Sample records for staggered vertex model

  1. The 't Hooft vertex for staggered fermions and flavor-singlet mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Gordon C.; Davies, Christine T.H.; Follana, Eduardo

    2011-01-01

    We derive the ’t Hooft vertex for staggered fermions and examine its symmetries for nonzero lattice spacing. We also derive a set of structural properties for the eigenvectors of the staggered Dirac operator, which should emerge in the continuum limit, if staggered fermions yield four species. This property also is needed for flavor-taste-singlet correlators to behave correctly. We then test numerically whether the needed structure arises: it does. This structure and symmetry of (unrooted) staggered fermions also imply that Creutz’s (latest) objections to the rooted determinant are without foundation.

  2. Staggered fermions, zero modes, and flavor-singlet mesons

    DOE PAGES

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; ...

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less

  3. Vertex Models of Epithelial Morphogenesis

    PubMed Central

    Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.

    2014-01-01

    The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108

  4. Integrability of the odd eight-vertex model with symmetric weights

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2018-06-01

    In this paper we investigate the integrability properties of a two-state vertex model on the square lattice whose microstates at a vertex always have an odd number of incoming or outcoming arrows. This model was named the odd eight-vertex model by Wu and Kunz (2004 J. Stat. Phys. 116 67) to distinguish it from the well-known eight-vertex model possessing an even number of arrow orientations at each vertex. When the energy weights are invariant under arrow inversion we show that the integrable manifold of the odd eight-vertex model coincides with that of the even eight-vertex model. The form of the -matrix for the odd eight-vertex model is however not the same as that of the respective Lax operator. Altogether we find that these eight-vertex models give rise to a generic sheaf of -matrices satisfying the Yang–Baxter equations resembling intertwiner relations associated to equidimensional representations.

  5. A staggered-grid convolutional differentiator for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  6. Vertex stability and topological transitions in vertex models of foams and epithelia

    NASA Astrophysics Data System (ADS)

    Spencer, Meryl; Jabeen, Zahera; Lubensky, David

    Vertex models are widely used to computationally simulate dry foams and epithelial tissues. This class of models describes the shape and motion of cells as a function of the forces on vertices where 3 or more cells meet. Despite the widespread use of these models, relatively little is known about their basic theoretical properties. One outstanding issue is the stability of fourfold vertices. In real foams, fourfold vertices are always unstable, but it has been unclear whether vertex models necessarily reflect this behavior. In biological tissues, fourfold vertices arise as an intermediate in T1 transitions, which are one of the fundamental processes by which tissues change topology, and stable fourfold vertices have recently been observed in several different epithelia. We show that, when all edges have the same tension, stationary fourfold vertices in vertex models must always break up. However, when tensions depend on edge orientation, as they might in a planar-polarized tissue, fourfold vertices can become stable. These findings pave the way for studies of more biologically realistic models that couple topological transitions to the dynamics of regulatory proteins. NSF Grant No. DMR-1056456 and NSF-GRFP Grant No. DGE-1256260.

  7. Graphical Representations and Cluster Algorithms for Ice Rule Vertex Models.

    NASA Astrophysics Data System (ADS)

    Shtengel, Kirill; Chayes, L.

    2002-03-01

    We introduce a new class of polymer models which is closely related to loop models, recently a topic of intensive studies. These particular models arise as graphical representations for ice-rule vertex models. The associated cluster algorithms provide a unification and generalisation of most of the existing algorithms. For many lattices, percolation in the polymer models evidently indicates first order phase transitions in the vertex models. Critical phases can be understood as being susceptible to colour symmetry breaking in the polymer models. The analysis includes, but is certainly not limited to the square lattice six-vertex model. In particular, analytic criteria can be found for low temperature phases in other even coordinated 2D lattices such as the triangular lattice, or higher dimensional lattices such as the hyper-cubic lattices of arbitrary dimensionality. Finally, our approach can be generalised to the vertex models that do not obey the ice rule, such as the eight-vertex model.

  8. Quantum vertex model for reversible classical computing.

    PubMed

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  9. Quantum vertex model for reversible classical computing

    NASA Astrophysics Data System (ADS)

    Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.

    2017-05-01

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  10. Odd-even staggering in the neutron-proton interaction and nuclear mass models

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhao, Y. M.; Arima, A.

    2015-02-01

    In this paper we study odd-even staggering of the empirical neutron-proton interaction between the last neutron and the last proton, denoted as δ V1 n -1 p , and its consequence in the Garvey-Kelson mass relations (GKs) and nuclear mass models. The root-mean-squared deviations of predicted masses respectively for even-A and odd-A nuclei by using two combinatorial GKs suggest a large odd-even staggering of δ V1 n -1 p between even-odd and odd-even nuclei, while the odd-even difference of δ V1 n -1 p between even-even and odd-odd nuclei is much smaller. The contribution of the odd-even staggering of δ V1 n -1 p between even-A and odd-A nuclei in deviations of theoretical δ V1 n -1 p values of the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model are well represented by an isospin-dependent term. The consideration of this odd-even staggering improves our description of binding energies and one-neutron separation energies in both the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model.

  11. Six-vertex model and Schramm-Loewner evolution.

    PubMed

    Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B

    2017-05-01

    Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SLE_{κ}, Schramm-Loewner evolution with parameter κ, where 4<κ≤12+8sqrt[2]. For square ice, κ=12. At the "free-fermion point" of the six-vertex model, κ=8+4sqrt[3]. These unusual values lie outside the classical interval 2≤κ≤8.

  12. Momentum Advection on a Staggered Mesh

    NASA Astrophysics Data System (ADS)

    Benson, David J.

    1992-05-01

    Eulerian and ALE (arbitrary Lagrangian-Eulerian) hydrodynamics programs usually split a timestep into two parts. The first part is a Lagrangian step, which calculates the incremental motion of the material. The second part is referred to as the Eulerian step, the advection step, or the remap step, and it accounts for the transport of material between cells. In most finite difference and finite element formulations, all the solution variables except the velocities are cell-centered while the velocities are edge- or vertex-centered. As a result, the advection algorithm for the momentum is, by necessity, different than the algorithm used for the other variables. This paper reviews three momentum advection methods and proposes a new one. One method, pioneered in YAQUI, creates a new staggered mesh, while the other two, used in SALE and SHALE, are cell-centered. The new method is cell-centered and its relationship to the other methods is discussed. Both pure advection and strong shock calculations are presented to substantiate the mathematical analysis. From the standpoint of numerical accuracy, both the staggered mesh and the cell-centered algorithms can give good results, while the computational costs are highly dependent on the overall architecture of a code.

  13. Original electric-vertex formulation of the symmetric eight-vertex model on the square lattice is fully nonuniversal

    NASA Astrophysics Data System (ADS)

    Krčmár, Roman; Šamaj, Ladislav

    2018-01-01

    The partition function of the symmetric (zero electric field) eight-vertex model on a square lattice can be formulated either in the original "electric" vertex format or in an equivalent "magnetic" Ising-spin format. In this paper, both electric and magnetic versions of the model are studied numerically by using the corner transfer matrix renormalization-group method which provides reliable data. The emphasis is put on the calculation of four specific critical exponents, related by two scaling relations, and of the central charge. The numerical method is first tested in the magnetic format, the obtained dependencies of critical exponents on the model's parameters agree with Baxter's exact solution, and weak universality is confirmed within the accuracy of the method due to the finite size of the system. In particular, the critical exponents η and δ are constant as required by weak universality. On the other hand, in the electric format, analytic formulas based on the scaling relations are derived for the critical exponents ηe and δe which agree with our numerical data. These exponents depend on the model's parameters which is evidence for the full nonuniversality of the symmetric eight-vertex model in the original electric formulation.

  14. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  15. Quantum Vertex Model for Reversible Classical Computing

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  16. Modeling & Informatics at Vertex Pharmaceuticals Incorporated: our philosophy for sustained impact

    NASA Astrophysics Data System (ADS)

    McGaughey, Georgia; Patrick Walters, W.

    2017-03-01

    Molecular modelers and informaticians have the unique opportunity to integrate cross-functional data using a myriad of tools, methods and visuals to generate information. Using their drug discovery expertise, information is transformed to knowledge that impacts drug discovery. These insights are often times formulated locally and then applied more broadly, which influence the discovery of new medicines. This is particularly true in an organization where the members are exposed to projects throughout an organization, such as in the case of the global Modeling & Informatics group at Vertex Pharmaceuticals. From its inception, Vertex has been a leader in the development and use of computational methods for drug discovery. In this paper, we describe the Modeling & Informatics group at Vertex and the underlying philosophy, which has driven this team to sustain impact on the discovery of first-in-class transformative medicines.

  17. Signatures of a staggered-flux phase in the t-J model with two holes on a 32-site lattice

    NASA Astrophysics Data System (ADS)

    Leung, P. W.

    2000-09-01

    We study the relevance of the staggered-flux phase in the t-J model using a system with two holes on a 32-site lattice with periodic boundary conditions. We find a staggered-flux pattern in the current-current correlation in the lowest energy d-wave state where there is mutual attraction between the holes. This staggered correlation decays faster with distance when the hole binding becomes stronger. This is in complete agreement with a recent study by Ivanov, Lee, and Wen [Phys. Rev. Lett. 84, 3958 (2000)] based on the SU(2) theory, and strongly suggests that the staggered-flux phase is a key ingredient in the t-J model. We further show that this staggered-flux pattern does not exist in a state where the holes repel each other. Correlations of the chirality operator S1.(S2×S3) show that the staggered pattern of the chirality is closely tied to the holes.

  18. Skew information in the XY model with staggered Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Qiu, Liang; Quan, Dongxiao; Pan, Fei; Liu, Zhi

    2017-06-01

    We study the performance of the lower bound of skew information in the vicinity of transition point for the anisotropic spin-1/2 XY chain with staggered Dzyaloshinskii-Moriya interaction by use of quantum renormalization-group method. For a fixed value of the Dzyaloshinskii-Moriya interaction, there are two saturated values for the lower bound of skew information corresponding to the spin-fluid and Néel phases, respectively. The scaling exponent of the lower bound of skew information closely relates to the correlation length of the model and the Dzyaloshinskii-Moriya interaction shifts the factorization point. Our results show that the lower bound of skew information can be a good candidate to detect the critical point of XY spin chain with staggered Dzyaloshinskii-Moriya interaction.

  19. cellGPU: Massively parallel simulations of dynamic vertex models

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  20. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  1. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  2. Nonlinear Contact Effects in Staggered Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fischer, Axel; Zündorf, Hilke; Kaschura, Felix; Widmer, Johannes; Leo, Karl; Kraft, Ulrike; Klauk, Hagen

    2017-11-01

    The static and dynamic electrical characteristics of thin-film transistors (TFTs) are often limited by the parasitic contact resistances, especially for TFTs with a small channel length. For the smallest possible contact resistance, the staggered device architecture has a general advantage over the coplanar architecture of a larger injection area. Since the charge transport occurs over an extended area, it is inherently more difficult to develop an accurate analytical device model for staggered TFTs. Most analytical models for staggered TFTs, therefore, assume that the contact resistance is linear, even though this is commonly accepted not to be the case. Here, we introduce a semiphenomenological approach to accurately fit experimental data based on a highly discretized equivalent network circuit explicitly taking into account the inherent nonlinearity of the contact resistance. The model allows us to investigate the influence of nonlinear contact resistances on the static and dynamic performance of staggered TFTs for different contact layouts with a relatively short computation time. The precise extraction of device parameters enables us to calculate the transistor behavior as well as the potential for optimization in real circuits.

  3. Conserved currents in the six-vertex and trigonometric solid-on-solid models

    NASA Astrophysics Data System (ADS)

    Ikhlef, Yacine; Weston, Robert

    2017-04-01

    We construct quasi-local conserved currents in the six-vertex model with anisotropy parameter η by making use of the quantum-group approach of Bernard and Felder. From these currents, we construct parafermionic operators with spin 1+\\text{i}η /π that obey a discrete-integral condition around lattice plaquettes embedded into the complex plane. These operators are identified with primary fields in a c  =  1 compactified free Boson conformal field theory. We then consider a vertex-face correspondence that takes the six-vertex model to a trigonometric SOS model, and construct SOS operators that are the image of the six-vertex currents under this correspondence. We define corresponding SOS parafermionic operators with spins s  =  1 and s=1+2\\text{i}η /π that obey discrete integral conditions around SOS plaquettes embedded into the complex plane. We consider in detail the cyclic-SOS case corresponding to the choice η =\\text{i}π ≤ft( p-{{p}\\prime}\\right)/p , with {{p}\\prime} coprime. We identify our SOS parafermionic operators in terms of the screening operators and primary fields of the associated c=1-6≤ft( p-{{p}\\prime}\\right){{}2}/p{{p}\\prime} conformal field theory.

  4. Z H η vertex in the simplest little Higgs model

    NASA Astrophysics Data System (ADS)

    He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhu, Shou-hua

    2018-04-01

    The issue of deriving Z H η vertex in the simplest little Higgs (SLH) model is revisited. Special attention is paid to the treatment of noncanonically-normalized scalar kinetic matrix and vector-scalar two-point transitions. We elucidate a general procedure to diagonalize a general vector-scalar system in gauge theories and apply it to the case of SLH. The resultant Z H η vertex is found to be different from those which have already existed in the literature for a long time. We also present an understanding of this issue from an effective field theory viewpoint.

  5. Parametric modeling and stagger angle optimization of an axial flow fan

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  6. Vertex Space Analysis for Model-Based Target Recognition.

    DTIC Science & Technology

    1996-08-01

    performed in our unique invariant representation, Vertex Space, that reduces both the dimensionality and size of the required search space. Vertex Space ... mapping results in a reduced representation that serves as a characteristic target signature which is invariant to four of the six viewing geometry

  7. Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph

    NASA Astrophysics Data System (ADS)

    Xue, Xiaofeng

    2017-11-01

    In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

  8. Investigating the influences of two position (non-staggered and staggered) of wind turbine arrays to produce power in a wind farm

    NASA Astrophysics Data System (ADS)

    Ismail, Kamal, Samsul; Purnomo, Sarjiya

    2016-06-01

    This investigation was conducted to identify the influences of the two positions (non-staggered and staggered) of wind turbine arrays. Identification on down-scaled size wind turbine arrays was carried out in an open circuit, suction-type wind tunnel. Based on the results of the experiment, empirical relations for the centreline velocity deficit, tipline velocity deficit and wake radius are proposed. The non-staggered position results are larger power generated than that of the staggered position, this influenced by the trend deficit in velocity that makes wind turbine generated power difference between staggered position and non-stagger position. The area used non-staggered position larger than staggered position. Result staggered position has become one of the solutions to harness wind farms confined areas.

  9. On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Hagendorf, Christian; Liénardy, Jean

    2018-03-01

    The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L  =  2n  +  1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.

  10. Staggered chiral random matrix theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  11. On Making a Distinguished Vertex Minimum Degree by Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf; Uhlmann, Johannes

    For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-hard when parameterized by the graph's feedback arc set number, whereas it becomes fixed-parameter tractable when combining the parameters "feedback vertex set number" and "number of vertices to delete". For the so far unstudied undirected case, we show that the problem is NP-hard and W[1]-hard when parameterized by the "number of vertices to delete". On the positive side, we show fixed-parameter tractability for several parameterizations measuring tree-likeness, including a vertex-linear problem kernel with respect to the parameter "feedback edge set number". On the contrary, we show a non-existence result concerning polynomial-size problem kernels for the combined parameter "vertex cover number and number of vertices to delete", implying corresponding nonexistence results when replacing vertex cover number by treewidth or feedback vertex set number.

  12. Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes

    NASA Astrophysics Data System (ADS)

    Ishimoto, Yukitaka; Morishita, Yoshihiro

    2014-11-01

    In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.

  13. JIGSAW-GEO (1.0): Locally Orthogonal Staggered Unstructured Grid Generation for General Circulation Modelling on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2017-01-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  14. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren

    2017-06-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  15. Active Vertex Model for cell-resolution description of epithelial tissue mechanics

    PubMed Central

    Barton, Daniel L.; Henkes, Silke

    2017-01-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies. PMID:28665934

  16. Active Vertex Model for cell-resolution description of epithelial tissue mechanics.

    PubMed

    Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko

    2017-06-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

  17. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  18. Staggered heavy baryon chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less

  19. Numerical simulation and experiment on multilayer stagger-split die.

    PubMed

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  20. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  1. Complex growing networks with intrinsic vertex fitness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedogne, C.; Rodgers, G. J.

    2006-10-15

    One of the major questions in complex network research is to identify the range of mechanisms by which a complex network can self organize into a scale-free state. In this paper we investigate the interplay between a fitness linking mechanism and both random and preferential attachment. In our models, each vertex is assigned a fitness x, drawn from a probability distribution {rho}(x). In Model A, at each time step a vertex is added and joined to an existing vertex, selected at random, with probability p and an edge is introduced between vertices with fitnesses x and y, with a ratemore » f(x,y), with probability 1-p. Model B differs from Model A in that, with probability p, edges are added with preferential attachment rather than randomly. The analysis of Model A shows that, for every fixed fitness x, the network's degree distribution decays exponentially. In Model B we recover instead a power-law degree distribution whose exponent depends only on p, and we show how this result can be generalized. The properties of a number of particular networks are examined.« less

  2. Universal vertex-IRF transformation for quantum affine algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffenoir, E.; Roche, Ph.; Terras, V.

    2012-10-15

    We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-facesmore » (IRF) height model.« less

  3. On staggered indecomposable Virasoro modules

    NASA Astrophysics Data System (ADS)

    Kytölä, Kalle; Ridout, David

    2009-12-01

    In this article, certain indecomposable Virasoro modules are studied. Specifically, the Virasoro mode L0 is assumed to be nondiagonalizable, possessing Jordan blocks of rank 2. Moreover, the module is further assumed to have a highest weight submodule, the "left module," and that the quotient by this submodule yields another highest weight module, the "right module." Such modules, which have been called staggered, have appeared repeatedly in the logarithmic conformal field theory literature, but their theory has not been explored in full generality. Here, such a theory is developed for the Virasoro algebra using rather elementary techniques. The focus centers on two different but related questions typically encountered in practical studies: How can one identify a given staggered module, and how can one demonstrate the existence of a proposed staggered module. Given just the values of the highest weights of the left and right modules, themselves subject to simple necessary conditions, invariants are defined which together with the knowledge of the left and right modules uniquely identify a staggered module. The possible values of these invariants form a vector space of dimension 0, 1, or 2, and the structures of the left and right modules limit the isomorphism classes of the corresponding staggered modules to an affine subspace (possibly empty). The number of invariants and affine restrictions is purely determined by the structures of the left and right modules. Moreover, in order to facilitate applications, the expressions for the invariants and restrictions are given by formulas as explicit as possible (they generally rely on expressions for Virasoro singular vectors). Finally, the text is liberally peppered throughout with examples illustrating the general concepts. These have been carefully chosen for their physical relevance or for the novel features they exhibit.

  4. Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin-Korepin analysis

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2018-05-01

    We present a method to analyze the wavefunctions of six-vertex models by extending the Izergin-Korepin analysis originally developed for domain wall boundary partition functions. First, we apply the method to the case of the basic wavefunctions of the XXZ-type six-vertex model. By giving the Izergin-Korepin characterization of the wavefunctions, we show that these wavefunctions can be expressed as multiparameter deformations of the quantum group deformed Grothendieck polynomials. As a second example, we show that the Izergin-Korepin analysis is effective for analysis of the wavefunctions for a triangular boundary and present the explicit forms of the symmetric functions representing these wavefunctions. As a third example, we apply the method to the elliptic Felderhof model which is a face-type version and an elliptic extension of the trigonometric Felderhof model. We show that the wavefunctions can be expressed as one-parameter deformations of an elliptic analog of the Vandermonde determinant and elliptic symmetric functions.

  5. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  6. Compatible diagonal-norm staggered and upwind SBP operators

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; O'Reilly, Ossian

    2018-01-01

    The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.

  7. Carrier dynamics and recombination mechanisms in staggered-alignment heterostructures

    NASA Astrophysics Data System (ADS)

    Wilson, Barbara A.

    1988-08-01

    The experimental and theoretical work on carrier dynamics and recombination mechanisms in semiconductor heterostructures with staggered type II alignments is reviewed. Examples from the literature are discussed for each of the III-V, II-VI, and IV-VI systems, as well as cross-column examples, with a focus on AlGaAs structures. The key optical properties which have benn identified as signatures of staggered-alignment behavior are summarized. A discussion of other epitaxial systems likely to exhibit staggered lineups is presented, and additional experimental and theoretical work is suggested, which could increase understanding of staggered-system behavior.

  8. Picometer Level Modeling of a Shared Vertex Double Corner Cube in the Space Interferometry Mission Kite Testbed

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M.; Dekens, Frank G.

    2006-01-01

    The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.

  9. Excitation spectrum and staggering transformations in lattice quantum models.

    PubMed

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  10. Staggered transverse tripoles with quadripolar lateral anodes using percutaneous and surgical leads in spinal cord stimulation.

    PubMed

    Sankarasubramanian, Vishwanath; Buitenweg, Jan R; Holsheimer, Jan; Veltink, Peter H

    2013-03-01

    In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads. To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity. Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST). The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565. Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.

  11. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  12. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange

  13. Efficiency and optimal allocation in the staggered entry design

    USGS Publications Warehouse

    Link, W.A.

    1993-01-01

    The staggered entry design for survival analysis specifies that r left-truncated samples are to be used in estimation of a population survival function. The ith sample is taken at time Bi, from the subpopulation of individuals having survival time exceeding Bi. This paper investigates the performance of the staggered entry design relative to the usual design in which all samples have a common time origin. The staggered entry design is shown to be an attractive alternative, even when not necessitated by logistical constraints. The staggered entry design allows for increased precision in estimation of the right tail of the survival function, especially when some of the data may be censored. A trade-off between the range of values for which the increased precision occurs and the magnitude of the increased precision is demonstrated.

  14. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  15. Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Qing; Yang, Qiu-Ying; Chen, Tian-Lun

    2008-08-01

    Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.

  16. Stagger angle dependence of inertial and elastic coupling in bladed disks

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.; Mokadam, D. R.

    1984-01-01

    Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.

  17. Coevolution of Vertex Weights Resolves Social Dilemma in Spatial Networks.

    PubMed

    Shen, Chen; Chu, Chen; Guo, Hao; Shi, Lei; Duan, Jiangyan

    2017-11-09

    In realistic social system, the role or influence of each individual varies and adaptively changes in time in the population. Inspired by this fact, we thus consider a new coevolution setup of game strategy and vertex weight on a square lattice. In detail, we model the structured population on a square lattice, on which the role or influence of each individual is depicted by vertex weight, and the prisoner's dilemma game has been applied to describe the social dilemma of pairwise interactions of players. Through numerical simulation, we conclude that our coevolution setup can promote the evolution of cooperation effectively. Especially, there exists a moderate value of δ for each ε that can warrant an optimal resolution of social dilemma. For a further understanding of these results, we find that intermediate value of δ enables the strongest heterogeneous distribution of vertex weight. We hope our coevolution setup of vertex weight will provide new insight for the future research.

  18. Scale effect and value criterion of the permeability of the interlayer staggered zones in the basalt of Jinsha River basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Zhifang; Lin, Mu; Guo, Qiaona; Chen, Meng

    2018-05-01

    The hydrogeological characteristics of structural planes are different to those of the associated bedrock. The permeability, and therefore hydraulic conductivity (K), of a structural plane can be significantly different at different scales. The interlayer staggered zones in the Emeishan Basalt of early Late Permian were studied; this formation is located in the Baihetan hydropower project area in Jinsha River Basin, China. The seepage flow distribution of a solid model and two generalized models (A and B) were computed using COMSOL. The K values of the interlayer staggered zones for all three models were calculated by both simulation and analytical methods. The results show that the calculated K results of the generalized models can reflect the variation trend of permeability in each section of the solid model, and the approximate analytical calculation of K can be taken into account in the calculation of K in the generalized models instead of that found by simulation. Further studies are needed to investigate permeability variation in the interlayer staggered zones under the condition of different scales, considering the scaling variation in each section of an interlayer staggered zone. The permeability of each section of an interlayer staggered zone presents a certain degree of dispersivity at small scales; however, the permeability values tends to converge to a similar value as the scale of each section increases. The regularity of each section of the interlayer staggered zones under the condition of different scales can provide a scientific basis for reasonable selection of different engineering options.

  19. Multigrid for Staggered Lattice Fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Richard C.; Clark, M. A.; Strelchenko, Alexei

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  20. Staggered chiral perturbation theory in the two-flavor case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Xining

    2010-07-01

    I study two-flavor staggered chiral perturbation theory in the light pseudoscalar sector. The pion mass and decay constant are calculated through next-to-leading order in the partially-quenched case. In the limit where the strange quark mass is large compared to the light quark masses and the taste splittings, I show that the SU(2) staggered chiral theory emerges from the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low energy constants and taste-violating parameters are given. The results are useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from varying strange quark masses.

  1. The performance of diphoton primary vertex reconstruction methods in H → γγ+Met channel of ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Tomiwa, K. G.

    2017-09-01

    The search for new physics in the H → γγ+met relies on how well the missing transverse energy is reconstructed. The Met algorithm used by the ATLAS experiment in turns uses input variables like photon and jets which depend on the reconstruction of the primary vertex. This document presents the performance of di-photon vertex reconstruction algorithms (hardest vertex method and Neural Network method). Comparing the performance of these algorithms for the nominal Standard Model sample and the Beyond Standard Model sample, we see the overall performance of the Neural Network method of primary vertex selection performed better than the Hardest vertex method.

  2. On Bipartite Graphs Trees and Their Partial Vertex Covers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.

    2015-03-01

    Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. Itmore » can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.« less

  3. Dynamical Vertex Approximation for the Hubbard Model

    NASA Astrophysics Data System (ADS)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  4. Taste changing in staggered quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quentin Mason et al.

    2004-01-05

    The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.

  5. Experimental Study of Aligned and Staggered Wind Farms in a Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando

    2011-11-01

    Wind farm-atmosphere interaction is complicated by turbine configuration and thermal effects on momentum and kinetic energy fluxes. Wind farms of finite length have been modeled as increased surface roughness or as a sparse canopy; however it is not clear which approach is more appropriate. Experiments were conducted in a thermally controlled boundary layer wind tunnel, using a custom x-wire/cold wire and surface heat flux sensors, to understand the effect of aligned versus staggered turbine configurations on momentum absorption and flow adjustment in a convective boundary layer (CBL). Results for experiments of a large farm show the span-wise averaged flow statistics exhibit similar turbulent transport properties to that of canopy flows. The wake adjusts within and grows over the farm more quickly for a staggered compared to an aligned farm. Using canopy flow scaling, we show that the flow equilibrates faster and the overall momentum absorption is higher in a staggered compared to an aligned farm. Wake recovery behind a single turbine is facilitated by buoyancy in a CBL (Zhang et al. under review). We find a similar effect in wind farms resulting in reduced effective roughness and momentum absorption. We also find a reduction of surface heat flux for both wind farms, but greater for the staggered farm.

  6. Phase separation in the six-vertex model with a variety of boundary conditions

    NASA Astrophysics Data System (ADS)

    Lyberg, I.; Korepin, V.; Ribeiro, G. A. P.; Viti, J.

    2018-05-01

    We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847-1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev

  7. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-08

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs.

  8. Optical conductivity calculation of a k.p model semiconductor GaAs incorporating first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Nurhuda, Maryam; Aziz Majidi, Muhammad

    2018-04-01

    The role of excitons in semiconducting materials carries potential applications. Experimental results show that excitonic signals also appear in optical absorption spectra of semiconductor system with narrow gap, such as Gallium Arsenide (GaAs). While on the theoretical side, calculation of optical spectra based purely on Density Functional Theory (DFT) without taking electron-hole (e-h) interactions into account does not lead to the appearance of any excitonic signal. Meanwhile, existing DFT-based algorithms that include a full vertex correction through Bethe-Salpeter equation may reveal an excitonic signal, but the algorithm has not provided a way to analyze the excitonic signal further. Motivated to provide a way to isolate the excitonic effect in the optical response theoretically, we develop a method of calculation for the optical conductivity of a narrow band-gap semiconductor GaAs within the 8-band k.p model that includes electron-hole interactions through first-order electron-hole vertex correction. Our calculation confirms that the first-order e-h vertex correction reveals excitonic signal around 1.5 eV (the band gap edge), consistent with the experimental data.

  9. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, M.G.; English, B.C.

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-partymore » custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.« less

  10. Loop vertex expansion for higher-order interactions

    NASA Astrophysics Data System (ADS)

    Rivasseau, Vincent

    2018-05-01

    This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

  11. Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Dimitrov, Evgeni

    2018-05-01

    We consider the ASEP and the stochastic six vertex model started with step initial data. After a long time, T, it is known that the one-point height function fluctuations for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in space. Namely, we prove tightness (and Brownian absolute continuity of all subsequential limits) as T goes to infinity of the height function with spatial coordinate scaled by T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a connection discovered recently by Borodin-Bufetov-Wheeler between the stochastic six vertex height function and the Hall-Littlewood process (a certain measure on plane partitions). Interpreting this process as a line ensemble with a Gibbsian resampling invariance, we show that the one-point tightness of the top curve can be propagated to the tightness of the entire curve.

  12. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  13. Locking mechanisms in degree-4 vertex origami structures

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Li, Suyi; Xu, Jian; Wang, K. W.

    2016-04-01

    Origami has emerged as a potential tool for the design of mechanical metamaterials and metastructures whose novel properties originate from their crease patterns. Most of the attention in origami engineering has focused on the wellknown Miura-Ori, a folded tessellation that is flat-foldable for folded sheet and stacked blocks. This study advances the state of the art and expands the research field to investigate generic degree-4 vertex (4-vertex) origami, with a focus on facet-binding. In order to understand how facet-binding attributes to the mechanical properties of 4-vertex origami structures, geometries of the 4-vertex origami cells are analyzed and analytically expressed. Through repeating and stacking 4-vertex cells, origami sheets and stacked origami blocks can be constructed. Geometry analyses discover four mechanisms that will lead to the self-locking of 4-vertex origami cells, sheets, and stacked blocks: in-cell facet-binding, inlayer facet-binding, inter-layer facet binding, and in-layer and inter-layer facet-bindings. These mechanisms and the predicted self-locking phenomena are verified through 3D simulations and prototype experiments. Finally, this paper briefly introduces the unusual mechanical properties caused by the locking of 4-vertex origami structures. The research reported in this paper could foster a new breed of self-locking structures with various engineering applications.

  14. Lattice Virasoro algebra and corner transfer matrices in the Baxter eight-vertex model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoyama, H.; Thacker, H.B.

    1987-04-06

    A lattice Virasoro algebra is constructed for the Baxter eight-vertex model. The operator L/sub 0/ is obtained from the logarithm of the corner transfer matrix and is given by the first moment of the XYZ spin-chain Hamiltonian. The algebra is valid even when the Hamiltonian includes a mass term, in which case it represents lattice coordinate transformations which distinguish between even and odd sublattices. We apply the quantum inverse scattering method to demonstrate that the Virasoro algebra follows from the Yang-Baxter relations.

  15. Spinfoam cosmology with the proper vertex amplitude

    NASA Astrophysics Data System (ADS)

    Vilensky, Ilya

    2017-11-01

    The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.

  16. Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics

    NASA Astrophysics Data System (ADS)

    Kaufmann, Josef; Gunacker, Patrik; Held, Karsten

    2017-07-01

    We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Green's functions, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three t2 g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and diagrammatic extensions of DMFT.

  17. The Stagger-grid: A grid of 3D stellar atmosphere models. II. Horizontal and temporal averaging and spectral line formation

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.

    2013-12-01

    Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are

  18. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  19. Taste symmetry breaking with hypercubic-smeared staggered fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Taegil; Adams, David H.; Kim, Hyung-Jin

    2008-05-01

    We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable tomore » the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<

  20. Fan Stagger Angle for Dirt Rejection

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  1. A dynamic cellular vertex model of growing epithelial tissues

    NASA Astrophysics Data System (ADS)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  2. RAVE—a Detector-independent vertex reconstruction toolkit

    NASA Astrophysics Data System (ADS)

    Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian

    2007-10-01

    A detector-independent toolkit for vertex reconstruction (RAVE ) is being developed, along with a standalone framework (VERTIGO ) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available. VERTIGO = "vertex reconstruction toolkit and interface to generic objects".

  3. FAS multigrid calculations of three dimensional flow using non-staggered grids

    NASA Technical Reports Server (NTRS)

    Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.

    1993-01-01

    Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.

  4. Staggered chiral perturbation theory at next-to-leading order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, Stephen R.; Van de Water, Ruth S.

    2005-06-01

    We study taste and Euclidean rotational symmetry violation for staggered fermions at nonzero lattice spacing using staggered chiral perturbation theory. We extend the staggered chiral Lagrangian to O(a{sup 2}p{sup 2}), O(a{sup 4}), and O(a{sup 2}m), the orders necessary for a full next-to-leading order calculation of pseudo-Goldstone boson masses and decay constants including analytic terms. We then calculate a number of SO(4) taste-breaking quantities, which involve only a small subset of these next-to-leading order operators. We predict relationships between SO(4) taste-breaking splittings in masses, pseudoscalar decay constants, and dispersion relations. We also find predictions for a few quantities that are notmore » SO(4) breaking. All these results hold also for theories in which the fourth root of the fermionic determinant is taken to reduce the number of quark tastes; testing them will therefore provide evidence for or against the validity of this trick.« less

  5. Geometric interpretation of vertex operator algebras.

    PubMed Central

    Huang, Y Z

    1991-01-01

    In this paper, Vafa's approach to the formulation of conformal field theories is combined with the formal calculus developed in Frenkel, Lepowsky, and Meurman's work on the vertex operator construction of the Monster to give a geometric definition of vertex operator algebras. The main result announced is the equivalence between this definition and the algebraic one in the sense that the categories determined by these definitions are isomorphic. PMID:11607240

  6. The growth rate of vertex-transitive planar graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babai, L.

    1997-06-01

    A graph is vertex-transitive if all of its vertices axe equivalent under automorphisms. Confirming a conjecture of Jon Kleinberg and Eva Tardos, we prove the following trichotomy theorem concerning locally finite vertex-transitive planar graphs: the rate of growth of a graph with these properties is either linear or quadratic or exponential. The same result holds more generally for locally finite, almost vertex-transitive planar graphs (the automorphism group has a finite number of orbits). The proof uses the elements of hyperbolic plane geometry.

  7. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.A.; Brown, T.B.; Archer, D.E.

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  8. Genus Ranges of 4-Regular Rigid Vertex Graphs

    PubMed Central

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2016-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges. PMID:27807395

  9. Connecting dark matter annihilation to the vertex functions of Standard Model fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu

    We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less

  10. On the local vertex antimagic total coloring of some families tree

    NASA Astrophysics Data System (ADS)

    Febriani Putri, Desi; Dafik; Hesti Agustin, Ika; Alfarisi, Ridho

    2018-04-01

    Let G(V, E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f:V(G)\\cup E(G)\\to \\{1,2,3,\\ldots,|V(G)|+|E(G)|\\} if for any two adjacent vertices v 1 and v 2, w({v}1)\

  11. Relaxing the closure assumption in single-season occupancy models: staggered arrival and departure times

    USGS Publications Warehouse

    Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell

    2013-01-01

    Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.

  12. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    NASA Technical Reports Server (NTRS)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  13. Silicon technologies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  14. Plethystic vertex operators and boson-fermion correspondences

    NASA Astrophysics Data System (ADS)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  15. Vertex Operators, Grassmannians, and Hilbert Schemes

    NASA Astrophysics Data System (ADS)

    Carlsson, Erik

    2010-12-01

    We approximate the infinite Grassmannian by finite-dimensional cutoffs, and define a family of fermionic vertex operators as the limit of geometric correspondences on the equivariant cohomology groups, with respect to a one-dimensional torus action. We prove that in the localization basis, these are the well-known fermionic vertex operators on the infinite wedge representation. Furthermore, the boson-fermion correspondence, locality, and intertwining properties with the Virasoro algebra are the limits of relations on the finite-dimensional cutoff spaces, which are true for geometric reasons. We then show that these operators are also, almost by definition, the vertex operators defined by Okounkov and the author in Carlsson and Okounkov ( http://arXiv.org/abs/0801.2565v2 [math.AG], 2009), on the equivariant cohomology groups of the Hilbert scheme of points on {mathbb C^2} , with respect to a special torus action.

  16. Belle II silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  17. On two-point boundary correlations in the six-vertex model with domain wall boundary conditions

    NASA Astrophysics Data System (ADS)

    Colomo, F.; Pronko, A. G.

    2005-05-01

    The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.

  18. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. Themore » TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.« less

  19. A class of vertex-edge-growth small-world network models having scale-free, self-similar and hierarchical characters

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui

    2018-02-01

    The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 < γ < 3. The other has exponential-scaling feature, P(k) ∼α-k. However, there are no models containing above two kinds of growth ways to be presented, even the study of interconnection between these two growth manners in the same model is lacking. Hence, in this paper, we construct a class of planar and self-similar graphs motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.

  20. Edge union of networks on the same vertex set

    NASA Astrophysics Data System (ADS)

    Loe, Chuan Wen; Jeldtoft Jensen, Henrik

    2013-06-01

    Random network generators such as Erdős-Rényi, Watts-Strogatz and Barabási-Albert models are used as models to study real-world networks. Let G1(V, E1) and G2(V, E2) be two such networks on the same vertex set V. This paper studies the degree distribution and clustering coefficient of the resultant networks, G(V, E1∪E2).

  1. Future of Lattice Calculations with Staggered Sea Quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, Steven

    2011-05-23

    The MILC collaboration for some years has been creating gauge ensembles with 2+1 flavors of asqtad or improved staggered quarks. There are some 40 ensembles covering a wide range of quark mass and lattice spacing, thus allowing control of the chiral and continuum limits. An extensive review of that program has been published in Reviews of Modern Physics. Recently, MILC has begun a new program using HPQCD's highly improved staggered quark (HISQ) action. This action has smaller taste symmetry breaking than asqtad and improved scaling properties. We also include a dynamical charm quark in these calculations. We summarize the achievementsmore » of the asqtad program, what has been done so far with HISQ quarks, and then consider what future ensembles will be created and their impact.« less

  2. Energy stable and high-order-accurate finite difference methods on staggered grids

    NASA Astrophysics Data System (ADS)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  3. Staggers in horses grazing paspalum infected with Claviceps paspali.

    PubMed

    Cawdell-Smith, A J; Scrivener, C J; Bryden, W L

    2010-10-01

    Invasion of the flowering heads of grasses by Claviceps spp. can produce sclerotia (ergots) containing several toxins. Ingestion of these toxins, through the consumption of paspalum (Paspalum dilatatum), can induce a range of clinical symptoms, including staggers. Cattle are the most commonly affected species, but although sheep and horses have been reported affected there are no published descriptions of paspalum staggers in horses. We describe two occurrences of paspalum staggers, the first in three Australian Stockhorse foals and the second in mature Standardbred horses. All three foals presented with ataxia in all limbs after consuming infected paspalum. One foal died from misadventure and the other two recovered within 1 week of removal from the infected paddock. In the second case, two of eight mares and geldings grazing in an irrigation channel developed hindquarter paresis. After removal of all horses from the area, one of the affected horses continued to deteriorate. Both horses were treated with antibiotics. The more severely affected horse was also treated with fluids and electrolytes, but had to be euthanased. The second affected horse recovered after 2 days. Paspalum pastures should inspected for Claviceps paspali infection before the introduction of horses. © 2010 The Authors. Australian Veterinary Journal © 2010 Australian Veterinary Association.

  4. Wind Tunnel Pressure Distribution Tests on a Series of Biplane Wing Models. Part III Effects of Charges in Various Combinations of Stagger, Gap, Sweepback, and Decalage

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Noyes, Richard W

    1929-01-01

    This preliminary report furnishes information on the changes in the forces on each wing of a biplane cellule for various combinations of stagger and gap, stagger and sweepback, stagger and decalage, and gap and decalage. The data were obtained from pressure distribution tests made in the atmospheric wind tunnel of the Langley Memorial Aeronautical Laboratory. Since each test was carried up to 90deg angle of attack, the results may be used in the study of stalled flight and of spinning as well as in the structural design of biplane wings.

  5. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS

    PubMed Central

    Almquist, Zack W.; Butts, Carter T.

    2015-01-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218

  6. LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.

    PubMed

    Almquist, Zack W; Butts, Carter T

    2014-08-01

    Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.

  7. Proposal of a Bulk HTSC Staggered Array Undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.

    We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on themore » Bean mode for a type-II superconductor were compared.« less

  8. The sequential organ failure assessment (SOFA) score is an effective triage marker following staggered paracetamol (acetaminophen) overdose.

    PubMed

    Craig, D G; Zafar, S; Reid, T W D J; Martin, K G; Davidson, J S; Hayes, P C; Simpson, K J

    2012-06-01

    The sequential organ failure assessment (SOFA) score is an effective triage marker following single time point paracetamol (acetaminophen) overdose, but has not been evaluated following staggered (multiple supratherapeutic doses over >8 h, resulting in cumulative dose of >4 g/day) overdoses. To evaluate the prognostic accuracy of the SOFA score following staggered paracetamol overdose. Time-course analysis of 50 staggered paracetamol overdoses admitted to a tertiary liver centre. Individual timed laboratory samples were correlated with corresponding clinical parameters and the daily SOFA scores were calculated. A total of 39/50 (78%) patients developed hepatic encephalopathy. The area under the SOFA receiver operator characteristic for death/liver transplantation was 87.4 (95% CI 73.2-95.7), 94.3 (95% CI 82.5-99.1), and 98.4 (95% CI 84.3-100.0) at 0, 24 and 48 h, respectively, postadmission. A SOFA score of <6 at tertiary care admission predicted survival with a sensitivity of 100.0% (95% CI 76.8-100.0) and specificity of 58.3% (95% CI 40.8-74.5), compared with 85.7% (95% CI 60.6-97.4) and 75.0% (95% CI 65.2-79.5) , respectively, for the modified Kings College criteria. Only 2/21 patients with an admission SOFA score <6 required renal replacement therapy or intracerebral pressure monitoring. SOFA significantly outperformed the Model for End-stage Liver Disease, but not APACHE II, at 0, 24-and 48-h following admission. A SOFA score <6 at tertiary care admission following a staggered paracetamol overdose, is associated with a good prognosis. Both the SOFA and APACHE II scores could improve triage of high-risk staggered paracetamol overdose patients. © 2012 Blackwell Publishing Ltd.

  9. An Algebraic Construction of Duality Functions for the Stochastic {U_q( A_n^{(1)})} Vertex Model and Its Degenerations

    NASA Astrophysics Data System (ADS)

    Kuan, Jeffrey

    2018-03-01

    A recent paper (Kuniba in Nucl Phys B 913:248-277, 2016) introduced the stochastic U}_q(A_n^{(1)})} vertex model. The stochastic S-matrix is related to the R-matrix of the quantum group {U_q(A_n^{(1)})} by a gauge transformation. We will show that a certain function {D^+_{m intertwines with the transfer matrix and its space reversal. When interpreting the transfer matrix as the transition matrix of a discrete-time totally asymmetric particle system on the one-dimensional lattice Z , the function {D^+m} becomes a Markov duality function {Dm} which only depends on q and the vertical spin parameters μ_x. By considering degenerations in the spectral parameter, the duality results also hold on a finite lattice with closed boundary conditions, and for a continuous-time degeneration. This duality function had previously appeared in a multi-species ASEP(q, j) process (Kuan in A multi-species ASEP(q, j) and q-TAZRP with stochastic duality, 2017). The proof here uses that the R-matrix intertwines with the co-product, but does not explicitly use the Yang-Baxter equation. It will also be shown that the stochastic U}_q(A_n^{(1)})} is a multi-species version of a stochastic vertex model studied in Borodin and Petrov (Higher spin six vertex model and symmetric rational functions, 2016) and Corwin and Petrov (Commun Math Phys 343:651-700, 2016). This will be done by generalizing the fusion process of Corwin and Petrov (2016) and showing that it matches the fusion of Kulish and yu (Lett Math Phys 5:393-403, 1981) up to the gauge transformation. We also show, by direct computation, that the multi-species q-Hahn Boson process (which arises at a special value of the spectral parameter) also satisfies duality with respect to D_∞, generalizing the single-species result of Corwin (Int Math Res Not 2015:5577-5603, 2015).

  10. Self-locking degree-4 vertex origami structures

    PubMed Central

    Li, Suyi; Wang, K. W.

    2016-01-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications. PMID:27956889

  11. Self-locking degree-4 vertex origami structures.

    PubMed

    Fang, Hongbin; Li, Suyi; Wang, K W

    2016-11-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.

  12. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-01

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  13. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-05

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  14. FAST TRACK COMMUNICATION Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen

    2010-12-01

    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.

  15. The vertex operator for a generalization of MacMahon’s formula

    NASA Astrophysics Data System (ADS)

    Cai, Liqiang; Wang, Lifang; Wu, Ke; Yang, Jie

    2015-10-01

    We provide a vertex operator realization for a two-parameter generalization of MacMahon’s formula introduced by M. Vuletić [Trans. Amer. Math. Soc. 361, 2789 (2009)]. Since the generalized MacMahon function is the kernel function of some Macdonald symmetric function, we consider the action of two vertex operators on a state corresponding to a Macdonald symmetric function. It becomes evident that the vertex operators appear to be the creation and annihilation operators, respectively on the state.

  16. Staggering of angular momentum distribution in fission

    NASA Astrophysics Data System (ADS)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  17. A vertex detector for SLD

    NASA Astrophysics Data System (ADS)

    Damerell, C. J. S.; English, R. L.; Gillman, A. R.; Lintern, A. L.; Phillips, D.; Rong, G.; Sutton, C.; Wickens, F. J.; Agnew, G.; Clarke, P.; Hedges, S.; Watts, S. J.

    1989-03-01

    The SLAC Linear Collider is currently being commissioned. A second-generation detector for SLC, known as SLD, is now under construction. In the centre of this 4000 ton detector there will be a vertex detector (VXD) consisting of 4 barrels of 2-dimensional CCDs, approximately 250 CCDs in total. This detector will be used as a tracking microscope, able to pinpoint the outgoing tracks with a precision of about 5 μm, and thus to distinguish between particles produced at the primary vertex and those which result from the decay of heavy-flavour quarks (charm, bottom and possibly others) or from the decay of heavy leptons. This paper describes the present state of the VXD project, with particular emphasis on the signal processing procedures which will reduce the 60 million measurements of pixel contents for each event to a manageable level (some tens of kilobytes).

  18. Optimized Vertex Method and Hybrid Reliability

    NASA Technical Reports Server (NTRS)

    Smith, Steven A.; Krishnamurthy, T.; Mason, B. H.

    2002-01-01

    A method of calculating the fuzzy response of a system is presented. This method, called the Optimized Vertex Method (OVM), is based upon the vertex method but requires considerably fewer function evaluations. The method is demonstrated by calculating the response membership function of strain-energy release rate for a bonded joint with a crack. The possibility of failure of the bonded joint was determined over a range of loads. After completing the possibilistic analysis, the possibilistic (fuzzy) membership functions were transformed to probability density functions and the probability of failure of the bonded joint was calculated. This approach is called a possibility-based hybrid reliability assessment. The possibility and probability of failure are presented and compared to a Monte Carlo Simulation (MCS) of the bonded joint.

  19. Layer-by-layer growth of vertex graph of Penrose tiling

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-09-01

    The growth form for the vertex graph of Penrose tiling is found to be a regular decagon. The lower and upper bounds for this form, coinciding with it, are strictly proven. A fractal character of layer-by-layer growth is revealed for some subgraphs of the vertex graph of Penrose tiling.

  20. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron S.; Hill, Richard J.; Kronfeld, Andreas S.

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation ofmore » $$g_A$$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.« less

  1. Nonperturbative study of the four gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, D.; Ibañez, D.; Papavassiliou, J.

    2014-09-01

    In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.

  2. Reflection K-matrices for a nineteen vertex model with Uq [ osp (2 | 2) (2) ] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima Santos, A.

    2017-09-01

    We derive the solutions of the boundary Yang-Baxter equation associated with a supersymmetric nineteen vertex model constructed from the three-dimensional representation of the twisted quantum affine Lie superalgebra Uq [ osp (2 | 2) (2) ]. We found three classes of solutions. The type I solution is characterized by three boundary free-parameters and all elements of the corresponding reflection K-matrix are different from zero. In the type II solution, the reflection K-matrix is even (every element of the K-matrix with an odd parity is null) and it has only one boundary free-parameter. Finally, the type III solution corresponds to a diagonal reflection K-matrix with two boundary free-parameters.

  3. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.

    2017-03-01

    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  4. Migdal's theorem and electron-phonon vertex corrections in Dirac materials

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.; Das Sarma, S.

    2014-04-01

    Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.

  5. A neural network z-vertex trigger for Belle II

    NASA Astrophysics Data System (ADS)

    Neuhaus, S.; Skambraks, S.; Abudinen, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Paul, S.; Schieck, J.

    2015-05-01

    We present the concept of a track trigger for the Belle II experiment, based on a neural network approach, that is able to reconstruct the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger will thus be able to suppress a large fraction of the dominating background from events outside of the interaction region. The trigger uses the drift time information of the hits from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (sectors), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D (r — φ) track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track in a given event. Within each sector, the z-vertex of the associated track is estimated by a specialized neural network, with a continuous output corresponding to the scaled z-vertex. The input values for the neural network are calculated from the wire hits of the CDC.

  6. Staggering the dose of sugammadex lowers risks for severe emergence cough: a randomized control trial.

    PubMed

    P S, Loh; Miskan, M M; Y Z, Chin; Zaki, R A

    2017-10-11

    Cough on emergence has been reported as a common adverse reaction with sugammadex reversal. We investigated if staggering the dose of sugammadex will reduce emergence cough in a single-center, randomized, double-blinded study. A hundred and twenty ASA 1-3 adults were randomly reversed with 1 mg/kg sugammadex prior to extubation followed by another 1 mg/kg immediately after extubation (staggered group), single dose of 2 mg/kg sugammadex (single bolus group) or neostigmine 0.02 mg/kg with glycopyrrolate (neostigmine group). We found 70% of patients (n = 28) reversed with single boluses of sugammadex had Grade 3 emergence cough compared to 12.5% (n = 5) in the staggered sugammadex group and 17.5% (n = 7) in the neostigmine group (p < 0.001). Besides cough, emergence agitation also appeared highest in the single bolus sugammadex group (n = 14, 35%, p = 0.005). On the other hand, staggering sugammadex lowered risks of developing severe cough (RR 0.2, p < 0.001) and agitation (RR 0.43, p = 0.010) on emergence in addition to cough (RR 0.25, p = 0.039) and early sore throat (RR 0.70, p = 0.036) in the post-anesthetic care unit. The risks for severe emergence cough (RR 0.86, p = 0.762), severe cough in the post-anesthetic care unit (RR 1.0, p = 1.000) and sore throat (RR 1.17, p = 0.502) were also not different between the staggered sugammadex group and control given neostigmine. In terms of timing, there was no delay in time taken from discontinuing anesthetic agents to reversal and extubation if sugammadex was staggered (emergence time 6.0 ± 3.2 s, p = 0.625 and reversal time 6.5 ± 3.5, p = 0.809). Staggering the dose of sugammadex for reversal will effectively decrease common emergence and early postoperative complications. ANZCTR Number ACTRN12616000116426 . Retrospectively registered on 2nd February 2016.

  7. Magnetic-free non-reciprocity based on staggered commutation

    PubMed Central

    Reiskarimian, Negar; Krishnaswamy, Harish

    2016-01-01

    Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time. PMID:27079524

  8. Towards ab initio Calculations with the Dynamical Vertex Approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Kaufmann, Josef; Gunacker, Patrik; Pickem, Matthias; Thunström, Patrik; Tomczak, Jan M.; Held, Karsten

    2018-04-01

    While key effects of the many-body problem — such as Kondo and Mott physics — can be understood in terms of on-site correlations, non-local fluctuations of charge, spin, and pairing amplitudes are at the heart of the most fascinating and unresolved phenomena in condensed matter physics. Here, we review recent progress in diagrammatic extensions to dynamical mean-field theory for ab initio materials calculations. We first recapitulate the quantum field theoretical background behind the two-particle vertex. Next we discuss latest algorithmic advances in quantum Monte Carlo simulations for calculating such two-particle quantities using worm sampling and vertex asymptotics, before giving an introduction to the ab initio dynamical vertex approximation (AbinitioDΓA). Finally, we highlight the potential of AbinitioDΓA by detailing results for the prototypical correlated metal SrVO3.

  9. Optimal rotated staggered-grid finite-difference schemes for elastic wave modeling in TTI media

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2015-11-01

    The rotated staggered-grid finite-difference (RSFD) is an effective approach for numerical modeling to study the wavefield characteristics in tilted transversely isotropic (TTI) media. But it surfaces from serious numerical dispersion, which directly affects the modeling accuracy. In this paper, we propose two different optimal RSFD schemes based on the sampling approximation (SA) method and the least-squares (LS) method respectively to overcome this problem. We first briefly introduce the RSFD theory, based on which we respectively derive the SA-based RSFD scheme and the LS-based RSFD scheme. Then different forms of analysis are used to compare the SA-based RSFD scheme and the LS-based RSFD scheme with the conventional RSFD scheme, which is based on the Taylor-series expansion (TE) method. The contrast in numerical accuracy analysis verifies the greater accuracy of the two proposed optimal schemes, and indicates that these schemes can effectively widen the wavenumber range with great accuracy compared with the TE-based RSFD scheme. Further comparisons between these two optimal schemes show that at small wavenumbers, the SA-based RSFD scheme performs better, while at large wavenumbers, the LS-based RSFD scheme leads to a smaller error. Finally, the modeling results demonstrate that for the same operator length, the SA-based RSFD scheme and the LS-based RSFD scheme can achieve greater accuracy than the TE-based RSFD scheme, while for the same accuracy, the optimal schemes can adopt shorter difference operators to save computing time.

  10. The RAVE/VERTIGO vertex reconstruction toolkit and framework

    NASA Astrophysics Data System (ADS)

    Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.

    2008-07-01

    A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.

  11. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  12. Effects of Staggering Formation Maneuvers on the Magnetospheric Multi-Scale Mission Trajectories

    NASA Technical Reports Server (NTRS)

    Parsay, Khashayar; Mann, Laurie

    2012-01-01

    Formation maneuvering for the MMS mission is accomplished by executing a two-burn transfer for each spacecraft to achieve a set of desired states. Because the same radio frequency is shared by all four spacecraft, only one spacecraft can execute a maneuver at any given time. Therefore, the maneuver execution epochs for the MMS spacecraft must be staggered. The selection of the staggered maneuver sequence has a significant effect on the propellant usage and the spacecraft close-approach profile. A method for selecting a favorable maneuver sequence is proposed and measured in terms of propellant and safety.

  13. A z-Vertex Trigger for Belle II

    NASA Astrophysics Data System (ADS)

    Skambraks, S.; Abudinén, F.; Chen, Y.; Feindt, M.; Frühwirth, R.; Heck, M.; Kiesling, C.; Knoll, A.; Neuhaus, S.; Paul, S.; Schieck, J.

    2015-08-01

    The Belle II experiment will go into operation at the upgraded SuperKEKB collider in 2016. SuperKEKB is designed to deliver an instantaneous luminosity L = 8 ×1035 cm - 2 s - 1. The experiment will therefore have to cope with a much larger machine background than its predecessor Belle, in particular from events outside of the interaction region. We present the concept of a track trigger, based on a neural network approach, that is able to suppress a large fraction of this background by reconstructing the z (longitudinal) position of the event vertex within the latency of the first level trigger. The trigger uses the hit information from the Central Drift Chamber (CDC) of Belle II within narrow cones in polar and azimuthal angle as well as in transverse momentum (“sectors”), and estimates the z-vertex without explicit track reconstruction. The preprocessing for the track trigger is based on the track information provided by the standard CDC trigger. It takes input from the 2D track finder, adds information from the stereo wires of the CDC, and finds the appropriate sectors in the CDC for each track. Within the sector, the z-vertex is estimated by a specialized neural network, with the drift times from the CDC as input and a continuous output corresponding to the scaled z-vertex. The neural algorithm will be implemented in programmable hardware. To this end a Virtex 7 FPGA board will be used, which provides at present the most promising solution for a fully parallelized implementation of neural networks or alternative multivariate methods. A high speed interface for external memory will be integrated into the platform, to be able to store the O(109) parameters required. The contribution presents the results of our feasibility studies and discusses the details of the envisaged hardware solution.

  14. A Vertex Model of Drosophila Ventral Furrow Formation

    PubMed Central

    Spahn, Philipp; Reuter, Rolf

    2013-01-01

    Ventral furrow formation in Drosophila is an outstanding model system to study the mechanisms involved in large-scale tissue rearrangements. Ventral cells accumulate myosin at their apical sides and, while being tightly coupled to each other via apical adherens junctions, execute actomyosin contractions that lead to reduction of their apical cell surface. Thereby, a band of constricted cells along the ventral epithelium emerges which will form a tissue indentation along the ventral midline (the ventral furrow). Here we adopt a 2D vertex model to simulate ventral furrow formation in a surface view allowing easy comparison with confocal live-recordings. We show that in order to reproduce furrow morphology seen in vivo, a gradient of contractility must be assumed in the ventral epithelium which renders cells more contractile the closer they lie to the ventral midline. The model predicts previous experimental findings, such as the gain of eccentric morphology of constricting cells and an incremental fashion of apical cell area reduction. Analysis of the model suggests that this incremental area reduction is caused by the dynamical interplay of cell elasticity and stochastic contractility as well as by the opposing forces from contracting neighbour cells. We underpin results from the model through in vivo analysis of ventral furrow formation in wildtype and twi mutant embryos. Our results show that ventral furrow formation can be accomplished as a “tug-of-war” between stochastically contracting, mechanically coupled cells and may require less rigorous regulation than previously thought. Summary For the developmental biologist it is a fascinating question how cells can coordinate major tissue movements during embryonic development. The so-called ventral furrow of the Drosophila embryo is a well-studied example of such a process when cells from a ventral band, spanning nearly the entire length of the embryo, undergo dramatic shape change by contracting their tips and

  15. Energy staggering in superdeformed bands in {sup 131}Ce, {sup 132}Ce, and {sup 133}Ce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semple, A.T.; Nolan, P.J.; Beausang, C.W.

    1996-05-01

    Superdeformed bands observed in {sup 131}Ce, {sup 132}Ce, and {sup 133}Ce have sequences of {gamma}-ray transition energies that exhibit a {Delta}{ital I}=2 staggering. This staggering has different characteristics to that seen in previously known cases in other mass regions. The energy staggering starts at low rotational frequency ({sq_bullet}{omega}=3 MeV for {sup 131}Ce) at a magnitude of {approximately}{plus_minus}0.3 keV, dies away to zero at intermediate frequency ({sq_bullet}{omega}=0.6{minus}0.7 MeV), and reappears at higher frequencies ({sq_bullet}{omega}{approximately}0.7 MeV). {copyright} {ital 1996 The American Physical Society.}

  16. Automatically Generated Algorithms for the Vertex Coloring Problem

    PubMed Central

    Contreras Bolton, Carlos; Gatica, Gustavo; Parada, Víctor

    2013-01-01

    The vertex coloring problem is a classical problem in combinatorial optimization that consists of assigning a color to each vertex of a graph such that no adjacent vertices share the same color, minimizing the number of colors used. Despite the various practical applications that exist for this problem, its NP-hardness still represents a computational challenge. Some of the best computational results obtained for this problem are consequences of hybridizing the various known heuristics. Automatically revising the space constituted by combining these techniques to find the most adequate combination has received less attention. In this paper, we propose exploring the heuristics space for the vertex coloring problem using evolutionary algorithms. We automatically generate three new algorithms by combining elementary heuristics. To evaluate the new algorithms, a computational experiment was performed that allowed comparing them numerically with existing heuristics. The obtained algorithms present an average 29.97% relative error, while four other heuristics selected from the literature present a 59.73% error, considering 29 of the more difficult instances in the DIMACS benchmark. PMID:23516506

  17. Torus Knots and the Topological Vertex

    NASA Astrophysics Data System (ADS)

    Jockers, Hans; Klemm, Albrecht; Soroush, Masoud

    2014-08-01

    We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S 3. The key role is played by the transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Mariño. Compared to the recent proposal by Aganagic and Vafa for knots on S 3, we demonstrate that the disk amplitude of the A-brane associated with any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.

  18. Wind-tunnel experiments of scalar transport in aligned and staggered wind farms

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Markfort, C. D.; Porté-Agel, F.

    2012-04-01

    Wind energy is the fastest growing renewable energy worldwide, and it is expected that many more large-scale wind farms will be built and will cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer, wind farms may affect the exchange/transport of momentum, heat and moisture between the atmosphere and land surface. To ensure the long-term sustainability of wind energy, it is important to understand the influence of large-scale wind farms on land-atmosphere interaction. Knowledge of this impact will also be useful to improve parameterizations of wind farms in numerical prediction tools, such as large-scale weather models and large-eddy simulation. Here, we present wind-tunnel measurements of the surface scalar (heat) flux from model wind farms, consisting of more than 10 rows of wind turbines, in a turbulent boundary layer with a surface heat source. Spatially distributed surface heat flux was obtained in idealized aligned and staggered wind farm layouts, having the same turbine distribution density. Measurements, using surface-mounted heat flux sensors, were taken at the 11th out of 12 rows of wind turbines, where the mean flow achieves a quasi-equilibrium state. In the aligned farm, there exist two distinct regions of increased and decreased surface heat flux on either side of turbine columns. The regions are correlated with coherent wake rotation in the turbine-array. On the upwelling side there is decreased flux, while on the downwelling side cool air moves towards the surface causing increased flux. For the staggered farm, the surface heat flux exhibits a relatively uniform distribution and an overall reduction with respect to the boundary layer flow, except in the vicinity of the turbine tower. This observation is also supported by near-surface temperature and turbulent heat flux measured using a customized x-wire/cold-wire. The overall surface heat flux, relative to that of the boundary layer

  19. Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model

    PubMed Central

    Nestor-Bergmann, Alexander; Goddard, Georgina; Woolner, Sarah; Jensen, Oliver E

    2018-01-01

    Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted. PMID:28992197

  20. Directional harmonic theory: a computational Gestalt model to account for illusory contour and vertex formation.

    PubMed

    Lehar, Steven

    2003-01-01

    Visual illusions and perceptual grouping phenomena offer an invaluable tool for probing the computational mechanism of low-level visual processing. Some illusions, like the Kanizsa figure, reveal illusory contours that form edges collinear with the inducing stimulus. This kind of illusory contour has been modeled by neural network models by way of cells equipped with elongated spatial receptive fields designed to detect and complete the collinear alignment. There are, however, other illusory groupings which are not so easy to account for in neural network terms. The Ehrenstein illusion exhibits an illusory contour that forms a contour orthogonal to the stimulus instead of collinear with it. Other perceptual grouping effects reveal illusory contours that exhibit a sharp corner or vertex, and still others take the form of vertices defined by the intersection of three, four, or more illusory contours that meet at a point. A direct extension of the collinear completion models to account for these phenomena tends towards a combinatorial explosion, because it would suggest cells with specialized receptive fields configured to perform each of those completion types, each of which would have to be replicated at every location and every orientation across the visual field. These phenomena therefore challenge the adequacy of the neural network approach to account for these diverse perceptual phenomena. I have proposed elsewhere an alternative paradigm of neurocomputation in the harmonic resonance theory (Lehar 1999, see website), whereby pattern recognition and completion are performed by spatial standing waves across the neural substrate. The standing waves perform a computational function analogous to that of the spatial receptive fields of the neural network approach, except that, unlike that paradigm, a single resonance mechanism performs a function equivalent to a whole array of spatial receptive fields of different spatial configurations and of different orientations

  1. The Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.; Kah, D. H.; Kang, K. H.; Kato, E.; Kiesling, C.; Kodys, P.; Kohriki, T.; Koike, S.; Kvasnicka, P.; Marinas, C.; Mayekar, S. N.; Mibe, T.; Mohanty, G. B.; Moll, A.; Negishi, K.; Nakayama, H.; Natkaniec, Z.; Niebuhr, C.; Onuki, Y.; Ostrowicz, W.; Park, H.; Rao, K. K.; Ritter, M.; Rozanska, M.; Saito, T.; Sakai, K.; Sato, N.; Schmid, S.; Schnell, M.; Shimizu, N.; Steininger, H.; Tanaka, S.; Tanida, K.; Taylor, G.; Tsuboyama, T.; Ueno, K.; Uozumi, S.; Ushiroda, Y.; Valentan, M.; Yamamoto, H.

    2013-12-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×1035 cm-2 s-1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13 m2 and 223,744 channels-twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  2. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

    PubMed

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R

    2016-01-01

    A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  4. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  5. Conservation laws, vertex corrections, and screening in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.

    2017-07-01

    We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.

  6. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  7. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice.

    PubMed

    Nisoli, Cristiano; Li, Jie; Ke, Xianglin; Garand, D; Schiffer, Peter; Crespi, Vincent H

    2010-07-23

    Frustrated arrays of interacting single-domain nanomagnets provide important model systems for statistical mechanics, as they map closely onto well-studied vertex models and are amenable to direct imaging and custom engineering. Although these systems are manifestly athermal, we demonstrate that an effective temperature, controlled by an external magnetic drive, describes their microstates and therefore their full statistical properties.

  8. Role of vertex corrections in the matrix formulation of the random phase approximation for the multiorbital Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.

    2016-12-21

    In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.

  9. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.

    PubMed

    Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin

    2016-01-01

    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.

  10. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel

    PubMed Central

    Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J. Rudi; Chang, Woo-Jin

    2016-01-01

    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids. PMID:27814386

  11. Hubble Space Telescope secondary mirror vertex radius/conic constant test

    NASA Technical Reports Server (NTRS)

    Parks, Robert

    1991-01-01

    The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

  12. Track and vertex reconstruction: From classical to adaptive methods

    NASA Astrophysics Data System (ADS)

    Strandlie, Are; Frühwirth, Rudolf

    2010-04-01

    This paper reviews classical and adaptive methods of track and vertex reconstruction in particle physics experiments. Adaptive methods have been developed to meet the experimental challenges at high-energy colliders, in particular, the CERN Large Hadron Collider. They can be characterized by the obliteration of the traditional boundaries between pattern recognition and statistical estimation, by the competition between different hypotheses about what constitutes a track or a vertex, and by a high level of flexibility and robustness achieved with a minimum of assumptions about the data. The theoretical background of some of the adaptive methods is described, and it is shown that there is a close connection between the two main branches of adaptive methods: neural networks and deformable templates, on the one hand, and robust stochastic filters with annealing, on the other hand. As both classical and adaptive methods of track and vertex reconstruction presuppose precise knowledge of the positions of the sensitive detector elements, the paper includes an overview of detector alignment methods and a survey of the alignment strategies employed by past and current experiments.

  13. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    NASA Technical Reports Server (NTRS)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  14. Staggered Orbital Currents in the Half-Filled Two-Leg Ladder

    NASA Astrophysics Data System (ADS)

    Fjaerestad, J. O.; Marston, Brad; Sudbo, A.

    2002-03-01

    We present strong analytical and numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg ladder, with true long-range order in the counter-circulating currents. Using abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.(J. O. Fjærestad and J. B. Marston, cond- mat/0107094.) This result, combined with a weak-coupling renormalization-group analysis, implies that the SF phase exists in a region of the phase diagram of the half-filled t-U-V-J ladder. Using the density-matrix renormalization-group (DMRG) approach generalized to complex-valued wavefunctions, we demonstrate that the SF phase exhibits robust currents at intermediate values of the interaction strengths.

  15. Lattices, vertex algebras, and modular categories

    NASA Astrophysics Data System (ADS)

    van Ekeren, Jethro

    2018-03-01

    In this note we give an account of recent progress on the construction of holomorphic vertex algebras as cyclic orbifolds as well as related topics in lattices and modular categories. We present a novel computation of the Schur indicator of a lattice involution orbifold using finite Heisenberg groups and discriminant forms.

  16. Multifractal cross-correlation effects in two-variable time series of complex network vertex observables

    NASA Astrophysics Data System (ADS)

    OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław

    2016-10-01

    We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.

  17. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    PubMed

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  18. Investigation of writing error in staggered heated-dot magnetic recording systems

    NASA Astrophysics Data System (ADS)

    Tipcharoen, W.; Warisarn, C.; Tongsomporn, D.; Karns, D.; Kovintavewat, P.

    2017-05-01

    To achieve an ultra-high storage capacity, heated-dot magnetic recording (HDMR) has been proposed, which heats a bit-patterned medium before recording data. Generally, an error during the HDMR writing process comes from several sources; however, we only investigate the effects of staggered island arrangement, island size fluctuation caused by imperfect fabrication, and main pole position fluctuation. Simulation results demonstrate that a writing error can be minimized by using a staggered array (hexagonal lattice) instead of a square array. Under the effect of main pole position fluctuation, the writing error is higher than the system without main pole position fluctuation. Finally, we found that the error percentage can drop below 10% when the island size is 8.5 nm and the standard deviation of the island size is 1 nm in the absence of main pole jitter.

  19. Staggering Inflation To Stabilize Attitude of a Solar Sail

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; West, John

    2007-01-01

    A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.

  20. Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2015-01-01

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  1. Implementing vertex dynamics models of cell populations in biology within a consistent computational framework.

    PubMed

    Fletcher, Alexander G; Osborne, James M; Maini, Philip K; Gavaghan, David J

    2013-11-01

    The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell-cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effective-range parameters and vertex constants for Λ-nuclear systems

    NASA Astrophysics Data System (ADS)

    Rakityansky, S. A.; Gopane, I. M.

    For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.

  3. a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Jessee, J. P.; Fiveland, W. A.

    1996-08-01

    The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.

  4. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  5. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  6. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  7. Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Haralambos; Spanoudes, Gregoris

    2018-03-01

    In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].

  8. Approximations of quantum-graph vertex couplings by singularly scaled potentials

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Manko, Stepan S.

    2013-08-01

    We investigate the limit properties of a family of Schrödinger operators of the form H_\\varepsilon = -\\frac{{d}^2}{{d}x^2}+ \\frac{\\lambda (\\varepsilon )}{\\varepsilon ^2}Q \\big (\\frac{x}{\\varepsilon }\\big ) acting on n-edge star graphs with the Kirchhoff interface conditions at the vertex. Here the real-valued potential Q has compact support and λ( · ) is analytic around ε = 0 with λ(0) = 1. We show that if the operator has a zero-energy resonance of order m for ε = 1 and λ(1) = 1, in the limit ε → 0 one obtains the Laplacian with a vertex coupling depending on 1+\\frac{1}{2} m(2n-m+1) parameters. We prove the norm-resolvent convergence as well as the convergence of the corresponding on-shell scattering matrices. The obtained vertex couplings are of scale-invariant type provided λ‧(0) = 0; otherwise the scattering matrix depends on energy and the scaled potential becomes asymptotically opaque in the low-energy limit.

  9. Algorithm for Search and Recovery of the Vertex of Decay in the Hypernuclear Experiment NIS-GIBS at Dubna Nuclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korotkova, Anna M.; Lukstins, Juris

    2010-01-05

    Search of the decay vertex is an important part of the hypernuclear experiment, carried out of the Dubna nuclotron accelerator. The decay vertex is reconstructed from data from two sets of proportional chambers. The distribution of the vertex of decay of the hypernucleus allows to measure the lifetime of the hypernuclei. Algorithm for searches and automatically calculates the decay vertex has been written.

  10. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity

    PubMed Central

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2012-01-01

    AIMS Paracetamol (acetaminophen) poisoning remains the major cause of severe acute hepatotoxicity in the UK. In this large single centre cohort study we examined the clinical impact of staggered overdoses and delayed presentation following paracetamol overdose. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced severe liver injury, of whom 161 (24.3%) had taken a staggered overdose. Staggered overdose patients were significantly older and more likely to abuse alcohol than single time point overdose patients. Relief of pain (58.2%) was the commonest rationale for repeated supratherapeutic ingestion. Despite lower total ingested paracetamol doses and lower admission serum alanine aminotransferase concentrations, staggered overdose patients were more likely to be encephalopathic on admission, require renal replacement therapy or mechanical ventilation and had higher mortality rates compared with single time point overdoses (37.3% vs. 27.8%, P = 0.025), although this overdose pattern did not independently predict death. The King's College poor prognostic criteria had reduced sensitivity (77.6, 95% CI 70.8, 81.5) for this pattern of overdose. Of the 396/450 (88.0%) single time point overdoses in whom accurate timings could be obtained, 178 (44.9%) presented to medical services >24 h following overdose. Delayed presentation beyond 24 h post overdose was independently associated with death/liver transplantation (OR 2.25, 95% CI 1.23, 4.12, P = 0.009). CONCLUSIONS Both delayed presentation and staggered overdose pattern are associated with adverse outcomes following paracetamol overdose. These patients are at increased risk of developing multi-organ failure and should be considered for early transfer to specialist liver centres. PMID:22106945

  11. A Technological Determinist Viewpoint of the Stanton-Staggers Conflict over "The Selling of the Pentagon": Print Man Versus Electronic Man.

    ERIC Educational Resources Information Center

    Breen, Myles P.

    Media, specifically documentary films on television, profoundly affect both social structure and man's psychological percepts. The clash of views depicted is between "print man" (using U.S. Representative Harley Staggers as an example) and "electronic man" (portrayed as Frank Stanton of CBS) centering on Stagger's objections to…

  12. Vertex centrality as a measure of information flow in Italian Corporate Board Networks

    NASA Astrophysics Data System (ADS)

    Grassi, Rosanna

    2010-06-01

    The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.

  13. Thermal Protection System with Staggered Joints

    NASA Technical Reports Server (NTRS)

    Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)

    2014-01-01

    The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.

  14. Field-Emission Staggered Structure Based on Diamond-Graphite Clusters

    NASA Astrophysics Data System (ADS)

    Davidovich, M. V.; Yafarov, R. K.

    2018-02-01

    We have proposed and designed a vacuum field-emission triode structure with high-resistivity semiconducting or insulating micrometer-size right parallelepipeds deposited in the staggered order on the conducting substrate (cathode), as well as a structure with a nanofilm on the cathode, which is formed by evaporated diamond-graphite clusters. It has been shown theoretically and experimentally that the emissivity of these structures is much higher than that of an uncoated cathode.

  15. Investigation of heat transfer of tube line of staggered tube bank in two-phase flow

    NASA Astrophysics Data System (ADS)

    Jakubcionis, Mindaugas

    2015-06-01

    This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.

  16. Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.

    PubMed

    Follana, E; Hart, A; Davies, C T H

    2004-12-10

    We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.

  17. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  18. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE PAGES

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich; ...

    2017-10-28

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  19. Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes

    NASA Astrophysics Data System (ADS)

    Lyall, M. Eric

    Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.

  20. Staggered larval time-to-hatch and insecticide resistance in the major malaria vector Anopheles gambiae S form.

    PubMed

    Kaiser, Maria L; Koekemoer, Lizette L; Coetzee, Maureen; Hunt, Richard H; Brooke, Basil D

    2010-12-14

    Anopheles gambiae is a major vector of malaria in the West African region. Resistance to multiple insecticides has been recorded in An. gambiae S form in the Ahafo region of Ghana. A laboratory population (GAH) established using wild material from this locality has enabled a mechanistic characterization of each resistance phenotype as well as an analysis of another adaptive characteristic - staggered larval time-to-hatch. Individual egg batches obtained from wild caught females collected from Ghana and the Republic of the Congo were monitored for staggered larval time-to-hatch. In addition, early and late larval time-to-hatch sub-colonies were selected from GAH. These selected sub-colonies were cross-mated and their hybrid progeny were subsequently intercrossed and back-crossed to the parental strains. The insecticide susceptibilities of the GAH base colony and the time-to-hatch selected sub-colonies were quantified for four insecticide classes using insecticide bioassays. Resistance phenotypes were mechanistically characterized using insecticide-synergist bioassays and diagnostic molecular assays for known reduced target-site sensitivity mutations. Anopheles gambiae GAH showed varying levels of resistance to all insecticide classes. Metabolic detoxification and reduced target-site sensitivity mechanisms were implicated. Most wild-caught families showed staggered larval time-to-hatch. However, some families were either exclusively early hatching or late hatching. Most GAH larvae hatched early but many egg batches contained a proportion of late hatching larvae. Crosses between the time-to-hatch selected sub-colonies yielded ambiguous results that did not fit any hypothetical models based on single-locus Mendelian inheritance. There was significant variation in the expression of insecticide resistance between the time-to-hatch phenotypes. An adaptive response to the presence of multiple insecticide classes necessarily involves the development of multiple resistance

  1. Cascadia's Staggering Losses

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Vogt, B.

    2001-05-01

    Recent worldwide earthquakes have resulted in staggering losses. The Northridge, California; Kobe, Japan; Loma Prieta, California; Izmit, Turkey; Chi-Chi, Taiwan; and Bhuj, India earthquakes, which range from magnitudes 6.7 to 7.7, have all occurred near populated areas. These earthquakes have resulted in estimated losses between \\3 and \\300 billion, with tens to tens of thousands of fatalities. Subduction zones are capable of producing the largest earthquakes. The 1939 M7.8 Chilean, the 1960 M9.5 Chilean, the 1964 M9.2 Alaskan, the 1970 M7.8 Peruvian, the 1985 M7.9 Mexico City and the 2001 M7.7 Bhuj earthquakes are damaging subduction zone quakes. The Cascadia fault zone poses a tremendous hazard in the Pacific Northwest due to the ground shaking and tsunami inundation hazards combined with the population. To address the Cascadia subduction zone threat, the Oregon Department of Geology and Mineral Industries conducted a preliminary statewide loss study. The 1998 Oregon study incorporated a M8.5 quake, the influence of near surface soil effects and default building, social and economic data available in FEMA's HAZUS97 software. Direct financial losses are projected at over \\$12 billion. Casualties are estimated at about 13,000. Over 5,000 of the casualties are estimated to result in fatalities from hazards relating to tsunamis and unreinforced masonry buildings.

  2. Analysis of the influence of the interlayer staggered zone in the basalt of Jinsha River Basin on the main buildings

    NASA Astrophysics Data System (ADS)

    Guo, Qiaona; Huang, Jiangwei

    2018-02-01

    In this paper, the finite element software FEFLOW is used to simulate the seepage field of the interlayer staggered zone C2 in the basalt of Jinsha River Basin. The influence of the interlayer staggered zone C2 on the building is analyzed. Combined with the waterproof effect of current design scheme of anti-seepage curtain, the seepage field in the interlayer staggered zone C2 is discussed under different design schemes. The optimal design scheme of anti-seepage curtain is put forward. The results showed that the case four can effectively reduce the head and hydraulic gradient of underground powerhouse area, and improve the groundwater seepage field in the plant area.

  3. Vertex evoked potentials in a rating-scale detection task: Relation to signal probability

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1974-01-01

    Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.

  4. Application of laser differential confocal technique in back vertex power measurement for phoropters

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli

    2012-10-01

    A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.

  5. Detecting Corresponding Vertex Pairs between Planar Tessellation Datasets with Agglomerative Hierarchical Cell-Set Matching.

    PubMed

    Huh, Yong; Yu, Kiyun; Park, Woojin

    2016-01-01

    This paper proposes a method to detect corresponding vertex pairs between planar tessellation datasets. Applying an agglomerative hierarchical co-clustering, the method finds geometrically corresponding cell-set pairs from which corresponding vertex pairs are detected. Then, the map transformation is performed with the vertex pairs. Since these pairs are independently detected for each corresponding cell-set pairs, the method presents improved matching performance regardless of locally uneven positional discrepancies between dataset. The proposed method was applied to complicated synthetic cell datasets assumed as a cadastral map and a topographical map, and showed an improved result with the F-measures of 0.84 comparing to a previous matching method with the F-measure of 0.48.

  6. 49 CFR Figure 1 to Subpart B of... - Example of Location and Staggering of Emergency Window Exits-§ 238.113

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of Location and Staggering of Emergency Window Exits-§ 238.113 1 Figure 1 to Subpart B of Part 238 Transportation Other Regulations Relating to... of Part 238—Example of Location and Staggering of Emergency Window Exits—§ 238.113 ER01FE08.001 [73...

  7. An efficicient data structure for three-dimensional vertex based finite volume method

    NASA Astrophysics Data System (ADS)

    Akkurt, Semih; Sahin, Mehmet

    2017-11-01

    A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.

  8. An asynchronous data-driven readout prototype for CEPC vertex detector

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Sun, Xiangming; Huang, Guangming; Xiao, Le; Gao, Chaosong; Huang, Xing; Zhou, Wei; Ren, Weiping; Li, Yashu; Liu, Jianchao; You, Bihui; Zhang, Li

    2017-12-01

    The Circular Electron Positron Collider (CEPC) is proposed as a Higgs boson and/or Z boson factory for high-precision measurements on the Higgs boson. The precision of secondary vertex impact parameter plays an important role in such measurements which typically rely on flavor-tagging. Thus silicon CMOS Pixel Sensors (CPS) are the most promising technology candidate for a CEPC vertex detector, which can most likely feature a high position resolution, a low power consumption and a fast readout simultaneously. For the R&D of the CEPC vertex detector, we have developed a prototype MIC4 in the Towerjazz 180 nm CMOS Image Sensor (CIS) process. We have proposed and implemented a new architecture of asynchronous zero-suppression data-driven readout inside the matrix combined with a binary front-end inside the pixel. The matrix contains 128 rows and 64 columns with a small pixel pitch of 25 μm. The readout architecture has implemented the traditional OR-gate chain inside a super pixel combined with a priority arbiter tree between the super pixels, only reading out relevant pixels. The MIC4 architecture will be introduced in more detail in this paper. It will be taped out in May and will be characterized when the chip comes back.

  9. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  10. Survival analysis in telemetry studies: The staggered entry design

    USGS Publications Warehouse

    Pollock, K.H.; Winterstein, S.R.; Bunck, C.M.; Curtis, P.D.

    1989-01-01

    A simple description of the Kaplan-Meier procedure is presented with an example using northern bobwhite quail survival data. The Kaplan- Meier procedure was then generalized to allow gradual (or staggered) entry of animals into the study, allowing animals being lost (or censored) due to radio failure, radio loss, or emigration of the animal from the study area. Additionally, the applicability and generalization of the log rank test, a test to compare two survival distributions, was demonstrated. Computer program was developed and is available from authors.

  11. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  12. An experimental investigation of wind flow over tall towers in staggered form

    NASA Astrophysics Data System (ADS)

    Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad

    2016-07-01

    In this research work an experiment is conducted to see the effect of wind loading on square, pentagonal and Hexagonal shape cylinders in staggered form. The experiment is done in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform throughout the experiment at 14.3 m/s. The test has been conducted for single cylinders first and then in staggered form. Angle of attack is chosen at a definite interval. The static pressure at different locations of the cylinder is measured by inclined multi-manometer. From the surface static pressure readings pressure coefficients are calculated first, then drag and lift coefficients are calculated using numerical Integration Method. These results will surely help engineers to design buildings with such shapes more efficiently. All the results are expressed in non-dimensional form, so they can be applied for prototype buildings and determine the wind loading at any wind speed on structures of similar external shapes.

  13. A conservative staggered-grid Chebyshev multidomain method for compressible flows

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.; Kolias, John H.

    1995-01-01

    We present a new multidomain spectral collocation method that uses staggered grids for the solution of compressible flow problems. The solution unknowns are defined at the nodes of a Gauss quadrature rule. The fluxes are evaluated at the nodes of a Gauss-Lobatto rule. The method is conservative, free-stream preserving, and exponentially accurate. A significant advantage of the method is that subdomain corners are not included in the approximation, making solutions in complex geometries easier to compute.

  14. NLO vertex for a forward jet plus a rapidity gap at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice

    Here we present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).

  15. NLO vertex for a forward jet plus a rapidity gap at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hentschinski, Martin; Madrigal Martínez, José Daniel; Murdaca, Beatrice

    We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov’s effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green’s function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets)

  16. [Umbilical blood-gas status at cesarean section for breech presentation: a comparison with vertex presentation].

    PubMed

    Haruta, M; Saeki, N; Naka, Y; Funato, T; Ohtsuki, Y

    1989-10-01

    Umbilical blood-gas status at elective cesarean section with oxygen inhalation for breech presentation (25 cases) was compared with that for vertex presentation (25 cases), so as to confirm the security of full-term breech fetuses delivered by cesarean section under spinal anesthesia. Umbilical arterial oxygen levels were significantly lower in the breech group (Mean PO2:18.9 mmHg; SO2:37.3%; Oxygen content:7.6 ml/dl). The number of hypoxemic fetuses was significantly higher in the breech group (the breech: 7; the vertex; 0). The other umbilical blood-gas values revealed no significant differences between the breech and vertex groups, and were within normal limits in both groups. Oxygen extraction in the breech (Mean: 49.0%) was higher than that in the vertex (32.9%). Therefore decreased umbilical blood flow in the breech was suggested. The incidence of depression at 1 minute after delivery in the breech infants (24%) was significantly higher than that in the vertex infants (0%). It became obvious in the breech that as the interval between the uterine incision and delivery increased, umbilical arterial blood tended to acidosis and the 1 minute Apgar score decreased. Cesarean section for breech presentation requires sufficient and optimal incisions of the abdominal wall and uterus as well as a skillful manual delivery technique, because the fetus or neonate should be protected against asphyxia resulting from umbilical compression and prolonged delivery interval.

  17. Towards an ab-initio treatment of nonlocal electronic correlations with dynamical vertex approximation

    NASA Astrophysics Data System (ADS)

    Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten

    Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.

  18. Vertex detectors: The state of the art and future prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damerell, C.J.S.

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters overmore » the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.« less

  19. Simple vertex correction improves G W band energies of bulk and two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Per S.; Patrick, Christopher E.; Thygesen, Kristian S.

    2017-11-01

    The G W self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situation by including a simple vertex correction that is consistent with a local-density approximation starting point. We analyze the effect of the self-energy by splitting it into short-range and long-range terms which are shown to govern, respectively, the center and size of the band gap. The vertex mainly improves the short-range correlations and therefore has a small effect on the band gap, while it shifts the band gap center up in energy by around 0.5 eV, in good agreement with experiments. Our analysis also explains how the relative importance of short- and long-range interactions in structures of different dimensionality is reflected in their QP energies. Inclusion of the vertex comes at practically no extra computational cost and even improves the basis set convergence compared to G W . Taken together, the method provides an efficient and rigorous improvement over the G W approximation.

  20. Track vertex reconstruction with neural networks at the first level trigger of Belle II

    NASA Astrophysics Data System (ADS)

    Neuhaus, Sara; Skambraks, Sebastian; Kiesling, Christian

    2017-08-01

    The track trigger is one of the main components of the Belle II first level trigger, taking input from the Central Drift Chamber (CDC). It consists of several stages, first combining hits to track segments, followed by a 2D track finding in the transverse plane and finally a 3D track reconstruction. The results of the track trigger are the track multiplicity, the momentum vector of each track and the longitudinal displacement of the origin or production vertex of each track ("z-vertex"). The latter allows to reject background tracks from outside of the interaction region and thus to suppress a large fraction of the machine background. This contribution focuses on the track finding stage using Hough transforms and on the z-vertex reconstruction with neural networks. We describe the algorithms and show performance studies on simulated events.

  1. Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb.

    PubMed

    Agrapidis, Cliò Efthimia; van den Brink, Jeroen; Nishimoto, Satoshi

    2018-01-29

    We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state phase diagram as a function of the ratio between Heisenberg (J = cosϕ) and Kitaev (K = sinϕ) interactions. Depending on the ratio, the system exhibits four long-range ordered states: ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger liquid and spiral-xy. The two Kitaev points [Formula: see text] and [Formula: see text] are singular. The ϕ-dependent phase diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss the magnetic structure of the K-intercalated RuCl 3 , a potential Kitaev material, in the framework of the 1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian can be explained within the combination of the known six-vertex model and spin-wave theory.

  2. Galilean invariance and vertex renormalization in turbulence theory.

    PubMed

    McComb, W D

    2005-03-01

    The Navier-Stokes equation is invariant under Galilean transformation of the instantaneous velocity field. However, the total velocity transformation is effected by transformation of the mean velocity alone. For a constant mean velocity, the equation of motion for the fluctuating velocity is automatically Galilean invariant in the comoving frame, and vertex renormalization is not constrained by this symmetry.

  3. Calculus students' understanding of the vertex of the quadratic function in relation to the concept of derivative

    NASA Astrophysics Data System (ADS)

    Burns-Childers, Annie; Vidakovic, Draga

    2018-07-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.

  4. Design and Construction of a Vertex Chamber and Measurement of the Average Beta-Hadron Lifetime

    NASA Astrophysics Data System (ADS)

    Nelson, Harry Norman

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 μm thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 mum, and a resolution in extrapolation to the B-Hadron decay location of 87 mum. Its inner layer is 4.6 cm from e^+e ^- colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed both the 94 pb ^{-1} of integrated luminosity accumulated at sqrt{s} = 29 GeV with the Vertex Chamber in place as well as the 210 pb^{-1} accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. The trimmed mean signed impact parameters are 130 +/- 19 μm for data accumulated with the Vertex Chamber, and 162 +/- 25 μm for previous data. Together these indicate an average B-Hadron lifetime of tau_{b} = (1.37_sp{-0.19}{+0.22} stat. +/- 0.11 sys.) times (1 +/- 0.15 sys.) psec. We separate additive and multiplicative systematic errors because the second does not degrade the statistical significance of the difference of the result from 0. If b-c dominates b-quark decay the corresponding weak mixing matrix element mid V_ {cb

  5. The spectrum of a vertex model and related spin one chain sitting in a genus five curve

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2017-11-01

    We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.

  6. A cell-vertex multigrid method for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Radespiel, R.

    1989-01-01

    A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.

  7. Screenings and vertex operators of quantum superalgebra U{sub q}(sl-caret(N|1))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Takeo

    2012-08-15

    We construct the screening currents of the quantum superalgebra U{sub q}(sl-caret(N|1)) for an arbitrary level k{ne}-N+ 1. We show that these screening currents commute with the superalgebra modulo total difference. We propose bosonizations of the vertex operators by using the screening currents. We check that these vertex operators are the intertwiners among the Fock-Wakimoto representation and the typical representation for rank N Less-Than-Or-Slanted-Equal-To 4.

  8. An arbitrary-order staggered time integrator for the linear acoustic wave equation

    NASA Astrophysics Data System (ADS)

    Lee, Jaejoon; Park, Hyunseo; Park, Yoonseo; Shin, Changsoo

    2018-02-01

    We suggest a staggered time integrator whose order of accuracy can arbitrarily be extended to solve the linear acoustic wave equation. A strategy to select the appropriate order of accuracy is also proposed based on the error analysis that quantitatively predicts the truncation error of the numerical solution. This strategy not only reduces the computational cost several times, but also allows us to flexibly set the modelling parameters such as the time step length, grid interval and P-wave speed. It is demonstrated that the proposed method can almost eliminate temporal dispersive errors during long term simulations regardless of the heterogeneity of the media and time step lengths. The method can also be successfully applied to the source problem with an absorbing boundary condition, which is frequently encountered in the practical usage for the imaging algorithms or the inverse problems.

  9. Vertex Algebras W(p)Am and W(p)Dm and Constant Term Identities

    NASA Astrophysics Data System (ADS)

    Adamović, Dražen; Lin, Xianzu; Milas, Antun

    2015-03-01

    We consider AD-type orbifolds of the triplet vertex algebras W(p) extending the well-known c=1 orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras A(W(p)^{A_m}) and A(W(p)^{D_m}), where A_m and D_m are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible W(p)^Γ-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of m and p with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [Commun. Contemp. Math. 15 (2013), 1350028, 30 pages; Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible W(p)^{A_m} and W(p)^{D_m}-modules. This paper is a continuation of our previous work on the ADE subalgebras of the triplet vertex algebra W(p).

  10. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  11. The Vertex on a Strip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashani-Poor, A.

    2004-11-03

    We demonstrate that for a broad class of local Calabi-Yau geometries built around a string of IP{sup 1}s--those whose toric diagrams are given by triangulations of a strip--we can derive simple rules, based on the topological vertex, for obtaining expressions for the topological string partition function in which the sums over Young tableaux have been performed. By allowing non-trivial tableaux on the external legs of the corresponding web diagrams, these strips can be used as building blocks for more general geometries. As applications of our result, we study the behavior of topological string amplitudes under flops, as well as checkmore » Nekrasov's conjecture in its most general form.« less

  12. Study for online range monitoring with the interaction vertex imaging method.

    PubMed

    Finck, Ch; Karakaya, Y; Reithinger, V; Rescigno, R; Baudot, J; Constanzo, J; Juliani, D; Krimmer, J; Rinaldi, I; Rousseau, M; Testa, E; Vanstalle, M; Ray, C

    2017-11-21

    Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the [Formula: see text] test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (10 6 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.

  13. Study for online range monitoring with the interaction vertex imaging method

    NASA Astrophysics Data System (ADS)

    Finck, Ch; Karakaya, Y.; Reithinger, V.; Rescigno, R.; Baudot, J.; Constanzo, J.; Juliani, D.; Krimmer, J.; Rinaldi, I.; Rousseau, M.; Testa, E.; Vanstalle, M.; Ray, C.

    2017-12-01

    Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the χ2 test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (106 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.

  14. Lambda: A Mathematica package for operator product expansions in vertex algebras

    NASA Astrophysics Data System (ADS)

    Ekstrand, Joel

    2011-02-01

    We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.

  15. Lattice QCD with mixed action - Borici-Creutz valence quark on staggered sea

    NASA Astrophysics Data System (ADS)

    Basak, Subhasish; Goswami, Jishnu; Chakrabarti, Dipankar

    2018-03-01

    Mixed action lattice QCD with Borici-Creutz valence quarks on staggered sea is investigated. The counter terms in Borici-Creutz action are fixed nonperturbatively to restore the broken symmetries. On symmetry restoration, the usual signatures of partial quenching / unitarity violation like negative scalar correlator are observed. The size of unitarity violation due to different discretization of valence and sea quark is determined by measuring Δmix.

  16. Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.

  17. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate.

  18. Functional Imaging of Sleep Vertex Sharp Transients

    PubMed Central

    Stern, John M.; Caporro, Matteo; Haneef, Zulfi; Yeh, Hsiang J.; Buttinelli, Carla; Lenartowicz, Agatha; Mumford, Jeanette A.; Parvizi, Josef; Poldrack, Russell A.

    2011-01-01

    Objective The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). Methods Simultaneous EEG and fMRI were recorded from 7 individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. Results Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. Conclusion The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. Significance The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep. PMID:21310653

  19. Functional imaging of sleep vertex sharp transients.

    PubMed

    Stern, John M; Caporro, Matteo; Haneef, Zulfi; Yeh, Hsiang J; Buttinelli, Carla; Lenartowicz, Agatha; Mumford, Jeanette A; Parvizi, Josef; Poldrack, Russell A

    2011-07-01

    The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). Simultaneous EEG and fMRI were recorded from seven individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Track reconstruction in the inhomogeneous magnetic field for Vertex Detector of NA61/SHINE experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Merzlaya, Anastasia; NA61/SHINE Collaboration

    2017-01-01

    The heavy-ion programme of the NA61/SHINE experiment at CERN SPS is expanding to allow precise measurements of exotic particles with lifetime few hundred microns. A Vertex Detector for open charm measurements at the SPS is being constructed by the NA61/SHINE Collaboration to meet the challenges of high spatial resolution of secondary vertices and efficiency of track registration. This task is solved by the application of the coordinate sensitive CMOS Monolithic Active Pixel Sensors with extremely low material budget in the new Vertex Detector. A small-acceptance version of the Vertex Detector is being tested this year, later it will be expanded to a large-acceptance version. Simulation studies will be presented. A method of track reconstruction in the inhomogeneous magnetic field for the Vertex Detector was developed and implemented. Numerical calculations show the possibility of high precision measurements in heavy ion collisions of strange and multi strange particles, as well as heavy flavours, like charmed particles.

  1. Rooting issue for a lattice fermion formulation similar to staggered fermions but without taste mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, David H.

    2008-05-15

    To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalarmore » meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.« less

  2. A 32 vertex polyhedron via supramolecular assembly of silanedithiolate silanolate units.

    PubMed

    Spirk, Stefan; Belaj, Ferdinand; Hurkes, Natascha; Pietschnig, Rudolf

    2012-08-28

    A high yield synthesis of the first silanedithiolate silanolate is reported which spontaneously assembles forming an inorganic rugby ball shaped 32 vertex polyhedral cluster stabilized by sterically demanding 2,6-dimesitylphenyl substituents and two LiCl units.

  3. Design and performance of the SLD vertex detector: a 307 Mpixel tracking system

    NASA Astrophysics Data System (ADS)

    Abe, K.; Arodzero, A.; Baltay, C.; Brau, J. E.; Breidenbach, M.; Burrows, P. N.; Chou, A. S.; Crawford, G.; Damerell, C. J. S.; Dervan, P. J.; Dong, D. N.; Emmet, W.; English, R. L.; Etzion, E.; Foss, M.; Frey, R.; Haller, G.; Hasuko, K.; Hertzbach, S. S.; Hoeflich, J.; Huffer, M. E.; Jackson, D. J.; Jaros, J. A.; Kelsey, J.; Lee, I.; Lia, V.; Lintern, A. L.; Liu, M. X.; Manly, S. L.; Masuda, H.; McKemey, A. K.; Moore, T. B.; Nichols, A.; Nagamine, T.; Oishi, N.; Osborne, L. S.; Russell, J. J.; Ross, D.; Serbo, V. V.; Sinev, N. B.; Sinnott, J.; Skarpaas, K. Viii; Smy, M. B.; Snyder, J. A.; Strauss, M. G.; Dong, S.; Suekane, F.; Taylor, F. E.; Trandafir, A. I.; Usher, T.; Verdier, R.; Watts, S. J.; Weiss, E. R.; Yashima, J.; Yuta, H.; Zapalac, G.

    1997-02-01

    This paper describes the design, construction, and initial operation of SLD's upgraded vertex detector which comprises 96 two-dimensional charge-coupled devices (CCDs) with a total of 307 Mpixel. Each pixel functions as an independent particle detecting element, providing space point measurements of charged particle tracks with a typical precision of 4 μm in each co-ordinate. The CCDs are arranged in three concentric cylinders just outside the beam-pipe which surrounds the e +e - collision point of the SLAC Linear Collider (SLC). The detector is a powerful tool for distinguishing displaced vertex tracks, produced by decay in flight of heavy flavour hadrons or tau leptons, from tracks produced at the primary event vertex. The requirements for this detector include a very low mass structure (to minimize multiple scattering) both for mechanical support and to provide signal paths for the CCDs; operation at low temperature with a high degree of mechanical stability; and high speed CCD readout, signal processing, and data sparsification. The lessons learned in achieving these goals should be useful for the construction of large arrays of CCDs or active pixel devices in the future in a number of areas of science and technology.

  4. Power module assemblies with staggered coolant channels

    DOEpatents

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  5. The use of staggered scheme and an absorbing buffer zone for computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.

    1995-01-01

    Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop were studied using second and fourth order staggered spatial discretizations in conjunction with fourth order Runge-Kutta time integration. In addition, an absorbing buffer zone was used at the outflow boundaries. Promising results were obtained and provide a basis for application of these techniques to a wider variety of problems.

  6. Topological vertex formalism with O5-plane

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo; Yagi, Futoshi

    2018-01-01

    We propose a new topological vertex formalism for a type IIB (p ,q ) 5-brane web with an O5-plane. We apply our proposal to five-dimensional N =1 Sp(1) gauge theory with Nf=0 , 1, 8 flavors to compute the topological string partition functions and check the agreement with the known results. Especially for the Nf=8 case, which corresponds to E-string theory on a circle, we obtain a new, yet simple, expression of the partition function with a two Young diagram sum.

  7. The Approximability of Partial Vertex Covers in Trees.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtchyan, Vahan; Parekh, Ojas D.; Segev, Danny

    Motivated by applications in risk management of computational systems, we focus our attention on a special case of the partial vertex cover problem, where the underlying graph is assumed to be a tree. Here, we consider four possible versions of this setting, depending on whether vertices and edges are weighted or not. Two of these versions, where edges are assumed to be unweighted, are known to be polynomial-time solvable (Gandhi, Khuller, and Srinivasan, 2004). However, the computational complexity of this problem with weighted edges, and possibly with weighted vertices, has not been determined yet. The main contribution of this papermore » is to resolve these questions, by fully characterizing which variants of partial vertex cover remain intractable in trees, and which can be efficiently solved. In particular, we propose a pseudo-polynomial DP-based algorithm for the most general case of having weights on both edges and vertices, which is proven to be NPhard. This algorithm provides a polynomial-time solution method when weights are limited to edges, and combined with additional scaling ideas, leads to an FPTAS for the general case. A secondary contribution of this work is to propose a novel way of using centroid decompositions in trees, which could be useful in other settings as well.« less

  8. On the total irregularity strength of caterpillar with each internal vertex has degree three

    NASA Astrophysics Data System (ADS)

    Indriati, Diari; Rosyida, Isnaini; Widodo

    2018-04-01

    Let G be a simple, connected and undirected graph with vertex set V and edge set E. A total k-labeling f:V \\cup E\\to \\{1,2,\\ldots,k\\} is defined as totally irregular total k-labeling if the weights of any two different both vertices and edges are distinct. The weight of vertex x is defined as wt(x)=f(x)+{\\sum }xy\\in Ef(xy), while the weight of edge xy is wt(xy)=f(x)+f(xy)+f(y). A minimum k for which G has totally irregular total k-labeling is mentioned as total irregularity strength of G and denoted by ts(G). This paper contains investigation of totally irregular total k-labeling and determination of their total irregularity strengths for caterpillar graphs with each internal vertex between two stars has degree three. The results are ts({S}n,3,n)=\\lceil \\frac{2n}{2}\\rceil, ts({S}n,3,3,n)=\\lceil \\frac{2n+1}{2}\\rceil and ts({S}n,3,3,3,n)=\\lceil \\frac{2n+2}{2}\\rceil for n > 4:

  9. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junji

    2018-03-01

    As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.

  10. The role of geometry in 4-vertex origami mechanics

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott; Dieleman, Peter; van Hecke, Martin

    Origami offers an interesting design platform metamaterials because it strongly couples mechanics with geometry. Even so, most research carried out so far has been limited to one or two particular patterns. I will discuss the full geometrical space of the most common origami building block, the 4-vertex, and show how exotic geometries can have dramatic effects on the mechanics.

  11. Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction

    NASA Astrophysics Data System (ADS)

    Wang, Yibo; Liu, Yan; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-06-01

    We investigate GaAsBi/GaAsN system for the design of type-II staggered hetero tunneling field-effect transistor (hetero-TFET). Strain-symmetrized GaAsBi/GaAsN with effective lattice match to GaAs exhibits a type-II band lineup, and the effective bandgap EG,eff at interface is significantly reduced with the incorporation of Bi and N elements. The band-to-band tunneling (BTBT) rate and drive current of GaAsBi/GaAsN hetero-TFETs are boosted due to the utilizing of the type-II staggered tunneling junction with the reduced EG,eff. Numerical simulation shows that the drive current and subthreshold swing (SS) characteristics of GaAsBi/GaAsN hetero-TFETs are remarkably improved by increasing Bi and N compositions. The dilute content GaAs0.85Bi0.15/GaAs0.92N0.08 staggered hetero-nTFET achieves 7.8 and 550 times higher ION compared to InAs and In0.53Ga0.47As homo-TFETs, respectively, at the supply voltage of 0.3 V. GaAsBi/GaAsN heterostructure is a potential candidate for high performance TFET.

  12. Regge vertex for quark production in the central rapidity region in the next-to-leading order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, M. G., E-mail: M.G.Kozlov@inp.nsk.su; Reznichenko, A. V., E-mail: A.V.Reznichenko@inp.nsk.su

    2016-03-15

    The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.

  13. Human Performance on Hard Non-Euclidean Graph Problems: Vertex Cover

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike

    2012-01-01

    Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…

  14. Two-Dimensional Supersonic Nozzle Thrust Vectoring Using Staggered Ramps

    NASA Astrophysics Data System (ADS)

    Montes, Carlos Fernando

    A novel mechanism for vectoring the thrust of a supersonic, air-breathing engine was analyzed numerically using ANSYS Fluent. The mechanism uses two asymmetrically staggered ramps; one placed at the throat, the other positioned at the exit lip of the nozzle. The nozzle was designed using published flow data, isentropic relationships, and piecewise quartic splines. The design was verified numerically and was in fair agreement with the analytical data. Using the steady-state pressure-based solver, along with the realizable kappa - epsilon turbulence model, a total of eighteen simulations were conducted: three ramp lengths at three angles, using two sets of inlet boundary conditions (non-afterburning and afterburning). The vectoring simulations showed that the afterburning flow yields a lower flow deflection distribution, shown by the calculated average deflection angle and area-weighted integrals of the distributions. The data implies that an aircraft can achieve an average thrust vectoring angle of approximately 30° in a given direction with the longest ramp length and largest ramp angle configuration. With increasing ramp angle, the static pressure across the nozzle inlet increased, causing concern for potential negative effects on the engine's turbine. The mechanism, for which a provisional patent application has been filed, will require further work to investigate the maximum possible thrust vectoring angle, including experiments.

  15. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  16. Are ovine fenugreek (Trigonella foenum-graecum) staggers and kangaroo gait of lactating ewes two clinically and pathologically similar nervous disorders?

    PubMed

    Bourke, Ca

    2009-03-01

    Fenugreek staggers has occurred in sheep in Victoria, as both an acute and a chronic syndrome. Signs included quadraparesis, a high stepping fore limb gait and a 'bunny-hopping' hind limb gait. Changes consistent with acute oedema were found in the brain and spinal cord of acute cases, and Wallerian degeneration in the peripheral nerves of chronic cases. Kangaroo gait occurred in ewes in New South Wales, and the clinical signs and microscopic changes were remarkably similar to those of fenugreek staggers. Although the diet associated with each is different the causal agent may be the same.

  17. 49 CFR Figure 2 to Subpart B of... - Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-§§ 238...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of a Multi-Level Car Complying with Window Location and Staggering Requirements-§§ 238.113 and 238.114 2 Figure 2 to Subpart B of Part 238... Window Location and Staggering Requirements—§§ 238.113 and 238.114 ER01FE08.005 [73 FR 6403, Feb. 1, 2008] ...

  18. Analysis of social optimum for staggered shifts in a single-entry traffic corridor with no late arrivals

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-03-01

    This paper investigates the traffic flow dynamics under the social optimum (SO) principle in a single-entry traffic corridor with staggered shifts from the analytical and numerical perspectives. The LWR (Lighthill-Whitham and Richards) model and the Greenshield's velocity-density function are utilized to describe the dynamic properties of traffic flow. The closed-form SO solution is analytically derived and some numerical examples are used to further testify the analytical solution. The optimum proportion of the numbers of commuters with different desired arrival times is further discussed, where the analytical and numerical results both indicate that the cumulative outflow curve under the SO principle is piecewise smooth.

  19. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation

  20. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS].

    PubMed

    Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław

    2009-01-01

    A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.

  1. Global Symmetries of Naive and Staggered Fermions in Arbitrary Dimensions

    NASA Astrophysics Data System (ADS)

    Kieburg, Mario; Würfel, Tim R.

    2018-03-01

    It is well-known that staggered fermions do not necessarily satisfy the same global symmetries as the continuum theory. We analyze the mechanism behind this phenomenon for arbitrary dimension and gauge group representation. For this purpose we vary the number of lattice sites between even and odd parity in each single direction. Since the global symmetries are manifest in the lowest eigenvalues of the Dirac operator, the spectral statistics and also the symmetry breaking pattern will be affected. We analyze these effects and compare our predictions with Monte-Carlo simulations of naive Dirac operators in the strong coupling limit. This proceeding is a summary of our work [1].

  2. An optimal implicit staggered-grid finite-difference scheme based on the modified Taylor-series expansion with minimax approximation method for elastic modeling

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Yan, Hongyong; Liu, Hong

    2017-03-01

    Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.

  3. Thermal mock-up studies of the Belle II vertex detector

    NASA Astrophysics Data System (ADS)

    Ye, H.; Niebuhr, C.; Stever, R.; Gadow, K.; Camien, C.

    2018-07-01

    The ongoing upgrade of the asymmetric electron-positron collider SuperKEKB at the KEK laboratory, Japan aims at a 40-fold increase of the peak luminosity to 8 × 1035 cm-2s-1. At the same time the complex Belle II detector is being significantly upgraded to be able to cope with the higher background level and trigger rates and to improve overall performance. The goal of the experiment is to explore physics beyond the standard model with a target integrated luminosity of 50 ab-1 in the next decade. The new vertex detector (VXD), comprising two layers of DEPFET pixel detectors (PXD) surrounded by 4 layers of double sided silicon strip detectors (SVD), is indispensable for vertex determination as well as for reconstruction of low momentum tracks that do not reach the central drift chamber (CDC). Within the confined VXD volume the front-end electronics of the two detectors will dissipate about 1 kW of heat. The VXD cooling system has been designed to remove this heat with the constraint to minimize extra dead material in the physics acceptance region. Taking into account additional heat intake from the environment the cooling system must have a cooling capacity of 2-3 kW. To achieve this goal evaporative two-phase CO2 cooling in combination with forced N2 flow is used in the VXD cooling system. In order to verify and optimize the cooling concept and to demonstrate that acceptable operation conditions for the VXD system as well as the surrounding CDC can be obtained, a full size VXD thermal mock-up has been built at DESY. Various thermal and mechanical tests carried out with this mock-up are reported.

  4. Staggered scheduling of sensor estimation and fusion for tracking over long-haul links

    DOE PAGES

    Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin

    2016-08-01

    Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimalmore » tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.« less

  5. The Nucleon Axial Form Factor and Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron Scott

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very samemore » nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum

  6. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows

    NASA Astrophysics Data System (ADS)

    Stelling, G. S.; Duinmeijer, S. P. A.

    2003-12-01

    This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.

  7. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    PubMed Central

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2014-01-01

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracer A which is a pure positron emitter (such as 18F or 11C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as 38K or 60Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and staggered injections improves

  8. EM reconstruction of dual isotope PET using staggered injections and prompt gamma positron emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreyev, Andriy, E-mail: andriy.andreyev-1@philips.com; Sitek, Arkadiusz; Celler, Anna

    2014-02-15

    Purpose: The aim of dual isotope positron emission tomography (DIPET) is to create two separate images of two coinjected PET radiotracers. DIPET shortens the duration of the study, reduces patient discomfort, and produces perfectly coregistered images compared to the case when two radiotracers would be imaged independently (sequential PET studies). Reconstruction of data from such simultaneous acquisition of two PET radiotracers is difficult because positron decay of any isotope creates only 511 keV photons; therefore, the isotopes cannot be differentiated based on the detected energy. Methods: Recently, the authors have proposed a DIPET technique that uses a combination of radiotracermore » A which is a pure positron emitter (such as{sup 18}F or {sup 11}C) and radiotracer B in which positron decay is accompanied by the emission of a high-energy (HE) prompt gamma (such as {sup 38}K or {sup 60}Cu). Events that are detected as triple coincidences of HE gammas with the corresponding two 511 keV photons allow the authors to identify the lines-of-response (LORs) of isotope B. These LORs are used to separate the two intertwined distributions, using a dedicated image reconstruction algorithm. In this work the authors propose a new version of the DIPET EM-based reconstruction algorithm that allows the authors to include an additional, independent estimate of radiotracer A distribution which may be obtained if radioisotopes are administered using a staggered injections method. In this work the method is tested on simple simulations of static PET acquisitions. Results: The authors’ experiments performed using Monte-Carlo simulations with static acquisitions demonstrate that the combined method provides better results (crosstalk errors decrease by up to 50%) than the positron-gamma DIPET method or staggered injections alone. Conclusions: The authors demonstrate that the authors’ new EM algorithm which combines information from triple coincidences with prompt gammas and

  9. Modularity of logarithmic parafermion vertex algebras

    NASA Astrophysics Data System (ADS)

    Auger, Jean; Creutzig, Thomas; Ridout, David

    2018-05-01

    The parafermionic cosets Ck = {Com} ( H , Lk(sl2) ) are studied for negative admissible levels k, as are certain infinite-order simple current extensions Bk of Ck . Under the assumption that the tensor theory considerations of Huang, Lepowsky and Zhang apply to Ck , irreducible Ck - and Bk -modules are obtained from those of Lk(sl2) . Assuming the validity of a certain Verlinde-type formula likewise gives the Grothendieck fusion rules of these irreducible modules. Notably, there are only finitely many irreducible Bk -modules. The irreducible Ck - and Bk -characters are computed and the latter are shown, when supplemented by pseudotraces, to carry a finite-dimensional representation of the modular group. The natural conjecture then is that the Bk are C_2 -cofinite vertex operator algebras.

  10. Possible influence of Asian polar vertex contraction on rainfall deficits in China in autumn

    NASA Astrophysics Data System (ADS)

    Zhu, Xian; Wei, Zhigang; Dong, Wenjie; Li, Zhenchao; Zheng, Zhiyuan; Chen, Chen; Chen, Guangyu; Liu, Yajing

    2018-06-01

    The mechanisms governing variations in autumn precipitation are complicated and influenced by a number factors. This paper analyses the characteristics of autumn precipitation in China and investigates the influence of Asian polar vertex contraction on rainfall deficits in China and relevant mechanisms. Autumn precipitation decreased significantly from 1961 to 2012 in mid- and southern China, and the area of the Asia polar vortex (AAV) has decreased significantly since 1988. Asian polar vertex contraction is found to be an important factor in these autumn rainfall deficits in China through the following mechanism. Asian polar vertex contraction causes anomalously high geopotential heights in East Asia (from 25°N to 55°N) and low heights north of 65°N in the upper and lower troposphere, weakening meridional gradients in geopotential height. In the upper troposphere, the westerly and northerly winds are strengthened over high latitudes and westerly winds and the subtropical westerly jet are weakened over the East Asian mid-latitudes. In the lower troposphere, westerly winds are strengthened over high latitudes, westerly winds are weakened in East Asia and along the southern periphery of the Tibetan Plateau, and northerly winds in mid- and southern China are clearly strengthened. Hence, autumn rainfall decreases in mid- and southern China.

  11. Axially staggered seed-blanket reactor-fuel-module construction. [LWBR

    DOEpatents

    Cowell, G.K.; DiGuiseppe, C.P.

    1982-10-28

    A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.

  12. Low-mass materials and vertex detector systems

    DOE PAGES

    Cooper, William E.

    2014-01-01

    Physics requirements set the material budget and the precision and stability necessary in low-mass vertex detector systems. Operational considerations, along with physics requirements, set the operating environment to be provided and determine the heat to be removed. Representative materials for fulfilling those requirements are described and properties of the materials are tabulated. A figure of merit is proposed to aid in material selection. Multi-layer structures are examined as a method to allow material to be used effectively, thereby reducing material contributions. Lastly, comments are made on future directions to be considered in using present materials effectively and in developing newmore » materials.« less

  13. Is it possible to detect malposition of the vertex at an early stage in labour? A case-control study.

    PubMed

    Mathisen, Marit; Olsen, Rudi Valde; Andreasen, Stine; Nielsen, Erik Waage

    2014-12-01

    The aim of this study was to investigate if there are clinical signs which allow detection of malposition of the vertex on admission to the delivery unit, or when crossing the action line on the partogram. Case-control study from 2007 to 2010 conducted on the delivery unit of Nordland Hospital, Bodø. Labours with malposition of the vertex (n = 171) were compared with a group with normal vertex presentation (n = 165). The positive predictive value was estimated for each sign using Bayes' rule. Magnitude of positive predictive value for each clinical sign. The positive predictive values for malposition were 9% if the foetus were in a right position, 11% if the labour was induced, 5% if the foetus was above the ischial spines, 4% if the reason for admission was contractions and 6% if cervix was <3 cm. The ability of clinical assessment to predict malposition, either on admission or when crossing the action line on the partogram, was poor. Diagnosing malposition of the vertex requires other methods with a higher predictive value. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  15. Axially staggered seed-blanket reactor fuel module construction

    DOEpatents

    Cowell, Gary K.; DiGuiseppe, Carl P.

    1985-01-01

    A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.

  16. Thermodynamics of spin ice in staggered and direct (along the [111] axis) fields in the cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinenko, V. I., E-mail: zvi@iph.krasn.ru; Pavlovskii, M. S.

    We have analyzed the low-temperature thermodynamic properties of spin ice in the staggered and direct (acting along the [111] axis) fields for rare-earth oxides with the chalcolamprite structure and general formula Re{sub 2}{sup 3+}Me{sub 2}{sup 4+}O{sub 7}{sup 2-}. Calculations have been performed in the cluster approximation. The results have been compared with experimental temperature dependences of heat capacity and entropy for Dy{sub 2}Ti{sub 2}O{sub 7} compound for different values of the external field in the [111] direction. The experimental data and calculated results have also been compared for the Pr{sub 2}Ru{sub 2}O{sub 7} compound with the antiferromagnetic ordering of magneticmore » moments of ruthenium ions, which gives rise to the staggered field acting on the system of rare-earth ions. The calculated temperature dependences of heat capacity and entropy are in good agreement with experimental data.« less

  17. Bursts of Vertex Activation and Epidemics in Evolving Networks

    PubMed Central

    Rocha, Luis E. C.; Blondel, Vincent D.

    2013-01-01

    The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate , the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability. PMID:23555211

  18. A simplified design of the staggered herringbone micromixer for practical applications

    PubMed Central

    Du, Yan; Zhang, Zhiyi; Yim, ChaeHo; Lin, Min; Cao, Xudong

    2010-01-01

    We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length Lm as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since Lm is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications. PMID:20697584

  19. A simplified design of the staggered herringbone micromixer for practical applications.

    PubMed

    Du, Yan; Zhang, Zhiyi; Yim, Chaeho; Lin, Min; Cao, Xudong

    2010-05-07

    We demonstrated a simple method for the device design of a staggered herringbone micromixer (SHM) using numerical simulation. By correlating the simulated concentrations with channel length, we obtained a series of concentration versus channel length profiles, and used mixing completion length L(m) as the only parameter to evaluate the performance of device structure on mixing. Fluorescence quenching experiments were subsequently conducted to verify the optimized SHM structure for a specific application. Good agreement was found between the optimization and the experimental data. Since L(m) is straightforward, easily defined and calculated parameter for characterization of mixing performance, this method for designing micromixers is simple and effective for practical applications.

  20. The breech presentation and the vertex presentation following an external version represent risk factors for neonatal hip instability.

    PubMed

    Andersson, J E; Odén, A

    2001-08-01

    The aim of this study was to evaluate the frequency and type of hip-joint instability and the frequency of hip dislocation requiring treatment in neonates who had been lying in the breech presentation and were delivered vaginally after an external version or by caesarean section, and to compare them with neonates who were naturally in the vertex presentation. Breech presentations without ongoing labour were subjected to an attempted external version and, in cases where this proved unsuccessful or where labour had started, to deliver by caesarean section. None of the breech presentations was vaginally delivered. The anterior-dynamic ultrasound method was used to assess the hip-joint status of the neonates. Out of 6,571 foetuses, 257 were in breech presentation after 36 wk of pregnancy. Sixty-two were vaginally delivered following an external version to vertex presentation and 195 were delivered by caesarean section, 75 of these following unsuccessful attempts to perform a version. Treatment for congenital hip-joint dislocation was performed on 0.2%. Out of the breech presentations, 1.0% of those delivered by caesarean section were treated, while in those with vaginal delivery following an external version the treatment frequency was 3.2%. No case of late diagnosed hip dislocation was recorded. Significant differences in frequency of hip-joint instability and treatment were found between (i) neonates delivered in breech presentation and those delivered with vertex presentation, (ii) infants delivered in vertex presentation, naturally or after successful version, and (iii) those delivered by caesarean section with or without attempted external version and those delivered with vortex presentation. Breech presentation predisposes to increased hip instability. The instability is present prior to delivery and is certainly not a primary result of delivery forces. Both breech and vertex presentations following an external or spontaneous version should be considered as risk

  1. Analysis and Optimization of a Novel 2-D Magnet Array with Gaps and Staggers for a Moving-Magnet Planar Motor

    PubMed Central

    Chen, Xuedong; Zeng, Lizhan

    2018-01-01

    This paper presents a novel 2-D magnet array with gaps and staggers, which is especially suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers on high-order harmonics and flux density were analyzed, and the optimized design is presented. Compared with the other improved structures based on traditional Halbach magnet arrays, the proposed design has the lowest high-order harmonics percentage, and the characteristics of flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and easy to manufacture. The proposed magnet array was built, and the calculation results have been verified with experiment. PMID:29300323

  2. Ocular vestibular evoked myogenic potentials to vertex low frequency vibration as a diagnostic test for superior canal dehiscence.

    PubMed

    Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister

    2016-04-01

    To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Tris(2-aminoethyl)amine based tripodal urea receptors for oxalate: encapsulation of staggered vs. planar conformers.

    PubMed

    Bose, Purnandhu; Dutta, Ranjan; Ghosh, Pradyut

    2013-07-28

    Simple tris(2-aminoethyl)amine (TREN) based tripodal urea receptors are investigated for the encapsulation of divalent oxalate (C2O4(2-)) in a semi-aqueous medium. A single crystal X-ray diffraction study shows that the receptor with 3-cyanophenyl functionality captures a staggered conformer whereas the 3-fluorophenyl functionalized receptor encapsulates a less stable planar conformer.

  4. Ghost-gluon vertex in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  5. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    DOE PAGES

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; ...

    2015-10-26

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments.more » The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.« less

  6. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  7. Changes in concentrations of lysergol in urine and prolactin in plasma, rectal temperature and respiration rate in sheep selected for resistance or susceptibility to ryegrass staggers and fed ergovaline.

    PubMed

    Gooneratne, S R; Scannell, M; Wellby, M; Fletcher, L

    2011-09-01

    To determine the effects of feeding ryegrass seed containing ergovaline to sheep selected for resistance or susceptibility to ryegrass staggers on concentration of lysergol (a metabolite of ergovaline) in urine, prolactin in plasma, rectal temperature and respiration rate. Two experiments were carried out using 12 Romney crossbred ewe lambs aged 9 months, comprising animals resistant (n=4), susceptible (n=4) or outcross (n=4) to ryegrass staggers. In Experiment 1, sheep were given either a single (Part A) or six (Part B) feed (s) of endophyte-infected seed containing ergovaline at 30 mg/kg dry matter (DM), at 42 μg ergovaline/kg bodyweight (BW), to simulate acute and chronic exposure to ergovaline, respectively. The concentration and excretion of lysergol in urine and concentration of prolactin in plasma were measured over 3 and 12 days, for Parts A and B respectively. In Experiment 2, after a recovery period of 7 days, the same sheep were fed with ergovaline at 67 μg/kg of BW for 7 days. Soon after the seventh feed the sheep were moved to a hothouse at 36.5°C and 60% humidity, and 3 h later their rectal temperatures and respiration rates were measured. The concentration of lysergol and excretion in urine increased to a peak between 6 and 9 h after exposure to ergovaline whereas the concentration of prolactin in plasma was markedly reduced. Differences in concentration and rate of excretion of lysergol in urine between animals resistant, outcross and susceptible to ryegrass staggers were not significant (p>0.1). The animals resistant to ryegrass staggers had a lower rectal temperature (p<0.05) and a faster respiration rate than the outcross and susceptible groups when exposed to high ambient temperature and high humidity. This study showed that excretion of lysergol in urine increased with each exposure of sheep to ergovaline. Animals genetically resistant to ryegrass staggers exhibited a lower rectal temperature and a faster respiration rate than those

  8. Toward Eco-Friendly and Highly Efficient Solar Water Splitting Using In2S3/Anatase/Rutile TiO2 Dual-Staggered-Heterojunction Nanodendrite Array Photoanode.

    PubMed

    Yang, Jih-Sheng; Wu, Jih-Jen

    2018-01-31

    The TiO 2 -based heterojunction nanodendrite (ND) array composed of anatase nanoparticles (ANPs) on the surface of the rutile ND (RND) array is selected as the model photoanode to demonstrate the strategies toward eco-friendly and efficient solar water splitting using neutral electrolyte and seawater. Compared with the performances in alkaline electrolyte, a non-negligible potential drop across the electrolyte as well as impeded charge injection and charge separation is monitored in the ANP/RND array photoanode with neutral electrolyte, which are, respectively, ascribed to the series resistance of neutral electrolyte, the fundamentally pH-dependent water oxidation mechanism on TiO 2 surface, as well as the less band bending at the interface of TiO 2 and neutral electrolyte. Accordingly, a TiO 2 -based dual-staggered heterojunction ND array photoanode is further designed in this work to overcome the issue of less band bending with the neutral electrolyte. The improvement of charge separation efficiency is realized by the deposition of a transparent In 2 S 3 layer on the ANP/RND array photoanode for constructing additional staggered heterojunction. Under illumination of AM 1.5G (100 mW cm -2 ), the improved photocurrent densities acquired both in neutral electrolyte and seawater at 1.23 V vs reversible hydrogen electrode (RHE), which approach the theoretical value for rutile TiO 2 , are demonstrated in the dual-staggered-heterojunction ND array photoanode. Faradaic efficiencies of ∼95 and ∼32% for solar water oxidation in neutral electrolyte and solar seawater oxidation for 2 h are acquired at 1.23 V vs RHE, respectively.

  9. Vertex-Group Effects in Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymers (Preprint)

    DTIC Science & Technology

    2008-11-17

    Storrs, CT 06269 2Current Address: Syracuse Biomaterials Institute and Biomedical and Chemical Engineering Department, Syracuse University...dimension in the range 1-100 nm – in order to realize materials that combine the processibility and property-tuning of polymers with outstanding stiffness...polymers with a variety of vertex-groups: isobutyl (iBu), cyclopentyl (Cp) and cyclohexyl (Cy). EXPERIMENTAL SECTION Materials . In order to

  10. CCD-based vertex detector for ILC

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.

    2006-12-01

    Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.

  11. Investigation of analog/RF performance of staggered heterojunctions based nanowire tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avik; Sarkar, Angsuman

    2015-04-01

    In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.

  12. Overview of the Micro Vertex Detector for the P bar ANDA experiment

    NASA Astrophysics Data System (ADS)

    Calvo, Daniela; P¯ANDA MVD Group

    2017-02-01

    The P bar ANDA experiment is devoted to study interactions between cooled antiproton beams and a fixed target (the interaction rate is of about 107 events/s), hydrogen or heavier nuclei. The innermost tracker of P bar ANDA is the Micro Vertex Detector (MVD), specially designed to ensure the secondary vertex resolution for the discrimination of short-lived charmonium states. Hybrid epitaxial silicon pixels and double-sided silicon microstrips will equip four barrels, arranged around the interaction point, and six forward disks. The experiment features a triggerless architecture with a master clock of 160 MHz, therefore the MVD has to run with a continuous data transmission where the hits need precise timestamps. The energy loss of the particles in the sensor will be measured as well. The challenging request of a triggerless readout suggested to develop custom readout chips for both pixel (ToPix) and microstrip (PASTA) devices. To validate components and the triggerless readout architecture, prototypes have been built and tested. After an overview of the MVD, the technological aspects and performances of some prototypes will be reported.

  13. Spreadsheet Calculations for Jets in Crossflow: Opposed Rows of Inline and Staggered Holes and Single and Opposed Rows with Alternating Hole Sizes

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2010-01-01

    The primary purpose of this jet-in-crossflow study was to calculate expected results for two configurations for which limited or no experimental results have been published: (1) cases of opposed rows of closely-spaced jets from inline and staggered round holes and (2) rows of jets from alternating large and small round holes. Simulations of these configurations were performed using an Excel (Microsoft Corporation) spreadsheet implementation of a NASA-developed empirical model which had been shown in previous publications to give excellent representations of mean experimental scalar results suggesting that the NASA empirical model for the scalar field could confidently be used to investigate these configurations. The supplemental Excel spreadsheet is posted with the current report on the NASA Glenn Technical Reports Server (http://gltrs.grc.nasa.gov) and can be accessed from the Supplementary Notes section as TM-2010-216100-SUPPL1.xls. Calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration. The jets from the larger holes dominate the mixture fraction for configurations with a row of large holes opposite a row of smaller ones although the jet penetration was about the same. For single and opposed rows with mixed hole sizes, jets from the larger holes penetrated farther. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance. However, at a given downstream distance, the variation between cases was small.

  14. Effective lepton flavor violating H ℓiℓj vertex from right-handed neutrinos within the mass insertion approximation

    NASA Astrophysics Data System (ADS)

    Arganda, E.; Herrero, M. J.; Marcano, X.; Morales, R.; Szynkman, A.

    2017-05-01

    In this work we present a new computation of the lepton flavor violating Higgs boson decays that are generated radiatively to one-loop from heavy right-handed neutrinos. We work within the context of the inverse seesaw model with three νR and three extra singlets X , but the results could be generalized to other low scale seesaw models. The novelty of our computation is that it uses a completely different method by means of the mass insertion approximation which works with the electroweak interaction states instead of the usual 9 physical neutrino mass eigenstates of the inverse seesaw model. This method also allows us to write the analytical results explicitly in terms of the most relevant model parameters, that are the neutrino Yukawa coupling matrix Yν and the right-handed mass matrix MR, which is very convenient for a phenomenological analysis. This Yν matrix, being generically nondiagonal in flavor space, is the only one responsible for the induced charged lepton flavor violating processes of our interest. We perform the calculation of the decay amplitude up to order O (Yν2+Yν4). We also study numerically the goodness of the mass insertion approximation results. In the last part we present the computation of the relevant one-loop effective vertex H ℓiℓj for the lepton flavor violating Higgs decay which is derived from a large MR mass expansion of the form factors. We believe that our simple formula found for this effective vertex can be of interest for other researchers who wish to estimate the H →ℓiℓ¯j rates in a fast way in terms of their own preferred input values for the relevant model parameters Yν and MR.

  15. Extending the Riemann-Solver-Free High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) to Solve Compressible Magnetohydrodynamics Equations

    DTIC Science & Technology

    2016-06-08

    forces. Plasmas in hypersonic and astrophysical flows are one of the most typical examples of such conductive fluids. Though MHD models are a low...remain powerful tools in helping researchers to understand the complex physical processes in the geospace environment. For example, the ideal MHD...vertex level within each physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time discontinuous Galerkin

  16. Selective attention and the auditory vertex potential. 1: Effects of stimulus delivery rate

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    Enhancement of the auditory vertex potentials with selective attention to dichotically presented tone pips was found to be critically sensitive to the range of inter-stimulus intervals in use. Only at the shortest intervals was a clear-cut enhancement of the latency component to stimuli observed for the attended ear.

  17. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C

    DOE PAGES

    Hu, J.; Wu, L.; Kuttiyiel, K.; ...

    2016-06-30

    We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those ofmore » commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.« less

  18. Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao

    2017-05-01

    In this paper, we investigate the effects of staggered shifts on the user equilibrium (UE) state in a single-entry traffic corridor with no late arrivals from the analytical and numerical perspective. The LWR (Lighthill-Whitham-Richards) model and the Greenshields' velocity-density function are used to describe the dynamic properties of traffic flow. Propositions for the properties of flow patterns in UE, and the quasi-analytic solutions for three possible situations in UE are deduced. Numerical tests are carried out to testify the analytical results, where the three-dimensional evolution diagram of traffic flow illustrates that shock and rarefaction wave exist in UE and the space-time diagram indicates that UE solutions satisfy the propagation properties of traffic flow. In addition, the cost curves show that the UE solutions satisfy the UE trip-timing condition.

  19. A Single-Centre, Randomized, Double-Blind, Placebo-Controlled Clinical Trial to Investigate the Efficacy and Safety of Minoxidil Topical Foam in Frontotemporal and Vertex Androgenetic Alopecia in Men.

    PubMed

    Hillmann, Kathrin; Garcia Bartels, Natalie; Kottner, Jan; Stroux, Andrea; Canfield, Douglas; Blume-Peytavi, Ulrike

    2015-01-01

    5% minoxidil formulations twice daily are effective in treating vertex male androgenetic alopecia (AGA); however, efficacy and safety data in frontotemporal regions are lacking. To assess the efficacy of 5% minoxidil topical foam (5% MTF) in the frontotemporal region of male AGA patients after 24 weeks of treatment compared to placebo treatment and to the vertex region. Seventy males with moderate AGA applied 5% MTF or placebo foam (plaTF) twice daily for 24 weeks in frontotemporal and vertex regions. Target area non-vellus hair count (TAHC) was the primary end point. Frontotemporal and vertex TAHC and target area cumulative non-vellus hair width (TAHW) showed similar responses to 5% MTF with significant increases up to week 16 compared to baseline (p < 0.001). After 24 weeks of treatment, frontotemporal TAHW increased significantly in the 5% MTF group compared to the plaTF group (p = 0.017), while TAHC showed a similar non-significant increase from baseline in both regions. At 24 weeks, 5% MTF users rated a significant improvement in scalp coverage for the frontotemporal (p = 0.016) and vertex areas (p = 0.027). 5% MTF twice a day promotes hair density and width in both frontotemporal and vertex regions in men with moderate stages of AGA. © 2015 S. Karger AG, Basel.

  20. Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics

    NASA Astrophysics Data System (ADS)

    Velechovský, J.; Kuchařík, M.; Liska, R.; Shashkov, M.; Váchal, P.

    2013-12-01

    We present a new flux-corrected approach for remapping of velocity in the framework of staggered arbitrary Lagrangian-Eulerian methods. The main focus of the paper is the definition and preservation of coordinate invariant local bounds for velocity vector and development of momentum remapping method such that the radial symmetry of the radially symmetric flows is preserved when remapping from one equiangular polar mesh to another. The properties of this new method are demonstrated on a set of selected numerical cyclic remapping tests and a full hydrodynamic example.

  1. Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucaud, Ph.; De Soto, F.; Rodriguez-Quintero, J.

    This article reports on the detailed study of the three-gluon vertex in four-dimensional $SU(3)$ Yang-Mills theory employing lattice simulations with large physical volumes and high statistics. A meticulous scrutiny of the so-called symmetric and asymmetric kinematical configurations is performed and it is shown that the associated form-factor changes sign at a given range of momenta. Here, the lattice results are compared to the model independent predictions of Schwinger-Dyson equations and a very good agreement among the two is found.

  2. Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes

    DOE PAGES

    Boucaud, Ph.; De Soto, F.; Rodriguez-Quintero, J.; ...

    2017-06-14

    This article reports on the detailed study of the three-gluon vertex in four-dimensional $SU(3)$ Yang-Mills theory employing lattice simulations with large physical volumes and high statistics. A meticulous scrutiny of the so-called symmetric and asymmetric kinematical configurations is performed and it is shown that the associated form-factor changes sign at a given range of momenta. Here, the lattice results are compared to the model independent predictions of Schwinger-Dyson equations and a very good agreement among the two is found.

  3. Risk-based decision making for staggered bioterrorist attacks : resource allocation and risk reduction in "reload" scenarios.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaster, Michelle Nicole; Gay, David M.; Ehlen, Mark Andrew

    2009-10-01

    Staggered bioterrorist attacks with aerosolized pathogens on population centers present a formidable challenge to resource allocation and response planning. The response and planning will commence immediately after the detection of the first attack and with no or little information of the second attack. In this report, we outline a method by which resource allocation may be performed. It involves probabilistic reconstruction of the bioterrorist attack from partial observations of the outbreak, followed by an optimization-under-uncertainty approach to perform resource allocations. We consider both single-site and time-staggered multi-site attacks (i.e., a reload scenario) under conditions when resources (personnel and equipment whichmore » are difficult to gather and transport) are insufficient. Both communicable (plague) and non-communicable diseases (anthrax) are addressed, and we also consider cases when the data, the time-series of people reporting with symptoms, are confounded with a reporting delay. We demonstrate how our approach develops allocations profiles that have the potential to reduce the probability of an extremely adverse outcome in exchange for a more certain, but less adverse outcome. We explore the effect of placing limits on daily allocations. Further, since our method is data-driven, the resource allocation progressively improves as more data becomes available.« less

  4. Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers.

    PubMed

    Femmer, Tim; Eggersdorfer, Max L; Kuehne, Alexander J C; Wessling, Matthias

    2015-08-07

    We describe a novel membrane based gas-liquid-contacting device with increased mass transport and reduced pressure loss by combining a membrane with a staggered herringbone static mixer. Herringbone structures are imposed on the microfluidic channel geometry via soft lithography, acting as mixers which introduce secondary flows at the membrane interface. Such flows include Dean vortices and Taylor flows generating effective mixing while improving mass transport and preventing concentration polarization in microfluidic channels. Furthermore, our static herringbone mixer membranes effectively reduce pressure losses leading to devices with enhanced transfer properties for microfluidic gas-liquid contact. We investigate the red blood cell distribution to tailor our devices towards miniaturised extracorporeal membrane oxygenation and improved comfort of patients with lung insufficiencies.

  5. The NLO jet vertex in the small-cone approximation for kt and cone algorithms

    NASA Astrophysics Data System (ADS)

    Colferai, D.; Niccoli, A.

    2015-04-01

    We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet "radius" R = 0 .5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.

  6. Coupled dynamics in gluon mass generation and the impact of the three-gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Papavassiliou, Joannis

    2018-03-01

    We present a detailed study of the subtle interplay transpiring at the level of two integral equations that are instrumental for the dynamical generation of a gluon mass in pure Yang-Mills theories. The main novelty is the joint treatment of the Schwinger-Dyson equation governing the infrared behavior of the gluon propagator and of the integral equation that controls the formation of massless bound-state excitations, whose inclusion is instrumental for obtaining massive solutions from the former equation. The self-consistency of the entire approach imposes the requirement of using a single value for the gauge coupling entering in the two key equations; its fulfilment depends crucially on the details of the three-gluon vertex, which contributes to both of them, but with different weight. In particular, the characteristic suppression of this vertex at intermediate and low energies enables the convergence of the iteration procedure to a single gauge coupling, whose value is reasonably close to that extracted from related lattice simulations.

  7. The LHCb Vertex Locator Upgrade

    NASA Astrophysics Data System (ADS)

    Szumlak, T.

    2017-12-01

    The Large Hadron Collider beauty LHCb detector is a dedicated flavour physics experiment, designed to efficiently detect decays of b- and c-hadrons to perform precise studies of CP violation and rare decays. At the end of Run 2, many of the LHCb measurements will remain statistically dominated. In order to increase the trigger yield for purely hadronic channels, the hardware trigger will be removed, and the full detector will be read out at 40 MHz. This, in combination with the five-fold increase in luminosity necessitates radical changes to LHCb's electronics with entire subdetector replacements required in some cases. The Vertex Locator (VELO) surrounding the interaction region is used to reconstruct the proton-proton collision points (primary vertices) and decay vertices of long-lived particles (secondary vertices). The upgraded VELO will be equipped with silicon hybrid pixel sensors, each read out by VeloPix ASICs. The highest occupancy ASICs will have pixel hit rates of 900 Mhit/s and produce an output data rate of over 15 Gbit/s, with a total rate of 1.6 Tbit/s anticipated for the whole detector. Selected highlights of this challenging and ambitious project are described in this paper.

  8. The STAGGER-grid: A grid of 3D stellar atmosphere models. V. Synthetic stellar spectra and broad-band photometry

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thévenin, F.; Asplund, M.

    2018-03-01

    Context. The surface structures and dynamics of cool stars are characterised by the presence of convective motions and turbulent flows which shape the emergent spectrum. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical simulations from the STAGGER-grid to calculate synthetic spectra with the radiative transfer code OPTIM3D for stars with different stellar parameters to predict photometric colours and convective velocity shifts. Methods: We calculated spectra from 1000 to 200 000 Å with a constant resolving power of λ/Δλ = 20 000 and from 8470 and 8710 Å (Gaia Radial Velocity Spectrometer - RVS - spectral range) with a constant resolving power of λ/Δλ = 300 000. Results: We used synthetic spectra to compute theoretical colours in the Johnson-Cousins UBV (RI)C, SDSS, 2MASS, Gaia, SkyMapper, Strömgren systems, and HST-WFC3. Our synthetic magnitudes are compared with those obtained using 1D hydrostatic models. We showed that 1D versus 3D differences are limited to a small percent except for the narrow filters that span the optical and UV region of the spectrum. In addition, we derived the effect of the convective velocity fields on selected Fe I lines. We found the overall convective shift for 3D simulations with respect to the reference 1D hydrostatic models, revealing line shifts of between -0.235 and +0.361 km s-1. We showed a net correlation of the convective shifts with the effective temperature: lower effective temperatures denote redshifts and higher effective temperatures denote blueshifts. We conclude that the extraction of accurate radial velocities from RVS spectra need an appropriate wavelength correction from convection shifts. Conclusions: The use of realistic 3D hydrodynamical stellar atmosphere simulations has a small but significant impact on the predicted photometry compared with classical 1D hydrostatic models for late-type stars. We make all the spectra publicly available for the community through the POLLUX database

  9. Similar Response Patterns to 5%Topical Minoxidil Foam in Frontal and Vertex Scalp of Men with Androgenetic Alopecia: A Microarray Analysis

    PubMed Central

    Mirmirani, P.; Consolo, M.; Oyetakin-White, P.; Baron, E.; Leahy, P.; Karnik, P.

    2014-01-01

    Summary Background There are regional variations in scalp hair miniaturization seen in androgenetic alopecia (AGA). Use of topical minoxidil can lead to reversal of miniaturization in the vertex scalp. However, its effects on other scalp regions are less well studied. Methods A placebo controlled double-blinded prospective pilot study of minoxidil topical foam 5% (MTF) vs placebo was conducted in sixteen healthy men ages 18-49 with Hamilton-Norwood type IV-V thinning. The subjects were asked to apply the treatment (active drug or placebo) to the scalp twice daily for eight weeks. Stereotactic scalp photographs were taken at the baseline and final visits to monitor global hair growth. Scalp biopsies were done at the leading edge of hair loss from the frontal and vertex scalp before and after treatment with MTF and placebo and microarray analysis was done using the Affymetrix GeneChip HG U133 Plus 2.0. Results Global stereotactic photographs showed that MTF induced hair growth in both the frontal and vertex scalp of AGA patients. Regional differences in gene expression profiles were observed before treatment. However, MTF treatment induced the expression of hair keratin associated genes and decreased the expression of epidermal differentiation complex (EDC) and inflammatory genes in both scalp regions. Conclusions These data suggest that MTF is effective in the treatment of both the frontal and vertex scalp of AGA patients. PMID:25204361

  10. Measurements and simulations of MAPS (Monolithic Active Pixel Sensors) response to charged particles - a study towards a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Maczewski, Lukasz

    2010-05-01

    The International Linear Collider (ILC) is a project of an electron-positron (e+e-) linear collider with the centre-of-mass energy of 200-500 GeV. Monolithic Active Pixel Sensors (MAPS) are one of the proposed silicon pixel detector concepts for the ILC vertex detector (VTX). Basic characteristics of two MAPS pixel matrices MIMOSA-5 (17 μm pixel pitch) and MIMOSA-18 (10 μm pixel pitch) are studied and compared (pedestals, noises, calibration of the ADC-to-electron conversion gain, detector efficiency and charge collection properties). The e+e- collisions at the ILC will be accompanied by intense beamsstrahlung background of electrons and positrons hitting inner planes of the vertex detector. Tracks of this origin leave elongated clusters contrary to those of secondary hadrons. Cluster characteristics and orientation with respect to the pixels netting are studied for perpendicular and inclined tracks. Elongation and precision of determining the cluster orientation as a function of the angle of incidence were measured. A simple model of signal formation (based on charge diffusion) is proposed and tested using the collected data.

  11. Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochnow, Bo; O'Reilly, Ossian; Dunham, Eric M.

    In this paper, we develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the polar coordinate singularity in the radial component of the diffusion operator. The finite difference approximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are considered. Finally, the accuracy ofmore » the scheme is studied both for a model problem with periodic boundary conditions at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in a magmatic conduit.« less

  12. Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid

    DOE PAGES

    Prochnow, Bo; O'Reilly, Ossian; Dunham, Eric M.; ...

    2017-03-16

    In this paper, we develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the polar coordinate singularity in the radial component of the diffusion operator. The finite difference approximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are considered. Finally, the accuracy ofmore » the scheme is studied both for a model problem with periodic boundary conditions at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in a magmatic conduit.« less

  13. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  14. An integrated strategy to improve data acquisition and metabolite identification by time-staggered ion lists in UHPLC/Q-TOF MS-based metabolomics.

    PubMed

    Wang, Yang; Feng, Ruibing; He, Chengwei; Su, Huanxing; Ma, Huan; Wan, Jian-Bo

    2018-08-05

    The narrow linear range and the limited scan time of the given ion make the quantification of the features challenging in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics with the full-scan mode. And metabolite identification is another bottleneck of untargeted analysis owing to the difficulty of acquiring MS/MS information of most metabolites detected. In this study, an integrated workflow was proposed using the newly established multiple ion monitoring mode with time-staggered ion lists (tsMIM) and target-directed data-dependent acquisition with time-staggered ion lists (tsDDA) to improve data acquisition and metabolite identification in UHPLC/Q-TOF MS-based untargeted metabolomics. Compared to the conventional untargeted metabolomics, the proprosed workflow exhibited the better repeatability before and after data normalization. After selecting features with the significant change by statistical analysis, MS/MS information of all these features can be obtained by tsDDA analysis to facilitate metabolite identification. Using time-staggered ion lists, the workflow is more sensitive in data acquisition, especially for the low-abundant features. Moreover, the metabolites with low abundance tend to be wrongly integrated and triggered by full scan-based untargeted analysis with MS E acquisition mode, which can be greatly improved by the proposed workflow. The integrated workflow was also successfully applied to discover serum biosignatures for the genetic modification of fat-1 in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    NASA Astrophysics Data System (ADS)

    Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration

    1983-07-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.

  16. The limitations of staggered grid finite differences in plasticity problems

    NASA Astrophysics Data System (ADS)

    Pranger, Casper; Herrendörfer, Robert; Le Pourhiet, Laetitia

    2017-04-01

    Most crustal-scale applications operate at grid sizes much larger than those at which plasticity occurs in nature. As a consequence, plastic shear bands often localize to the scale of one grid cell, and numerical ploys — like introducing an artificial length scale — are needed to counter this. If for whatever reasons (good or bad) this is not done, we find that problems may arise due to the fact that in the staggered grid finite difference discretization, unknowns like components of the stress tensor and velocity vector are located in physically different positions. This incurs frequent interpolation, reducing the accuracy of the discretization. For purely stress-dependent plasticity problems the adverse effects might be contained because the magnitude of the stress discontinuity across a plastic shear band is limited. However, we find that when rate-dependence of friction is added in the mix, things become ugly really fast and the already hard-to-solve and highly nonlinear problem of plasticity incurs an extra penalty.

  17. Predictive modeling of neuroanatomic structures for brain atrophy detection

    NASA Astrophysics Data System (ADS)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  18. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    NASA Astrophysics Data System (ADS)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  19. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    NASA Astrophysics Data System (ADS)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  20. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): Staggered alignment of hypervariable sequences improves species tree inference.

    PubMed

    Swain, Timothy D

    2018-01-01

    The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  2. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  3. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition,more » the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta

  4. Progress in development of HEDP capabilities in FLASH's Unsplit Staggered Mesh MHD solver

    NASA Astrophysics Data System (ADS)

    Lee, D.; Xia, G.; Daley, C.; Dubey, A.; Gopal, S.; Graziani, C.; Lamb, D.; Weide, K.

    2011-11-01

    FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31-42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

  5. Optimal designs of staggered dean vortex micromixers.

    PubMed

    Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei

    2011-01-01

    A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°.

  6. Optimal Designs of Staggered Dean Vortex Micromixers

    PubMed Central

    Chen, Jyh Jian; Chen, Chun Huei; Shie, Shian Ruei

    2011-01-01

    A novel parallel laminar micromixer with a two-dimensional staggered Dean Vortex micromixer is optimized and fabricated in our study. Dean vortices induced by centrifugal forces in curved rectangular channels cause fluids to produce secondary flows. The split-and-recombination (SAR) structures of the flow channels and the impinging effects result in the reduction of the diffusion distance of two fluids. Three different designs of a curved channel micromixer are introduced to evaluate the mixing performance of the designed micromixer. Mixing performances are demonstrated by means of a pH indicator using an optical microscope and fluorescent particles via a confocal microscope at different flow rates corresponding to Reynolds numbers (Re) ranging from 0.5 to 50. The comparison between the experimental data and numerical results shows a very reasonable agreement. At a Re of 50, the mixing length at the sixth segment, corresponding to the downstream distance of 21.0 mm, can be achieved in a distance 4 times shorter than when the Re equals 1. An optimization of this micromixer is performed with two geometric parameters. These are the angle between the lines from the center to two intersections of two consecutive curved channels, θ, and the angle between two lines of the centers of three consecutive curved channels, ϕ. It can be found that the maximal mixing index is related to the maximal value of the sum of θ and ϕ, which is equal to 139.82°. PMID:21747691

  7. Anomalous glassy dynamics in simple models of dense biological tissue

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-02-01

    In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.

  8. An experimental study on the effect of wind load around tall towers of square and hexagonal shapes in staggered form

    NASA Astrophysics Data System (ADS)

    Anwar, Proma; Islam, Md. Quamrul; Ali, Mohammad

    2017-06-01

    In this research work an experiment is conducted to observe the effect of wind load around square and hexagonal shaped cylinders in staggered form. The experiment is performed in an open circuit wind tunnel at a Reynolds number of 4.23×104 based on the face width of the cylinder across the flow direction. The flow velocity has been kept uniform at 14.3 m/s throughout the experiment. The test is conducted for single cylinders first and then in staggered form. The cylinders are rotated to create different angles of attack and the angles are chosen at a definite interval. The static pressure readings are taken at different locations of the cylinder by inclined multi-manometers. From the surface static pressure readings pressure coefficients, drag coefficients and lift coefficients are calculated using numerical integration method. These results will surely help engineers to design buildings more stable against wind load. All the results are expressed in non-dimensional form, so that they can be applied for prototype structures.

  9. An Adaptive Staggered Dose Design for a Normal Endpoint.

    PubMed

    Wu, Joseph; Menon, Sandeep; Chang, Mark

    2015-01-01

    In a clinical trial where several doses are compared to a control, a multi-stage design that combines both the selection of the best dose and the confirmation of this selected dose is desirable. An example is the two-stage drop-the-losers or pick-the-winner design, where inferior doses are dropped after interim analysis. Selection of target dose(s) can be based on ranking of observed effects, hypothesis testing with adjustment for multiplicity, or other criteria at interim stages. A number of methods have been proposed and have made significant gains in trial efficiency. However, many of these designs started off with all doses with equal allocation and did not consider prioritizing the doses using existing dose-response information. We propose an adaptive staggered dose procedure that allows explicit prioritization of doses and applies error spending scheme that favors doses with assumed better responses. This design starts off with only a subset of the doses and adaptively adds new doses depending on interim results. Using simulation, we have shown that this design performs better in terms of increased statistical power than the drop-the-losers design given strong prior information of dose response.

  10. Effect of minoxidil topical foam on frontotemporal and vertex androgenetic alopecia in men: a 104-week open-label clinical trial.

    PubMed

    Kanti, V; Hillmann, K; Kottner, J; Stroux, A; Canfield, D; Blume-Peytavi, U

    2016-07-01

    Topical minoxidil formulations have been shown to be effective in treating androgenetic alopecia (AGA) for 12 months. Efficacy and safety in both frontotemporal and vertex regions over longer application periods have not been studied so far. To evaluate the effect of 5% minoxidil topical foam (5% MTF) in the frontotemporal and vertex areas in patients with moderate AGA over 104 weeks. An 80-week, open-label extension phase was performed, following a 24-week randomized, double-blind, placebo-controlled study in men with AGA grade IIIvertex to VI. Group 1 (n = 22) received ongoing 5% MTF for 104 weeks, Group 2 (n = 23) received placebo topical foam (plaTF) until week 24, followed by 5% MTF until week 104 during the extension phase. Frontotemporal and vertex target area non-vellus hair counts (f-TAHC, v-TAHC) and cumulative hair width (f-TAHW, v-TAHW) were assessed at baseline and at weeks 24, 52, 76 and 104. In Group 1, f-TAHW and f-TAHC showed a statistically significant increase from baseline to week 52 and week 76, respectively, returning to values comparable to baseline at week 104. No significant differences were found between baseline and week 104 in v-TAHC in Group 1 as well as f-TAHC, v-TAHC, f-TAHW and v-TAHW values in Group 2. 5% MTF is effective in stabilizing hair density, hair width and scalp coverage in both frontotemporal and vertex areas over an application period of 104 weeks, while showing a good safety and tolerability profile with a low rate of irritant contact dermatitis. © 2015 European Academy of Dermatology and Venereology.

  11. Similar response patterns to topical minoxidil foam 5% in frontal and vertex scalp of men with androgenetic alopecia: a microarray analysis.

    PubMed

    Mirmirani, P; Consolo, M; Oyetakin-White, P; Baron, E; Leahy, P; Karnik, P

    2015-06-01

    There are regional variations in the scalp hair miniaturization seen in androgenetic alopecia (AGA). Use of topical minoxidil can lead to reversal of miniaturization in the vertex scalp. However, its effects on other scalp regions have been less well studied. To determine whether scalp biopsies from men with AGA show variable gene expression before and after 8 weeks of treatment with minoxidil topical foam 5% (MTF) vs. placebo. A placebo-controlled double-blinded prospective pilot study of MTF vs. placebo was conducted in 16 healthy men aged 18-49 years with Hamilton-Norwood type IV-V thinning. The subjects were asked to apply the treatment (active drug or placebo) to the scalp twice daily for 8 weeks. Stereotactic scalp photographs were taken at the baseline and final visits, to monitor global hair growth. Scalp biopsies were taken at the leading edge of hair loss from the frontal and vertex scalp before and after treatment with MTF and placebo, and microarray analysis was performed using the Affymetrix GeneChip HG U133 Plus 2.0. Global stereotactic photographs showed that MTF induced hair growth in both the frontal and vertex scalp of patients with AGA. Regional differences in gene expression profiles were observed before treatment. However, MTF treatment induced the expression of hair keratin-associated genes and decreased the expression of epidermal differentiation complex and inflammatory genes in both scalp regions. These data suggest that MTF is effective in the treatment of both the frontal and vertex scalp of patients with AGA. © 2014 British Association of Dermatologists.

  12. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching

    PubMed Central

    2018-01-01

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K-user multicell MIMO scheduling and K-user L-cell CEUs partial cooperation algorithms elaborate the generalisation of K-user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes. PMID:29382100

  13. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching.

    PubMed

    Selvaprabhu, Poongundran; Chinnadurai, Sunil; Sarker, Md Abdul Latif; Lee, Moon Ho

    2018-01-28

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K -user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K -user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K -user multicell MIMO scheduling and K -user L -cell CEUs partial cooperation algorithms elaborate the generalisation of K -user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes.

  14. Heat transfer coefficients for staggered arrays of short pin fins

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1981-01-01

    Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).

  15. Studies for a 10 μs, thin, high resolution CMOS pixel sensor for future vertex detectors

    NASA Astrophysics Data System (ADS)

    Voutsinas, G.; Amar-Youcef, S.; Baudot, J.; Bertolone, G.; Brogna, A.; Chon-Sen, N.; Claus, G.; Colledani, C.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Degerli, Y.; De Masi, R.; Deveaux, M.; Gelin, M.; Goffe, M.; Hu-Guo, Ch.; Himmi, A.; Jaaskelainen, K.; Koziel, M.; Morel, F.; Müntz, C.; Orsini, F.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Valin, I.; Wagner, F. M.; Winter, M.

    2011-06-01

    Future high energy physics (HEP) experiments require detectors with unprecedented performances for track and vertex reconstruction. These requirements call for high precision sensors, with low material budget and short integration time. The development of CMOS sensors for HEP applications was initiated at IPHC Strasbourg more than 10 years ago, motivated by the needs for vertex detectors at the International Linear Collider (ILC) [R. Turchetta et al, NIM A 458 (2001) 677]. Since then several other applications emerged. The first real scale digital CMOS sensor MIMOSA26 equips Flavour Tracker at RHIC, as well as for the microvertex detector of the CBM experiment at FAIR. MIMOSA sensors may also offer attractive performances for the ALICE upgrade at LHC. This paper will demonstrate the substantial performance improvement of CMOS sensors based on a high resistivity epitaxial layer. First studies for integrating the sensors into a detector system will be addressed and finally the way to go to a 10 μs readout sensor will be discussed.

  16. Charge shielding in the In-situ Storage Image Sensor for a vertex detector at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Stefanov, K. D.; Bailey, D.; Banda, Y.; Buttar, C.; Cheplakov, A.; Cussans, D.; Damerell, C.; Devetak, E.; Fopma, J.; Foster, B.; Gao, R.; Gillman, A.; Goldstein, J.; Greenshaw, T.; Grimes, M.; Halsall, R.; Harder, K.; Hawes, B.; Hayrapetyan, K.; Heath, H.; Hillert, S.; Jackson, D.; Pinto Jayawardena, T.; Jeffery, B.; John, J.; Johnson, E.; Kundu, N.; Laing, A.; Lastovicka, T.; Lau, W.; Li, Y.; Lintern, A.; Lynch, C.; Mandry, S.; Martin, V.; Murray, P.; Nichols, A.; Nomerotski, A.; Page, R.; Parkes, C.; Perry, C.; O'Shea, V.; Sopczak, A.; Tabassam, H.; Thomas, S.; Tikkanen, T.; Velthuis, J.; Walsh, R.; Woolliscroft, T.; Worm, S.

    2009-08-01

    The Linear Collider Flavour Identification (LCFI) collaboration has successfully developed the first prototype of a novel particle detector, the In-situ Storage Image Sensor (ISIS). This device ideally suits the challenging requirements for the vertex detector at the future International Linear Collider (ILC), combining the charge storing capabilities of the Charge-Coupled Devices (CCD) with readout commonly used in CMOS imagers. The ISIS avoids the need for high-speed readout and offers low power operation combined with low noise, high immunity to electromagnetic interference and increased radiation hardness compared to typical CCDs. The ISIS is one of the most promising detector technologies for vertexing at the ILC. In this paper we describe the measurements on the charge-shielding properties of the p-well, which is used to protect the storage register from parasitic charge collection and is at the core of device's operation. We show that the p-well can suppress the parasitic charge collection by almost two orders of magnitude, satisfying the requirements for the application.

  17. Statin prescribing for people with severe mental illnesses: a staggered cohort study of 'real-world' impacts.

    PubMed

    Blackburn, R; Osborn, D; Walters, K; Falcaro, M; Nazareth, I; Petersen, I

    2017-03-07

    To estimate the 'real-world effectiveness of statins for primary prevention of cardiovascular disease (CVD) and for lipid modification in people with severe mental illnesses (SMI), including schizophrenia and bipolar disorder. Series of staggered cohorts. We estimated the effect of statin prescribing on CVD outcomes using a multivariable Poisson regression model or linear regression for cholesterol outcomes. 587 general practice (GP) surgeries across the UK reporting data to The Health Improvement Network. All permanently registered GP patients aged 40-84 years between 2002 and 2012 who had a diagnosis of SMI. Exclusion criteria were pre-existing CVD, statin-contraindicating conditions or a statin prescription within the 24 months prior to the study start. One or more statin prescriptions during a 24-month 'baseline' period (vs no statin prescription during the same period). The primary outcome was combined first myocardial infarction and stroke. All-cause mortality and total cholesterol concentration were secondary outcomes. We identified 2944 statin users and 42 886 statin non-users across the staggered cohorts. Statin prescribing was not associated with significant reduction in CVD events (incident rate ratio 0.89; 95% CI 0.68 to 1.15) or all-cause mortality (0.89; 95% CI 0.78 to 1.02). Statin prescribing was, however, associated with statistically significant reductions in total cholesterol of 1.2 mmol/L (95% CI 1.1 to 1.3) for up to 2 years after adjusting for differences in baseline characteristics. On average, total cholesterol decreased from 6.3 to 4.6 in statin users and 5.4 to 5.3 mmol/L in non-users. We found that statin prescribing to people with SMI in UK primary care was effective for lipid modification but not CVD events. The latter finding may reflect insufficient power to detect a smaller effect size than that observed in randomised controlled trials of statins in people without SMI. Published by the BMJ Publishing Group Limited. For

  18. 29 CFR Appendix H to Subpart R of... - Double Connections: Illustration of a Clipped End Connection and a Staggered Connection: Non...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Connection and a Staggered Connection: Non-Mandatory Guidelines for Complying With § 1926.756(c)(1) H Appendix H to Subpart R of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY... CONSTRUCTION Steel Erection Pt. 1926, Subpt. R, App. H Appendix H to Subpart R of Part 1926—Double Connections...

  19. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  20. Penguin-like diagrams from the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Chia Swee

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, wemore » present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.« less

  1. A vertex similarity index for better personalized recommendation

    NASA Astrophysics Data System (ADS)

    Chen, Ling-Jiao; Zhang, Zi-Ke; Liu, Jin-Hu; Gao, Jian; Zhou, Tao

    2017-01-01

    Recommender systems benefit us in tackling the problem of information overload by predicting our potential choices among diverse niche objects. So far, a variety of personalized recommendation algorithms have been proposed and most of them are based on similarities, such as collaborative filtering and mass diffusion. Here, we propose a novel vertex similarity index named CosRA, which combines advantages of both the cosine index and the resource-allocation (RA) index. By applying the CosRA index to real recommender systems including MovieLens, Netflix and RYM, we show that the CosRA-based method has better performance in accuracy, diversity and novelty than some benchmark methods. Moreover, the CosRA index is free of parameters, which is a significant advantage in real applications. Further experiments show that the introduction of two turnable parameters cannot remarkably improve the overall performance of the CosRA index.

  2. A MAPS Based Micro-Vertex Detector for the STAR Experiment

    DOE PAGES

    Schambach, Joachim; Anderssen, Eric; Contin, Giacomo; ...

    2015-06-18

    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector’s vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensormore » (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2. Each sensor of this PiXeL (“PXL”) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of ~3.8 cm 2. This sensor architecture features 185.6 μs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 μm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper.« less

  3. N  =  2 and N  =  4 subalgebras of super vertex operator algebras

    NASA Astrophysics Data System (ADS)

    Mason, Geoffrey; Tuite, Michael; Yamskulna, Gaywalee

    2018-02-01

    We develop criteria to decide if an N  =  2 or N  =  4 superconformal algebra is a subalgebra of a super vertex operator algebra in general, and of a super lattice theory in particular. We give some specific examples.

  4. Phase transition between quantum and classical regimes for the escape rate of dimeric molecular nanomagnets in a staggered magnetic field

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Paranjape, M. B.

    2014-04-01

    We study the phase transition of the escape rate of exchange-coupled dimer of single-molecule magnets which are coupled either ferromagnetically or antiferromagnetically in a staggered magnetic field and an easy z-axis anisotropy. The Hamiltonian for this system has been used to study dimeric molecular nanomagnet [Mn4]2 which is comprised of two single molecule magnets coupled antiferromagnetically. We generalize the method of mapping a single-molecule magnetic spin problem onto a quantum-mechanical particle to dimeric molecular nanomagnets. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and a coordinate dependent reduced mass. It is shown that the presence of the external staggered magnetic field creates a phase boundary separating the first- from the second-order transition. With the set of parameters used by R. Tiron et al. (2003) [25] and S. Hill et al. (2003) [20] to fit experimental data for [Mn4]2 dimer we find that the critical temperature at the phase boundary is T0(c)=0.29K. Therefore, thermally activated transitions should occur for temperatures greater than T0(c).

  5. Statistical physics of hard combinatorial optimization: Vertex cover problem

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  6. Electron-Rich Carboranes. Studies of a Stereochemically Novel System, (CH3)4C4B7H9, and 11-Vertex Arachno Cluster.

    DTIC Science & Technology

    1981-01-01

    FINSTER , R N GRIMES NOGOIR-75C-0305 UNCLASSIFIED TR-37 NL EOMEEEhE OFFICE OF NAVAL RESEARCH CONTRACT NO. i14.-7-C-31 q,4 TECHNICAL REPORT NO. 37L" 0...Electron-Rich Carboranes. Studies of a Stereochemically Novel System, (CH") 4C4 BH 9 , an 11-Vertex Arachno Cluster. .) David C./ Finster aad Russell N...System, (CH3 )4C4B7H9 , an l-Vertex Arachno Cluster 1 David C. Finster and Russell N. Grimes* Contribution from the Department of Chemistry University of

  7. Degenerate and chiral states in the extended Heisenberg model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Gómez Albarracín, F. A.; Pujol, P.

    2018-03-01

    We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.

  8. Querying graphs in protein-protein interactions networks using feedback vertex set.

    PubMed

    Blin, Guillaume; Sikora, Florian; Vialette, Stéphane

    2010-01-01

    Recent techniques increase rapidly the amount of our knowledge on interactions between proteins. The interpretation of these new information depends on our ability to retrieve known substructures in the data, the Protein-Protein Interactions (PPIs) networks. In an algorithmic point of view, it is an hard task since it often leads to NP-hard problems. To overcome this difficulty, many authors have provided tools for querying patterns with a restricted topology, i.e., paths or trees in PPI networks. Such restriction leads to the development of fixed parameter tractable (FPT) algorithms, which can be practicable for restricted sizes of queries. Unfortunately, Graph Homomorphism is a W[1]-hard problem, and hence, no FPT algorithm can be found when patterns are in the shape of general graphs. However, Dost et al. gave an algorithm (which is not implemented) to query graphs with a bounded treewidth in PPI networks (the treewidth of the query being involved in the time complexity). In this paper, we propose another algorithm for querying pattern in the shape of graphs, also based on dynamic programming and the color-coding technique. To transform graphs queries into trees without loss of informations, we use feedback vertex set coupled to a node duplication mechanism. Hence, our algorithm is FPT for querying graphs with a bounded size of their feedback vertex set. It gives an alternative to the treewidth parameter, which can be better or worst for a given query. We provide a python implementation which allows us to validate our implementation on real data. Especially, we retrieve some human queries in the shape of graphs into the fly PPI network.

  9. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  10. Observation of dx2STAGGER">-y-Like Superconducting Gap in an Electron-Doped High-Temperature Superconductor

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kamiyama, T.; Takahashi, T.; Kurahashi, K.; Yamada, K.

    2001-02-01

    High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd2-xCexCuO4 (x = 0.15, transition temperature Tc = 22 K) has found the quasiparticle signature as well as the anisotropic dx2STAGGER">-y-like superconducting gap. The spectral line shape at the superconducting state shows a strong anisotropic nature of the many-body interaction. The result suggests that the electron-hole symmetry is present in the high-temperature superconductors.

  11. Quantifying indices of short- and long-range white matter connectivity at each cortical vertex

    PubMed Central

    Scariati, Elisa; Mutlu, A. Kadir; Zöller, Daniela; Schneider, Maude; Eliez, Stephan

    2017-01-01

    Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts’ length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders. PMID:29141024

  12. Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.

    PubMed

    Padula, Maria Carmela; Schaer, Marie; Scariati, Elisa; Mutlu, A Kadir; Zöller, Daniela; Schneider, Maude; Eliez, Stephan

    2017-01-01

    Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders.

  13. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix.

    PubMed

    Lai, Zheng Bo; Yan, Cheng

    2017-01-01

    Many biological composite materials such as bone have demonstrated unique mechanical performance, i.e., a combination of superior stiffness and toughness. It has become increasingly clear that the constituents at the nano- and micro-length scales play a critical role in determining the mechanical performance of these biological composites. In this study, the underlying mechanisms governing the mechanical behaviour of the staggered array of mineralised collagen fibrils (MCF) embedded in extra-fibrillar protein matrix were numerically investigated. The evolution of damage zone in protein was estimated using cohesive zone models (CZM). The results indicate that the mechanisms and mechanical behaviour of MCF array are largely dependent on the MCF dimensions and the intrinsic failure energy in extra-fibrillar protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparison of cell centered and cell vertex scheme in the calculation of high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Rahman, Syazila; Yusoff, Mohd. Zamri; Hasini, Hasril

    2012-06-01

    This paper describes the comparison between the cell centered scheme and cell vertex scheme in the calculation of high speed compressible flow properties. The calculation is carried out using Computational Fluid Dynamic (CFD) in which the mass, momentum and energy equations are solved simultaneously over the flow domain. The geometry under investigation consists of a Binnie and Green convergent-divergent nozzle and structured mesh scheme is implemented throughout the flow domain. The finite volume CFD solver employs second-order accurate central differencing scheme for spatial discretization. In addition, the second-order accurate cell-vertex finite volume spatial discretization is also introduced in this case for comparison. The multi-stage Runge-Kutta time integration is implemented for solving a set of non-linear governing equations with variables stored at the vertices. Artificial dissipations used second and fourth order terms with pressure switch to detect changes in pressure gradient. This is important to control the solution stability and capture shock discontinuity. The result is compared with experimental measurement and good agreement is obtained for both cases.

  15. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.

    PubMed

    Kim, Sunghoon; Park, Jaehyun; Kim, Sungwoo; Jung, Won; Sung, Jaeyoung; Kim, Sang-Wook

    2010-06-15

    New type-II structures of CdSe/InP and InP/CdSe core-shell nanocrystals which have staggered bandgap alignment were fabricated. Using a simple model for the wave function for electrons and holes in InP/CdSe and CdSe/InP core/shell nanocrystals showed the wave function of the electron and hole spread into the shell, respectively. The probability density of the InP/CdSe and CdSe/InP core/shell QDs also showed a similar tendency. As a result, the structure exhibits increased delocalization of electrons and holes, leading to a red-shift in absorption and emission. Quantum yield increased in the InP/CdSe, however decreased in the CdSe/InP. The reason may be due to the surface trap and high activation barrier for de-trapping in the InP shell. 2010 Elsevier Inc. All rights reserved.

  16. QSPR modeling: graph connectivity indices versus line graph connectivity indices

    PubMed

    Basak; Nikolic; Trinajstic; Amic; Beslo

    2000-07-01

    Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.

  17. The Small Acceptance Vertex Detector of NA61/SHINE

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Aduszkiewicz, A.; Ali, Y.; Baszczyk, M.; Brylinski, W.; Dorosz, P.; Di Luise, S.; Feofilov, G.; Gazdzicki, M.; Igolkin, S.; Jablonski, M.; Kovalenko, V.; Koziel, M.; Kucewicz, W.; Larsen, D.; Lazareva, T.; Martinengo, P.; Merzlaya, A.; Mik, L.; Planeta, R.; Snoch, A.; Vechernin, V.; Tefelski, D.; Suljic, M.; Staszel, P.

    2018-02-01

    Charmonium production in heavy ion collisions is considered as an important diagnostic probe for studying the phase diagram of strongly interacting matter for potential phase transitions. The interpretation of existing data from the CERN SPS is hampered by a lack of knowledge on the properties of open charm particle production in the fireball. Moreover, open charm production in heavy ion collisions by itself is poorly understood. To overcome this obstacle, the NA61/SHINE was equipped with a Small Acceptance Vertex Detector (SAVD), which is predicted to make the experiment sensitive to open charm mesons produced in A-A collisions at the SPS top energy. This paper will introduce the concept and the hardware of the SAVD. Moreover, first running experience as obtained in a commissioning run with a 150 AGeV/c Pb+Pb collision system will be reported.

  18. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of

  19. Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra by quantum separation of variables

    NASA Astrophysics Data System (ADS)

    Pezelier, Baptiste

    2018-02-01

    In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.

  20. Kaon BSM B -parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Benjamin J.

    2016-01-28

    In this paper, we present results for the matrix elements of the additional ΔS = 2 operators that appear in models of physics beyond the Standard Model (BSM), expressed in terms of four BSM B -parameters. Combined with experimental results for ΔM K and ε K, these constrain the parameters of BSM models. We use improved staggered fermions, with valence hypercubic blocking transfromation (HYP)-smeared quarks and N f = 2 + 1 flavors of “asqtad” sea quarks. The configurations have been generated by the MILC Collaboration. The matching between lattice and continuum four-fermion operators and bilinears is done perturbatively at one-loop order. We use three lattice spacings for the continuum extrapolation: a ≈ 0.09 , 0.06 and 0.045 fm. Valence light-quark masses range down to ≈ mmore » $$phys\\atop{s}$$ /13 while the light sea-quark masses range down to ≈ m$$phys\\atop{s}$$ / 20 . Compared to our previous published work, we have added four additional lattice ensembles, leading to better controlled extrapolations in the lattice spacing and sea-quark masses. We report final results for two renormalization scales, μ = 2 and 3 GeV, and compare them to those obtained by other collaborations. Agreement is found for two of the four BSM B-parameters (B 2 and B$$SUSY\\atop{3}$$ ). The other two (B 4 and B 5) differ significantly from those obtained using regularization independent momentum subtraction (RI-MOM) renormalization as an intermediate scheme, but are in agreement with recent preliminary results obtained by the RBC-UKQCD Collaboration using regularization independent symmetric momentum subtraction (RI-SMOM) intermediate schemes.« less

  1. Statistical mechanics of the vertex-cover problem

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  2. Community Detection Algorithm Combining Stochastic Block Model and Attribute Data Clustering

    NASA Astrophysics Data System (ADS)

    Kataoka, Shun; Kobayashi, Takuto; Yasuda, Muneki; Tanaka, Kazuyuki

    2016-11-01

    We propose a new algorithm to detect the community structure in a network that utilizes both the network structure and vertex attribute data. Suppose we have the network structure together with the vertex attribute data, that is, the information assigned to each vertex associated with the community to which it belongs. The problem addressed this paper is the detection of the community structure from the information of both the network structure and the vertex attribute data. Our approach is based on the Bayesian approach that models the posterior probability distribution of the community labels. The detection of the community structure in our method is achieved by using belief propagation and an EM algorithm. We numerically verified the performance of our method using computer-generated networks and real-world networks.

  3. Anatomical and embryological considerations in the repair of a large vertex cephalocele. Case report.

    PubMed

    Hoving, E; Blaser, S; Kelly, E; Rutka, J T

    1999-03-01

    The case of a neonate with a large vertex cephalocele is presented. The anatomical features of this anomaly were evaluated by means of magnetic resonance imaging and magnetic resonance angiography. Fusion of the thalami, dysgenesis of the corpus callosum, and failure of adequate formation of the interhemispheric fissure were characteristics of the major cerebral anomalies associated with the cephalocele. The absence of a falx in the midline, a split configuration of the superior sagittal sinus, and a dysgenetic tentorium with a concomitant abnormal venous drainage pattern were found in association with a large dorsal cyst. Repair of the anomaly was undertaken on the 3rd postnatal day. A cerebrospinal fluid shunt was required to treat hydrocephalus on Day 30. The child is well at age 3 years, but with significant developmental delay. The pathogenesis of this vertex cephalocele relates to semilobar holoprosencephaly and dorsal cyst formation. In addition, a disturbance in the separation of the diencephalic portion of the neural tube from the surface ectoderm or skin during the final phases of neurulation had occurred to help create the large cephalocele. Detailed preoperative imaging studies and awareness of the embryology and anatomy of this lesion facilitated the repair of the cephalocele. The prognosis of the child is determined not only by the presence of hydrocephalus, but also by the number of associated major cerebral anomalies. Options for treatment are discussed.

  4. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  5. An ultra-low power self-timed column-level ADC for a CMOS pixel sensor based vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, M.

    2014-11-01

    The International Large Detector (ILD) is a detector concept for the future linear collider experiment. The vertex detector is the key tool to achieve high precision measurements for flavor tagging, which puts stringent requirements on the CMOS pixel sensors. Due to the cooling systems which deteriorate the material budget and increase the multiple scattering, it is important to reduce the power consumption. This paper presents an ultra-low power self-timed column-level ADC for the CMOS pixel sensors, aiming to equip the outer layers of the vertex detector. The ADC was designed to operate in two modes (active and idle) adapted to the low hit density in the outer layers. The architecture employs an enhanced sample-and-hold circuit and a self-timed technique. The total power consumption with a 3-V supply is 225μW during idle mode, which is the most frequent situation. This value rises to 425μW in the case of the active mode. It occupies an area of 35 × 590μm2.

  6. Measuring Charge Collection Efficiency in Diamond Vertex Detectors

    NASA Astrophysics Data System (ADS)

    Josey, Brian; Seidel, Sally; Hoeferkamp, Martin

    2011-10-01

    As currently used at the Large Hadron Collider, vertex detectors are composed primarily of silicon sensors that image particle tracks by detecting the creation of electron-hole pairs caused by the excitation of the silicon atoms. We are investigating replacing these silicon detectors with detectors made out of diamond. Diamond is advantageous due to its radiation hardness. We are measuring the charge collection efficiency of diamond as a function of fluence. We are building a characterization station. Diamond samples will be placed into the characterization station and exposed to a strontium-90 beta source, before and after I irradiate them with 800 MeV protons at LANL. The radiation from the Sr-90 source will create electron-hole pairs. These will be read out by applying an electric field across the sample. The system is triggered by a scintillator-photomultiplier tube assembly. The goal of this measurement is to record collected charge as a function of bias voltage. The diamond charge collection data will be compared to silicon and predictions about detector operation at the LHC will be made.

  7. A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers

    NASA Astrophysics Data System (ADS)

    Tavelli, Maurizio; Dumbser, Michael

    2017-07-01

    We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In

  8. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

    NASA Astrophysics Data System (ADS)

    Indira, P.; Selvam, B.; Thirusangu, K.

    2018-04-01

    Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

  9. Stress analysis of three-dimensional roadway layout of stagger arrangement with field observation

    NASA Astrophysics Data System (ADS)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method for extracting thick (> 5 m) to ultra-thick coal seams in recent years. However, low-level recovery ratio of coal resources and top-coal loss above the supports at both ends of working face are long-term problems. Geological factors, such as large dip angle, soft rock, mining depth further complicate the problems. This paper proposes addressing this issue by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress environment surrounding head entry in the replacing working face based on the stress distribution characteristics at the triangular coal-pillar side in gob and the stress slip line field theory. In the second step, filed observation was conducted. Finally, an economic evaluation of the 3-D RLSA for extracting thick to ultra-thick seams was conducted.

  10. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  11. Effect of anomalous tbW vertex on decay-lepton distributions in e+ e-® tt(bar) and CP-violating asymmetries

    NASA Astrophysics Data System (ADS)

    Rindani, Saurabh D.

    2000-06-01

    We obtain analytic expressions for the energy and polar-angle double differential distributions of a secondary lepton l+(l-) arising from the decay of t (tbar) in with an anomalous tbW decay vertex. We also obtain analytic expressions for the various differential cross-sections with the lepton energy integrated over. In this case, we find that the angular distributions of the secondary lepton do not depend on the anomalous coupling in the decay, regardless of possible anomalous couplings occurring in the production amplitude for . Our study includes the effect of longitudinal e- and e+ beam polarization. We also study the lepton energy and beam polarization dependence of certain CP-violating lepton angular asymmetries arising from an anomalous tbW decay vertex and compare them with the asymmetries arising due to CP-violation in the production process due to the top electric or weak dipole moment.

  12. A multi-resolution approach to electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-07-01

    We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  13. Calculus Students' Understanding of the Vertex of the Quadratic Function in Relation to the Concept of Derivative

    ERIC Educational Resources Information Center

    Burns-Childers, Annie; Vidakovic, Draga

    2018-01-01

    The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up…

  14. 49 CFR Figure 1b to Subpart B of... - Example of Location and Staggering of Emergency Window Exits and Location of Rescue Access...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of Location and Staggering of Emergency Window Exits and Location of Rescue Access Windows-§§ 238.113 and 238.114 1B Figure 1B to Subpart B of... of Emergency Window Exits and Location of Rescue Access Windows—§§ 238.113 and 238.114 ER01FE08.003...

  15. staggerer phenotype in retinoid-related orphan receptor α-deficient mice

    PubMed Central

    Steinmayr, Markus; André, Elisabeth; Conquet, François; Rondi-Reig, Laure; Delhaye-Bouchaud, Nicole; Auclair, Nathalie; Daniel, Hervé; Crépel, Francis; Mariani, Jean; Sotelo, Constantino; Becker-André, Michael

    1998-01-01

    Retinoid-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily. To study its physiological role we generated null-mutant mice by targeted insertion of a lacZ reporter gene encoding the enzyme β-galactosidase. In heterozygous RORα+/− mice we found β-galactosidase activity, indicative of RORα protein expression, confined to the central nervous system, skin and testis. In the central nervous system, the RORα gene is expressed in cerebellar Purkinje cells, the thalamus, the suprachiasmatic nuclei, and retinal ganglion cells. In skin, RORα is strongly expressed in the hair follicle, the epidermis, and the sebaceous gland. Finally, the peritubular cells of the testis and the epithelial cells of the epididymis also strongly express RORα. Recently, it was reported that the ataxic mouse mutant staggerer (sg/sg) is caused by a deletion in the RORα gene. The analysis of the cerebellar and the behavioral phenotype of homozygous RORα−/− mice proves identity to sg/sg mice. Although the absence of RORα causes dramatic developmental effects in the cerebellum, it has no apparent morphological effect on thalamus, hypothalamus, and retina. Similarly, testis and skin of RORα−/− mice display a normal phenotype. However, the pelage hair of both sg/sg and RORα−/− is significantly less dense and when shaved shows reluctance to regrow. PMID:9520475

  16. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    NASA Astrophysics Data System (ADS)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  17. A multi-resolution approach to electromagnetic modeling.

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-04-01

    We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  18. Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porté-Agel, Fernando

    2013-02-01

    A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the `standard' actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous

  19. AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Christopher J.; Stone, James M.; Gammie, Charles F.

    2016-08-01

    We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.

  20. Accelerating lattice QCD simulations with 2 flavors of staggered fermions on multiple GPUs using OpenACC-A first attempt

    NASA Astrophysics Data System (ADS)

    Gupta, Sourendu; Majumdar, Pushan

    2018-07-01

    We present the results of an effort to accelerate a Rational Hybrid Monte Carlo (RHMC) program for lattice quantum chromodynamics (QCD) simulation for 2 flavors of staggered fermions on multiple Kepler K20X GPUs distributed on different nodes of a Cray XC30. We do not use CUDA but adopt a higher level directive based programming approach using the OpenACC platform. The lattice QCD algorithm is known to be bandwidth bound; our timing results illustrate this clearly, and we discuss how this limits the parallelization gains. We achieve more than a factor three speed-up compared to the CPU only MPI program.

  1. The prototype of the Micro Vertex Detector of the CBM Experiment

    NASA Astrophysics Data System (ADS)

    Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Li, Qiyan; Michel, Jan; Milanović, Borislav; Müntz, Christian; Neumann, Bertram; Schrader, Christoph; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael

    2013-12-01

    The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility at Darmstadt, Germany. This fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of highest net baryon densities with numerous probes, among them open charm. Reconstructing those short lived particles requires a vacuum compatible Micro Vertex Detector (MVD) with unprecedented properties. Its sensor technology has to feature a spatial resolution of <5 μm, a non-ionizing radiation tolerance of >1013 neq/cm2, an ionizing radiation tolerance of >3 Mrad and a time resolution of a few 10 μs. The MVD-prototype project aimed to study the integration the CMOS Monolithic Active Pixel Sensors foreseen for the MVD into an ultra light (0.3% X0) and a vacuum compatible detector system based on a cooling support made of CVD-diamond.

  2. Vacuum-compatible, ultra-low material budget Micro-Vertex Detector of the compressed baryonic matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Koziel, Michal; Amar-Youcef, Samir; Bialas, Norbert; Deveaux, Michael; Fröhlich, Ingo; Klaus, Philipp; Michel, Jan; Milanović, Borislav; Müntz, Christian; Stroth, Joachim; Tischler, Tobias; Weirich, Roland; Wiebusch, Michael

    2017-02-01

    The Compressed Baryonic Matter (CBM) Experiment is one of the core experiments of the future FAIR facility near Darmstadt (Germany). The fixed-target experiment will explore the phase diagram of strongly interacting matter in the regime of high net baryon densities with numerous probes, among them open charm mesons. The Micro Vertex Detector (MVD) will provide the secondary vertex resolution of ∼ 50 μm along the beam axis, contribute to the background rejection in dielectron spectroscopy, and to the reconstruction of weak decays. The detector comprises four stations placed at 5, 10, 15, and 20 cm downstream the target and inside the target vacuum. The stations will be populated with highly granular CMOS Monolithic Active Pixel Sensors, which will feature a spatial resolution of < 5 μm, a non-ionizing radiation tolerance of >1013neq /cm2, an ionizing radiation tolerance of ∼ 3 Mrad, and a readout speed of a few 10 μs/frame. This work introduces the MVD-PRESTO project, which aims at integrating a precursor of the second station of the CBM-MVD meeting the following requirements: material budget of x /X0 < 0.5 %, vacuum compatibility, double-sided sensor integration on a Thermal Pyrolytic Graphite (TPG) carrier, and heat evacuation of about 350 mW/cm2/sensor with a temperature gradient of a few K/cm.

  3. Vibration response comparison of twisted shrouded blades using different impact models

    NASA Astrophysics Data System (ADS)

    Xie, Fangtao; Ma, Hui; Cui, Can; Wen, Bangchun

    2017-06-01

    On the basis of our previous work (Ma et al., 2016, Journal of Sound and Vibration, 378, 92-108) [36], an improved analytical model (IAM) of a rotating twisted shrouded blade with stagger angle simulated by flexible beam with a tip-mass is established based on Timoshenko beam theory, whose effectiveness is verified using finite element (FE) method. The effects of different parameters such as shroud gaps, contact stiffness, stagger angles and twist angels on the vibration responses of the shrouded blades are analyzed using two different impact models where the adjacent two shrouded blades are simulated by massless springs in impact model 1 (IM1) and those are simulated by Timoshenko beam in impact model 2 (IM2). The results indicate that two impact models agree well under some cases such as big shroud gaps and small contact stiffness due to the small vibration effects of adjacent blades, but not vice versa under the condition of small shroud gaps and big contact stiffness. As for IM2, the resonance appears because the limitation of the adjacent blades is weakened due to their inertia effects, however, the resonance does not appear because of the strong limitation of the springs used to simulate adjacent blades for IM1. With the increase of stagger angles and twist angles, the first-order resonance rotational speed increases due to the increase of the dynamic stiffness under no-impact condition, and the rotational speeds of starting impact and ending impact rise under the impact condition.

  4. Effects of flavor-symmetry violation from staggered fermion lattice simulations of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giedt, Joel; Nayak, Saroj; Skinner, Andrew

    2011-01-15

    We analyze the effects of flavor splitting from staggered fermion lattice simulations of a low-energy effective theory for graphene. Both the unimproved action and the tadpole-improved action with a Naik term show significant flavor-symmetry breaking in the spectrum of the Dirac operator. Note that this is true even in the vicinity of the second-order phase transition point where it has been argued that the flavor-symmetry breaking should be small due to the continuum limit being approached. We show that at weaker couplings the flavor splitting is drastically reduced by stout link smearing, while this mechanism is ineffective at the strongermore » couplings relevant to suspended graphene. We also measure the average plaquette and describe how it calls for a reinterpretation of previous lattice Monte Carlo simulation results, due to tadpole improvement. After taking into account these effects, we conclude that previous lattice simulations are possibly indicative of an insulating phase, although the effective number of light flavors could be effectively less than two due to the flavor-splitting effects. If that is true, then simulations with truly chiral fermions (such as overlap fermions) are needed in order to settle the question.« less

  5. Highly improved staggered quarks on the lattice with applications to charm physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follana, E.; Davies, C.; Wong, K.

    2007-03-01

    We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a{sup 2} errors, and no tree-level order (am){sup 4} errors to leading order in the quark's velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are 3-4 times smaller than the widely used ASQTAD action. We show how to bound errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are likely no more than 1% when HISQ is used for light quarks at latticemore » spacings of 1/10 fm or less. The suppression of (am){sup 4} errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the {psi}-{eta}{sub c} mass splitting using the HISQ action on lattices where am{sub c}=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of 111(5) MeV which compares well with the experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D{sub s} mesons.« less

  6. Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions

    NASA Astrophysics Data System (ADS)

    Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan

    2018-03-01

    Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.

  7. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  8. Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mu; Pothen, Alex; Hovland, Paul

    We prove the equivalence of two different Hessian evaluation algorithms in AD. The first is the Edge Pushing algorithm of Gower and Mello, which may be viewed as a second order Reverse mode algorithm for computing the Hessian. In earlier work, we have derived the Edge Pushing algorithm by exploiting a Reverse mode invariant based on the concept of live variables in compiler theory. The second algorithm is based on eliminating vertices in a computational graph of the gradient, in which intermediate variables are successively eliminated from the graph, and the weights of the edges are updated suitably. We provemore » that if the vertices are eliminated in a reverse topological order while preserving symmetry in the computational graph of the gradient, then the Vertex Elimination algorithm and the Edge Pushing algorithm perform identical computations. In this sense, the two algorithms are equivalent. This insight that unifies two seemingly disparate approaches to Hessian computations could lead to improved algorithms and implementations for computing Hessians. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974690.ch11« less

  9. Synthesis and characterization of new 19-vertex macropolyhedral boron hydrides.

    PubMed

    Dopke, J A; Powell, D R; Gaines, D F

    2000-02-07

    The new boron hydride anions 10-R-B19H19- (R = H, Thx) were synthesized by the reaction of M2[B18H20] (M = Na, K) with HBRCl.SMe2 (R = H, Thx) or HBCl2.SMe2 in diethyl ether. The anions are comprised of edge-sharing, nido 10- and 11-vertex cluster fragments, and are characterized by their 11B, 11B[1H], and 11B-11B COSY NMR spectra. The salt [(Ph3P)2N][B19H20].0.5THF crystallized in the triclinic space group P1 (a = 12.6344-(2) A, b = 13.5978(2) A, c = 14.1401(2) A; alpha = 77.402(2) degrees, beta = 81.351(2) degrees, gamma = 73.253(2) degrees). Possible synthetic pathways are discussed. The dianion B19H19(2-) is formed by deprotonation of B19H20- with Proton Sponge (1,8-bis(dimethylamino)naphthalene) in THF, and is identified on the basis of its 11B, 11B[1H], and 11B-11B COSY NMR spectra.

  10. Impact of implementation choices on quantitative predictions of cell-based computational models

    NASA Astrophysics Data System (ADS)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  11. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    USDA-ARS?s Scientific Manuscript database

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  12. Simplified models for displaced dark matter signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmueller, Oliver; De Roeck, Albert; Hahn, Kristian

    We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced =E T searches (dMETs). Here, our approach is to extend the well-established dark matter simpli ed models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outlinemore » how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for longlived charged particles. Displaced vertices are a striking signature which is often virtually background free, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.« less

  13. Simplified models for displaced dark matter signatures

    DOE PAGES

    Buchmueller, Oliver; De Roeck, Albert; Hahn, Kristian; ...

    2017-09-18

    We propose a systematic programme to search for long-lived neutral particle signatures through a minimal set of displaced =E T searches (dMETs). Here, our approach is to extend the well-established dark matter simpli ed models to include displaced vertices. The dark matter simplified models are used to describe the primary production vertex. A displaced secondary vertex, characterised by the mass of the long-lived particle and its lifetime, is added for the displaced signature. We show how these models can be motivated by, and mapped onto, complete models such as gauge-mediated SUSY breaking and models of neutral naturalness. We also outlinemore » how this approach may be used to extend other simplified models to incorporate displaced signatures and to characterise searches for longlived charged particles. Displaced vertices are a striking signature which is often virtually background free, and thus provide an excellent target for the high-luminosity run of the Large Hadron Collider. The proposed models and searches provide a first step towards a systematic broadening of the displaced dark matter search programme.« less

  14. Dynamics for a 2-vertex quantum gravity model

    NASA Astrophysics Data System (ADS)

    Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.

    2010-12-01

    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.

  15. Readout Electronics for the Forward Vertex Detector at PHENIX

    NASA Astrophysics Data System (ADS)

    Phillips, Michael

    2010-11-01

    The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.

  16. Exploration of the horizontally staggered light guides for high concentration CPV applications.

    PubMed

    Selimoglu, Ozgur; Turan, Rasit

    2012-08-13

    The material and processing costs are still the major drawbacks of the c-Si based photovoltaic (PV) technology. The wafer cost comprises up to 35-40% of the total module cost. New approaches and system designs are needed in order to reduce the share of the wafer cost in photovoltaic energy systems. Here we explore the horizontally staggered light guide solar optics for use in Concentrated Photovoltaic (CPV) applications. This optical system comprises a lens array system coupled to a horizontal light guide which directs the incoming light beam to its edge. We have designed and simulated this system using a commercial ray tracing software (Zemax). The system is more compact, thinner and more robust compared to the conventional CPV systems. Concentration levels as high as 1000x can easily be reached when the system is properly designed. With such a high concentration level, a good acceptance angle of + -1 degree is still be conserved. The analysis of the system reveals that the total optical efficiency of the system could be as high as %94.4 without any anti-reflection (AR) coating. Optical losses can be reduced by just accommodating a single layer AR coating on the initial lens array leading to a %96.5 optical efficiency. Thermal behavior of high concentration linear concentrator is also discussed and compared with a conventional point focus CPV system.

  17. AGT, N-Burge partitions and {{W}}_N minimal models

    NASA Astrophysics Data System (ADS)

    Belavin, Vladimir; Foda, Omar; Santachiara, Raoul

    2015-10-01

    Let {B}_{N,n}^{p,p', H} be a conformal block, with n consecutive channels χ ι , ι = 1, ⋯ n, in the conformal field theory {M}_N^{p,p'× {M}^{H} , where {M}_N^{p,p' } is a {W}_N minimal model, generated by chiral spin-2, ⋯ spin- N currents, and labeled by two co-prime integers p and p', 1 < p < p', while {M}^{H} is a free boson conformal field theory. {B}_{N,n}^{p,p', H} is the expectation value of vertex operators between an initial and a final state. Each vertex operator is labelled by a charge vector that lives in the weight lattice of the Lie algebra A N - 1, spanned by weight vectors {overrightarrow{ω}}_1,\\cdots, {overrightarrow{ω}}_{N-1} . We restrict our attention to conformal blocks with vertex operators whose charge vectors point along {overrightarrow{ω}}_1 . The charge vectors that label the initial and final states can point in any direction.

  18. Persistent magnetic vortex flow at a supergranular vertex

    NASA Astrophysics Data System (ADS)

    Requerey, Iker S.; Cobo, Basilio Ruiz; Gošić, Milan; Bellot Rubio, Luis R.

    2018-03-01

    Context. Photospheric vortex flows are thought to play a key role in the evolution of magnetic fields. Recent studies show that these swirling motions are ubiquitous in the solar surface convection and occur in a wide range of temporal and spatial scales. Their interplay with magnetic fields is poorly characterized, however. Aims: We study the relation between a persistent photospheric vortex flow and the evolution of a network magnetic element at a supergranular vertex. Methods: We used long-duration sequences of continuum intensity images acquired with Hinode and the local correlation-tracking method to derive the horizontal photospheric flows. Supergranular cells are detected as large-scale divergence structures in the flow maps. At their vertices, and cospatial with network magnetic elements, the velocity flows converge on a central point. Results: One of these converging flows is observed as a vortex during the whole 24 h time series. It consists of three consecutive vortices that appear nearly at the same location. At their core, a network magnetic element is also detected. Its evolution is strongly correlated to that of the vortices. The magnetic feature is concentrated and evacuated when it is caught by the vortices and is weakened and fragmented after the whirls disappear. Conclusions: This evolutionary behavior supports the picture presented previously, where a small flux tube becomes stable when it is surrounded by a vortex flow. A movie attached to Fig. 2 is available at http://https://www.aanda.org

  19. Vertex Movement for Mission Status Graphics: A Polar-Star Display

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna

    2002-01-01

    Humans are traditionally bad monitors, especially over long periods of time on reliable systems, and they are being called upon to do this more and more as systems become further automated. Because of this, there is a need to find a way to display the monitoring information to the human operator in such a way that he can notice pertinent deviations in a timely manner. One possible solution is to use polar-star displays that will show deviations from normal in a more salient manner. A polar-star display uses a polygon's vertices to report values. An important question arises, though, of how the vertices should move. This experiment investigated two particular issues of how the vertices should move: (1) whether the movement of the vertices should be continuous or discrete and (2) whether the parameters that made up each vertex should always move in one direction regardless of parameter sign or move in both directions indicating parameter sign. The results indicate that relative movement direction is best. Subjects performed better with this movement type and they subjectively preferred it to the absolute movement direction. As for movement type, no strong preferences were shown.

  20. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: Exactly solvable two-site Hubbard model

    DOE PAGES

    Kutepov, A. L.

    2015-07-22

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ₁ from the first-order perturbation theory, and the exact vertex Γ E). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. Results obtained with the exact vertex are directly related to the present open question—which approximation is more advantageous for future implementations, GW + DMFT or QPGW +more » DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on Perturbation Theory systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.« less

  1. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    PubMed

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  2. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  3. Laser in situ keratomileusis for high hyperopia with corneal vertex centration and asymmetric offset.

    PubMed

    de Ortueta, Diego; Arba-Mosquera, Sam

    2017-03-10

    To investigate refractive outcomes and induction of corneal higher order aberrations (HOA) in eyes that underwent laser-assisted in situ keratomileusis (LASIK) for high hyperopia correction using an aberration neutral profile with corneal vertex centration and asymmetric offset. A total of 24 consecutive patients (38 eyes) who underwent LASIK by one surgeon using AMARIS 750S excimer laser and a Carriazo-Pendular microkeratome for flap creation were retrospectively analyzed. Eyes targeted for plano and with correction in the maximum hyperopic meridian strictly higher than +4D were included in the retrospective analysis. Patients were reviewed at 1, 3, and 6 months postoperatively. Postoperative monocular corrected distance visual acuity (CDVA) and uncorrected distance visual acuity (UDVA), manifest refraction, and corneal wavefront aberrations were compared with respective preoperative metrics. Mean preoperative spherical equivalent and refractive astigmatism was +4.07 ± 0.90 D and 1.37 ± 1.26 D, respectively, reducing to +0.28 ± 0.58D (p<0.0001) and 0.49 ± 0.47 D (p = 0.0001) at the last postoperative visit. Six months postoperatively, 78% of eyes achieved a UDVA of 20/25 or better. No eye lost more than 2 Snellen lines of CDVA at any follow-up. There was a statistically significant induction of vertical trefoil (+0.104 ± 0.299 µm, p<0.05), vertical coma (-0.181 ± 0.463 µm, p<0.01), horizontal coma (+0.198 ± 0.663 µm, p<0.05), spherical aberration (-0.324 ± 0.281 µm, p<0.0001), secondary vertical trefoil (+0.018 ± 0.044 µm, p<0.01), and secondary horizontal coma (+0.026 ± 0.083 µm, p<0.05). Laser-assisted in situ keratomileusis for high hyperopia using corneal vertex centration with asymmetric offset results in significant improvement in refraction and visual acuity although affected by significant induction of some higher order aberrations.

  4. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections

    NASA Astrophysics Data System (ADS)

    Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2016-09-01

    In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.

  5. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1991-01-01

    A method for calculating the incompressible viscous flow about two-dimensional bodies, utilizing the velocity-vorticity form of the Navier-Stokes equations using a staggered-grid formulation is presented. The solution is obtained by employing an alternative-direction implicit method for the solution of the block tridiagonal matrix resulting from the finite-difference representation of the governing equations. The boundary vorticity and the conservation of mass are calculated implicitly as a part of the solution. The mass conservation is calculated to machine zero for the duration of the computation. Calculations for the flow about a circular cylinder, a 2-pct thick flat plate at 90-deg incidence, an elliptic cylinder at 45-deg incidence, and a NACA 0012, with and without a deflected flap, at - 90-deg incidence are performed and compared with the results of other numerical investigations.

  6. Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.; Jain, N.; Vijayaraghavan, S.

    2012-11-01

    The compositional dependence of effective tunneling barrier height (E{sub beff}) and defect assisted band alignment transition from staggered gap to broken gap in GaAsSb/InGaAs n-channel tunnel field effect transistor (TFET) structures were demonstrated by x-ray photoelectron spectroscopy (XPS). High-resolution x-ray diffraction measurements revealed that the active layers are internally lattice matched. The evolution of defect properties was evaluated using cross-sectional transmission electron microscopy. The defect density at the source/channel heterointerface was controlled by changing the interface properties during growth. By increasing indium (In) and antimony (Sb) alloy compositions from 65% to 70% in In{sub x}Ga{sub 1-x}As and 60% to 65%more » in GaAs{sub 1-y}Sb{sub y} layers, the E{sub beff} was reduced from 0.30 eV to 0.21 eV, respectively, with the low defect density at the source/channel heterointerface. The transfer characteristics of the fabricated TFET device with an E{sub beff} of 0.21 eV show 2 Multiplication-Sign improvement in ON-state current compared to the device with E{sub beff} of 0.30 eV. On contrary, the value of E{sub beff} was decreased from 0.21 eV to -0.03 eV due to the presence of high defect density at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. As a result, the band alignment was converted from staggered gap to broken gap, which leads to 4 orders of magnitude increase in OFF-state leakage current. Therefore, a high quality source/channel interface with a properly selected E{sub beff} and well maintained low defect density is necessary to obtain both high ON-state current and low OFF-state leakage in a mixed As/Sb TFET structure for high-performance and lower-power logic applications.« less

  7. Effect of the amyloid β hairpin's structure on the handedness of helices formed by its aggregates

    DOE PAGES

    GhattyVenkataKrishna, Pavan K.; Uberbacher, Edward C.; Cheng, Xiaolin

    2013-07-08

    Various structural models for amyloid β fibrils have been derived from a variety of experimental techniques. However, these models cannot differentiate between the relative position of the two arms of the β hairpin called the stagger. Amyloid fibrils of various hierarchical levels form left-handed helices composed of β sheets. However it is unclear if positive, negative and zero staggers all form the macroscopic left-handed helices. To address this issue we have conducted extensive molecular dynamics simulations of amyloid β sheets of various staggers and shown that only negative staggers lead to the experimentally observed left-handed helices while positive staggers generatemore » the incorrect right-handed helices. In conclusion, this result suggests that the negative staggers are physiologically relevant structure of the amyloid β fibrils.« less

  8. Influence of the nuclear level density on the odd-even staggering in 56Fe+p spallation at energies from 300 to 1500 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Su, Jun; Zhu, Long; Guo, Chenchen

    2018-05-01

    Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration

  9. Constructive tensorial group field theory II: the {U(1)-T^4_4} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    In this paper, we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian gauge invariance, nicknamed . We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.

  10. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.

    2010-01-01

    Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.

  11. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.

    PubMed

    Nagoor Gani, A; Latha, S R

    2016-01-01

    A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.

  12. Prompt signals and displaced vertices in sparticle searches for next-to-minimal gauge-mediated supersymmetric models

    DOE PAGES

    Allanach, B. C.; Badziak, Marcin; Cottin, Giovanna; ...

    2016-09-01

    Here, we study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking, both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV standard model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2 \\sigma excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a b-jet pair or a tau pair resulting in potential displaced vertex signatures. We investigate current bounds on sparticle masses and the discovery potentialmore » of the model, both via conventional searches and via searches for displaced vertices. The searches based on promptly decaying sparticles currently give a lower limit on the gluino mass 1080 GeV and could be sensitive up to 1900 GeV with 100 fb -1, whereas the current displaced vertex searches cannot probe this model due to b-quarks in the final state. We also show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneously applied prompt cuts reduce background, resulting in a much better sensitivity than either strategy alone and motivating a fully fledged experimental study.« less

  13. Search for anomalous couplings in the W tb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-04-05

    The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t -channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb -1 of proton-proton collision data at √s=7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f 1 of decays containing transversely polarised W bosons is measuredmore » to be 0.37 ± 0.07 (stat.⊕syst.). The phase δ - between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be -0.014π ± 0.036π (stat.⊕syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g R and V L, yielding Re[g R /V L] ϵ [-0.36, 0.10] and Im[g R /V L] ϵ [-0.17, 0.23] with a correlation of 0.11. We find the results are in good agreement with the predictions of the Standard Model.« less

  14. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  15. Dave Eggers's a heartbreaking work of staggering genius: memoir as a "pain-relief device".

    PubMed

    Miller, Elise

    2011-10-01

    Dave Eggers's memoir is an important addition to the tradition of autobiography in America, and offers significant contributions to our understanding of creativity, sublimation, and the psychology of the memoir-writing process. A Heartbreaking Work of Staggering Genius is really two books--an autobiographical narrative about unbearable suffering, and a book of psychoanalytic commentary on the challenges of writing a memoir about catastrophic loss and trauma. The main narrative suggests the psychological resilience it takes to contain unbearable suffering. The metanarrative renders transparent the mind of someone who is both remembering his losses and constantly reflecting upon the process of writing about them. Eggers's identification with authorship, rather than bereavement or traumatization, may have played an important role in containing his affect and his sense of self when the heartbreaking events were originally unfolding. But a price is paid when a son uses his art to construct a new identity as an author--unconscious conflicts, primitive affect, anxieties about failing, as well as guilt about succeeding--consequences often missed by readers. Heartbreaking is a palimpsest, a story about story-telling superimposed on tales of death and survival, but its messages will be missed unless all its parts are preserved when being read or studied.

  16. Subcortical atrophy is associated with cognitive impairment in mild Parkinson disease: a combined investigation of volumetric changes, cortical thickness, and vertex-based shape analysis.

    PubMed

    Mak, E; Bergsland, N; Dwyer, M G; Zivadinov, R; Kandiah, N

    2014-12-01

    The involvement of subcortical deep gray matter and cortical thinning associated with mild Parkinson disease remains poorly understood. We assessed cortical thickness and subcortical volumes in patients with Parkinson disease without dementia and evaluated their associations with cognitive dysfunction. The study included 90 patients with mild Parkinson disease without dementia. Neuropsychological assessments classified the sample into patients with mild cognitive impairment (n = 25) and patients without cognitive impairment (n = 65). Volumetric data for subcortical structures were obtained by using the FMRIB Integrated Registration and Segmentation Tool while whole-brain, gray and white matter volumes were estimated by using Structural Image Evaluation, with Normalization of Atrophy. Vertex-based shape analyses were performed to investigate shape differences in subcortical structures. Vertex-wise group differences in cortical thickness were also assessed. Volumetric comparisons between Parkinson disease with mild cognitive impairment and Parkinson disease with no cognitive impairment were performed by using ANCOVA. Associations of subcortical structures with both cognitive function and disease severity were assessed by using linear regression models. Compared with Parkinson disease with no cognitive impairment, Parkinson disease with mild cognitive impairment demonstrated reduced volumes of the thalamus (P = .03) and the nucleus accumbens (P = .04). Significant associations were found for the nucleus accumbens and putamen with performances on the attention/working memory domains (P < .05) and nucleus accumbens and language domains (P = .04). The 2 groups did not differ in measures of subcortical shape or in cortical thickness. Patients with Parkinson disease with mild cognitive impairment demonstrated reduced subcortical volumes, which were associated with cognitive deficits. The thalamus, nucleus accumbens, and putamen may serve as potential biomarkers for

  17. Severe Vertex Epidural Hematoma in a Child: A Case Report of a Management without Expert Neurosurgical Care

    PubMed Central

    Brévart, Christophe; Bertani, Antoine; Abdourahman Aden, Hassan; Menguy, Paul; Dulou, Renaud

    2011-01-01

    Vertex epidural hematomas (VEDHs) are an uncommon situation and difficulties may be encountered in their diagnosis and management. This is more complicated when the surgical management has to be performed by general surgeons, not specialized in neurosurgery, in a remote location. It was in this context that we were brought to care in charge a 2-year-old boy who required a neurosurgical emergency rescue for a severe VEDH in Djibouti. Through the description of this case, we want to emphasize the value of developing a network of teleconsultation for the benefit of remote and isolated locations and learning basic techniques of emergency neurosurgery. PMID:22606578

  18. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    PubMed

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Selective attention and the auditory vertex potential. 2: Effects of signal intensity and masking noise

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.

  20. A search for non-standard model W helicity in top quark decays

    NASA Astrophysics Data System (ADS)

    Kilminster, Benjamin John

    The structure of the tbW vertex is probed by measuring the polarization of the W in t → W + b → l + v + b. The invariant mass of the lepton and b quark measures the W decay angle which in turn allows a comparison with polarizations expected from different possible models for the spin properties of the tbW interaction. We measure the fraction by rate of Ws produced with a V + A coupling in lieu of the Standard Model V-A to be fV + A = -0.21+0.42-0.24 (stat) +/- 0.21 (sys). We assign a limit of fV + A < 0.80 95% Confidence Level (CL). By combining this result with a complementary observable in the same data, we assign a limit of fV + A < 0.61 95% CL. We find no evidence for a non-Standard Model tbW vertex.

  1. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  2. Order, criticality, and excitations in the extended Falicov-Kimball model.

    PubMed

    Ejima, S; Kaneko, T; Ohta, Y; Fehske, H

    2014-01-17

    Using exact numerical techniques, we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the model exhibits, besides band-insulator and staggered orbital ordered phases, an excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in the von Neumann entropy. The anomalous spectral function and condensation amplitude provide the binding energy and coherence length of the electron-hole pairs which, on their part, point towards a Coulomb interaction driven crossover from BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance between electrons and holes does not affect the location of the BCS-BEC crossover regime, it favors staggered orbital ordering to the disadvantage of the EI. Within the Bose-Einstein condensation (BEC) regime, the quasiparticle dispersion develops a flat valence-band top, in accord with the experimental finding for Ta2NiSe5.

  3. Mass Measurement of 56Sc Reveals a Small A=56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust

    DOE PAGES

    Meisel, Z.; George, S.; Ahn, S.; ...

    2015-10-16

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((+0)(-54)) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted bymore » the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A approximate to 56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.« less

  4. Mass Measurement of 56Sc Reveals a Small A =56 Odd-Even Mass Staggering, Implying a Cooler Accreted Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Meisel, Z.; George, S.; Ahn, S.; Bazin, D.; Brown, B. A.; Browne, J.; Carpino, J. F.; Chung, H.; Cole, A. L.; Cyburt, R. H.; Estradé, A.; Famiano, M.; Gade, A.; Langer, C.; Matoš, M.; Mittig, W.; Montes, F.; Morrissey, D. J.; Pereira, J.; Schatz, H.; Schatz, J.; Scott, M.; Shapira, D.; Smith, K.; Stevens, J.; Tan, W.; Tarasov, O.; Towers, S.; Wimmer, K.; Winkelbauer, J. R.; Yurkon, J.; Zegers, R. G. T.

    2015-10-01

    We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85 (59 )(-54+0) MeV and -21.0 (1.3 ) MeV , respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A =56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A ≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.

  5. Exploring excitonic signal in optical conductivity of ZnO through first-order electron-hole vertex correction

    NASA Astrophysics Data System (ADS)

    Khoirunnisa, Humaira; Aziz Majidi, Muhammad

    2018-04-01

    The emergence of exitonic signal in the optical response of a wide band-gap semiconductor has been a common knowledge in physics. There have been numerous experimental studies exploring the important role of excitons on influencing both the transport and optical properties of the materials. Despite the existence of much information on excitonic effects, there has not been much literature that explores detailed theoretical explanation on how the exitonic signal appears and how it evolves with temperature. Here, we propose a theoretical study on the optical conductivity of ZnO, a well-known wide band-gap semiconductor that we choose as a case study. ZnO has been known to exhibit excitonic states in its optical spectra in the energy range of ∼3.13-3.41 eV, with a high exciton binding energy of ∼60 meV. An experimental study on ZnO in 2014 revealed such a signal in its optical conductivity spectrum. We present a theoretical investigation on the appearance of excitonic signal in optical conductivity of ZnO. We model the wurtzite ZnO within an 8-band k.p approximation. We calculate the optical conductivity by incorporating the first-order vertex correction derived from the Feynman diagrams. Our calculation up to the first-order correction spectrum qualitatively confirms the existence of excitons in wurtzite ZnO.

  6. Trapped surfaces and emergent curved space in the Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Caravelli, Francesco; Hamma, Alioscia; Markopoulou, Fotini; Riera, Arnau

    2012-02-01

    A Bose-Hubbard model on a dynamical lattice was introduced in previous work as a spin system analogue of emergent geometry and gravity. Graphs with regions of high connectivity in the lattice were identified as candidate analogues of spacetime geometries that contain trapped surfaces. We carry out a detailed study of these systems and show explicitly that the highly connected subgraphs trap matter. We do this by solving the model in the limit of no back-reaction of the matter on the lattice, and for states with certain symmetries that are natural for our problem. We find that in this case the problem reduces to a one-dimensional Hubbard model on a lattice with variable vertex degree and multiple edges between the same two vertices. In addition, we obtain a (discrete) differential equation for the evolution of the probability density of particles which is closed in the classical regime. This is a wave equation in which the vertex degree is related to the local speed of propagation of probability. This allows an interpretation of the probability density of particles similar to that in analogue gravity systems: matter inside this analogue system sees a curved spacetime. We verify our analytic results by numerical simulations. Finally, we analyze the dependence of localization on a gradual, rather than abrupt, falloff of the vertex degree on the boundary of the highly connected region and find that matter is localized in and around that region.

  7. Classification for the universal scaling of Néel temperature and staggered magnetization density of three-dimensional dimerized spin-1/2 antiferromagnets

    NASA Astrophysics Data System (ADS)

    Tan, D.-R.; Li, C.-D.; Jiang, F.-J.

    2018-03-01

    Inspired by the recent theoretical development relevant to the experimental data of TlCuCl3, particularly those associated with the universal scaling between the Néel temperature TN and the staggered magnetization density Ms, we carry out a detailed investigation of three-dimensional (3D) dimerized quantum antiferromagnets using the first-principles quantum Monte Carlo calculations. Through this study we wish to better understand the microscopic effects on these scaling relations of TN and Ms, hence to shed light on some of the observed inconsistency between the theoretical and the experimental results. Remarkably, for the considered 3D dimerized models, we find that the established universal scaling relations are not only valid, but can each be categorized within its kind by the amount of stronger antiferromagnetic couplings connected to each spin. Convincing numerical evidence is provided to support the validity of this classification scheme. Based on all the related results known in the literature, we further argue that the proposed categorization for the universal scaling investigated in our paper should be applicable for 3D dimerized spin systems with (certain kinds of) quenched disorder and (or) on lattice geometries other than those considered here. The relevance of the outcomes presented in this investigation to the experiments of TlCuCl3 is briefly discussed as well.

  8. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    NASA Astrophysics Data System (ADS)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (< 10 μm), to handle large particle occupancy, and to require a small fraction of the number of electronic channels of an equivalent pixel detector. The Silicon Vertex Tracker (SVT) for the STAR experiment at RHIC is based on this new technology. The SVT will consist of 216 SDD's, each 6.3 cm by 6.3 cm, arranged in a three layer barrel design, covering 2 π in azimuth and ±1 in pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  9. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the formmore » Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.« less

  10. The Kroll-Lee-Zumino Model and Pion Form Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C. A.; Loewe, M.

    2010-08-04

    At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding S = 0.40 fm{sup 2}. From this value we find for the low energy constant of chiral perturbation theory l{sub 4} = 3.4.« less

  11. 3D change detection in staggered voxels model for robotic sensing and navigation

    NASA Astrophysics Data System (ADS)

    Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.

    2016-05-01

    3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.

  12. Estimation of the refractive index of rigid contact lenses on the basis of back vertex power measurements.

    PubMed

    Pearson, Richard

    2011-03-01

    To assess the possibility of estimating the refractive index of rigid contact lenses on the basis of measurements of their back vertex power (BVP) in air and when immersed in liquid. First, a spreadsheet model was used to quantify the magnitude of errors arising from simulated inaccuracies in the variables required to calculate refractive index. Then, refractive index was calculated from in-air and in-liquid measurements of BVP of 21 lenses that had been made in three negative BVPs from materials with seven different nominal refractive index values. The power measurements were made by two operators on two occasions. Intraobserver reliability showed a mean difference of 0.0033±0.0061 (t = 0.544, P = 0.59), interobserver reliability showed a mean difference of 0.0043±0.0061 (t = 0.707, P = 0.48), and the mean difference between the nominal and calculated refractive index values was -0.0010±0.0111 (t = -0.093, P = 0.93). The spreadsheet prediction that low-powered lenses might be subject to greater errors in the calculated values of refractive index was substantiated by the experimental results. This method shows good intra and interobserver reliabilities and can be used easily in a clinical setting to provide an estimate of the refractive index of rigid contact lenses having a BVP of 3 D or more.

  13. Influence of platelet aspect ratio on the mechanical behaviour of bio-inspired nanocomposites using molecular dynamics.

    PubMed

    Mathiazhagan, S; Anup, S

    2016-06-01

    Superior mechanical properties of biocomposites such as nacre and bone are attributed to their basic building blocks. These basic building blocks have nanoscale features and play a major role in achieving combined stiffening, strengthening and toughening mechanisms. Bioinspired nanocomposites based on these basic building blocks, regularly and stairwise staggered arrangements of hard platelets in soft matrix, have huge potential for developing advanced materials. The study of applicability of mechanical principles of biological materials to engineered materials will guide designing advanced materials. To probe the generic mechanical characteristics of these bioinspired nanocomposites, the model material concept in molecular dynamics (MD) is used. In this paper, the effect of platelets aspect ratio (AR) on the mechanical behaviour of bioinspired nanocomposites is investigated. The obtained Young׳s moduli of both the models and the strengths of the regularly staggered models agree with the available theories. However, the strengths of the stairwise staggered models show significant difference. For the stairwise staggered model, we demonstrate the existence of two critical ARs, a smaller critical AR above which platelet fracture occurs and a higher critical AR above which composite strength remains constant. Our MD study also shows the existence of mechanisms of platelet pull-out and breakage for lower and higher ARs. Pullout mechanism acts as a major source of plasticity. Further, we find that the regularly staggered model can achieve an optimal combination of high Young׳s modulus, flow strength and toughness, and the stairwise staggered model is efficient in obtaining high Young׳s modulus and tensile strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Experimental Test of Data Analysis Methods from Staggered Pair X-ray Beam Position Monitors at Bending Magnet Beamlines

    NASA Astrophysics Data System (ADS)

    Buth, G.; Huttel, E.; Mangold, S.; Steininger, R.; Batchelor, D.; Doyle, S.; Simon, R.

    2013-03-01

    Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed

  15. Vertex operator algebras of Argyres-Douglas theories from M5-branes

    NASA Astrophysics Data System (ADS)

    Song, Jaewon; Xie, Dan; Yan, Wenbin

    2017-12-01

    We study aspects of the vertex operator algebra (VOA) corresponding to Argyres-Douglas (AD) theories engineered using the 6d N=(2, 0) theory of type J on a punctured sphere. We denote the AD theories as ( J b [ k], Y), where J b [ k] and Y represent an irregular and a regular singularity respectively. We restrict to the `minimal' case where J b [ k] has no associated mass parameters, and the theory does not admit any exactly marginal deformations. The VOA corresponding to the AD theory is conjectured to be the W-algebra W^{k_{2d}}(J, Y ) , where {k}_{2d}=-h+b/b+k with h being the dual Coxeter number of J. We verify this conjecture by showing that the Schur index of the AD theory is identical to the vacuum character of the corresponding VOA, and the Hall-Littlewood index computes the Hilbert series of the Higgs branch. We also find that the Schur and Hall-Littlewood index for the AD theory can be written in a simple closed form for b = h. We also test the conjecture that the associated variety of such VOA is identical to the Higgs branch. The M5-brane construction of these theories and the corresponding TQFT structure of the index play a crucial role in our computations.

  16. Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility

    PubMed Central

    Cerutti, David S.; Duke, Robert E.; Darden, Thomas A.; Lybrand, Terry P.

    2009-01-01

    We draw on an old technique for improving the accuracy of mesh-based field calculations to extend the popular Smooth Particle Mesh Ewald (SPME) algorithm as the Staggered Mesh Ewald (StME) algorithm. StME improves the accuracy of computed forces by up to 1.2 orders of magnitude and also reduces the drift in system momentum inherent in the SPME method by averaging the results of two separate reciprocal space calculations. StME can use charge mesh spacings roughly 1.5× larger than SPME to obtain comparable levels of accuracy; the one mesh in an SPME calculation can therefore be replaced with two separate meshes, each less than one third of the original size. Coarsening the charge mesh can be balanced with reductions in the direct space cutoff to optimize performance: the efficiency of StME rivals or exceeds that of SPME calculations with similarly optimized parameters. StME may also offer advantages for parallel molecular dynamics simulations because it permits the use of coarser meshes without requiring higher orders of charge interpolation and also because the two reciprocal space calculations can be run independently if that is most suitable for the machine architecture. We are planning other improvements to the standard SPME algorithm, and anticipate that StME will work synergistically will all of them to dramatically improve the efficiency and parallel scaling of molecular simulations. PMID:20174456

  17. Numerical analysis of laser ablation using the axisymmetric two-temperature model

    NASA Astrophysics Data System (ADS)

    Dziatkiewicz, Jolanta; Majchrzak, Ewa

    2018-01-01

    Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.

  18. Modeling the coevolution of topology and traffic on weighted technological networks

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong

    2007-02-01

    For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.

  19. CS_TOTR: A new vertex centrality method for directed signed networks based on status theory

    NASA Astrophysics Data System (ADS)

    Ma, Yue; Liu, Min; Zhang, Peng; Qi, Xingqin

    Measuring the importance (or centrality) of vertices in a network is a significant topic in complex network analysis, which has significant applications in diverse domains, for example, disease control, spread of rumors, viral marketing and so on. Existing studies mainly focus on social networks with only positive (or friendship) relations, while signed networks with also negative (or enemy) relations are seldom studied. Various signed networks commonly exist in real world, e.g. a network indicating friendship/enmity, love/hate or trust/mistrust relationships. In this paper, we propose a new centrality method named CS_TOTR to give a ranking of vertices in directed signed networks. To design this new method, we use the “status theory” for signed networks, and also adopt the vertex ranking algorithm for a tournament and the topological sorting algorithm for a general directed graph. We apply this new centrality method on the famous Sampson Monastery dataset and obtain a convincing result which shows its validity.

  20. Spinning characteristics of wings II : rectangular Clark Y biplane cellule: 25 percent stagger; 0 degree decalage; gap/chord 1.0

    NASA Technical Reports Server (NTRS)

    Bamber, M J

    1935-01-01

    General methods of theoretical analysis of airplane spinning characteristics have been available for some time. Some of these methods of analysis might be used by designers to predict the spinning characteristics of proposed airplane designs if the necessary aerodynamic data were known. The present investigation, to determine the spinning characteristics of wings, is planned to include variations in airfoil sections, plan forms, and tip shapes of monoplane wings and variations in stagger, gap, and decalage for biplane cellules. The first series of tests, made on a rectangular Clark Y monoplane wing, are reported in reference 1. That report also gives an analysis of the data for predicting the probable effects of various important parameters on the spin for normal airplanes using such a wing. The present report is the second of the series. It gives the aerodynamic characteristics of a rectangular Clark Y biplane cellule in spinning attitudes and includes a discussion of the data, using the method of analysis given in reference 1.

  1. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    NASA Astrophysics Data System (ADS)

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  2. Quantitative description and modeling of real networks

    NASA Astrophysics Data System (ADS)

    Capocci, Andrea; Caldarelli, Guido; de Los Rios, Paolo

    2003-10-01

    We present data analysis and modeling of two particular cases of study in the field of growing networks. We analyze World Wide Web data set and authorship collaboration networks in order to check the presence of correlation in the data. The results are reproduced with good agreement through a suitable modification of the standard Albert-Barabási model of network growth. In particular, intrinsic relevance of sites plays a role in determining the future degree of the vertex.

  3. Readout, first- and second-level triggers of the new Belle silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Abe, R.; Abe, T.; Aihara, H.; Asano, Y.; Aso, T.; Bakich, A.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Dalseno, J.; Dowd, R.; Dragic, J.; Everton, C. W.; Fernholz, R.; Fujii, H.; Gao, Z. W.; Gordon, A.; Guo, Y. N.; Haba, J.; Hara, K.; Hara, T.; Harada, Y.; Haruyama, T.; Hasuko, K.; Hayashi, K.; Hazumi, M.; Heenan, E. M.; Higuchi, T.; Hirai, H.; Hitomi, N.; Igarashi, A.; Igarashi, Y.; Ikeda, H.; Ishino, H.; Itoh, K.; Iwaida, S.; Kaneko, J.; Kapusta, P.; Karawatzki, R.; Kasami, K.; Kawai, H.; Kawasaki, T.; Kibayashi, A.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Lesiak, T.; Limosani, A.; Lin, W. C.; Marlow, D.; Matsumoto, H.; Mikami, Y.; Miyake, H.; Moloney, G. R.; Mori, T.; Nakadaira, T.; Nakano, Y.; Natkaniec, Z.; Nozaki, S.; Ohkubo, R.; Ohno, F.; Okuno, S.; Onuki, Y.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Shibata, T.; Stamen, R.; Stanič, S.; Steininger, H.; Sumisawa, K.; Suzuki, J.; Tajima, H.; Tajima, O.; Takahashi, K.; Takasaki, F.; Tamura, N.; Tanaka, M.; Taylor, G. N.; Terazaki, H.; Tomura, T.; Trabelsi, K.; Trischuk, W.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ueno, K.; Uozaki, N.; Ushiroda, Y.; Vahsen, S.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamada, Y.; Yamamoto, H.; Yamashita, Y.; Yamashita, Y.; Yamauchi, M.; Yanai, H.; Yang, R.; Yasu, Y.; Yokoyama, M.; Ziegler, T.; Žontar, D.

    2004-12-01

    A major upgrade of the Silicon Vertex Detector (SVD 2.0) of the Belle experiment at the KEKB factory was installed along with new front-end and back-end electronics systems during the summer shutdown period in 2003 to cope with higher particle rates, improve the track resolution and meet the increasing requirements of radiation tolerance. The SVD 2.0 detector modules are read out by VA1TA chips which provide "fast or" (hit) signals that are combined by the back-end FADCTF modules to coarse, but immediate level 0 track trigger signals at rates of several tens of a kHz. Moreover, the digitized detector signals are compared to threshold lookup tables in the FADCTFs to pass on hit information on a single strip basis to the subsequent level 1.5 trigger system, which reduces the rate below the kHz range. Both FADCTF and level 1.5 electronics make use of parallel real-time processing in Field Programmable Gate Arrays (FPGAs), while further data acquisition and event building is done by PC farms running Linux. The new readout system hardware is described and the first results obtained with cosmics are shown.

  4. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models

  5. A CMOS pixel sensor prototype for the outer layers of linear collider vertex detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Morel, F.; Hu-Guo, C.; Himmi, A.; Dorokhov, A.; Hu, Y.

    2015-01-01

    The International Linear Collider (ILC) expresses a stringent requirement for high precision vertex detectors (VXD). CMOS pixel sensors (CPS) have been considered as an option for the VXD of the International Large Detector (ILD), one of the detector concepts proposed for the ILC. MIMOSA-31 developed at IPHC-Strasbourg is the first CPS integrated with 4-bit column-level ADC for the outer layers of the VXD, adapted to an original concept minimizing the power consumption. It is composed of a matrix of 64 rows and 48 columns. The pixel concept combines in-pixel amplification with a correlated double sampling (CDS) operation in order to reduce the temporal noise and fixed pattern noise (FPN). At the bottom of the pixel array, each column is terminated with a self-triggered analog-to-digital converter (ADC). The ADC design was optimized for power saving at a sampling frequency of 6.25 MS/s. The prototype chip is fabricated in a 0.35 μm CMOS technology. This paper presents the details of the prototype chip and its test results.

  6. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  7. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Heijne, E. H. M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A. P.; Fornaini, A.; van der Graaf, H.; Kluit, P.; Timmermans, J.; Visschers, J. L.; Schmitz, J.

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1 mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  8. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.

    2011-02-01

    The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

  9. Synthesis and structure of [Na11(OtBu)10(OH)]: 1H NMR shift of a hydroxide ion encapsulated in a 21-vertex alcoholate cage.

    PubMed

    Geier, Jens; Grützmacher, Hansjörg

    2003-12-07

    [Na11(OtBu)10(OH)], a hydroxide enclosing 21-vertex cage compound, was found to crystallize from mixtures of sodium tert.butanolate with sodium hydroxide. Its structure can be derived from the known (NaOtBu)6-hexaprismane by replacing one butanolate unit with OH- and capping the latter with five additional units of NaOtBu. The hydroxide shows a signal at -3.21 ppm in the 1H NMR spectrum.

  10. Mean-line Modeling of an Axial Turbine

    NASA Astrophysics Data System (ADS)

    Tkachenko, A. Yu; Ostapyuk, Ya A.; Filinov, E. P.

    2018-01-01

    The article describes the approach for axial turbine modeling along the mean line. It bases on the developed model of an axial turbine blade row. This model is suitable for both nozzle vanes and rotor blades simulations. Consequently, it allows the simulation of the single axial turbine stage as well as a multistage turbine. The turbine stage model can take into account the cooling air flow before and after a throat of each blade row, outlet straightener vanes existence and stagger angle controlling of nozzle vanes. The axial turbine estimation method includes the loss estimation and thermogasdynamic analysis. The single stage axial turbine was calculated with the developed model. The obtained results deviation was within 3% when comparing with the results of CFD modeling.

  11. A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows

    DOE PAGES

    Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; ...

    2015-03-11

    High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linearmore » reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.« less

  12. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition,more » the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.« less

  13. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  14. Full dyon excitation spectrum in extended Levin-Wen models

    NASA Astrophysics Data System (ADS)

    Hu, Yuting; Geer, Nathan; Wu, Yong-Shi

    2018-05-01

    In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.

  15. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  16. The Construction of {P}_{2}\\vartriangleright H-antimagic graph using smaller edge-antimagic vertex labeling

    NASA Astrophysics Data System (ADS)

    Prihandini, Rafiantika M.; Agustin, I. H.; Dafik

    2018-04-01

    In this paper we use simple and non trivial graph. If there exist a bijective function g:V(G) \\cup E(G)\\to \\{1,2,\\ldots,|V(G)|+|E(G)|\\}, such that for all subgraphs {P}2\\vartriangleright H of G isomorphic to H, then graph G is called an (a, b)-{P}2\\vartriangleright H-antimagic total graph. Furthermore, we can consider the total {P}2\\vartriangleright H-weights W({P}2\\vartriangleright H)={\\sum }v\\in V({P2\\vartriangleright H)}f(v)+{\\sum }e\\in E({P2\\vartriangleright H)}f(e) which should form an arithmetic sequence {a, a + d, a + 2d, …, a + (n ‑ 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, b)-{P}2\\vartriangleright H antimagic total labeling for graph operation of comb product namely of G=L\\vartriangleright H, where L is a (b, d*)-edge antimagic vertex labeling graph and H is a connected graph.

  17. High-luminosity primary vertex selection in top-quark studies using the Collider Detector at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzatu, Adrian; /McGill U.

    2006-08-01

    Improving our ability to identify the top quark pair (t{bar t}) primary vertex (PV) on an event-by-event basis is essential for many analyses in the lepton-plus-jets channel performed by the Collider Detector at Fermilab (CDF) Collaboration. We compare the algorithm currently used by CDF (A1) with another algorithm (A2) using Monte Carlo simulation at high instantaneous luminosities. We confirm that A1 is more efficient than A2 at selecting the t{bar t} PV at all PV multiplicities, both with efficiencies larger than 99%. Event selection rejects events with a distance larger than 5 cm along the proton beam between the t{barmore » t} PV and the charged lepton. We find flat distributions for the signal over background significance of this cut for all cut values larger than 1 cm, for all PV multiplicities and for both algorithms. We conclude that any cut value larger than 1 cm is acceptable for both algorithms under the Tevatron's expected instantaneous luminosity improvements.« less

  18. Interface inequivalence of the InP/InAlAs/InP staggered double heterostructure grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Böhrer, J.; Krost, A.; Heitz, R.; Heinrichsdorff, F.; Eckey, L.; Bimberg, D.; Cerva, H.

    1996-02-01

    The optical and structural properties of the normal InAlAs on InP and the inverted InP on the InAlAs staggered band lineup interface grown by metalorganic chemical vapor deposition (MOCVD) are compared by use of transmission electron microscopy (TEM), time integrated, and time resolved photoluminescence. TEM images show that both interfaces are dissimilar. The normal interface is very abrupt. The inverted interface shows an additional graded layer of about 2.5 nm in width of In1-xAlxAsyP1-y with x (0.48-0) and y (1.0-0.0). A large optical anisotropy exists because of the inequivalence of the two interfaces. The larger spatial separation of the carriers at the inverted interface is responsible for a smaller overlap of the electron and hole wave functions and for that reason a one order of magnitude longer e-h luminescence decay time of 45 ns is observed. The normal interface transition shifts approximately to the third root of excitation while the inverted interface transition shifts logarithmically.

  19. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  20. Hierarchical graphs for better annotations of rule-based models of biochemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bin; Hlavacek, William

    2009-01-01

    In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less

  1. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    NASA Astrophysics Data System (ADS)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  2. Addition of a thallium vertex to empty and centered nine-atom deltahedral zintl ions of germanium and tin.

    PubMed

    Rios, Daniel; Gillett-Kunnath, Miriam M; Taylor, Jacob D; Oliver, Allen G; Sevov, Slavi C

    2011-03-21

    Nickel atoms were inserted into nine-atom deltahedral Zintl ions of E(9)(4-) (E = Ge, Sn) via reactions with Ni(cod)(2) (cod = cyclooctadiene), and [Ni@Sn(9)](3-) was structurally characterized. Both the empty and the Ni-centered clusters react with TlCp (Cp = cyclopentadienyl anion) and add a thallium vertex to form the deltahedral ten-atom closo-species [E(9)Tl](3-) and [Ni@E(9)Tl](3-), respectively. The structures of [Ge(9)Tl](3-) and [Ni@Sn(9)Tl](3-) showed that, as expected, the geometry of the ten-atom clusters is that of a bicapped square antiprism where the Tl-atom occupies one of the two capping vertices. This illustrates that centering a nine-atom cluster with a nickel atom does not change its reactivity toward TlCp. All compounds were characterized by electrospray mass spectrometry.

  3. Structures and properties of spherical 90-vertex fullerene-like nanoballs.

    PubMed

    Scheer, Manfred; Schindler, Andrea; Bai, Junfeng; Johnson, Brian P; Merkle, Roger; Winter, Rainer; Virovets, Alexander V; Peresypkina, Eugenia V; Blatov, Vladislav A; Sierka, Marek; Eckert, Hellmut

    2010-02-15

    By applying the proper stoichiometry of 1:2 to [Cp(R)Fe(eta(5)-P(5))] and CuX (X=Cl, Br) and dilution conditions in mixtures of CH(3)CN and solvents like CH(2)Cl(2), 1,2-Cl(2)C(6)H(4), toluene, and THF, nine spherical giant molecules having the simplified general formula [Cp(R)Fe(eta(5)-P(5))]@[{Cp(R)Fe(eta(5)-P(5))}(12){CuX}(25)(CH(3)CN)(10)] (Cp(R)=eta(5)-C(5)Me(5) (Cp*); eta(5)-C(5)Me(4)Et (Cp(Et)); X=Cl, Br) have been synthesized and structurally characterized. The products consist of 90-vertex frameworks consisting of non-carbon atoms and forming fullerene-like structural motifs. Besides the mostly neutral products, some charged derivatives have been isolated. These spherical giant molecules show an outer diameter of 2.24 (X=Cl) to 2.26 nm (X=Br) and have inner cavities of 1.28 (X=Cl) and 1.20 nm (X=Br) in size. In most instances the inner voids of these nanoballs encapsulate one molecule of [Cp*Fe(eta(5)-P(5))], which reveals preferred orientations of pi-pi stacking between the cyclo-P(5) rings of the guest and those of the host molecules. Moreover, pi-pi and sigma-pi interactions are also found in the packing motifs of the balls in the crystal lattice. Electrochemical investigations of these soluble molecules reveal one irreversible multi-electron oxidation at E(p)=0.615 V and two reduction steps (-1.10 and -2.0 V), the first of which corresponds to about 12 electrons. Density functional calculations reveal that during oxidation and reduction the electrons are withdrawn or added to the surface of the spherical nanomolecules, and no Cu(2+) species are involved.

  4. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz, V. Araujo; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Da Costa, J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.

    2017-04-01

    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb-1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements. [Figure not available: see fulltext.

  5. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at $$ \\sqrt{s}=8 $$ TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb –1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured withmore » respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. Here, the measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements.« less

  6. Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at $$ \\sqrt{s}=8 $$ TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-04-20

    To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb –1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured withmore » respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. Here, the measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements.« less

  7. Fluid Structure Modeling and SImulation of a Modified KC-135R Icing Tanker Boom

    DTIC Science & Technology

    2013-01-07

    representative boom. Bernoulli beam elements with six degrees of freedom per node are used to model the water tubes. Each tube was discretized with 101... ball vertex spring analogy and leverages the ALE formulation of AERO-F. The number of increments used to deform the mesh in the vicinity of the

  8. Fluid-Structure Modeling and Simulation of a Modified KC-135R Icing Tanker Boom

    DTIC Science & Technology

    2013-01-07

    representative boom. Bernoulli beam elements with six degrees of freedom per node are used to model the water tubes. Each tube was discretized with 101... ball vertex spring analogy and leverages the ALE formulation of AERO-F. The number of increments used to deform the mesh in the vicinity of the

  9. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE PAGES

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; ...

    2016-06-10

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  10. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA 7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA 7 forms well-ordered crystals, whereas rA 6 forms fragile crystalline-like structures, and rA 5, rA 8 and rA 11 fail to crystallize. Our findings support studies from ~50 years ago: one showed usingmore » spectroscopic methods that duplex formation at pH 4.5 largely starts with rA 7 and begins to plateau with rA 8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP–rAMP helix base pair. Lastly, our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.« less

  11. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois

    2014-12-01

    Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.

  12. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  13. Exotic quarks in Twin Higgs models

    DOE PAGES

    Cheng, Hsin -Chia; Jung, Sunghoon; Salvioni, Ennio; ...

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of themore » model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. As a result, depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.« less

  14. Measurement of $$B\\bar{B}$$ Angular Correlations based on Secondary Vertex Reconstruction at $$\\sqrt{s}=7$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizablemore » fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.« less

  15. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  16. Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance

    NASA Astrophysics Data System (ADS)

    Abid, Najmul; Mirkhalaf, Mohammad; Barthelat, Francois

    2018-03-01

    Natural materials such as nacre, collagen, and spider silk are composed of staggered stiff and strong inclusions in a softer matrix. This type of hybrid microstructure results in remarkable combinations of stiffness, strength, and toughness and it now inspires novel classes of high-performance composites. However, the analytical and numerical approaches used to predict and optimize the mechanics of staggered composites often neglect statistical variations and inhomogeneities, which may have significant impacts on modulus, strength, and toughness. Here we present an analysis of localization using small representative volume elements (RVEs) and large scale statistical volume elements (SVEs) based on the discrete element method (DEM). DEM is an efficient numerical method which enabled the evaluation of more than 10,000 microstructures in this study, each including about 5,000 inclusions. The models explore the combined effects of statistics, inclusion arrangement, and interface properties. We find that statistical variations have a negative effect on all properties, in particular on the ductility and energy absorption because randomness precipitates the localization of deformations. However, the results also show that the negative effects of random microstructures can be offset by interfaces with large strain at failure accompanied by strain hardening. More specifically, this quantitative study reveals an optimal range of interface properties where the interfaces are the most effective at delaying localization. These findings show how carefully designed interfaces in bioinspired staggered composites can offset the negative effects of microstructural randomness, which is inherent to most current fabrication methods.

  17. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    PubMed Central

    Zhang, Jiwei; Presley, Gerald N.; Ryu, Jae-San; Menke, Jon R.; Figueroa, Melania; Orr, Galya; Schilling, Jonathan S.

    2016-01-01

    Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS are strongly oxidizing and nonselective, these two steps are likely segregated. A common hypothesis has been that brown rot fungi use a concentration gradient of chelated metal ions to confine ROS generation inside wood cell walls before enzymes can infiltrate. We examined an alternative: that LOX components involved in ROS production are differentially expressed by brown rot fungi ahead of GH components. We used spatial mapping to resolve a temporal sequence in Postia placenta, sectioning thin wood wafers colonized directionally. Among sections, we measured gene expression by whole-transcriptome shotgun sequencing (RNA-seq) and assayed relevant enzyme activities. We found a marked pattern of LOX up-regulation in a narrow (5-mm, 48-h) zone at the hyphal front, which included many genes likely involved in ROS generation. Up-regulation of GH5 endoglucanases and many other GHs clearly occurred later, behind the hyphal front, with the notable exceptions of two likely expansins and a GH28 pectinase. Our results support a staggered mechanism for brown rot that is controlled by differential expression rather than microenvironmental gradients. This mechanism likely results in an oxidative pretreatment of lignocellulose, possibly facilitated by expansin- and pectinase-assisted cell wall swelling, before cellulases and hemicellulases are deployed for polysaccharide depolymerization. PMID:27621450

  18. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiwei; Presley, Gerald N.; Hammel, Kenneth E.

    The fungi that cause brown rot of wood are essential contributors to biomass recycling in forest ecosystems. Their highly efficient cellulolytic systems, which may have practical applications, apparently depend on a combination of two mechanisms: nonselective oxidation of the lignocellulose by reactive oxygen species (ROS) coupled with hydrolysis of the polysaccharide components by a limited set of glycoside hydrolases (GHs). Since the production of strongly oxidizing ROS appears incompatible with the operation of GHs, it has been proposed that the fungi regulate ROS production by maintaining concentration gradients of the chelated metal ions they use to generate extracellular oxidants. However,more » calculations have indicated that this protective mechanism is physically infeasible. We examined a different hypothesis, that expression of ROS and GH components is temporally staggered by brown rot fungi in wood. We sectioned thin wafers of spruce and aspen that had been colonized directionally by Postia placenta and measured expression of relevant genes and some of the encoded enzymes, thus using the spatial distribution of fungal hyphae to resolve a fine-scale temporal sequence. Hierarchical clustering of gene expression for eight oxidoreductases thought to have a role in ROS production and of eight GHs revealed a zone of oxidoreductase upregulation at the hyphal front that persisted about 48 h before upregulation of the GHs. Additional evidence for differential expression was provided by localization of endoglucanase, xylanase, mannanase, and laccase activities in the colonized wood. Our results support a two-step mechanism for brown rot, in which substrate oxidation precedes enzymatic hydrolysis.« less

  19. Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta

    DOE PAGES

    Zhang, Jiwei; Presley, Gerald N.; Hammel, Kenneth E.; ...

    2016-09-12

    The fungi that cause brown rot of wood are essential contributors to biomass recycling in forest ecosystems. Their highly efficient cellulolytic systems, which may have practical applications, apparently depend on a combination of two mechanisms: nonselective oxidation of the lignocellulose by reactive oxygen species (ROS) coupled with hydrolysis of the polysaccharide components by a limited set of glycoside hydrolases (GHs). Since the production of strongly oxidizing ROS appears incompatible with the operation of GHs, it has been proposed that the fungi regulate ROS production by maintaining concentration gradients of the chelated metal ions they use to generate extracellular oxidants. However,more » calculations have indicated that this protective mechanism is physically infeasible. We examined a different hypothesis, that expression of ROS and GH components is temporally staggered by brown rot fungi in wood. We sectioned thin wafers of spruce and aspen that had been colonized directionally by Postia placenta and measured expression of relevant genes and some of the encoded enzymes, thus using the spatial distribution of fungal hyphae to resolve a fine-scale temporal sequence. Hierarchical clustering of gene expression for eight oxidoreductases thought to have a role in ROS production and of eight GHs revealed a zone of oxidoreductase upregulation at the hyphal front that persisted about 48 h before upregulation of the GHs. Additional evidence for differential expression was provided by localization of endoglucanase, xylanase, mannanase, and laccase activities in the colonized wood. Our results support a two-step mechanism for brown rot, in which substrate oxidation precedes enzymatic hydrolysis.« less

  20. Yang-Baxter and other relations for free-fermion and Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, B.

    1987-02-01

    Eight-vertex, free fermion, and Ising models are formulated using a convention that emphasizes the algebra of the local transition operators that arise in the quantum inverse method. Equivalent classes of models, are investigated, with particular emphasis on the role of the star-triangle relations. Using these results, a natural and symmetrical parametrization is introduced and Yang-Baxter relations are constructed in an elementary way. The paper concludes with a consideration of duality, which links the present work to a recent paper of Baxter on the free fermion model.

  1. Nonperturbative comparison of clover and highly improved staggered quarks in lattice QCD and the properties of the Φ meson

    DOE PAGES

    Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.; ...

    2017-10-02

    Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less

  2. Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic

    Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient

  3. Automatised data quality monitoring of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Bel, L.; Crocombe, A. Ch.; Gersabeck, M.; Pearce, A.; Majewski, M.; Szumlak, T.

    2017-10-01

    The LHCb Vertex Locator (VELO) is a silicon strip semiconductor detector operating at just 8mm distance to the LHC beams. Its 172,000 strips are read at a frequency of 1.1 MHz and processed by off-detector FPGAs followed by a PC cluster that reduces the event rate to about 10 kHz. During the second run of the LHC, which lasts from 2015 until 2018, the detector performance will undergo continued change due to radiation damage effects. This necessitates a detailed monitoring of the data quality to avoid adverse effects on the physics analysis performance. The VELO monitoring infrastructure has been re-designed compared to the first run of the LHC when it was based on manual checks. The new system is based around an automatic analysis framework, which monitors the performance of new data as well as long-term trends and using dedicated algorithms flags issues whenever they arise. The new analysis framework then analyses the plots that are produced by these algorithms. One of its tasks is to perform custom comparisons between the newly processed data and that from reference runs. The most-likely scenario in which this analysis would identify an issue is the parameters of the readout electronics no longer being optimal and requiring retuning. The data of the monitoring plots can be reduced further, e.g. by evaluating averages, and these quantities are input to long-term trending. This is used to detect slow variation of quantities, which are not detectable by the comparison of two nearby runs. Such gradual change is what is expected due to radiation damage effects. It is essential to detect these changes early such that measures can be taken, e.g. adjustments of the operating voltage, to prevent any impact on the quality of high-level quantities and thus on physics analyses. The plots as well as the analysis results and trends are made available through graphical user interfaces (GUIs). These GUIs are dynamically configured by a single configuration that determines the

  4. Cosine problem in EPRL/FK spinfoam model

    NASA Astrophysics Data System (ADS)

    Vojinović, Marko

    2014-01-01

    We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein-Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.

  5. Description and performance of track and primary-vertex reconstruction with the CMS tracker

    DOE PAGES

    Chatrchyan, Serguei

    2014-10-16

    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p T > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5.more » The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p T = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p T, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.« less

  6. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    NASA Astrophysics Data System (ADS)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  7. Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model

    NASA Astrophysics Data System (ADS)

    Chu, Kit-fai; Huang, Peng-hui; Liu, Hui

    2018-05-01

    The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.

  8. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport*

    PubMed Central

    Mallette, Evan

    2017-01-01

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988

  9. Analysis of radiology business models.

    PubMed

    Enzmann, Dieter R; Schomer, Donald F

    2013-03-01

    As health care moves to value orientation, radiology's traditional business model faces challenges to adapt. The authors describe a strategic value framework that radiology practices can use to best position themselves in their environments. This simplified construct encourages practices to define their dominant value propositions. There are 3 main value propositions that form a conceptual triangle, whose vertices represent the low-cost provider, the product leader, and the customer intimacy models. Each vertex has been a valid market position, but each demands specific capabilities and trade-offs. The underlying concepts help practices select value propositions they can successfully deliver in their competitive environments. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model

    NASA Astrophysics Data System (ADS)

    Kanazawa, Takuya; Kieburg, Mario

    2018-06-01

    We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.

  11. Observation of b 2 symmetry vibrational levels of the SO 2C 1B 2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE PAGES

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; ...

    2016-04-14

    Here, the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b 2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ~ state are vibronically forbidden. We use IR-UV double resonance to observe the b 2 vibrational levels of the C state below 1600 cm –1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results frommore » the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a 1 and b 2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  12. Observation of b 2 symmetry vibrational levels of the SO 2C 1B 2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.

    Here, the C 1B 2 state of SO 2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b 2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ~ state are vibronically forbidden. We use IR-UV double resonance to observe the b 2 vibrational levels of the C state below 1600 cm –1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results frommore » the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a 1 and b 2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  13. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  14. Results from the First Beam-Induced Reconstructed Tracks in the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Rodrigues, E.

    2010-04-01

    LHCb is a dedicated experiment at the LHC to study CP violation and rare b decays. The vertex locator (VELO) is a silicon strip detector designed to measure precisely the production and decay vertices of B-mesons. The detector is positioned at 8 mm of the LHC beams and will operate in an extremely harsh radiation environment. The VELO consists of two retractable detector halves with 21 silicon micro-strip tracking modules each. A module is composed of two n+-on-n 300 μm thick half disc sensors with R and Φ micro-strip geometry. The detectors are operated in vacuum and a bi-phase CO2 cooling system is used. The full system has been operated since June 2008 and its commissioning experience will be reported. During the LHC synchronization tests in August and September 2008, and June 2009 the LHCb detectors measured secondary particles produced by the interaction of the LHC primary beam on a beam dump. About 50,000 tracks were reconstructed in the VELO and they were used to derive the relative timing alignment between the sensors and for the first evaluation of the spatial alignment. Using this track sample the VELO has been aligned to an accuracy of 5 μm. A single hit resolution of 10 μm was obtained at the smallest pitch for tracks of perpendicular incidence. The design and the main components of the detector system are introduced. The commissioning of the detector is reported and the talk will focus on the results obtained using the first beam-induced reconstructed tracks.

  15. Scaling and percolation in the small-world network model

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Watts, D. J.

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.

  16. Applicability of central auditory processing disorder models.

    PubMed

    Jutras, Benoît; Loubert, Monique; Dupuis, Jean-Luc; Marcoux, Caroline; Dumont, Véronique; Baril, Michèle

    2007-12-01

    Central auditory processing disorder ([C]APD) is a relatively recent construct that has given rise to 2 theoretical models: the Buffalo Model and the Bellis/Ferre Model. These models describe 4 and 5 (C)APD categories, respectively. The present study examines the applicability of these models to clinical practice. Neither of these models was based on data from peer-reviewed sources. This is a retrospective study that reviewed 178 records of children diagnosed with (C)APD, of which 48 were retained for analysis. More than 80% of the children could be classified into one of the Buffalo Model categories, while more than 90% remained unclassified under the Bellis/Ferre Model. This discrepancy can be explained by the fact that the classification of the Buffalo Model is based primarily on a single central auditory test (Staggered Spondaic Word), whereas the Bellis/Ferre Model classification uses a combination of auditory test results. The 2 models provide a conceptual framework for (C)APD, but they must be further refined to be fully applicable in clinical settings.

  17. Numerical Simulations of STOVL Hot Gas Ingestion in Ground Proximity Using a Multigrid Solution Procedure

    NASA Technical Reports Server (NTRS)

    Wang, Gang

    2003-01-01

    A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.

  18. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport.

    PubMed

    Mallette, Evan; Kimber, Matthew S

    2017-01-27

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Using Geometry-Based Metrics as Part of Fitness-for-Purpose Evaluations of 3D City Models

    NASA Astrophysics Data System (ADS)

    Wong, K.; Ellul, C.

    2016-10-01

    Three-dimensional geospatial information is being increasingly used in a range of tasks beyond visualisation. 3D datasets, however, are often being produced without exact specifications and at mixed levels of geometric complexity. This leads to variations within the models' geometric and semantic complexity as well as the degree of deviation from the corresponding real world objects. Existing descriptors and measures of 3D data such as CityGML's level of detail are perhaps only partially sufficient in communicating data quality and fitness-for-purpose. This study investigates whether alternative, automated, geometry-based metrics describing the variation of complexity within 3D datasets could provide additional relevant information as part of a process of fitness-for-purpose evaluation. The metrics include: mean vertex/edge/face counts per building; vertex/face ratio; minimum 2D footprint area and; minimum feature length. Each metric was tested on six 3D city models from international locations. The results show that geometry-based metrics can provide additional information on 3D city models as part of fitness-for-purpose evaluations. The metrics, while they cannot be used in isolation, may provide a complement to enhance existing data descriptors if backed up with local knowledge, where possible.

  20. Spin-foam models and the physical scalar product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alesci, Emanuele; Centre de Physique Theorique de Luminy, Universite de la Mediterranee, F-13288 Marseille; Noui, Karim

    2008-11-15

    This paper aims at clarifying the link between loop quantum gravity and spin-foam models in four dimensions. Starting from the canonical framework, we construct an operator P acting on the space of cylindrical functions Cyl({gamma}), where {gamma} is the four-simplex graph, such that its matrix elements are, up to some normalization factors, the vertex amplitude of spin-foam models. The spin-foam models we are considering are the topological model, the Barrett-Crane model, and the Engle-Pereira-Rovelli model. If one of these spin-foam models provides a covariant quantization of gravity, then the associated operator P should be the so-called ''projector'' into physical statesmore » and its matrix elements should give the physical scalar product. We discuss the possibility to extend the action of P to any cylindrical functions on the space manifold.« less

  1. High Performance Automatic Character Skinning Based on Projection Distance

    NASA Astrophysics Data System (ADS)

    Li, Jun; Lin, Feng; Liu, Xiuling; Wang, Hongrui

    2018-03-01

    Skeleton-driven-deformation methods have been commonly used in the character deformations. The process of painting skin weights for character deformation is a long-winded task requiring manual tweaking. We present a novel method to calculate skinning weights automatically from 3D human geometric model and corresponding skeleton. The method first, groups each mesh vertex of 3D human model to a skeleton bone by the minimum distance from a mesh vertex to each bone. Secondly, calculates each vertex's weights to the adjacent bones by the vertex's projection point distance to the bone joints. Our method's output can not only be applied to any kind of skeleton-driven deformation, but also to motion capture driven (mocap-driven) deformation. Experiments results show that our method not only has strong generality and robustness, but also has high performance.

  2. Implicit solution of Navier-Stokes equations on staggered curvilinear grids using a Newton-Krylov method with a novel analytical Jacobian.

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez

    2015-11-01

    Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.

  3. Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation

    NASA Astrophysics Data System (ADS)

    Coleman, Kenneth; Kosson, Robert

    1989-07-01

    Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.

  4. Coherent manipulation of spin correlations in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  5. Elastic modelling in tilted transversely isotropic media with convolutional perfectly matched layer boundary conditions

    NASA Astrophysics Data System (ADS)

    Han, Byeongho; Seol, Soon Jee; Byun, Joongmoo

    2012-04-01

    To simulate wave propagation in a tilted transversely isotropic (TTI) medium with a tilting symmetry-axis of anisotropy, we develop a 2D elastic forward modelling algorithm. In this algorithm, we use the staggered-grid finite-difference method which has fourth-order accuracy in space and second-order accuracy in time. Since velocity-stress formulations are defined for staggered grids, we include auxiliary grid points in the z-direction to meet the free surface boundary conditions for shear stress. Through comparisons of displacements obtained from our algorithm, not only with analytical solutions but also with finite element solutions, we are able to validate that the free surface conditions operate appropriately and elastic waves propagate correctly. In order to handle the artificial boundary reflections efficiently, we also implement convolutional perfectly matched layer (CPML) absorbing boundaries in our algorithm. The CPML sufficiently attenuates energy at the grazing incidence by modifying the damping profile of the PML boundary. Numerical experiments indicate that the algorithm accurately expresses elastic wave propagation in the TTI medium. At the free surface, the numerical results show good agreement with analytical solutions not only for body waves but also for the Rayleigh wave which has strong amplitude along the surface. In addition, we demonstrate the efficiency of CPML for a homogeneous TI medium and a dipping layered model. Only using 10 grid points to the CPML regions, the artificial reflections are successfully suppressed and the energy of the boundary reflection back into the effective modelling area is significantly decayed.

  6. Structural, vibrational, and quasiparticle properties of the Peierls semiconductor BaBiO3 : A hybrid functional and self-consistent GW+vertex-corrections study

    NASA Astrophysics Data System (ADS)

    Franchini, C.; Sanna, A.; Marsman, M.; Kresse, G.

    2010-02-01

    BaBiO3 is characterized by a charge disproportionation with half of the Bi atoms possessing a valence 3+ and half a valence 5+ . Because of self-interaction errors, local- and semilocal-density functionals fail to describe the charge disproportionation quantitatively, yielding a too small structural distortion and no band gap. Using hybrid functionals, we obtain a satisfactory description of the structural, electronic, optical, and vibrational properties of BaBiO3 . The results obtained using GW (Green’s function G and screened Coulomb potential W) based schemes on top of hybrid functionals, including fully self-consistent GW calculations with vertex corrections in the dielectric screening, qualitatively confirm the Heyd-Scuseria-Ernzerhof picture but a systematic overestimation of the band gap by about 0.4 eV is observed.

  7. Anomalous U(1) models in four and five dimensions and their anomaly poles

    NASA Astrophysics Data System (ADS)

    Armillis, Roberta; Corianò, Claudio; Delle Rose, Luigi; Guzzi, Marco

    2009-12-01

    We analyze the role played by anomaly poles in an anomalous gauge theory by discussing their signature in the corresponding off-shell effective action. The origin of these contributions, in the most general kinematical case, is elucidated by performing a complete analysis of the anomaly vertex at perturbative level. We use two independent (but equivalent) representations: the Rosenberg representation and the longitudinal/transverse (L/T) parameterization, used in recent studies of g-2 of the muon and in the proof of non-renormalization theorems of the anomaly vertex. The poles extracted from the L/T parameterization do not couple in the infrared for generic anomalous vertices, as in Rosenberg, but we show that they are responsible for the violations of unitarity in the UV region, using a class of pole-dominated amplitudes. We conclude that consistent formulations of anomalous models require necessarily the cancellation of these polar contributions. Establishing the UV significance of these terms provides a natural bridge between the anomalous effective action and its completion by a nonlocal theory. Some additional difficulties with unitarity of the mechanism of inflow in extra dimensional models with an anomalous theory on the brane, due to the presence of anomaly poles, are also pointed out.

  8. Technical report series on global modeling and data assimilation. Volume 5: Documentation of the AIRES/GEOS dynamical core, version 2

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Takacs, Lawrence L.

    1995-01-01

    A detailed description of the numerical formulation of Version 2 of the ARIES/GEOS 'dynamical core' is presented. This code is a nearly 'plug-compatible' dynamics for use in atmospheric general circulation models (GCMs). It is a finite difference model on a staggered latitude-longitude C-grid. It uses second-order differences for all terms except the advection of vorticity by the rotation part of the flow, which is done at fourth-order accuracy. This dynamical core is currently being used in the climate (ARIES) and data assimilation (GEOS) GCMs at Goddard.

  9. Microseismic response characteristics modeling and locating of underground water supply pipe leak

    NASA Astrophysics Data System (ADS)

    Wang, J.; Liu, J.

    2015-12-01

    In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location

  10. Quality Improvement Initiatives Lead to Reduction in Nulliparous Term Singleton Vertex Cesarean Delivery Rate

    PubMed Central

    Vadnais, Mary A.; Hacker, Michele R.; Shah, Neel T.; Jordan, JoAnn; Modest, Anna M.; Siegel, Molly; Golen, Toni H.

    2018-01-01

    Background The nulliparous term singleton vertex (NTSV) cesarean delivery rate has been recognized as a meaningful benchmark. Variation in the NTSV cesarean delivery rate among hospitals and providers suggests many hospitals may be able to safely improve their rates. The NTSV cesarean delivery rate at the authors’ institution was higher than state and national averages. This study was conducted to determine the influence of a set of quality improvement interventions on the NTSV cesarean delivery rate. Methods From 2008 through 2015, at a single tertiary care academic medical center, a multi-strategy approach that included provider education, provider feedback, and implementation of new policies was used to target evidence-based and inferred factors that influence the NTSV cesarean delivery rate. Data on mode of delivery, maternal outcomes, and neonatal outcomes were collected from birth certificates and administrative claims data. The Cochran-Armitage test and linear regression were used to calculate the p-trend for categorical and continuous variables, respectively. Results More than 20,000 NTSV deliveries were analyzed, including more than 15,000 during the intervention period. The NTSV cesarean delivery rate declined from 35% to 21% over eight years. The total cesarean delivery rate declined as well. Increase in meconium aspiration syndrome and maternal transfusion were observed. Conclusion Quality improvement initiatives can decrease the NTSV cesarean delivery rate. Any increased incidence of fetal or maternal complications associated with decreased NTSV cesarean delivery rate should be considered in the context of the risks and benefits of vaginal delivery compared to cesarean delivery. PMID:28334563

  11. Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs

    DTIC Science & Technology

    2014-06-01

    comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree

  12. Optimal variable-grid finite-difference modeling for porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-12-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs.

  13. Euclidean bridge to the relativistic constituent quark model

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.

    2017-03-01

    Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.

  14. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments.

    PubMed

    Astashkina, Anna; Grainger, David W

    2014-04-01

    Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Weighted Configuration Model and Inhomogeneous Epidemics

    NASA Astrophysics Data System (ADS)

    Britton, Tom; Deijfen, Maria; Liljeros, Fredrik

    2011-12-01

    A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight (reflecting how closely `connected' the corresponding vertices are). It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R 0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account.

  16. Comparison of the ferromagnetic Blume-Emery-Griffiths model and the AF spin-1 longitudinal Ising model at low temperature

    NASA Astrophysics Data System (ADS)

    Thomaz, M. T.; Corrêa Silva, E. V.

    2016-03-01

    We derive the exact Helmholtz free energy (HFE) of the standard and staggered one-dimensional Blume-Emery-Griffiths (BEG) model in the presence of an external longitudinal magnetic field. We discuss in detail the thermodynamic behavior of the ferromagnetic version of the model, which exhibits magnetic field-dependent plateaux in the z-component of its magnetization at low temperatures. We also study the behavior of its specific heat and entropy, both per site, at finite temperature. The degeneracy of the ground state, at T=0, along the lines that separate distinct phases in the phase diagram of the ferromagnetic BEG model is calculated, extending the study of the phase diagram of the spin-1 antiferromagnetic (AF) Ising model in S.M. de Souza and M.T. Thomaz, J. Magn. and Magn. Mater. 354 (2014) 205 [5]. We explore the implications of the equality of phase diagrams, at T=0, of the ferromagnetic BEG model with K/|J| = - 2 and of the spin-1 AF Ising model for D/|J| > 1/2.

  17. Spin transfer and spin pumping in disordered normal metal-antiferromagnetic insulator systems

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, Sverre A.; Brataas, Arne

    2018-02-01

    We consider an antiferromagnetic insulator that is in contact with a metal. Spin accumulation in the metal can induce spin-transfer torques on the staggered field and on the magnetization in the antiferromagnet. These torques relate to spin pumping: the emission of spin currents into the metal by a precessing antiferromagnet. We investigate how the various components of the spin-transfer torque are affected by spin-independent disorder and spin-flip scattering in the metal. Spin-conserving disorder reduces the coupling between the spins in the antiferromagnet and the itinerant spins in the metal in a manner similar to Ohm's law. Spin-flip scattering leads to spin-memory loss with a reduced spin-transfer torque. We discuss the concept of a staggered spin current and argue that it is not a conserved quantity. Away from the interface, the staggered spin current varies around a 0 mean in an irregular manner. A network model explains the rapid decay of the staggered spin current.

  18. Time-partitioning simulation models for calculation on parallel computers

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.

    1987-01-01

    A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.

  19. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines themore » scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.« less

  20. Molecular dynamics simulations of theoretical cellulose nanotube models.

    PubMed

    Uto, Takuya; Kodama, Yuta; Miyata, Tatsuhiko; Yui, Toshifumi

    2018-06-15

    Nanotubes are remarkable nanoscale architectures for a wide range of potential applications. In the present paper, we report a molecular dynamics (MD) study of the theoretical cellulose nanotube (CelNT) models to evaluate their dynamic behavior in solution (either chloroform or benzene). Based on the one-quarter chain staggering relationship, we constructed six CelNT models by combining the two chain polarities (parallel (P) and antiparallel (AP)) and three symmetry operations (helical right (H R ), helical left (H L ), and rotation (R)) to generate a circular arrangement of molecular chains. Among the four models that retained the tubular form (P-H R , P-H L , P-R, and AP-R), the P-R and AP-R models have the lowest steric energies in benzene and chloroform, respectively. The structural features of the CelNT models were characterized in terms of the hydroxymethyl group conformation and intermolecular hydrogen bonds. Solvent structuring more clearly occurred with benzene than chloroform, suggesting that the CelNT models may disperse in benzene. Copyright © 2018 Elsevier Ltd. All rights reserved.