â§ 238.113 1 Figure 1 to Subpart B of Part 238 Transportation Other Regulations Relating to... of Part 238—Example of Location and Staggering of Emergency Window Exits—§ 238.113 ER01FE08.001...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Example of Location and Staggering of Emergency Window Exits-Â§ 238.113 1 Figure 1 to Subpart B of Part 238 Transportation Other Regulations Relating to... of Part 238—Example of Location and Staggering of Emergency Window Exits—§ 238.113 ER01FE08.001...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-Â§Â§ 238.113 and 238.114 2 Figure 2 to Subpart B of Part 238... Window Location and Staggering Requirements—§§ 238.113 and 238.114 ER01FE08.005 [73 FR 6403, Feb. 1, 2008]...
SVX II a silicon vertex detector for run II of the tevatron
Bortoletto, D.
1994-11-01
A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R&D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu.
N-string, g-loop vertex for the bosonic string
NASA Astrophysics Data System (ADS)
Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.; Sciuto, S.
1988-06-01
We construct the N-string, g-loop vertex VN, g for the orbital degrees of freedom of the bosonic string in terms of the first abelian differentials, the period matrix and the prime form. We also build the | g> vacuum recently discussed by many people in the framework of an operator formalism on an arbitrary Riemann surface; our expression also contains the measure that takes into account the ghost contribution.
Pole expansion of the deuteron vertex function constrained by modern data
NASA Astrophysics Data System (ADS)
Locher, M. P.; Švarc, A.
1984-02-01
Invariant multipole expansions for the dp n vertex function of the type introduced by Gourdin et al. are reexamined. Modern and precise values for all the static deuteron properties are imposed and the electric and magnetic form factors of the deuteron are fitted. A good fit of the data requires three poles for the S state and three poles for the D state with only four free parameters.
Charm and beauty lifetime measurements with the MARK II vertex detector
Jaros, J.A.
1983-10-01
We have measured the lifetime of the D/sup 0/ meson and the average lifetime of b-flavored hadrons with the MARK II vertex detector at PEP. We find tau/sub D/sup 0// = (4.0 +- 1.4/1.1 +- 1.0) x 10/sup -13/ sec and tau/sub b/ = (12.0 +- 4.5/3.6 +- 3.0 x 10/sup -13/ sec. 11 references.
Hadronic jet-vertex association in a high-luminosity environment at the LHC
NASA Astrophysics Data System (ADS)
Miller, David
2008-04-01
The LHC physics program will ultimately probe not only the highest energies ever produced in the laboratory but also the most numerous and frequent collisions between hadronic particles ever. These particle luminosities, much above the current Tevatron values, will produce hadronic jets from simultaneous uncorrelated proton-proton collisions in unprecedented numbers, thus introducing challenges for jet identification and association with the primary collision vertices, jet energy measurements and missing energy resolution. We continue work first introduced by the Tevatron experiments to combine tracking information with calorimeter jets in order to disentangle this jet background. Using an algorithm which assigns a jet-vertex association probability, jet selection is shown to be insensitive to the contributions from these ``pile-up'' collisions, which is essential for the many physics analyses dependent on event jet multiplicity. Furthermore, jet-by-jet multiple interaction energy corrections are now possible and improvements to the primary vertex identification from jet-vertex association are gained for several interesting physics processes.
NASA Astrophysics Data System (ADS)
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Measurement of the B+- lifetime and top quark identification using secondary vertex b-tagging
Schwartzman, Ariel G
2004-02-01
This dissertation presents a preliminary measurement of the B{sup {+-}} lifetime through the full reconstruction of its decay chain, and the identification of top quark production in the electron plus jets channel using the displaced vertex b-tagging method. Its main contribution is the development, implementation and optimization of the Kalman filter algorithm for vertex reconstruction, and of the displaced vertex technique for tagging jets arising from b quark fragmentation, both of which have now become part of the standard D0 reconstruction package. These two algorithms fully exploit the new state-of-the-art tracking detectors, recently installed as part of the Run 2 D0 upgrade project. The analysis is based on data collected during Run 2a at the Fermilab Tevatron p{bar p} Hadron Collider up to April 2003, corresponding to an integrated luminosity of 60 pb{sup -1}. The measured B meson lifetime of {tau} = 1.57 {+-} 0.18 ps is in agreement with the current world average, with a competitive level of precision expected when the full data sample becomes available.
Lambda: A Mathematica package for operator product expansions in vertex algebras
NASA Astrophysics Data System (ADS)
Ekstrand, Joel
2011-02-01
We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.
NASA Astrophysics Data System (ADS)
Jenkins, Gregory S.; Schmadel, Don C.; Greene, R. L.; Drew, H. D.; Fournier, P.; Kontani, H.
2009-03-01
In overdoped Pr2-xCexCuO4, the dc Hall coefficient achieves its expected value RH1+x consistent with the large hole-like Fermi surface observed in ARPES, but only at low temperatures. As temperature is raised, the dc Hall coefficient falls off and becomes negative at a temperature that increases with x. We have measured the IR Hall angle of two overdoped Pr2-xCexCuO4 samples at sufficiently low optical excitation energies (below 10meV) to directly probe the Fermi-surface properties. The observed large deviations from the classical result correspond to the addition of electron-like contributions to σxy, even at T=0, due to the finite frequency. Results of a model developed by H. Kontani of the low frequency IR Hall response which incorporates current-vertex corrections induced by magnon scattering are directly compared to the data. The model fully captures the salient features of the measured Hall response as a function of doping, temperature, and frequency. These results demonstrate that the anomalous Hall effect in the cuprates is a consequence of current vertex corrections to σxy.
Zhang, Jiwei; Presley, Gerald N.; Ryu, Jae-San; Menke, Jon R.; Figueroa, Melania; Orr, Galya; Schilling, Jonathan S.
2016-01-01
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization. PMID:27621450
Zhang, Jiwei; Presley, Gerald N; Hammel, Kenneth E; Ryu, Jae-San; Menke, Jon R; Figueroa, Melania; Hu, Dehong; Orr, Galya; Schilling, Jonathan S
2016-09-27
Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization. PMID:27621450
Chang, Yao-Wen; Jin, Bih-Yaw
2012-01-14
Many-body perturbation theory is used to investigate the effect of π-electron correlations on the quasi-particle band structures of conjugated polymers at the level of the Pariser-Parr-Pople model. The self-consistent GW approximation with vertex corrections to both the self-energy and the polarization in Hedin's equations is employed in order to eliminate self-interaction errors and include the effects of electron-hole attraction in screening processes. The dynamic inverse dielectric function is constructed from the generalized plasmon-pole approximation with the static dressed polarization given by the coupled-perturbed Hartree-Fock equation. The bandgaps of trans-polyacetylene, trans-polyphenylenevinylene and poly(para)phenylene are calculated by both the Hartree-Fock and GW approximation, and a lowering of bandgaps due to electron correlations is found. We conclude that both dielectric screening and vertex corrections are important for calculating the quasi-particle bandgaps of conjugated polymers.
Barnes, Christopher P.
2005-03-01
The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T superconducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of B_{s} oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with Cp violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay B_{s} → D_{s}π. This important mode provides the best proper time resolution for B_{s} mixing and is reconstructed for the first time at D0. Projections on the sensitivity to B_{s} oscillations are then presented.
NASA Astrophysics Data System (ADS)
Maczewski, Lukasz
2010-05-01
The International Linear Collider (ILC) is a project of an electron-positron (e+e-) linear collider with the centre-of-mass energy of 200-500 GeV. Monolithic Active Pixel Sensors (MAPS) are one of the proposed silicon pixel detector concepts for the ILC vertex detector (VTX). Basic characteristics of two MAPS pixel matrices MIMOSA-5 (17 μm pixel pitch) and MIMOSA-18 (10 μm pixel pitch) are studied and compared (pedestals, noises, calibration of the ADC-to-electron conversion gain, detector efficiency and charge collection properties). The e+e- collisions at the ILC will be accompanied by intense beamsstrahlung background of electrons and positrons hitting inner planes of the vertex detector. Tracks of this origin leave elongated clusters contrary to those of secondary hadrons. Cluster characteristics and orientation with respect to the pixels netting are studied for perpendicular and inclined tracks. Elongation and precision of determining the cluster orientation as a function of the angle of incidence were measured. A simple model of signal formation (based on charge diffusion) is proposed and tested using the collected data.
Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes
NASA Astrophysics Data System (ADS)
Llor, Antoine; Claisse, Alexandra; Fochesato, Christophe
2016-03-01
Usual space- and time-staggered (STS) "leap-frog" Lagrangian hydrodynamic schemes-such as von Neumann-Richtmyer's (1950), Wilkins' (1964), and their variants-are widely used for their simplicity and robustness despite their known lack of exact energy conservation. Since the seminal work of Trulio and Trigger (1950) and despite the later corrections of Burton (1991), it is generally accepted that these schemes cannot be modified to exactly conserve energy while retaining all of the following properties: STS stencil with velocities half-time centered with respect to positions, explicit second-order algorithm (locally implicit for internal energy), and definite positive kinetic energy. It is shown here that it is actually possible to modify the usual STS hydrodynamic schemes in order to be exactly energy-preserving, regardless of the evenness of their time centering assumptions and retaining their simple algorithmic structure. Burton's conservative scheme (1991) is found as a special case of time centering which cancels the term here designated as "incompatible displacements residue." In contrast, von Neumann-Richtmyer's original centering can be preserved provided this residue is properly corrected. These two schemes are the only special cases able to capture isentropic flow with a third order entropy error, instead of second order in general. The momentum equation is presently obtained by application of a variational principle to an action integral discretized in both space and time. The internal energy equation follows from the discrete conservation of total energy. Entropy production by artificial dissipation is obtained to second order by a prediction-correction step on the momentum equation. The overall structure of the equations (explicit for momentum, locally implicit for internal energy) remains identical to that of usual STS "leap-frog" schemes, though complementary terms are required to correct the effects of time-step changes and artificial viscosity
NASA Technical Reports Server (NTRS)
Yefet, Amir; Petropoulos, Peter G.
1999-01-01
We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Berry, R. A.
1979-01-01
Heat transfer characteristics were measured for inline and staggered arrays of circular jets impinging on a surface parallel to the jet orifice plate. The impinging flow was constrained to exit in a single direction along the channel formed by the jet plate and the heat transfer surface. In this configuration the air discharged from upstream transverse rows of jet holes imposes a crossflow of increasing magnitude on the succeeding downstream jet rows. Streamwise heat transfer coefficient profiles were determined for a streamwise resolution of one-third the streamwise hole spacing, utilizing a specially constructed test surface.
Gottlieb, S.; Krasnitz, A. . Dept. of Physics); Heller, U.M.; Kennedy, A.D. . Supercomputer Computations Research Inst.); Kogut, J.B. . Dept. of Physics); Liu, W. ); Renken, R.L. (University of Central F
1991-01-01
Lattice QCD with 2 light staggered quark flavours is being simulated on a 16{sup 3} {times} 8 lattice to study the transition from hadronic matter to a quark gluon plasma. We have completed runs at m{sub q} = 0.0125 and are extending this to m{sub q} = 0.00625. We also examine the addition of a non-dynamical strange'' quark. Thermodynamic order parameters are being measured across the transition and further into the plasma phase, as are various screening lengths. No evidence for a first order transition is seen, and we estimate the transition temperature to be {Tc} = 143(7)MeV.
Gottlieb, S.; Krasnitz, A.; Heller, U.M.; Kennedy, A.D.; Kogut, J.B.; Liu, W.; Renken, R.L.; Sinclair, D.K.; Sugar, R.L.; Toussaint, D.; Wang, K.C.
1991-12-31
Lattice QCD with 2 light staggered quark flavours is being simulated on a 16{sup 3} {times} 8 lattice to study the transition from hadronic matter to a quark gluon plasma. We have completed runs at m{sub q} = 0.0125 and are extending this to m{sub q} = 0.00625. We also examine the addition of a non-dynamical ``strange`` quark. Thermodynamic order parameters are being measured across the transition and further into the plasma phase, as are various screening lengths. No evidence for a first order transition is seen, and we estimate the transition temperature to be {Tc} = 143(7)MeV.
Renormalization-group analysis of the validity of staggered-fermion QCD with the fourth-root recipe
Shamir, Yigal
2007-03-01
I develop a renormalization-group blocking framework for lattice QCD with staggered fermions. Under plausible, and testable assumptions, I then argue that the fourth-root recipe used in numerical simulations is valid in the continuum limit. The taste-symmetry violating terms, which give rise to nonlocal effects in the fourth-root theory when the lattice spacing is nonzero, vanish in the continuum limit. A key role is played by reweighted theories that are local and renormalizable on the one hand, and that approximate the fourth-root theory better and better as the continuum limit is approached on the other hand.
NASA Astrophysics Data System (ADS)
Sahli, Ouissem; Adjlout, Lahouari; Ladjedel, Omar; Amine Ghazi, Mohamed
2016-03-01
The present work is an experimental investigation on the effect of the turbulence intensity variation in a staggered tube bundle equipped with grooves at 90° and 270°.The experiments were carried out in a subsonic wind tunnel. Three Reynolds numbers and three turbulence levels were tested. The pressure distributions and drag forces were measured. Surface visualizations were also performed. The obtained results show that the turbulence intensity for different Reynolds number has an influence on the reduction of the drag coefficient.
NASA Astrophysics Data System (ADS)
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
Dowell, L.J.
1998-10-01
This paper enumerates the configurations of a pair of vertices (one of which is a leaf) relative to the unique vertex one center and the leaf of greatest path length from this center in a spanning tree of a graph. From this enumeration, it demonstrates that the vertex one center is between the vertex and the leaf of greatest path length from the vertex for every such pair of vertices. Using this result this paper develops an algorithm for the optimal reconfiguration of a tree infrastructure required to recover from the failure of a network element.
An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Radespiel, R.; Swanson, R. C.
1989-01-01
Two efficient and robust finite-volume multigrid schemes for solving the Navier-Stokes equations are investigated. These schemes employ either a cell centered or a cell vertex discretization technique. An explicit Runge-Kutta algorithm is used to advance the solution in time. Acceleration techniques are applied to obtain faster steady-state convergence. Accuracy and convergence of the schemes are examined. Computational results for transonic airfoil flows are essentially the same, even for a coarse mesh. Both schemes exhibit good convergence rates for a broad range of artificial dissipation coefficients.
TGV32: A 32-channel preamplifier chip for the multiplicity vertex detector at PHENIX
Britton, C.L. Jr.; Ericson, M.N.; Frank, S.S.
1997-12-31
The TGV32, a 32-channel preamplifier-multiplicity discriminator chip for the Multiplicity Vertex Detector (MVD) at PHENIX, is a unique silicon preamplifier in that it provides both an analog output for storage in an analog memory and a weighted summed-current output for conversion to a channel multiplicity count. The architecture and test results of the chip are presented. Details about the design of the preamplifier, discriminator, and programmable digital-analog converters (DACs) performance as well as the process variations are presented. The chip is fabricated in a 1.2-{micro}m, n-well, CMOS process.
NASA Astrophysics Data System (ADS)
Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi
2016-09-01
In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.
Luboga, Samuel Abilemech; Luboobi, Livingstone; Mirembe, Florence
2016-01-01
Introduction. In Sub-Saharan Africa, excessive foetal head moulding is commonly associated with cephalopelvic disproportion and obstructed labour. This study set out to determine the associations of maternal pelvis height and maternal height with intrapartum foetal head moulding. Methods. This was a multisite secondary analysis of maternal birth records of mothers with singleton pregnancies ending in a spontaneous vertex delivery. A summary of the details of the pregnancy and delivery records were reviewed and analysed using multilevel logistic regression respect to foetal head moulding. The alpha level was set at P < 0.05. Results. 412 records were obtained, of which 108/385 (28%) observed foetal head moulding. There was a significant reduction in risk of foetal head moulding with increasing maternal height (Adj. IRR 0.97, P = 0.05), maternal pelvis height (Adj. IRR 0.88, P < 0.01), and raptured membranes (Adj. IRR 0.10, P < 0.01). There was a significant increased risk of foetal head moulding with increasing birth weight (Adj. IRR 1.90, P < 0.01) and duration of monitored active labour (Adj. IRR 1.21, P < 0.01) in the final model. Conclusion. This study showed that increasing maternal height and maternal pelvis height were associated with a significant reduction in intrapartum foetal head moulding. PMID:27034678
Lemaster, Michelle Nicole; Gay, David M.; Ehlen, Mark Andrew; Boggs, Paul T.; Ray, Jaideep
2009-10-01
Staggered bioterrorist attacks with aerosolized pathogens on population centers present a formidable challenge to resource allocation and response planning. The response and planning will commence immediately after the detection of the first attack and with no or little information of the second attack. In this report, we outline a method by which resource allocation may be performed. It involves probabilistic reconstruction of the bioterrorist attack from partial observations of the outbreak, followed by an optimization-under-uncertainty approach to perform resource allocations. We consider both single-site and time-staggered multi-site attacks (i.e., a reload scenario) under conditions when resources (personnel and equipment which are difficult to gather and transport) are insufficient. Both communicable (plague) and non-communicable diseases (anthrax) are addressed, and we also consider cases when the data, the time-series of people reporting with symptoms, are confounded with a reporting delay. We demonstrate how our approach develops allocations profiles that have the potential to reduce the probability of an extremely adverse outcome in exchange for a more certain, but less adverse outcome. We explore the effect of placing limits on daily allocations. Further, since our method is data-driven, the resource allocation progressively improves as more data becomes available.
NASA Astrophysics Data System (ADS)
Paul, Susobhan; Ghosh, Asim Kumar
2014-08-01
The ground state energy and the spin gap of a spin-12 Heisenberg antiferromagnetic XXZ chain in the presence of longitudinal staggered field (hz) have been estimated by using Jordan-Wigner representation, exact diagonalization and perturbative analysis. All those quantities have been obtained for a region of anisotropic parameter (Δ) defined by 0≤Δ≤1. For Δ=0, the exact value of ground state energy is found for finite values of hz. The spin gap is found to develop as soon as the staggered field is switched on. The magnitude of spin gap is compared with the field induced gap measured in magnetic compounds CuBenzoate and Yb4As3 when Δ=1. The dependence of spin gap on both Δ and hz has been found which gives rise to scaling laws associated with hz. Scaling exponents obtained in two different cases show excellent agreements with the previously determined values. The variation of scaling exponents with Δ can be fitted with a regular function.
Further results for the two-loop Lcc vertex in the Landau gauge
NASA Astrophysics Data System (ADS)
Cvetic, Gorazd; Kondrashuk, Igor
2008-02-01
In the previous paper hep-th/0604112 we calculated the first of the five planar two-loop diagrams for the Lcc vertex of the general non-Abelian Yang-Mills theory, the vertex which allows us in principle to obtain all other vertices via the Slavnov-Taylor identity. The integrand of this first diagram has a simple Lorentz structure. In this letter we present the result for the second diagram, whose integrand has a complicated Lorentz structure. The calculation is performed in the D-dimensional Euclidean position space. We initially perform one of the two integrations in the position space and then reduce the Lorentz structure to D-dimensional scalar single integrals. Some of the latter are then calculated by the uniqueness method, others by the Gegenbauer polynomial technique. The result is independent of the ultraviolet and the infrared scale. It is expressed in terms of the squares of spacetime intervals between points of the effective fields in the position space—it includes simple powers of these intervals, as well as logarithms and polylogarithms thereof, with some of the latter appearing within the Davydychev integral J(1, 1, 1). Concerning the rest of diagrams, we present the result for the contributions correponding to third, fourth and fifth diagrams without giving the details of calculation. The full result for the Lcc correlator of the effective action at the planar two-loop level is written explicitly for maximally supersymmetric Yang-Mills theory.
Design of the cooling systems for the multiplicity and vertex detector
Bernardin, J.D.; Cunningham, R.
1997-11-01
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is being constructed to investigate a phase of matter termed the quark-gluon plasma. The plasma will be produced through the collision of two heavy ions. The multiplicity and vertex detector (MVD) located in the center of PHENIX will characterize the events, determine the collision point, and act as a central trigger. This report presents the final mechanical designs of the cooling systems for the Multiplicity and Vertex Detector (MVD). In particular, the design procedure and layouts are discussed for two different air cooling systems for the multichip modules and MVD enclosure, and a liquid cooling system for the low dropout voltage regulators. First of all, experimental prototype cooling system test results used to drive the final mechanical designs are summarized and discussed. Next, the cooling system requirements and design calculation for the various subsystem components are presented along with detailed lists of supply vendors, components, and costs. Finally, safety measures incorporated in the final mechanical design and operation procedures for each of the subsystems are detailed.
A two-level fanout system for the CDF silicon vertex tracker
A. Bardi et al.
2001-11-02
The Fanout system is part of the Silicon Vertex Tracker, a new trigger processor designed to reconstruct charged particle trajectories at Level 2 of the CDF trigger, with a latency of 10 {micro}s and an event rate up to 100 kHz. The core of SVT is organized as 12 identical slices, which process in parallel the data from the 12 independent azimuthal wedges of the Silicon Vertex Detector (SVXII). Each SVT slice links the digitized pulse heights found within one SVXII wedge to the tracks reconstructed by the Level 1 fast track finder (XFT) in the corresponding 30{sup o} angular region of the Central Outer Tracker. Since the XFT tracks are transmitted to SVT as a single data stream, their distribution to the proper SVT slices requires dedicated fanout logic. The Fanout system has been implemented as a multi-board project running on a common 20 MHz clock. Track fanout is performed in two steps by one ''Fanout A'' and two ''Fanout B'' boards. The architecture, design, and implementation of this system are described.
Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab
2008-12-01
3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.
Measurement of the B+ and B0 Lifetimes using Topological Vertexing at SLD
Abe, K.
2004-01-29
The lifetimes of B{sup +} and B{sup 0} mesons have been measured using a sample of 200,000 hadronic Z{sup 0} decays collected by the SLD experiment at the SLC between 1993 and 1996. The analysis is an improvement of the inclusive topological measurement recently reported and includes the 50,000 hadronic Z{sup 0} decays collected in 1996 with the SLD upgrade vertex detector. A high statistics sample of 12841 (7942) charged (neutral) vertices with good charge purity is obtained. The charge purity is enhanced by using the vertex mass, the SLC electron beam polarization (63% for 1993 and 77% for 1994-6) and an opposite hemisphere jet charge technique. Lifetime fits for the full data sample yield: {tau}{sub B{sup +}} = 1.698 {+-} 0.040(stat) {+-} 0.046(syst) ps, {tau}{sub B{sup 0}} = 1.581 {+-} 0.043(stat) {+-} 0.061(syst) ps, {tau}{sub B{sup +}}/{tau}{sub B{sup 0}} = 1.072 {+-} {sub 0.049}{sup 0.052}(stat) {+-} 0.038(syst).
An upwind vertex centred Finite Volume solver for Lagrangian solid dynamics
NASA Astrophysics Data System (ADS)
Aguirre, Miquel; Gil, Antonio J.; Bonet, Javier; Lee, Chun Hean
2015-11-01
A vertex centred Jameson-Schmidt-Turkel (JST) finite volume algorithm was recently introduced by the authors (Aguirre et al., 2014 [1]) in the context of fast solid isothermal dynamics. The spatial discretisation scheme was constructed upon a Lagrangian two-field mixed (linear momentum and the deformation gradient) formulation presented as a system of conservation laws [2-4]. In this paper, the formulation is further enhanced by introducing a novel upwind vertex centred finite volume algorithm with three key novelties. First, a conservation law for the volume map is incorporated into the existing two-field system to extend the range of applications towards the incompressibility limit (Gil et al., 2014 [5]). Second, the use of a linearised Riemann solver and reconstruction limiters is derived for the stabilisation of the scheme together with an efficient edge-based implementation. Third, the treatment of thermo-mechanical processes through a Mie-Grüneisen equation of state is incorporated in the proposed formulation. For completeness, the study of the eigenvalue structure of the resulting system of conservation laws is carried out to demonstrate hyperbolicity and obtain the correct time step bounds for non-isothermal processes. A series of numerical examples are presented in order to assess the robustness of the proposed methodology. The overall scheme shows excellent behaviour in shock and bending dominated nearly incompressible scenarios without spurious pressure oscillations, yielding second order of convergence for both velocities and stresses.
Estimating Vertex Measures in Social Networks by Sampling Completions of RDS Trees
Khan, Bilal; Dombrowski, Kirk; Curtis, Ric; Wendel, Travis
2015-01-01
This paper presents a new method for obtaining network properties from incomplete data sets. Problems associated with missing data represent well-known stumbling blocks in Social Network Analysis. The method of “estimating connectivity from spanning tree completions” (ECSTC) is specifically designed to address situations where only spanning tree(s) of a network are known, such as those obtained through respondent driven sampling (RDS). Using repeated random completions derived from degree information, this method forgoes the usual step of trying to obtain final edge or vertex rosters, and instead aims to estimate network-centric properties of vertices probabilistically from the spanning trees themselves. In this paper, we discuss the problem of missing data and describe the protocols of our completion method, and finally the results of an experiment where ECSTC was used to estimate graph dependent vertex properties from spanning trees sampled from a graph whose characteristics were known ahead of time. The results show that ECSTC methods hold more promise for obtaining network-centric properties of individuals from a limited set of data than researchers may have previously assumed. Such an approach represents a break with past strategies of working with missing data which have mainly sought means to complete the graph, rather than ECSTC's approach, which is to estimate network properties themselves without deciding on the final edge set. PMID:25838988
Alkofer, Reinhard; Fischer, Christian S. Llanes-Estrada, Felipe J.; Schwenzer, Kai
2009-01-15
The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector, we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitly, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior, numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore, we conclude that chiral symmetry breaking and confinement are closely related. Furthermore, we discuss aspects of confinement as the absence of long-range van der Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.
Barigye, Stephen J; Marrero-Ponce, Yovani; Santiago, Oscar Martinez; López, Yoan Martinez; Pérez-Giménez, Facundo; Torrens, Francisco
2013-06-01
A new mathematical approach is proposed in the definition of molecular descriptors (MDs) based on the application of information theory concepts. This approach stems from a new matrix representation of a molecular graph (G) which is derived from the generalization of an incidence matrix whose row entries correspond to connected subgraphs of a given G, and the calculation of the Shannon's entropy, the negentropy and the standardized information content, plus for the first time, the mutual, conditional and joint entropy-based MDs associated with G. We also define strategies that generalize the definition of global or local invariants from atomic contributions (local vertex invariants, LOVIs), introducing related metrics (norms), means and statistical invariants. These invariants are applied to a vector whose components express the atomic information content calculated using the Shannon's, mutual, conditional and joint entropybased atomic information indices. The novel information indices (IFIs) are implemented in the program TOMOCOMDCARDD. A principal component analysis reveals that the novel IFIs are capable of capturing structural information not codified by IFIs implemented in the software DRAGON. A comparative study of the different parameters (e.g. subgraph orders and/or types, invariants and class of MDs) used in the definition of these IFIs reveals several interesting results. The mutual entropy-based indices give the best correlation results in modeling of a physicochemical property, namely the partition coefficient of the 34 derivatives of 2-furylethylenes, among the classes of indices investigated in this study. In a comparison with classical MDs it is demonstrated that the new IFIs give good results for various QSPR models.
Form factor of the B meson off-shell for the vertex B{sub s}*BK
Cerqueira, A. Jr.; Bracco, M. E.
2010-11-12
In this work we evaluate the coupling constant and the form factor for the vertex B{sub s}*BK using the QCD Sum Rules. In this case we consider the B meson off shell. The only theoretical evaluation for the coupling constant was made using the Heavy Hadron Chiral Perturbation Theory (HHChPT) and we made comparison with this result.
Nuclear vertex constants and asymptotic normalization coefficients for the tritium nucleus
Babenko, V. A.; Petrov, N. M.
2009-12-15
The properties of the nuclear vertex constant for virtual triton decay to a deuteron and a neutron (T {sup {yields}} d + n) are investigated along with the properties of the asymptotic normalization coefficient defined for the triton wave function and related to this constant. These quantities are calculated numerically on the basis of an equation that relates the asymptotic normalization coefficient to the triton effective radius {rho}{sub T}, which was introduced in the present study. The values of G{sub T}{sup 2} = 1.244(68) fm and C{sub T}{sup 2} = 2.958(162) found from our calculations are in good agreement with experimental and theoretical estimates obtained for these quantities in other studies. Physical properties of the triton virtual state are also discussed.
Vertex potentials evoked during auditory signal detection - Relation to decision criteria
NASA Technical Reports Server (NTRS)
Squires, K. C.; Hillyard, S. A.; Lindsay, P. H.
1973-01-01
Vertex potentials were recorded from eight subjects performing in an auditory threshold detection task with rating scale responses. The amplitudes and latencies of both the N1 and the late positive (P3) components were found to vary systematically with the criterion level of the decision. These changes in the waveshape of the N1 component were comparable to those produced by varying the signal intensity in a passive condition, but the late positive component in the active task was not similarly related to the passively evoked P2 component. It was suggested that the N1 and P3 components represent distinctive aspects of the decision process, with N1 signifying the quantity of signal information received and P3 reflecting the certainty of the decision based upon that information.
Software Development for the Commissioning of the Jefferson Lab Hall B Silicon Vertex Tracker
NASA Astrophysics Data System (ADS)
Ruger, Justin; Ziegler, Veronique; Gotra, Yuri; Gavalian, Gagik
2015-04-01
One of the new additions to Hall B at the Thomas Jefferson National Accelerator Facility is a Silicon Vertex Tracker system that includes 4 regions with 10, 14, 18, 24 sectors of double-sided modules. Recently, the SVT hardware group has completed construction and installation of regions one and two on a cosmic ray test stand. This test setup will be used to preform the first cosmic ray efficiency analysis of the SVT with the availability of 8 measurement layers. In order to study efficiency and module performance, a set of software packages had to be written to decode, analyze and provide feedback on the output from data acquisition. This talk will provide an overview of the software validation suite designed and developed for Hall B and a report on its current utilization for SVT cosmic data analysis.
A bonding study toward the quality assurance of Belle-II silicon vertex detector modules
NASA Astrophysics Data System (ADS)
Kang, K. H.; Jeon, H. B.; Park, H.; Uozumi, S.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Joo, C. W.; Kandra, J.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.
2016-09-01
A silicon vertex detector (SVD) for the Belle-II experiment comprises four layers of double-sided silicon strip detectors (DSSDs), assembled in a ladder-like structure. Each ladder module of the outermost SVD layer has four rectangular and one trapezoidal DSSDs supported by two carbon-fiber ribs. In order to achieve a good signal-to-noise ratio and minimize material budget, a novel chip-on-sensor "Origami" method has been employed for the three rectangular sensors that are sandwiched between the backward rectangular and forward (slanted) trapezoidal sensors. This paper describes the bonding procedures developed for making electrical connections between sensors and signal fan-out flex circuits (i.e., pitch adapters), and between pitch adapters and readout chips as well as the results in terms of the achieved bonding quality and pull force.
NASA Technical Reports Server (NTRS)
Schwent, V. L.; Hillyard, S. A.; Galambos, R.
1975-01-01
A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.
A bottom collider vertex detector design, Monte-Carlo simulation and analysis package
Lebrun, P.
1990-10-01
A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the golden'' CP violating mode B{sub d} {yields} {pi}{sup +}{pi}{sup {minus}} is presented. These calculations have been done at FNAL energy ({radical}s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs.
Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker.
Onuki, Y.; PHENIX Collaboration, et al.
2009-05-08
The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.
Direct Measurement of Ab and Ac Using Vertex/Kaon Charge Tags at SLD
Abe, K.
2004-10-13
Exploiting the manipulation of the SLC electron-beam polarization, we present precise direct measurements of the parity violation parameters A{sub c} and A{sub b} in the Z boson-c quark and Z boson-b quark coupling. Quark/antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLD CCD vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-98 sample of 400,000 Z decays, produced with an average beam polarization of 73.4%, we find A{sub c} = 0.673 {+-} 0.029(stat.) {+-} 0.023(syst.) and A{sub b} = 0.919 {+-} 0.018(stat.) {+-} 0.017(syst.).
NASA Astrophysics Data System (ADS)
Konno, Hitoshi
2002-11-01
After a short summary on the elliptic quantum group {B}q,λ (widehat {scr {sl}}2) and the elliptic algebra Uq,p(widehat {sl}2), we present a free field representation of the Drinfeld currents and the vertex operators (VO's) in the level k. We especially demonstrate a construction of the higher spin type I VO's by fusing the spin 1/2 type I VO's and fix a rule of attaching the screening current S(z) associated with the g-deformed Zk-parafermion theory. As a result we get a free field representation of the higher spin type I VO's which commutation relation by the fused Boltzmann weight coefficients is manifest.
Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly
Écija, David; Urgel, José I.; Papageorgiou, Anthoula C.; Joshi, Sushobhan; Auwärter, Willi; Seitsonen, Ari P.; Klyatskaya, Svetlana; Ruben, Mario; Fischer, Sybille; Vijayaraghavan, Saranyan; Reichert, Joachim; Barth, Johannes V.
2013-01-01
The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the cerium-directed assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Ce–ligand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metal–organic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated. PMID:23576764
Design and performance of beam test electronics for the PHENIX Multiplicity Vertex Detector
Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S.
1996-12-31
The system architecture and test results of the custom circuits and beam test system for the Multiplicity-Vertex Detector (MVD) for the PHENIX detector collaboration at the Relativistic Heavy Ion Collider (RHIC) are presented in this paper. The final detector per-channel signal processing chain will consist of a preamplifier-gain stage, a current-mode summed multiplicity discriminator, a 64-deep analog memory (simultaneous read-write), a post-memory analog correlator, and a 10-bit 5 {mu}s ADC. The Heap Manager provides all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Beam test (16-cell deep memory) performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 {mu} n-well CMOS process used for preamplifier fabrication.
Vertex-Atom-Dependent Rectification in Triangular h-BNC/Triangular Graphene Heterojunctions
NASA Astrophysics Data System (ADS)
Wang, Lihua; Zhao, Jianguo; Zhang, Zizhen; Ding, Bingjun; Guo, Yong
2016-08-01
First-principles calculations have shown dramatically unexpected rectifying regularities in particular heterojunction configurations with triangular hexagonal boron-nitride-carbon ( h-BNC) and triangular graphene (TG) sandwiched between two armchair graphene nanoribbon electrodes. When the triangular h-BNC and TG are linked by vertex atoms of nitrogen and carbon (boron and carbon), forward (reverse) rectifying performance can be observed. Moreover, for a certain linking mode, the larger the elemental proportion p (where p = N_{{{boron}} + {{nitrogen}}} /N_{{{boron}} + {{nitrogen}} + {{carbon}}} ) in the h-BNC, the larger the ratio for forward (reverse) rectification. A mechanism for these rectification behaviors is suggested. The findings provide insights into control of rectification behaviors in TG-based nanodevices.
Castro, H.; Gomez, B.; Rivera, F.; Sanabria, J.-C.; Yager, P.; Barsotti, E.; Bowden, M.; Childress, S.; Lebrun, P.; Morfin, J.; Roberts, L.A.; /Fermilab /Florida U. /Houston U. /IIT /Iowa U. /Northeastern U. /Northern Illinois U. /Ohio State U. /Oklahoma U. /Pennsylvania U.
1989-01-01
The authors propose a program of research and development into the detector systems needed for a B-physics experiment at the Fermilab p-{bar p} Collider. The initial emphasis is on the critical issues of vertexting, tracking, and data acquisition in the high-multiplicity, high-rate collider environment. R and D for the particle-identification systems (RICH counters, TRD's, and EM calorimeter) will be covered in a subsequent proposal. To help focus their efforts in a timely manner, they propose the first phase of the R and D should culminate in a system test at the C0 collider intersect during the 1990-1991 run: a small fraction of the eventual vertex detector would be used to demonstrate that secondary-decay vertices can be found at a hadron collider. The proposed budget for the r and D program is $800k in 1989, $1.5M in 1990, and $1.6M in 1991.
Bainton, R; Gamas, P; Craig, N L
1991-05-31
We have developed a cell-free system in which the bacterial transposon Tn7 inserts at high frequency into its preferred target site in the Escherichia coli chromosome, attTn7; Tn7 transposition in vitro requires ATP and Tn7-encoded proteins. Tn7 transposes via a cut and paste mechanism in which the element is excised from the donor DNA by staggered double-strand breaks and then inserted into attTn7 by the joining of 3' transposon ends to 5' target ends. Neither recombination intermediates nor products are observed in the absence of any protein component or DNA substrate. Thus, we suggest that Tn7 transposition occurs in a nucleoprotein complex containing several proteins and the substrate DNAs and that recognition of attTn7 within this complex provokes strand cleavages at the Tn7 ends.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Connection and a Staggered Connection: Non-Mandatory Guidelines for Complying With Â§ 1926.756(c)(1) H Appendix H to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY... CONSTRUCTION Steel Erection Pt. 1926, Subpt. R, App. H Appendix H to Subpart R of Part 1926—Double...
A MAPS Based Micro-Vertex Detector for the STAR Experiment
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; Wieman, Howard; Woodmansee, Sam
2015-06-18
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m^{2}. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm^{2}. This sensor architecture features 185.6 μs readout time and 170 mW/cm^{2} power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.
A MAPS Based Micro-Vertex Detector for the STAR Experiment
Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; Greiner, Leo; Silber, Joe; Stezelberger, Thorsten; Sun, Xiangming; Szelezniak, Michal; Videbaek, Flemming; Vu, Chinh; et al
2015-06-18
For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm2. This sensor architecture features 185.6 μs readout time and 170 mW/cm2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less
NASA Astrophysics Data System (ADS)
Zhu, Y.; Jain, N.; Vijayaraghavan, S.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, Amy K.; Monsegue, N.; Hudait, M. K.
2012-11-01
The compositional dependence of effective tunneling barrier height (Ebeff) and defect assisted band alignment transition from staggered gap to broken gap in GaAsSb/InGaAs n-channel tunnel field effect transistor (TFET) structures were demonstrated by x-ray photoelectron spectroscopy (XPS). High-resolution x-ray diffraction measurements revealed that the active layers are internally lattice matched. The evolution of defect properties was evaluated using cross-sectional transmission electron microscopy. The defect density at the source/channel heterointerface was controlled by changing the interface properties during growth. By increasing indium (In) and antimony (Sb) alloy compositions from 65% to 70% in InxGa1-xAs and 60% to 65% in GaAs1-ySby layers, the Ebeff was reduced from 0.30 eV to 0.21 eV, respectively, with the low defect density at the source/channel heterointerface. The transfer characteristics of the fabricated TFET device with an Ebeff of 0.21 eV show 2× improvement in ON-state current compared to the device with Ebeff of 0.30 eV. On contrary, the value of Ebeff was decreased from 0.21 eV to -0.03 eV due to the presence of high defect density at the GaAs0.35Sb0.65/In0.7Ga0.3As heterointerface. As a result, the band alignment was converted from staggered gap to broken gap, which leads to 4 orders of magnitude increase in OFF-state leakage current. Therefore, a high quality source/channel interface with a properly selected Ebeff and well maintained low defect density is necessary to obtain both high ON-state current and low OFF-state leakage in a mixed As/Sb TFET structure for high-performance and lower-power logic applications.
A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows
Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; Waltz, Jacob; Wohlbier, John G.
2015-03-11
High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linearmore » reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.« less
A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows
Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; Waltz, Jacob; Wohlbier, John G.
2015-03-11
High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linear reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.
Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; Maquat, Lynne E.
2016-01-01
We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA7 forms well-ordered crystals, whereas rA6 forms fragile crystalline-like structures, and rA5, rA8 and rA11 fail to crystallize. Our findings support studies from ∼50 years ago: one showed using spectroscopic methods that duplex formation at pH 4.5 largely starts with rA7 and begins to plateau with rA8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP−rAMP helix base pair. Our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor. PMID:27288442
Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology
NASA Astrophysics Data System (ADS)
Nouicer, R.
From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at sNN = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. At the relatively low transverse momentum region, the collective motion of the heavy flavor will be a sensitive signal for the thermalization of light flavors. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 × 10^26 cm-2 s-1 for Au+Au, and 2 × 10^32 cm-2 s-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon Vertex Tracker (VTX). The VTX detector will provide us the tool to measure new physics observables that are not accessible at the present RHIC or available only with very limited accuracy. These include a precise determination of the charm production cross section, transverse momentum spectra at high-pT region for particles carrying beauty quarks as well the detection of recoil jets in direct photon production. The VTX detector consists of four layers of barrel detectors located in the region of pseudorapidity |η| < 1.2 and covers almost 2π azimuthal angle. The pseudorapidity, η, is defined as η = -ln[tan(θ/2)], where θ is the emission angle relative to the beam axis. The inner two silicon barrels consists of silicon pixel sensors and their technology is the ALICE1LHCb sensor-readout hybrid, which was developed
Quark-gluon vertex from the Landau gauge Curci-Ferrari model
NASA Astrophysics Data System (ADS)
Peláez, Marcela; Tissier, Matthieu; Wschebor, Nicolás
2015-08-01
We investigate the quark-gluon three-point correlation function within a one-loop computation performed in the Curci-Ferrari massive extension of the Faddeev-Popov gauge-fixed action. The mass term is used as a minimal way for taking into account the influence of the Gribov ambiguity. Our results, with renormalization-group improvement, are compared with lattice data. We show that the comparison is, in general, very satisfactory for the functions which are compatible with chiral symmetry, except for one. We argue that this may be due to large systematic errors when extracting this function from lattice simulations. The quantities which break chiral symmetry are more sensitive to the details of the renormalization scheme. We, however, manage to reproduce some of them with good precision. The chosen parameters allow us to simultaneously fit the quark mass function coming from the quark propagator with reasonable agreement.
Zhu, Y.; Jain, N.; Vijayaraghavan, S.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, Amy K.; Monsegue, N.
2012-11-01
The compositional dependence of effective tunneling barrier height (E{sub beff}) and defect assisted band alignment transition from staggered gap to broken gap in GaAsSb/InGaAs n-channel tunnel field effect transistor (TFET) structures were demonstrated by x-ray photoelectron spectroscopy (XPS). High-resolution x-ray diffraction measurements revealed that the active layers are internally lattice matched. The evolution of defect properties was evaluated using cross-sectional transmission electron microscopy. The defect density at the source/channel heterointerface was controlled by changing the interface properties during growth. By increasing indium (In) and antimony (Sb) alloy compositions from 65% to 70% in In{sub x}Ga{sub 1-x}As and 60% to 65% in GaAs{sub 1-y}Sb{sub y} layers, the E{sub beff} was reduced from 0.30 eV to 0.21 eV, respectively, with the low defect density at the source/channel heterointerface. The transfer characteristics of the fabricated TFET device with an E{sub beff} of 0.21 eV show 2 Multiplication-Sign improvement in ON-state current compared to the device with E{sub beff} of 0.30 eV. On contrary, the value of E{sub beff} was decreased from 0.21 eV to -0.03 eV due to the presence of high defect density at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. As a result, the band alignment was converted from staggered gap to broken gap, which leads to 4 orders of magnitude increase in OFF-state leakage current. Therefore, a high quality source/channel interface with a properly selected E{sub beff} and well maintained low defect density is necessary to obtain both high ON-state current and low OFF-state leakage in a mixed As/Sb TFET structure for high-performance and lower-power logic applications.
Gao, Yun; Hu, Naihong; Zhang, Honglian
2015-01-15
In this paper, we define the two-parameter quantum affine algebra for type G{sub 2}{sup (1)} and give the (r, s)-Drinfeld realization of U{sub r,s}(G{sub 2}{sup (1)}), as well as establish and prove its Drinfeld isomorphism. We construct and verify explicitly the level-one vertex representation of two-parameter quantum affine algebra U{sub r,s}(G{sub 2}{sup (1)}), which also supports an evidence in nontwisted type G{sub 2}{sup (1)} for the uniform defining approach via the two-parameter τ-invariant generating functions proposed in Hu and Zhang [Generating functions with τ-invariance and vertex representations of two-parameter quantum affine algebras U{sub r,s}(g{sup ^}): Simply laced cases e-print http://arxiv.org/abs/1401.4925 ].