Sample records for standard deviation field

  1. Variability of pesticide detections and concentrations in field replicate water samples collected for the National Water-Quality Assessment Program, 1992-97

    USGS Publications Warehouse

    Martin, Jeffrey D.

    2002-01-01

    Correlation analysis indicates that for most pesticides and concentrations, pooled estimates of relative standard deviation rather than pooled estimates of standard deviation should be used to estimate variability because pooled estimates of relative standard deviation are less affected by heteroscedasticity. The 2 Variability of Pesticide Detections and Concentrations in Field Replicate Water Samples, 1992–97 median pooled relative standard deviation was calculated for all pesticides to summarize the typical variability for pesticide data collected for the NAWQA Program. The median pooled relative standard deviation was 15 percent at concentrations less than 0.01 micrograms per liter (µg/L), 13 percent at concentrations near 0.01 µg/L, 12 percent at concentrations near 0.1 µg/L, 7.9 percent at concentrations near 1 µg/L, and 2.7 percent at concentrations greater than 5 µg/L. Pooled estimates of standard deviation or relative standard deviation presented in this report are larger than estimates based on averages, medians, smooths, or regression of the individual measurements of standard deviation or relative standard deviation from field replicates. Pooled estimates, however, are the preferred method for characterizing variability because they provide unbiased estimates of the variability of the population. Assessments of variability based on standard deviation (rather than variance) underestimate the true variability of the population. Because pooled estimates of variability are larger than estimates based on other approaches, users of estimates of variability must be cognizant of the approach used to obtain the estimate and must use caution in the comparison of estimates based on different approaches.

  2. Test of the principle of operation of a wideband magnetic direction finder for lightning return strokes

    NASA Technical Reports Server (NTRS)

    Herrman, B. D.; Uman, M. A.; Brantley, R. D.; Krider, E. P.

    1976-01-01

    The principle of operation of a wideband crossed-loop magnetic-field direction finder is studied by comparing the bearing determined from the NS and EW magnetic fields at various times up to 155 microsec after return stroke initiation with the TV-determined lightning channel base direction. For 40 lightning strokes in the 3 to 12 km range, the difference between the bearings found from magnetic fields sampled at times between 1 and 10 microsec and the TV channel-base data has a standard deviation of 3-4 deg. Included in this standard deviation is a 2-3 deg measurement error. For fields sampled at progressively later times, both the mean and the standard deviation of the difference between the direction-finder bearing and the TV bearing increase. Near 150 microsec, means are about 35 deg and standard deviations about 60 deg. The physical reasons for the late-time inaccuracies in the wideband direction finder and the occurrence of these effects in narrow-band VLF direction finders are considered.

  3. Quantifying the heterogeneity of the tectonic stress field using borehole data

    USGS Publications Warehouse

    Schoenball, Martin; Davatzes, Nicholas C.

    2017-01-01

    The heterogeneity of the tectonic stress field is a fundamental property which influences earthquake dynamics and subsurface engineering. Self-similar scaling of stress heterogeneities is frequently assumed to explain characteristics of earthquakes such as the magnitude-frequency relation. However, observational evidence for such scaling of the stress field heterogeneity is scarce.We analyze the local stress orientations using image logs of two closely spaced boreholes in the Coso Geothermal Field with sub-vertical and deviated trajectories, respectively, each spanning about 2 km in depth. Both the mean and the standard deviation of stress orientation indicators (borehole breakouts, drilling-induced fractures and petal-centerline fractures) determined from each borehole agree to the limit of the resolution of our method although measurements at specific depths may not. We find that the standard deviation in these boreholes strongly depends on the interval length analyzed, generally increasing up to a wellbore log length of about 600 m and constant for longer intervals. We find the same behavior in global data from the World Stress Map. This suggests that the standard deviation of stress indicators characterizes the heterogeneity of the tectonic stress field rather than the quality of the stress measurement. A large standard deviation of a stress measurement might be an expression of strong crustal heterogeneity rather than of an unreliable stress determination. Robust characterization of stress heterogeneity requires logs that sample stress indicators along a representative sample volume of at least 1 km.

  4. Coherent and Semiclassical States of a Charged Particle in a Constant Electric Field

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Pereira, A. S.

    2018-05-01

    The method of integrals of motion is used to construct families of generalized coherent states of a nonrelativistic spinless charged particle in a constant electric field. Families of states, differing in the values of their standard deviations at the initial time, are obtained. Depending on the initial values of the standard deviations, and also on the electric field, it turns out to be possible to identify some families with semiclassical states.

  5. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.

    PubMed

    El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N

    2003-11-01

    To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.

  6. Evaluating Silent Reading Performance with an Eye Tracking System in Patients with Glaucoma

    PubMed Central

    Murata, Noriaki; Fukuchi, Takeo

    2017-01-01

    Objective To investigate the relationship between silent reading performance and visual field defects in patients with glaucoma using an eye tracking system. Methods Fifty glaucoma patients (Group G; mean age, 52.2 years, standard deviation: 11.4 years) and 20 normal controls (Group N; mean age, 46.9 years; standard deviation: 17.2 years) were included in the study. All participants in Group G had early to advanced glaucomatous visual field defects but better than 20/20 visual acuity in both eyes. Participants silently read Japanese articles written horizontally while the eye tracking system monitored and calculated reading duration per 100 characters, number of fixations per 100 characters, and mean fixation duration, which were compared with mean deviation and visual field index values from Humphrey visual field testing (24–2 and 10–2 Swedish interactive threshold algorithm standard) of the right versus left eye and the better versus worse eye. Results There was a statistically significant difference between Groups G and N in mean fixation duration (G, 233.4 msec; N, 215.7 msec; P = 0.010). Within Group G, significant correlations were observed between reading duration and 24–2 right mean deviation (rs = -0.280, P = 0.049), 24–2 right visual field index (rs = -0.306, P = 0.030), 24–2 worse visual field index (rs = -0.304, P = 0.032), and 10–2 worse mean deviation (rs = -0.326, P = 0.025). Significant correlations were observed between mean fixation duration and 10–2 left mean deviation (rs = -0.294, P = 0.045) and 10–2 worse mean deviation (rs = -0.306, P = 0.037), respectively. Conclusions The severity of visual field defects may influence some aspects of reading performance. At least concerning silent reading, the visual field of the worse eye is an essential element of smoothness of reading. PMID:28095478

  7. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Muji Susantoro, Tri; Wikantika, Ketut; Saepuloh, Asep; Handoyo Harsolumakso, Agus

    2018-05-01

    Selection of vegetation indices in plant mapping is needed to provide the best information of plant conditions. The methods used in this research are the standard deviation and the linear regression. This research tried to determine the vegetation indices used for mapping the sugarcane conditions around oil and gas fields. The data used in this study is Landsat 8 OLI/TIRS. The standard deviation analysis on the 23 vegetation indices with 27 samples has resulted in the six highest standard deviations of vegetation indices, termed as GRVI, SR, NLI, SIPI, GEMI and LAI. The standard deviation values are 0.47; 0.43; 0.30; 0.17; 0.16 and 0.13. Regression correlation analysis on the 23 vegetation indices with 280 samples has resulted in the six vegetation indices, termed as NDVI, ENDVI, GDVI, VARI, LAI and SIPI. This was performed based on regression correlation with the lowest value R2 than 0,8. The combined analysis of the standard deviation and the regression correlation has obtained the five vegetation indices, termed as NDVI, ENDVI, GDVI, LAI and SIPI. The results of the analysis of both methods show that a combination of two methods needs to be done to produce a good analysis of sugarcane conditions. It has been clarified through field surveys and showed good results for the prediction of microseepages.

  8. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  9. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.

    PubMed

    Artes, Paul H; Hutchison, Donna M; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C

    2005-07-01

    To compare test results from second-generation Frequency-Doubling Technology perimetry (FDT2, Humphrey Matrix; Carl-Zeiss Meditec, Dublin, CA) and standard automated perimetry (SAP) in patients with glaucoma. Specifically, to examine the relationship between visual field sensitivity and test-retest variability and to compare total and pattern deviation probability maps between both techniques. Fifteen patients with glaucoma who had early to moderately advanced visual field loss with SAP (mean MD, -4.0 dB; range, +0.2 to -16.1) were enrolled in the study. Patients attended three sessions. During each session, one eye was examined twice with FDT2 (24-2 threshold test) and twice with SAP (Swedish Interactive Threshold Algorithm [SITA] Standard 24-2 test), in random order. We compared threshold values between FDT2 and SAP at test locations with similar visual field coordinates. Test-retest variability, established in terms of test-retest intervals and standard deviations (SDs), was investigated as a function of visual field sensitivity (estimated by baseline threshold and mean threshold, respectively). The magnitude of visual field defects apparent in total and pattern deviation probability maps were compared between both techniques by ordinal scoring. The global visual field indices mean deviation (MD) and pattern standard deviation (PSD) of FDT2 and SAP correlated highly (r > 0.8; P < 0.001). At test locations with high sensitivity (>25 dB with SAP), threshold estimates from FDT2 and SAP exhibited a close, linear relationship, with a slope of approximately 2.0. However, at test locations with lower sensitivity, the relationship was much weaker and ceased to be linear. In comparison with FDT2, SAP showed a slightly larger proportion of test locations with absolute defects (3.0% vs. 2.2% with SAP and FDT2, respectively, P < 0.001). Whereas SAP showed a significant increase in test-retest variability at test locations with lower sensitivity (P < 0.001), there was no relationship between variability and sensitivity with FDT2 (P = 0.46). In comparison with SAP, FDT2 exhibited narrower test-retest intervals at test locations with lower sensitivity (SAP thresholds <25 dB). A comparison of the total and pattern deviation maps between both techniques showed that the total deviation analyses of FDT2 may slightly underestimate the visual field loss apparent with SAP. However, the pattern-deviation maps of both instruments agreed well with each other. The test-retest variability of FDT2 is uniform over the measurement range of the instrument. These properties may provide advantages for the monitoring of patients with glaucoma that should be investigated in longitudinal studies.

  10. GNSS Antenna Caused Near-Field Interference Effect in Precise Point Positioning Results

    NASA Astrophysics Data System (ADS)

    Dawidowicz, Karol; Baryła, Radosław

    2017-06-01

    Results of long-term static GNSS observation processing adjustment prove that the often assumed "averaging multipath effect due to extended observation periods" does not actually apply. It is instead visible a bias that falsifies the coordinate estimation. The comparisons between the height difference measured with a geometrical precise leveling and the height difference provided by GNSS clearly verify the impact of the near-field multipath effect. The aim of this paper is analysis the near-field interference effect with respect to the coordinate domain. We demonstrate that the way of antennas mounting during observation campaign (distance from nearest antennas) can cause visible changes in pseudo-kinematic precise point positioning results. GNSS measured height differences comparison revealed that bias of up to 3 mm can be noticed in Up component when some object (additional GNSS antenna) was placed in radiating near-field region of measuring antenna. Additionally, for both processing scenario (GPS and GPS/GLONASS) the scattering of results clearly increased when additional antenna crosses radiating near-field region of measuring antenna. It is especially true for big choke ring antennas. In short session (15, 30 min.) the standard deviation was about twice bigger in comparison to scenario without additional antenna. When we used typical surveying antennas (short near-field region radius) the effect is almost invisible. In this case it can be observed the standard deviation increase of about 20%. On the other hand we found that surveying antennas are generally characterized by lower accuracy than choke ring antennas. The standard deviation obtained on point with this type of antenna was bigger in all processing scenarios (in comparison to standard deviation obtained on point with choke ring antenna).

  11. Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes

    ERIC Educational Resources Information Center

    Zavorsky, Gerald S.

    2010-01-01

    Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…

  12. In vivo dosimetry for external photon treatments of head and neck cancers by diodes and TLDS.

    PubMed

    Tung, C J; Wang, H C; Lo, S H; Wu, J M; Wang, C J

    2004-01-01

    In vivo dosimetry was implemented for treatments of head and neck cancers in the large fields. Diode and thermoluminescence dosemeter (TLD) measurements were carried out for the linear accelerators of 6 MV photon beams. ESTRO in vivo dosimetry protocols were followed in the determination of midline doses from measurements of entrance and exit doses. Of the fields monitored by diodes, the maximum absolute deviation of measured midline doses from planned target doses was 8%, with the mean value and the standard deviation of -1.0 and 2.7%. If planned target doses were calculated using radiological water equivalent thicknesses rather than patient geometric thicknesses, the maximum absolute deviation dropped to 4%, with the mean and the standard deviation of 0.7 and 1.8%. For in vivo dosimetry monitored by TLDs, the shift in mean dose remained small but the statistical precision became poor.

  13. SU-F-T-547: Off-Isocenter Winston-Lutz Test for Stereotactic Radiosurgery/stereotactic Body Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, J; Liu, X

    2016-06-15

    Purpose: To perform a quantitative study to verify that the mechanical field center coincides with the radiation field center when both are off from the isocenter during the single-isocenter technique in linear accelerator-based SRS/SBRT procedure to treat multiple lesions. Methods: We developed an innovative method to measure this accuracy, called the off-isocenter Winston-Lutz test, and here we provide a practical clinical guideline to implement this technique. We used ImagePro V.6 to analyze images of a Winston-Lutz phantom obtained using a Varian 21EX linear accelerator with an electronic portal imaging device, set up as for single-isocenter SRS/SBRT for multiple lesions. Wemore » investigated asymmetry field centers that were 3 cm and 5 cm away from the isocenter, as well as performing the standard Winston-Lutz test. We used a special beam configuration to acquire images while avoiding collision, and we investigated both jaw and multileaf collimation. Results: For the jaw collimator setting, at 3 cm off-isocenter, the mechanical field deviated from the radiation field by about 2.5 mm; at 5 cm, the deviation was above 3 mm, up to 4.27 mm. For the multileaf collimator setting, at 3 cm off-isocenter, the deviation was below 1 mm; at 5 cm, the deviation was above 1 mm, up to 1.72 mm, which is 72% higher than the tolerance threshold. Conclusion: These results indicated that the further the asymmetry field center is from the machine isocenter, the larger the deviation of the mechanical field from the radiation field, and the distance between the center of the asymmetry field and the isocenter should not exceed 3 cm in of our clinic. We recommend that every clinic that uses linear accelerator, multileaf collimator-based SRS/SBRT perform the off-isocenter Winston-Lutz test in addition to the standard Winston-Lutz test and use their own deviation data to design the treatment plan.« less

  14. Modeling the Zeeman effect in high altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

    NASA Astrophysics Data System (ADS)

    Larsson, R.; Milz, M.; Rayer, P.; Saunders, R.; Bell, W.; Booton, A.; Buehler, S. A.; Eriksson, P.; John, V.

    2015-10-01

    We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high altitude Special Sensor Microwave Imager/Sounder channels 19-22. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9 and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel 22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Same channel, there is 1.2 K in average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel 21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Same channel, there is 1.3 K in average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels 19 and 20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies causing up to ± 7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels 19 and 20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.

  15. Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

    NASA Astrophysics Data System (ADS)

    Larsson, Richard; Milz, Mathias; Rayer, Peter; Saunders, Roger; Bell, William; Booton, Anna; Buehler, Stefan A.; Eriksson, Patrick; John, Viju O.

    2016-03-01

    We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high-altitude Special Sensor Microwave Imager/Sounder channels 19-22. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9 and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel 22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Concerning the same channel, there is 1.2 K on average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel 21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Regarding the same channel, there is 1.3 K on average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels 19 and 20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies, causing up to ±7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels 19 and 20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.

  16. Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect.

    PubMed

    Han, Sangyoun; Jung, Jong Jin; Kim, Ungsoo Samuel

    2015-12-01

    To investigate the differences in retinal nerve fiber layer (RNFL) change and optic nerve head parameters between non-arteritic anterior ischemic optic neuropathy (NAION) and open angle glaucoma (OAG) with altitudinal visual field defect. Seventeen NAION patients and 26 OAG patients were enrolled prospectively. The standard visual field indices (mean deviation, pattern standard deviation) were obtained from the Humphrey visual field test and differences between the two groups were analyzed. Cirrus HD-OCT parameters were used, including optic disc head analysis, average RNFL thickness, and RNFL thickness of each quadrant. The mean deviation and pattern standard deviation were not significantly different between the groups. In the affected eye, although the disc area was similar between the two groups (2.00 ± 0.32 and 1.99 ± 0.33 mm(2), p = 0.586), the rim area of the OAG group was smaller than that of the NAION group (1.26 ± 0.56 and 0.61 ± 0.15 mm(2), respectively, p < 0.001). RNFL asymmetry was not different between the two groups (p = 0.265), but the inferior RNFL thickness of both the affected and unaffected eyes were less in the OAG group than in the NAION group. In the analysis of optic disc morphology, both affected and unaffected eyes showed significant differences between two groups. To differentiate NAION from OAG in eyes with altitudinal visual field defects, optic disc head analysis of not only the affected eye, but also the unaffected eye, by using spectral domain optical coherence tomography may be helpful.

  17. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  18. Experiments with central-limit properties of spatial samples from locally covariant random fields

    USGS Publications Warehouse

    Barringer, T.H.; Smith, T.E.

    1992-01-01

    When spatial samples are statistically dependent, the classical estimator of sample-mean standard deviation is well known to be inconsistent. For locally dependent samples, however, consistent estimators of sample-mean standard deviation can be constructed. The present paper investigates the sampling properties of one such estimator, designated as the tau estimator of sample-mean standard deviation. In particular, the asymptotic normality properties of standardized sample means based on tau estimators are studied in terms of computer experiments with simulated sample-mean distributions. The effects of both sample size and dependency levels among samples are examined for various value of tau (denoting the size of the spatial kernel for the estimator). The results suggest that even for small degrees of spatial dependency, the tau estimator exhibits significantly stronger normality properties than does the classical estimator of standardized sample means. ?? 1992.

  19. Longitudinal and cross-sectional analyses of visual field progression in participants of the Ocular Hypertension Treatment Study.

    PubMed

    Artes, Paul H; Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2010-12-01

    To assess agreement between longitudinal and cross-sectional analyses for determining visual field progression in data from the Ocular Hypertension Treatment Study. Visual field data from 3088 eyes of 1570 participants (median follow-up, 7 years) were analyzed. Longitudinal analyses were performed using change probability with total and pattern deviation, and cross-sectional analyses were performed using the glaucoma hemifield test, corrected pattern standard deviation, and mean deviation. The rates of mean deviation and general height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, agreement on absence of progression ranged from 97.0% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than analyses of total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal changes. Despite considerable overall agreement, 40% to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension.

  20. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma.

    PubMed

    Doozandeh, Azadeh; Irandoost, Farnoosh; Mirzajani, Ali; Yazdani, Shahin; Pakravan, Mohammad; Esfandiari, Hamed

    2017-01-01

    This study aimed to compare second-generation frequency-doubling technology (FDT) perimetry with standard automated perimetry (SAP) in mild glaucoma. Forty-seven eyes of 47 participants who had mild visual field defect by SAP were included in this study. All participants were examined using SITA 24-2 (SITA-SAP) and matrix 24-2 (Matrix-FDT). The correlations of global indices and the number of defects on pattern deviation (PD) plots were determined. Agreement between two sets regarding the stage of visual field damage was assessed. Pearson's correlation, intra-cluster comparison, paired t-test, and 95% limit of agreement were calculated. Although there was no significant difference between global indices, the agreement between the two devices regarding the global indices was weak (the limit of agreement for mean deviation was -6.08 to 6.08 and that for pattern standard deviation was -4.42 to 3.42). The agreement between SITA-SAP and Matrix-FDT regarding the Glaucoma Hemifield Test (GHT) and the number of defective points in each quadrant and staging of the visual field damage was also weak. Because the correlation between SITA-SAP and Matrix-FDT regarding global indices, GHT, number of defective points, and stage of the visual field damage in mild glaucoma is weak, Matrix-FDT cannot be used interchangeably with SITA-SAP in the early stages of glaucoma.

  1. Evaluation of visual field parameters in patients with chronic obstructive pulmonary disease.

    PubMed

    Demir, Helin Deniz; Inönü, Handan; Kurt, Semiha; Doruk, Sibel; Aydın, Erdinc; Etikan, Ilker

    2012-08-01

    To evaluate the effects of chronic obstructive pulmonary disease (COPD) on retina and optic nerve. Thirty-eight patients with COPD and 29 healthy controls, totally 67 subjects, were included in the study. Visual evoked potentials (VEP) and visual field assessment (both standard achromatic perimetry (SAP) and short-wavelength automated perimetry (SWAP)) were performed on each subject after ophthalmological, neurological and pulmonary examinations. Mean deviation (MD), pattern standard deviation (PSD) and corrected pattern standard deviation (CPSD) were significantly different between patient and control groups as for both SAP and SWAP measurements (p = 0.001, 0.019, 0.009 and p = 0.004,0.019, 0.031, respectively). Short-term fluctuation (SF) was not statistically different between the study and the control groups (p = 0.874 and 0.694, respectively). VEP P100 latencies were significantly different between patients with COPD and the controls (p = 0.019). Chronic obstructive pulmonary disease is a systemic disease, and hypoxia in COPD seems to affect the retina and the optic nerve. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  2. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  3. SU-E-T-469: A Practical Approach for the Determination of Small Field Output Factors Using Published Monte Carlo Derived Correction Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon, E; Siergiej, D

    2014-06-01

    Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less

  4. How random is a random vector?

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2015-12-01

    Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  5. Visual field changes after cataract extraction: the AGIS experience.

    PubMed

    Koucheki, Behrooz; Nouri-Mahdavi, Kouros; Patel, Gitane; Gaasterland, Douglas; Caprioli, Joseph

    2004-12-01

    To test the hypothesis that cataract extraction in glaucomatous eyes improves overall sensitivity of visual function without affecting the size or depth of glaucomatous scotomas. Experimental study with no control group. One hundred fifty-eight eyes (of 140 patients) from the Advanced Glaucoma Intervention Study with at least two reliable visual fields within a year both before and after cataract surgery were included. Average mean deviation (MD), pattern standard deviation (PSD), and corrected pattern standard deviation (CPSD) were compared before and after cataract extraction. To evaluate changes in scotoma size, the number of abnormal points (P < .05) on the pattern deviation plot was compared before and after surgery. We described an index ("scotoma depth index") to investigate changes of scotoma depth after surgery. Mean values for MD, PSD, and CPSD were -13.2, 6.4, and 5.9 dB before and -11.9, 6.8, and 6.2 dB after cataract surgery (P < or = .001 for all comparisons). Mean (+/- SD) number of abnormal points on pattern deviation plot was 26.7 +/- 9.4 and 27.5 +/- 9.0 before and after cataract surgery, respectively (P = .02). Scotoma depth index did not change after cataract extraction (-19.3 vs -19.2 dB, P = .90). Cataract extraction caused generalized improvement of the visual field, which was most marked in eyes with less advanced glaucomatous damage. Although the enlargement of scotomas was statistically significant, it was not clinically meaningful. No improvement of sensitivity was observed in the deepest part of the scotomas.

  6. Effect of multizone refractive multifocal contact lenses on standard automated perimetry.

    PubMed

    Madrid-Costa, David; Ruiz-Alcocer, Javier; García-Lázaro, Santiago; Albarrán-Diego, César; Ferrer-Blasco, Teresa

    2012-09-01

    The aim of this study was to evaluate whether the creation of 2 foci (distance and near) provided by multizone refractive multifocal contact lenses (CLs) for presbyopia correction affects the measurements on Humphreys 24-2 Swedish interactive threshold algorithm (SITA) standard automated perimetry (SAP). In this crossover study, 30 subjects were fitted in random order with either a multifocal CL or a monofocal CL. After 1 month, a Humphrey 24-2 SITA standard strategy was performed. The visual field global indices (the mean deviation [MD] and pattern standard deviation [PSD]), reliability indices, test duration, and number of depressed points deviating at P<5%, P<2%, P<1%, and P<0.5% on pattern deviation probability plots were determined and compared between multifocal and monofocal CLs. Thirty eyes of 30 subjects were included in this study. There were no statistically significant differences in reliability indices or test duration. There was a statistically significant reduction in the MD with the multifocal CL compared with monfocal CL (P=0.001). Differences were not found in PSD nor in the number of depressed points deviating at P<5%, P<2%, P<1%, and P<0.5% in the pattern deviation probability maps studied. The results of this study suggest that the multizone refractive lens produces a generalized depression in threshold sensitivity as measured by the Humphreys 24-2 SITA SAP.

  7. YALE NATURAL RADIOCARBON MEASUREMENTS. PART VI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuiver, M.; Deevey, E.S.

    1961-01-01

    Most of the measurements made since publication of Yale V are included; some measurements, such as a series collected in Greenland, are withneld pending additional information or field work that will make better interpretations possible. In addition to radiocarbon dates of geologic and/or archaeologic interest, recent assays are given of C/sup 14/ in lake waters and other lacustrine materials, now normalized for C/sup 13/ content. The newly accepted convention is followed in expressing normalized C/sup 14/ values as DELTA = delta C/sup 14/ (2 delta C/sup 13/ + 50)STAl + ( delta C/sup 14//1000)! where DELTA is the per milmore » deviation of the C/sup 14/ if the sample from any contemporary standard (whether organic or a carbonate) after correction of sample and/or standard for real age, for the Suess effect, for normal isotopic fractionation, and for deviations of C/sup 14/ content of the age- and pollution- corrected l9th-century wood standard from that of 95% of the NBS oxalic acid standard; delta C/sup 14/ is the measured deviation from 95% of the NBS standard, and delta C/sup 13/ is the deviation from the NBS limestone standard, both in per mil. These assays are variously affected by artificial C/sup 14/ resulting from nuclear tests. (auth)« less

  8. Longitudinal and Cross-Sectional Analyses of Visual Field Progression in Participants of the Ocular Hypertension Treatment Study (OHTS)

    PubMed Central

    Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2014-01-01

    Purpose Visual field progression can be determined by evaluating the visual field by serial examinations (longitudinal analysis), or by a change in classification derived from comparison to age-matched normal data in single examinations (cross-sectional analysis). We determined the agreement between these two approaches in data from the Ocular Hypertension Treatment Study (OHTS). Methods Visual field data from 3088 eyes of 1570 OHTS participants (median follow-up 7 yrs, 15 tests with static automated perimetry) were analysed. Longitudinal analyses were performed with change probability with total and pattern deviation, and cross-sectional analysis with Glaucoma Hemifield Test, Corrected Pattern Standard Deviation, and Mean Deviation. The rates of Mean Deviation and General Height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Results The agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, the agreement on absence of progression ranged from 97% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal change. Conclusions Despite considerable overall agreement, between 40 to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension. PMID:21149774

  9. [Features associated with retinal thickness extension in diabetic macular oedema].

    PubMed

    Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila

    2015-01-01

    Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity <0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  10. Duality linking standard and tachyon scalar field cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avelino, P. P.; Bazeia, D.; Losano, L.

    2010-09-15

    In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalarmore » field models can be calculated explicitly.« less

  11. Relationship between second-generation frequency doubling technology and standard automated perimetry in patients with glaucoma.

    PubMed

    Zarkovic, Andrea; Mora, Justin; McKelvie, James; Gamble, Greg

    2007-12-01

    The aim of the study was to establish the correlation between visual filed loss as shown by second-generation Frequency Doubling Technology (Humphrey Matrix) and Standard Automated Perimetry (Humphrey Field Analyser) in patients with glaucoma. Also, compared were the test duration and reliability. Forty right eyes from glaucoma patients from a private ophthalmology practice were included in this prospective study. All participants had tests within an 8-month period. Pattern deviation plots and mean deviation were compared to establish the correlation between the two perimetry tests. Overall correlation and correlation between hemifields, quadrants and individual test locations were assessed. Humphrey Field Analyser tests were slightly more reliable (37/40 vs. 34/40 for Matrix)) but overall of longer duration. There was good correlation (0.69) between mean deviations. Superior hemifields and superonasal quadrants had the highest correlation (0.88 [95% CI 0.79, 0.94]). Correlation between individual points was independent of distance from the macula. Generally, the Matrix and Humphrey Field Analyser perimetry correlate well; however, each machine utilizes a different method of analysing data and thus the direct comparison should be made with caution.

  12. Discriminating crop and other canopies by overlapping binary image layers

    NASA Astrophysics Data System (ADS)

    Doi, Ryoichi

    2013-02-01

    For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.

  13. The repeatability of mean defect with size III and size V standard automated perimetry.

    PubMed

    Wall, Michael; Doyle, Carrie K; Zamba, K D; Artes, Paul; Johnson, Chris A

    2013-02-15

    The mean defect (MD) of the visual field is a global statistical index used to monitor overall visual field change over time. Our goal was to investigate the relationship of MD and its variability for two clinically used strategies (Swedish Interactive Threshold Algorithm [SITA] standard size III and full threshold size V) in glaucoma patients and controls. We tested one eye, at random, for 46 glaucoma patients and 28 ocularly healthy subjects with Humphrey program 24-2 SITA standard for size III and full threshold for size V each five times over a 5-week period. The standard deviation of MD was regressed against the MD for the five repeated tests, and quantile regression was used to show the relationship of variability and MD. A Wilcoxon test was used to compare the standard deviations of the two testing methods following quantile regression. Both types of regression analysis showed increasing variability with increasing visual field damage. Quantile regression showed modestly smaller MD confidence limits. There was a 15% decrease in SD with size V in glaucoma patients (P = 0.10) and a 12% decrease in ocularly healthy subjects (P = 0.08). The repeatability of size V MD appears to be slightly better than size III SITA testing. When using MD to determine visual field progression, a change of 1.5 to 4 decibels (dB) is needed to be outside the normal 95% confidence limits, depending on the size of the stimulus and the amount of visual field damage.

  14. Comparison of 30-2 Standard and Fast programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for perimetry in patients with intracranial tumors.

    PubMed

    Singh, Manav Deep; Jain, Kanika

    2017-11-01

    To find out whether 30-2 Swedish Interactive Threshold Algorithm (SITA) Fast is comparable to 30-2 SITA Standard as a tool for perimetry among the patients with intracranial tumors. This was a prospective cross-sectional study involving 80 patients aged ≥18 years with imaging proven intracranial tumors and visual acuity better than 20/60. The patients underwent multiple visual field examinations using the two algorithms till consistent and repeatable results were obtained. A total of 140 eyes of 80 patients were analyzed. Almost 60% of patients undergoing perimetry with SITA Standard required two or more sessions to obtain consistent results, whereas the same could be obtained in 81.42% with SITA Fast in the first session itself. Of 140 eyes, 70 eyes had recordable field defects and the rest had no defects as detected by either of the two algorithms. Mean deviation (MD) (P = 0.56), pattern standard deviation (PSD) (P = 0.22), visual field index (P = 0.83) and number of depressed points at P < 5%, 2%, 1%, and 0.5% on MD and PSD probability plots showed no statistically significant difference between two algorithms. Bland-Altman test showed that considerable variability existed between two algorithms. Perimetry performed by SITA Standard and SITA Fast algorithm of Humphrey Field Analyzer gives comparable results among the patients of intracranial tumors. Being more time efficient and with a shorter learning curve, SITA Fast my be recommended as a standard test for the purpose of perimetry among these patients.

  15. Design of field experiments: Influence of treatment response relative to standard deviation and blocking factor characteristics on efficient blocking strategy

    USDA-ARS?s Scientific Manuscript database

    Selection of experimental design can markedly influence efficiency of field research. This study used Monte Carlo simulations to compare the ability of different field experimental designs to distinguish defined treatment differences, and the paper concludes with a section on practical use of the in...

  16. Soiling of building envelope surfaces and its effect on solar reflectance – Part III: Interlaboratory study of an accelerated aging method for roofing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleiman, Mohamad; Chen, Sharon; Gilbert, Haley E.

    A laboratory method to simulate natural exposure of roofing materials has been reported in a companion article. Here in the current article, we describe the results of an international, nine-participant interlaboratory study (ILS) conducted in accordance with ASTM Standard E691-09 to establish the precision and reproducibility of this protocol. The accelerated soiling and weathering method was applied four times by each laboratory to replicate coupons of 12 products representing a wide variety of roofing categories (single-ply membrane, factory-applied coating (on metal), bare metal, field-applied coating, asphalt shingle, modified-bitumen cap sheet, clay tile, and concrete tile). Participants reported initial and laboratory-agedmore » values of solar reflectance and thermal emittance. Measured solar reflectances were consistent within and across eight of the nine participating laboratories. Measured thermal emittances reported by six participants exhibited comparable consistency. For solar reflectance, the accelerated aging method is both repeatable and reproducible within an acceptable range of standard deviations: the repeatability standard deviation sr ranged from 0.008 to 0.015 (relative standard deviation of 1.2–2.1%) and the reproducibility standard deviation sR ranged from 0.022 to 0.036 (relative standard deviation of 3.2–5.8%). The ILS confirmed that the accelerated aging method can be reproduced by multiple independent laboratories with acceptable precision. In conclusion, this study supports the adoption of the accelerated aging practice to speed the evaluation and performance rating of new cool roofing materials.« less

  17. Scanner K-line photometry of Orion stars

    NASA Technical Reports Server (NTRS)

    Hesser, J. E.; Mcclintock, W.; Henry, R. C.

    1977-01-01

    Results are presented for two-channel scanner measurements of calcium K-line strengths in 39 Orion sword and belt stars. Values of the calcium k index and its associated standard error are given for each observed star, and the K-line strengths are compared with those of K-line standard stars and Hyades stars. Plots of k index against reddening-corrected color and of k-index deviation against metal-strength index deviation are provided which show that the Orion sword and belt stars do not differ significantly in their calcium and metal abundances from general field stars.

  18. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  19. Correlation between central corneal thickness and visual field defects, cup to disc ratio and retinal nerve fiber layer thickness in primary open angle glaucoma patients.

    PubMed

    Sarfraz, Muhammad Haroon; Mehboob, Mohammad Asim; Haq, Rana Intisar Ul

    2017-01-01

    To evaluate the correlation between Central Corneal Thickness (CCT) and Visual Field (VF) defect parameters like Mean Deviation (MD) and Pattern Standard Deviation (PSD), Cup-to-Disc Ratio (CDR) and Retinal Nerve Fibre Layer Thickness (RNFL-T) in Primary Open-Angle Glaucoma (POAG) patients. This cross sectional study was conducted at Armed Forces Institute of Ophthalmology (AFIO), Rawalpindi from September 2015 to September 2016. Sixty eyes of 30 patients with diagnosed POAG were analysed. Correlation of CCT with other variables was studied. Mean age of study population was 43.13±7.54 years. Out of 30 patients, 19 (63.33%) were males and 11 (36.67%) were females. Mean CCT, MD, PSD, CDR and RNFL-T of study population was 528.57±25.47µm, -9.11±3.07, 6.93±2.73, 0.63±0.13 and 77.79±10.44µm respectively. There was significant correlation of CCT with MD, PSD and CDR (r=-0.52, p<0.001; r=-0.59, p<0.001;r=-0.41, p=0.001 respectively). The correlation of CCT with RNFL-T was not statistically significant (r=-0.14, p=0.284). Central corneal thickness had significant correlation with visual field parameters like mean deviation and pattern standard deviation, as well as with cup-to-disc ratio. However, central corneal thickness had no significant relationship with retinal nerve fibre layer thickness.

  20. Determination of wind from NIMBUS 6 satellite sounding data

    NASA Technical Reports Server (NTRS)

    Carle, W. E.; Scoggins, J. R.

    1981-01-01

    Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.

  1. Automating linear accelerator quality assurance.

    PubMed

    Eckhause, Tobias; Al-Hallaq, Hania; Ritter, Timothy; DeMarco, John; Farrey, Karl; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Perez, Mario; Park, SungYong; Booth, Jeremy T; Thorwarth, Ryan; Moran, Jean M

    2015-10-01

    The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The standard deviation in MLC position, as determined by EPID measurements, across the consortium was 0.33 mm for IMRT fields. With respect to the log files, the deviations between expected and actual positions for parameters were small (<0.12 mm) for all Linacs. Considering both log files and EPID measurements, all parameters were well within published tolerance values. Variations in collimator angle, MLC position, and gantry sag were also evaluated for all Linacs. The performance of the TrueBeam Linac model was shown to be consistent based on automated analysis of trajectory log files and EPID images acquired during delivery of a standardized test suite. The results can be compared directly to tolerance thresholds. In addition, sharing of results from standard tests across institutions can facilitate the identification of QA process and Linac changes. These reference values are presented along with the standard deviation for common tests so that the test suite can be used by other centers to evaluate their Linac performance against those in this consortium.

  2. Stochastic analysis of uncertain thermal parameters for random thermal regime of frozen soil around a single freezing pipe

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhou, Guoqing; Wang, Jianzhou; Zhou, Lei

    2018-03-01

    The artificial ground freezing method (AGF) is widely used in civil and mining engineering, and the thermal regime of frozen soil around the freezing pipe affects the safety of design and construction. The thermal parameters can be truly random due to heterogeneity of the soil properties, which lead to the randomness of thermal regime of frozen soil around the freezing pipe. The purpose of this paper is to study the one-dimensional (1D) random thermal regime problem on the basis of a stochastic analysis model and the Monte Carlo (MC) method. Considering the uncertain thermal parameters of frozen soil as random variables, stochastic processes and random fields, the corresponding stochastic thermal regime of frozen soil around a single freezing pipe are obtained and analyzed. Taking the variability of each stochastic parameter into account individually, the influences of each stochastic thermal parameter on stochastic thermal regime are investigated. The results show that the mean temperatures of frozen soil around the single freezing pipe with three analogy method are the same while the standard deviations are different. The distributions of standard deviation have a great difference at different radial coordinate location and the larger standard deviations are mainly at the phase change area. The computed data with random variable method and stochastic process method have a great difference from the measured data while the computed data with random field method well agree with the measured data. Each uncertain thermal parameter has a different effect on the standard deviation of frozen soil temperature around the single freezing pipe. These results can provide a theoretical basis for the design and construction of AGF.

  3. The retest distribution of the visual field summary index mean deviation is close to normal.

    PubMed

    Anderson, Andrew J; Cheng, Allan C Y; Lau, Samantha; Le-Pham, Anne; Liu, Victor; Rahman, Farahnaz

    2016-09-01

    When modelling optimum strategies for how best to determine visual field progression in glaucoma, it is commonly assumed that the summary index mean deviation (MD) is normally distributed on repeated testing. Here we tested whether this assumption is correct. We obtained 42 reliable 24-2 Humphrey Field Analyzer SITA standard visual fields from one eye of each of five healthy young observers, with the first two fields excluded from analysis. Previous work has shown that although MD variability is higher in glaucoma, the shape of the MD distribution is similar to that found in normal visual fields. A Shapiro-Wilks test determined any deviation from normality. Kurtosis values for the distributions were also calculated. Data from each observer passed the Shapiro-Wilks normality test. Bootstrapped 95% confidence intervals for kurtosis encompassed the value for a normal distribution in four of five observers. When examined with quantile-quantile plots, distributions were close to normal and showed no consistent deviations across observers. The retest distribution of MD is not significantly different from normal in healthy observers, and so is likely also normally distributed - or nearly so - in those with glaucoma. Our results increase our confidence in the results of influential modelling studies where a normal distribution for MD was assumed. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  4. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  5. SU-E-T-554: Comparison of Electron Disequilibrium Factor in External Photon Beams for Different Models of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIU, B; Zhu, T

    Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less

  6. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma.

    PubMed

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha

    2014-01-01

    To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  7. Comparison of standard automated perimetry with matrix frequency-doubling technology in patients with resolved optic neuritis.

    PubMed

    Sakai, Tsutomu; Matsushima, Masato; Shikishima, Keigo; Kitahara, Kenji

    2007-05-01

    To examine performance characteristics of frequency-doubling perimetry (FDP) in comparison with standard automated perimetry (SAP) in patients with resolved optic neuritis in a short-term follow-up study. Comparative consecutive case series. Twenty patients with resolved optic neuritis and 20 healthy volunteers participated in this study. The subjects were patients who recovered normal vision (1.0 or better) after optic neuritis. The Swedish interactive thresholding algorithm 30-2 program was used for SAP and a full-threshold 30-2 program was used for FDP. Using both forms of perimetry, the mean deviation (MD), pattern standard deviation (PSD), and the percentage of abnormal points significantly depressed <0.5% in the total deviation probability plot were compared. The visual fields were divided into 5 zones, and the mean sensitivity in each zone in affected eyes was compared with that in healthy eyes of the volunteers within 2 weeks of vision recovery and in follow-up after 2 weeks and 2 and 5 months. Standard automated perimetry and FDP showed general depression in the fovea and extrafoveal areas. Correlations between SAP and FDP were statistically significant for MD (Pearson r>0.75; P<0.001) and PSD (r>0.6; P<0.005). Defects detected with FDP were larger than with SAP in 14 eyes (70 %). In follow-up after 2 weeks and again after 2 and 5 months, FDP indicated slower improvement in visual field defects in the fovea and extrafoveal areas, whereas SAP indicated rapid improvement in these defects. Frequency-doubling perimetry is at least comparable with and potentially more sensitive than SAP in detecting visual field defects in resolved optic neuritis. This short-term follow-up study in patients with resolved optic neuritis suggests that FDP detects characteristics of slower recovery more effectively than SAP in the fovea and extrafoveal areas. These properties may allow more accurate detection of visual field defects and may prove advantageous for monitoring of patients with resolved optic neuritis.

  8. Stability of Triggering of the Switch with Sharply Non-Uniform Electric Field at the Electrode with Negative Potential

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Zherlitsyn, A. A.; Kumpyak, E. V.

    2017-12-01

    Results of investigations into a two-electrode high-pressure gas switch with sharply non-uniform field at the electrode with negative potential operating in the self-breakdown regime with pulsed charging of a highvoltage capacitive energy storage for 100 μs to voltage exceeding 200 kV are presented. It is demonstrated that depending on the air pressure and the gap length, the corona-streamer discharge, whose current increases with voltage, arises in the switch at a voltage of 0.2-0.3 of the self-breakdown voltage. At the moment of switch self-breakdown, the corona-streamer discharge goes over to one or several spark channels. The standard deviation of the triggering moment can be within 1.5 μs, which corresponds to the standard deviation of the self-breakdown voltage less than 2 kV. The voltage stability can be better than 1.5%.

  9. Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems.

    PubMed

    Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter

    2016-06-01

    An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.

  10. Resistance Training Increases the Variability of Strength Test Scores

    DTIC Science & Technology

    2009-06-08

    standard deviations for pretest and posttest strength measurements. This information was recorded for every strength test used in a total of 377 samples...significant if the posttest standard deviation consistently was larger than the pretest standard deviation. This condition could be satisfied even if...the difference in the standard deviations was small. For example, the posttest standard deviation might be 1% larger than the pretest standard

  11. Estimate of standard deviation for a log-transformed variable using arithmetic means and standard deviations.

    PubMed

    Quan, Hui; Zhang, Ji

    2003-09-15

    Analyses of study variables are frequently based on log transformations. To calculate the power for detecting the between-treatment difference in the log scale, we need an estimate of the standard deviation of the log-transformed variable. However, in many situations a literature search only provides the arithmetic means and the corresponding standard deviations. Without individual log-transformed data to directly calculate the sample standard deviation, we need alternative methods to estimate it. This paper presents methods for estimating and constructing confidence intervals for the standard deviation of a log-transformed variable given the mean and standard deviation of the untransformed variable. It also presents methods for estimating the standard deviation of change from baseline in the log scale given the means and standard deviations of the untransformed baseline value, on-treatment value and change from baseline. Simulations and examples are provided to assess the performance of these estimates. Copyright 2003 John Wiley & Sons, Ltd.

  12. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributionsmore » the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.« less

  13. Correlation between Macular Thickness and Visual Field in Early Open Angle Glaucoma: A Cross-Sectional Study.

    PubMed

    Fallahi Motlagh, Behzad; Sadeghi, Ali

    2017-01-01

    The aim of this study was to correlate macular thickness and visual field parameters in early glaucoma. A total of 104 eyes affected with early glaucoma were examined in a cross-sectional, prospective study. Visual field testing using both standard automated perimetry (SAP) and shortwave automated perimetry (SWAP) was performed. Global visual field parameters, including mean deviation (MD) and pattern standard deviation (PSD), were recorded and correlated with spectral domain optical coherence tomography (SD-OCT)-measured macular thickness and asymmetry. Average macular thickness correlated significantly with all measures of visual field including MD-SWAP (r = 0.42), MD-SAP (r = 0.41), PSD-SWAP (r = -0.23), and PSD-SAP (r = -0.21), with P-values <0.001 for all correlations. The mean MD scores (using both SWAP and SAP) were significantly higher in the eyes with thin than in those with intermediate average macular thickness. Intraeye (superior macula thickness - inferior macula thickness) asymmetries correlated significantly with both PSD-SWAP (r = 0.63, P < 0.001) and PSD-SAP (r = 0.26, P = 0.01) scores. This study revealed a significant correlation between macular thickness and visual field parameters in early glaucoma. The results of this study should make macular thickness measurements even more meaningful to glaucoma specialists.

  14. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy.

    PubMed

    Javidi, Bahram; Markman, Adam; Rawat, Siddharth; O'Connor, Timothy; Anand, Arun; Andemariam, Biree

    2018-05-14

    We present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube. Features were extracted by computing the standard deviations and the mean of the height fluctuations over time and for every location on the cell membrane, resulting in two-dimensional standard deviation and mean maps, followed by taking the standard deviations of these maps. The optical flow algorithm was used to estimate the apparent motion fields between subsequent frames (reconstructions). The standard deviation of the magnitude of the optical flow vectors across all frames was then computed. In addition, seven morphological cell (spatial) features based on optical path length were extracted from the cells to further improve the classification accuracy. A random forest classifier was trained to perform cell identification to distinguish between SCD-RBCs and h-RBCs. To the best of our knowledge, this is the first report of machine learning assisted cell identification and diagnosis of sickle cell disease based on cell membrane fluctuations and morphology using both spatio-temporal and spatial analysis.

  15. Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls.

    PubMed

    Redmond, Tony; O'Leary, Neil; Hutchison, Donna M; Nicolela, Marcelo T; Artes, Paul H; Chauhan, Balwantray C

    2013-12-01

    A new analysis method called permutation of pointwise linear regression measures the significance of deterioration over time at each visual field location, combines the significance values into an overall statistic, and then determines the likelihood of change in the visual field. Because the outcome is a single P value, individualized to that specific visual field and independent of the scale of the original measurement, the method is well suited for comparing techniques with different stimuli and scales. To test the hypothesis that frequency-doubling matrix perimetry (FDT2) is more sensitive than standard automated perimetry (SAP) in identifying visual field progression in glaucoma. Patients with open-angle glaucoma and healthy controls were examined by FDT2 and SAP, both with the 24-2 test pattern, on the same day at 6-month intervals in a longitudinal prospective study conducted in a hospital-based setting. Only participants with at least 5 examinations were included. Data were analyzed with permutation of pointwise linear regression. Permutation of pointwise linear regression is individualized to each participant, in contrast to current analyses in which the statistical significance is inferred from population-based approaches. Analyses were performed with both total deviation and pattern deviation. Sixty-four patients and 36 controls were included in the study. The median age, SAP mean deviation, and follow-up period were 65 years, -2.6 dB, and 5.4 years, respectively, in patients and 62 years, +0.4 dB, and 5.2 years, respectively, in controls. Using total deviation analyses, statistically significant deterioration was identified in 17% of patients with FDT2, in 34% of patients with SAP, and in 14% of patients with both techniques; in controls these percentages were 8% with FDT2, 31% with SAP, and 8% with both. Using pattern deviation analyses, statistically significant deterioration was identified in 16% of patients with FDT2, in 17% of patients with SAP, and in 3% of patients with both techniques; in controls these values were 3% with FDT2 and none with SAP. No evidence was found that FDT2 is more sensitive than SAP in identifying visual field deterioration. In about one-third of healthy controls, age-related deterioration with SAP reached statistical significance.

  16. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very consistent and also agree with previous stress estimates in the eastern part of the Coso Geothermal Field. In order to obtain a reliable estimation of the stress orientation in this setting, it is necessary to sample the stress field on an interval long to capture several of the dominant wavelengths.

  17. 7 CFR 400.204 - Notification of deviation from standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Notification of deviation from standards. 400.204... Contract-Standards for Approval § 400.204 Notification of deviation from standards. A Contractor shall advise the Corporation immediately if the Contractor deviates from the requirements of these standards...

  18. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    NASA Astrophysics Data System (ADS)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  19. The Standard Deviation of Launch Vehicle Environments

    NASA Technical Reports Server (NTRS)

    Yunis, Isam

    2005-01-01

    Statistical analysis is used in the development of the launch vehicle environments of acoustics, vibrations, and shock. The standard deviation of these environments is critical to accurate statistical extrema. However, often very little data exists to define the standard deviation and it is better to use a typical standard deviation than one derived from a few measurements. This paper uses Space Shuttle and expendable launch vehicle flight data to define a typical standard deviation for acoustics and vibrations. The results suggest that 3dB is a conservative and reasonable standard deviation for the source environment and the payload environment.

  20. Reduction in mean deviation values in automated perimetry in eyes with multifocal compared to monofocal intraocular lens implants.

    PubMed

    Farid, Marjan; Chak, Garrick; Garg, Sumit; Steinert, Roger F

    2014-08-01

    To evaluate differences in mean deviation values in automated perimetry in healthy eyes with multifocal compared to monofocal intraocular lens (IOL) implants. Prospective, age-matched, comparative analysis. Single-center, tertiary referral academic practice. A total of 37 healthy eyes in 37 patients with bilateral multifocal (n=22) or monofocal (n=15) IOL implants were studied. INTERVENTION/OBSERVATION PROCEDURE: Humphrey Visual Field 10-2 testing was performed on all patients. Mean deviation (MD) and pattern standard deviation (PSD) numerical values were evaluated and compared between groups. The average MD was -2.84 dB (SD 2.32) for the multifocal IOL group and -0.97 dB (SD 1.58) for the monofocal IOL group (P=.006). There was no significant difference in PSD between the 2 groups (P=.99). Eyes that had the visual field 10-2 testing≥6 months from time of IOL placement showed no improvement in MD when compared to eyes that were tested within 6 months from IOL placement. Multifocal IOL implants cause significant nonspecific reduction in MD values on Humphrey Visual Field 10-2 testing that does not improve with time or neuroadaptation. Multifocal IOL implants may be inadvisable in patients where central visual field reduction may not be tolerated, such as macular degeneration, retinal pigment epithelium changes, and glaucoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.

    PubMed

    Shao, Lijing

    2014-03-21

    The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.

  2. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  3. Comparison of visual field test results obtained through Humphrey matrix frequency doubling technology perimetry versus standard automated perimetry in healthy children.

    PubMed

    Kocabeyoglu, Sibel; Uzun, Salih; Mocan, Mehmet Cem; Bozkurt, Banu; Irkec, Murat; Orhan, Mehmet

    2013-10-01

    The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP) using the Swedish interactive threshold algorithm (SITA)-Standard 24-2 test. This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT) perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD]) were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA) 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years) were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651). MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001), and fixation losses and false negative errors were significantly less with SAP (P < 0.05). A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008) and PSD (r = 0.329, P = 0.014) was observed. Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.

  4. Spectral combination of spherical gravitational curvature boundary-value problems

    NASA Astrophysics Data System (ADS)

    PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel

    2018-04-01

    Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error of the combined solutions and improves standard deviation of the solution based only on the least accurate components.

  5. Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy.

    PubMed

    Heo, Dong Won; Kim, Kyoung Nam; Lee, Min Woo; Lee, Sung Bok; Kim, Chang-Sik

    2017-01-01

    To evaluate the properties of pattern standard deviation (PSD) according to localization of the glaucomatous optic neuropathy. We enrolled 242 eyes of 242 patients with primary open-angle glaucoma, with a best-corrected visual acuity ≥ 20/25, and no media opacity. Patients were examined via dilated fundus photography, spectral-domain optical coherence tomography, and Humphrey visual field examination, and divided into those with hemi-optic neuropathy (superior or inferior) and bi-optic neuropathy (both superior and inferior). We assessed the relationship between mean deviation (MD) and PSD. Using broken stick regression analysis, the tipping point was identified, i.e., the point at which MD became significantly associated with a paradoxical reversal of PSD. In 91 patients with hemi-optic neuropathy, PSD showed a strong correlation with MD (r = -0.973, β = -0.965, p < 0.001). The difference between MD and PSD ("-MD-PSD") was constant (mean, -0.32 dB; 95% confidence interval, -2.48~1.84 dB) regardless of visual field defect severity. However, in 151 patients with bi-optic neuropathy, a negative correlation was evident between "-MD-PSD" and MD (r2 = 0.907, p < 0.001). Overall, the MD tipping point was -14.0 dB, which was close to approximately 50% damage of the entire visual field (p < 0.001). Although a false decrease of PSD usually begins at approximately 50% visual field damage, in patients with hemi-optic neuropathy, the PSD shows no paradoxical decrease and shows a linear correlation with MD.

  6. 7 CFR 400.174 - Notification of deviation from financial standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Notification of deviation from financial standards... Agreement-Standards for Approval; Regulations for the 1997 and Subsequent Reinsurance Years § 400.174 Notification of deviation from financial standards. An insurer must immediately advise FCIC if it deviates from...

  7. Degrees of Freedom for Allan Deviation Estimates of Multiple Clocks

    DTIC Science & Technology

    2016-04-01

    Allan deviation . Allan deviation will be represented by σ and standard deviation will be represented by δ. In practice, when the Allan deviation of a...the Allan deviation of standard noise types. Once the number of degrees of freedom is known, an approximate confidence interval can be assigned by...measurement errors from paired difference data. We extend this approach by using the Allan deviation to estimate the error in a frequency standard

  8. Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels

    USGS Publications Warehouse

    Laenen, Antonius; Curtis, R. E.

    1989-01-01

    Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, Philip R.

    Field mice are effective indicators of contaminant presence. This paper reports the concentrations of various radionuclides, heavy metals, polychlorinated biphenyls, high explosives, perchlorate, and dioxin/furans in field mice (mostly deer mice) collected from regional background areas in northern New Mexico. These data, represented as the regional statistical reference level (the mean plus three standard deviations = 99% confidence level), are used to compare with data from field mice collected from areas potentially impacted by Laboratory operations, as per the Environmental Surveillance Program at Los Alamos National Laboratory.

  10. Oceanographic and meteorological research based on the data products of SEASAT

    NASA Technical Reports Server (NTRS)

    Pierson, W. J. (Principal Investigator)

    1983-01-01

    De-aliased SEASAT SASS vector winds obtained during the GOASEX (Gulf of Alaska SEASAT Experiment) program were processed to obtain superobservations centered on a one degree by one degree grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. Each grid point of the synoptic field provides the mean synoptic east-west and north-south wind components plus estimates of the standard deviations of these means. These superobservations winds are then processed further to obtain synoptic scale vector winds stress fiels, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations for each grid point value. The resulting fields appear to be consistant over large distances and to agree with, for example, geostationary cloud images obtained concurrently. Their quality is far superior to that of analyses based on conventional data.

  11. The computation of 15 deg and 10 deg equal area block terrestrial free air gravity anomalies

    NASA Technical Reports Server (NTRS)

    Hajela, D. P.

    1973-01-01

    Starting with the set of 23,355 1 deg x 1 deg mean free air gravity anomalies used in Rapp (1972) to form a 5 deg equal area block terrestrial gravity field, the computation of 15 deg equal area block mean free air gravity anomalies is described along with estimates of their standard deviations. A new scheme of an integral division of a 15 deg block into 9 component 300 n. m. blocks, and each 300 n. m. block being subdivided into 25 60 n.mi. blocks, is used. This insures that there is no loss in accuracy, which would have resulted if proportional values according to area were taken of the 5 deg equal area anomalies to form the 15 deg block anomalies. A similar scheme is used for the computation of 10 deg equal area block mean free air gravity anomalies with estimates of their standard deviations. The scheme is general enough to be used for a 30 deg equal area block terrestrial gravity field.

  12. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  13. 1 CFR 21.14 - Deviations from standard organization of the Code of Federal Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Deviations from standard organization of the... CODIFICATION General Numbering § 21.14 Deviations from standard organization of the Code of Federal Regulations. (a) Any deviation from standard Code of Federal Regulations designations must be approved in advance...

  14. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  15. Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma.

    PubMed

    Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Shiraga, Fumio

    2015-01-01

    To analyze the relationship between intraocular pressure (IOP) and the progression of visual field defects in Japanese primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG) patients. The subjects of the study were patients undergoing treatment for POAG or NTG who had performed visual field tests at least ten times with a Humphrey field analyzer (Swedish interactive thresholding algorithm standard, C30-2 program). The progression of visual field defects was defined by a significantly negative value of the mean deviation slope at the final visual field test during the follow-up period. The relationships between the progression of visual field defects and IOP, as well as other clinical factors, were retrospectively analyzed. A total of 156 eyes of 156 patients were included in the analysis. Significant progression of visual field defects was observed in 70 eyes of 70 patients (44.9%), while no significant progression was evident in 86 eyes of 86 patients (55.1%). The eyes with visual field defect progression had significantly lower baseline IOP (P<0.05), as well as significantly lower IOP reduction rate (P<0.01). The standard deviation of IOP values during follow-up was significantly greater in the eyes with visual field defect progression than in eyes without (P<0.05). Reducing IOP is thought to be useful for Japanese POAG or NTG patients to suppress the progression of visual field defects. In NTG, IOP management should take into account not only achieving the target IOP, but also minimizing the fluctuation of IOP during follow-up period.

  16. Inter-laboratory Comparison of Three Earplug Fit-test Systems

    PubMed Central

    Byrne, David C.; Murphy, William J.; Krieg, Edward F.; Ghent, Robert M.; Michael, Kevin L.; Stefanson, Earl W.; Ahroon, William A.

    2017-01-01

    The National Institute for Occupational Safety and Health (NIOSH) sponsored tests of three earplug fit-test systems (NIOSH HPD Well-Fit™, Michael & Associates FitCheck, and Honeywell Safety Products VeriPRO®). Each system was compared to laboratory-based real-ear attenuation at threshold (REAT) measurements in a sound field according to ANSI/ASA S12.6-2008 at the NIOSH, Honeywell Safety Products, and Michael & Associates testing laboratories. An identical study was conducted independently at the U.S. Army Aeromedical Research Laboratory (USAARL), which provided their data for inclusion in this report. The Howard Leight Airsoft premolded earplug was tested with twenty subjects at each of the four participating laboratories. The occluded fit of the earplug was maintained during testing with a soundfield-based laboratory REAT system as well as all three headphone-based fit-test systems. The Michael & Associates lab had highest average A-weighted attenuations and smallest standard deviations. The NIOSH lab had the lowest average attenuations and the largest standard deviations. Differences in octave-band attenuations between each fit-test system and the American National Standards Institute (ANSI) sound field method were calculated (Attenfit-test - AttenANSI). A-weighted attenuations measured with FitCheck and HPD Well-Fit systems demonstrated approximately ±2 dB agreement with the ANSI sound field method, but A-weighted attenuations measured with the VeriPRO system underestimated the ANSI laboratory attenuations. For each of the fit-test systems, the average A-weighted attenuation across the four laboratories was not significantly greater than the average of the ANSI sound field method. Standard deviations for residual attenuation differences were about ±2 dB for FitCheck and HPD Well-Fit compared to ±4 dB for VeriPRO. Individual labs exhibited a range of agreement from less than a dB to as much as 9.4 dB difference with ANSI and REAT estimates. Factors such as the experience of study participants and test administrators, and the fit-test psychometric tasks are suggested as possible contributors to the observed results. PMID:27786602

  17. Upgraded FAA Airfield Capacity Model. Volume 1. Supplemental User’s Guide

    DTIC Science & Technology

    1981-02-01

    SIGMAR (P4.0) cc 1-4 -standard deviation, in seconds, of arrival runway occupancy time (R.O.T.). SIGMAA (F4.0) cc 5-8 -standard deviation, in seconds...iI SI GMAC - The standard deviation of the time from departure clearance to start of roll. SIGMAR - The standard deviation of the arrival runway

  18. A Visual Model for the Variance and Standard Deviation

    ERIC Educational Resources Information Center

    Orris, J. B.

    2011-01-01

    This paper shows how the variance and standard deviation can be represented graphically by looking at each squared deviation as a graphical object--in particular, as a square. A series of displays show how the standard deviation is the size of the average square.

  19. Basic life support: evaluation of learning using simulation and immediate feedback devices1.

    PubMed

    Tobase, Lucia; Peres, Heloisa Helena Ciqueto; Tomazini, Edenir Aparecida Sartorelli; Teodoro, Simone Valentim; Ramos, Meire Bruna; Polastri, Thatiane Facholi

    2017-10-30

    to evaluate students' learning in an online course on basic life support with immediate feedback devices, during a simulation of care during cardiorespiratory arrest. a quasi-experimental study, using a before-and-after design. An online course on basic life support was developed and administered to participants, as an educational intervention. Theoretical learning was evaluated by means of a pre- and post-test and, to verify the practice, simulation with immediate feedback devices was used. there were 62 participants, 87% female, 90% in the first and second year of college, with a mean age of 21.47 (standard deviation 2.39). With a 95% confidence level, the mean scores in the pre-test were 6.4 (standard deviation 1.61), and 9.3 in the post-test (standard deviation 0.82, p <0.001); in practice, 9.1 (standard deviation 0.95) with performance equivalent to basic cardiopulmonary resuscitation, according to the feedback device; 43.7 (standard deviation 26.86) mean duration of the compression cycle by second of 20.5 (standard deviation 9.47); number of compressions 167.2 (standard deviation 57.06); depth of compressions of 48.1 millimeter (standard deviation 10.49); volume of ventilation 742.7 (standard deviation 301.12); flow fraction percentage of 40.3 (standard deviation 10.03). the online course contributed to learning of basic life support. In view of the need for technological innovations in teaching and systematization of cardiopulmonary resuscitation, simulation and feedback devices are resources that favor learning and performance awareness in performing the maneuvers.

  20. Monitor unit settings for intensity modulated beams delivered using a step-and-shoot approach.

    PubMed

    Sharpe, M B; Miller, B M; Yan, D; Wong, J W

    2000-12-01

    Two linear accelerators have been commissioned for delivering IMRT treatments using a step-and-shoot approach. To assess beam startup stability for 6 and 18 MV x-ray beams, dose delivered per monitor unit (MU), beam flatness, and beam symmetry were measured as a function of the total number of MU delivered at a clinical dose rate of 400 MU per minute. Relative to a 100 MU exposure, the dose delivered per MU by both linear accelerators was found to be within +/-2% for exposures larger than 4 MU. Beam flatness and symmetry also met accepted quality assurance standards for a minimum exposure of 4 MU. We have found that the performance of the two machines under study is well suited to the delivery of step-and-shoot IMRT. A system of dose calculation has also been commissioned for applying head scatter corrections to fields as small as 1x1 cm2. The accuracy and precision of the relative output calculations in water was validated for small fields and fields offset from the axis of collimator rotation. For both 6 and 18 MV x-ray beams, the dose per MU calculated in a water phantom agrees with measured data to within 1% on average, with a maximum deviation of 2.5%. The largest output factor discrepancies were seen when the actual radiation field size deviated from the set field size. The measured output in water can vary by as much 16% for 1x1 cm2 fields, when the measured field size deviates from the set field size by 2 mm. For a 1 mm deviation, this discrepancy was reduced to 8%. Steps should be taken to ensure collimator precision is tightly controlled when using such small fields. If this is not possible, very small fields should not contribute to a significant portion of the treatment, or uncertainties in the collimator position may effect the accuracy of the dose delivered.

  1. Phased-array vector velocity estimation using transverse oscillations.

    PubMed

    Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A

    2012-12-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.

  2. Individual differences in the shape of the nasal visual field.

    PubMed

    Swanson, William H; Dul, Mitchell W; Horner, Douglas G; Malinovsky, Victor E

    2017-12-01

    Between-subject differences in the shape of the nasal visual field were assessed for 103 volunteers 21-85years of age and free of visual disorder. Perimetry was conducted with a stimulus for which contrast sensitivity is minimally affected by peripheral defocus and decreased retinal illumination. One eye each was tested for 103 volunteers free of eye disease in a multi-center prospective longitudinal study. A peripheral deviation index was computed as the difference in log contrast sensitivity at outer (25-29° nasal) and inner (8° from fixation) locations. Values for this index ranged from 0.01 (outer sensitivity slightly greater than inner sensitivity) to -0.7 log unit (outer sensitivity much lower than inner sensitivity). Mean sensitivity for the inner locations was independent of the deviation index (R 2 <1%), while mean sensitivity for the outer locations was not (R 2 =38%, p<0.0005). Age was only modestly related to the index, with a decline by 0.017 log unit per decade (R 2 =10%). Test-retest data for 21 volunteers who completed 7-10 visits yielded standard deviations for the index from 0.04 to 0.17 log unit, with a mean of 0.09 log unit. Between-subject differences in peripheral deviation persisted over two years of longitudinal testing. Peripheral deviation indices were correlated with indices for three other perimetric stimuli used in a subset of 24 volunteers (R 2 from 20% to 49%). Between-subject variability in shape of the visual field raises concerns about current clinical visual field indices, and further studies are needed to develop improved indices. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Reducing the standard deviation in multiple-assay experiments where the variation matters but the absolute value does not.

    PubMed

    Echenique-Robba, Pablo; Nelo-Bazán, María Alejandra; Carrodeguas, José A

    2013-01-01

    When the value of a quantity x for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems' averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of x matter while its absolute value does not, and a similar tendency in the values of x must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty.

  4. An activity index for geomagnetic paleosecular variation, excursions, and reversals

    NASA Astrophysics Data System (ADS)

    Panovska, S.; Constable, C. G.

    2017-04-01

    Magnetic indices provide quantitative measures of space weather phenomena that are widely used by researchers in geomagnetism. We introduce an index focused on the internally generated field that can be used to evaluate long term variations or climatology of modern and paleomagnetic secular variation, including geomagnetic excursions, polarity reversals, and changes in reversal rate. The paleosecular variation index, Pi, represents instantaneous or average deviation from a geocentric axial dipole field using normalized ratios of virtual geomagnetic pole colatitude and virtual dipole moment. The activity level of the index, σPi, provides a measure of field stability through the temporal standard deviation of Pi. Pi can be calculated on a global grid from geomagnetic field models to reveal large scale geographic variations in field structure. It can be determined for individual time series, or averaged at local, regional, and global scales to detect long term changes in geomagnetic activity, identify excursions, and transitional field behavior. For recent field models, Pi ranges from less than 0.05 to 0.30. Conventional definitions for geomagnetic excursions are characterized by Pi exceeding 0.5. Strong field intensities are associated with low Pi unless they are accompanied by large deviations from axial dipole field directions. σPi provides a measure of geomagnetic stability that is modulated by the level of PSV or frequency of excursional activity and reversal rate. We demonstrate uses of Pi for paleomagnetic observations and field models and show how it could be used to assess whether numerical simulations of the geodynamo exhibit Earth-like properties.

  5. Visual field defects of the contralateral eye of non-arteritic ischemic anterior optic neuropathy: are they related to sleep apnea?

    PubMed

    Aptel, Florent; Aryal-Charles, Nischal; Tamisier, Renaud; Pépin, Jean-Louis; Lesoin, Antoine; Chiquet, Christophe

    2017-06-01

    To evaluate whether obstructive sleep apnea (OSA) is responsible for the visual field defects found in the fellow eyes of patients with non-arteritic ischemic optic neuropathy (NAION). Prospective cross-sectional study. The visual fields of the fellow eyes of NAION subjects with OSA were compared to the visual fields of control OSA patients matched for OSA severity. All patients underwent comprehensive ophthalmological and general examination including Humphrey 24.2 SITA-Standard visual field and polysomnography. Visual field defects were classified according the Ischemic Optic Neuropathy Decompression Trial (IONDT) classification. From a cohort of 78 consecutive subjects with NAION, 34 unaffected fellow eyes were compared to 34 control eyes of subjects matched for OSA severity (apnea-hypopnea index [AHI] 35.5 ± 11.6 vs 35.4 ± 9.4 events per hour, respectively, p = 0.63). After adjustment for age and body mass index, all visual field parameters were significantly different between the NAION fellow eyes and those of the control OSA groups, including mean deviation (-4.5 ± 3.7 vs -1.3 ± 1.8 dB, respectively, p < 0.05), visual field index (91.6 ± 10 vs 97.4 ± 3.5%, respectively, p = 0.002), pattern standard deviation (3.7 ± 2.3 vs 2.5 ± 2 dB, respectively, p = 0.015), and number of subjects with at least one defect on the IONDT classification (20 vs 10, respectively, p < 0.05). OSA alone does not explain the visual field defects frequently found in the fellow eyes of NAION patients.

  6. Implementation of small field radiotherapy dosimetry for spinal metastase case

    NASA Astrophysics Data System (ADS)

    Rofikoh, Wibowo, W. E.; Pawiro, S. A.

    2017-07-01

    The main objective of this study was to know dose profile of small field radiotherapy in the spinal metastase case with source axis distance (SAD) techniques. In addition, we evaluated and compared the dose planning of stereotactic body radiation therapy (SBRT) and conventional techniques to measurements with Exradin A16 and Gafchromic EBT3 film dosimeters. The results showed that film EBT3 had a highest precision and accuracy with the average of the standard deviation of ±1.7 and maximum discrepancy of 2.6 %. In addition, the average value of Full Wave Half Maximum (FWHM) and its largest deviation in small field size of 0.8 x 0.8 cm2 are 0.82 cm and 16.3 % respectively, while it was found around 2.36 cm and 3 % for the field size of 2.4 x 2.4 cm2. The comparison between penumbra width and the collimation was around of 37.1 % for the field size of 0.8 x 0.8 cm2, while it was found of 12.4 % for the field size of 2.4 x 2.4 cm2.

  7. Seismic zoning (first approximation) using data of the main geomagnetic field

    NASA Astrophysics Data System (ADS)

    Khachikyan, Galina; Zhumabayev, Beibit; Toyshiev, Nursultan; Kairatkyzy, Dina; Seraliyev, Alibek; Khassanov, Eldar

    2017-04-01

    Seismic zoning is among the most complicated and extremely important problems of modern seismology. In solving this problem, a very important parameter is maximal possible earthquake magnitude (Mmax) which is believed at present depends on horizontal size of geoblocks. At the same time, it was found by Khachikyan et al. [2012, IJG, doi: 10.4236/ijg.2012.35109] that Mmax value in any seismic region may be determined using Z_GSM value that is geomagnetic Z-component in this region estimated in geocentric solar-magnetosphere coordinate system (GSM). On the base of the global seismological catalog NEIC with M≥4.5 for 1973-2010 years, and the International Geomagnetic Reference Field (IGRF) model, an empirical relation was obtained as follows: Mmax= a + b {log[abs(Z_GSM)]}. For the case of the whole planet, obtained empirical coefficients are as follows: a = (5,22 ± 0,17), and b = (0,78 ± 0,06) with correlation coefficient R=0.91, standard deviation SD=0.56, and probability 95%. Further investigations showed that the coefficients of the regression equation are different for different seismically active regions of the planet. For example, to the territory of the San Andreas Fault, defined by the coordinates 30-45N, 105-135W obtained values are as follows: a = (4,04 ± 0.38) and b = (0.7 ± 0.13) with correlation coefficient R = 0.91, standard deviation SD = 0.34, and probability of 95%. For territory of inland seismicity in Eurasia defined by the coordinates 30-45N, 0-110E, a = (12.44 ± 0.48) and b = (1,15 ± 0.2) with correlation coefficient R = 0.87, standard deviation SD = 0.98, and probability of 95%, and for the territory of the strongest seismicity in the world defined by the coordinates 20S-20N, 90-150E, obtained values of a = (- 17.5 ± 1,5) and b = (5,7 ± 0.4) with correlation coefficient R = 0.97, standard deviation SD = 0.4, and probability of 95%. The relationship between the intensity of the main geomagnetic field and released seismic energy is expectable, because both the main geomagnetic field and the tectonic activity of the planet originate from the same source - the convection in the Earth's liquid core. The relationship between earthquake magnitude and geomagnetic Z - component expressed namely in geocentric solar magnetosphere coordinate system (GSM), in which the interaction of the solar wind magnetic field with the geomagnetic field is better ordered, indicates at the external (triggering) earthquake occurrence in the extremely stressed tectonic area. Above empirical relationships may be used (in first approximation) for global seismic zoning and for prediction of possible Mmax, when a place and time of earthquake occurrence are predicted. In report we present global maps of Z_GSM and Mmax estimated for different seasons and different times.

  8. The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension.

    PubMed

    Başkan, Ceyda; Köz, Özlem G; Duman, Rahmi; Gökçe, Sabite E; Yarangümeli, Ahmet A; Kural, Gülcan

    2016-12-01

    The purpose of this study is to examine the demographics, clinical properties, and the relation between white-on-white standard automated perimetry (SAP), short wavelength automated perimetry (SWAP), and optical coherence tomographic (OCT) parameters of patients with ocular hypertension. Sixty-one eyes of 61 patients diagnosed with ocular hypertension in the Ankara Numune Education and Research Hospital ophthalmology unit between January 2010 and January 2011 were included in this study. All patients underwent SAP and SWAP tests with the Humphrey visual field analyser using the 30.2 full-threshold test. Retinal nerve fiber layers (RNFL) and optic nerve heads of patients were evaluated with Stratus OCT. Positive correlation was detected between SAP pattern standard deviation value and average intraocular pressure (P=0.017), maximum intraocular pressure (P=0.009), and vertical cup to disc (C/D) ratio (P=0.009). Positive correlation between SWAP median deviation value with inferior (P=0.032), nasal (P=0.005), 6 o'clock quadrant RNFL thickness (P=0.028), and Imax/Tavg ratio (P=0.023) and negative correlation with Smax/Navg ratio (P=0.005) were detected. There was no correlation between central corneal thickness and peripapillary RNFL thicknesses (P>0.05). There was no relation between SAP median deviation, pattern standard deviation values and RNFL thicknesses and optic disc parameters of the OCT. By contrast significant correlation between several SWAP parameters and OCT parameters were detected. SWAP appeared to outperform achromatic SAP when the same 30-2 method was used.

  9. The ground-truth problem for satellite estimates of rain rate

    NASA Technical Reports Server (NTRS)

    North, Gerald R.; Valdes, Juan B.; Eunho, HA; Shen, Samuel S. P.

    1994-01-01

    In this paper a scheme is proposed to use a point raingage to compare contemporaneous measurements of rain rate from a single-field-of-view (FOV) estimate based on a satellite remote sensor such as a microwave radiometer. Even in the ideal case the measurements are different because one is at a point and the other is an area average over the field of view. Also the point gage will be located randomly inside the field of view on different overpasses. A space-time spectral formalism is combined with a simple stochastic rain field to find the mean-square deviations between the two systems. It is found that by combining about 60 visits of the satellite to the ground-truth site, the expected error can be reduced to about 10% of the standard deviation of the fluctuations of the systems alone. This seems to be a useful level of tolerance in terms of isolating and evaluating typical biases that might be contaminating retrieval algorithms.

  10. How do we assign punishment? The impact of minimal and maximal standards on the evaluation of deviants.

    PubMed

    Kessler, Thomas; Neumann, Jörg; Mummendey, Amélie; Berthold, Anne; Schubert, Thomas; Waldzus, Sven

    2010-09-01

    To explain the determinants of negative behavior toward deviants (e.g., punishment), this article examines how people evaluate others on the basis of two types of standards: minimal and maximal. Minimal standards focus on an absolute cutoff point for appropriate behavior; accordingly, the evaluation of others varies dichotomously between acceptable or unacceptable. Maximal standards focus on the degree of deviation from that standard; accordingly, the evaluation of others varies gradually from positive to less positive. This framework leads to the prediction that violation of minimal standards should elicit punishment regardless of the degree of deviation, whereas punishment in response to violations of maximal standards should depend on the degree of deviation. Four studies assessed or manipulated the type of standard and degree of deviation displayed by a target. Results consistently showed the expected interaction between type of standard (minimal and maximal) and degree of deviation on punishment behavior.

  11. On-site audits to investigate the quality of radiation physics of radiation therapy institutions in the Republic of Korea.

    PubMed

    Park, Jong Min; Park, So-Yeon; Chun, Minsoo; Kim, Sang-Tae

    2017-08-01

    To investigate and improve the domestic standard of radiation therapy in the Republic of Korea. On-site audits were performed for 13 institutions in the Republic of Korea. Six items were investigated by on-site visits of each radiation therapy institution, including collimator, gantry, and couch rotation isocenter check; coincidence between light and radiation fields; photon beam flatness and symmetry; electron beam flatness and symmetry; physical wedge transmission factors; and photon beam and electron beam outputs. The average deviations of mechanical collimator, gantry, and couch rotation isocenter were less than 1mm. Those of radiation isocenter were also less than 1mm. The average difference between light and radiation fields was 0.9±0.6mm for the field size of 20cm×20cm. The average values of flatness and symmetry of the photon beams were 2.9%±0.6% and 1.1%±0.7%, respectively. Those of electron beams were 2.5%±0.7% and 0.6%±1.0%, respectively. Every institutions showed wedge transmission factor deviations less than 2% except one institution. The output deviations of both photon and electron beams were less than ±3% for every institution. Through the on-site audit program, we could effectively detect an inappropriately operating linacs and provide some recommendations. The standard of radiation therapy in Korea is expected to improve through such on-site audits. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  13. Impact of heterozygosity and heterogeneity on cotton lint yield stability: II. Lint yield components

    USDA-ARS?s Scientific Manuscript database

    In order to determine which yield components may contribute to yield stability, an 18-environment field study was undertaken to observe the mean, standard deviation (SD), and coefficient of variation (CV) for cotton lint yield components in population types that differed for lint yield stability. Th...

  14. An Integrated Perspective on the Relation between Response Speed and Intelligence

    ERIC Educational Resources Information Center

    van Ravenzwaaij, Don; Brown, Scott; Wagenmakers, Eric-Jan

    2011-01-01

    Research in the field of mental chronometry and individual differences has revealed several robust regularities (Jensen, 2006). These include right-skewed response time (RT) distributions, the worst performance rule, correlations with general intelligence ("g") that are more pronounced for RT standard deviations (RTSD) than they are for RT means…

  15. Linking Initial Microstructure to ORR Related Property Degradation in SOFC Cathode: A Phase Field Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Y.; Cheng, T. -L.; Wen, Y. H.

    Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less

  16. Linking Initial Microstructure to ORR Related Property Degradation in SOFC Cathode: A Phase Field Simulation

    DOE PAGES

    Lei, Y.; Cheng, T. -L.; Wen, Y. H.

    2017-07-05

    Microstructure evolution driven by thermal coarsening is an important factor for the loss of oxygen reduction reaction rates in SOFC cathode. In this work, the effect of an initial microstructure on the microstructure evolution in SOFC cathode is investigated using a recently developed phase field model. Specifically, we tune the phase fraction, the average grain size, the standard deviation of the grain size and the grain shape in the initial microstructure, and explore their effect on the evolution of the grain size, the density of triple phase boundary, the specific surface area and the effective conductivity in LSM-YSZ cathodes. Itmore » is found that the degradation rate of TPB density and SSA of LSM is lower with less LSM phase fraction (with constant porosity assumed) and greater average grain size, while the degradation rate of effective conductivity can also be tuned by adjusting the standard deviation of grain size distribution and grain aspect ratio. The implication of this study on the designing of an optimal initial microstructure of SOFC cathodes is discussed.« less

  17. Changes of visual-field global indices after cataract surgery in primary open-angle glaucoma patients.

    PubMed

    Seol, Bo Ram; Jeoung, Jin Wook; Park, Ki Ho

    2016-11-01

    To determine changes of visual-field (VF) global indices after cataract surgery and the factors associated with the effect of cataracts on those indices in primary open-angle glaucoma (POAG) patients. A retrospective chart review of 60 POAG patients who had undergone phacoemulsification and intraocular lens insertion was conducted. All of the patients were evaluated with standard automated perimetry (SAP; 30-2 Swedish interactive threshold algorithm; Carl Zeiss Meditec Inc.) before and after surgery. VF global indices before surgery were compared with those after surgery. The best-corrected visual acuity, intraocular pressure (IOP), number of glaucoma medications before surgery, mean total deviation (TD) values, mean pattern deviation (PD) value, and mean TD-PD value were also compared with the corresponding postoperative values. Additionally, postoperative peak IOP and mean IOP were evaluated. Univariate and multivariate logistic regression analyses were performed to identify the factors associated with the effect of cataract on global indices. Mean deviation (MD) after cataract surgery was significantly improved compared with the preoperative MD. Pattern standard deviation (PSD) and visual-field index (VFI) after surgery were similar to those before surgery. Also, mean TD and mean TD-PD were significantly improved after surgery. The posterior subcapsular cataract (PSC) type showed greater MD changes than did the non-PSC type in both the univariate and multivariate logistic regression analyses. In the univariate logistic regression analysis, the preoperative TD-PD value and type of cataract were associated with MD change. However, in the multivariate logistic regression analysis, type of cataract was the only associated factor. None of the other factors was associated with MD change. MD was significantly affected by cataracts, whereas PSD and VFI were not. Most notably, the PSC type showed better MD improvement compared with the non-PSC type after cataract surgery. Clinicians therefore should carefully analyze VF examination results for POAG patients with the PSC type.

  18. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 1: January

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of January. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Mean density standard deviation (all for 13 levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  19. Aero-thermal Calibration of the NASA Glenn Icing Research Tunnel (2000 Tests)

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen; Curry, Monroe R., III

    2001-01-01

    Aerothermal calibration measurements and flow quality surveys were made in the test section of the Icing Research Tunnel at the NASA Glenn Research Center. These surveys were made following major facility modifications including widening of the heat exchanger tunnel section, replacement of the heat exchanger, installation of new turning vanes, and installation of new fan exit guide vanes. Standard practice at NASA Glenn requires that test section calibration and flow quality surveys be performed following such major facility modifications. A single horizontally oriented rake was used to survey the flow field at several vertical positions within a single cross-sectional plane of the test section. These surveys provided a detailed mapping of the total and static pressure, total temperature, Mach number, velocity, flow angle and turbulence intensity. Data were acquired over the entire velocity and total temperature range of the facility. No icing conditions were tested; however, the effects of air sprayed through the water injecting spray bars were assessed. All data indicate good flow quality. Mach number standard deviations were less than 0.0017, flow angle standard deviations were between 0.3 deg and 0.8 deg, total temperature standard deviations were between 0.5 and 1.8 F for subfreezing conditions, axial turbulence intensities varied between 0.3 and 1.0 percent, and transverse turbulence intensities varied between 0.3 and 1.5 percent. Measurement uncertainties were also quantified.

  20. Inflation in the mixed Higgs-R2 model

    NASA Astrophysics Data System (ADS)

    He, Minxi; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2018-05-01

    We analyze a two-field inflationary model consisting of the Ricci scalar squared (R2) term and the standard Higgs field non-minimally coupled to gravity in addition to the Einstein R term. Detailed analysis of the power spectrum of this model with mass hierarchy is presented, and we find that one can describe this model as an effective single-field model in the slow-roll regime with a modified sound speed. The scalar spectral index predicted by this model coincides with those given by the R2 inflation and the Higgs inflation implying that there is a close relation between this model and the R2 inflation already in the original (Jordan) frame. For a typical value of the self-coupling of the standard Higgs field at the high energy scale of inflation, the role of the Higgs field in parameter space involved is to modify the scalaron mass, so that the original mass parameter in the R2 inflation can deviate from its standard value when non-minimal coupling between the Ricci scalar and the Higgs field is large enough.

  1. Comparing Standard Deviation Effects across Contexts

    ERIC Educational Resources Information Center

    Ost, Ben; Gangopadhyaya, Anuj; Schiman, Jeffrey C.

    2017-01-01

    Studies using tests scores as the dependent variable often report point estimates in student standard deviation units. We note that a standard deviation is not a standard unit of measurement since the distribution of test scores can vary across contexts. As such, researchers should be cautious when interpreting differences in the numerical size of…

  2. RESIDENTIAL EXPOSURE TO EXTREMELY LOW FREQUENCY ELECTRIC AND MAGNETIC FIELDS IN THE CITY OF RAMALLAH-PALESTINE.

    PubMed

    Abuasbi, Falastine; Lahham, Adnan; Abdel-Raziq, Issam Rashid

    2018-04-01

    This study was focused on the measurement of residential exposure to power frequency (50-Hz) electric and magnetic fields in the city of Ramallah-Palestine. A group of 32 semi-randomly selected residences distributed amongst the city were under investigations of fields variations. Measurements were performed with the Spectrum Analyzer NF-5035 and were carried out at one meter above ground level in the residence's bedroom or living room under both zero and normal-power conditions. Fields' variations were recorded over 6-min and some times over few hours. Electric fields under normal-power use were relatively low; ~59% of residences experienced mean electric fields <10 V/m. The highest mean electric field of 66.9 V/m was found at residence R27. However, electric field values were log-normally distributed with geometric mean and geometric standard deviation of 9.6 and 3.5 V/m, respectively. Background electric fields measured under zero-power use, were very low; ~80% of residences experienced background electric fields <1 V/m. Under normal-power use, the highest mean magnetic field (0.45 μT) was found at residence R26 where an indoor power substation exists. However, ~81% of residences experienced mean magnetic fields <0.1 μT. Magnetic fields measured inside the 32 residences showed also a log-normal distribution with geometric mean and geometric standard deviation of 0.04 and 3.14 μT, respectively. Under zero-power conditions, ~7% of residences experienced average background magnetic field >0.1 μT. Fields from appliances showed a maximum mean electric field of 67.4 V/m from hair dryer, and maximum mean magnetic field of 13.7 μT from microwave oven. However, no single result surpassed the ICNIRP limits for general public exposures to ELF fields, but still, the interval 0.3-0.4 μT for possible non-thermal health impacts of exposure to ELF magnetic fields, was experienced in 13% of the residences.

  3. Testing chameleon theories with light propagating through a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-10-15

    It was recently argued that the observed PVLAS anomaly can be explained by chameleon field theories in which large deviations from Newton's law can be avoided. Here we present the predictions for the dichroism and the birefringence induced in the vacuum by a magnetic field in these models. We show that chameleon particles behave very differently from standard axionlike particles (ALPs). We find that, unlike ALPs, the chameleon particles are confined within the experimental setup. As a consequence, the birefringence is always bigger than the dichroism in PVLAS-type experiments.

  4. Standard deviation of luminance distribution affects lightness and pupillary response.

    PubMed

    Kanari, Kei; Kaneko, Hirohiko

    2014-12-01

    We examined whether the standard deviation (SD) of luminance distribution serves as information of illumination. We measured the lightness of a patch presented in the center of a scrambled-dot pattern while manipulating the SD of the luminance distribution. Results showed that lightness decreased as the SD of the surround stimulus increased. We also measured pupil diameter while viewing a similar stimulus. The pupil diameter decreased as the SD of luminance distribution of the stimuli increased. We confirmed that these results were not obtained because of the increase of the highest luminance in the stimulus. Furthermore, results of field measurements revealed a correlation between the SD of luminance distribution and illuminance in natural scenes. These results indicated that the visual system refers to the SD of the luminance distribution in the visual stimulus to estimate the scene illumination.

  5. Blood pressure variability in man: its relation to high blood pressure, age and baroreflex sensitivity.

    PubMed

    Mancia, G; Ferrari, A; Gregorini, L; Parati, G; Pomidossi, G; Bertinieri, G; Grassi, G; Zanchetti, A

    1980-12-01

    1. Intra-arterial blood pressure and heart rate were recorded for 24 h in ambulant hospitalized patients of variable age who had normal blood pressure or essential hypertension. Mean 24 h values, standard deviations and variation coefficient were obtained as the averages of values separately analysed for 48 consecutive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation aations and variation coefficient were obtained as the averages of values separately analysed for 48 consecurive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for heart rate were smaller. 3. In hypertensive subjects standard deviation for mean arterial pressure was greater than in normotensive subjects of similar ages, but this was not the case for variation coefficient, which was slightly smaller in the former than in the latter group. Normotensive and hypertensive subjects showed no difference in standard deviation and variation coefficient for heart rate. 4. In both normotensive and hypertensive subjects standard deviation and even more so variation coefficient were slightly or not related to arterial baroreflex sensitivity as measured by various methods (phenylephrine, neck suction etc.). 5. It is concluded that blood pressure variability increases and heart rate variability decreases with age, but that changes in variability are not so obvious in hypertension. Also, differences in variability among subjects are only marginally explained by differences in baroreflex function.

  6. Off disk-center potential field calculations using vector magnetograms

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.; Gary, G. Allen

    1989-01-01

    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  7. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  8. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  9. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-11-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  10. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 2: February

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-09-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of February. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  11. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 4: April

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of April. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  12. Precision analysis for standard deviation measurements of immobile single fluorescent molecule images.

    PubMed

    DeSantis, Michael C; DeCenzo, Shawn H; Li, Je-Luen; Wang, Y M

    2010-03-29

    Standard deviation measurements of intensity profiles of stationary single fluorescent molecules are useful for studying axial localization, molecular orientation, and a fluorescence imaging system's spatial resolution. Here we report on the analysis of the precision of standard deviation measurements of intensity profiles of single fluorescent molecules imaged using an EMCCD camera.We have developed an analytical expression for the standard deviation measurement error of a single image which is a function of the total number of detected photons, the background photon noise, and the camera pixel size. The theoretical results agree well with the experimental, simulation, and numerical integration results. Using this expression, we show that single-molecule standard deviation measurements offer nanometer precision for a large range of experimental parameters.

  13. A meta-analysis of instructional systems applied in science teaching

    NASA Astrophysics Data System (ADS)

    Willett, John B.; Yamashita, June J. M.; Anderson, Ronald D.

    This article is a report of a meta-analysis on the question: What are the effects of different instructional systems used in science teaching? The studies utilized in this meta-analysis were identified by a process that included a systematic screening of all dissertations completed in the field of science education since 1950, an ERIC search of the literature, a systematic screening of selected research journals, and the standard procedure of identifying potentially relevant studies through examination of the bibliographies of the studies reviewed. In all, the 130 studies coded gave rise to 341 effect sizes. The mean effect size produced over all systems was 0.10 with a standard deviation of 0.41, indicating that, on the average, an innovative teaching system in this sample produced one-tenth of a standard deviation better performance than traditional science teaching. Particular kinds of teaching systems, however, produced results that varied from this overall result. Mean effect sizes were also computed by year of publication, form of publication, grade level, and subject matter.

  14. Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets

    DOE PAGES

    Khachatryan, Vardan

    2015-02-02

    Our study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb -1 collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. Furthermore, the observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations ismore » expected based on the standard model. Cross section measurements for W ±W ± and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.« less

  15. Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Aldá Júnior, W L; Alves, G A; Brito, L; Correa Martins Junior, M; Dos Reis Martins, T; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Zou, W; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Heister, A; Hindrichs, O; Klein, K; Ostapchuk, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrens, U; Bell, A J; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garay Garcia, J; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Gilbert, A; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, T; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Röcker, S; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellato, M; Bisello, D; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Obraztsov, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Isildak, B; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Albayrak, E A; Gülmez, E; Kaya, M; Kaya, O; Yetkin, T; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Holzner, A; Kelley, R; Klein, D; Kovalskyi, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Krohn, M; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; Moon, D H; O'Brien, C; Sandoval Gonzalez, I D; Silkworth, C; Turner, P; Varelas, N; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Ratnikov, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Luo, W; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Korjenevski, S; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N

    2015-02-06

    A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4  fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

  16. Visual field progression in glaucoma: total versus pattern deviation analyses.

    PubMed

    Artes, Paul H; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C

    2005-12-01

    To compare visual field progression with total and pattern deviation analyses in a prospective longitudinal study of patients with glaucoma and healthy control subjects. A group of 101 patients with glaucoma (168 eyes) with early to moderately advanced visual field loss at baseline (average mean deviation [MD], -3.9 dB) and no clinical evidence of media opacity were selected from a prospective longitudinal study on visual field progression in glaucoma. Patients were examined with static automated perimetry at 6-month intervals for a median follow-up of 9 years. At each test location, change was established with event and trend analyses of total and pattern deviation. The event analyses compared each follow-up test to a baseline obtained from averaging the first two tests, and visual field progression was defined as deterioration beyond the 5th percentile of test-retest variability at three test locations, observed on three consecutive tests. The trend analyses were based on point-wise linear regression, and visual field progression was defined as statistically significant deterioration (P < 5%) worse than -1 dB/year at three locations, confirmed by independently omitting the last and the penultimate observation. The incidence and the time-to-progression were compared between total and pattern deviation analyses. To estimate the specificity of the progression analyses, identical criteria were applied to visual fields obtained in 102 healthy control subjects, and the rate of visual field improvement was established in the patients with glaucoma and the healthy control subjects. With both event and trend methods, pattern deviation analyses classified approximately 15% fewer eyes as having progressed than did the total deviation analyses. In eyes classified as progressing by both the total and pattern deviation methods, total deviation analyses tended to detect progression earlier than the pattern deviation analyses. A comparison of the changes observed in MD and the visual fields' general height (estimated by the 85th percentile of the total deviation values) confirmed that change in the glaucomatous eyes almost always comprised a diffuse component. Pattern deviation analyses of progression may therefore underestimate the true amount of glaucomatous visual field progression. Pattern deviation analyses of visual field progression may underestimate visual field progression in glaucoma, particularly when there is no clinical evidence of increasing media opacity. Clinicians should have access to both total and pattern deviation analyses to make informed decisions on visual field progression in glaucoma.

  17. [Method for the quality assessment of data collection processes in epidemiological studies].

    PubMed

    Schöne, G; Damerow, S; Hölling, H; Houben, R; Gabrys, L

    2017-10-01

    For a quantitative evaluation of primary data collection processes in epidemiological surveys based on accompaniments and observations (in the field), there is no description of test criteria and methodologies in relevant literature and thus no known application in practice. Therefore, methods need to be developed and existing procedures adapted. The aim was to identify quality-relevant developments within quality dimensions by means of inspection points (quality indicators) during the process of data collection. As a result we seek to implement and establish a methodology for the assessment of overall survey quality supplementary to standardized data analyses. Monitors detect deviations from standard primary data collection during site visits by applying standardized checklists. Quantitative results - overall and for each dimension - are obtained by numerical calculation of quality indicators. Score results are categorized and color coded. This visual prioritization indicates necessity for intervention. The results obtained give clues regarding the current quality of data collection. This allows for the identification of such sections where interventions for quality improvement are needed. In addition, process quality development can be shown over time on an intercomparable basis. This methodology for the evaluation of data collection quality can identify deviations from norms, focalize quality analyses and help trace causes for significant deviations.

  18. Error analysis regarding the calculation of nonlinear force-free field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.

    2012-02-01

    Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.

  19. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  20. Fluorescein thiocarbamyl amino acids as internal standards for migration time correction in capillary sieving electrophoresis

    PubMed Central

    Pugsley, Haley R.; Swearingen, Kristian E.; Dovichi, Norman J.

    2009-01-01

    A number of algorithms have been developed to correct for migration time drift in capillary electrophoresis. Those algorithms require identification of common components in each run. However, not all components may be present or resolved in separations of complex samples, which can confound attempts for alignment. This paper reports the use of fluorescein thiocarbamyl derivatives of amino acids as internal standards for alignment of 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ)-labeled proteins in capillary sieving electrophoresis. The fluorescein thiocarbamyl derivative of aspartic acid migrates before FQ-labeled proteins and the fluorescein thiocarbamyl derivative of arginine migrates after the FQ-labeled proteins. These compounds were used as internal standards to correct for variations in migration time over a two-week period in the separation of a cellular homogenate. The experimental conditions were deliberately manipulated by varying electric field and sample preparation conditions. Three components of the homogenate were used to evaluate the alignment efficiency. Before alignment, the average relative standard deviation in migration time for these components was 13.3%. After alignment, the average relative standard deviation in migration time for these components was reduced to 0.5%. PMID:19249052

  1. Exploring Students' Conceptions of the Standard Deviation

    ERIC Educational Resources Information Center

    delMas, Robert; Liu, Yan

    2005-01-01

    This study investigated introductory statistics students' conceptual understanding of the standard deviation. A computer environment was designed to promote students' ability to coordinate characteristics of variation of values about the mean with the size of the standard deviation as a measure of that variation. Twelve students participated in an…

  2. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Total...

  3. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Total...

  4. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Total...

  5. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Total...

  6. Statistics as Unbiased Estimators: Exploring the Teaching of Standard Deviation

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.; Casey, Stephanie; Champion, Joe; Huey, Maryann

    2017-01-01

    This manuscript presents findings from a study about the knowledge for and planned teaching of standard deviation. We investigate how understanding variance as an unbiased (inferential) estimator--not just a descriptive statistic for the variation (spread) in data--is related to teachers' instruction regarding standard deviation, particularly…

  7. 7 CFR 801.4 - Tolerances for dockage testers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Riddle separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Sieve separation ±0.10 percent, mean deviation from standard dockage tester using Hard Red Winter wheat Total...

  8. 7 CFR 801.6 - Tolerances for moisture meters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... moisture, mean deviation from National standard moisture meter using Hard Red Winter wheat Mid ±0.05 percent moisture, mean deviation from National standard moisture meter using Hard Red Winter wheat High ±0.05 percent moisture, mean deviation from National standard moisture meter using Hard Red Winter wheat...

  9. Reduction of Averaging Time for Evaluation of Human Exposure to Radiofrequency Electromagnetic Fields from Cellular Base Stations

    NASA Astrophysics Data System (ADS)

    Kim, Byung Chan; Park, Seong-Ook

    In order to determine exposure compliance with the electromagnetic fields from a base station's antenna in the far-field region, we should calculate the spatially averaged field value in a defined space. This value is calculated based on the measured value obtained at several points within the restricted space. According to the ICNIRP guidelines, at each point in the space, the reference levels are averaged over any 6min (from 100kHz to 10GHz) for the general public. Therefore, the more points we use, the longer the measurement time becomes. For practical application, it is very advantageous to spend less time for measurement. In this paper, we analyzed the difference of average values between 6min and lesser periods and compared it with the standard uncertainty for measurement drift. Based on the standard deviation from the 6min averaging value, the proposed minimum averaging time is 1min.

  10. Laser transit anemometer software development program

    NASA Technical Reports Server (NTRS)

    Abbiss, John B.

    1989-01-01

    Algorithms were developed for the extraction of two components of mean velocity, standard deviation, and the associated correlation coefficient from laser transit anemometry (LTA) data ensembles. The solution method is based on an assumed two-dimensional Gaussian probability density function (PDF) model of the flow field under investigation. The procedure consists of transforming the data ensembles from the data acquisition domain (consisting of time and angle information) to the velocity space domain (consisting of velocity component information). The mean velocity results are obtained from the data ensemble centroid. Through a least squares fitting of the transformed data to an ellipse representing the intersection of a plane with the PDF, the standard deviations and correlation coefficient are obtained. A data set simulation method is presented to test the data reduction process. Results of using the simulation system with a limited test matrix of input values is also given.

  11. Visualizing the Sample Standard Deviation

    ERIC Educational Resources Information Center

    Sarkar, Jyotirmoy; Rashid, Mamunur

    2017-01-01

    The standard deviation (SD) of a random sample is defined as the square-root of the sample variance, which is the "mean" squared deviation of the sample observations from the sample mean. Here, we interpret the sample SD as the square-root of twice the mean square of all pairwise half deviations between any two sample observations. This…

  12. Low-noise cold-field emission current obtained between two opposed carbon cone nanotips during in situ transmission electron microscope biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoop, L. de; Gatel, C.; Houdellier, F.

    2015-06-29

    A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.

  13. Variation in the standard deviation of the lure rating distribution: Implications for estimates of recollection probability.

    PubMed

    Dopkins, Stephen; Varner, Kaitlin; Hoyer, Darin

    2017-10-01

    In word recognition semantic priming of test words increased the false-alarm rate and the mean of confidence ratings to lures. Such priming also increased the standard deviation of confidence ratings to lures and the slope of the z-ROC function, suggesting that the priming increased the standard deviation of the lure evidence distribution. The Unequal Variance Signal Detection (UVSD) model interpreted the priming as increasing the standard deviation of the lure evidence distribution. Without additional parameters the Dual Process Signal Detection (DPSD) model could only accommodate the results by fitting the data for related and unrelated primes separately, interpreting the priming, implausibly, as decreasing the probability of target recollection (DPSD). With an additional parameter, for the probability of false (lure) recollection the model could fit the data for related and unrelated primes together, interpreting the priming as increasing the probability of false recollection. These results suggest that DPSD estimates of target recollection probability will decrease with increases in the lure confidence/evidence standard deviation unless a parameter is included for false recollection. Unfortunately the size of a given lure confidence/evidence standard deviation relative to other possible lure confidence/evidence standard deviations is often unspecified by context. Hence the model often has no way of estimating false recollection probability and thereby correcting its estimates of target recollection probability.

  14. Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler.

    PubMed

    Liu, Xing; Tan, Houzhang; Wang, Yibin; Yang, Fuxin; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-08-15

    Low NO x burner redesign and deep air staging have been carried out to optimize the poor ignition and reduce the NO x emissions in a low volatile coal fired 330 MW e boiler. Residual swirling flow in the tangentially-fired furnace caused flue gas velocity deviations at furnace exit, leading to flow field unevenness in the SCR (selective catalytic reduction) system and poor denitrification efficiency. Numerical simulations on the velocity field in the SCR system were carried out to determine the optimal flow deflector arrangement to improve flow field uniformity of SCR system. Full-scale experiment was performed to investigate the effect of low NO x combustion and SCR flow field optimization. Compared with the results before the optimization, the NO x emissions at furnace exit decreased from 550 to 650 mg/Nm³ to 330-430 mg/Nm³. The sample standard deviation of the NO x emissions at the outlet section of SCR decreased from 34.8 mg/Nm³ to 7.8 mg/Nm³. The consumption of liquid ammonia reduced from 150 to 200 kg/h to 100-150 kg/h after optimization. Copyright © 2018. Published by Elsevier Ltd.

  15. Navy Field Evaluation of Particle Counter Technology for Aviation Fuel Contamination Detection

    DTIC Science & Technology

    2014-02-06

    Naval Ship’s Technical Manual NAVAIR ... ………………………………………………………Naval Air Systems Command RSD ...6. Relative Standard Deviation of >4 µm Particle Count The high RSD between particle counts of the same sediment and free water concentrations are

  16. Down-Looking Interferometer Study II, Volume I,

    DTIC Science & Technology

    1980-03-01

    g(standard deviation of AN )(standard deviation of(3) where T’rm is the "reference spectrum", an estimate of the actual spectrum v gv T ’V Cgv . If jpj...spectrum T V . cgv . According to Eq. (2), Z is the standard deviation of the observed contrast spectral radiance AN divided by the effective rms system

  17. 40 CFR 61.207 - Radium-226 sampling and measurement procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... B, Method 114. (3) Calculate the mean, x 1, and the standard deviation, s 1, of the n 1 radium-226... owner or operator of a phosphogypsum stack shall report the mean, standard deviation, 95th percentile..., Method 114. (4) Recalculate the mean and standard deviation of the entire set of n 2 radium-226...

  18. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  19. Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects.

    PubMed

    Iutaka, Natalia A; Grochowski, Rubens A; Kasahara, Niro

    2017-01-01

    To evaluate the correlation between visual field index (VFI) and both structural and functional measures of the optic disc in primary open angle glaucoma patients and suspects. In this retrospective study, 162 glaucoma patients and suspects underwent standard automated perimetry (SAP), retinography, and retinal nerve fiber layer (RNFL) measurement. The optic disc was stratified according to the vertical cup/disc ratio (C/D) and sorted by the disc damage likelihood scale (DDLS). RNFL was measured with the optical coherence tomography. The VFI perimetry was correlated with the mean deviation (MD) and pattern standard deviation (PSD) obtained by SAP, and structural parameters by Pearson's correlation coefficients. VFI displayed strong correlation with MD ( R = 0.959) and PSD ( R = -0.744). The linear correlations between VFI and structural measures including C/D ( R = -0.179, P = 0.012), DDLS ( R = -0.214, P = 0.006), and RNFL ( R = 0.416, P < 0.001) were weak but statistically significant. VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma.

  20. Vacuum stability and naturalness in type-II seesaw

    DOE PAGES

    Haba, Naoyuki; Ishida, Hiroyuki; Okada, Nobuchika; ...

    2016-06-16

    Here, we study the vacuum stability and perturbativity conditions in the minimal type-II seesaw model. These conditions give characteristic constraints to the model parameters. In the model, there is a SU(2) L triplet scalar field, which could cause a large Higgs mass correction. From the naturalness point of view, heavy Higgs masses should be lower than 350GeV, which may be testable by the LHC Run-II results. Due to the effects of the triplet scalar field, the branching ratios of the Higgs decay (h → γγ,Zγ) deviate from the standard model, and a large parameter region is excluded by the recentmore » ATLAS and CMS combined analysis of h → γγ. Our result of the signal strength for h → γγ is R γγ ≲ 1.1, but its deviation is too small to observe at the LHC experiment.« less

  1. Flexner 2.0-Longitudinal Study of Student Participation in a Campus-Wide General Pathology Course for Graduate Students at The University of Arizona.

    PubMed

    Briehl, Margaret M; Nelson, Mark A; Krupinski, Elizabeth A; Erps, Kristine A; Holcomb, Michael J; Weinstein, John B; Weinstein, Ronald S

    2016-01-01

    Faculty members from the Department of Pathology at The University of Arizona College of Medicine-Tucson have offered a 4-credit course on enhanced general pathology for graduate students since 1996. The course is titled, "Mechanisms of Human Disease." Between 1997 and 2016, 270 graduate students completed Mechanisms of Human Disease. The students came from 21 programs of study. Analysis of Variance, using course grade as the dependent and degree, program, gender, and year (1997-2016) as independent variables, indicated that there was no significant difference in final grade (F = 0.112; P = .8856) as a function of degree (doctorate: mean = 89.60, standard deviation = 5.75; master's: mean = 89.34, standard deviation = 6.00; certificate program: mean = 88.64, standard deviation = 8.25), specific type of degree program (F = 2.066, P = .1316; life sciences: mean = 89.95, standard deviation = 6.40; pharmaceutical sciences: mean = 90.71, standard deviation = 4.57; physical sciences: mean = 87.79, standard deviation = 5.17), or as a function of gender (F = 2.96, P = .0865; males: mean = 88.09, standard deviation = 8.36; females: mean = 89.58, standard deviation = 5.82). Students in the physical and life sciences performed equally well. Mechanisms of Human Disease is a popular course that provides students enrolled in a variety of graduate programs with a medical school-based course on mechanisms of diseases. The addition of 2 new medically oriented Master of Science degree programs has nearly tripled enrollment. This graduate level course also potentially expands the interdisciplinary diversity of participants in our interprofessional education and collaborative practice exercises.

  2. Flexner 2.0—Longitudinal Study of Student Participation in a Campus-Wide General Pathology Course for Graduate Students at The University of Arizona

    PubMed Central

    Briehl, Margaret M.; Nelson, Mark A.; Krupinski, Elizabeth A.; Erps, Kristine A.; Holcomb, Michael J.; Weinstein, John B.

    2016-01-01

    Faculty members from the Department of Pathology at The University of Arizona College of Medicine-Tucson have offered a 4-credit course on enhanced general pathology for graduate students since 1996. The course is titled, “Mechanisms of Human Disease.” Between 1997 and 2016, 270 graduate students completed Mechanisms of Human Disease. The students came from 21 programs of study. Analysis of Variance, using course grade as the dependent and degree, program, gender, and year (1997-2016) as independent variables, indicated that there was no significant difference in final grade (F = 0.112; P = .8856) as a function of degree (doctorate: mean = 89.60, standard deviation = 5.75; master’s: mean = 89.34, standard deviation = 6.00; certificate program: mean = 88.64, standard deviation = 8.25), specific type of degree program (F = 2.066, P = .1316; life sciences: mean = 89.95, standard deviation = 6.40; pharmaceutical sciences: mean = 90.71, standard deviation = 4.57; physical sciences: mean = 87.79, standard deviation = 5.17), or as a function of gender (F = 2.96, P = .0865; males: mean = 88.09, standard deviation = 8.36; females: mean = 89.58, standard deviation = 5.82). Students in the physical and life sciences performed equally well. Mechanisms of Human Disease is a popular course that provides students enrolled in a variety of graduate programs with a medical school-based course on mechanisms of diseases. The addition of 2 new medically oriented Master of Science degree programs has nearly tripled enrollment. This graduate level course also potentially expands the interdisciplinary diversity of participants in our interprofessional education and collaborative practice exercises. PMID:28725783

  3. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less

  4. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  5. Accuracy of the HST Standard Astrometric Catalogs w.r.t. Gaia

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, V.; Grogin, N.; Sabbi, E.

    2018-02-01

    The goal of astrometric calibration of the HST ACS/WFC and WFC3/UVIS imaging instruments is to provide a coordinate system free of distortion to the precision level of 0.1 pixel 4-5 mas or better. This astrometric calibration is based on two HST astrometric standard fields in the vicinity of the globular clusters, 47 Tuc and omega Cen, respectively. The derived calibration of the geometric distortion is assumed to be accurate down to 2-3 mas. Is this accuracy in agreement with the true value? Now, with the access to globally accurate positions from the first Gaia data release (DR1), we found that there are measurable offsets, rotation, scale and other deviations of distortion parameters in two HST standard astrometric catalogs. These deviations from the distortion-free and properly aligned coordinate system should be accounted and corrected for, so that the high precision HST positions are free of any systematic errors. We also found that the precision of the HST pixel coordinates is substantially better than the accuracy listed in the Gaia DR1. Therefore, in order to finalize the components of distortion in the HST standard catalogs, the next release of Gaia data is needed.

  6. Observation of Electroweak Production of Same-Sign W Boson Pairs in the Two Jet and Two Same-Sign Lepton Final State in Proton-Proton Collisions at √{s }=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Bagaturia, I.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-02-01

    The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb-1 collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading order is 0.90 ±0.22 . A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.

  7. Observation of Electroweak Production of Same-Sign W Boson Pairs in the Two Jet and Two Same-Sign Lepton Final State in Proton-Proton Collisions at s = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb -1 collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratiomore » of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.« less

  8. Observation of Electroweak Production of Same-Sign W Boson Pairs in the Two Jet and Two Same-Sign Lepton Final State in Proton-Proton Collisions at s = 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-02-22

    The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb -1 collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratiomore » of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.« less

  9. Observation of Electroweak Production of Same-Sign W Boson Pairs in the Two Jet and Two Same-Sign Lepton Final State in Proton-Proton Collisions at sqrt[s]=13  TeV.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Beghin, D; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Dorney, B; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Starling, E; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Salva, S; Tytgat, M; Verbeke, W; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; David, P; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Saggio, A; Vidal Marono, M; Wertz, S; Zobec, J; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Coelho, E; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Sanchez Rosas, L J; Santoro, A; Sznajder, A; Thiel, M; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Misheva, M; Rodozov, M; Shopova, M; Sultanov, G; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Yuan, L; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhang, S; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Kirschenmann, H; Pekkanen, J; Voutilainen, M; Havukainen, J; Heikkilä, J K; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Laurila, S; Lehti, S; Lindén, T; Luukka, P; Siikonen, H; Tuominen, E; Tuominiemi, J; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Leloup, C; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Khvedelidze, A; Bagaturia, I; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Zhukov, V; Albert, A; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Raspereza, A; Savitskyi, M; Saxena, P; Shevchenko, R; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Aggleton, R; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baselga, M; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Faltermann, N; Freund, B; Friese, R; Giffels, M; Harrendorf, M A; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Kousouris, K; Evangelou, I; Foudas, C; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Csanad, M; Filipovic, N; Pasztor, G; Surányi, O; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Dhingra, N; Kalsi, A K; Kaur, A; Kaur, M; Kaur, S; Kumar, R; Kumari, P; Mehta, A; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Chauhan, S; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Borgonovi, L; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Robutti, E; Tosi, S; Benaglia, A; Beschi, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Daci, N; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chadeeva, M; Markin, O; Parygin, P; Philippov, D; Polikarpov, S; Rusinov, V; Zhemchugov, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Mandrik, P; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Álvarez Fernández, A; Albajar, C; de Trocóniz, J F; Missiroli, M; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Curras, E; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Akgun, B; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Bianco, M; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Deelen, N; Dobson, M; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Harris, P; Hegeman, J; Innocente, V; Jafari, A; Janot, P; Karacheban, O; Kieseler, J; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Rabady, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Backhaus, M; Bäni, L; Berger, P; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Dorfer, C; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Klijnsma, T; Lustermann, W; Mangano, B; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Sanz Becerra, D A; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Schweiger, K; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Bat, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Tok, U G; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Grynyov, B; Levchuk, L; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Heath, G P; Heath, H F; Kreczko, L; Newbold, D M; Paramesvaran, S; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Auzinger, G; Bainbridge, R; Borg, J; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Zahid, S; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hadley, M; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Lee, J; Mao, Z; Narain, M; Pazzini, J; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Tos, K; Tripathi, M; Wang, Z; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Gerosa, R; Gilbert, D; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Macneill, I; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bornheim, A; Lawhorn, J M; Newman, H B; Nguyen, T; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Quach, D; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Alyari, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Gleyzer, S V; Joshi, B M; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shi, K; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Feng, Y; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Hu, M; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Hiltbrand, J; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Wadud, M A; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Qiu, H; Schulte, J F; Sun, J; Wang, F; Xie, W; Cheng, T; Parashar, N; Stupak, J; Adair, A; Chen, Z; Ecklund, K M; Freed, S; Geurts, F J M; Guilbaud, M; Kilpatrick, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Shi, W; Tu, Z; Zabel, J; Zhang, A; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Mengke, T; Muthumuni, S; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Poudyal, N; Sturdy, J; Thapa, P; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2018-02-23

    The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9    fb^{-1} collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading order is 0.90±0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-8 effective field theory operators and on the production of doubly charged Higgs bosons.

  10. Do pattern deviation values accurately estimate glaucomatous visual field damage in eyes with glaucoma and cataract?

    PubMed

    Matsuda, Aya; Hara, Takeshi; Miyata, Kazunori; Matsuo, Hiroshi; Murata, Hiroshi; Mayama, Chihiro; Asaoka, Ryo

    2015-09-01

    To study the efficacy of pattern deviation (PD) values in the estimation of visual field compensating the influence of cataract in eyes with glaucoma. The study subjects comprised of 48 eyes of 37 glaucoma patients. Mean total deviation value (mTDs) on Humphrey Field Analyzer after cataract surgery was compared with mean PD (mPD) before the surgery. Visual field measurements were carried out ≤6 months before (VF(pre)) and following (VF(post)) successful cataract surgery. The difference between the mPD or mTD values in the VF(pre) and mTD values in the VF(post) (denoted as εmPD/ΔmTD) was calculated, and the influence of the extent of 'true' glaucomatous visual field damage or cataract (as represented by εmPD and ΔmTD, respectively) on this difference was also investigated. There was a significant difference between mTD in the VF(pre) and mTD in the VF(post) (p<0.001, repeated measures analysis of variance). There was not a significant difference between mPD in the VF(pre) and mTD in the VF(post) (p=0.06); however, εmPD was significantly correlated with the mTD in VF(post) and also ΔmTD (R(2)=0.56 and 0.27, p<0.001, Pearson's correlation). The accurate prediction of the mTD in the VF(post) can be achieved using the pattern standard deviation (PSD), mTD and also visual acuity before surgery. Clinicians should be very careful when reviewing the VF of a patient with glaucoma and cataract since PD values may underestimate glaucomatous VF damage in patients with advanced disease and also overestimate glaucomatous VF damage in patients with early to moderate cataract. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Validation of a quantitative NMR method for suspected counterfeit products exemplified on determination of benzethonium chloride in grapefruit seed extracts.

    PubMed

    Bekiroglu, Somer; Myrberg, Olle; Ostman, Kristina; Ek, Marianne; Arvidsson, Torbjörn; Rundlöf, Torgny; Hakkarainen, Birgit

    2008-08-05

    A 1H-nuclear magnetic resonance (NMR) spectroscopy method for quantitative determination of benzethonium chloride (BTC) as a constituent of grapefruit seed extract was developed. The method was validated, assessing its specificity, linearity, range, and precision, as well as accuracy, limit of quantification and robustness. The method includes quantification using an internal reference standard, 1,3,5-trimethoxybenzene, and regarded as simple, rapid, and easy to implement. A commercial grapefruit seed extract was studied and the experiments were performed on spectrometers operating at two different fields, 300 and 600 MHz for proton frequencies, the former with a broad band (BB) probe and the latter equipped with both a BB probe and a CryoProbe. The concentration average for the product sample was 78.0, 77.8 and 78.4 mg/ml using the 300 BB probe, the 600MHz BB probe and CryoProbe, respectively. The standard deviation and relative standard deviation (R.S.D., in parenthesis) for the average concentrations was 0.2 (0.3%), 0.3 (0.4%) and 0.3mg/ml (0.4%), respectively.

  12. A Note on Standard Deviation and Standard Error

    ERIC Educational Resources Information Center

    Hassani, Hossein; Ghodsi, Mansoureh; Howell, Gareth

    2010-01-01

    Many students confuse the standard deviation and standard error of the mean and are unsure which, if either, to use in presenting data. In this article, we endeavour to address these questions and cover some related ambiguities about these quantities.

  13. Analytical quality goals derived from the total deviation from patients' homeostatic set points, with a margin for analytical errors.

    PubMed

    Bolann, B J; Asberg, A

    2004-01-01

    The deviation of test results from patients' homeostatic set points in steady-state conditions may complicate interpretation of the results and the comparison of results with clinical decision limits. In this study the total deviation from the homeostatic set point is defined as the maximum absolute deviation for 95% of measurements, and we present analytical quality requirements that prevent analytical error from increasing this deviation to more than about 12% above the value caused by biology alone. These quality requirements are: 1) The stable systematic error should be approximately 0, and 2) a systematic error that will be detected by the control program with 90% probability, should not be larger than half the value of the combined analytical and intra-individual standard deviation. As a result, when the most common control rules are used, the analytical standard deviation may be up to 0.15 times the intra-individual standard deviation. Analytical improvements beyond these requirements have little impact on the interpretability of measurement results.

  14. 14 CFR Appendix C to Part 91 - Operations in the North Atlantic (NAT) Minimum Navigation Performance Specifications (MNPS) Airspace

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defined in section 1 of this appendix is as follows: (a) The standard deviation of lateral track errors shall be less than 6.3 NM (11.7 Km). Standard deviation is a statistical measure of data about a mean... standard deviation about the mean encompasses approximately 68 percent of the data and plus or minus 2...

  15. TU-G-BRD-04: A Round Robin Dosimetry Intercomparison of Gamma Stereotactic Radiosurgery Calibration Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drzymala, R; Alvarez, P; Bednarz, G

    2015-06-15

    Purpose: The purpose of this multi-institutional study was to compare two new gamma stereotactic radiosurgery (GSRS) dosimetry protocols to existing calibration methods. The ultimate goal was to guide AAPM Task Group 178 in recommending a standard GSRS dosimetry protocol. Methods: Nine centers (ten GSRS units) participated in the study. Each institution made eight sets of dose rate measurements: six with two different ionization chambers in three different 160mm-diameter spherical phantoms (ABS plastic, Solid Water and liquid water), and two using the same ionization chambers with a custom in-air positioning jig. Absolute dose rates were calculated using a newly proposed formalismmore » by the IAEA working group for small and non-standard radiation fields and with a new air-kerma based protocol. The new IAEA protocol requires an in-water ionization chamber calibration and uses previously reported Monte-Carlo generated factors to account for the material composition of the phantom, the type of ionization chamber, and the unique GSRS beam configuration. Results obtained with the new dose calibration protocols were compared to dose rates determined by the AAPM TG-21 and TG-51 protocols, with TG-21 considered as the standard. Results: Averaged over all institutions, ionization chambers and phantoms, the mean dose rate determined with the new IAEA protocol relative to that determined with TG-21 in the ABS phantom was 1.000 with a standard deviation of 0.008. For TG-51, the average ratio was 0.991 with a standard deviation of 0.013, and for the new in-air formalism it was 1.008 with a standard deviation of 0.012. Conclusion: Average results with both of the new protocols agreed with TG-21 to within one standard deviation. TG-51, which does not take into account the unique GSRS beam configuration or phantom material, was not expected to perform as well as the new protocols. The new IAEA protocol showed remarkably good agreement with TG-21. Conflict of Interests: Paula Petti, Josef Novotny, Gennady Neyman and Steve Goetsch are consultants for Elekta Instrument A/B; Elekta Instrument AB, PTW Freiburg GmbH, Standard Imaging, Inc., and The Phantom Laboratory, Inc. loaned equipment for use in these experiments; The University of Wisconsin Accredited Dosimetry Calibration Laboratory provided calibration services.« less

  16. Initial geomagnetic field model from MAGSAT

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.; Mead, G. D.; Fabiano, E. B.; Lancaster, E. R.

    1980-01-01

    Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields.

  17. WE-G-204-06: Grid-Line Artifact Minimization for High Resolution Detectors Using Iterative Residual Scatter Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, R; Bednarek, D; Rudin, S

    2015-06-15

    Purpose: Anti-scatter grid-line artifacts are more prominent for high-resolution x-ray detectors since the fraction of a pixel blocked by the grid septa is large. Direct logarithmic subtraction of the artifact pattern is limited by residual scattered radiation and we investigate an iterative method for scatter correction. Methods: A stationary Smit-Rοntgen anti-scatter grid was used with a high resolution Dexela 1207 CMOS X-ray detector (75 µm pixel size) to image an artery block (Nuclear Associates, Model 76-705) placed within a uniform head equivalent phantom as the scattering source. The image of the phantom was divided by a flat-field image obtained withoutmore » scatter but with the grid to eliminate grid-line artifacts. Constant scatter values were subtracted from the phantom image before dividing by the averaged flat-field-with-grid image. The standard deviation of pixel values for a fixed region of the resultant images with different subtracted scatter values provided a measure of the remaining grid-line artifacts. Results: A plot of the standard deviation of image pixel values versus the subtracted scatter value shows that the image structure noise reaches a minimum before going up again as the scatter value is increased. This minimum corresponds to a minimization of the grid-line artifacts as demonstrated in line profile plots obtained through each of the images perpendicular to the grid lines. Artifact-free images of the artery block were obtained with the optimal scatter value obtained by this iterative approach. Conclusion: Residual scatter subtraction can provide improved grid-line artifact elimination when using the flat-field with grid “subtraction” technique. The standard deviation of image pixel values can be used to determine the optimal scatter value to subtract to obtain a minimization of grid line artifacts with high resolution x-ray imaging detectors. This study was supported by NIH Grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less

  18. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the ``sorting all permutations'' method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

  19. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    USGS Publications Warehouse

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  20. SU-F-J-177: A Novel Image Analysis Technique (center Pixel Method) to Quantify End-To-End Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N; Chetty, I; Snyder, K

    Purpose: To implement a novel image analysis technique, “center pixel method”, to quantify end-to-end tests accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy was determined by delivering radiation to an end-to-end prototype phantom. The phantom was scanned with 0.8 mm slice thickness. The treatment isocenter was placed at the center of the phantom. In the treatment room, CBCT images of the phantom (kVp=77, mAs=1022, slice thickness 1 mm) were acquired to register to the reference CT images. 6D couch correction were applied based on the registration results. Electronic Portal Imaging Device (EPID)-based Winston Lutz (WL)more » tests were performed to quantify the errors of the targeting accuracy of the system at 15 combinations of gantry, collimator and couch positions. The images were analyzed using two different methods. a) The classic method. The deviation was calculated by measuring the radial distance between the center of the central BB and the full width at half maximum of the radiation field. b) The center pixel method. Since the imager projection offset from the treatment isocenter was known from the IsoCal calibration, the deviation was determined between the center of the BB and the central pixel of the imager panel. Results: Using the automatic registration method to localize the phantom and the classic method of measuring the deviation of the BB center, the mean and standard deviation of the radial distance was 0.44 ± 0.25, 0.47 ± 0.26, and 0.43 ± 0.13 mm for the jaw, MLC and cone defined field sizes respectively. When the center pixel method was used, the mean and standard deviation was 0.32 ± 0.18, 0.32 ± 0.17, and 0.32 ± 0.19 mm respectively. Conclusion: Our results demonstrated that the center pixel method accurately analyzes the WL images to evaluate the targeting accuracy of the radiosurgery system. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less

  1. Possibilities of inversion of satellite third-order gravitational tensor onto gravity anomalies: a case study for central Europe

    NASA Astrophysics Data System (ADS)

    Pitoňák, Martin; Šprlák, Michal; Tenzer, Robert

    2017-05-01

    We investigate a numerical performance of four different schemes applied to a regional recovery of the gravity anomalies from the third-order gravitational tensor components (assumed to be observable in the future) synthetized at the satellite altitude of 200 km above the mean sphere. The first approach is based on applying a regional inversion without modelling the far-zone contribution or long-wavelength support. In the second approach we separate integral formulas into two parts, that is, the effects of the third-order disturbing tensor data within near and far zones. Whereas the far-zone contribution is evaluated by using existing global geopotential model (GGM) with spectral weights given by truncation error coefficients, the near-zone contribution is solved by applying a regional inversion. We then extend this approach for a smoothing procedure, in which we remove the gravitational contributions of the topographic-isostatic and atmospheric masses. Finally, we apply the remove-compute-restore (r-c-r) scheme in order to reduce the far-zone contribution by subtracting the reference (long-wavelength) gravity field, which is computed for maximum degree 80. We apply these four numerical schemes to a regional recovery of the gravity anomalies from individual components of the third-order gravitational tensor as well as from their combinations, while applying two different levels of a white noise. We validated our results with respect to gravity anomalies evaluated at the mean sphere from EGM2008 up to the degree 250. Not surprisingly, better fit in terms of standard deviation (STD) was attained using lower level of noise. The worst results were gained applying classical approach, STD values of our solution from Tzzz are 1.705 mGal (noise value with a standard deviation 0.01 × 10 - 15m - 1s - 2) and 2.005 mGal (noise value with a standard deviation 0.05 × 10 - 15m - 1s - 2), while the superior from r-c-r up to the degree 80, STD fit of gravity anomalies from Tzzz with respect to the same counterpart from EGM2008 is 0.510 mGal (noise value with a standard deviation 0.01 × 10 - 15m - 1s - 2) and 1.190 mGal (noise value with a standard deviation 0.05 × 10 - 15m - 1s - 2).

  2. A better norm-referenced grading using the standard deviation criterion.

    PubMed

    Chan, Wing-shing

    2014-01-01

    The commonly used norm-referenced grading assigns grades to rank-ordered students in fixed percentiles. It has the disadvantage of ignoring the actual distance of scores among students. A simple norm-referenced grading via standard deviation is suggested for routine educational grading. The number of standard deviation of a student's score from the class mean was used as the common yardstick to measure achievement level. Cumulative probability of a normal distribution was referenced to help decide the amount of students included within a grade. RESULTS of the foremost 12 students from a medical examination were used for illustrating this grading method. Grading by standard deviation seemed to produce better cutoffs in allocating an appropriate grade to students more according to their differential achievements and had less chance in creating arbitrary cutoffs in between two similarly scored students than grading by fixed percentile. Grading by standard deviation has more advantages and is more flexible than grading by fixed percentile for norm-referenced grading.

  3. Personal Background Preparation Survey for early identification of nursing students at risk for attrition.

    PubMed

    Johnson, Craig W; Johnson, Ronald; Kim, Mira; McKee, John C

    2009-11-01

    During 2004 and 2005 orientations, all 187 and 188 new matriculates, respectively, in two southwestern U.S. nursing schools completed Personal Background and Preparation Surveys (PBPS) in the first predictive validity study of a diagnostic and prescriptive instrument for averting adverse academic status events (AASE) among nursing or health science professional students. One standard deviation increases in PBPS risks (p < 0.05) multiplied odds of first-year or second-year AASE by approximately 150%, controlling for school affiliation and underrepresented minority student (URMS) status. AASE odds one standard deviation above mean were 216% to 250% those one standard deviation below mean. Odds of first-year or second-year AASE for URMS one standard deviation above the 2004 PBPS mean were 587% those for non-URMS one standard deviation below mean. The PBPS consistently and significantly facilitated early identification of nursing students at risk for AASE, enabling proactive targeting of interventions for risk amelioration and AASE or attrition prevention. Copyright 2009, SLACK Incorporated.

  4. Demonstration of the Gore Module for Passive Ground Water Sampling

    DTIC Science & Technology

    2014-06-01

    ix ACRONYMS AND ABBREVIATIONS % RSD percent relative standard deviation 12DCA 1,2-dichloroethane 112TCA 1,1,2-trichloroethane 1122TetCA...Analysis of Variance ROD Record of Decision RSD relative standard deviation SBR Southern Bush River SVOC semi-volatile organic compound...replicate samples had a relative standard deviation ( RSD ) that was 20% or less. For the remaining analytes (PCE, cDCE, and chloroform), at least 70

  5. Margin selection to compensate for loss of target dose coverage due to target motion during external‐beam radiation therapy of the lung

    PubMed Central

    Osei, Ernest; Barnett, Rob

    2015-01-01

    The aim of this study is to provide guidelines for the selection of external‐beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm. PACS numbers: 87.53.Bn, 87.53.Kn, 87.55.D‐, 87.55.Gh

  6. Impact of baseline systolic blood pressure on visit-to-visit blood pressure variability: the Kailuan study.

    PubMed

    Wang, Anxin; Li, Zhifang; Yang, Yuling; Chen, Guojuan; Wang, Chunxue; Wu, Yuntao; Ruan, Chunyu; Liu, Yan; Wang, Yilong; Wu, Shouling

    2016-01-01

    To investigate the relationship between baseline systolic blood pressure (SBP) and visit-to-visit blood pressure variability in a general population. This is a prospective longitudinal cohort study on cardiovascular risk factors and cardiovascular or cerebrovascular events. Study participants attended a face-to-face interview every 2 years. Blood pressure variability was defined using the standard deviation and coefficient of variation of all SBP values at baseline and follow-up visits. The coefficient of variation is the ratio of the standard deviation to the mean SBP. We used multivariate linear regression models to test the relationships between SBP and standard deviation, and between SBP and coefficient of variation. Approximately 43,360 participants (mean age: 48.2±11.5 years) were selected. In multivariate analysis, after adjustment for potential confounders, baseline SBPs <120 mmHg were inversely related to standard deviation (P<0.001) and coefficient of variation (P<0.001). In contrast, baseline SBPs ≥140 mmHg were significantly positively associated with standard deviation (P<0.001) and coefficient of variation (P<0.001). Baseline SBPs of 120-140 mmHg were associated with the lowest standard deviation and coefficient of variation. The associations between baseline SBP and standard deviation, and between SBP and coefficient of variation during follow-ups showed a U curve. Both lower and higher baseline SBPs were associated with increased blood pressure variability. To control blood pressure variability, a good target SBP range for a general population might be 120-139 mmHg.

  7. Flexner 3.0-Democratization of Medical Knowledge for the 21st Century: Teaching Medical Science Using K-12 General Pathology as a Gateway Course.

    PubMed

    Weinstein, Ronald S; Krupinski, Elizabeth A; Weinstein, John B; Graham, Anna R; Barker, Gail P; Erps, Kristine A; Holtrust, Angelette L; Holcomb, Michael J

    2016-01-01

    A medical school general pathology course has been reformatted into a K-12 general pathology course. This new course has been implemented at a series of 7 to 12 grade levels and the student outcomes compared. Typically, topics covered mirrored those in a medical school general pathology course serving as an introduction to the mechanisms of diseases. Assessment of student performance was based on their score on a multiple-choice final examination modeled after an examination given to medical students. Two Tucson area schools, in a charter school network, participated in the study. Statistical analysis of examination performances showed that there were no significant differences as a function of school ( F = 0.258, P = .6128), with students at school A having an average test scores of 87.03 (standard deviation = 8.99) and school B 86.00 (standard deviation = 8.18; F = 0.258, P = .6128). Analysis of variance was also conducted on the test scores as a function of gender and class grade. There were no significant differences as a function of gender ( F = 0.608, P = .4382), with females having an average score of 87.18 (standard deviation = 7.24) and males 85.61 (standard deviation = 9.85). There were also no significant differences as a function of grade level ( F = 0.627, P = .6003), with 7th graders having an average of 85.10 (standard deviation = 8.90), 8th graders 86.00 (standard deviation = 9.95), 9th graders 89.67 (standard deviation = 5.52), and 12th graders 86.90 (standard deviation = 7.52). The results demonstrated that middle and upper school students performed equally well in K-12 general pathology. Student course evaluations showed that the course met the student's expectations. One class voted K-12 general pathology their "elective course-of-the-year."

  8. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.

    PubMed

    Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun

    2014-12-19

    In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different situations.

  9. Flexner 3.0—Democratization of Medical Knowledge for the 21st Century

    PubMed Central

    Krupinski, Elizabeth A.; Weinstein, John B.; Graham, Anna R.; Barker, Gail P.; Erps, Kristine A.; Holtrust, Angelette L.; Holcomb, Michael J.

    2016-01-01

    A medical school general pathology course has been reformatted into a K-12 general pathology course. This new course has been implemented at a series of 7 to 12 grade levels and the student outcomes compared. Typically, topics covered mirrored those in a medical school general pathology course serving as an introduction to the mechanisms of diseases. Assessment of student performance was based on their score on a multiple-choice final examination modeled after an examination given to medical students. Two Tucson area schools, in a charter school network, participated in the study. Statistical analysis of examination performances showed that there were no significant differences as a function of school (F = 0.258, P = .6128), with students at school A having an average test scores of 87.03 (standard deviation = 8.99) and school B 86.00 (standard deviation = 8.18; F = 0.258, P = .6128). Analysis of variance was also conducted on the test scores as a function of gender and class grade. There were no significant differences as a function of gender (F = 0.608, P = .4382), with females having an average score of 87.18 (standard deviation = 7.24) and males 85.61 (standard deviation = 9.85). There were also no significant differences as a function of grade level (F = 0.627, P = .6003), with 7th graders having an average of 85.10 (standard deviation = 8.90), 8th graders 86.00 (standard deviation = 9.95), 9th graders 89.67 (standard deviation = 5.52), and 12th graders 86.90 (standard deviation = 7.52). The results demonstrated that middle and upper school students performed equally well in K-12 general pathology. Student course evaluations showed that the course met the student’s expectations. One class voted K-12 general pathology their “elective course-of-the-year.” PMID:28725762

  10. Note onset deviations as musical piece signatures.

    PubMed

    Serrà, Joan; Özaslan, Tan Hakan; Arcos, Josep Lluis

    2013-01-01

    A competent interpretation of a musical composition presents several non-explicit departures from the written score. Timing variations are perhaps the most important ones: they are fundamental for expressive performance and a key ingredient for conferring a human-like quality to machine-based music renditions. However, the nature of such variations is still an open research question, with diverse theories that indicate a multi-dimensional phenomenon. In the present study, we consider event-shift timing variations and show that sequences of note onset deviations are robust and reliable predictors of the musical piece being played, irrespective of the performer. In fact, our results suggest that only a few consecutive onset deviations are already enough to identify a musical composition with statistically significant accuracy. We consider a mid-size collection of commercial recordings of classical guitar pieces and follow a quantitative approach based on the combination of standard statistical tools and machine learning techniques with the semi-automatic estimation of onset deviations. Besides the reported results, we believe that the considered materials and the methodology followed widen the testing ground for studying musical timing and could open new perspectives in related research fields.

  11. Estimation of the neural drive to the muscle from surface electromyograms

    NASA Astrophysics Data System (ADS)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  12. Comparison of a novel fixation device with standard suturing methods for spinal cord stimulators.

    PubMed

    Bowman, Richard G; Caraway, David; Bentley, Ishmael

    2013-01-01

    Spinal cord stimulation is a well-established treatment for chronic neuropathic pain of the trunk or limbs. Currently, the standard method of fixation is to affix the leads of the neuromodulation device to soft tissue, fascia or ligament, through the use of manually tying general suture. A novel semiautomated device is proposed that may be advantageous to the current standard. Comparison testing in an excised caprine spine and simulated bench top model was performed. Three tests were performed: 1) perpendicular pull from fascia of caprine spine; 2) axial pull from fascia of caprine spine; and 3) axial pull from Mylar film. Six samples of each configuration were tested for each scenario. Standard 2-0 Ethibond was compared with a novel semiautomated device (Anulex fiXate). Upon completion of testing statistical analysis was performed for each scenario. For perpendicular pull in the caprine spine, the failure load for standard suture was 8.95 lbs with a standard deviation of 1.39 whereas for fiXate the load was 15.93 lbs with a standard deviation of 2.09. For axial pull in the caprine spine, the failure load for standard suture was 6.79 lbs with a standard deviation of 1.55 whereas for fiXate the load was 12.31 lbs with a standard deviation of 4.26. For axial pull in Mylar film, the failure load for standard suture was 10.87 lbs with a standard deviation of 1.56 whereas for fiXate the load was 19.54 lbs with a standard deviation of 2.24. These data suggest a novel semiautomated device offers a method of fixation that may be utilized in lieu of standard suturing methods as a means of securing neuromodulation devices. Data suggest the novel semiautomated device in fact may provide a more secure fixation than standard suturing methods. © 2012 International Neuromodulation Society.

  13. The Addition of SPECT/CT Lymphoscintigraphy to Breast Cancer Radiation Planning Spares Lymph Nodes Critical for Arm Drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheville, Andrea L., E-mail: Cheville.andrea@mayo.edu; Brinkmann, Debra H.; Ward, Shelly B.

    2013-03-15

    Background: This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. Methods: SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the secondmore » (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Results: Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. Conclusions: The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema.« less

  14. The addition of SPECT/CT lymphoscintigraphy to breast cancer radiation planning spares lymph nodes critical for arm drainage.

    PubMed

    Cheville, Andrea L; Brinkmann, Debra H; Ward, Shelly B; Durski, Jolanta; Laack, Nadia N; Yan, Elizabeth; Schomberg, Paula J; Garces, Yolanda I; Suman, Vera J; Petersen, Ivy A

    2013-03-15

    This prospective cohort study was designed to determine whether the amount of radiation delivered to the nonpathological lymph nodes (LNs) that drain the arm can be significantly reduced by integrating single-photon emission computed tomography (SPECT)/computed tomography (CT) scans into radiation treatment planning. SPECT-CT scans were acquired for the 28 patients with stage I or II breast cancer and fused with the routinely obtained radiation oncology planning CT scans. Arm-draining LNs were contoured with 0.5-cm margins automatically using a threshold of 50% maximum intensity. Two treatment plans were generated: 1 per routine clinical practice (standard; STD) and the second (modified; MOD) with treatment fields modified to minimize dose to the arm-draining LNs visible on SPECT/CT images without interfering with the dosage delivered to target tissues. Participants were treated per the MOD plans. Arm volumes were measured prior to radiation and thereafter at least three subsequent 6-month intervals. Sixty-eight level I-III arm-draining LNs were identified, 57% of which were inside the STD plan fields but could be blocked in the MOD plan fields. Sixty-five percent of arm-draining LNs in the STD versus 16% in the MOD plans received a mean of ≥10 Gy, and 26% in the STD versus 4% in the MOD plans received a mean of ≥40 Gy. Mean LN radiation exposure was 23.6 Gy (standard deviation 18.2) with the STD and 7.7 Gy (standard deviation 11.3) with the MOD plans (P<.001). No participant developed lymphedema. The integration of SPECT/CT scans into breast cancer radiation treatment planning reduces unnecessary arm-draining LN radiation exposure and may lessen the risk of lymphedema. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.

    PubMed

    Kook, Michael S; Cho, Hyun-soo; Seong, Mincheol; Choi, Jaewan

    2005-11-01

    To evaluate the ability of scanning laser polarimetry parameters and a novel deviation map algorithm to discriminate between healthy and early glaucomatous eyes with localized visual field (VF) defects confined to one hemifield. Prospective case-control study. Seventy glaucomatous eyes with localized VF defects and 66 normal controls. A Humphrey field analyzer 24-2 full-threshold test and scanning laser polarimetry with variable corneal compensation were used. We assessed the sensitivity and specificity of scanning laser polarimetry parameters, sensitivity and cutoff values for scanning laser polarimetry deviation map algorithms at different specificity values (80%, 90%, and 95%) in the detection of glaucoma, and correlations between the algorithms of scanning laser polarimetry and of the pattern deviation derived from Humphrey field analyzer testing. There were significant differences between the glaucoma group and normal subjects in the mean parametric values of the temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and TSNIT standard deviation (SD) (P<0.05). The sensitivity and specificity of each scanning laser polarimetry variable was as follows: TSNIT, 44.3% (95% confidence interval [CI], 39.8%-49.8%) and 100% (95.4%-100%); superior average, 30% (25.5%-34.5%) and 97% (93.5%-100%); inferior average, 45.7% (42.2%-49.2%) and 100% (95.8%-100%); and TSNIT SD, 30% (25.9%-34.1%) and 97% (93.2%-100%), respectively (when abnormal was defined as P<0.05). Based on nerve fiber indicator cutoff values of > or =30 and > or =51 to indicate glaucoma, sensitivities were 54.3% (50.1%-58.5%) and 10% (6.4%-13.6%), and specificities were 97% (93.2%-100%) and 100% (95.8%-100%), respectively. The range of areas under the receiver operating characteristic curves using the scanning laser polarimetry deviation map algorithm was 0.790 to 0.879. Overall sensitivities combining each probability scale and severity score at 80%, 90%, and 95% specificities were 90.0% (95% CI, 86.4%-93.6%), 71.4% (67.4%-75.4%), and 60.0% (56.2%-63.8%), respectively. There was a statistically significant correlation between the scanning laser polarimetry severity score and the VF severity score (R2 = 0.360, P<0.001). Scanning laser polarimetry parameters may not be sufficiently sensitive to detect glaucomatous patients with localized VF damage. Our algorithm using the scanning laser polarimetry deviation map may enhance the understanding of scanning laser polarimetry printouts in terms of the locality, deviation size, and severity of localized retinal nerve fiber layer defects in eyes with localized VF loss.

  16. Computer Programs for the Semantic Differential: Further Modifications.

    ERIC Educational Resources Information Center

    Lawson, Edwin D.; And Others

    The original nine programs for semantic differential analysis have been condensed into three programs which have been further refined and augmented. They yield: (1) means, standard deviations, and standard errors for each subscale on each concept; (2) Evaluation, Potency, and Activity (EPA) means, standard deviations, and standard errors; (3)…

  17. Numerical investigation of the effect of net charge injection on the electric field deviation in a TE CO2 laser

    NASA Astrophysics Data System (ADS)

    Jahanianl, Nahid; Aram, Majid; Morshedian, Nader; Mehramiz, Ahmad

    2018-03-01

    In this report, the distribution of and deviation in the electric field were investigated in the active medium of a TE CO2 laser. The variation in the electric field is due to injection of net electron and proton charges as a plasma generator. The charged-particles beam density is assumed to be Gaussian. The electric potential and electric field distribution were simulated by solving Poisson’s equation using the SOR numerical method. The minimum deviation of the electric field obtained was about 2.2% and 6% for the electrons and protons beams, respectively, for a charged-particles beam-density of 106 cm-3. This result was obtained for a system geometry ensuring a mean-free-path of the particles beam of 15 mm. It was also found that the field deviation increases for a the mean-free-path smaller than that or larger than 25 mm. Moreover, the electric field deviation decreases when the electrons beam density exceeds 106 cm-3.

  18. Determining a one-tailed upper limit for future sample relative reproducibility standard deviations.

    PubMed

    McClure, Foster D; Lee, Jung K

    2006-01-01

    A formula was developed to determine a one-tailed 100p% upper limit for future sample percent relative reproducibility standard deviations (RSD(R),%= 100s(R)/y), where S(R) is the sample reproducibility standard deviation, which is the square root of a linear combination of the sample repeatability variance (s(r)2) plus the sample laboratory-to-laboratory variance (s(L)2), i.e., S(R) = s(L)2, and y is the sample mean. The future RSD(R),% is expected to arise from a population of potential RSD(R),% values whose true mean is zeta(R),% = 100sigmaR, where sigmaR and mu are the population reproducibility standard deviation and mean, respectively.

  19. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma.

    PubMed

    Chauhan, Balwantray C; Nicolela, Marcelo T; Artes, Paul H

    2009-11-01

    To determine whether glaucoma patients with progressive optic disc change have subsequent visual field progression earlier and at a faster rate compared with those without disc change. Prospective, longitudinal, cohort study. Eighty-one patients with open-angle glaucoma. Patients underwent confocal scanning laser tomography and standard automated perimetry every 6 months. The complete follow-up was divided into initial and subsequent periods. Two initial periods-first 3 years (Protocol A) and first half of the total follow-up (Protocol B)-were used, with the respective remainder being the subsequent follow-up. Disc change during the initial follow-up was determined with liberal, moderate, or conservative criteria of the Topographic Change Analysis. Subsequent field progression was determined with significant pattern deviation change in >or=3 locations (criterion used in the Early Manifest Glaucoma Trial). As a control analysis, field change during the initial follow-up was determined with significant pattern deviation change in >or=1, >or=2, or >or=3 locations. Survival time to subsequent field progression, rates of mean deviation (MD) change, and positive and negative likelihood ratios. The median (interquartile range) total follow-up was 11.0 (8.0-12.0) years with 22 (18-24) examinations. More patients had disc changes during the initial follow-up compared with field changes. The mean time to field progression was consistently shorter (protocol A, 0.8-1.7 years; protocol B, 0.3-0.7 years) in patients with prior disc change. In the control analysis, patients with prior field change had statistically earlier subsequent field progression (protocol A, 2.9-3.0 years; protocol B, 0.7-0.9). Similarly, patients with either prior disc or field change always had worse mean rates of subsequent MD change, although the distributions overlapped widely. Patients with subsequent field progression were up to 3 times more likely to have prior disc change compared with those without, and up to 5 times more likely to have prior field change compared with those without. Longitudinally measured optic disc change is predictive of subsequent visual field progression and may be an efficacious end point for functional outcomes in clinical studies and trials in glaucoma.

  20. Strain accumulation and rotation in western Oregon and southwestern Washington

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.

    2002-01-01

    Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.

  1. Efficacy of the Amsler Grid Test in Evaluating Glaucomatous Central Visual Field Defects.

    PubMed

    Su, Daniel; Greenberg, Andrew; Simonson, Joseph L; Teng, Christopher C; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul

    2016-04-01

    To investigate the efficacy of the Amsler grid test in detecting central visual field (VF) defects in glaucoma. Prospective, cross-sectional study. Patients with glaucoma with reliable Humphrey 10-2 Swedish Interactive Threshold Algorithm standard VF on the date of enrollment or within the previous 3 months. Amsler grid tests were performed for each eye and were considered "abnormal" if there was any perceived scotoma with missing or blurry grid lines within the central 10 degrees ("Amsler grid scotoma"). An abnormal 10-2 VF was defined as ≥3 adjacent points at P < 0.01 with at least 1 point at P < 0.005 in the same hemifield on the pattern deviation plot. Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area were calculated with the 10-2 VF as the clinical reference standard. Among eyes with an abnormal 10-2 VF, regression analyses were performed between the Amsler grid scotoma area and the 10-2 VF parameters (mean deviation [MD], scotoma extent [number of test points with P < 0.01 in total deviation map] and scotoma mean depth [mean sensitivity of test points with P < 0.01 in total deviation map]). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid scotoma area. A total of 106 eyes (53 patients) were included (mean ± standard deviation age, 24-2 MD and 10-2 MD = 66±12 years, -9.61±8.64 decibels [dB] and -9.75±9.00 dB, respectively). Sensitivity, specificity, and positive and negative predictive values of the Amsler grid test were 68%, 92%, 97%, and 46%, respectively. Sensitivity was 40% in eyes with 10-2 MD better than -6 dB, 58% in eyes with 10-2 MD between -12 and -6 dB, and 92% in eyes with 10-2 MD worse than -12 dB. The area under the receiver operating characteristic curve of the Amsler grid scotoma area was 0.810 (95% confidence interval, 0.723-0.880, P < 0.001). The Amsler grid scotoma area had the strongest relationship with 10-2 MD (quadratic R(2)=0.681), followed by 10-2 scotoma extent (quadratic R(2)=0.611) and 10-2 scotoma mean depth (quadratic R(2)=0.299) (all P < 0.001). The Amsler grid can be used to screen for moderate to severe central vision loss from glaucoma. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. Ground states of baryoleptonic Q-balls in supersymmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  3. Faraday dispersion functions of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro

    2014-09-01

    The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, findmore » that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.« less

  4. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  5. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to bemore » smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.« less

  6. Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    NASA Technical Reports Server (NTRS)

    DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.

    2013-01-01

    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).

  7. Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55

    NASA Astrophysics Data System (ADS)

    Núñez, Carolina; Spergel, David N.; Ho, Shirley

    2017-02-01

    We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z< 0.55. Stellar contamination is estimated to be 1.8%.

  8. Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis

    PubMed Central

    2011-01-01

    Background The definitive diagnosis of glaucoma is currently based on congruent damage to both optic nerve structure and function. Given widespread quantitative assessment of both structure (imaging) and function (automated perimetry) in glaucoma, it should be possible to combine these quantitative data to diagnose disease. We have therefore defined and tested a new approach to glaucoma diagnosis by combining imaging and visual field data, using the anatomical organization of retinal ganglion cells. Methods Data from 1499 eyes of glaucoma suspects and 895 eyes with glaucoma were identified at a single glaucoma center. Each underwent Heidelberg Retinal Tomograph (HRT) imaging and standard automated perimetry. A new measure combining these two tests, the structure function index (SFI), was defined in 3 steps: 1) calculate the probability that each visual field point is abnormal, 2) calculate the probability of abnormality for each of the six HRT optic disc sectors, and 3) combine those probabilities with the probability that a field point and disc sector are linked by ganglion cell anatomy. The SFI was compared to the HRT and visual field using receiver operating characteristic (ROC) analysis. Results The SFI produced an area under the ROC curve (0.78) that was similar to that for both visual field mean deviation (0.78) and pattern standard deviation (0.80) and larger than that for a normalized measure of HRT rim area (0.66). The cases classified as glaucoma by the various tests were significantly non-overlapping. Based on the distribution of test values in the population with mild disease, the SFI may be better able to stratify this group while still clearly identifying those with severe disease. Conclusions The SFI reflects the traditional clinical diagnosis of glaucoma by combining optic nerve structure and function. In doing so, it identifies a different subset of patients than either visual field testing or optic nerve head imaging alone. Analysis of prospective data will allow us to determine whether the combined index of structure and function can provide an improved standard for glaucoma diagnosis. PMID:21314957

  9. SU-F-T-177: Impacts of Gantry Angle Dependent Scanning Beam Properties for Proton Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; Clasie, B; Lu, H

    Purpose: In pencil beam scanning (PBS), the delivered spot MU, position and size are slightly different at different gantry angles. We investigated the level of delivery uncertainty at different gantry angles through a log file analysis. Methods: 34 PBS fields covering full 360 degrees gantry angle spread were collected retrospectively from 28 patients treated at our institution. All fields were delivered at zero gantry angle and the prescribed gantry angle, and measured at isocenter with the MatriXX 2D array detector at the prescribed gantry angle. The machine log files were analyzed to extract the delivered MU per spot and themore » beam position from the strip ionization chambers in the treatment nozzle. The beam size was separately measured as a function of gantry angle and beam energy. Using this information, the dose was calculated in a water phantom at both gantry angles and compared to the measurement using the 3D γ-index at 2mm/2%. Results: The spot-by-spot difference between the beam position in the log files from the delivery at the two gantry angles has a mean of 0.3 and 0.4 mm and a standard deviation of 0.6 and 0.7 mm for × and y directions, respectively. Similarly, the spot-by-spot difference between the MU in the log files from the delivery at the two gantry angles has a mean 0.01% and a standard deviation of 0.7%. These small deviations lead to an excellent agreement in dose calculations with an average γ pass rate for all fields being approximately 99.7%. When each calculation is compared to the measurement, a high correlation in γ was also found. Conclusion: Using machine logs files, we verified that PBS beam delivery at different gantry angles are sufficiently small and the planned spot position and MU. This study brings us one step closer to simplifying our patient-specific QA.« less

  10. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water.

    PubMed

    Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali

    2009-02-17

    A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.

  11. First video rate imagery from a 32-channel 22-GHz aperture synthesis passive millimetre wave imager

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Macpherson, Rod; Harvey, Andy; Hall, Peter; Hayward, Steve; Wilkinson, Peter; Taylor, Chris

    2011-11-01

    The first video rate imagery from a proof-of-concept 32-channel 22 GHz aperture synthesis imager is reported. This imager has been brought into operation over the first half of year 2011. Receiver noise temperatures have been measured to be ~453 K, close to original specifications, and the measured radiometric sensitivity agrees with the theoretical predictions for aperture synthesis imagers (2 K for a 40 ms integration time). The short term (few seconds) magnitude stability in the cross-correlations expressed as a fraction was measured to have a mean of 3.45×10-4 with a standard deviation of ~2.30×10-4, whilst the figure for the phase was found to have a mean of essentially zero with a standard deviation of 0.0181°. The susceptibility of the system to aliasing for point sources in the scene was examined and found to be well understood. The system was calibrated and security-relevant indoor near-field and out-door far-field imagery was created, at frame rates ranging from 1 to 200 frames per second. The results prove that an aperture synthesis imager can generate imagery in the near-field regime, successfully coping with the curved wave-fronts. The original objective of the project, to deliver a Technology Readiness Level (TRL) 4 laboratory demonstrator for aperture synthesis passive millimetre wave (PMMW) imaging, has been achieved. The project was co-funded by the Technology Strategy Board and the Royal Society of the United Kingdom.

  12. Packing Fraction of a Two-dimensional Eden Model with Random-Sized Particles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Yamazaki, Hiroshi

    2018-01-01

    We have performed a numerical simulation of a two-dimensional Eden model with random-size particles. In the present model, the particle radii are generated from a Gaussian distribution with mean μ and standard deviation σ. First, we have examined the bulk packing fraction for the Eden cluster and investigated the effects of the standard deviation and the total number of particles NT. We show that the bulk packing fraction depends on the number of particles and the standard deviation. In particular, for the dependence on the standard deviation, we have determined the asymptotic value of the bulk packing fraction in the limit of the dimensionless standard deviation. This value is larger than the packing fraction obtained in a previous study of the Eden model with uniform-size particles. Secondly, we have investigated the packing fraction of the entire Eden cluster including the effect of the interface fluctuation. We find that the entire packing fraction depends on the number of particles while it is independent of the standard deviation, in contrast to the bulk packing fraction. In a similar way to the bulk packing fraction, we have obtained the asymptotic value of the entire packing fraction in the limit NT → ∞. The obtained value of the entire packing fraction is smaller than that of the bulk value. This fact suggests that the interface fluctuation of the Eden cluster influences the packing fraction.

  13. Complexities of follicle deviation during selection of a dominant follicle in Bos taurus heifers.

    PubMed

    Ginther, O J; Baldrighi, J M; Siddiqui, M A R; Araujo, E R

    2016-11-01

    Follicle deviation during a follicular wave is a continuation in growth rate of the dominant follicle (F1) and decreased growth rate of the largest subordinate follicle (F2). The reliability of using an F1 of 8.5 mm to represent the beginning of expected deviation for experimental purposes during waves 1 and 2 (n = 26 per wave) was studied daily in heifers. Each wave was subgrouped as follows: standard subgroup (F1 larger than F2 for 2 days preceding deviation and F2 > 7.0 mm on the day of deviation), undersized subgroup (F2 did not attain 7.0 mm by the day of deviation), and switched subgroup (F2 larger than F1 at least once on the 2 days before or on the day of deviation). For each wave, mean differences in diameter between F1 and F2 changed abruptly at expected deviation in the standard subgroup but began 1 day before expected deviation in the undersized and switched subgroups. Concentrations of FSH in the wave-stimulating FSH surge and an increase in LH centered on expected deviation did not differ among subgroups. Results for each wave indicated that (1) expected deviation (F1, 8.5 mm) was a reliable representation of actual deviation in the standard subgroup but not in the undersized and switched subgroups; (2) concentrations of the gonadotropins normalized to expected deviation were similar among the three subgroups, indicating that the day of deviation was related to diameter of F1 and not F2; and (3) defining an expected day of deviation for experimental use should consider both diameter of F1 and the characteristics of deviation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. 40 CFR 90.708 - Cumulative Sum (CumSum) procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is 5.0×σ, and is a function of the standard deviation, σ. σ=is the sample standard deviation and is... individual engine. FEL=Family Emission Limit (the standard if no FEL). F=.25×σ. (2) After each test pursuant...

  15. Acoustic Correlates of Compensatory Adjustments to the Glottic and Supraglottic Structures in Patients with Unilateral Vocal Fold Paralysis

    PubMed Central

    2015-01-01

    The goal of this study was to analyse perceptually and acoustically the voices of patients with Unilateral Vocal Fold Paralysis (UVFP) and compare them to the voices of normal subjects. These voices were analysed perceptually with the GRBAS scale and acoustically using the following parameters: mean fundamental frequency (F0), standard-deviation of F0, jitter (ppq5), shimmer (apq11), mean harmonics-to-noise ratio (HNR), mean first (F1) and second (F2) formants frequency, and standard-deviation of F1 and F2 frequencies. Statistically significant differences were found in all of the perceptual parameters. Also the jitter, shimmer, HNR, standard-deviation of F0, and standard-deviation of the frequency of F2 were statistically different between groups, for both genders. In the male data differences were also found in F1 and F2 frequencies values and in the standard-deviation of the frequency of F1. This study allowed the documentation of the alterations resulting from UVFP and addressed the exploration of parameters with limited information for this pathology. PMID:26557690

  16. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    NASA Astrophysics Data System (ADS)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  17. On the three-dimensional magnetic structure of the plasmoid created in the magnetotail at substorm onset

    NASA Technical Reports Server (NTRS)

    Hones, E. W., Jr.; Bame, S. J.; Birn, J.; Paschmann, G.; Russell, C. T.

    1982-01-01

    The magnetic field in the plasmoid which is created by the reconnection of magnetic field lines at a neutral line formed in the near-earth region of the plasma sheet at substorm onset, and which flows out of the magnetotail into the magnetosphere's wake, displays a strong positive or negative Y(SM) component that has been difficult to reconcile with the standard, two-dimensional reconnection geometry. It is shown that this deviation of the magnetic field is a manifestation of the newly-reconnected field line loop's draping toward the tail's central or midnight meridian, and that the draping is a consequence of the three-dimensional plasma flow associated with the reconnection process.

  18. New approach to estimating variability in visual field data using an image processing technique.

    PubMed Central

    Crabb, D P; Edgar, D F; Fitzke, F W; McNaught, A I; Wynn, H P

    1995-01-01

    AIMS--A new framework for evaluating pointwise sensitivity variation in computerised visual field data is demonstrated. METHODS--A measure of local spatial variability (LSV) is generated using an image processing technique. Fifty five eyes from a sample of normal and glaucomatous subjects, examined on the Humphrey field analyser (HFA), were used to illustrate the method. RESULTS--Significant correlation between LSV and conventional estimates--namely, HFA pattern standard deviation and short term fluctuation, were found. CONCLUSION--LSV is not dependent on normals' reference data or repeated threshold determinations, thus potentially reducing test time. Also, the illustrated pointwise maps of LSV could provide a method for identifying areas of fluctuation commonly found in early glaucomatous field loss. PMID:7703196

  19. Within-field variability of plant and soil parameters

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Brisco, B.; Dobson, C.

    1981-01-01

    The variability of ground truth data collected for vegetation experiments was investigated. Two fields of wheat and one field of corn were sampled on two different dates. The variability of crop and soil parameters within a field, between two fields of the same type, and within a field over time were compared statistically. The number of samples from each test site required in order to be able to determine with confidence the mean and standard deviations for a given variable was determined. Eight samples were found to be adequate for plant height determinations, while twenty samples were required for plant moisture and soil moisture characterization. Eighteen samples were necessary for detecting within field variability over time and for between field variability for the same crop. The necessary sample sites vary according to the physiological growth stage of the crop and recent weather events that affect the moisture and/or height characteristics of the field in question.

  20. A proof for Rhiel's range estimator of the coefficient of variation for skewed distributions.

    PubMed

    Rhiel, G Steven

    2007-02-01

    In this research study is proof that the coefficient of variation (CV(high-low)) calculated from the highest and lowest values in a set of data is applicable to specific skewed distributions with varying means and standard deviations. Earlier Rhiel provided values for d(n), the standardized mean range, and a(n), an adjustment for bias in the range estimator of micro. These values are used in estimating the coefficient of variation from the range for skewed distributions. The d(n) and an values were specified for specific skewed distributions with a fixed mean and standard deviation. In this proof it is shown that the d(n) and an values are applicable for the specific skewed distributions when the mean and standard deviation can take on differing values. This will give the researcher confidence in using this statistic for skewed distributions regardless of the mean and standard deviation.

  1. SU-E-T-276: Dose Calculation Accuracy with a Standard Beam Model for Extended SSD Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisling, K; Court, L; Kirsner, S

    2015-06-15

    Purpose: While most photon treatments are delivered near 100cm SSD or less, a subset of patients may benefit from treatment at SSDs greater than 100cm. A proposed rotating chair for upright treatments would enable isocentric treatments at extended SSDs. The purpose of this study was to assess the accuracy of the Pinnacle{sup 3} treatment planning system dose calculation for standard beam geometries delivered at extended SSDs with a beam model commissioned at 100cm SSD. Methods: Dose to a water phantom at 100, 110, and 120cm SSD was calculated with the Pinnacle {sup 3} CC convolve algorithm for 6x beams formore » 5×5, 10×10, 20×20, and 30×30cm{sup 2} field sizes (defined at the water surface for each SSD). PDDs and profiles (depths of 1.5, 12.5, and 22cm) were compared to measurements in water with an ionization chamber. Point-by-point agreement was analyzed, as well as agreement in field size defined by the 50% isodose. Results: The deviations of the calculated PDDs from measurement, analyzed from depth of maximum dose to 23cm, were all within 1.3% for all beam geometries. In particular, the calculated PDDs at 10cm depth were all within 0.7% of measurement. For profiles, the deviations within the central 80% of the field were within 2.2% for all geometries. The field sizes all agreed within 2mm. Conclusion: The agreement of the PDDs and profiles calculated by Pinnacle3 for extended SSD geometries were within the acceptability criteria defined by Van Dyk (±2% for PDDs and ±3% for profiles). The accuracy of the calculation of more complex beam geometries at extended SSDs will be investigated to further assess the feasibility of using a standard beam model commissioned at 100cm SSD in Pinnacle3 for extended SSD treatments.« less

  2. Standard operating procedures (SOPs): reason for, types of, adequacy, approval, and deviations from and revisions to.

    PubMed

    Isaman, V; Thelin, R

    1995-09-01

    Standard Operating Procedures (SOPs) are required in order to comply with the Good Laboratory Practice Standards (GLPS) as promulgated in the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) 40 CFR Part 160. Paragraph 160.81 (a) states: "A testing facility shall have standard operating procedures in writing setting forth study methods that management is satisfied are adequate to insure the quality and integrity of the data generated in the course of a study." Types of SOPs include administrative and personnel, analyses, substances, quality assurance and records, test system, equipment, and field related. All SOPs must be adequate in scope to describe the function in sufficient detail such that the study data are reproducible. All SOPs must be approved by a management level as described in a corporate organization chart. Signatures for SOP responsibility, authorship, and Quality Assurance review adds strength and accountability to the SOP. In the event a procedure or method is performed differently from what is stated in the SOP, an SOP deviation is necessary. As methods and procedures are improved, SOP revisions are necessary to maintain SOP adequacy and applicability. The replaced SOP is put into a historical SOP file and all copies of the replaced SOPs are destroyed.

  3. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  4. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then found to be around 2% (with 2% standard uncertainty on TPS doses and 1.5% standard uncertainty on EPR measurements). Beam dose rate estimation results were found to be in good agreement with the reference value given by the manufacturer at 2% standard uncertainty. Moreover, the dose determination method was set up with a deviation around 2% (at a 2% standard uncertainty).

  5. Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach.

    PubMed

    Falkowski, Adam; González-Alonso, Martín; Greljo, Admir; Marzocca, David

    2016-01-08

    We present a combined analysis of LHC Higgs data (signal strengths) together with LEP-2 WW production measurements. To characterize possible deviations from the standard model (SM) predictions, we employ the framework of an effective field theory (EFT) where the SM is extended by higher-dimensional operators suppressed by the mass scale of new physics Λ. The analysis is performed consistently at the order Λ(-2) in the EFT expansion keeping all the relevant operators. While the two data sets suffer from flat directions, together they impose stringent model-independent constraints on the anomalous triple gauge couplings.

  6. Phase-shifting interference microscope with extendable field of measurement

    NASA Astrophysics Data System (ADS)

    Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang

    2018-04-01

    An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.

  7. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    NASA Astrophysics Data System (ADS)

    Miles, Natasha L.; Martins, Douglas K.; Richardson, Scott J.; Rella, Christopher W.; Arata, Caleb; Lauvaux, Thomas; Davis, Kenneth J.; Barkley, Zachary R.; McKain, Kathryn; Sweeney, Colm

    2018-03-01

    Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc.) measuring methane dry mole fraction (CH4), carbon dioxide dry mole fraction (CO2), and the isotopic ratio of methane (δ13CH4) were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January-December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of -0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10 min isotopic ratio differences of 0.8 ‰. In terms of source attribution, analyzer compatibility of 0.2 ‰ δ13CH4 affords the ability to distinguish a 50 ppb CH4 peak from a biogenic source (at -60 ‰, for example) from one originating from a thermogenic source (-35 ‰), with the exact value dependent upon the source isotopic ratios. Using a Keeling plot approach for the non-afternoon data at a tower in the center of the study region, we determined the source isotopic signature to be -31.2 ± 1.9 ‰, within the wide range of values consistent with a deep-layer Marcellus natural gas source.

  8. Evaluation of Visual Field Test Parameters after Artificial Tear Administration in Patients with Glaucoma and Dry Eye.

    PubMed

    Özyol, Pelin; Özyol, Erhan; Karalezli, Aylin

    2018-01-01

    To examine the effect of a single dose of artificial tear administration on automated visual field (VF) testing in patients with glaucoma and dry eye syndrome. A total of 35 patients with primary open-angle glaucoma experienced in VF testing with symptoms of dry eye were enrolled in this study. At the first visit, standard VF testing was performed. At the second and third visits with an interval of one week, while the left eyes served as control, one drop of artificial tear was administered to each patient's right eye, and then VF testing was performed again. The reliability parameters, VF indices, number of depressed points at probability levels of pattern deviation plots, and test times were compared between visits. No significant difference was observed in any VF testing parameters of control eyes (P>0.05). In artificial tear administered eyes, significant improvement was observed in test duration, mean deviation, and the number of depressed points at probability levels (P˂0.5%, P˂1%, P˂2) of pattern deviation plots (P˂0.05). The post-hoc test revealed that artificial tear administration elicited an improvement in test duration, mean deviation, and the number of depressed points at probability levels (P˂0.5%, P˂1%, P˂2%) of pattern deviation plots from first visit to second and third visits (P˂0.01, for all comparisons). The intraclass correlation coefficient for the three VF test indices was found to be between 0.735 and 0.85 (P<0.001, for all). A single dose of artificial tear administration immediately before VF testing seems to improve test results and decrease test time.

  9. Hessian matrix approach for determining error field sensitivity to coil deviations

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; Song, Yuntao; Wan, Yuanxi

    2018-05-01

    The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code (Zhu et al 2018 Nucl. Fusion 58 016008) is utilized to provide fast and accurate calculations of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.

  10. Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.

    1995-01-01

    To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant introduced in this paper is the 'variance coupled model,' which redistributes LWP using the local standard deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two- parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to demonstrate both the strengths and weaknesses of these models.

  11. Perturbation theory for BAO reconstructed fields: One-loop results in the real-space matter density field

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan

    2017-08-01

    We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.

  12. COOMET pilot comparison 473/RU-a/09: Comparison of hydrophone calibrations in the frequency range 250 Hz to 200 kHz

    NASA Astrophysics Data System (ADS)

    Yi, Chen; Isaev, A. E.; Yuebing, Wang; Enyakov, A. M.; Teng, Fei; Matveev, A. N.

    2011-01-01

    A description is given of the COOMET project 473/RU-a/09: a pilot comparison of hydrophone calibrations at frequencies from 250 Hz to 200 kHz between Hangzhou Applied Acoustics Research Institute (HAARI, China)—pilot laboratory—and Russian National Research Institute for Physicotechnical and Radio Engineering Measurements (VNIIFTRI, Designated Institute of Russia of the CIPM MRA). Two standard hydrophones, B&K 8104 and TC 4033, were calibrated and compared to assess the current state of hydrophone calibration of HAARI (China) and Russia. Three different calibration methods were applied: a vibrating column method, a free-field reciprocity method and a comparison method. The standard facilities of each laboratory were used, and three different sound fields were applied: pressure field, free-field and reverberant field. The maximum deviation of the sensitivities of two hydrophones between the participants' results was 0.36 dB. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCAUV-KCWG.

  13. Design and analysis of miniature tri-axial fluxgate magnetometer

    NASA Astrophysics Data System (ADS)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-02-01

    The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.

  14. N2/O2/H2 Dual-Pump Cars: Validation Experiments

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Cutler, A. D.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.

  15. Multiscale analysis of the CMB temperature derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected,more » the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.« less

  16. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  17. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  18. Comparative study of navigated versus freehand osteochondral graft transplantation of the knee.

    PubMed

    Koulalis, Dimitrios; Di Benedetto, Paolo; Citak, Mustafa; O'Loughlin, Padhraig; Pearle, Andrew D; Kendoff, Daniel O

    2009-04-01

    Osteochondral lesions are a common sports-related injury for which osteochondral grafting, including mosaicplasty, is an established treatment. Computer navigation has been gaining popularity in orthopaedic surgery to improve accuracy and precision. Navigation improves angle and depth matching during harvest and placement of osteochondral grafts compared with conventional freehand open technique. Controlled laboratory study. Three cadaveric knees were used. Reference markers were attached to the femur, tibia, and donor/recipient site guides. Fifteen osteochondral grafts were harvested and inserted into recipient sites with computer navigation, and 15 similar grafts were inserted freehand. The angles of graft removal and placement as well as surface congruity (graft depth) were calculated for each surgical group. The mean harvesting angle at the donor site using navigation was 4 degrees (standard deviation, 2.3 degrees ; range, 1 degrees -9 degrees ) versus 12 degrees (standard deviation, 5.5 degrees ; range, 5 degrees -24 degrees ) using freehand technique (P < .0001). The recipient plug removal angle using the navigated technique was 3.3 degrees (standard deviation, 2.1 degrees ; range, 0 degrees -9 degrees ) versus 10.7 degrees (standard deviation, 4.9 degrees ; range, 2 degrees -17 degrees ) in freehand (P < .0001). The mean navigated recipient plug placement angle was 3.6 degrees (standard deviation, 2.0 degrees ; range, 1 degrees -9 degrees ) versus 10.6 degrees (standard deviation, 4.4 degrees ; range, 3 degrees -17 degrees ) with freehand technique (P = .0001). The mean height of plug protrusion under navigation was 0.3 mm (standard deviation, 0.2 mm; range, 0-0.6 mm) versus 0.5 mm (standard deviation, 0.3 mm; range, 0.2-1.1 mm) using a freehand technique (P = .0034). Significantly greater accuracy and precision were observed in harvesting and placement of the osteochondral grafts in the navigated procedures. Clinical studies are needed to establish a benefit in vivo. Improvement in the osteochondral harvest and placement is desirable to optimize clinical outcomes. Navigation shows great potential to improve both harvest and placement precision and accuracy, thus optimizing ultimate surface congruity.

  19. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields

    NASA Astrophysics Data System (ADS)

    Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.

    2017-12-01

    The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.

  20. Evidence for the Detection of Subclinical Retinal Involvement in Systemic Lupus Erythematosus and Sjögren Syndrome: A Potential Association with Therapies.

    PubMed

    Conigliaro, Paola; Triggianese, Paola; Draghessi, Gianluca; Canofari, Claudia; Aloe, Gianluca; Chimenti, Maria Sole; Valeri, Claudia; Nucci, Carlo; Perricone, Roberto; Cesareo, Massimo

    2018-06-14

    Retinal involvement in systemic lupus erythematosus (SLE) and Sjögren syndrome (SS) may be subclinical and thus underdiagnosed. We aimed at evaluating morphological and functional visual abnormalities in a cohort of SLE and SS patients in the absence of an overt clinical visual impairment. We also investigated potential associations between retinal disorders and disease activity, organ involvement, and treatment with steroid and/or hydroxychloroquine. The study comprised 42 SLE and 36 primary SS patients and 76 healthy controls (HC). Ophthalmological examination, standard automated perimetry, spectral-domain optical coherence tomography, and fundus perimetry were performed. Retinal thickness of the posterior pole was not different between SLE and HC groups, but it was reduced in the SS group compared with both the HC and the SLE group. In SLE and SS patients, mean defect and pattern standard deviation by standard automated perimetry were higher than in HC. Visual field index values were lower in both SLE and SS patients than in HC. SLE patients with nephritis displayed increased mean defect and pattern standard deviation and reduced visual field index values compared to patients without nephritis. In SLE and SS patients, fundus perimetry differential sensitivity was reduced, and mean defect values were higher than in HC. Disturbances in fundus perimetry in the SLE group were more prevalent in steroid-naïve patients and in SS patients who received a cumulative hydroxychloroquine dose > 1,000 g. Functional eye impairment was demonstrated in SLE patients, possibly associated with kidney involvement. In SLE, corticosteroids might exert a protective role. Morphological alterations and functional impairment were detected in SS patients, which may be linked to hydroxychloroquine toxicity. © 2018 S. Karger AG, Basel.

  1. Evaluating Field Spectrometer Performance with Transmission Standards: Examples from the USGS Spectral Library and Research Databases

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Kokaly, R. F.; Swayze, G. A.; Livo, K. E.

    2015-12-01

    Collection of spectroscopic data has expanded with the development of field-portable spectrometers. The most commonly available spectrometers span one or several wavelength ranges: the visible (VIS) and near-infrared (NIR) region from approximately 400 to 1000 nm, and the shortwave infrared (SWIR) region from approximately 1000-2500 nm. Basic characteristics of spectrometer performance are the wavelength position and bandpass of each channel. Bandpass can vary across the wavelength coverage of an instrument, due to spectrometer design and detector materials. Spectrometer specifications can differ from one instrument to the next for a given model and between manufacturers. The USGS Spectroscopy Lab in Denver has developed a simple method to evaluate field spectrometer wavelength accuracy and bandpass values using transmission measurements of materials with intense, narrow absorption features, including Mylar* plastic, praseodymium-doped glass, and National Institute of Standards and Technology Standard Reference Material 2035. The evaluation procedure has been applied in laboratory and field settings for 19 years and used to detect deviations from cited manufacturer specifications. Tracking of USGS spectrometers with transmission standards has revealed several instances of wavelength shifts due to wear in spectrometer components. Since shifts in channel wavelengths and differences in bandpass between instruments can impact the use of field spectrometer data to calibrate and analyze imaging spectrometer data, field protocols to measure wavelength standards can limit data loss due to spectrometer degradation. In this paper, the evaluation procedure will be described and examples of observed wavelength shifts during a spectrometer field season will be presented. The impact of changing wavelength and bandpass characteristics on spectral measurements will be demonstrated and implications for spectral libraries will be discussed. *Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  2. Thin Disk Accretion in the Magnetically-Arrested State

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan; Reynolds, Christopher S.

    2016-01-01

    Shakura-Sunyaev thin disk theory is fundamental to black hole astrophysics. Though applications of the theory are wide-spread and powerful tools for explaining observations, such as Soltan's argument using quasar power, broadened iron line measurements, continuum fitting, and recently reverberation mapping, a significant large-scale magnetic field causes substantial deviations from standard thin disk behavior. We have used fully 3D general relativistic MHD simulations with cooling to explore the thin (H/R~0.1) magnetically arrested disk (MAD) state and quantify these deviations. This work demonstrates that accumulation of large-scale magnetic flux into the MAD state is possible, and then extends prior numerical studies of thicker disks, allowing us to measure how jet power scales with the disk state, providing a natural explanation of phenomena like jet quenching in the high-soft state of X-ray binaries. We have also simulated thin MAD disks with a misaligned black hole spin axis in order to understand further deviations from thin disk theory that may significantly affect observations.

  3. Solar wind parameters and magnetospheric coupling studies

    NASA Technical Reports Server (NTRS)

    King, Joseph H.

    1986-01-01

    This paper presents distributions, means, and standard deviations of the fluxes of solar wind protons, momentum, and energy as observed near earth during the solar quiet and active years 1976 and 1979. Distributions of ratios of energies (Alfven Mach number, plasma beta) and distributions of interplanetary magnetic field orientations are also given. Finally, the uncertainties associated with the use of the libration point orbiting ISEE-3 spacecraft as a solar wind monitor are discussed.

  4. Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models

    NASA Astrophysics Data System (ADS)

    Aubert, Julien

    2013-02-01

    This paper introduces inverse geodynamo modelling, a framework imaging flow throughout the Earth's core from observations of the geomagnetic field and its secular variation. The necessary prior information is provided by statistics from 3-D and self-consistent numerical simulations of the geodynamo. The core method is a linear estimation (or Kalman filtering) procedure, combined with standard frozen-flux core surface flow inversions in order to handle the non-linearity of the problem. The inversion scheme is successfully validated using synthetic test experiments. A set of four numerical dynamo models of increasing physical complexity and similarity to the geomagnetic field is then used to invert for flows at single epochs within the period 1970-2010, using data from the geomagnetic field models CM4 and gufm-sat-Q3. The resulting core surface flows generally provide satisfactory fits to the secular variation within the level of modelled errors, and robustly reproduce the most commonly observed patterns while additionally presenting a high degree of equatorial symmetry. The corresponding deep flows present a robust, highly columnar structure once rotational constraints are enforced to a high level in the prior models, with patterns strikingly similar to the results of quasi-geostrophic inversions. In particular, the presence of a persistent planetary scale, eccentric westward columnar gyre circling around the inner core is confirmed. The strength of the approach is to uniquely determine the trade-off between fit to the data and complexity of the solution by clearly connecting it to first principle physics; statistical deviations observed between the inverted flows and the standard model behaviour can then be used to quantitatively assess the shortcomings of the physical modelling. Such deviations include the (i) westwards and (ii) hemispherical character of the eccentric gyre. A prior model with angular momentum conservation of the core-mantle inner-core system, and gravitational coupling of reasonable strength between the mantle and the inner core, is shown to produce enough westward drift to resolve statistical deviation (i). Deviation (ii) is resolved by a prior with an hemispherical buoyancy release at the inner-core boundary, with excess buoyancy below Asia. This latter result suggests that the recently proposed inner-core translational instability presently transports the solid inner-core material westwards, opposite to the seismologically inferred long-term trend but consistently with the eccentricity of the geomagnetic dipole in recent times.

  5. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also indicating the dosimetric differences are small when a field is delivered at different gantry angles. Utilizing the online beam delivery records, the gantry angle dependencies of the PBS beam delivery were assessed and quantified. The study confirms the variations of the physical properties to be sufficiently small within the clinical tolerances without taking into account the gantry angle variation.

  6. Matrix Summaries Improve Research Reports: Secondary Analyses Using Published Literature

    ERIC Educational Resources Information Center

    Zientek, Linda Reichwein; Thompson, Bruce

    2009-01-01

    Correlation matrices and standard deviations are the building blocks of many of the commonly conducted analyses in published research, and AERA and APA reporting standards recommend their inclusion when reporting research results. The authors argue that the inclusion of correlation/covariance matrices, standard deviations, and means can enhance…

  7. 30 CFR 74.8 - Measurement, accuracy, and reliability requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concentration, as defined by the relative standard deviation of the distribution of measurements. The relative standard deviation shall be less than 0.1275 without bias for both full-shift measurements of 8 hours or... Standards, Regulations, and Variances, 1100 Wilson Boulevard, Room 2350, Arlington, Virginia 22209-3939...

  8. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    PubMed

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  9. Contralateral eye comparison on changes in visual field following laser in situ keratomileusis vs photorefractive keratectomy for myopia: a randomized clinical trial.

    PubMed

    Mostafaei, A; Sedgipour, M R; Sadeghi-Bazargani, H

    2009-12-01

    Study purpose was to compare the changes of Visual Field (VF) during laser in situ Keratomileusis (LASIK) VS photorefractive keratectomy (PRK). This randomized, double blind, study involved 54 eyes of 27 Myopia patients who underwent LASIK or PRK procedures for contralateral eyes in each patient. Using Humphrey 30-2 SITA standard, the Mean Defect (MD) and Pattern Standard Deviation (PSD) were evaluated preoperatively and three months after surgery. At the same examination optical zone size, papillary and corneal diameters were also evaluated. There was no clinically significant difference in PSD and MD measurements between treated eyes with LASIK or PRK in any zone pre and postoperatively. VF may not be affected by corneal changes induced by LASIK or PRK three months after surgery.

  10. The effects of auditory stimulation with music on heart rate variability in healthy women.

    PubMed

    Roque, Adriano L; Valenti, Vitor E; Guida, Heraldo L; Campos, Mônica F; Knap, André; Vanderlei, Luiz Carlos M; Ferreira, Lucas L; Ferreira, Celso; Abreu, Luiz Carlos de

    2013-07-01

    There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21), who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19), who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB). A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB). The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio), low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. The triangular index and the standard deviation of the long-term RR interval indices were reduced during exposure to both music styles in the first group and tended to decrease in the second group whereas the white noise exposure decreased the high frequency index. We observed no changes regarding the triangular interpolation of RR intervals, standard deviation of instantaneous beat-by-beat variability and standard deviation of instantaneous beat-by-beat variability/standard deviation in the long-term RR interval ratio. We suggest that relaxant baroque and excitatory heavy metal music slightly decrease global heart rate variability because of the equivalent sound level.

  11. The effects of auditory stimulation with music on heart rate variability in healthy women

    PubMed Central

    Roque, Adriano L.; Valenti, Vitor E.; Guida, Heraldo L.; Campos, Mônica F.; Knap, André; Vanderlei, Luiz Carlos M.; Ferreira, Lucas L.; Ferreira, Celso; de Abreu, Luiz Carlos

    2013-01-01

    OBJECTIVES: There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. METHODS: We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21), who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19), who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB). A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB). The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio), low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. RESULTS: The triangular index and the standard deviation of the long-term RR interval indices were reduced during exposure to both music styles in the first group and tended to decrease in the second group whereas the white noise exposure decreased the high frequency index. We observed no changes regarding the triangular interpolation of RR intervals, standard deviation of instantaneous beat-by-beat variability and standard deviation of instantaneous beat-by-beat variability/standard deviation in the long-term RR interval ratio. CONCLUSION: We suggest that relaxant baroque and excitatory heavy metal music slightly decrease global heart rate variability because of the equivalent sound level. PMID:23917660

  12. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  13. The impact of inter-fraction dose variations on biological equivalent dose (BED): the concept of equivalent constant dose.

    PubMed

    Zavgorodni, S

    2004-12-07

    Inter-fraction dose fluctuations, which appear as a result of setup errors, organ motion and treatment machine output variations, may influence the radiobiological effect of the treatment even when the total delivered physical dose remains constant. The effect of these inter-fraction dose fluctuations on the biological effective dose (BED) has been investigated. Analytical expressions for the BED accounting for the dose fluctuations have been derived. The concept of biological effective constant dose (BECD) has been introduced. The equivalent constant dose (ECD), representing the constant physical dose that provides the same cell survival fraction as the fluctuating dose, has also been introduced. The dose fluctuations with Gaussian as well as exponential probability density functions were investigated. The values of BECD and ECD calculated analytically were compared with those derived from Monte Carlo modelling. The agreement between Monte Carlo modelled and analytical values was excellent (within 1%) for a range of dose standard deviations (0-100% of the dose) and the number of fractions (2 to 37) used in the comparison. The ECDs have also been calculated for conventional radiotherapy fields. The analytical expression for the BECD shows that BECD increases linearly with the variance of the dose. The effect is relatively small, and in the flat regions of the field it results in less than 1% increase of ECD. In the penumbra region of the 6 MV single radiotherapy beam the ECD exceeded the physical dose by up to 35%, when the standard deviation of combined patient setup/organ motion uncertainty was 5 mm. Equivalently, the ECD field was approximately 2 mm wider than the physical dose field. The difference between ECD and the physical dose is greater for normal tissues than for tumours.

  14. USL/DBMS NASA/PC R and D project C programming standards

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Moreau, Dennis R.

    1984-01-01

    A set of programming standards intended to promote reliability, readability, and portability of C programs written for PC research and development projects is established. These standards must be adhered to except where reasons for deviation are clearly identified and approved by the PC team. Any approved deviation from these standards must also be clearly documented in the pertinent source code.

  15. A component compensation method for magnetic interferential field

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong

    2017-04-01

    A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.

  16. Standard deviation index for stimulated Brillouin scattering suppression with different homogeneities.

    PubMed

    Ran, Yang; Su, Rongtao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-10

    We present a new quantitative index of standard deviation to measure the homogeneity of spectral lines in a fiber amplifier system so as to find the relation between the stimulated Brillouin scattering (SBS) threshold and the homogeneity of the corresponding spectral lines. A theoretical model is built and a simulation framework has been established to estimate the SBS threshold when input spectra with different homogeneities are set. In our experiment, by setting the phase modulation voltage to a constant value and the modulation frequency to different values, spectral lines with different homogeneities can be obtained. The experimental results show that the SBS threshold increases negatively with the standard deviation of the modulated spectrum, which is in good agreement with the theoretical results. When the phase modulation voltage is confined to 10 V and the modulation frequency is set to 80 MHz, the standard deviation of the modulated spectrum equals 0.0051, which is the lowest value in our experiment. Thus, at this time, the highest SBS threshold has been achieved. This standard deviation can be a good quantitative index in evaluating the power scaling potential in a fiber amplifier system, which is also a design guideline in suppressing the SBS to a better degree.

  17. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  18. Note Onset Deviations as Musical Piece Signatures

    PubMed Central

    Serrà, Joan; Özaslan, Tan Hakan; Arcos, Josep Lluis

    2013-01-01

    A competent interpretation of a musical composition presents several non-explicit departures from the written score. Timing variations are perhaps the most important ones: they are fundamental for expressive performance and a key ingredient for conferring a human-like quality to machine-based music renditions. However, the nature of such variations is still an open research question, with diverse theories that indicate a multi-dimensional phenomenon. In the present study, we consider event-shift timing variations and show that sequences of note onset deviations are robust and reliable predictors of the musical piece being played, irrespective of the performer. In fact, our results suggest that only a few consecutive onset deviations are already enough to identify a musical composition with statistically significant accuracy. We consider a mid-size collection of commercial recordings of classical guitar pieces and follow a quantitative approach based on the combination of standard statistical tools and machine learning techniques with the semi-automatic estimation of onset deviations. Besides the reported results, we believe that the considered materials and the methodology followed widen the testing ground for studying musical timing and could open new perspectives in related research fields. PMID:23935971

  19. Spectral Radiance of a Large-Area Integrating Sphere Source

    PubMed Central

    Walker, James H.; Thompson, Ambler

    1995-01-01

    The radiance and irradiance calibration of large field-of-view scanning and imaging radiometers for remote sensing and surveillance applications has resulted in the development of novel calibration techniques. One of these techniques is the employment of large-area integrating sphere sources as radiance or irradiance secondary standards. To assist the National Aeronautical and Space Administration’s space based ozone measurement program, a commercially available large-area internally illuminated integrating sphere source’s spectral radiance was characterized in the wavelength region from 230 nm to 400 nm at the National Institute of Standards and Technology. Spectral radiance determinations and spatial mappings of the source indicate that carefully designed large-area integrating sphere sources can be measured with a 1 % to 2 % expanded uncertainty (two standard deviation estimate) in the near ultraviolet with spatial nonuniformities of 0.6 % or smaller across a 20 cm diameter exit aperture. A method is proposed for the calculation of the final radiance uncertainties of the source which includes the field of view of the instrument being calibrated. PMID:29151725

  20. figure1.nc

    EPA Pesticide Factsheets

    NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input.variable U_NDG_OLD contains standard deviation of wind speed (m/s)variable V_NDG_OLD contains the standard deviation of wind direction (deg)This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  1. Hessian matrix approach for determining error field sensitivity to coil deviations.

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; ...

    2018-03-15

    The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less

  2. Hessian matrix approach for determining error field sensitivity to coil deviations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.

    The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less

  3. Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis.

    PubMed

    Azami, Hamed; Fernández, Alberto; Escudero, Javier

    2017-11-01

    Multiscale entropy (MSE) has been a prevalent algorithm to quantify the complexity of biomedical time series. Recent developments in the field have tried to alleviate the problem of undefined MSE values for short signals. Moreover, there has been a recent interest in using other statistical moments than the mean, i.e., variance, in the coarse-graining step of the MSE. Building on these trends, here we introduce the so-called refined composite multiscale fuzzy entropy based on the standard deviation (RCMFE σ ) and mean (RCMFE μ ) to quantify the dynamical properties of spread and mean, respectively, over multiple time scales. We demonstrate the dependency of the RCMFE σ and RCMFE μ , in comparison with other multiscale approaches, on several straightforward signal processing concepts using a set of synthetic signals. The results evidenced that the RCMFE σ and RCMFE μ values are more stable and reliable than the classical multiscale entropy ones. We also inspect the ability of using the standard deviation as well as the mean in the coarse-graining process using magnetoencephalograms in Alzheimer's disease and publicly available electroencephalograms recorded from focal and non-focal areas in epilepsy. Our results indicated that when the RCMFE μ cannot distinguish different types of dynamics of a particular time series at some scale factors, the RCMFE σ may do so, and vice versa. The results showed that RCMFE σ -based features lead to higher classification accuracies in comparison with the RCMFE μ -based ones. We also made freely available all the Matlab codes used in this study at http://dx.doi.org/10.7488/ds/1477 .

  4. A population-based job exposure matrix for power-frequency magnetic fields.

    PubMed

    Bowman, Joseph D; Touchstone, Jennifer A; Yost, Michael G

    2007-09-01

    A population-based job exposure matrix (JEM) was developed to assess personal exposures to power-frequency magnetic fields (MF) for epidemiologic studies. The JEM compiled 2,317 MF measurements taken on or near workers by 10 studies in the United States, Sweden, New Zealand, Finland, and Italy. A database was assembled from the original data for six studies plus summary statistics grouped by occupation from four other published studies. The job descriptions were coded into the 1980 Standard Occupational Classification system (SOC) and then translated to the 1980 job categories of the U.S. Bureau of the Census (BOC). For each job category, the JEM database calculated the arithmetic mean, standard deviation, geometric mean, and geometric standard deviation of the workday-average MF magnitude from the combined data. Analysis of variance demonstrated that the combining of MF data from the different sources was justified, and that the homogeneity of MF exposures in the SOC occupations was comparable to JEMs for solvents and particulates. BOC occupation accounted for 30% of the MF variance (p < 10(-6)), and the contrast (ratio of the between-job variance to the total of within- and between-job variances) was 88%. Jobs lacking data had their exposures inferred from measurements on similar occupations. The JEM provided MF exposures for 97% of the person-months in a population-based case-control study and 95% of the jobs on death certificates in a registry study covering 22 states. Therefore, we expect this JEM to be useful in other population-based epidemiologic studies.

  5. 75 FR 67093 - Iceberg Water Deviating From Identity Standard; Temporary Permit for Market Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-P-0517] Iceberg Water Deviating From Identity Standard; Temporary Permit for Market Testing AGENCY: Food and Drug... from the requirements of the standards of identity issued under section 401 of the Federal Food, Drug...

  6. 78 FR 2273 - Canned Tuna Deviating From Identity Standard; Temporary Permit for Market Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-P-1189] Canned Tuna Deviating From Identity Standard; Temporary Permit for Market Testing AGENCY: Food and Drug... interstate shipment of experimental packs of food varying from the requirements of standards of identity...

  7. Upgraded FAA Airfield Capacity Model. Volume 2. Technical Description of Revisions

    DTIC Science & Technology

    1981-02-01

    the threshold t k a the time at which departure k is released FIGURE 3-1 TIME AXIS DIAGRAM OF SINGLE RUNWAY OPERATIONS 3-2 J"- SIGMAR the standard...standard deviation of the interarrival time. SIGMAR - the standard deviation of the arrival runway occupancy time. A-5 SINGLE - program subroutine for

  8. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  9. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R.; Wiegand, C. L.; Richardson, A. J.; Johnson, M. P. (Principal Investigator)

    1982-01-01

    Subvisible cirrus clouds (SCi) were easily distinguished in mid-infrared (MIR) TIROS-N daytime data from south Texas and northeast Mexico. The MIR (3.55-3.93 micrometer) pixel digital count means of the SCi affected areas were more than 3.5 standard deviations on the cold side of the scene means. (These standard deviations were made free of the effects of unusual instrument error by factoring out the Ch 3 MIR noise on the basis of detailed examination of noisy and noise-free pixels). SCi affected areas in the IR Ch 4 (10.5-11.5 micrometer) appeared cooler than the general scene, but were not as prominent as in Ch 3, being less than 2 standard deviations from the scene mean. Ch 3 and 4 standard deviations and coefficients of variation are not reliable indicators, by themselves, of the presence of SCi because land features can have similar statistical properties.

  10. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.

    2007-03-01

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  11. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.

    PubMed

    Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y

    2007-03-07

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  12. A Taxonomy of Delivery and Documentation Deviations During Delivery of High-Fidelity Simulations.

    PubMed

    McIvor, William R; Banerjee, Arna; Boulet, John R; Bekhuis, Tanja; Tseytlin, Eugene; Torsher, Laurence; DeMaria, Samuel; Rask, John P; Shotwell, Matthew S; Burden, Amanda; Cooper, Jeffrey B; Gaba, David M; Levine, Adam; Park, Christine; Sinz, Elizabeth; Steadman, Randolph H; Weinger, Matthew B

    2017-02-01

    We developed a taxonomy of simulation delivery and documentation deviations noted during a multicenter, high-fidelity simulation trial that was conducted to assess practicing physicians' performance. Eight simulation centers sought to implement standardized scenarios over 2 years. Rules, guidelines, and detailed scenario scripts were established to facilitate reproducible scenario delivery; however, pilot trials revealed deviations from those rubrics. A taxonomy with hierarchically arranged terms that define a lack of standardization of simulation scenario delivery was then created to aid educators and researchers in assessing and describing their ability to reproducibly conduct simulations. Thirty-six types of delivery or documentation deviations were identified from the scenario scripts and study rules. Using a Delphi technique and open card sorting, simulation experts formulated a taxonomy of high-fidelity simulation execution and documentation deviations. The taxonomy was iteratively refined and then tested by 2 investigators not involved with its development. The taxonomy has 2 main classes, simulation center deviation and participant deviation, which are further subdivided into as many as 6 subclasses. Inter-rater classification agreement using the taxonomy was 74% or greater for each of the 7 levels of its hierarchy. Cohen kappa calculations confirmed substantial agreement beyond that expected by chance. All deviations were classified within the taxonomy. This is a useful taxonomy that standardizes terms for simulation delivery and documentation deviations, facilitates quality assurance in scenario delivery, and enables quantification of the impact of deviations upon simulation-based performance assessment.

  13. Characteristics of dynamic triaxial testing of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear stresses. In addition, the characteristics of the loading pulse were determined by best-fitting a haversine wave shape for the equivalent triaxial deviator stress pulse. The tandem axle was proven to generate the most critical combination of deviator and confining stresses for braking and non-braking conditions at 2 inches below the pavement surface. Thus, this study is focused on developing the stress state and pulse characteristics required to determine the critical conditions on HMA mixtures under the loading of the tandem axle. An increase of 40% was observed in the deviator stress when braking conditions are incorporated. A preliminary validation of the recommended magnitudes for the deviator and confining stresses on a field mixture from WesTrack showed consistent results between the flow number test results and field performance. Based on laboratory experiments, the critical conditions of different field mixtures from the WesTrack project and also lab produced samples at different air-voids levels were determined. The results indicate that the tertiary stage will occur under the FN test when a combination of a critical temperature and a given loading conditions for specific air voids content occurs.

  14. Search for EeV protons of galactic origin

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashi, M.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, T.; Shibata, F.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, M.; Tanaka, K.; Tanaka, H.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tirone, A. H.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    Cosmic rays in the energy range 1018.0-1018.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 1018.0 to 1018.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.

  15. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC).

    PubMed

    Kwon, Deukwoo; Reis, Isildinha M

    2015-08-12

    When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles. We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014). In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution. ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.

  16. Analysis of complex environment effect on near-field emission

    NASA Astrophysics Data System (ADS)

    Ravelo, B.; Lalléchère, S.; Bonnet, P.; Paladian, F.

    2014-10-01

    The article is dealing with uncertainty analyses of radiofrequency circuits electromagnetic compatibility emission based on the near-field/near-field (NF/NF) transform combined with stochastic approach. By using 2D data corresponding to electromagnetic (EM) field (X=E or H) scanned in the observation plane placed at the position z0 above the circuit under test (CUT), the X field map was extracted. Then, uncertainty analyses were assessed via the statistical moments from X component. In addition, stochastic collocation based was considered and calculations were applied to planar EM NF radiated by the CUTs as Wilkinson power divider and a microstrip line operating at GHz levels. After Matlab implementation, the mean and standard deviation were assessed. The present study illustrates how the variations of environmental parameters may impact EM fields. The NF uncertainty methodology can be applied to any physical parameter effects in complex environment and useful for printed circuit board (PCBs) design guideline.

  17. Cosmological power spectrum in a noncommutative spacetime

    NASA Astrophysics Data System (ADS)

    Kothari, Rahul; Rath, Pranati K.; Jain, Pankaj

    2016-09-01

    We propose a generalized star product that deviates from the standard one when the fields are considered at different spacetime points by introducing a form factor in the standard star product. We also introduce a recursive definition by which we calculate the explicit form of the generalized star product at any number of spacetime points. We show that our generalized star product is associative and cyclic at linear order. As a special case, we demonstrate that our recursive approach can be used to prove the associativity of standard star products for same or different spacetime points. The introduction of a form factor has no effect on the standard Lagrangian density in a noncommutative spacetime because it reduces to the standard star product when spacetime points become the same. We show that the generalized star product leads to physically consistent results and can fit the observed data on hemispherical anisotropy in the cosmic microwave background radiation.

  18. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stow, Sarah M.; Causon, Tim J.; Zheng, Xueyun

    Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on amore » commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.« less

  19. On Teaching about the Coefficient of Variation in Introductory Statistics Courses

    ERIC Educational Resources Information Center

    Trafimow, David

    2014-01-01

    The standard deviation is related to the mean by virtue of the coefficient of variation. Teachers of statistics courses can make use of that fact to make the standard deviation more comprehensible for statistics students.

  20. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. SUPPLEMENTARY COMPARISON: EUROMET.L-S10 Comparison of squareness measurements

    NASA Astrophysics Data System (ADS)

    Mokros, Jiri

    2005-01-01

    The idea of performing a comparison of squareness resulted from the need to review the MRA Appendix C, Category 90° square. At its meeting in October 1999 (in Prague) it was decided upon a first comparison of squareness measurements in the framework of EUROMET, numbered #570, starting in 2000, with the Slovak Institute of Metrology (SMU) as the pilot laboratory. During the preparation stage of the project, it was agreed that it should be submitted as a EUROMET supplementary comparison in the framework of the Mutual Recognition Arrangement (MRA) of the Metre Convention and would boost confidence in calibration and measurement certificates issued by the participating national metrology institutes. The aim of the comparison of squareness measurement was to compare and verify the declared calibration measurement capabilities of participating laboratories and to investigate the effect of systematic influences in the measurement process and their elimination. Eleven NMIs from the EUROMET region carried out this project. Two standards were calibrated: granite squareness standard of rectangular shape, cylindrical squareness standard of steel with marked positions for the profile lines. The following parameters had to be calibrated: granite squareness standard: interior angle γB between two lines AB and AC (envelope - LS regression) fitted through the measured profiles, and/or granite squareness standard: interior angle γLS between two LS regression lines AB and AC fitted through the measured profiles, cylindrical squareness standard: interior angles γ0°, γ90°, γ180°, γ270° between the LS regression line fitted through the measurement profiles at 0°, 90°, 180°, 270° and the envelope plane of the basis (resting on a surface plate), local LS straightness deviation for all measured profiles (2 and 4) of both standards. The results of the comparison are the deviations of profiles and angles measured by the individual NMIs from the reference values. These resulted from the weighted mean of data from participating laboratories, while some of them were excluded on the basis of statistical evaluation. Graphical interpretations of all deviations are contained in the Final Report. In order to compare the individual deviations mutually (25 profiles for the granite square and 44 profiles for the cylinder), graphical illustrations of 'standard deviations' and both extreme values (max. and min.) of deviations were created. This regional supplementary comparison has provided independent information about the metrological properties of the measuring equipment and method used by the participating NMIs. The Final Report does not contain the En values. Participants could not estimate some contributions in the uncertainty budget on the basis of previous comparisons, since no comparison of this kind had ever been organized. Therefore the En value cannot reflect the actual state of the given NMI. Instead of En, an analysis has been performed by means of the Grubbs test according to ISO 5725-2. This comparison provided information about the state of provision of metrological services in the field of big squares measurement. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EUROMET, according to the provisions of the Mutual Recognition Arrangement (MRA).

  2. MO-FG-CAMPUS-TeP1-01: An Efficient Method of 3D Patient Dose Reconstruction Based On EPID Measurements for Pre-Treatment Patient Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, R; Lee, C; Calvary Mater Newcastle, Newcastle

    Purpose: To demonstrate an efficient and clinically relevant patient specific QA method by reconstructing 3D patient dose from 2D EPID images for IMRT plans. Also to determine the usefulness of 2D QA metrics when assessing 3D patient dose deviations. Methods: Using the method developed by King et al (Med Phys 39(5),2839–2847), EPID images of IMRT fields were acquired in air and converted to dose at 10 cm depth (SAD setup) in a flat virtual water phantom. Each EPID measured dose map was then divided by the corresponding treatment planning system (TPS) dose map calculated with an identical setup, to derivemore » a 2D “error matrix”. For each field, the error matrix was used to adjust the doses along the respective ray lines in the original patient 3D dose. All field doses were combined to derive a reconstructed 3D patient dose for quantitative analysis. A software tool was developed to efficiently implement the entire process and was tested with a variety of IMRT plans for 2D (virtual flat phantom) and 3D (in-patient) QA analysis. Results: The method was tested on 60 IMRT plans. The mean (± standard deviation) 2D gamma (2%,2mm) pass rate (2D-GPR) was 97.4±3.0% and the mean 2D gamma index (2D-GI) was 0.35±0.06. The 3D PTV mean dose deviation was 1.8±0.8%. The analysis showed very weak correlations between both the 2D-GPR and 2D-GI when compared with PTV mean dose deviations (R2=0.3561 and 0.3632 respectively). Conclusion: Our method efficiently calculates 3D patient dose from 2D EPID images, utilising all of the advantages of an EPID-based dosimetry system. In this study, the 2D QA metrics did not predict the 3D patient dose deviation. This tool allows reporting of the 3D volumetric dose parameters thus providing more clinically relevant patient specific QA.« less

  3. Visual Field Defects and Retinal Ganglion Cell Losses in Human Glaucoma Patients

    PubMed Central

    Harwerth, Ronald S.; Quigley, Harry A.

    2007-01-01

    Objective The depth of visual field defects are correlated with retinal ganglion cell densities in experimental glaucoma. This study was to determine whether a similar structure-function relationship holds for human glaucoma. Methods The study was based on retinal ganglion cell densities and visual thresholds of patients with documented glaucoma (Kerrigan-Baumrind, et al.) The data were analyzed by a model that predicted ganglion cell densities from standard clinical perimetry, which were then compared to histologic cell counts. Results The model, without free parameters, produced accurate and relatively precise quantification of ganglion cell densities associated with visual field defects. For 437 sets of data, the unity correlation for predicted vs. measured cell densities had a coefficient of determination of 0.39. The mean absolute deviation of the predicted vs. measured values was 2.59 dB, the mean and SD of the distribution of residual errors of prediction was -0.26 ± 3.22 dB. Conclusions Visual field defects by standard clinical perimetry are proportional to neural losses caused by glaucoma. Clinical Relevance The evidence for quantitative structure-function relationships provides a scientific basis of interpreting glaucomatous neuropathy from visual thresholds and supports the application of standard perimetry to establish the stage of the disease. PMID:16769839

  4. Testing of visual field with virtual reality goggles in manual and visual grasp modes.

    PubMed

    Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas

    2014-01-01

    Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.

  5. Long-term reproducibility of relative sensitivity factors obtained with CAMECA Wf

    NASA Astrophysics Data System (ADS)

    Gui, D.; Xing, Z. X.; Huang, Y. H.; Mo, Z. Q.; Hua, Y. N.; Zhao, S. P.; Cha, L. Z.

    2008-12-01

    As the wafer size continues to increase and the feature size of the integrated circuits (IC) continues to shrink, process control of IC manufacturing becomes ever more important to reduce the cost of failures caused by the drift of processes or equipments. Characterization tools with high precision and reproducibility are required to capture any abnormality of the process. Although Secondary ion mass spectrometry (SIMS) has been widely used in dopant profile control, it was reported that magnetic sector SIMS, compared to quadrupole SIMS, has lower short-term repeatability and long-term reproducibility due to the high extraction field applied between sample and extraction lens. In this paper, we demonstrate that CAMECA Wf can deliver high long-term reproducibility because of its high-level automation and improved design of immersion lens. The relative standard deviation (R.S.D.) of the relative sensitivity factors (RSF) of three typical elements, i.e., boron (B), phosphorous (P) and nitrogen (N), over 3 years are 3.7%, 5.5% and 4.1%, respectively. The high reproducibility results have a practical implication that deviation can be estimated without testing the standards.

  6. Standard Model thermodynamics across the electroweak crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, M.; Meyer, M., E-mail: laine@itp.unibe.ch, E-mail: meyer@itp.unibe.ch

    Even though the Standard Model with a Higgs mass m{sub H} = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a 'soft point' at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The resultsmore » are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial 'structure' visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.« less

  7. Standard Model thermodynamics across the electroweak crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, M.; Meyer, M.

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulatedmore » in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.« less

  8. Estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean.

    PubMed

    Schillaci, Michael A; Schillaci, Mario E

    2009-02-01

    The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (n<10) or very small (n < or = 5) sample sizes. This method can be used by researchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.

  9. Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media: SCALE-DEPENDENT UQ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, A. M.; Panzeri, M.; Tartakovsky, G. D.

    Equations governing flow and transport in heterogeneous porous media are scale-dependent. We demonstrate that it is possible to identify a support scalemore » $$\\eta^*$$, such that the typically employed approximate formulations of Moment Equations (ME) yield accurate (statistical) moments of a target environmental state variable. Under these circumstances, the ME approach can be used as an alternative to the Monte Carlo (MC) method for Uncertainty Quantification in diverse fields of Earth and environmental sciences. MEs are directly satisfied by the leading moments of the quantities of interest and are defined on the same support scale as the governing stochastic partial differential equations (PDEs). Computable approximations of the otherwise exact MEs can be obtained through perturbation expansion of moments of the state variables in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for the standard deviation smaller than one. We demonstrate our approach in the context of steady-state groundwater flow in a porous medium with a spatially random hydraulic conductivity.« less

  10. Quantum speed limit time in a magnetic resonance

    NASA Astrophysics Data System (ADS)

    Ivanchenko, E. A.

    2017-12-01

    A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.

  11. Using weighted power mean for equivalent square estimation.

    PubMed

    Zhou, Sumin; Wu, Qiuwen; Li, Xiaobo; Ma, Rongtao; Zheng, Dandan; Wang, Shuo; Zhang, Mutian; Li, Sicong; Lei, Yu; Fan, Qiyong; Hyun, Megan; Diener, Tyler; Enke, Charles

    2017-11-01

    Equivalent Square (ES) enables the calculation of many radiation quantities for rectangular treatment fields, based only on measurements from square fields. While it is widely applied in radiotherapy, its accuracy, especially for extremely elongated fields, still leaves room for improvement. In this study, we introduce a novel explicit ES formula based on Weighted Power Mean (WPM) function and compare its performance with the Sterling formula and Vadash/Bjärngard's formula. The proposed WPM formula is ESWPMa,b=waα+1-wbα1/α for a rectangular photon field with sides a and b. The formula performance was evaluated by three methods: standard deviation of model fitting residual error, maximum relative model prediction error, and model's Akaike Information Criterion (AIC). Testing datasets included the ES table from British Journal of Radiology (BJR), photon output factors (S cp ) from the Varian TrueBeam Representative Beam Data (Med Phys. 2012;39:6981-7018), and published S cp data for Varian TrueBeam Edge (J Appl Clin Med Phys. 2015;16:125-148). For the BJR dataset, the best-fit parameter value α = -1.25 achieved a 20% reduction in standard deviation in ES estimation residual error compared with the two established formulae. For the two Varian datasets, employing WPM reduced the maximum relative error from 3.5% (Sterling) or 2% (Vadash/Bjärngard) to 0.7% for open field sizes ranging from 3 cm to 40 cm, and the reduction was even more prominent for 1 cm field sizes on Edge (J Appl Clin Med Phys. 2015;16:125-148). The AIC value of the WPM formula was consistently lower than its counterparts from the traditional formulae on photon output factors, most prominent on very elongated small fields. The WPM formula outperformed the traditional formulae on three testing datasets. With increasing utilization of very elongated, small rectangular fields in modern radiotherapy, improved photon output factor estimation is expected by adopting the WPM formula in treatment planning and secondary MU check. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Observations of Solar Energetic Particles from 3He-rich Events over a Wide Range of Heliographic Longitude

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; Mason, G. M.; Cohen, C. M. S.; Nitta, N. V.; Gómez-Herrero, R.; Haggerty, D. K.

    2013-01-01

    A prevailing model for the origin of 3He-rich solar energetic particle (SEP) events attributes particle acceleration to processes associated with the reconnection between closed magnetic field lines in an active region and neighboring open field lines. The open field from the small reconnection volume then provides a path along which accelerated particles escape into a relatively narrow range of angles in the heliosphere. The narrow width (standard deviation <20°) of the distribution of X-ray flare longitudes found to be associated with 3He-rich SEP events detected at a single spacecraft at 1 AU supports this model. We report multispacecraft observations of individual 3He-rich SEP events that occurred during the solar minimum time period from 2007 January through 2011 January using instrumentation carried by the two Solar Terrestrial Relations Observatory spacecraft and the Advanced Composition Explorer. We find that detections of 3He-rich events at pairs of spacecraft are not uncommon, even when their longitudinal separation is >60°. We present the observations of the 3He-rich event of 2010 February 7, which was detected at all three spacecraft when they spanned 136° in heliographic longitude. Measured fluences of 3He in this event were found to have a strong dependence on longitude which is well fit by a Gaussian with standard deviation ~48° centered at the longitude that is connected to the source region by a nominal Parker spiral magnetic field. We discuss several mechanisms for distributing flare-accelerated particles over a wide range of heliographic longitudes including interplanetary diffusion perpendicular to the magnetic field, spreading of a compact cluster of open field lines between the active region and the source surface where the field becomes radial and opens out into the heliosphere, and distortion of the interplanetary field by a preceding coronal mass ejection. Statistical studies of additional 3He-rich events detected at multiple spacecraft will be needed to establish the relative importance of the various mechanisms.

  13. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  14. A SIMPLE METHOD FOR EVALUATING DATA FROM AN INTERLABORATORY STUDY

    EPA Science Inventory

    Large-scale laboratory-and method-performance studies involving more than about 30 laboratories may be evaluated by calculating the HORRAT ratio for each test sample (HORRAT=[experimentally found among-laboratories relative standard deviation] divided by [relative standard deviat...

  15. Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension

    PubMed Central

    Chen, Xiang-Wu; Zhao, Ying-Xi

    2017-01-01

    AIM To compare the diagnostic performance of isolated-check visual evoked potential (icVEP) and standard automated perimetry (SAP), for evaluating the application values of icVEP in the detection of early glaucoma. METHODS Totally 144 subjects (288 eyes) were enrolled in this study. icVEP testing was performed with the Neucodia visual electrophysiological diagnostic system. A 15% positive-contrast (bright) condition pattern was used in this device to differentiate between glaucoma patients and healthy control subjects. Signal-to-noise ratios (SNR) were derived based on a multivariate statistic. The eyes were judged as abnormal if the test yielded an SNR≤1. SAP testing was performed with the Humphrey Field Analyzer II. The visual fields were deemed as abnormality if the glaucoma hemifield test results outside normal limits; or the pattern standard deviation with P<0.05; or the cluster of three or more non-edge points on the pattern deviation plot in a single hemifield with P<0.05, one of which must have a P<0.01. Disc photographs were graded as either glaucomatous optic neuropathy or normal by two experts who were masked to all other patient information. Moorfields regression analysis (MRA) used as a separate diagnostic classification was performed by Heidelberg retina tomograph (HRT). RESULTS When the disc photograph grader was used as diagnostic standard, the sensitivity for SAP and icVEP was 32.3% and 38.5% respectively and specificity was 82.3% and 77.8% respectively. When the MRA Classifier was used as the diagnostic standard, the sensitivity for SAP and icVEP was 48.6% and 51.4% respectively and specificity was 84.1% and 78.0% respectively. When the combined structural assessment was used as the diagnostic standard, the sensitivity for SAP and icVEP was 59.2% and 53.1% respectively and specificity was 84.2% and 84.6% respectivlely. There was no statistical significance between the sensitivity or specificity of SAP and icVEP, regardless of which diagnostic standard was based on. CONCLUSION The diagnostic performance of icVEP is not better than that of SAP in the detection of early glaucoma. PMID:28503434

  16. Histogram-based quantitative evaluation of endobronchial ultrasonography images of peripheral pulmonary lesion.

    PubMed

    Morikawa, Kei; Kurimoto, Noriaki; Inoue, Takeo; Mineshita, Masamichi; Miyazawa, Teruomi

    2015-01-01

    Endobronchial ultrasonography using a guide sheath (EBUS-GS) is an increasingly common bronchoscopic technique, but currently, no methods have been established to quantitatively evaluate EBUS images of peripheral pulmonary lesions. The purpose of this study was to evaluate whether histogram data collected from EBUS-GS images can contribute to the diagnosis of lung cancer. Histogram-based analyses focusing on the brightness of EBUS images were retrospectively conducted: 60 patients (38 lung cancer; 22 inflammatory diseases), with clear EBUS images were included. For each patient, a 400-pixel region of interest was selected, typically located at a 3- to 5-mm radius from the probe, from recorded EBUS images during bronchoscopy. Histogram height, width, height/width ratio, standard deviation, kurtosis and skewness were investigated as diagnostic indicators. Median histogram height, width, height/width ratio and standard deviation were significantly different between lung cancer and benign lesions (all p < 0.01). With a cutoff value for standard deviation of 10.5, lung cancer could be diagnosed with an accuracy of 81.7%. Other characteristics investigated were inferior when compared to histogram standard deviation. Histogram standard deviation appears to be the most useful characteristic for diagnosing lung cancer using EBUS images. © 2015 S. Karger AG, Basel.

  17. Role of the standard deviation in the estimation of benchmark doses with continuous data.

    PubMed

    Gaylor, David W; Slikker, William

    2004-12-01

    For continuous data, risk is defined here as the proportion of animals with values above a large percentile, e.g., the 99th percentile or below the 1st percentile, for the distribution of values among control animals. It is known that reducing the standard deviation of measurements through improved experimental techniques will result in less stringent (higher) doses for the lower confidence limit on the benchmark dose that is estimated to produce a specified risk of animals with abnormal levels for a biological effect. Thus, a somewhat larger (less stringent) lower confidence limit is obtained that may be used as a point of departure for low-dose risk assessment. It is shown in this article that it is important for the benchmark dose to be based primarily on the standard deviation among animals, s(a), apart from the standard deviation of measurement errors, s(m), within animals. If the benchmark dose is incorrectly based on the overall standard deviation among average values for animals, which includes measurement error variation, the benchmark dose will be overestimated and the risk will be underestimated. The bias increases as s(m) increases relative to s(a). The bias is relatively small if s(m) is less than one-third of s(a), a condition achieved in most experimental designs.

  18. Statistical models for estimating daily streamflow in Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.; Salehi, Habib

    1992-01-01

    Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.

  19. Effects of Notch Misalignment and Tip Radius on Displacement Field in V-Notch Rail Shear Test as Determined by Photogrammetry

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.; Oliveras, Ovidio M.

    2011-01-01

    Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.

  20. Investigating the generalisation of an atlas-based synthetic-CT algorithm to another centre and MR scanner for prostate MR-only radiotherapy

    NASA Astrophysics Data System (ADS)

    Wyatt, Jonathan J.; Dowling, Jason A.; Kelly, Charles G.; McKenna, Jill; Johnstone, Emily; Speight, Richard; Henry, Ann; Greer, Peter B.; McCallum, Hazel M.

    2017-12-01

    There is increasing interest in MR-only radiotherapy planning since it provides superb soft-tissue contrast without the registration uncertainties inherent in a CT-MR registration. However, MR images cannot readily provide the electron density information necessary for radiotherapy dose calculation. An algorithm which generates synthetic CTs for dose calculations from MR images of the prostate using an atlas of 3 T MR images has been previously reported by two of the authors. This paper aimed to evaluate this algorithm using MR data acquired at a different field strength and a different centre to the algorithm atlas. Twenty-one prostate patients received planning 1.5 T MR and CT scans with routine immobilisation devices on a flat-top couch set-up using external lasers. The MR receive coils were supported by a coil bridge. Synthetic CTs were generated from the planning MR images with (sCT1V ) and without (sCT) a one voxel body contour expansion included in the algorithm. This was to test whether this expansion was required for 1.5 T images. Both synthetic CTs were rigidly registered to the planning CT (pCT). A 6 MV volumetric modulated arc therapy plan was created on the pCT and recalculated on the sCT and sCT1V . The synthetic CTs’ dose distributions were compared to the dose distribution calculated on the pCT. The percentage dose difference at isocentre without the body contour expansion (sCT-pCT) was Δ D_sCT=(0.9 +/- 0.8) % and with (sCT1V -pCT) was Δ D_sCT1V=(-0.7 +/- 0.7) % (mean  ±  one standard deviation). The sCT1V result was within one standard deviation of zero and agreed with the result reported previously using 3 T MR data. The sCT dose difference only agreed within two standard deviations. The mean  ±  one standard deviation gamma pass rate was Γ_sCT = 96.1 +/- 2.9 % for the sCT and Γ_sCT1V = 98.8 +/- 0.5 % for the sCT1V (with 2% global dose difference and 2~mm distance to agreement gamma criteria). The one voxel body contour expansion improves the synthetic CT accuracy for MR images acquired at 1.5 T but requires the MR voxel size to be similar to the atlas MR voxel size. This study suggests that the atlas-based algorithm can be generalised to MR data acquired using a different field strength at a different centre.

  1. 10 CFR 961.4 - Deviations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Deviations. 961.4 Section 961.4 Energy DEPARTMENT OF ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.4 Deviations. Requests for authority to deviate from this part shall be submitted in writing to...

  2. 10 CFR 961.4 - Deviations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Deviations. 961.4 Section 961.4 Energy DEPARTMENT OF ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.4 Deviations. Requests for authority to deviate from this part shall be submitted in writing to...

  3. 10 CFR 961.4 - Deviations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Deviations. 961.4 Section 961.4 Energy DEPARTMENT OF ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.4 Deviations. Requests for authority to deviate from this part shall be submitted in writing to...

  4. 10 CFR 961.4 - Deviations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Deviations. 961.4 Section 961.4 Energy DEPARTMENT OF ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.4 Deviations. Requests for authority to deviate from this part shall be submitted in writing to...

  5. 10 CFR 961.4 - Deviations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Deviations. 961.4 Section 961.4 Energy DEPARTMENT OF ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.4 Deviations. Requests for authority to deviate from this part shall be submitted in writing to...

  6. Do health care workforce, population, and service provision significantly contribute to the total health expenditure? An econometric analysis of Serbia.

    PubMed

    Santric-Milicevic, M; Vasic, V; Terzic-Supic, Z

    2016-08-15

    In times of austerity, the availability of econometric health knowledge assists policy-makers in understanding and balancing health expenditure with health care plans within fiscal constraints. The objective of this study is to explore whether the health workforce supply of the public health care sector, population number, and utilization of inpatient care significantly contribute to total health expenditure. The dependent variable is the total health expenditure (THE) in Serbia from the years 2003 to 2011. The independent variables are the number of health workers employed in the public health care sector, population number, and inpatient care discharges per 100 population. The statistical analyses include the quadratic interpolation method, natural logarithm and differentiation, and multiple linear regression analyses. The level of significance is set at P < 0.05. The regression model captures 90 % of all variations of observed dependent variables (adjusted R square), and the model is significant (P < 0.001). Total health expenditure increased by 1.21 standard deviations, with an increase in health workforce growth rate by 1 standard deviation. Furthermore, this rate decreased by 1.12 standard deviations, with an increase in (negative) population growth rate by 1 standard deviation. Finally, the growth rate increased by 0.38 standard deviation, with an increase of the growth rate of inpatient care discharges per 100 population by 1 standard deviation (P < 0.001). Study results demonstrate that the government has been making an effort to control strongly health budget growth. Exploring causality relationships between health expenditure and health workforce is important for countries that are trying to consolidate their public health finances and achieve universal health coverage at the same time.

  7. Thermal and electrical transport across a magnetic quantum critical point.

    PubMed

    Pfau, Heike; Hartmann, Stefanie; Stockert, Ulrike; Sun, Peijie; Lausberg, Stefan; Brando, Manuel; Friedemann, Sven; Krellner, Cornelius; Geibel, Christoph; Wirth, Steffen; Kirchner, Stefan; Abrahams, Elihu; Si, Qimiao; Steglich, Frank

    2012-04-25

    A quantum critical point (QCP) arises when a continuous transition between competing phases occurs at zero temperature. Collective excitations at magnetic QCPs give rise to metallic properties that strongly deviate from the expectations of Landau's Fermi-liquid description, which is the standard theory of electron correlations in metals. Central to this theory is the notion of quasiparticles, electronic excitations that possess the quantum numbers of the non-interacting electrons. Here we report measurements of thermal and electrical transport across the field-induced magnetic QCP in the heavy-fermion compound YbRh(2)Si(2) (refs 2, 3). We show that the ratio of the thermal to electrical conductivities at the zero-temperature limit obeys the Wiedemann-Franz law for magnetic fields above the critical field at which the QCP is attained. This is also expected for magnetic fields below the critical field, where weak antiferromagnetic order and a Fermi-liquid phase form below 0.07 K (at zero field). At the critical field, however, the low-temperature electrical conductivity exceeds the thermal conductivity by about 10 per cent, suggestive of a non-Fermi-liquid ground state. This apparent violation of the Wiedemann-Franz law provides evidence for an unconventional type of QCP at which the fundamental concept of Landau quasiparticles no longer holds. These results imply that Landau quasiparticles break up, and that the origin of this disintegration is inelastic scattering associated with electronic quantum critical fluctuations--these insights could be relevant to understanding other deviations from Fermi-liquid behaviour frequently observed in various classes of correlated materials.

  8. Asymmetries and Visual Field Summaries as Predictors of Glaucoma in the Ocular Hypertension Treatment Study

    PubMed Central

    Levine, Richard A.; Demirel, Shaban; Fan, Juanjuan; Keltner, John L.; Johnson, Chris A.; Kass, Michael A.

    2007-01-01

    Purpose To evaluate whether baseline visual field data and asymmetries between eyes predict the onset of primary open-angle glaucoma (POAG) in Ocular Hypertension Treatment Study (OHTS) participants. Methods A new index, mean prognosis (MP), was designed for optimal combination of visual field thresholds, to discriminate between eyes that developed POAG from eyes that did not. Baseline intraocular pressure (IOP) in fellow eyes was used to construct measures of IOP asymmetry. Age-adjusted baseline thresholds were used to develop indicators of visual field asymmetry and summary measures of visual field defects. Marginal multivariate failure time models were constructed that relate the new index MP, IOP asymmetry, and visual field asymmetry to POAG onset for OHTS participants. Results The marginal multivariate failure time analysis showed that the MP index is significantly related to POAG onset (P < 0.0001) and appears to be a more highly significant predictor of POAG onset than either mean deviation (MD; P = 0.17) or pattern standard deviation (PSD; P = 0.046). A 1-mm Hg increase in IOP asymmetry between fellow eyes is associated with a 17% increase in risk for development of POAG. When threshold asymmetry between eyes existed, the eye with lower thresholds was at a 37% greater risk of development of POAG, and this feature was more predictive of POAG onset than the visual field index MD, though not as strong a predictor as PSD. Conclusions The MP index, IOP asymmetry, and binocular test point asymmetry can assist in clinical evaluation of eyes at risk of development of POAG. PMID:16936102

  9. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    PubMed

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  10. Atom transistor from the point of view of nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Dunjko, V.; Olshanii, M.

    2015-12-01

    We analyze the atom field-effect transistor scheme (Stickney et al 2007 Phys. Rev. A 75 013608) using the standard tools of quantum and classical nonequlilibrium dynamics. We first study the correspondence between the quantum and the mean-field descriptions of this system by computing, both ab initio and by using their mean-field analogs, the deviations from the Eigenstate Thermalization Hypothesis, quantum fluctuations, and the density of states. We find that, as far as the quantities that interest us, the mean-field model can serve as a semi-classical emulator of the quantum system. Then, using the mean-field model, we interpret the point of maximal output signal in our transistor as the onset of ergodicity—the point where the system becomes, in principle, able to attain the thermal values of the former integrals of motion, albeit not being fully thermalized yet.

  11. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    NASA Astrophysics Data System (ADS)

    Delaunay, F.; Kapsch, R.-P.; Gouriou, J.; Illemann, J.; Krauss, A.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.

    2012-10-01

    During the Euramet project JRP7 ‘External Beam Cancer Therapy’, PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm × 10 cm and 3 cm × 3 cm while LNE-LNHB used graphite calorimeters in 6 MV and 12 MV beams for field sizes of 10 cm × 10 cm, 4 cm × 4 cm and 2 cm × 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% (60Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm × 10 cm down to 2 cm × 2 cm and for beams of 6 MV to 10 MV.

  12. The truly remarkable universality of half a standard deviation: confirmation through another look.

    PubMed

    Norman, Geoffrey R; Sloan, Jeff A; Wyrwich, Kathleen W

    2004-10-01

    In this issue of Expert Review of Pharmacoeconomics and Outcomes Research, Farivar, Liu, and Hays present their findings in 'Another look at the half standard deviation estimate of the minimally important difference in health-related quality of life scores (hereafter referred to as 'Another look') . These researchers have re-examined the May 2003 Medical Care article 'Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation' (hereafter referred to as 'Remarkable') in the hope of supporting their hypothesis that the minimally important difference in health-related quality of life measures is undoubtedly closer to 0.3 standard deviations than 0.5. Nonetheless, despite their extensive wranglings with the exclusion of many articles that we included in our review; the inclusion of articles that we did not include in our review; and the recalculation of effect sizes using the absolute value of the mean differences, in our opinion, the results of the 'Another look' article confirm the same findings in the 'Remarkable' paper.

  13. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    PubMed

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  14. Static Scene Statistical Non-Uniformity Correction

    DTIC Science & Technology

    2015-03-01

    Error NUC Non-Uniformity Correction RMSE Root Mean Squared Error RSD Relative Standard Deviation S3NUC Static Scene Statistical Non-Uniformity...Deviation ( RSD ) which normalizes the standard deviation, σ, to the mean estimated value, µ using the equation RS D = σ µ × 100. The RSD plot of the gain...estimates is shown in Figure 4.1(b). The RSD plot shows that after a sample size of approximately 10, the different photocount values and the inclusion

  15. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipuzzi, M; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculatemore » the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the acquisition.« less

  16. Investigation of the refractive index repeatability for tantalum pentoxide coatings, prepared by physical vapor film deposition techniques.

    PubMed

    Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J

    2017-02-01

    Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.

  17. Closed-form confidence intervals for functions of the normal mean and standard deviation.

    PubMed

    Donner, Allan; Zou, G Y

    2012-08-01

    Confidence interval methods for a normal mean and standard deviation are well known and simple to apply. However, the same cannot be said for important functions of these parameters. These functions include the normal distribution percentiles, the Bland-Altman limits of agreement, the coefficient of variation and Cohen's effect size. We present a simple approach to this problem by using variance estimates recovered from confidence limits computed for the mean and standard deviation separately. All resulting confidence intervals have closed forms. Simulation results demonstrate that this approach performs very well for limits of agreement, coefficients of variation and their differences.

  18. Sample sizes needed for specified margins of relative error in the estimates of the repeatability and reproducibility standard deviations.

    PubMed

    McClure, Foster D; Lee, Jung K

    2005-01-01

    Sample size formulas are developed to estimate the repeatability and reproducibility standard deviations (Sr and S(R)) such that the actual error in (Sr and S(R)) relative to their respective true values, sigmar and sigmaR, are at predefined levels. The statistical consequences associated with AOAC INTERNATIONAL required sample size to validate an analytical method are discussed. In addition, formulas to estimate the uncertainties of (Sr and S(R)) were derived and are provided as supporting documentation. Formula for the Number of Replicates Required for a Specified Margin of Relative Error in the Estimate of the Repeatability Standard Deviation.

  19. Evaluation of different methods for determining growing degree-day thresholds in apricot cultivars

    NASA Astrophysics Data System (ADS)

    Ruml, Mirjana; Vuković, Ana; Milatović, Dragan

    2010-07-01

    The aim of this study was to examine different methods for determining growing degree-day (GDD) threshold temperatures for two phenological stages (full bloom and harvest) and select the optimal thresholds for a greater number of apricot ( Prunus armeniaca L.) cultivars grown in the Belgrade region. A 10-year data series were used to conduct the study. Several commonly used methods to determine the threshold temperatures from field observation were evaluated: (1) the least standard deviation in GDD; (2) the least standard deviation in days; (3) the least coefficient of variation in GDD; (4) regression coefficient; (5) the least standard deviation in days with a mean temperature above the threshold; (6) the least coefficient of variation in days with a mean temperature above the threshold; and (7) the smallest root mean square error between the observed and predicted number of days. In addition, two methods for calculating daily GDD, and two methods for calculating daily mean air temperatures were tested to emphasize the differences that can arise by different interpretations of basic GDD equation. The best agreement with observations was attained by method (7). The lower threshold temperature obtained by this method differed among cultivars from -5.6 to -1.7°C for full bloom, and from -0.5 to 6.6°C for harvest. However, the “Null” method (lower threshold set to 0°C) and “Fixed Value” method (lower threshold set to -2°C for full bloom and to 3°C for harvest) gave very good results. The limitations of the widely used method (1) and methods (5) and (6), which generally performed worst, are discussed in the paper.

  20. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar

    PubMed Central

    Gabella, Marco; Leuenberger, Andreas

    2017-01-01

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of −0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the “small” (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB. PMID:28531164

  1. Dual-Polarization Observations of Slowly Varying Solar Emissions from a Mobile X-Band Radar.

    PubMed

    Gabella, Marco; Leuenberger, Andreas

    2017-05-22

    The radio noise that comes from the Sun has been reported in literature as a reference signal to check the quality of dual-polarization weather radar receivers for the S-band and C-band. In most cases, the focus was on relative calibration: horizontal and vertical polarizations were evaluated versus the reference signal mainly in terms of standard deviation of the difference. This means that the investigated radar receivers were able to reproduce the slowly varying component of the microwave signal emitted by the Sun. A novel method, aimed at the absolute calibration of dual-polarization receivers, has recently been presented and applied for the C-band. This method requires the antenna beam axis to be pointed towards the center of the Sun for less than a minute. Standard deviations of the difference as low as 0.1 dB have been found for the Swiss radars. As far as the absolute calibration is concerned, the average differences were of the order of -0.6 dB (after noise subtraction). The method has been implemented on a mobile, X-band radar, and this paper presents the successful results that were obtained during the 2016 field campaign in Payerne (Switzerland). Despite a relatively poor Sun-to-Noise ratio, the "small" (~0.4 dB) amplitude of the slowly varying emission was captured and reproduced; the standard deviation of the difference between the radar and the reference was ~0.2 dB. The absolute calibration of the vertical and horizontal receivers was satisfactory. After the noise subtraction and atmospheric correction a, the mean difference was close to 0 dB.

  2. Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail S.

    2014-08-01

    The accuracy of winds derived from NEXRAD level II data is assessed by comparison with independent observations from 915 MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeast Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratory’s 2DVar algorithm is used to retrieve wind fields from the KPDT (Pendleton OR) and KMLB (Melbourne FL) NEXRAD radars. Comparisons between the 2DVarmore » retrievals and the radar profilers were conducted over a period of about 6 months and at multiple height levels at each of the profiler sites. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of1 to 2 ms-1. Wind speed difference distributions were broad with standard deviations in the range from 3 to 4 ms-1. Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (~300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest.« less

  3. Comparing biomarker measurements to a normal range: when to use standard error of the mean (SEM) or standard deviation (SD) confidence intervals tests.

    PubMed

    Pleil, Joachim D

    2016-01-01

    This commentary is the second of a series outlining one specific concept in interpreting biomarkers data. In the first, an observational method was presented for assessing the distribution of measurements before making parametric calculations. Here, the discussion revolves around the next step, the choice of using standard error of the mean or the calculated standard deviation to compare or predict measurement results.

  4. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  5. Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma.

    PubMed

    Toprak, Ibrahim; Yaylalı, Volkan; Yildirim, Cem

    2017-01-01

    To assess diagnostic consistency and relation between spectral-domain optical coherence tomography (SD-OCT) and standard automated perimetry (SAP) in patients with primary open-angle glaucoma (POAG). This retrospective study comprised 51 eyes of 51 patients with a confirmed diagnosis of POAG. The qualitative and quantitative SD-OCT parameters (retinal nerve fiber layer thicknesses [RNFL; average, superior, inferior, nasal and temporal], RNFL symmetry, rim area, disc area, average and vertical cup/disc [C/D] ratio and cup volume) were compared with parameters of SAP (mean deviation, pattern standard deviation, visual field index, and glaucoma hemifield test reports). Fifty-one eyes of 51 patients with POAG were recruited. Twenty-nine eyes (56.9%) had consistent RNFL and visual field (VF) damage. However, nine patients (17.6%) showed isolated RNFL damage on SD-OCT and 13 patients (25.5%) had abnormal VF test with normal RNFL. In patients with VF defect, age, average C/D ratio, vertical C/D ratio, and cup volume were significantly higher and rim area was lower when compared to those of the patients with normal VF. In addition to these parameters, worsening in average, superior, inferior, and temporal RNFL thicknesses and RNFL symmetry was significantly associated with consistent SD-OCT and SAP outcomes. In routine practice, patients with POAG can be manifested with inconsistent reports between SD-OCT and SAP. An older age, higher C/D ratio, larger cup volume, and lower rim area on SD-OCT appears to be associated with detectable VF damage. Moreover, additional worsening in RNFL parameters might reinforce diagnostic consistency between SD-OCT and SAP.

  6. Odds per Adjusted Standard Deviation: Comparing Strengths of Associations for Risk Factors Measured on Different Scales and Across Diseases and Populations

    PubMed Central

    Hopper, John L.

    2015-01-01

    How can the “strengths” of risk factors, in the sense of how well they discriminate cases from controls, be compared when they are measured on different scales such as continuous, binary, and integer? Given that risk estimates take into account other fitted and design-related factors—and that is how risk gradients are interpreted—so should the presentation of risk gradients. Therefore, for each risk factor X0, I propose using appropriate regression techniques to derive from appropriate population data the best fitting relationship between the mean of X0 and all the other covariates fitted in the model or adjusted for by design (X1, X2, … , Xn). The odds per adjusted standard deviation (OPERA) presents the risk association for X0 in terms of the change in risk per s = standard deviation of X0 adjusted for X1, X2, … , Xn, rather than the unadjusted standard deviation of X0 itself. If the increased risk is relative risk (RR)-fold over A adjusted standard deviations, then OPERA = exp[ln(RR)/A] = RRs. This unifying approach is illustrated by considering breast cancer and published risk estimates. OPERA estimates are by definition independent and can be used to compare the predictive strengths of risk factors across diseases and populations. PMID:26520360

  7. Effect of electromagnetic field accompanying the magnetic resonance imaging on human heart rate variability - a pilot study.

    PubMed

    Derkacz, Arkadiusz; Gawrys, Jakub; Gawrys, Karolina; Podgorski, Maciej; Magott-Derkacz, Agnieszka; Poreba, Rafał; Doroszko, Adrian

    2018-06-01

    The effect of electromagnetic field on cardiovascular system in the literature is defined in ambiguous way. The aim of this study was to evaluate the effect of electromagnetic field on the heart rate variability (HRV) during the examination with magnetic resonance. Forty-two patients underwent Holter ECG heart monitoring for 30 minutes twice: immediately before and after the examination with magnetic resonance imaging (MRI). HRV was analysed by assessing a few selected time and spectral parameters. Is has been shown that standard deviation of NN intervals (SDNN) and very low frequency rates increased, whereas the low frequency:high frequency parameter significantly decreased following the MRI examination. These results show that MRI may affect the HRV most likely by changing the sympathetic-parasympathetic balance.

  8. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lye, Jessica, E-mail: jessica.lye@arpansa.gov.au; Dunn, Leon; Kenny, John

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectorsmore » are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3.9% (3σ) for the new OSLD audit. Previously with the TLD audit the Pass (Optimal Level) and Fail (Out of Tolerance) were set at ≤4.0% (2σ) and >6.0% (3σ). Conclusions: The calculated standard uncertainty of 1.3% at one standard deviation is consistent with the measured standard deviation of 1.4% from the audits and confirming the suitability of the uncertainty budget derived audit tolerances. The OSLD audit shows greater accuracy than the previous TLD audit, justifying the reduction in audit tolerances. In the TLD audit, all outcomes were Pass (Optimal Level) suggesting that the tolerances were too conservative. In the OSLD audit 94% of the audits have resulted in Pass (Optimal level) and 6% of the audits have resulted in Pass (Action Level). All Pass (Action level) results have been resolved with a repeat OSLD audit, or an on-site ion chamber measurement.« less

  9. Cellular effects of acute exposure to high peak power microwave systems: Morphology and toxicology.

    PubMed

    Ibey, Bennett L; Roth, Caleb C; Ledwig, Patrick B; Payne, Jason A; Amato, Alayna L; Dalzell, Danielle R; Bernhard, Joshua A; Doroski, Michael W; Mylacraine, Kevin S; Seaman, Ronald L; Nelson, Gregory S; Woods, Clifford W

    2016-03-15

    Electric fields produced by advanced pulsed microwave transmitter technology now readily exceed the Institute of Electrical and Electronic Engineers (IEEE) C.95.1 peak E-field limit of 100 kV/m, highlighting a need for scientific validation of such a specific limit. Toward this goal, we exposed Jurkat Clone E-6 human lymphocyte preparations to 20 high peak power microwave (HPPM) pulses (120 ns duration) with a mean peak amplitude of 2.3 MV/m and standard deviation of 0.1 with the electric field at cells predicted to range from 0.46 to 2.7 MV/m, well in excess of current standard limit. We observed that membrane integrity and cell morphology remained unchanged 4 h after exposure and cell survival 24 h after exposure was not statistically different from sham exposure or control samples. Using flow cytometry to analyze membrane disruption and morphological changes per exposed cell, no changes were observed in HPPM-exposed samples. Current IEEE C95.1-2005 standards for pulsed radiofrequency exposure limits peak electric field to 100 kV/m for pulses shorter than 100 ms [IEEE (1995) PC95.1-Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz, Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA]. This may impose large exclusion zones that limit HPPM technology use. In this study, we offer evidence that maximum permissible exposure of 100 kV/m for peak electric field may be unnecessarily restrictive for HPPM devices. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. The Topology of Symmetric Tensor Fields

    NASA Technical Reports Server (NTRS)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  11. Stochastic Growth Theory of Spatially-Averaged Distributions of Langmuir Fields in Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Boshuizen, Christopher R.; Cairns, Iver H.; Robinson, P. A.

    2001-01-01

    Langmuir-like waves in the foreshock of Earth are characteristically bursty and irregular, and are the subject of a number of recent studies. Averaged over the foreshock, it is observed that the probability distribution is power-law P(bar)(log E) in the wave field E with the bar denoting this averaging over position, In this paper it is shown that stochastic growth theory (SGT) can explain a power-law spatially-averaged distributions P(bar)(log E), when the observed power-law variations of the mean and standard deviation of log E with position are combined with the log normal statistics predicted by SGT at each location.

  12. 2D massless Dirac Fermi gas model of superconductivity in the surface state of a topological insulator at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar

    2017-10-01

    The Nambu-Gorkov Green's function approach is applied to strongly type-II superconductivity in a 2D spin-momentum-locked (Weyl) Fermi gas model at high perpendicular magnetic fields. The resulting phase diagram can be mapped onto that derived for the standard, parabolic band-structure model, having the same Fermi surface parameters, E F and v, but with cyclotron effective mass m\\ast=EF/2v2 . Significant deviations from the predicted mapping are found only for very small E F , when the Landau-Level filling factors are smaller than unity, and E F shrinks below the cutoff energy.

  13. Collinearity in Least-Squares Analysis

    ERIC Educational Resources Information Center

    de Levie, Robert

    2012-01-01

    How useful are the standard deviations per se, and how reliable are results derived from several least-squares coefficients and their associated standard deviations? When the output parameters obtained from a least-squares analysis are mutually independent, as is often assumed, they are reliable estimators of imprecision and so are the functions…

  14. Robust Confidence Interval for a Ratio of Standard Deviations

    ERIC Educational Resources Information Center

    Bonett, Douglas G.

    2006-01-01

    Comparing variability of test scores across alternate forms, test conditions, or subpopulations is a fundamental problem in psychometrics. A confidence interval for a ratio of standard deviations is proposed that performs as well as the classic method with normal distributions and performs dramatically better with nonnormal distributions. A simple…

  15. Standard Deviation for Small Samples

    ERIC Educational Resources Information Center

    Joarder, Anwar H.; Latif, Raja M.

    2006-01-01

    Neater representations for variance are given for small sample sizes, especially for 3 and 4. With these representations, variance can be calculated without a calculator if sample sizes are small and observations are integers, and an upper bound for the standard deviation is immediate. Accessible proofs of lower and upper bounds are presented for…

  16. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery

    USDA-ARS?s Scientific Manuscript database

    A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...

  17. Finding SDSS Galaxy Clusters in 4-dimensional Color Space Using the False Discovery Rate

    NASA Astrophysics Data System (ADS)

    Nichol, R. C.; Miller, C. J.; Reichart, D.; Wasserman, L.; Genovese, C.; SDSS Collaboration

    2000-12-01

    We describe a recently developed statistical technique that provides a meaningful cut-off in probability-based decision making. We are concerned with multiple testing, where each test produces a well-defined probability (or p-value). By well-known, we mean that the null hypothesis used to determine the p-value is fully understood and appropriate. The method is entitled False Discovery Rate (FDR) and its largest advantage over other measures is that it allows one to specify a maximal amount of acceptable error. As an example of this tool, we apply FDR to a four-dimensional clustering algorithm using SDSS data. For each galaxy (or test galaxy), we count the number of neighbors that fit within one standard deviation of a four dimensional Gaussian centered on that test galaxy. The mean and standard deviation of that Gaussian are determined from the colors and errors of the test galaxy. We then take that same Gaussian and place it on a random selection of n galaxies and make a similar count. In the limit of large n, we expect the median count around these random galaxies to represent a typical field galaxy. For every test galaxy we determine the probability (or p-value) that it is a field galaxy based on these counts. A low p-value implies that the test galaxy is in a cluster environment. Once we have a p-value for every galaxy, we use FDR to determine at what level we should make our probability cut-off. Once this cut-off is made, we have a final sample of galaxies that are cluster-like galaxies. Using FDR, we also know the maximum amount of field contamination in our cluster galaxy sample. We present our preliminary galaxy clustering results using these methods.

  18. Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma.

    PubMed

    Papaconstantinou, Dimitris; Georgalas, Ilias; Kalantzis, George; Karmiris, Efthimios; Koutsandrea, Chrysanthi; Diagourtas, Andreas; Ladas, Ioannis; Georgopoulos, Gerasimos

    2009-01-01

    To study acquired color vision and visual field defects in patients with ocular hypertension (OH) and early glaucoma. In a prospective study we evaluated 99 eyes of 56 patients with OH without visual field defects and no hereditary color deficiencies, followed up for 4 to 6 years (mean = 4.7 +/- 0.6 years). Color vision defects were studied using a special computer program for Farnsworth-Munsell 100 hue test and visual field tests were performed with Humphrey analyzer using program 30-2. Both tests were repeated every six months. In fifty-six eyes, glaucomatous defects were observed during the follow-up period. There was a statistically significant difference in total error score (TES) between eyes that eventually developed glaucoma (157.89 +/- 31.79) and OH eyes (75.51 +/- 31.57) at the first examination (t value 12.816, p < 0.001). At the same time visual field indices were within normal limits in both groups. In the glaucomatous eyes the earliest statistical significant change in TES was identified at the first year of follow-up and was -20.62 +/- 2.75 (t value 9.08, p < 0.001) while in OH eyes was -2.11 +/- 4.36 (t value 1.1, p = 0.276). Pearson's coefficient was high in all examinations and showed a direct correlation between TES and mean deviation and corrected pattern standard deviation in both groups. Quantitative analysis of color vision defects provides the possibility of follow-up and can prove a useful means for detecting early glaucomatous changes in patients with normal visual fields.

  19. Collection methods and quality assessment for Esche-richia coli, water quality, and microbial source tracking data within Tumacácori National Historical Park and the upper Santa Cruz River, Arizona, 2015-16

    USGS Publications Warehouse

    Paretti, Nicholas; Coes, Alissa L.; Kephart, Christopher M.; Mayo, Justine

    2018-03-05

    Tumacácori National Historical Park protects the culturally important Mission, San José de Tumacácori, while also managing a portion of the ecologically diverse riparian corridor of the Santa Cruz River. This report describes the methods and quality assurance procedures used in the collection of water samples for the analysis of Escherichia coli (E. coli), microbial source tracking markers, suspended sediment, water-quality parameters, turbidity, and the data collection for discharge and stage; the process for data review and approval is also described. Finally, this report provides a quantitative assessment of the quality of the E. coli, microbial source tracking, and suspended sediment data.The data-quality assessment revealed that bias attributed to field and laboratory contamination was minimal, with E. coli detections in only 3 out of 33 field blank samples analyzed. Concentrations in the field blanks were several orders of magnitude lower than environmental concentrations. The microbial source tracking (MST) field blank was below the detection limit for all MST markers analyzed. Laboratory blanks for E. coli at the USGS Arizona Water Science Center and laboratory blanks for MST markers at the USGS Ohio Water Microbiology Laboratory were all below the detection limit. Irreplicate data for E. coli and suspended sediment indicated that bias was not introduced to the data by combining samples collected using discrete sampling methods with samples collected using automatic sampling methods.The split and sequential E. coli replicate data showed consistent analytical variability and a single equation was developed to explain the variability of E. coli concentrations. An additional analysis of analytical variability for E. coli indicated analytical variability around 18 percent relative standard deviation and no trend was observed in the concentration during the processing and analysis of multiple split-replicates. Two replicate samples were collected for MST and individual markers were compared for a base flow and flood sample. For the markers found in common between the two types of samples, the relative standard deviation for the base flow sample was more than 3 times greater than the markers in the flood sample. Sequential suspended sediment replicates had a relative standard deviation of about 1.3 percent, indicating that environmental and analytical variability was minimal.A holding time review and laboratory study analysis supported the extended holding times required for this investigation. Most concentrations for flood and base-flow samples were within the theoretical variability specified in the most probable number approach suggesting that extended hold times did not overly influence the final concentrations reported.

  20. Inverse correlation between the standard deviation of R-R intervals in supine position and the simplified menopausal index in women with climacteric symptoms.

    PubMed

    Yanagihara, Nobuyuki; Seki, Meikan; Nakano, Masahiro; Hachisuga, Toru; Goto, Yukio

    2014-06-01

    Disturbance of autonomic nervous activity has been thought to play a role in the climacteric symptoms of postmenopausal women. This study was therefore designed to investigate the relationship between autonomic nervous activity and climacteric symptoms in postmenopausal Japanese women. The autonomic nervous activity of 40 Japanese women with climacteric symptoms and 40 Japanese women without climacteric symptoms was measured by power spectral analysis of heart rate variability using a standard hexagonal radar chart. The scores for climacteric symptoms were determined using the simplified menopausal index. Sympathetic excitability and irritability, as well as the standard deviation of mean R-R intervals in supine position, were significantly (P < 0.01, 0.05, and 0.001, respectively) decreased in women with climacteric symptoms. There was a negative correlation between the standard deviation of mean R-R intervals in supine position and the simplified menopausal index score. The lack of control for potential confounding variables was a limitation of this study. In climacteric women, the standard deviation of mean R-R intervals in supine position is negatively correlated with the simplified menopausal index score.

  1. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    PubMed

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Anthropometric Measurement Standardization in the US-Affiliated Pacific: Report from the Children’s Healthy Living Program

    PubMed Central

    LI, FENFANG; WILKENS, LYNNE R.; NOVOTNY, RACHEL; FIALKOWSKI, MARIE K.; PAULINO, YVETTE C.; NELSON, RANDALL; BERSAMIN, ANDREA; MARTIN, URSULA; DEENIK, JONATHAN; BOUSHEY, CAROL J.

    2016-01-01

    Objectives Anthropometric standardization is essential to obtain reliable and comparable data from different geographical regions. The purpose of this study is to describe anthropometric standardization procedures and findings from the Children’s Healthy Living (CHL) Program, a study on childhood obesity in 11 jurisdictions in the US-Affiliated Pacific Region, including Alaska and Hawai‘i. Methods Zerfas criteria were used to compare the measurement components (height, waist, and weight) between each trainee and a single expert anthropometrist. In addition, intra- and inter-rater technical error of measurement (TEM), coefficient of reliability, and average bias relative to the expert were computed. Results From September 2012 to December 2014, 79 trainees participated in at least 1 of 29 standardization sessions. A total of 49 trainees passed either standard or alternate Zerfas criteria and were qualified to assess all three measurements in the field. Standard Zerfas criteria were difficult to achieve: only 2 of 79 trainees passed at their first training session. Intra-rater TEM estimates for the 49 trainees compared well with the expert anthropometrist. Average biases were within acceptable limits of deviation from the expert. Coefficient of reliability was above 99% for all three anthropometric components. Conclusions Standardization based on comparison with a single expert ensured the comparability of measurements from the 49 trainees who passed the criteria. The anthropometric standardization process and protocols followed by CHL resulted in 49 standardized field anthropometrists and have helped build capacity in the health workforce in the Pacific Region. PMID:26457888

  3. A Field-Portable Cell Analyzer without a Microscope and Reagents.

    PubMed

    Seo, Dongmin; Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha; Seo, Sungkyu

    2017-12-29

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm³ and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer ( de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis.

  4. Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes

    PubMed Central

    Wroblewski, Dariusz; Francis, Brian A.; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas

    2014-01-01

    Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4–6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode. PMID:25050326

  5. ACS/WFC Sky Flats from Frontier Fields Imaging

    NASA Astrophysics Data System (ADS)

    Mack, J.; Lucas, R. A.; Grogin, N. A.; Bohlin, R. C.; Koekemoer, A. M.

    2018-04-01

    Parallel imaging data from the HST Frontier Fields campaign (Lotz et al. 2017) have been used to compute sky flats for the ACS/WFC detector in order to verify the accuracy of the current set of flat field reference files. By masking sources and then co-adding many deep frames, the F606W and F814W filters have enough combined background signal that from Poisson statistics are <1% per pixel. In these two filters, the sky flats show spatial residuals 1% or less. These residuals are similar in shape to the WFC flat field 'donut' pattern, in which the detector quantum efficiency tracks the thickness of the two WFC chips. Observations of blue and red calibration standards measured at various positions on the detector (Bohlin et al. 2017) confirm the fidelity of the F814W flat, with aperture photometry consistent to 1% across the FOV, regardless of spectral type. At bluer wavelengths, the total sky background is substantially lower, and the F435W sky flat shows a combination of both flat errors and detector artifacts. Aperture photometry of the red standard star shows a maximum deviation of 1.4% across the array in this filter. Larger residuals up to 2.5% are found for the blue standard, suggesting that the spatial sensitivity in F435W depends on spectral type.

  6. A Novel Database to Rank and Display Archeomagnetic Intensity Data

    NASA Astrophysics Data System (ADS)

    Donadini, F.; Korhonen, K.; Riisager, P.; Pesonen, L. J.; Kahma, K.

    2005-12-01

    To understand the content and the causes of the changes in the Earth's magnetic field beyond the observatory records one has to rely on archeomagnetic and lake sediment paleomagnetic data. The regional archeointensity curves are often of different quality and temporally variable which hampers the global analysis of the data in terms of dipole vs non-dipole field. We have developed a novel archeointensity database application utilizing MySQL, PHP (PHP Hypertext Preprocessor), and the Generic Mapping Tools (GMT) for ranking and displaying geomagnetic intensity data from the last 12000 years. Our application has the advantage that no specific software is required to query the database and view the results. Querying the database is performed using any Web browser; a fill-out form is used to enter the site location and a minimum ranking value to select the data points to be displayed. The form also features the possibility to select plotting of the data as an archeointensity curve with error bars, and a Virtual Axial Dipole Moment (VADM) or ancient field value (Ba) curve calculated using the CALS7K model (Continuous Archaeomagnetic and Lake Sediment geomagnetic model) of (Korte and Constable, 2005). The results of a query are displayed on a Web page containing a table summarizing the query parameters, a table showing the archeointensity values satisfying the query parameters, and a plot of VADM or Ba as a function of sample age. The database consists of eight related tables. The main one, INTENSITIES, stores the 3704 archeointensity measurements collected from 159 publications as VADM (and VDM when available) and Ba values, including their standard deviations and sampling locations. It also contains the number of samples and specimens measured from each site. The REFS table stores the references to a particular study. The names, latitudes, and longitudes of the regions where the samples were collected are stored in the SITES table. The MATERIALS, METHODS, SPECIMEN_TYPES and DATING_METHODS tables store information about the sample materials, intensity determination methods, specimen types and age determination methods. The SIGMA_COUNT table is used indirectly for ranking data according to the number of samples measured and their standard deviations. Each intensity measurement is assigned a score (0--2) depending on the number of specimens measured and their standard deviations, the intensity determination method, the type of specimens measured and materials. The ranking of each data point is calculated as the sum of the four scores and varies between 0 and 8. Additionally, users can select the parameters that will be included in the ranking.

  7. Evaluation of gravimetric ground truth soil moisture data collected for the agricultural soil moisture experiment, 1978 Colby, Kansas, aircraft mission

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Phinney, D. E. (Principal Investigator)

    1980-01-01

    Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.

  8. Selection and Classification Using a Forecast Applicant Pool.

    ERIC Educational Resources Information Center

    Hendrix, William H.

    The document presents a forecast model of the future Air Force applicant pool. By forecasting applicants' quality (means and standard deviations of aptitude scores) and quantity (total number of applicants), a potential enlistee could be compared to the forecasted pool. The data used to develop the model consisted of means, standard deviation, and…

  9. Wavelength selection method with standard deviation: application to pulse oximetry.

    PubMed

    Vazquez-Jaccaud, Camille; Paez, Gonzalo; Strojnik, Marija

    2011-07-01

    Near-infrared spectroscopy provides useful biological information after the radiation has penetrated through the tissue, within the therapeutic window. One of the significant shortcomings of the current applications of spectroscopic techniques to a live subject is that the subject may be uncooperative and the sample undergoes significant temporal variations, due to his health status that, from radiometric point of view, introduce measurement noise. We describe a novel wavelength selection method for monitoring, based on a standard deviation map, that allows low-noise sensitivity. It may be used with spectral transillumination, transmission, or reflection signals, including those corrupted by noise and unavoidable temporal effects. We apply it to the selection of two wavelengths for the case of pulse oximetry. Using spectroscopic data, we generate a map of standard deviation that we propose as a figure-of-merit in the presence of the noise introduced by the living subject. Even in the presence of diverse sources of noise, we identify four wavelength domains with standard deviation, minimally sensitive to temporal noise, and two wavelengths domains with low sensitivity to temporal noise.

  10. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups.

    PubMed

    Hasija, Narender; Bala, Madhu; Goyal, Virender

    2014-05-01

    Regards and Tribute: Late Dr Narender Hasija was a mentor and visionary in the light of knowledge and experience. We pay our regards with deepest gratitude to the departed soul to rest in peace. Bolton's ratios help in estimating overbite, overjet relationships, the effects of contemplated extractions on posterior occlusion, incisor relationships and identification of occlusal misfit produced by tooth size discrepancies. To determine any difference in tooth size discrepancy in anterior as well as overall ratio in different malocclusions and comparison with Bolton's study. After measuring the teeth on all 100 patients, Bolton's analysis was performed. Results were compared with Bolton's means and standard deviations. The results were also subjected to statistical analysis. Results show that the mean and standard deviations of ideal occlusion cases are comparable with those Bolton but, when the mean and standard deviation of malocclusion groups are compared with those of Bolton, the values of standard deviation are higher, though the mean is comparable. How to cite this article: Hasija N, Bala M, Goyal V. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups. Int J Clin Pediatr Dent 2014;7(2):82-85.

  11. Association of auricular pressing and heart rate variability in pre-exam anxiety students.

    PubMed

    Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong

    2013-03-25

    A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety.

  12. Association of auricular pressing and heart rate variability in pre-exam anxiety students

    PubMed Central

    Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong

    2013-01-01

    A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety. PMID:25206734

  13. Large Fluctuations for Spatial Diffusion of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Aghion, Erez; Kessler, David A.; Barkai, Eli

    2017-06-01

    We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.

  14. Six-month Longitudinal Comparison of a Portable Tablet Perimeter With the Humphrey Field Analyzer.

    PubMed

    Prea, Selwyn Marc; Kong, Yu Xiang George; Mehta, Aditi; He, Mingguang; Crowston, Jonathan G; Gupta, Vinay; Martin, Keith R; Vingrys, Algis J

    2018-06-01

    To establish the medium-term repeatability of the iPad perimetry app Melbourne Rapid Fields (MRF) compared to Humphrey Field Analyzer (HFA) 24-2 SITA-standard and SITA-fast programs. Multicenter longitudinal observational clinical study. Sixty patients (stable glaucoma/ocular hypertension/glaucoma suspects) were recruited into a 6-month longitudinal clinical study with visits planned at baseline and at 2, 4, and 6 months. At each visit patients undertook visual field assessment using the MRF perimetry application and either HFA SITA-fast (n = 21) or SITA-standard (n = 39). The primary outcome measure was the association and repeatability of mean deviation (MD) for the MRF and HFA tests. Secondary measures were the point-wise threshold and repeatability for each test, as well as test time. MRF was similar to SITA-fast in speed and significantly faster than SITA-standard (MRF 4.6 ± 0.1 minutes vs SITA-fast 4.3 ± 0.2 minutes vs SITA-standard 6.2 ± 0.1 minutes, P < .001). Intraclass correlation coefficients (ICC) between MRF and SITA-fast for MD at the 4 visits ranged from 0.71 to 0.88. ICC values between MRF and SITA-standard for MD ranged from 0.81 to 0.90. Repeatability of MRF MD outcomes was excellent, with ICC for baseline and the 6-month visit being 0.98 (95% confidence interval: 0.96-0.99). In comparison, ICC at 6-month retest for SITA-fast was 0.95 and SITA-standard 0.93. Fewer points changed with the MRF, although for those that did, the MRF gave greater point-wise variability than did the SITA tests. MRF correlated strongly with HFA across 4 visits over a 6-month period, and has good test-retest reliability. MRF is suitable for monitoring visual fields in settings where conventional perimetry is not readily accessible. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N; Lu, S; Qin, Y

    Purpose: To evaluate the dosimetric uncertainty associated with Gafchromic (EBT3) films and establish an absolute dosimetry protocol for Stereotactic Radiosurgery (SRS) and Stereotactic Body Radiotherapy (SBRT). Methods: EBT3 films were irradiated at each of seven different dose levels between 1 and 15 Gy with open fields, and standard deviations of dose maps were calculated at each color channel for evaluation. A scanner non-uniform response correction map was built by registering and comparing film doses to the reference diode array-based dose map delivered with the same doses. To determine the temporal dependence of EBT3 films, the average correction factors of differentmore » dose levels as a function of time were evaluated up to four days after irradiation. An integrated film dosimetry protocol was developed for dose calibration, calibration curve fitting, dose mapping, and profile/gamma analysis. Patient specific quality assurance (PSQA) was performed for 93 SRS/SBRT treatment plans. Results: The scanner response varied within 1% for the field sizes less than 5 × 5 cm{sup 2}, and up to 5% for the field sizes of 10 × 10 cm{sup 2}. The scanner correction method was able to remove visually evident, irregular detector responses found for larger field sizes. The dose response of the film changed rapidly (∼10%) in the first two hours and plateaued afterwards, ∼3% change between 2 and 24 hours. The mean uncertainties (mean of the standard deviations) were <0.5% over the dose range 1∼15Gy for all color channels for the OD response curves. The percentage of points passing the 3%/1mm gamma criteria based on absolute dose analysis, averaged over all tests, was 95.0 ± 4.2. Conclusion: We have developed an absolute film dose dosimetry protocol using EBT3 films. The overall uncertainty has been established to be approximately 1% for SRS and SBRT PSQA. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less

  16. Offshore fatigue design turbulence

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner C.

    2001-07-01

    Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative.

  17. Estimating extreme stream temperatures by the standard deviate method

    NASA Astrophysics Data System (ADS)

    Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz

    2006-02-01

    It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.

  18. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  19. Sampling for mercury at subnanogram per litre concentrations for load estimation in rivers

    USGS Publications Warehouse

    Colman, J.A.; Breault, R.F.

    2000-01-01

    Estimation of constituent loads in streams requires collection of stream samples that are representative of constituent concentrations, that is, composites of isokinetic multiple verticals collected along a stream transect. An all-Teflon isokinetic sampler (DH-81) cleaned in 75??C, 4 N HCl was tested using blank, split, and replicate samples to assess systematic and random sample contamination by mercury species. Mean mercury concentrations in field-equipment blanks were low: 0.135 ng??L-1 for total mercury (??Hg) and 0.0086 ng??L-1 for monomethyl mercury (MeHg). Mean square errors (MSE) for ??Hg and MeHg duplicate samples collected at eight sampling stations were not statistically different from MSE of samples split in the laboratory, which represent the analytical and splitting error. Low fieldblank concentrations and statistically equal duplicate- and split-sample MSE values indicate that no measurable contamination was occurring during sampling. Standard deviations associated with example mercury load estimations were four to five times larger, on a relative basis, than standard deviations calculated from duplicate samples, indicating that error of the load determination was primarily a function of the loading model used, not of sampling or analytical methods.

  20. Topological inflation with graceful exit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marunović, Anja; Prokopec, Tomislav, E-mail: a.marunovic@uu.nl, E-mail: t.prokopec@uu.nl

    We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that themore » monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as n {sub s} ≅ 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.« less

  1. Enhancing active and passive remote sensing in the ocean using broadband acoustic transmissions and coherent hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Tran, Duong Duy

    The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth, located close to the array's near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the array. The dependence of broadband energy on bandwidth and measurement time was verified employing recorded sperm whale clicks in the Gulf of Maine.

  2. [Research on rapid and quantitative detection method for organophosphorus pesticide residue].

    PubMed

    Sun, Yuan-Xin; Chen, Bing-Tai; Yi, Sen; Sun, Ming

    2014-05-01

    The methods of physical-chemical inspection is adopted in the traditional pesticide residue detection, which require a lot of pretreatment processes, are time-consuming and complicated. In the present study, the authors take chlorpyrifos applied widely in the present agricultural field as the research object and propose a rapid and quantitative detection method for organophosphorus pesticide residues. At first, according to the chemical characteristics of chlorpyrifos and comprehensive chromogenic effect of several colorimetric reagents and secondary pollution, the pretreatment of the scheme of chromogenic reaction of chlorpyrifos with resorcin in a weak alkaline environment was determined. Secondly, by analyzing Uv-Vis spectrum data of chlorpyrifos samples whose content were between 0. 5 and 400 mg kg-1, it was confirmed that the characteristic information after the color reaction mainly was concentrated among 360 approximately 400 nm. Thirdly, the full spectrum forecasting model was established based on the partial least squares, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 995 6, standard deviation of calibration (RMSEC) was 2. 814 7 mg kg-1, and standard deviation of verification (RMSEP) was 8. 012 4 mg kg-1. Fourthly, the wavelengths whose center wavelength is 400 nm was extracted as characteristic region to build a forecasting model, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 999 3, standard deviation of calibration (RMSEC) was 2. 566 7 mg kg-1 , standard deviation of verification (RMSEP) was 4. 886 6 mg kg-1, respectively. At last, by analyzing the near infrared spectrum data of chlorpyrifos samples with contents between 0. 5 and 16 mg kg-1, the authors found that although the characteristics of the chromogenic functional group are not obvious, the change of absorption peaks of resorcin itself in the neighborhood of 5 200 cm-' happens. The above-mentioned experimental results show that the proposed method is effective and feasible for rapid and quantitative detection prediction for organophosphorus pesticide residues. In the method, the information in full spectrum especially UV-Vis spectrum is strengthened by chromogenic reaction of a colorimetric reagent, which provides a new way of rapid detection of pesticide residues for agricultural products in the future.

  3. Comparisons between consumption estimates from bioenergetics simulations and field measurements for walleyes from Oneida Lake, New York

    USGS Publications Warehouse

    Lantry, B.F.; Rudstam, L. G.; Forney, J.L.; VanDeValk, A.J.; Mills, E.L.; Stewart, D.J.; Adams, J.V.

    2008-01-01

    Daily consumption was estimated from the stomach contents of walleyes Sander vitreus collected weekly from Oneida Lake, New York, during June-October 1975, 1992, 1993, and 1994 for one to four age-groups per year. Field rations were highly variable between weeks, and trends in ration size varied both seasonally and annually. The coefficient of variation for weekly field rations within years and ages ranged from 45% to 97%. Field estimates were compared with simulated consumption from a bioenergetics model. The simulation averages of daily ration deviated from those of the field estimates by -20.1% to +70.3%, with a mean across all simulations of +14.3%. The deviations for each time step were much greater than those for the simulation averages, ranging from -92.8% to +363.6%. A systematic trend in the deviations was observed, the model producing overpredictions at rations less than 3.7% of body weight. Analysis of variance indicated that the deviations were affected by sample year and week but not age. Multiple linear regression using backwards selection procedures and Akaike's information criterion indicated that walleye weight, walleye growth, lake temperature, prey energy density, and the proportion of gizzard shad Dorosoma cepedianum in the diet significantly affected the deviations between simulated and field rations and explained 32% of the variance. ?? Copyright by the American Fisheries Society 2008.

  4. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry

    PubMed Central

    Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-01

    Small fields smaller than 4×4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model‐based algorithms, X‐ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS‐Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth‐of‐dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth‐dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1×1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1×1 cm2 field showed maximum deviation, except in 6 MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower‐density materials compared to high‐density materials. PACS numbers: 87.53.Bn, 87.53.kn, 87.56.bd, 87.55.Kd, 87.56.jf PMID:26894345

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, D; Meier, J; Mawlawi, O

    Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was ablemore » to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable across scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.« less

  6. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  7. Robust Alternatives to the Standard Deviation in Processing of Physics Experimental Data

    NASA Astrophysics Data System (ADS)

    Shulenin, V. P.

    2016-10-01

    Properties of robust estimations of the scale parameter are studied. It is noted that the median of absolute deviations and the modified estimation of the average Gini differences have asymptotically normal distributions and bounded influence functions, are B-robust estimations, and hence, unlike the estimation of the standard deviation, are protected from the presence of outliers in the sample. Results of comparison of estimations of the scale parameter are given for a Gaussian model with contamination. An adaptive variant of the modified estimation of the average Gini differences is considered.

  8. 40 CFR 63.7751 - What reports must I submit and when?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deviations from any emissions limitations (including operating limit), work practice standards, or operation and maintenance requirements, a statement that there were no deviations from the emissions limitations...-of-control during the reporting period. (7) For each deviation from an emissions limitation...

  9. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning

    PubMed Central

    Taghizadeh, Somayeh; Yang, Claus Chunli; R. Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-01-01

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID3D and Quasar GRID3D phantoms were used to evaluate the effects of static magnetic field (B0) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions. PMID:29487771

  10. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    PubMed

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions.

  11. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients

    PubMed Central

    Kanadani, Fabio N; Mello, Paulo AA; Dorairaj, Syril K; Kanadani, Tereza CM

    2014-01-01

    Introduction The gold standard in functional glaucoma evaluation is standard automated perimetry (SAP). However, SAP depends on the reliability of the patients’ responses and other external factors; therefore, other technologies have been developed for earlier detection of visual field changes in glaucoma patients. The frequency-doubling perimetry (FDT) is believed to detect glaucoma earlier than SAP. The multifocal visual evoked potential (mfVEP) is an objective test for functional evaluation. Objective To evaluate the sensitivity and specificity of FDT and mfVEP tests in normal, suspect, and glaucomatous eyes and compare the monocular and interocular mfVEP. Methods Ninety-five eyes from 95 individuals (23 controls, 33 glaucoma suspects, 39 glaucomatous) were enrolled. All participants underwent a full ophthalmic examination, followed by SAP, FDT, and mfVEP tests. Results The area under the curve for mean deviation and pattern standard deviation were 0.756 and 0.761, respectively, for FDT, 0.564 and 0.512 for signal and alpha for interocular mfVEP, and 0.568 and 0.538 for signal and alpha for monocular mfVEP. This difference between monocular and interocular mfVEP was not significant. Conclusion The FDT Matrix was superior to mfVEP in glaucoma detection. The difference between monocular and interocular mfVEP in the diagnosis of glaucoma was not significant. PMID:25075173

  12. Probing anomalous $$ t\\overline{t}Z $$ interactions with rare meson decays

    DOE PAGES

    Brod, Joachim; Greljo, Admir; Stamou, Emmanuel; ...

    2015-02-23

    Anomalous couplings of the Z boson to top quarks are only marginally constrained by direct searches and are still sensitive to new particle dynamics at the TeV scale. Employing an effective field theory approach we consider the dimension-six operators which generate deviations from the standard-model vector and axial-vector interactions. We show that rare B and K meson decays together with electroweak precision observables provide strong constraints on these couplings. In addition, we also consider constraints from t-channel single-top production.

  13. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  14. Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Todling, Ricardo

    1999-01-01

    We describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva (1998) to the GEOS DAS moisture analysis. The algorithm estimates the persistent component of model error using rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6h-forecast bias and a marginal improvement in the error standard deviations.

  15. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  16. Sigma models with negative curvature

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-16

    Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  17. Use of Standard Deviations as Predictors in Models Using Large-Scale International Data Sets

    ERIC Educational Resources Information Center

    Austin, Bruce; French, Brian; Adesope, Olusola; Gotch, Chad

    2017-01-01

    Measures of variability are successfully used in predictive modeling in research areas outside of education. This study examined how standard deviations can be used to address research questions not easily addressed using traditional measures such as group means based on index variables. Student survey data were obtained from the Organisation for…

  18. Screen Twice, Cut Once: Assessing the Predictive Validity of Teacher Selection Tools

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Grout, Cyrus; Huntington-Klein, Nick

    2015-01-01

    It is well documented that teachers can have profound effects on student outcomes. Empirical estimates find that a one standard deviation increase in teacher quality raises student test achievement by 10 to 25 percent of a standard deviation. More recent evidence shows that the effectiveness of teachers can affect long-term student outcomes, such…

  19. Parabolic trough receiver heat loss and optical efficiency round robin 2015/2016

    NASA Astrophysics Data System (ADS)

    Pernpeintner, Johannes; Schiricke, Björn; Sallaberry, Fabienne; de Jalón, Alberto García; López-Martín, Rafael; Valenzuela, Loreto; de Luca, Antonio; Georg, Andreas

    2017-06-01

    A round robin for parabolic trough receiver heat loss and optical efficiency in the laboratory was performed between five institutions using five receivers in 2015/2016. Heat loss testing was performed at three cartridge heater test benches and one Joule heating test bench in the temperature range between 100 °C and 550 °C. Optical efficiency testing was performed with two spectrometric test bench and one calorimetric test bench. Heat loss testing results showed standard deviations at the order of 6% to 12 % for most temperatures and receivers and a standard deviation of 17 % for one receiver at 100 °C. Optical efficiency is presented normalized for laboratories showing standard deviations of 0.3 % to 1.3 % depending on the receiver.

  20. Benign positional vertigo and hyperuricaemia.

    PubMed

    Adam, A M

    2005-07-01

    To find out if there is any association between serum uric acid level and positional vertigo. A prospective, case controlled study. A private neurological clinic. All patients presenting with vertigo. Ninety patients were seen in this period with 78 males and 19 females. Mean age was 47 +/- 3 years (at 95% confidence level) with a standard deviation of 12.4. Their mean uric acid level was 442 +/- 16 (at 95% confidence level) with a standard deviation of 79.6 umol/l as compared to 291 +/- 17 (at 95% confidence level) with a standard deviation of 79.7 umol/l in the control group. The P-value was less than 0.001. That there is a significant association between high uric acid and benign positional vertigo.

  1. Palus Somni - Anomalies in the correlation of Al/Si X-ray fluorescence intensity ratios and broad-spectrum visible albedos. [lunar surface mineralogy

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.

    1976-01-01

    The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.

  2. Screening Samples for Arsenic by Inductively Coupled Plasma-Mass Spectrometry for Treaty Samples

    DTIC Science & Technology

    2014-02-01

    2.274 3.657 10.06 14.56 30.36 35.93 % RSD : 15.87% 4.375% 2.931% 4.473% 3.349% 3.788% 2.802% 3.883% 3.449% RSD , relative standard deviation 9   Table...107.9% 106.4% Standard Deviation: 0.3171 0.3498 0.8024 2.964 4.526 10.06 13.83 16.38 11.81 % RSD : 5.657% 3.174% 3.035% 5.507% 4.332% 3.795% 2.626...119.1% 116.5% 109.4% 106.8% 105.2% 105.5% 105.8% 108.6% 107.8% Standard Deviation: 0.2379 0.5595 1.173 2.375 2.798 5.973 11.79 15.10 30.54 % RSD

  3. Ion transport and loss in the Earth's quiet ring current. 2: Diffusion and magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Sheldon, R. B.

    1994-01-01

    We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.

  4. A deviation display method for visualising data in mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Finck, Robert R; Nilsson, Jonas M C; Ostlund, Karl; Samuelsson, Christer

    2010-09-01

    A real time visualisation method, to be used in mobile gamma-spectrometric search operations using standard detector systems is presented. The new method, called deviation display, uses a modified waterfall display to present relative changes in spectral data over energy and time. Using unshielded (137)Cs and (241)Am point sources and different natural background environments, the behaviour of the deviation displays is demonstrated and analysed for two standard detector types (NaI(Tl) and HPGe). The deviation display enhances positive significant changes while suppressing the natural background fluctuations. After an initialization time of about 10min this technique leads to a homogeneous display dominated by the background colour, where even small changes in spectral data are easy to discover. As this paper shows, the deviation display method works well for all tested gamma energies and natural background radiation levels and with both tested detector systems.

  5. A randomized controlled trial investigating the effects of craniosacral therapy on pain and heart rate variability in fibromyalgia patients.

    PubMed

    Castro-Sánchez, Adelaida María; Matarán-Peñarrocha, Guillermo A; Sánchez-Labraca, Nuria; Quesada-Rubio, José Manuel; Granero-Molina, José; Moreno-Lorenzo, Carmen

    2011-01-01

    Fibromyalgia is a prevalent musculoskeletal disorder associated with widespread mechanical tenderness, fatigue, non-refreshing sleep, depressed mood and pervasive dysfunction of the autonomic nervous system: tachycardia, postural intolerance, Raynaud's phenomenon and diarrhoea. To determine the effects of craniosacral therapy on sensitive tender points and heart rate variability in patients with fibromyalgia. A randomized controlled trial. Ninety-two patients with fibromyalgia were randomly assigned to an intervention group or placebo group. Patients received treatments for 20 weeks. The intervention group underwent a craniosacral therapy protocol and the placebo group received sham treatment with disconnected magnetotherapy equipment. Pain intensity levels were determined by evaluating tender points, and heart rate variability was recorded by 24-hour Holter monitoring. After 20 weeks of treatment, the intervention group showed significant reduction in pain at 13 of the 18 tender points (P < 0.05). Significant differences in temporal standard deviation of RR segments, root mean square deviation of temporal standard deviation of RR segments and clinical global impression of improvement versus baseline values were observed in the intervention group but not in the placebo group. At two months and one year post therapy, the intervention group showed significant differences versus baseline in tender points at left occiput, left-side lower cervical, left epicondyle and left greater trochanter and significant differences in temporal standard deviation of RR segments, root mean square deviation of temporal standard deviation of RR segments and clinical global impression of improvement. Craniosacral therapy improved medium-term pain symptoms in patients with fibromyalgia.

  6. 41 CFR 102-38.30 - How does an executive agency request a deviation from the provisions of this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which are distinct from the standard deviation process and specific to the requirements of the Federal... agency request a deviation from the provisions of this part? 102-38.30 Section 102-38.30 Public Contracts... executive agency request a deviation from the provisions of this part? Refer to §§ 102-2.60 through 102-2...

  7. The influence of 14CO2 releases from regional nuclear facilities at the Heidelberg 14CO2 sampling site (1986-2014)

    NASA Astrophysics Data System (ADS)

    Kuderer, Matthias; Hammer, Samuel; Levin, Ingeborg

    2018-06-01

    Atmospheric Δ14CO2 measurements are a well-established tool to estimate the regional fossil-fuel-derived CO2 component. However, emissions from nuclear facilities can significantly alter the regional Δ14CO2 level. In order to accurately quantify the signal originating from fossil CO2 emissions, a correction term for anthropogenic 14CO2 sources has to be determined. In this study, the HYSPLIT atmospheric dispersion model has been applied to calculate this correction for the long-term Δ14CO2 monitoring site in Heidelberg. Wind fields with a spatial resolution of 2.5° × 2.5°, 1° × 1°, and 0.5° × 0.5° show systematic deviations, with coarser resolved wind fields leading to higher mean values for the correction. The finally applied mean Δ14CO2 correction for the period from 1986-2014 is 2.3 ‰ with a standard deviation of 2.1 ‰ and maximum values up to 15.2 ‰. These results are based on the 0.5° × 0.5° wind field simulations in years when these fields were available (2009, 2011-2014), and for the other years they are based on 2.5° × 2.5° wind field simulations, corrected with a factor of 0.43. After operations at the Philippsburg boiling water reactor ceased in 2011, the monthly nuclear correction terms decreased to less than 2 ‰, with a mean value of 0.44 ± 0.32 ‰ from 2012 to 2014.

  8. Family structure and childhood anthropometry in Saint Paul, Minnesota in 1918

    PubMed Central

    Warren, John Robert

    2017-01-01

    Concern with childhood nutrition prompted numerous surveys of children’s growth in the United States after 1870. The Children’s Bureau’s 1918 “Weighing and Measuring Test” measured two million children to produce the first official American growth norms. Individual data for 14,000 children survives from the Saint Paul, Minnesota survey whose stature closely approximated national norms. As well as anthropometry the survey recorded exact ages, street address and full name. These variables allow linkage to the 1920 census to obtain demographic and socioeconomic information. We matched 72% of children to census families creating a sample of nearly 10,000 children. Children in the entire survey (linked set) averaged 0.74 (0.72) standard deviations below modern WHO height-for-age standards, and 0.48 (0.46) standard deviations below modern weight-for-age norms. Sibship size strongly influenced height-for-age, and had weaker influence on weight-for-age. Each additional child six or underreduced height-for-age scores by 0.07 standard deviations (95% CI: −0.03, 0.11). Teenage siblings had little effect on height-forage. Social class effects were substantial. Children of laborers averaged half a standard deviation shorter than children of professionals. Family structure and socio-economic status had compounding impacts on children’s stature. PMID:28943749

  9. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    NASA Astrophysics Data System (ADS)

    Peise, J.; Kruse, I.; Lange, K.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Hammerer, K.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-03-01

    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, as shown successfully with light fields. Here, we report on the production of massive particles which meet the EPR criterion for continuous phase/amplitude variables. The created quantum state of ultracold atoms shows an EPR parameter of 0.18(3), which is 2.4 standard deviations below the threshold of 1/4. Our state presents a resource for tests of quantum nonlocality with massive particles and a wide variety of applications in the field of continuous-variable quantum information and metrology.

  10. C2-C6 background hydrocarbon concentrations monitored at a roof top and green park site, in Dublin City centre.

    PubMed

    O'Donoghue, R T; Broderick, B M

    2007-09-01

    A 5 week monitoring campaign was carried out in Dublin City centre, to establish which site gave a more accurate background city centre estimation: a roof-top or green field site. This background represented a conservative estimate of HC exposure in Dublin City centre, useful for quantifying health effects related to this form of pollution and also for establishing a local background relative to the four surrounding main roads when the wind direction is travelling towards each road with the background receptor upwind. Over the entire monitoring campaign, the lowest concentrations and relative standard deviations were observed at the green field site, regardless of time of day or meteorological effects.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinke, Rainer

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departsmore » from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.« less

  12. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  13. Quantitative evaluation method of the threshold adjustment and the flat field correction performances of hybrid photon counting pixel detectors

    NASA Astrophysics Data System (ADS)

    Medjoubi, K.; Dawiec, A.

    2017-12-01

    A simple method is proposed in this work for quantitative evaluation of the quality of the threshold adjustment and the flat-field correction of Hybrid Photon Counting pixel (HPC) detectors. This approach is based on the Photon Transfer Curve (PTC) corresponding to the measurement of the standard deviation of the signal in flat field images. Fixed pattern noise (FPN), easily identifiable in the curve, is linked to the residual threshold dispersion, sensor inhomogeneity and the remnant errors in flat fielding techniques. The analytical expression of the signal to noise ratio curve is developed for HPC and successfully used as a fit function applied to experimental data obtained with the XPAD detector. The quantitative evaluation of the FPN, described by the photon response non-uniformity (PRNU), is measured for different configurations (threshold adjustment method and flat fielding technique) and is demonstrated to be used in order to evaluate the best setting for having the best image quality from a commercial or a R&D detector.

  14. Small field models with gravitational wave signature supported by CMB data

    PubMed Central

    Brustein, Ramy

    2018-01-01

    We study scale dependence of the cosmic microwave background (CMB) power spectrum in a class of small, single-field models of inflation which lead to a high value of the tensor to scalar ratio. The inflaton potentials that we consider are degree 5 polynomials, for which we precisely calculate the power spectrum, and extract the cosmological parameters: the scalar index ns, the running of the scalar index nrun and the tensor to scalar ratio r. We find that for non-vanishing nrun and for r as small as r = 0.001, the precisely calculated values of ns and nrun deviate significantly from what the standard analytic treatment predicts. We study in detail, and discuss the probable reasons for such deviations. As such, all previously considered models (of this kind) are based upon inaccurate assumptions. We scan the possible values of potential parameters for which the cosmological parameters are within the allowed range by observations. The 5 parameter class is able to reproduce all of the allowed values of ns and nrun for values of r that are as high as 0.001. Subsequently this study at once refutes previous such models built using the analytical Stewart-Lyth term, and revives the small field brand, by building models that do yield an appreciable r while conforming to known CMB observables. PMID:29795608

  15. Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma

    PubMed Central

    Papaconstantinou, Dimitris; Georgalas, Ilias; Kalantzis, George; Karmiris, Efthimios; Koutsandrea, Chrysanthi; Diagourtas, Andreas; Ladas, Ioannis; Georgopoulos, Gerasimos

    2009-01-01

    Purpose: To study acquired color vision and visual field defects in patients with ocular hypertension (OH) and early glaucoma. Methods: In a prospective study we evaluated 99 eyes of 56 patients with OH without visual field defects and no hereditary color deficiencies, followed up for 4 to 6 years (mean = 4.7 ± 0.6 years). Color vision defects were studied using a special computer program for Farnsworth–Munsell 100 hue test and visual field tests were performed with Humphrey analyzer using program 30–2. Both tests were repeated every six months. Results: In fifty-six eyes, glaucomatous defects were observed during the follow-up period. There was a statistically significant difference in total error score (TES) between eyes that eventually developed glaucoma (157.89 ± 31.79) and OH eyes (75.51 ± 31.57) at the first examination (t value 12.816, p < 0.001). At the same time visual field indices were within normal limits in both groups. In the glaucomatous eyes the earliest statistical significant change in TES was identified at the first year of follow-up and was −20.62 ± 2.75 (t value 9.08, p < 0.001) while in OH eyes was −2.11 ± 4.36 (t value 1.1, p = 0.276). Pearson’s coefficient was high in all examinations and showed a direct correlation between TES and mean deviation and corrected pattern standard deviation in both groups. Conclusion: Quantitative analysis of color vision defects provides the possibility of follow-up and can prove a useful means for detecting early glaucomatous changes in patients with normal visual fields. PMID:19668575

  16. Spatiotemporal Parameters are not Substantially Influenced by Load Carriage or Inclination During Treadmill and Overground Walking

    PubMed Central

    Seay, Joseph F.; Gregorczyk, Karen N.; Hasselquist, Leif

    2016-01-01

    Abstract Influences of load carriage and inclination on spatiotemporal parameters were examined during treadmill and overground walking. Ten soldiers walked on a treadmill and overground with three load conditions (00 kg, 20 kg, 40 kg) during level, uphill (6% grade) and downhill (-6% grade) inclinations at self-selected speed, which was constant across conditions. Mean values and standard deviations for double support percentage, stride length and a step rate were compared across conditions. Double support percentage increased with load and inclination change from uphill to level walking, with a 0.4% stance greater increase at the 20 kg condition compared to 00 kg. As inclination changed from uphill to downhill, the step rate increased more overground (4.3 ± 3.5 steps/min) than during treadmill walking (1.7 ± 2.3 steps/min). For the 40 kg condition, the standard deviations were larger than the 00 kg condition for both the step rate and double support percentage. There was no change between modes for step rate standard deviation. For overground compared to treadmill walking, standard deviation for stride length and double support percentage increased and decreased, respectively. Changes in the load of up to 40 kg, inclination of 6% grade away from the level (i.e., uphill or downhill) and mode (treadmill and overground) produced small, yet statistically significant changes in spatiotemporal parameters. Variability, as assessed by standard deviation, was not systematically lower during treadmill walking compared to overground walking. Due to the small magnitude of changes, treadmill walking appears to replicate the spatiotemporal parameters of overground walking. PMID:28149338

  17. Odds per adjusted standard deviation: comparing strengths of associations for risk factors measured on different scales and across diseases and populations.

    PubMed

    Hopper, John L

    2015-11-15

    How can the "strengths" of risk factors, in the sense of how well they discriminate cases from controls, be compared when they are measured on different scales such as continuous, binary, and integer? Given that risk estimates take into account other fitted and design-related factors-and that is how risk gradients are interpreted-so should the presentation of risk gradients. Therefore, for each risk factor X0, I propose using appropriate regression techniques to derive from appropriate population data the best fitting relationship between the mean of X0 and all the other covariates fitted in the model or adjusted for by design (X1, X2, … , Xn). The odds per adjusted standard deviation (OPERA) presents the risk association for X0 in terms of the change in risk per s = standard deviation of X0 adjusted for X1, X2, … , Xn, rather than the unadjusted standard deviation of X0 itself. If the increased risk is relative risk (RR)-fold over A adjusted standard deviations, then OPERA = exp[ln(RR)/A] = RR(s). This unifying approach is illustrated by considering breast cancer and published risk estimates. OPERA estimates are by definition independent and can be used to compare the predictive strengths of risk factors across diseases and populations. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery

    NASA Astrophysics Data System (ADS)

    Ceballos, Juan Carlos; Bottino, Marcus Jorge; de Souza, Jaidete Monteiro

    2004-01-01

    Solar radiation assessment by satellite is constrained by physical limitations of imagery and by the accuracy of instantaneous local atmospheric parameters, suggesting that one should use simplified but physically consistent models for operational work. Such a model is presented for use with GOES 8 imagery applied to atmospheres with low aerosol optical depth. Fundamental satellite-derived parameters are reflectance and cloud cover. A classification method applied to a set of images shows that reflectance, usually defined as upper-threshold Rmax in algorithms assessing cloud cover, would amount ˜0.465, corresponding to the transition between a cumuliform and a stratiform cloud field. Ozone absorption is limited to the stratosphere. The model considers two spectral broadband intervals for tropospheric radiative transfer: ultraviolet and visible intervals are essentially nonabsorbing and can be processed as a single interval, while near-infrared intervals have negligible atmospheric scattering and very low cloud transmittance. Typical values of CO2 and O3 content and of precipitable water are considered. A comparison of daily values of modeled mean irradiance with data of three sites (in rural, urban industrial, and urban coastal environments), September-October 2002, exhibits a bias of +5 W m-2 and a standard deviation of ˜15 W m-2 (0.4 and 1.3 MJ m-2 for daily irradiation). A comparison with monthly means from about 80 automatic weather stations (covering a large area throughout the Brazilian territory) still shows a bias generally within ±10 W m-2 and a low standard deviation (<20 W m-2), but the bias has a trend in September-December 2002, suggesting an annual cycle of local Rmax values. Systematic (mean) errors in partial cloud cover and in nearly clear-sky situations may be enhanced using regional values for atmospheric and surface parameters, such as precipitable water, Rmax, and ground reflectance. The larger errors are observed in situations of high aerosol load (especially in regions with industrial activity or forest or agricultural fires). The last case is evident when sites in the Amazonian region or São Paulo city are selected. When considering daily values averaged within 2.5° × 2.5° cells, the standard error is lower than 20 W m-2; present results suggest an annual cycle of mean bias ranging from +10 to -10 W m-2, with an amplitude of ˜10 W m-2. These values are close to the proposed requirements of 10 W m-2 for the mean deviation and 25 W m-2 for the standard deviation. It is expected that the introduction of a reference grid containing mean values of parameters within a cell could induce a decrease in the standard deviation of mean errors and the correction of their annual cycle. A model adaptation for assessing the effect of high aerosol loads is needed in order to extend improvements to the whole Brazilian area.

  19. The two errors of using the within-subject standard deviation (WSD) as the standard error of a reliable change index.

    PubMed

    Maassen, Gerard H

    2010-08-01

    In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.

  20. Gender Differences in Numeracy in Indonesia: Evidence from a Longitudinal Dataset

    ERIC Educational Resources Information Center

    Suryadarma, Daniel

    2015-01-01

    This paper uses a rich longitudinal dataset to measure the evolution of the gender differences in numeracy among school-age children in Indonesia. Girls outperformed boys by 0.08 standard deviations when the sample was around 11 years old. Seven years later, the gap has widened to 0.19 standard deviations, equivalent to around 18 months of…

  1. A Survey Data Response to the Teaching of Utility Curves and Risk Aversion

    ERIC Educational Resources Information Center

    Hobbs, Jeffrey; Sharma, Vivek

    2011-01-01

    In many finance and economics courses as well as in practice, the concept of risk aversion is reduced to the standard deviation of returns, whereby risk-averse investors prefer to minimize their portfolios' standard deviations. In reality, the concept of risk aversion is richer and more interesting than this, and can easily be conveyed through…

  2. On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution

    ERIC Educational Resources Information Center

    Wagenmakers, Eric-Jan; Brown, Scott

    2007-01-01

    Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…

  3. A novel sorbent based on carbon nanotube/amino-functionalized sol-gel for the headspace solid-phase microextraction of α-bisabolol from medicinal plant samples using experimental design.

    PubMed

    Yarazavi, Mina; Noroozian, Ebrahim

    2018-02-13

    A novel sol-gel coating on a stainless-steel fiber was developed for the first time for the headspace solid-phase microextraction and determination of α-bisabolol with gas chromatography and flame ionization detection. The parameters influencing the efficiency of solid-phase microextraction process, such as extraction time and temperature, pH, and ionic strength, were optimized by the experimental design method. Under optimized conditions, the linear range was between 0.0027 and 100 μg/mL. The relative standard deviations determined at 0.01 and 1.0 μg/mL concentration levels (n = 3), respectively, were as follows: intraday relative standard deviations 3.4 and 3.3%; interday relative standard deviations 5.0 and 4.3%; and fiber-to-fiber relative standard deviations 6.0 and 3.5%. The relative recovery values were 90.3 and 101.4% at 0.01 and 1.0 μg/mL spiking levels, respectively. The proposed method was successfully applied to various real samples containing α-bisabolol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS).

    PubMed

    Weigel, Stefan; Peters, Ruud; Loeschner, Katrin; Grombe, Ringo; Linsinger, Thomas P J

    2017-08-01

    Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) promises fast and selective determination of nanoparticle size and number concentrations. While several studies on practical applications have been published, data on formal, especially interlaboratory validation of sp-ICP-MS, is sparse. An international interlaboratory study was organized to determine repeatability and reproducibility of the determination of the median particle size and particle number concentration of Ag nanoparticles (AgNPs) in chicken meat. Ten laboratories from the European Union, the USA, and Canada determined particle size and particle number concentration of two chicken meat homogenates spiked with polyvinylpyrrolidone (PVP)-stabilized AgNPs. For the determination of the median particle diameter, repeatability standard deviations of 2 and 5% were determined, and reproducibility standard deviations were 15 and 25%, respectively. The equivalent median diameter itself was approximately 60% larger than the diameter of the particles in the spiking solution. Determination of the particle number concentration was significantly less precise, with repeatability standard deviations of 7 and 18% and reproducibility standard deviations of 70 and 90%.

  5. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups

    PubMed Central

    Bala, Madhu; Goyal, Virender

    2014-01-01

    ABSTRACT Regards and Tribute: Late Dr Narender Hasija was a mentor and visionary in the light of knowledge and experience. We pay our regards with deepest gratitude to the departed soul to rest in peace. Bolton’s ratios help in estimating overbite, overjet relationships, the effects of contemplated extractions on posterior occlusion, incisor relationships and identification of occlusal misfit produced by tooth size discrepancies. Aim: To determine any difference in tooth size discrepancy in anterior as well as overall ratio in different malocclusions and comparison with Bolton’s study. Materials and methods: After measuring the teeth on all 100 patients, Bolton’s analysis was performed. Results were compared with Bolton’s means and standard deviations. The results were also subjected to statistical analysis. Results show that the mean and standard deviations of ideal occlusion cases are comparable with those Bolton but, when the mean and standard deviation of malocclusion groups are compared with those of Bolton, the values of standard deviation are higher, though the mean is comparable. How to cite this article: Hasija N, Bala M, Goyal V. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups. Int J Clin Pediatr Dent 2014;7(2):82-85. PMID:25356005

  6. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    USGS Publications Warehouse

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.

  7. Anthropometric measurement standardization in the US-affiliated pacific: Report from the Children's Healthy Living Program.

    PubMed

    Li, Fenfang; Wilkens, Lynne R; Novotny, Rachel; Fialkowski, Marie K; Paulino, Yvette C; Nelson, Randall; Bersamin, Andrea; Martin, Ursula; Deenik, Jonathan; Boushey, Carol J

    2016-05-01

    Anthropometric standardization is essential to obtain reliable and comparable data from different geographical regions. The purpose of this study is to describe anthropometric standardization procedures and findings from the Children's Healthy Living (CHL) Program, a study on childhood obesity in 11 jurisdictions in the US-Affiliated Pacific Region, including Alaska and Hawai'i. Zerfas criteria were used to compare the measurement components (height, waist, and weight) between each trainee and a single expert anthropometrist. In addition, intra- and inter-rater technical error of measurement (TEM), coefficient of reliability, and average bias relative to the expert were computed. From September 2012 to December 2014, 79 trainees participated in at least 1 of 29 standardization sessions. A total of 49 trainees passed either standard or alternate Zerfas criteria and were qualified to assess all three measurements in the field. Standard Zerfas criteria were difficult to achieve: only 2 of 79 trainees passed at their first training session. Intra-rater TEM estimates for the 49 trainees compared well with the expert anthropometrist. Average biases were within acceptable limits of deviation from the expert. Coefficient of reliability was above 99% for all three anthropometric components. Standardization based on comparison with a single expert ensured the comparability of measurements from the 49 trainees who passed the criteria. The anthropometric standardization process and protocols followed by CHL resulted in 49 standardized field anthropometrists and have helped build capacity in the health workforce in the Pacific Region. Am. J. Hum. Biol. 28:364-371, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Improving the quality of child anthropometry: Manual anthropometry in the Body Imaging for Nutritional Assessment Study (BINA).

    PubMed

    Conkle, Joel; Ramakrishnan, Usha; Flores-Ayala, Rafael; Suchdev, Parminder S; Martorell, Reynaldo

    2017-01-01

    Anthropometric data collected in clinics and surveys are often inaccurate and unreliable due to measurement error. The Body Imaging for Nutritional Assessment Study (BINA) evaluated the ability of 3D imaging to correctly measure stature, head circumference (HC) and arm circumference (MUAC) for children under five years of age. This paper describes the protocol for and the quality of manual anthropometric measurements in BINA, a study conducted in 2016-17 in Atlanta, USA. Quality was evaluated by examining digit preference, biological plausibility of z-scores, z-score standard deviations, and reliability. We calculated z-scores and analyzed plausibility based on the 2006 WHO Child Growth Standards (CGS). For reliability, we calculated intra- and inter-observer Technical Error of Measurement (TEM) and Intraclass Correlation Coefficient (ICC). We found low digit preference; 99.6% of z-scores were biologically plausible, with z-score standard deviations ranging from 0.92 to 1.07. Total TEM was 0.40 for stature, 0.28 for HC, and 0.25 for MUAC in centimeters. ICC ranged from 0.99 to 1.00. The quality of manual measurements in BINA was high and similar to that of the anthropometric data used to develop the WHO CGS. We attributed high quality to vigorous training, motivated and competent field staff, reduction of non-measurement error through the use of technology, and reduction of measurement error through adequate monitoring and supervision. Our anthropometry measurement protocol, which builds on and improves upon the protocol used for the WHO CGS, can be used to improve anthropometric data quality. The discussion illustrates the need to standardize anthropometric data quality assessment, and we conclude that BINA can provide a valuable evaluation of 3D imaging for child anthropometry because there is comparison to gold-standard, manual measurements.

  9. When things go pear shaped: contour variations of contacts

    NASA Astrophysics Data System (ADS)

    Utzny, Clemens

    2013-04-01

    Traditional control of critical dimensions (CD) on photolithographic masks considers the CD average and a measure for the CD variation such as the CD range or the standard deviation. Also systematic CD deviations from the mean such as CD signatures are subject to the control. These measures are valid for mask quality verification as long as patterns across a mask exhibit only size variations and no shape variation. The issue of shape variations becomes especially important in the context of contact holes on EUV masks. For EUV masks the CD error budget is much smaller than for standard optical masks. This means that small deviations from the contact shape can impact EUV waver prints in the sense that contact shape deformations induce asymmetric bridging phenomena. In this paper we present a detailed study of contact shape variations based on regular product data. Two data sets are analyzed: 1) contacts of varying target size and 2) a regularly spaced field of contacts. Here, the methods of statistical shape analysis are used to analyze CD SEM generated contour data. We demonstrate that contacts on photolithographic masks do not only show size variations but exhibit also pronounced nontrivial shape variations. In our data sets we find pronounced shape variations which can be interpreted as asymmetrical shape squeezing and contact rounding. Thus we demonstrate the limitations of classic CD measures for describing the feature variations on masks. Furthermore we show how the methods of statistical shape analysis can be used for quantifying the contour variations thus paving the way to a new understanding of mask linearity and its specification.

  10. Development and operation of a quality assurance system for deviations from standard operating procedures in a clinical cell therapy laboratory.

    PubMed

    McKenna, D; Kadidlo, D; Sumstad, D; McCullough, J

    2003-01-01

    Errors and accidents, or deviations from standard operating procedures, other policy, or regulations must be documented and reviewed, with corrective actions taken to assure quality performance in a cellular therapy laboratory. Though expectations and guidance for deviation management exist, a description of the framework for the development of such a program is lacking in the literature. Here we describe our deviation management program, which uses a Microsoft Access database and Microsoft Excel to analyze deviations and notable events, facilitating quality assurance (QA) functions and ongoing process improvement. Data is stored in a Microsoft Access database with an assignment to one of six deviation type categories. Deviation events are evaluated for potential impact on patient and product, and impact scores for each are determined using a 0- 4 grading scale. An immediate investigation occurs, and corrective actions are taken to prevent future similar events from taking place. Additionally, deviation data is collectively analyzed on a quarterly basis using Microsoft Excel, to identify recurring events or developing trends. Between January 1, 2001 and December 31, 2001 over 2500 products were processed at our laboratory. During this time period, 335 deviations and notable events occurred, affecting 385 products and/or patients. Deviations within the 'technical error' category were most common (37%). Thirteen percent of deviations had a patient and/or a product impact score > or = 2, a score indicating, at a minimum, potentially affected patient outcome or moderate effect upon product quality. Real-time analysis and quarterly review of deviations using our deviation management program allows for identification and correction of deviations. Monitoring of deviation trends allows for process improvement and overall successful functioning of the QA program in the cell therapy laboratory. Our deviation management program could serve as a model for other laboratories in need of such a program.

  11. Impact of bias-corrected reanalysis-derived lateral boundary conditions on WRF simulations

    NASA Astrophysics Data System (ADS)

    Moalafhi, Ditiro Benson; Sharma, Ashish; Evans, Jason Peter; Mehrotra, Rajeshwar; Rocheta, Eytan

    2017-08-01

    Lateral and lower boundary conditions derived from a suitable global reanalysis data set form the basis for deriving a dynamically consistent finer resolution downscaled product for climate and hydrological assessment studies. A problem with this, however, is that systematic biases have been noted to be present in the global reanalysis data sets that form these boundaries, biases which can be carried into the downscaled simulations thereby reducing their accuracy or efficacy. In this work, three Weather Research and Forecasting (WRF) model downscaling experiments are undertaken to investigate the impact of bias correcting European Centre for Medium range Weather Forecasting Reanalysis ERA-Interim (ERA-I) atmospheric temperature and relative humidity using Atmospheric Infrared Sounder (AIRS) satellite data. The downscaling is performed over a domain centered over southern Africa between the years 2003 and 2012. The sample mean and the mean as well as standard deviation at each grid cell for each variable are used for bias correction. The resultant WRF simulations of near-surface temperature and precipitation are evaluated seasonally and annually against global gridded observational data sets and compared with ERA-I reanalysis driving field. The study reveals inconsistencies between the impact of the bias correction prior to downscaling and the resultant model simulations after downscaling. Mean and standard deviation bias-corrected WRF simulations are, however, found to be marginally better than mean only bias-corrected WRF simulations and raw ERA-I reanalysis-driven WRF simulations. Performances, however, differ when assessing different attributes in the downscaled field. This raises questions about the efficacy of the correction procedures adopted.

  12. Ku-band radar threshold analysis

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Polydoros, A.

    1979-01-01

    The statistics of the CFAR threshold for the Ku-band radar was determined. Exact analytical results were developed for both the mean and standard deviations in the designated search mode. The mean value is compared to the results of a previously reported simulation. The analytical results are more optimistic than the simulation results, for which no explanation is offered. The normalized standard deviation is shown to be very sensitive to signal-to-noise ratio and very insensitive to the noise correlation present in the range gates of the designated search mode. The substantial variation in the CFAR threshold is dominant at large values of SNR where the normalized standard deviation is greater than 0.3. Whether or not this significantly affects the resulting probability of detection is a matter which deserves additional attention.

  13. Standard deviation analysis of the mastoid fossa temperature differential reading: a potential model for objective chiropractic assessment.

    PubMed

    Hart, John

    2011-03-01

    This study describes a model for statistically analyzing follow-up numeric-based chiropractic spinal assessments for an individual patient based on his or her own baseline. Ten mastoid fossa temperature differential readings (MFTD) obtained from a chiropractic patient were used in the study. The first eight readings served as baseline and were compared to post-adjustment readings. One of the two post-adjustment MFTD readings fell outside two standard deviations of the baseline mean and therefore theoretically represents improvement according to pattern analysis theory. This study showed how standard deviation analysis may be used to identify future outliers for an individual patient based on his or her own baseline data. Copyright © 2011 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  14. Effects of Random Shadings, Phasing Errors, and Element Failures on the Beam Patterns of Linear and Planar Arrays

    DTIC Science & Technology

    1980-03-14

    failure Sigmar (Or) in line 50, the standard deviation of the relative error of the weights Sigmap (o) in line 60, the standard deviation of the phase...200, the weight structures in the x and y coordinates Q in line 210, the probability of element failure Sigmar (Or) in line 220, the standard...NUMBER OF ELEMENTS =u;2*H 120 PRINT "Pr’obability of elemenit failure al;O 130 PRINT "Standard dtvi&t ion’ oe r.1&tive ýrror of wl; Sigmar 14 0 PRINT

  15. SU-E-I-59: Investigation of the Usefulness of a Standard Deviation and Mammary Gland Density as Indexes for Mammogram Classification.

    PubMed

    Takarabe, S; Yabuuchi, H; Morishita, J

    2012-06-01

    To investigate the usefulness of the standard deviation of pixel values in a whole mammary glands region and the percentage of a high- density mammary glands region to a whole mammary glands region as features for classification of mammograms into four categories based on the ACR BI-RADS breast composition. We used 36 digital mediolateral oblique view mammograms (18 patients) approved by our IRB. These images were classified into the four categories of breast compositions by an experienced breast radiologist and the results of the classification were regarded as a gold standard. First, a whole mammary region in a breast was divided into two regions such as a high-density mammary glands region and a low/iso-density mammary glands region by using a threshold value that was obtained from the pixel values corresponding to a pectoral muscle region. Then the percentage of a high-density mammary glands region to a whole mammary glands region was calculated. In addition, as a new method, the standard deviation of pixel values in a whole mammary glands region was calculated as an index based on the intermingling of mammary glands and fats. Finally, all mammograms were classified by using the combination of the percentage of a high-density mammary glands region and the standard deviation of each image. The agreement rates of the classification between our proposed method and gold standard was 86% (31/36). This result signified that our method has the potential to classify mammograms. The combination of the standard deviation of pixel values in a whole mammary glands region and the percentage of a high-density mammary glands region to a whole mammary glands region was available as features to classify mammograms based on the ACR BI- RADS breast composition. © 2012 American Association of Physicists in Medicine.

  16. 40 CFR 63.7951 - What reports must I submit and when?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the information in § 63.10(d)(5)(i). (5) If there were no deviations from any emissions limitations... that there were no deviations from the emissions limitations, work practice standards, or operation and...) For each deviation from an emissions limitation (including an operating limit) that occurs at an...

  17. Atomic clocks for geodesy.

    PubMed

    Mehlstäubler, Tanja E; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10 -17 , opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein's general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today's best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10 -18 , comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  18. Atomic clocks for geodesy

    NASA Astrophysics Data System (ADS)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  19. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less

  20. A Field-Portable Cell Analyzer without a Microscope and Reagents

    PubMed Central

    Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha

    2017-01-01

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm3 and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer (de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis. PMID:29286336

  1. Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    Here, a search for the associated production of the Higgs boson with a top quark pair (more » $$t\\bar{t}$$H) is reported. The search is performed in multilepton final states using a data set corresponding to an integrated luminosity of 36.1 fb -1 of proton-proton collision data recorded by the ATLAS experiment at a center-of-mass energy $$\\sqrt{s}$$ = 13 TeV at the Large Hadron Collider. Higgs boson decays to WW*, ττ, and ZZ* are targeted. Seven final states, categorized by the number and flavor of charged-lepton candidates, are examined for the presence of the Standard Model Higgs boson with a mass of 125 GeV and a pair of top quarks. An excess of events over the expected background from Standard Model processes is found with an observed significance of 4.1 standard deviations, compared to an expectation of 2.8 standard deviations. The best fit for the $$t\\bar{t}$$H production cross section is σ($$t\\bar{t}$$H) = $${790}_{-210}^{+230}$$ fb, in agreement with the Standard Model prediction of $${507}_{-50}^{+35}$$ fb. The combination of this result with other $$t\\bar{t}$$H searches from the ATLAS experiment using the Higgs boson decay modes to $$b\\bar{b}$$, γγ and ZZ* → 4ℓ, has an observed significance of 4.2 standard deviations, compared to an expectation of 3.8 standard deviations. This provides evidence for the $$t\\bar{t}$$H production mode.« less

  2. Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2018-04-09

    Here, a search for the associated production of the Higgs boson with a top quark pair (more » $$t\\bar{t}$$H) is reported. The search is performed in multilepton final states using a data set corresponding to an integrated luminosity of 36.1 fb -1 of proton-proton collision data recorded by the ATLAS experiment at a center-of-mass energy $$\\sqrt{s}$$ = 13 TeV at the Large Hadron Collider. Higgs boson decays to WW*, ττ, and ZZ* are targeted. Seven final states, categorized by the number and flavor of charged-lepton candidates, are examined for the presence of the Standard Model Higgs boson with a mass of 125 GeV and a pair of top quarks. An excess of events over the expected background from Standard Model processes is found with an observed significance of 4.1 standard deviations, compared to an expectation of 2.8 standard deviations. The best fit for the $$t\\bar{t}$$H production cross section is σ($$t\\bar{t}$$H) = $${790}_{-210}^{+230}$$ fb, in agreement with the Standard Model prediction of $${507}_{-50}^{+35}$$ fb. The combination of this result with other $$t\\bar{t}$$H searches from the ATLAS experiment using the Higgs boson decay modes to $$b\\bar{b}$$, γγ and ZZ* → 4ℓ, has an observed significance of 4.2 standard deviations, compared to an expectation of 3.8 standard deviations. This provides evidence for the $$t\\bar{t}$$H production mode.« less

  3. Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Ambroz, L.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Avramidou, R.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnea, R.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behera, A.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Bonilla, J. S.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Buschmann, E.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabras, G.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Cinca, D.; Cindro, V.; Cioarǎ, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Clark, A.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corrigan, E. E.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dahbi, S.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dreyer, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feickert, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, M.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores, L. M.; Flores Castillo, L. R.; Fomin, N.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Freund, W. S.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasnikova, K.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giulini, M.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonnella, F.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Goy, C.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Graham, E. C.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guerguichon, A.; Guescini, F.; Guest, D.; Gueta, O.; Gugel, R.; Gui, B.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Han, K.; Han, L.; Han, S.; Hanagaki, K.; Hance, M.; Handl, D. M.; Haney, B.; Hankache, R.; Hanke, P.; Hansen, E.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Hohov, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Horyn, L. A.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Hupe, A. M.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iguchi, R.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakel, G.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Junggeburth, J. J.; Juste Rozas, A.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanjir, L.; Kano, Y.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kiehn, M.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laudrain, A.; Law, A. T.; Laycock, P.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Leight, W. A.; Leisos, A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.-Q.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J. B.; Liu, K.; Liu, M.; Liu, P.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McKay, M. A.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meadows, Z. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murin, P.; Murray, W. J.; Murrone, A.; Muškinja, M.; Mwewa, C.; Myagkov, A. G.; Myers, J.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Novotny, R.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Ojeda, M. L.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver, J. L.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orgill, E. C.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parida, B.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Pham, T.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pitt, M.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Qureshi, A.; Radeka, V.; Radhakrishnan, S. K.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rivera Vergara, J. C.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Rodríguez Vera, A. M.; Roe, S.; Rogan, C. S.; Røhne, O.; Röhrig, R.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rossini, L.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Pineda, A.; Sandaker, H.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sasaki, O.; Sato, K.; Sauvan, E.; Savard, P.; Savic, N.; Sawada, R.; Sawyer, C.; Sawyer, L.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaeffer, J.; Schaepe, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillaci, Z. M.; Schillo, C.; Schioppa, E. J.; Schioppa, M.; Schleicher, K. E.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultz-Coulon, H.-C.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Scyboz, L. M.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shahinian, J. D.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Sharma, A. S.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silva, M.; Silverstein, S. B.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffa, A. M.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, W.; Sopczak, A.; Sopkova, F.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoicea, G.; Stolte, P.; Stonjek, S.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, D. M. S.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sydorenko, A.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarek Abouelfadl Mohamed, A. T.; Tarem, S.; Tarna, G.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Vecchio, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von Buddenbrock, S. E.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, A. M.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yajima, K.; Yallup, D. P.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, S.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zhulanov, V.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-04-01

    A search for the associated production of the Higgs boson with a top quark pair (t t ¯H ) is reported. The search is performed in multilepton final states using a data set corresponding to an integrated luminosity of 36.1 fb-1 of proton-proton collision data recorded by the ATLAS experiment at a center-of-mass energy √{s }=13 TeV at the Large Hadron Collider. Higgs boson decays to W W*, τ τ , and Z Z* are targeted. Seven final states, categorized by the number and flavor of charged-lepton candidates, are examined for the presence of the Standard Model Higgs boson with a mass of 125 GeV and a pair of top quarks. An excess of events over the expected background from Standard Model processes is found with an observed significance of 4.1 standard deviations, compared to an expectation of 2.8 standard deviations. The best fit for the t t ¯H production cross section is σ (t t ¯H )=79 0-210+230 fb , in agreement with the Standard Model prediction of 50 7-50+35 fb . The combination of this result with other t t ¯H searches from the ATLAS experiment using the Higgs boson decay modes to b b ¯, γ γ and Z Z*→4 ℓ, has an observed significance of 4.2 standard deviations, compared to an expectation of 3.8 standard deviations. This provides evidence for the t t ¯H production mode.

  4. WASP (Write a Scientific Paper) using Excel -5: Quartiles and standard deviation.

    PubMed

    Grech, Victor

    2018-03-01

    The almost inevitable descriptive statistics exercise that is undergone once data collection is complete, prior to inferential statistics, requires the acquisition of basic descriptors which may include standard deviation and quartiles. This paper provides pointers as to how to do this in Microsoft Excel™ and explains the relationship between the two. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Validation Test Report for GDEM4

    DTIC Science & Technology

    2010-08-19

    standard deviations called the Generalized Digital Environmental Model ( GDEM ). The present document describes the development and evaluation of GDEM4...the newest version of GDEM . As part of the evaluation of GDEM4, comparisons are made in this report to GDEM3 and to four other ocean climatologies...depth climatology of temperature and salinity and their standard deviations called the Generalized Digital Environmental Model ( GDEM ). The history of

  6. 40 CFR 91.508 - Cumulative Sum (CumSum) procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family may be determined to be in noncompliance for purposes of § 91.510. H = The Action Limit. It is 5.0 × σ, and is a function of the standard deviation, σ. σ = is the sample standard deviation and is... Equation must be final deteriorated test results as defined in § 91.509(c). Ci = max[0 0R (Ci-1 + Xi − (FEL...

  7. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  8. A laboratory and field evaluation of a portable immunoassay test for triazine herbicides in environmental water samples

    USGS Publications Warehouse

    Schulze, P.A.; Capel, P.D.; Squillace, P.J.; Helsel, D.R.

    1993-01-01

    The usefulness and sensitivity, of a portable immunoassay test for the semiquantitative field screening of water samples was evaluated by means of laboratory and field studies. Laboratory results indicated that the tests were useful for the determination of atrazine concentrations of 0.1 to 1.5 μg/L. At a concentration of 1 μg/L, the relative standard deviation in the difference between the regression line and the actual result was about 40 percent. The immunoassay was less sensitive and produced similar errors for other triazine herbicides. After standardization, the test results were relatively insensitive to ionic content and variations in pH (range, 4 to 10), mildly sensitive to temperature changes, and quite sensitive to the timing of the final incubation step, variances in timing can be a significant source of error. Almost all of the immunoassays predicted a higher atrazine concentration in water samples when compared to results of gas chromatography. If these tests are used as a semiquantitative screening tool, this tendency for overprediction does not diminish the tests' usefulness. Generally, the tests seem to be a valuable method for screening water samples for triazine herbicides.

  9. Interstellar Pickup Ion Acceleration in the Turbulent Magnetic Field at the Solar Wind Termination Shock Using a Focused Transport Approach

    NASA Astrophysics Data System (ADS)

    Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  10. Large scale structure from the Higgs fields of the supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, M.; di Clemente, V.; King, S. F.

    2003-05-01

    We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, |n-1|˜0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum.

  11. Processing of meteorological data with ultrasonic thermoanemometers

    NASA Astrophysics Data System (ADS)

    Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.

    2017-11-01

    The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.

  12. Interlaboratory Comparison of Magnetic Thin Film Measurements.

    PubMed

    da Silva, F C S; Wang, C M; Pappas, D P

    2003-01-01

    A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment m s, the remanent moment m r, and the intrinsic coercivity H c of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (m r/m s > 90 %), H c ≈ 400 A·m(-1) (5 Oe), and m s ≈ 2 × 10(-7) A·m(2) (2 × 10(-4) emu).

  13. [Effect strength variation in the single group pre-post study design: a critical review].

    PubMed

    Maier-Riehle, B; Zwingmann, C

    2000-08-01

    In Germany, studies in rehabilitation research--in particular evaluation studies and examinations of quality of outcome--have so far mostly been executed according to the uncontrolled one-group pre-post design. Assessment of outcome is usually made by comparing the pre- and post-treatment means of the outcome variables. The pre-post differences are checked, and in case of significance, the results are increasingly presented in form of effect sizes. For this reason, this contribution presents different effect size indices used for the one-group pre-post design--in spite of fundamental doubts which exist in relation to that design due to its limited internal validity. The numerator concerning all effect size indices of the one-group pre-post design is defined as difference between the pre- and post-treatment means, whereas there are different possibilities and recommendations with regard to the denominator and hence the standard deviation that serves as the basis for standardizing the difference of the means. Used above all are standardization oriented towards the standard deviation of the pre-treatment scores, standardization oriented towards the pooled standard deviation of the pre- and post-treatment scores, and standardization oriented towards the standard deviation of the pre-post differences. Two examples are given to demonstrate that the different modes of calculating effect size indices in the one-group pre-post design may lead to very different outcome patterns. Additionally, it is pointed out that effect sizes from the uncontrolled one-group pre-post design generally tend to be higher than effect sizes from studies conducted with control groups. Finally, the pros and cons of the different effect size indices are discussed and recommendations are given.

  14. Process gg{yields}h{sub 0}{yields}{gamma}{gamma} in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, F.; Underwood, T. E. J.; Zwicky, R.

    2008-01-01

    The process gg{yields}h{sub 0}{yields}{gamma}{gamma} is studied in the Lee-Wick extension of the standard model (LWSM) proposed by Grinstein, O'Connell, and Wise. In this model, negative norm partners for each SM field are introduced with the aim to cancel quadratic divergences in the Higgs mass. All sectors of the model relevant to gg{yields}h{sub 0}{yields}{gamma}{gamma} are diagonalized and results are commented on from the perspective of both the Lee-Wick and higher-derivative formalisms. Deviations from the SM rate for gg{yields}h{sub 0} are found to be of the order of 15%-5% for Lee-Wick masses in the range 500-1000 GeV. Effects on the rate formore » h{sub 0}{yields}{gamma}{gamma} are smaller, of the order of 5%-1% for Lee-Wick masses in the same range. These comparatively small changes may well provide a means of distinguishing the LWSM from other models such as universal extra dimensions where same-spin partners to standard model fields also appear. Corrections to determinations of Cabibbo-Kobayashi-Maskawa (CKM) elements |V{sub t(b,s,d)}| are also considered and are shown to be positive, allowing the possibility of measuring a CKM element larger than unity, a characteristic signature of the ghostlike nature of the Lee-Wick fields.« less

  15. Glaucoma progression detection with frequency doubling technology (FDT) compared to standard automated perimetry (SAP) in the Groningen Longitudinal Glaucoma Study.

    PubMed

    Wesselink, Christiaan; Jansonius, Nomdo M

    2017-09-01

    To determine the usefulness of frequency doubling perimetry (FDT) for progression detection in glaucoma, compared to standard automated perimetry (SAP). Data were used from 150 eyes of 150 glaucoma patients from the Groningen Longitudinal Glaucoma Study. After baseline, SAP was performed approximately yearly; FDT every other year. First and last visit had to contain both tests. Using linear regression, progression velocities were calculated for SAP (Humphrey Field Analyzer) mean deviation (MD) and FDT MD and the number of test locations with a total deviation probability below p < 0.01 (TD). Progression velocity tertiles were determined and eyes were classified as slowly, intermediately, or fast progressing for both techniques. Comparison between SAP and FDT classifications were made using a Mantel Haenszel chi-square test. Longitudinal signal-to-noise ratios (LSNRs) were calculated, per patient and per technique, defined as progression velocity divided by the standard deviation of the residuals. Mean (SD) follow-up was 6.4 (1.7) years; median (interquartile range [IQR]) baseline SAP MD -6.6 (-14.2 to -3.6) dB. On average 8.2 and 4.5 tests were performed for SAP and FDT, respectively. Median (IQR) MD slope was -0.16 (-0.46 to +0.02) dB/year for SAP and -0.05 (-0.39 to +0.17) dB/year for FDT. Mantel Haenszel chi-squares of SAP MD vs FDT MD and TD were 12.5 (p < 0.001) and 15.8 (p < 0.001), respectively. LSNRs for SAP MD (median -0.17 yr -1 ) were better than those for FDT MD (-0.04 yr -1 ; p = 0.010). FDT may be a useful technique for monitoring glaucoma progression in patients who cannot perform SAP reliably. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  16. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  17. Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  18. Effect of extreme sea surface temperature events on the demography of an age-structured albatross population.

    PubMed

    Pardo, Deborah; Jenouvrier, Stéphanie; Weimerskirch, Henri; Barbraud, Christophe

    2017-06-19

    Climate changes include concurrent changes in environmental mean, variance and extremes, and it is challenging to understand their respective impact on wild populations, especially when contrasted age-dependent responses to climate occur. We assessed how changes in mean and standard deviation of sea surface temperature (SST), frequency and magnitude of warm SST extreme climatic events (ECE) influenced the stochastic population growth rate log( λ s ) and age structure of a black-browed albatross population. For changes in SST around historical levels observed since 1982, changes in standard deviation had a larger (threefold) and negative impact on log( λ s ) compared to changes in mean. By contrast, the mean had a positive impact on log( λ s ). The historical SST mean was lower than the optimal SST value for which log( λ s ) was maximized. Thus, a larger environmental mean increased the occurrence of SST close to this optimum that buffered the negative effect of ECE. This 'climate safety margin' (i.e. difference between optimal and historical climatic conditions) and the specific shape of the population growth rate response to climate for a species determine how ECE affect the population. For a wider range in SST, both the mean and standard deviation had negative impact on log( λ s ), with changes in the mean having a greater effect than the standard deviation. Furthermore, around SST historical levels increases in either mean or standard deviation of the SST distribution led to a younger population, with potentially important conservation implications for black-browed albatrosses.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  19. Is standard deviation of daily PM2.5 concentration associated with respiratory mortality?

    PubMed

    Lin, Hualiang; Ma, Wenjun; Qiu, Hong; Vaughn, Michael G; Nelson, Erik J; Qian, Zhengmin; Tian, Linwei

    2016-09-01

    Studies on health effects of air pollution often use daily mean concentration to estimate exposure while ignoring daily variations. This study examined the health effects of daily variation of PM2.5. We calculated daily mean and standard deviations of PM2.5 in Hong Kong between 1998 and 2011. We used a generalized additive model to estimate the association between respiratory mortality and daily mean and variation of PM2.5, as well as their interaction. We controlled for potential confounders, including temporal trends, day of the week, meteorological factors, and gaseous air pollutants. Both daily mean and standard deviation of PM2.5 were significantly associated with mortalities from overall respiratory diseases and pneumonia. Each 10 μg/m(3) increment in daily mean concentration at lag 2 day was associated with a 0.61% (95% CI: 0.19%, 1.03%) increase in overall respiratory mortality and a 0.67% (95% CI: 0.14%, 1.21%) increase in pneumonia mortality. And a 10 μg/m(3) increase in standard deviation at lag 1 day corresponded to a 1.40% (95% CI: 0.35%, 2.46%) increase in overall respiratory mortality, and a 1.80% (95% CI: 0.46%, 3.16%) increase in pneumonia mortality. We also observed a positive but non-significant synergistic interaction between daily mean and variation on respiratory mortality and pneumonia mortality. However, we did not find any significant association with mortality from chronic obstructive pulmonary diseases. Our study suggests that, besides mean concentration, the standard deviation of PM2.5 might be one potential predictor of respiratory mortality in Hong Kong, and should be considered when assessing the respiratory effects of PM2.5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Assessment issues in the testing of children at school entry.

    PubMed

    Rock, Donald A; Stenner, A Jackson

    2005-01-01

    The authors introduce readers to the research documenting racial and ethnic gaps in school readiness. They describe the key tests, including the Peabody Picture Vocabulary Test (PPVT), the Early Childhood Longitudinal Study (ECLS), and several intelligence tests, and describe how they have been administered to several important national samples of children. Next, the authors review the different estimates of the gaps and discuss how to interpret these differences. In interpreting test results, researchers use the statistical term "standard deviation" to compare scores across the tests. On average, the tests find a gap of about 1 standard deviation. The ECLS-K estimate is the lowest, about half a standard deviation. The PPVT estimate is the highest, sometimes more than 1 standard deviation. When researchers adjust those gaps statistically to take into account different outside factors that might affect children's test scores, such as family income or home environment, the gap narrows but does not disappear. Why such different estimates of the gap? The authors consider explanations such as differences in the samples, racial or ethnic bias in the tests, and whether the tests reflect different aspects of school "readiness," and conclude that none is likely to explain the varying estimates. Another possible explanation is the Spearman Hypothesis-that all tests are imperfect measures of a general ability construct, g; the more highly a given test correlates with g, the larger the gap will be. But the Spearman Hypothesis, too, leaves questions to be investigated. A gap of 1 standard deviation may not seem large, but the authors show clearly how it results in striking disparities in the performance of black and white students and why it should be of serious concern to policymakers.

  1. Single-Station Sigma for the Iranian Strong Motion Stations

    NASA Astrophysics Data System (ADS)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  2. Improving IQ measurement in intellectual disabilities using true deviation from population norms

    PubMed Central

    2014-01-01

    Background Intellectual disability (ID) is characterized by global cognitive deficits, yet the very IQ tests used to assess ID have limited range and precision in this population, especially for more impaired individuals. Methods We describe the development and validation of a method of raw z-score transformation (based on general population norms) that ameliorates floor effects and improves the precision of IQ measurement in ID using the Stanford Binet 5 (SB5) in fragile X syndrome (FXS; n = 106), the leading inherited cause of ID, and in individuals with idiopathic autism spectrum disorder (ASD; n = 205). We compared the distributional characteristics and Q-Q plots from the standardized scores with the deviation z-scores. Additionally, we examined the relationship between both scoring methods and multiple criterion measures. Results We found evidence that substantial and meaningful variation in cognitive ability on standardized IQ tests among individuals with ID is lost when converting raw scores to standardized scaled, index and IQ scores. Use of the deviation z- score method rectifies this problem, and accounts for significant additional variance in criterion validation measures, above and beyond the usual IQ scores. Additionally, individual and group-level cognitive strengths and weaknesses are recovered using deviation scores. Conclusion Traditional methods for generating IQ scores in lower functioning individuals with ID are inaccurate and inadequate, leading to erroneously flat profiles. However assessment of cognitive abilities is substantially improved by measuring true deviation in performance from standardization sample norms. This work has important implications for standardized test development, clinical assessment, and research for which IQ is an important measure of interest in individuals with neurodevelopmental disorders and other forms of cognitive impairment. PMID:26491488

  3. Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.

    PubMed

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  4. Improving IQ measurement in intellectual disabilities using true deviation from population norms.

    PubMed

    Sansone, Stephanie M; Schneider, Andrea; Bickel, Erika; Berry-Kravis, Elizabeth; Prescott, Christina; Hessl, David

    2014-01-01

    Intellectual disability (ID) is characterized by global cognitive deficits, yet the very IQ tests used to assess ID have limited range and precision in this population, especially for more impaired individuals. We describe the development and validation of a method of raw z-score transformation (based on general population norms) that ameliorates floor effects and improves the precision of IQ measurement in ID using the Stanford Binet 5 (SB5) in fragile X syndrome (FXS; n = 106), the leading inherited cause of ID, and in individuals with idiopathic autism spectrum disorder (ASD; n = 205). We compared the distributional characteristics and Q-Q plots from the standardized scores with the deviation z-scores. Additionally, we examined the relationship between both scoring methods and multiple criterion measures. We found evidence that substantial and meaningful variation in cognitive ability on standardized IQ tests among individuals with ID is lost when converting raw scores to standardized scaled, index and IQ scores. Use of the deviation z- score method rectifies this problem, and accounts for significant additional variance in criterion validation measures, above and beyond the usual IQ scores. Additionally, individual and group-level cognitive strengths and weaknesses are recovered using deviation scores. Traditional methods for generating IQ scores in lower functioning individuals with ID are inaccurate and inadequate, leading to erroneously flat profiles. However assessment of cognitive abilities is substantially improved by measuring true deviation in performance from standardization sample norms. This work has important implications for standardized test development, clinical assessment, and research for which IQ is an important measure of interest in individuals with neurodevelopmental disorders and other forms of cognitive impairment.

  5. Validation of 10 years of SAO OMI Ozone Profiles with Ozonesonde and MLS Observations

    NASA Astrophysics Data System (ADS)

    Huang, G.; Liu, X.; Chance, K.; Bhartia, P. K.

    2015-12-01

    To evaluate the accuracy and long-term stability of the SAO OMI ozone profile product, we validate ~10 years of ozone profile product (Oct. 2004-Dec. 2014) against collocated ozonesonde and MLS data. Ozone profiles as well stratospheric, tropospheric, lower tropospheric ozone columns are compared with ozonesonde data for different latitude bands, and time periods (e.g., 2004-2008/2009-2014 for without/with row anomaly. The mean biases and their standard deviations are also assessed as a function of time to evaluate the long-term stability and bias trends. In the mid-latitude and tropical regions, OMI generally shows good agreement with ozonesonde observations. The mean ozone profile biases are generally within 6% with up to 30% standard deviations. The biases of stratospheric ozone columns (SOC) and tropospheric ozone columns (TOC) are -0.3%-2.2% and -0.2%-3%, while standard deviations are 3.9%-5.8% and 14.4%-16.0%, respectively. However, the retrievals during 2009-2014 show larger standard deviations and larger temporal variations; the standard deviations increase by ~5% in the troposphere and ~2% in the stratosphere. Retrieval biases at individual levels in the stratosphere and upper troposphere show statistically significant trends and different trends for 2004-2008 and 2009-2014 periods. The trends in integrated ozone partial columns are less significant due to cancellation from various layers, except for significant trend in tropical SOC. These results suggest the need to perform time dependent radiometric calibration to maintain the long-term stability of this product. Similarly, we are comparing the OMI stratospheric ozone profiles and SOC with collocated MLS data, and the results will be reported.

  6. [The heterogeneity of blood flow on magnetic resonance imaging: a biomarker for grading cerebral astrocytomas].

    PubMed

    Revert Ventura, A J; Sanz Requena, R; Martí-Bonmatí, L; Pallardó, Y; Jornet, J; Gaspar, C

    2014-01-01

    To study whether the histograms of quantitative parameters of perfusion in MRI obtained from tumor volume and peritumor volume make it possible to grade astrocytomas in vivo. We included 61 patients with histological diagnoses of grade II, III, or IV astrocytomas who underwent T2*-weighted perfusion MRI after intravenous contrast agent injection. We manually selected the tumor volume and peritumor volume and quantified the following perfusion parameters on a voxel-by-voxel basis: blood volume (BV), blood flow (BF), mean transit time (TTM), transfer constant (K(trans)), washout coefficient, interstitial volume, and vascular volume. For each volume, we obtained the corresponding histogram with its mean, standard deviation, and kurtosis (using the standard deviation and kurtosis as measures of heterogeneity) and we compared the differences in each parameter between different grades of tumor. We also calculated the mean and standard deviation of the highest 10% of values. Finally, we performed a multiparametric discriminant analysis to improve the classification. For tumor volume, we found statistically significant differences among the three grades of tumor for the means and standard deviations of BV, BF, and K(trans), both for the entire distribution and for the highest 10% of values. For the peritumor volume, we found no significant differences for any parameters. The discriminant analysis improved the classification slightly. The quantification of the volume parameters of the entire region of the tumor with BV, BF, and K(trans) is useful for grading astrocytomas. The heterogeneity represented by the standard deviation of BF is the most reliable diagnostic parameter for distinguishing between low grade and high grade lesions. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  7. Relationship of Hotspots to the Distribution of Surficial Surf-Zone Sediments along the Outer Banks of North Carolina

    NASA Astrophysics Data System (ADS)

    Schupp, C. A.; McNinch, J. E.; List, J. H.; Farris, A. S.

    2002-12-01

    The formation and behavior of hotspots, or sections of the beach that exhibit markedly higher shoreline change rates than adjacent regions, are poorly understood. Several hotspots have been identified on the Outer Banks, a developed barrier island in North Carolina. To better understand hotspot dynamics and the potential relationship to the geologic framework in which they occur, the surf zone between Duck and Bodie Island was surveyed in June 2002 as part of a research effort supported by the U.S. Geological Survey and U.S. Army Corps of Engineers. Swath bathymetry, sidescan sonar, and chirp seismic were used to characterize a region 40 km long and1 km wide. Hotspot locations were pinpointed using standard deviation values for shoreline position as determined by monthly SWASH buggy surveys of the mean high water contour between October 1999 and September 2002. Observational data and sidescan images were mapped to delineate regions of surficial sediment distributions, and regions of interest were ground-truthed via grab samples or visual inspection. General kilometer-scale correlation between acoustic backscatter and high shoreline standard deviation is evident. Acoustic returns are uniform in a region of Duck where standard deviation is low, but backscatter is patchy around the Kitty Hawk hotspot, where standard deviation is higher. Based on ground-truthing of an area further north, these patches are believed to be an older ravinement surface of fine sediment. More detailed analyses of the correlation between acoustic data, standard deviation, and hotspot locations will be presented. Future work will include integration of seismic, bathymetric, and sidescan data to better understand the links between sub-bottom geology, temporal changes in surficial sediments, surf-zone sediment budgets, and short-term changes in shoreline position and morphology.

  8. Method of reducing multipole content in a conductor assembly during manufacture

    DOEpatents

    Meinke, Rainer [Melbourne, FL

    2011-08-09

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.

  9. Method of reducing multipole content in a conductor assembly during manufacture

    DOEpatents

    Meinke, Rainer

    2013-08-20

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.

  10. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  11. Influence of eye micromotions on spatially resolved refractometry

    NASA Astrophysics Data System (ADS)

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Osipova, Irina Y.

    2001-01-01

    The influence eye micromotions on the accuracy of estimation of Zernike coefficients form eye transverse aberration measurements was investigated. By computer modeling, the following found eye aberrations have been examined: defocusing, primary astigmatism, spherical aberration of the 3rd and the 5th orders, as well as their combinations. It was determined that the standard deviation of estimated Zernike coefficients is proportional to the standard deviation of angular eye movements. Eye micromotions cause the estimation errors of Zernike coefficients of present aberrations and produce the appearance of Zernike coefficients of aberrations, absent in the eye. When solely defocusing is present, the biggest errors, cased by eye micromotions, are obtained for aberrations like coma and astigmatism. In comparison with other aberrations, spherical aberration of the 3rd and the 5th orders evokes the greatest increase of the standard deviation of other Zernike coefficients.

  12. Micromachined piconewton force sensor for biophysics investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.

    2006-10-23

    We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  13. Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging

    NASA Astrophysics Data System (ADS)

    Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.-C.

    2017-11-01

    The standard-model extension (SME) is an effective field theory framework aiming at parametrizing any violation to the Lorentz symmetry (LS) in all sectors of physics. In this Letter, we report the first direct experimental measurement of SME coefficients performed simultaneously within two sectors of the SME framework using lunar laser ranging observations. We consider the pure gravitational sector and the classical point-mass limit in the matter sector of the minimal SME. We report no deviation from general relativity and put new realistic stringent constraints on LS violations improving up to 3 orders of magnitude previous estimations.

  14. Graded bit patterned magnetic arrays fabricated via angled low-energy He ion irradiation.

    PubMed

    Chang, L V; Nasruallah, A; Ruchhoeft, P; Khizroev, S; Litvinov, D

    2012-07-11

    A bit patterned magnetic array based on Co/Pd magnetic multilayers with a binary perpendicular magnetic anisotropy distribution was fabricated. The binary anisotropy distribution was attained through angled helium ion irradiation of a bit edge using hydrogen silsesquioxane (HSQ) resist as an ion stopping layer to protect the rest of the bit. The viability of this technique was explored numerically and evaluated through magnetic measurements of the prepared bit patterned magnetic array. The resulting graded bit patterned magnetic array showed a 35% reduction in coercivity and a 9% narrowing of the standard deviation of the switching field.

  15. feets: feATURE eXTRACTOR for tIME sERIES

    NASA Astrophysics Data System (ADS)

    Cabral, Juan; Sanchez, Bruno; Ramos, Felipe; Gurovich, Sebastián; Granitto, Pablo; VanderPlas, Jake

    2018-06-01

    feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

  16. Parameter estimation method and updating of regional prediction equations for ungaged sites in the desert region of California

    USGS Publications Warehouse

    Barth, Nancy A.; Veilleux, Andrea G.

    2012-01-01

    The U.S. Geological Survey (USGS) is currently updating at-site flood frequency estimates for USGS streamflow-gaging stations in the desert region of California. The at-site flood-frequency analysis is complicated by short record lengths (less than 20 years is common) and numerous zero flows/low outliers at many sites. Estimates of the three parameters (mean, standard deviation, and skew) required for fitting the log Pearson Type 3 (LP3) distribution are likely to be highly unreliable based on the limited and heavily censored at-site data. In a generalization of the recommendations in Bulletin 17B, a regional analysis was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the LP3 distribution. A regional skew value of zero from a previously published report was used with a new estimated mean squared error (MSE) of 0.20. A weighted least squares (WLS) regression method was used to develop both a regional standard deviation and a mean model based on annual peak-discharge data for 33 USGS stations throughout California’s desert region. At-site standard deviation and mean values were determined by using an expected moments algorithm (EMA) method for fitting the LP3 distribution to the logarithms of annual peak-discharge data. Additionally, a multiple Grubbs-Beck (MGB) test, a generalization of the test recommended in Bulletin 17B, was used for detecting multiple potentially influential low outliers in a flood series. The WLS regression found that no basin characteristics could explain the variability of standard deviation. Consequently, a constant regional standard deviation model was selected, resulting in a log-space value of 0.91 with a MSE of 0.03 log units. Yet drainage area was found to be statistically significant at explaining the site-to-site variability in mean. The linear WLS regional mean model based on drainage area had a Pseudo- 2 R of 51 percent and a MSE of 0.32 log units. The regional parameter estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final equations are functions of drainage area.Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent.

  17. Search for the Standard Model Higgs Boson Produced through Vector Boson Fusion and Decaying to $$\\mathrm{b\\bar{b}}$$

    DOE PAGES

    Khachatryan, Vardan

    2015-08-27

    A first search is reported for a standard model Higgs boson (H) that is produced through vector boson fusion and decays to a bottom-quark pair. Two data samples, corresponding to integrated luminosities of 19.8 fb -1 and 18.3 fb -1 of proton-proton collisions at √s=8 TeV were selected for this channel at the CERN LHC. The observed significance in these data samples for a H→more » $$\\mathrm{b\\bar{b}}$$ signal at a mass of 125 GeV is 2.2 standard deviations, while the expected significance is 0.8 standard deviations. The fitted signal strength μ=σ/σ SM=2.8 +1.6 -1.4. The combination of this result with other CMS searches for the Higgs boson decaying to a b-quark pair yields a signal strength of 1.0±0.4, corresponding to a signal significance of 2.6 standard deviations for a Higgs boson mass of 125 GeV.« less

  18. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  19. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    NASA Astrophysics Data System (ADS)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  20. Robust tissue-air volume segmentation of MR images based on the statistics of phase and magnitude: Its applications in the display of susceptibility-weighted imaging of the brain.

    PubMed

    Du, Yiping P; Jin, Zhaoyang

    2009-10-01

    To develop a robust algorithm for tissue-air segmentation in magnetic resonance imaging (MRI) using the statistics of phase and magnitude of the images. A multivariate measure based on the statistics of phase and magnitude was constructed for tissue-air volume segmentation. The standard deviation of first-order phase difference and the standard deviation of magnitude were calculated in a 3 x 3 x 3 kernel in the image domain. To improve differentiation accuracy, the uniformity of phase distribution in the kernel was also calculated and linear background phase introduced by field inhomogeneity was corrected. The effectiveness of the proposed volume segmentation technique was compared to a conventional approach that uses the magnitude data alone. The proposed algorithm was shown to be more effective and robust in volume segmentation in both synthetic phantom and susceptibility-weighted images of human brain. Using our proposed volume segmentation method, veins in the peripheral regions of the brain were well depicted in the minimum-intensity projection of the susceptibility-weighted images. Using the additional statistics of phase, tissue-air volume segmentation can be substantially improved compared to that using the statistics of magnitude data alone. (c) 2009 Wiley-Liss, Inc.

  1. Intra-operative ultrasound-based augmented reality guidance for laparoscopic surgery.

    PubMed

    Singla, Rohit; Edgcumbe, Philip; Pratt, Philip; Nguan, Christopher; Rohling, Robert

    2017-10-01

    In laparoscopic surgery, the surgeon must operate with a limited field of view and reduced depth perception. This makes spatial understanding of critical structures difficult, such as an endophytic tumour in a partial nephrectomy. Such tumours yield a high complication rate of 47%, and excising them increases the risk of cutting into the kidney's collecting system. To overcome these challenges, an augmented reality guidance system is proposed. Using intra-operative ultrasound, a single navigation aid, and surgical instrument tracking, four augmentations of guidance information are provided during tumour excision. Qualitative and quantitative system benefits are measured in simulated robot-assisted partial nephrectomies. Robot-to-camera calibration achieved a total registration error of 1.0 ± 0.4 mm while the total system error is 2.5 ± 0.5 mm. The system significantly reduced healthy tissue excised from an average (±standard deviation) of 30.6 ± 5.5 to 17.5 ± 2.4 cm 3 ( p < 0.05) and reduced the depth from the tumor underside to cut from an average (±standard deviation) of 10.2 ± 4.1 to 3.3 ± 2.3 mm ( p < 0.05). Further evaluation is required in vivo, but the system has promising potential to reduce the amount of healthy parenchymal tissue excised.

  2. Deviation Management: Key Management Subsystem Driver of Knowledge-Based Continuous Improvement in the Henry Ford Production System.

    PubMed

    Zarbo, Richard J; Copeland, Jacqueline R; Varney, Ruan C

    2017-10-01

    To develop a business subsystem fulfilling International Organization for Standardization 15189 nonconformance management regulatory standard, facilitating employee engagement in problem identification and resolution to effect quality improvement and risk mitigation. From 2012 to 2016, the integrated laboratories of the Henry Ford Health System used a quality technical team to develop and improve a management subsystem designed to identify, track, trend, and summarize nonconformances based on frequency, risk, and root cause for elimination at the level of the work. Programmatic improvements and training resulted in markedly increased documentation culminating in 71,641 deviations in 2016 classified by a taxonomy of 281 defect types into preanalytic (74.8%), analytic (23.6%), and postanalytic (1.6%) testing phases. The top 10 deviations accounted for 55,843 (78%) of the total. Deviation management is a key subsystem of managers' standard work whereby knowledge of nonconformities assists in directing corrective actions and continuous improvements that promote consistent execution and higher levels of performance. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. [Determination of acetochlor and oxyfluorfen by capillary gas chromatography].

    PubMed

    Xiang, Wen-Sheng; Wang, Xiang-Jing; Wang, Jing; Wang, Qing

    2002-09-01

    A method is described for the determination of acetochlor and oxyfluorfen by capillary gas chromatography with FID and an SE-30 capillary column (60 m x 0.53 mm i. d., 1.5 microm), using dibutyl phthalate as the internal standard. The standard deviations for acetochlor and oxyfluorfen concentration(mass fraction) were 0.44% and 0.47% respectively. The relative standard deviations for acetochlor and oxyfluorfen were 0.79% and 0.88% and the average recoveries for acetochlor and oxyfluorfen were 99.3% and 101.1% respectively. The method is simple, rapid and accurate.

  4. U.S. Navy Marine Climatic Atlas of the World. Volume IX. World-Wide Means and Standard Deviations

    DTIC Science & Technology

    1981-10-01

    TITLE (..d SobtII,) S. TYPE OF REPORT & PERIOD COVERED U. S. Navy Marine Climatic Atlas of the World Volume IX World-wide Means and Standard Reference...Ives the best estimate of the population standard deviations. The means, , are com~nuted from: EX IIN I 90 80 70 60" 50’ 40, 30 20 10 0 1070 T- VErr ...or 10%, whichever is greater Since the mean ice limit approximates the minus two de l temperature isopleth, this analyzed lower limit was Wave Heights

  5. The normalization of deviance in healthcare delivery

    PubMed Central

    Banja, John

    2009-01-01

    Many serious medical errors result from violations of recognized standards of practice. Over time, even egregious violations of standards of practice may become “normalized” in healthcare delivery systems. This article describes what leads to this normalization and explains why flagrant practice deviations can persist for years, despite the importance of the standards at issue. This article also provides recommendations to aid healthcare organizations in identifying and managing unsafe practice deviations before they become normalized and pose genuine risks to patient safety, quality care, and employee morale. PMID:20161685

  6. Reclaiming the Periphery: Automated Kinetic Perimetry for Measuring Peripheral Visual Fields in Patients With Glaucoma.

    PubMed

    Mönter, Vera M; Crabb, David P; Artes, Paul H

    2017-02-01

    Peripheral vision is important for mobility, balance, and guidance of attention, but standard perimetry examines only <20% of the entire visual field. We report on the relation between central and peripheral visual field damage, and on retest variability, with a simple approach for automated kinetic perimetry (AKP) of the peripheral field. Thirty patients with glaucoma (median age 68, range 59-83 years; median Mean Deviation -8.0, range -16.3-0.1 dB) performed AKP and static automated perimetry (SAP) (German Adaptive Threshold Estimation strategy, 24-2 test). Automated kinetic perimetry consisted of a fully automated measurement of a single isopter (III.1.e). Central and peripheral visual fields were measured twice on the same day. Peripheral and central visual fields were only moderately related (Spearman's ρ, 0.51). Approximately 90% of test-retest differences in mean isopter radius were < ±4 deg. Relative to the range of measurements in this sample, the retest variability of AKP was similar to that of SAP. Patients with similar central visual field loss can have strikingly different peripheral visual fields, and therefore measuring the peripheral visual field may add clinically valuable information.

  7. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial.

    PubMed

    Guo, Xinxing; Kong, Xiangbin; Huang, Rui; Jin, Ling; Ding, Xiaohu; He, Mingguang; Liu, Xing; Patel, Mehul Chimanlal; Congdon, Nathan G

    2014-01-07

    We evaluated the effect of ginkgo biloba extract on visual field defect and contrast sensitivity in a Chinese cohort with normal tension glaucoma. In this prospective, randomized, placebo-controlled crossover study, patients newly diagnosed with normal tension glaucoma, either in a tertiary glaucoma clinic (n = 5) or in a cohort undergoing routine general physical examinations in a primary care clinic (n = 30), underwent two 4-week phases of treatment, separated by a washout period of 8 weeks. Randomization determined whether ginkgo biloba extract (40 mg, 3 times per day) or placebo (identical-appearing tablets) was received first. Primary outcomes were change in contrast sensitivity and mean deviation on 24-2 SITA standard visual field testing, while secondary outcomes included IOP and self-reported adverse events. A total of 35 patients with mean age 63.7 (6.5) years were randomized to the ginkgo biloba extract-placebo (n = 18) or the placebo-ginkgo biloba extract (n = 17) sequence. A total of 28 patients (80.0%, 14 in each group) who completed testing did not differ at baseline in age, sex, visual field mean deviation, contrast sensitivity, IOP, or blood pressure. Changes in visual field and contrast sensitivity did not differ by treatment received or sequence (P > 0.2 for all). Power to have detected a difference in mean defect as large as previously reported was 80%. In contrast to some previous reports, ginkgo biloba extract treatment had no effect on mean defect or contrast sensitivity in this group of normal tension glaucoma patients. (http://www.chictr.org number, ChiCTR-TRC-08000724).

  8. Clinical implementation of MOSFET detectors for dosimetry in electron beams.

    PubMed

    Bloemen-van Gurp, Esther J; Minken, Andre W H; Mijnheer, Ben J; Dehing-Oberye, Cary J G; Lambin, Philippe

    2006-09-01

    To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D(max)) and investigate their feasibility for in vivo dose measurements in electron beams. Factors were determined to relate the reading of a MOSFET detector to D(max) for 4 - 15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z(max)). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D(max), was compared to the dose prescribed at this depth. The factors to convert MOSFET reading to D(max) vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm(2) and for oblique incidence up to 45 degrees, a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors.

  9. Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Bragagnolo, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-04-01

    A measurement of the H → ττ signal strength is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV. The data set corresponds to an integrated luminosity of 35.9fb-1. The H → ττ signal is established with a significance of 4.9 standard deviations, to be compared to an expected significance of 4.7 standard deviations. The best fit of the product of the observed H → ττ signal production cross section and branching fraction is 1.09-0.26+0.27 times the standard model expectation. The combination with the corresponding measurement performed with data collected by the CMS experiment at center-of-mass energies of 7 and 8TeV leads to an observed significance of 5.9 standard deviations, equal to the expected significance. This is the first observation of Higgs boson decays to τ leptons by a single experiment.

  10. Infrared-temperature variability in a large agricultural field

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. J.

    1981-01-01

    Dunnigan Agro-Meteorological Experiment airborne thermal scanner images of a large varying-terrain barley field are acquired and analyzed. Temperature variability that may occur within instantaneous fields of view (IFOV) is defined (coefficient of variation: standard deviation/mean temperature in degrees C), and the percentage of the area within various IFOV's within + or - 1, 2, 3, and 5 degrees of the mean is determined. With the exception of very rugged terrain, over 80% of the area within 4, 16, 65 and 258 ha cells was at temperatures within + or - 3 C of the mean cell temperature. Remote measurements of field temperature appeared to be slightly influenced by pixel size in the range 4 ha to 259 ha, and the area percentage within any pixel which contributes within + or - 1, 2, 3, and 5 degrees C of the mean, is nominally the same. In conclusion, no great advantage is found in utilizing a small IFOV instead of a large one for remote sensing of crop temperature.

  11. Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments

    DTIC Science & Technology

    2015-08-01

    control RPD relative percent difference RSD relative standard deviation SERDP Strategic Environmental Research and Development Program SOPs...sediments from 2 stations, each at 4 PCB spike levels, for four individual congeners was 22 ± 6 % relative standard deviation ( RSD ). Also, comparison of... RSD (Table 3). However, larger congeners (e.g., congeners #153 and 180) whose approach to equilibrium is less certain, based on small fractions of

  12. Probability Distribution Estimated From the Minimum, Maximum, and Most Likely Values: Applied to Turbine Inlet Temperature Uncertainty

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.

    2004-01-01

    Modern engineering design practices are tending more toward the treatment of design parameters as random variables as opposed to fixed, or deterministic, values. The probabilistic design approach attempts to account for the uncertainty in design parameters by representing them as a distribution of values rather than as a single value. The motivations for this effort include preventing excessive overdesign as well as assessing and assuring reliability, both of which are important for aerospace applications. However, the determination of the probability distribution is a fundamental problem in reliability analysis. A random variable is often defined by the parameters of the theoretical distribution function that gives the best fit to experimental data. In many cases the distribution must be assumed from very limited information or data. Often the types of information that are available or reasonably estimated are the minimum, maximum, and most likely values of the design parameter. For these situations the beta distribution model is very convenient because the parameters that define the distribution can be easily determined from these three pieces of information. Widely used in the field of operations research, the beta model is very flexible and is also useful for estimating the mean and standard deviation of a random variable given only the aforementioned three values. However, an assumption is required to determine the four parameters of the beta distribution from only these three pieces of information (some of the more common distributions, like the normal, lognormal, gamma, and Weibull distributions, have two or three parameters). The conventional method assumes that the standard deviation is a certain fraction of the range. The beta parameters are then determined by solving a set of equations simultaneously. A new method developed in-house at the NASA Glenn Research Center assumes a value for one of the beta shape parameters based on an analogy with the normal distribution (ref.1). This new approach allows for a very simple and direct algebraic solution without restricting the standard deviation. The beta parameters obtained by the new method are comparable to the conventional method (and identical when the distribution is symmetrical). However, the proposed method generally produces a less peaked distribution with a slightly larger standard deviation (up to 7 percent) than the conventional method in cases where the distribution is asymmetric or skewed. The beta distribution model has now been implemented into the Fast Probability Integration (FPI) module used in the NESSUS computer code for probabilistic analyses of structures (ref. 2).

  13. The linear sizes tolerances and fits system modernization

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  14. Relation between Birth Weight and Intraoperative Hemorrhage during Cesarean Section in Pregnancy with Placenta Previa

    PubMed Central

    Ishibashi, Hiroki; Takano, Masashi; Sasa, Hidenori; Furuya, Kenichi

    2016-01-01

    Background Placenta previa, one of the most severe obstetric complications, carries an increased risk of intraoperative massive hemorrhage. Several risk factors for intraoperative hemorrhage have been identified to date. However, the correlation between birth weight and intraoperative hemorrhage has not been investigated. Here we estimate the correlation between birth weight and the occurrence of intraoperative massive hemorrhage in placenta previa. Materials and Methods We included all 256 singleton pregnancies delivered via cesarean section at our hospital because of placenta previa between 2003 and 2015. We calculated not only measured birth weights but also standard deviation values according to the Japanese standard growth curve to adjust for differences in gestational age. We assessed the correlation between birth weight and the occurrence of intraoperative massive hemorrhage (>1500 mL blood loss). Receiver operating characteristic curves were constructed to determine the cutoff value of intraoperative massive hemorrhage. Results Of 256 pregnant women with placenta previa, 96 (38%) developed intraoperative massive hemorrhage. Receiver-operating characteristic curves revealed that the area under the curve of the combination variables between the standard deviation of birth weight and intraoperative massive hemorrhage was 0.71. The cutoff value with a sensitivity of 81.3% and specificity of 55.6% was −0.33 standard deviation. The multivariate analysis revealed that a standard deviation of >−0.33 (odds ratio, 5.88; 95% confidence interval, 3.04–12.00), need for hemostatic procedures (odds ratio, 3.31; 95% confidence interval, 1.79–6.25), and placental adhesion (odds ratio, 12.68; 95% confidence interval, 2.85–92.13) were independent risk of intraoperative massive hemorrhage. Conclusion In patients with placenta previa, a birth weight >−0.33 standard deviation was a significant risk indicator of massive hemorrhage during cesarean section. Based on this result, further studies are required to investigate whether fetal weight estimated by ultrasonography can predict hemorrhage during cesarean section in patients with placental previa. PMID:27902772

  15. Relation between Birth Weight and Intraoperative Hemorrhage during Cesarean Section in Pregnancy with Placenta Previa.

    PubMed

    Soyama, Hiroaki; Miyamoto, Morikazu; Ishibashi, Hiroki; Takano, Masashi; Sasa, Hidenori; Furuya, Kenichi

    2016-01-01

    Placenta previa, one of the most severe obstetric complications, carries an increased risk of intraoperative massive hemorrhage. Several risk factors for intraoperative hemorrhage have been identified to date. However, the correlation between birth weight and intraoperative hemorrhage has not been investigated. Here we estimate the correlation between birth weight and the occurrence of intraoperative massive hemorrhage in placenta previa. We included all 256 singleton pregnancies delivered via cesarean section at our hospital because of placenta previa between 2003 and 2015. We calculated not only measured birth weights but also standard deviation values according to the Japanese standard growth curve to adjust for differences in gestational age. We assessed the correlation between birth weight and the occurrence of intraoperative massive hemorrhage (>1500 mL blood loss). Receiver operating characteristic curves were constructed to determine the cutoff value of intraoperative massive hemorrhage. Of 256 pregnant women with placenta previa, 96 (38%) developed intraoperative massive hemorrhage. Receiver-operating characteristic curves revealed that the area under the curve of the combination variables between the standard deviation of birth weight and intraoperative massive hemorrhage was 0.71. The cutoff value with a sensitivity of 81.3% and specificity of 55.6% was -0.33 standard deviation. The multivariate analysis revealed that a standard deviation of >-0.33 (odds ratio, 5.88; 95% confidence interval, 3.04-12.00), need for hemostatic procedures (odds ratio, 3.31; 95% confidence interval, 1.79-6.25), and placental adhesion (odds ratio, 12.68; 95% confidence interval, 2.85-92.13) were independent risk of intraoperative massive hemorrhage. In patients with placenta previa, a birth weight >-0.33 standard deviation was a significant risk indicator of massive hemorrhage during cesarean section. Based on this result, further studies are required to investigate whether fetal weight estimated by ultrasonography can predict hemorrhage during cesarean section in patients with placental previa.

  16. Defining relative humidity in terms of water activity. Part 1: definition

    NASA Astrophysics Data System (ADS)

    Feistel, Rainer; Lovell-Smith, Jeremy W.

    2017-08-01

    Relative humidity (RH) is a quantity widely used in various fields such as metrology, meteorology, climatology or engineering. However, RH is neither uniformly defined, nor do some definitions properly account for deviations from ideal-gas properties, nor is the application range of interest fully covered. In this paper, a new full-range definition of RH is proposed that is based on the thermodynamics of activities in order to include deviations from ideal-gas behaviour. Below the critical point of pure water, at pressures p  <  22.064 MPa and temperatures T  <  647.096 K, RH is rigorously defined as the relative activity (or relative fugacity) of water in humid air. For this purpose, reference states of the relative activity are specified appropriately. Asymptotically, the ideal-gas limit of the new definition is consistent with de-facto standard RH definitions published previously and recommended internationally. Virial approximations are reported for estimating small corrections to the ideal-gas equations.

  17. Sensitivity of 3D Dose Verification to Multileaf Collimator Misalignments in Stereotactic Body Radiation Therapy of Spinal Tumor.

    PubMed

    Xin-Ye, Ni; Ren, Lei; Yan, Hui; Yin, Fang-Fang

    2016-12-01

    This study aimed to detect the sensitivity of Delt 4 on ordinary field multileaf collimator misalignments, system misalignments, random misalignments, and misalignments caused by gravity of the multileaf collimator in stereotactic body radiation therapy. (1) Two field sizes, including 2.00 cm (X) × 6.00 cm (Y) and 7.00 cm (X) × 6.00 cm (Y), were set. The leaves of X1 and X2 in the multileaf collimator were simultaneously opened. (2) Three cases of stereotactic body radiation therapy of spinal tumor were used. The dose of the planning target volume was 1800 cGy with 3 fractions. The 4 types to be simulated included (1) the leaves of X1 and X2 in the multileaf collimator were simultaneously opened, (2) only X1 of the multileaf collimator and the unilateral leaf were opened, (3) the leaves of X1 and X2 in the multileaf collimator were randomly opened, and (4) gravity effect was simulated. The leaves of X1 and X2 in the multileaf collimator shifted to the same direction. The difference between the corresponding 3-dimensional dose distribution measured by Delt 4 and the dose distribution in the original plan made in the treatment planning system was analyzed with γ index criteria of 3.0 mm/3.0%, 2.5 mm/2.5%, 2.0 mm/2.0%, 2.5 mm/1.5%, and 1.0 mm/1.0%. (1) In the field size of 2.00 cm (X) × 6.00 cm (Y), the γ pass rate of the original was 100% with 2.5 mm/2.5% as the statistical standard. The pass rate decreased to 95.9% and 89.4% when the X1 and X2 directions of the multileaf collimator were opened within 0.3 and 0.5 mm, respectively. In the field size of 7.00 (X) cm × 6.00 (Y) cm with 1.5 mm/1.5% as the statistical standard, the pass rate of the original was 96.5%. After X1 and X2 of the multileaf collimator were opened within 0.3 mm, the pass rate decreased to lower than 95%. The pass rate was higher than 90% within the 3 mm opening. (2) For spinal tumor, the change in the planning target volume V 18 under various modes calculated using treatment planning system was within 1%. However, the maximum dose deviation of the spinal cord was high. In the spinal cord with a gravity of -0.25 mm, the maximum dose deviation minimally changed and increased by 6.8% than that of the original. In the largest opening of 1.00 mm, the deviation increased by 47.7% than that of the original. Moreover, the pass rate of the original determined through Delt 4 was 100% with 3 mm/3% as the statistical standard. The pass rate was 97.5% in the 0.25 mm opening and higher than 95% in the 0.5 mm opening A, 0.25 mm opening A, whole gravity series, and 0.20 mm random opening. Moreover, the pass rate was higher than 90% with 2.0 mm/2.0% as the statistical standard in the original and in the 0.25 mm gravity. The difference in the pass rates was not statistically significant among the -0.25 mm gravity, 0.25 mm opening A, 0.20 mm random opening, and original as calculated using SPSS 11.0 software with P > .05. Different analysis standards of Delt 4 were analyzed in different field sizes to improve the detection sensitivity of the multileaf collimator position on the basis of 90% throughout rate. In stereotactic body radiation therapy of spinal tumor, the 2.0 mm/2.0% standard can reveal the dosimetric differences caused by the minor multileaf collimator position compared with the 3.0 mm/3.0% statistical standard. However, some position derivations of the misalignments that caused high dose amount to the spinal cord cannot be detected. However, some misalignments were not detected when a large number of multileaf collimator were administered into the spinal cord. © The Author(s) 2015.

  18. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.

  19. Visual field progression in glaucoma: what is the specificity of the Guided Progression Analysis?

    PubMed

    Artes, Paul H; O'Leary, Neil; Nicolela, Marcelo T; Chauhan, Balwantray C; Crabb, David P

    2014-10-01

    To estimate the specificity of the Guided Progression Analysis (GPA) (Carl Zeiss Meditec, Dublin, CA) in individual patients with glaucoma. Observational cohort study. Thirty patients with open-angle glaucoma. In 30 patients with open-angle glaucoma, 1 eye (median mean deviation [MD], -2.5 decibels [dB]; interquartile range, -4.4 to -1.3 dB) was tested 12 times over 3 months (Humphrey Field Analyzer, Carl Zeiss Meditec; SITA Standard, 24-2). "Possible progression" and "likely progression" were determined with the GPA. These analyses were repeated after the order of the tests had been randomly rearranged (1000 unique permutations). Rate of false-positive alerts of "possible progression" and "likely progression" with the GPA. On average, the specificity of the GPA "likely progression" alert was high-for the entire sample, the mean rate of false-positive alerts after 10 follow-up tests was 2.6%. With "possible progression," the specificity was considerably lower (false-positive rate, 18.5%). Most important, the cumulative rate of false-positive alerts varied substantially among patients, from <1% to 80% with "possible progression" and from <0.1% to 20% with "likely progression." Factors associated with false-positive alerts were visual field variability (standard deviation of MD, Spearman's rho = 0.41, P<0.001) and the reliability indices (proportion of false-positive and false-negative responses, fixation losses, rho>0.31, P≤0.10). On average, progression criteria currently used in the GPA have high specificity, but some patients are more likely to show false-positive alerts than others. This is a natural consequence of population-based change criteria and may not matter in clinical trials and studies in which large groups of patients are compared. However, it must be considered when the GPA is used in clinical practice where specificity needs to be controlled for individual patients. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  20. Geometry of the scalar sector

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-08-17

    The S-matrix of a quantum field theory is unchanged by field redefinitions, and so it only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifoldmore » M is flat. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved M, since they parametrize deviations from the flat SM case. We show that the HEFT Lagrangian can be written in SMEFT form if and only ifMhas a SU(2) L U(1) Y invariant fixed point. Experimental observables in HEFT depend on local geometric invariants of M such as sectional curvatures, which are of order 1/Λ 2 , where Λ is the EFT scale. We give explicit expressions for these quantities in terms of the structure constants for a general G → H symmetry breaking pattern. The one-loop radiative correction in HEFT is determined using a covariant expansion which preserves manifest invariance of M under coordinate redefinitions. The formula for the radiative correction is simple when written in terms of the curvature of M and the gauge curvature field strengths. We also extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature computation to the case of multiple singlet scalar fields.« less

  1. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, Marshall; Seitz, Heather; Scott, John

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies.

  2. Estimating the contribution of strong daily export events to total pollutant export from the United States in summer

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Levy, Hiram; Hu, Yongtao; Russell, Armistead G.

    2009-12-01

    While the export of pollutants from the United States exhibits notable variability from day to day and is often considered to be "episodic," the contribution of strong daily export events to total export has not been quantified. We use carbon monoxide (CO) as a tracer of anthropogenic pollutants in the Model of OZone And Related Tracers (MOZART) to estimate this contribution. We first identify the major export pathway from the United States to be through the northeast boundary (24-48°N along 67.5°W and 80-67.5°W along 48°N), and then analyze 15 summers of daily CO export fluxes through this boundary. These daily CO export fluxes have a nearly Gaussian distribution with a mean of 1100 Gg CO day-1 and a standard deviation of 490 Gg CO day-1. To focus on the synoptic variability, we define a "synoptic background" export flux equal to the 15 day moving average export flux and classify strong export days according to their fluxes relative to this background. As expected from Gaussian statistics, 16% of summer days are "strong export days," classified as those days when the CO export flux exceeds the synoptic background by one standard deviation or more. Strong export days contributes 25% to the total export, a value determined by the relative standard deviation of the CO flux distribution. Regressing the anomalies of the CO export flux through the northeast U.S. boundary relative to the synoptic background on the daily anomalies in the surface pressure field (also relative to a 15 day running mean) suggests that strong daily export fluxes are correlated with passages of midlatitude cyclones over the Gulf of Saint Lawrence. The associated cyclonic circulation and Warm Conveyor Belts (WCBs) that lift surface pollutants over the northeastern United States have been shown previously to be associated with long-range transport events. Comparison with observations from the 2004 INTEX-NA field campaign confirms that our model captures the observed enhancements in CO outflow and resolves the processes associated with cyclone passages on strong export days. "Moderate export days," defined as days when the CO flux through the northeast boundary exceeds the 15 day running mean by less than one standard deviation, represent an additional 34% of summer days and 40% of total export. These days are also associated with migratory midlatitude cyclones. The remaining 35% of total export occurs on "weak export days" (50% of summer days) when high pressure anomalies occur over the Gulf of Saint Lawrence. Our findings for summer also apply to spring, when the U.S. pollutant export is typically strongest, with similar contributions to total export and associated meteorology on strong, moderate and weak export days. Although cyclone passages are the primary driver for strong daily export events, export during days without cyclone passages also makes a considerable contribution to the total export and thereby to the global pollutant budget.

  3. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices

    NASA Astrophysics Data System (ADS)

    Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav

    2017-03-01

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.

  4. A visual tristimulus projection colorimeter.

    PubMed

    Valberg, A

    1971-01-01

    Based on the optical principle of a slide projector, a visual tristimulus projection colorimeter has been developed. The calorimeter operates with easily interchangeable sets of primary color filters placed in a frame at the objective. The apparatus has proved to be fairly accurate. The reproduction of the color matches as measured by the standard deviation is equal to the visual sensitivity to color differences for each observer. Examples of deviations in the matches among individuals as well as deviations compared with the CIE 1931 Standard Observer are given. These deviations are demonstrated to be solely due to individual differences in the perception of metameric colors. Thus, taking advantage of an objective observation (allowing all adjustments to be judged by a group of impartial observers), the colorimeter provides an excellent aid in the study of discrimination, metamerism, and related effects which are of considerable interest in current research in colorimetry and in the study of color vision tests.

  5. Middle school transition and body weight outcomes: Evidence from Arkansas Public Schoolchildren.

    PubMed

    Zeng, Di; Thomsen, Michael R; Nayga, Rodolfo M; Rouse, Heather L

    2016-05-01

    There is evidence that middle school transition adversely affects educational and psychological outcomes of pre-teen children, but little is known about the impacts of middle school transition on other aspects of health. In this article, we estimate the impact of middle school transition on the body mass index (BMI) of public schoolchildren in Arkansas, United States. Using an instrumental variable approach, we find that middle school transition in grade 6 led to a moderate decrease of 0.04 standard deviations in BMI z-scores for all students. Analysis by subsample indicated that this result was driven by boys (0.06-0.07 standard deviations) and especially by non-minority boys (0.09 standard deviations). We speculate that the changing levels of physical activities associated with middle school transition provide the most reasonable explanation for this result. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarov, E. E.; Parsekian, A. D.; Schaefer, K.

    Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. Here, we collected about 15 km of GPR data and 1.5 km of probing data. We describe the GPR data processing workflow from raw GPR data to the estimated ALT and VWC. We then include the corresponding uncertainties for each measured and estimated parameter. The estimated average GPR-derived ALT was 41 cm,more » with a standard deviation of 9 cm. The average probed ALT was 40 cm, with a standard deviation of 12 cm. The average GPR-derived VWC was 0.65, with a standard deviation of 0.14.« less

  7. Migration in the shearing sheet and estimates for young open cluster migration

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nolting, Eric; Minchev, Ivan; De Silva, Gayandhi; Chiappini, Cristina

    2018-04-01

    Using tracer particles embedded in self-gravitating shearing sheet N-body simulations, we investigate the distance in guiding centre radius that stars or star clusters can migrate in a few orbital periods. The standard deviations of guiding centre distributions and maximum migration distances depend on the Toomre or critical wavelength and the contrast in mass surface density caused by spiral structure. Comparison between our simulations and estimated guiding radii for a few young supersolar metallicity open clusters, including NGC 6583, suggests that the contrast in mass surface density in the solar neighbourhood has standard deviation (in the surface density distribution) divided by mean of about 1/4 and larger than measured using COBE data by Drimmel and Spergel. Our estimate is consistent with a standard deviation of ˜0.07 dex in the metallicities measured from high-quality spectroscopic data for 38 young open clusters (<1 Gyr) with mean galactocentric radius 7-9 kpc.

  8. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska

    DOE PAGES

    Jafarov, E. E.; Parsekian, A. D.; Schaefer, K.; ...

    2018-01-09

    Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. Here, we collected about 15 km of GPR data and 1.5 km of probing data. We describe the GPR data processing workflow from raw GPR data to the estimated ALT and VWC. We then include the corresponding uncertainties for each measured and estimated parameter. The estimated average GPR-derived ALT was 41 cm,more » with a standard deviation of 9 cm. The average probed ALT was 40 cm, with a standard deviation of 12 cm. The average GPR-derived VWC was 0.65, with a standard deviation of 0.14.« less

  9. The Cost of Uncertain Life Span*

    PubMed Central

    Edwards, Ryan D.

    2012-01-01

    A considerable amount of uncertainty surrounds the length of human life. The standard deviation in adult life span is about 15 years in the U.S., and theory and evidence suggest it is costly. I calibrate a utility-theoretic model of preferences over length of life and show that one fewer year in standard deviation is worth about half a mean life year. Differences in the standard deviation exacerbate cross-sectional differences in life expectancy between the U.S. and other industrialized countries, between rich and poor countries, and among poor countries. Accounting for the cost of life-span variance also appears to amplify recently discovered patterns of convergence in world average human well-being. This is partly for methodological reasons and partly because unconditional variance in human length of life, primarily the component due to infant mortality, has exhibited even more convergence than life expectancy. PMID:22368324

  10. On the linear relation between the mean and the standard deviation of a response time distribution.

    PubMed

    Wagenmakers, Eric-Jan; Brown, Scott

    2007-07-01

    Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different experimental paradigms support a linear relation between RT mean and RT standard deviation. Both R. Ratcliff's (1978) diffusion model and G. D. Logan's (1988) instance theory of automatization provide explanations for this linear relation. The authors identify and discuss 3 specific boundary conditions for the linear law to hold. The law constrains RT models and supports the use of the coefficient of variation to (a) compare variability while controlling for differences in baseline speed of processing and (b) assess whether changes in performance with practice are due to quantitative speedup or qualitative reorganization. Copyright 2007 APA.

  11. Determination of the optimal level for combining area and yield estimates

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Hixson, M. M.; Jobusch, C. D.

    1981-01-01

    Several levels of obtaining both area and yield estimates of corn and soybeans in Iowa were considered: county, refined strata, refined/split strata, crop reporting district, and state. Using the CCEA model form and smoothed weather data, regression coefficients at each level were derived to compute yield and its variance. Variances were also computed with stratum level. The variance of the yield estimates was largest at the state and smallest at the county level for both crops. The refined strata had somewhat larger variances than those associated with the refined/split strata and CRD. For production estimates, the difference in standard deviations among levels was not large for corn, but for soybeans the standard deviation at the state level was more than 50% greater than for the other levels. The refined strata had the smallest standard deviations. The county level was not considered in evaluation of production estimates due to lack of county area variances.

  12. Quantifying relative importance: Computing standardized effects in models with binary outcomes

    USGS Publications Warehouse

    Grace, James B.; Johnson, Darren; Lefcheck, Jonathan S.; Byrnes, Jarrett E.K.

    2018-01-01

    Results from simulation studies show that both the LT and OE methods of standardization support a similarly-broad range of coefficient comparisons. The LT method estimates effects that reflect underlying latent-linear propensities, while the OE method computes a linear approximation for the effects of predictors on binary responses. The contrast between assumptions for the two methods is reflected in persistently weaker standardized effects associated with OE standardization. Reliance on standard deviations for standardization (the traditional approach) is critically examined and shown to introduce substantial biases when predictors are non-Gaussian. The use of relevant ranges in place of standard deviations has the capacity to place LT and OE standardized coefficients on a more comparable scale. As ecologists address increasingly complex hypotheses, especially those that involve comparing the influences of different controlling factors (e.g., top-down versus bottom-up or biotic versus abiotic controls), comparable coefficients become a necessary component for evaluations.

  13. Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Pawson, Steven; Labow, Gordon; Frith, Stacey M.; Livesey, Nathaniel; Partyka, Gary

    2017-01-01

    The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds.

  14. A whole image approach using field measurements for transforming EO1 Hyperion hyperspectral data into canopy reflectance spectra

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.

    2005-01-01

    To maximize the spectral distinctiveness (information) of the canopy reflectance, an atmospheric correction strategy was implemented to provide accurate estimates of the intrinsic reflectance from the Earth Observing 1 (EO1) satellite Hyperion sensor signal. In rendering the canopy reflectance, an estimate of optical depth derived from a measurement of downwelling irradiance was used to drive a radiative transfer simulation of atmospheric scattering and attenuation. During the atmospheric model simulation, the input whole-terrain background reflectance estimate was changed to minimize the differences between the model predicted and the observed canopy reflectance spectra at 34 sites. Lacking appropriate spectrally invariant scene targets, inclusion of the field and predicted comparison maximized the model accuracy and, thereby, the detail and precision in the canopy reflectance necessary to detect low percentage occurrences of invasive plants. After accounting for artifacts surrounding prominent absorption features from about 400nm to 1000nm, the atmospheric adjustment strategy correctly explained 99% of the observed canopy reflectance spectra variance. Separately, model simulation explained an average of 88%??9% of the observed variance in the visible and 98% ?? 1% in the near-infrared wavelengths. In the 34 model simulations, maximum differences between the observed and predicted reflectances were typically less than ?? 1% in the visible; however, maximum reflectance differences higher than ?? 1.6% (

  15. Suitability of open-field autorefractors as pupillometers and instrument design effects.

    PubMed

    Otero, Carles; Aldaba, Mikel; Ferrer, Oriol; Gascón, Andrea; Ondategui-Parra, Juan C; Pujol, Jaume

    2017-01-01

    To determine the agreement and repeatability of the pupil measurement obtained with VIP-200 (Neuroptics), PowerRef II (Plusoptix), WAM-5500 (Grand Seiko) and study the effects of instrument design on pupillometry. Forty patients were measured twice in low, mid and high mesopic. Repeatability was analyzed with the within-subject standard deviation (Sw) and paired t -tests. Agreement was studied with Bland-Altman plots and repeated measures ANOVA. Instrument design analysis consisted on measuring pupil size with PowerRef II simulating monocular and binocular conditions as well as with proximity cues and without proximity cues. The mean difference (±standard deviation) between test-retest for low, mid and high mesopic conditions were, respectively: -0.09 (±0.16), -0.05 (±0.18) and -0.08 (±0.23) mm for Neuroptics, -0.05 (±0.17), -0.12 (±0.23) and -0.17 (±0.34) mm for WAM-5500, -0.04 (±0.27), -0.13 (±0.37) and -0.11 (±0.28) mm for PowerRef II. Regarding agreement with Neuroptics, the mean difference for low, mid and high mesopic conditions were, respectively: -0.48 (±0.35), -0.83 (±0.52) and -0.38 (±0.56) mm for WAM-5500, -0.28 (±0.56), -0.70 (±0.55) and -0.61 (±0.54) mm for PowerRef II. The mean difference of binocular minus monocular pupil measurements was: -0.83 (±0.87) mm; and with proximity cues minus without proximity cues was: -0.30 (±0.77) mm. All the instruments show similar repeat-ability. In all illumination conditions, agreement of Neuroptics with WAM-5500 and PowerRef II is not good enough, which can be partially induced due to their open field design.

  16. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique.

    PubMed

    Thienprasiddhi, Phamornsak; Greenstein, Vivienne C; Chu, David H; Xu, Li; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2006-08-01

    To determine whether the multifocal visual evoked potential (mfVEP) technique can detect early functional damage in ocular hypertensive (OHT) and glaucoma suspect (GS) patients with normal standard achromatic automated perimetry (SAP) results. Twenty-five GS patients (25 eyes), 25 patients with OHT (25 eyes), and 50 normal controls (50 eyes) were enrolled in this study. All GS, OHT and normal control eyes had normal SAP as defined by a pattern standard deviation and mean deviation within the 95% confidence interval and a glaucoma hemifield test within normal limits on the Humphrey visual field 24-2 program. Eyes with GS had optic disc changes consistent with glaucoma with or without raised intraocular pressure (IOP), and eyes with OHT showed no evidence of glaucomatous optic neuropathy and IOPs >or=22 mm Hg. Monocular mfVEPs were obtained from both eyes of each subject using a pattern-reversal dartboard array with 60 sectors. The entire display had a radius of 22.3 degrees. The mfVEPs, for each eye, were defined as abnormal when either the monocular or interocular probability plot had a cluster of 3 or more contiguous points with P<0.05 and at least 2 of these points with P<0.01. The mfVEP results were abnormal in 4% of the eyes from normal subjects. Abnormal mfVEPs were detected in 20% of the eyes of GS patients and 16% of the eyes of OHT patients. Significantly more mfVEP abnormalities were detected in GS patients than in normal controls. However, there was no significant difference in mfVEP results between OHT patients and normal controls. The mfVEP technique can detect visual field deficits in a minority of eyes with glaucomatous optic disks and normal SAP results.

  17. Diagnostic capability of scanning laser polarimetry with variable cornea compensator in Indian patients with early primary open-angle glaucoma.

    PubMed

    Parikh, Rajul S; Parikh, Shefali R; Kumar, Rajesh S; Prabakaran, S; Babu, J Gansesh; Thomas, Ravi

    2008-07-01

    To evaluate the diagnostic ability of scanning laser polarimetry (GDx variable corneal compensator [VCC]) for early glaucoma in Asian Indian eyes. Cross-sectional observational study. Two groups of patients (early glaucoma and normal) who satisfied the inclusion and exclusion criteria were included. Early glaucoma was diagnosed in presence of open angles, characteristic glaucomatous optic disc changes correlating with the visual field (VF) on automated perimetry (VF defect fulfilling at least 2 of 3 Anderson and Patella's criteria with mean deviation >or= -6 decibels). Normal subjects had visual acuity >or= 20/30 and intraocular pressure < 22 mmHg, with a normal optic disc and fields and no ocular abnormality. All patients underwent complete ophthalmic evaluation, including VF examination (24-2/30-2 Swedish interactive threshold algorithm standard program) and imaging with GDx VCC. Sensitivity, specificity, positive predictive value and negative predictive value, area under the receiving operating characteristic curve, and likelihood ratios (LRs) were calculated for various GDx VCC parameters. Seventy-four eyes (74 patients) with early glaucoma and 104 eyes (104 normal subjects) were enrolled. TSNIT Std Dev (temporal-superior-nasal-inferior-temporal standard deviation) had the best combination of sensitivity and specificity-61.3 and 95.2, respectively-followed by nerve fiber index score > 50 (sensitivity, 52.7%; specificity, 99%). Nerve fiber index score > 50 had positive and negative predictive values of 74.3% and 97.6%, respectively, for an assumed glaucoma prevalence of 5%. Nerve fiber index score > 50 had a positive LR (+LR) of 54.8 for early glaucoma. GDx VCC has moderate sensitivity, with high specificity, in the diagnosis of early glaucoma. The high +LR for the nerve fiber index score can provide valuable diagnostic information for individual patients.

  18. Vision Function in HIV-infected Individuals without Retinitis; Report of the Studies of Ocular Complications of AIDS Research Group

    PubMed Central

    Freeman, William R.; Van Natta, Mark L.; Jabs, Douglas; Sample, Pamela A.; Sadun, Alfredo A.; Thorne, Jennifer; Shah, Kayur H.; Holland, Gary N.

    2008-01-01

    Purpose To evaluate the prevalence and risk factors for vision loss in patients with clinical or immunologic AIDS without infectious retinitis. Design A prospective multicentered cohort study of patients with AIDS. Methods 1,351 patients (2,671 eyes) at 19 clinical trials centers diagnosed with AIDS but without major ocular complications of HIV. Standardized measurements of visual acuity, automated perimetry, and contrast sensitivity were analyzed and correlated with measurements of patients’ health and medical data relating to HIV infection. We evaluated correlations between vision function testing and HIV-related risk factors and medical testing. Results There were significant (p<0.05) associations between measures of decreasing vision function and indices of increasing disease severity including Karnofsky score and hemoglobin. A significant relationship was seen between low contrast sensitivity and decreasing levels of CD4+ T-cell count. Three percent of eyes had a visual acuity worse than 20/40 Snellen equivalents, which was significantly associated with a history of opportunistic infections and low Karnofsky score. When compared to external groups with normal vision, 39% of eyes had abnormal mean deviation on automated perimetry, 33% had abnormal pattern standard deviation, and 12% of eyes had low contrast sensitivity. Conclusions This study confirms that visual dysfunction is common in patients with AIDS but without retinitis. The most prevalent visual dysfunction is loss of visual field; nearly 40% of patients have some abnormal visual field. There is an association between general disease severity and less access to care and vision loss. The pathophysiology of this vision loss is unknown but is consistent with retinovascular disease or optic nerve disease. PMID:18191094

  19. A comparison of Loon balloon observations and stratospheric reanalysis products

    NASA Astrophysics Data System (ADS)

    Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.

    2017-01-01

    Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.

  20. An isotope-dilution standard GC/MS/MS method for steroid hormones in water

    USGS Publications Warehouse

    Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Lindley, Chris E.; Losche, Scott A.

    2013-01-01

    An isotope-dilution quantification method was developed for 20 natural and synthetic steroid hormones and additional compounds in filtered and unfiltered water. Deuterium- or carbon-13-labeled isotope-dilution standards (IDSs) are added to the water sample, which is passed through an octadecylsilyl solid-phase extraction (SPE) disk. Following extract cleanup using Florisil SPE, method compounds are converted to trimethylsilyl derivatives and analyzed by gas chromatography with tandem mass spectrometry. Validation matrices included reagent water, wastewater-affected surface water, and primary (no biological treatment) and secondary wastewater effluent. Overall method recovery for all analytes in these matrices averaged 100%; with overall relative standard deviation of 28%. Mean recoveries of the 20 individual analytes for spiked reagent-water samples prepared along with field samples analyzed in 2009–2010 ranged from 84–104%, with relative standard deviations of 6–36%. Detection levels estimated using ASTM International’s D6091–07 procedure range from 0.4 to 4 ng/L for 17 analytes. Higher censoring levels of 100 ng/L for bisphenol A and 200 ng/L for cholesterol and 3-beta-coprostanol are used to prevent bias and false positives associated with the presence of these analytes in blanks. Absolute method recoveries of the IDSs provide sample-specific performance information and guide data reporting. Careful selection of labeled compounds for use as IDSs is important because both inexact IDS-analyte matches and deuterium label loss affect an IDS’s ability to emulate analyte performance. Six IDS compounds initially tested and applied in this method exhibited deuterium loss and are not used in the final method.

  1. Evaluation of refractive correction for standard automated perimetry in eyes wearing multifocal contact lenses

    PubMed Central

    Hirasawa, Kazunori; Ito, Hikaru; Ohori, Yukari; Takano, Yui; Shoji, Nobuyuki

    2017-01-01

    AIM To evaluate the refractive correction for standard automated perimetry (SAP) in eyes with refractive multifocal contact lenses (CL) in healthy young participants. METHODS Twenty-nine eyes of 29 participants were included. Accommodation was paralyzed in all participants with 1% cyclopentolate hydrochloride. SAP was performed using the Humphrey SITA-standard 24-2 and 10-2 protocol under three refractive conditions: monofocal CL corrected for near distance (baseline); multifocal CL corrected for distance (mCL-D); and mCL-D corrected for near vision using a spectacle lens (mCL-N). Primary outcome measures were the foveal threshold, mean deviation (MD), and pattern standard deviation (PSD). RESULTS The foveal threshold of mCL-N with both the 24-2 and 10-2 protocols significantly decreased by 2.2-2.5 dB (P<0.001), while that of mCL-D with the 24-2 protocol significantly decreased by 1.5 dB (P=0.0427), as compared with that of baseline. Although there was no significant difference between the MD of baseline and mCL-D with the 24-2 and 10-2 protocols, the MD of mCL-N was significantly decreased by 1.0-1.3 dB (P<0.001) as compared with that of both baseline and mCL-D, with both 24-2 and 10-2 protocols. There was no significant difference in the PSD among the three refractive conditions with both the 24-2 and 10-2 protocols. CONCLUSION Despite the induced mydriasis and the optical design of the multifocal lens used in this study, our results indicated that, when the dome-shaped visual field test is performed with eyes with large pupils and wearing refractive multifocal CLs, distance correction without additional near correction is to be recommended. PMID:29062776

  2. Evaluation of refractive correction for standard automated perimetry in eyes wearing multifocal contact lenses.

    PubMed

    Hirasawa, Kazunori; Ito, Hikaru; Ohori, Yukari; Takano, Yui; Shoji, Nobuyuki

    2017-01-01

    To evaluate the refractive correction for standard automated perimetry (SAP) in eyes with refractive multifocal contact lenses (CL) in healthy young participants. Twenty-nine eyes of 29 participants were included. Accommodation was paralyzed in all participants with 1% cyclopentolate hydrochloride. SAP was performed using the Humphrey SITA-standard 24-2 and 10-2 protocol under three refractive conditions: monofocal CL corrected for near distance (baseline); multifocal CL corrected for distance (mCL-D); and mCL-D corrected for near vision using a spectacle lens (mCL-N). Primary outcome measures were the foveal threshold, mean deviation (MD), and pattern standard deviation (PSD). The foveal threshold of mCL-N with both the 24-2 and 10-2 protocols significantly decreased by 2.2-2.5 dB ( P <0.001), while that of mCL-D with the 24-2 protocol significantly decreased by 1.5 dB ( P =0.0427), as compared with that of baseline. Although there was no significant difference between the MD of baseline and mCL-D with the 24-2 and 10-2 protocols, the MD of mCL-N was significantly decreased by 1.0-1.3 dB ( P <0.001) as compared with that of both baseline and mCL-D, with both 24-2 and 10-2 protocols. There was no significant difference in the PSD among the three refractive conditions with both the 24-2 and 10-2 protocols. Despite the induced mydriasis and the optical design of the multifocal lens used in this study, our results indicated that, when the dome-shaped visual field test is performed with eyes with large pupils and wearing refractive multifocal CLs, distance correction without additional near correction is to be recommended.

  3. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  4. Prediction of functional loss in glaucoma from progressive optic disc damage.

    PubMed

    Medeiros, Felipe A; Alencar, Luciana M; Zangwill, Linda M; Bowd, Christopher; Sample, Pamela A; Weinreb, Robert N

    2009-10-01

    To evaluate the ability of progressive optic disc damage detected by assessment of longitudinal stereophotographs to predict future development of functional loss in those with suspected glaucoma. The study included 639 eyes of 407 patients with suspected glaucoma followed up for an average of 8.0 years with annual standard automated perimetry visual field and optic disc stereophotographs. All patients had normal and reliable standard automated perimetry results at baseline. Conversion to glaucoma was defined as development of 3 consecutive abnormal visual fields during follow-up. Presence of progressive optic disc damage was evaluated by grading longitudinally acquired simultaneous stereophotographs. Other predictive factors included age, intraocular pressure, central corneal thickness, pattern standard deviation, and baseline stereophotograph grading. Hazard ratios for predicting visual field loss were obtained by extended Cox models, with optic disc progression as a time-dependent covariate. Predictive accuracy was evaluated using a modified R(2) index. Progressive optic disc damage had a hazard ratio of 25.8 (95% confidence interval, 16.0-41.7) and was the most important risk factor for development of visual field loss with an R(2) of 79%. The R(2)s for other predictive factors ranged from 6% to 26%. Presence of progressive optic disc damage on stereophotographs was a highly predictive factor for future development of functional loss in glaucoma. These findings suggest the importance of careful monitoring of the optic disc appearance and a potential role for longitudinal assessment of the optic disc as an end point in clinical trials and as a reference for evaluation of diagnostic tests in glaucoma.

  5. The Radiological Physics Center's standard dataset for small field size output factors.

    PubMed

    Followill, David S; Kry, Stephen F; Qin, Lihong; Lowenstein, Jessica; Molineu, Andrea; Alvarez, Paola; Aguirre, Jose Francisco; Ibbott, Geoffrey S

    2012-08-08

    Delivery of accurate intensity-modulated radiation therapy (IMRT) or stereotactic radiotherapy depends on a multitude of steps in the treatment delivery process. These steps range from imaging of the patient to dose calculation to machine delivery of the treatment plan. Within the treatment planning system's (TPS) dose calculation algorithm, various unique small field dosimetry parameters are essential, such as multileaf collimator modeling and field size dependence of the output. One of the largest challenges in this process is determining accurate small field size output factors. The Radiological Physics Center (RPC), as part of its mission to ensure that institutions deliver comparable and consistent radiation doses to their patients, conducts on-site dosimetry review visits to institutions. As a part of the on-site audit, the RPC measures the small field size output factors as might be used in IMRT treatments, and compares the resulting field size dependent output factors to values calculated by the institution's treatment planning system (TPS). The RPC has gathered multiple small field size output factor datasets for X-ray energies ranging from 6 to 18 MV from Varian, Siemens and Elekta linear accelerators. These datasets were measured at 10 cm depth and ranged from 10 × 10 cm(2) to 2 × 2 cm(2). The field sizes were defined by the MLC and for the Varian machines the secondary jaws were maintained at a 10 × 10 cm(2). The RPC measurements were made with a micro-ion chamber whose volume was small enough to gather a full ionization reading even for the 2 × 2 cm(2) field size. The RPC-measured output factors are tabulated and are reproducible with standard deviations (SD) ranging from 0.1% to 1.5%, while the institutions' calculated values had a much larger SD range, ranging up to 7.9% [corrected].The absolute average percent differences were greater for the 2 × 2 cm(2) than for the other field sizes. The RPC's measured small field output factors provide institutions with a standard dataset against which to compare their TPS calculated values. Any discrepancies noted between the standard dataset and calculated values should be investigated with careful measurements and with attention to the specific beam model.

  6. Scaling Deviations for Neutrino Reactions in Aysmptotically Free Field Theories

    DOE R&D Accomplishments Database

    Wilczek, F. A.; Zee, A.; Treiman, S. B.

    1974-11-01

    Several aspects of deep inelastic neutrino scattering are discussed in the framework of asymptotically free field theories. We first consider the growth behavior of the total cross sections at large energies. Because of the deviations from strict scaling which are characteristic of such theories the growth need not be linear. However, upper and lower bounds are established which rather closely bracket a linear growth. We next consider in more detail the expected pattern of scaling deviation for the structure functions and, correspondingly, for the differential cross sections. The analysis here is based on certain speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up in the X and y distributions. The last section of the paper deals with deviations from the Callan-Gross relation.

  7. Roto-chemical heating in a neutron star with fall-back disc accretion

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping

    2018-07-01

    Recent research on the classical pulsar B0950+08 demonstrates that the explanation of its high surface temperature by roto-chemical heating encounters some difficulties. We assume that there is a fall-back disc around the newborn neutron star, which originates from the supernova ejecta and influences the spin and magnetic evolution of the star. By taking into account disc accretion and magnetic field evolution simultaneously, the effect of the fall-back disc accretion process on the roto-chemical heating in the neutron star is studied. The results show that there are two roto-chemical deviation phases (spin-up deviation and spin-down deviation), but that only the spin-down deviation leads to heating. The specific cooling curve depends on the accretion disc mass, the initial magnetic field and the magnetic field decay rate. Most importantly, the observations of surface temperature, magnetic field strength and spin period of the classical pulsar B0950+08 are well explained by the accretion roto-chemical heating model. The fall-back accretion process is important in roto-chemical heating for explanations of classical pulsars with high temperature. Given the absence of any evidence of fall-back accretion on to B0950+08, our study is purely hypothetical.

  8. Dosimetric characterization of small fields using a plastic scintillator detector: A large multicenter study.

    PubMed

    Mancosu, Pietro; Pasquino, Massimo; Reggiori, Giacomo; Masi, Laura; Russo, Serenella; Stasi, Michele

    2017-09-01

    In modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector. The project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8×0.8cm 2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10cm. Set-up conditions were 10cm depth in water phantom at SSD 90cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer. Data analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD)<1%; SD<0.4mm for the profile penumbra was obtained, while FWHM measurements showed SD<0.5mm. OF measurements showed SD<1.5% for field size greater than 2×2cm 2 . Median OFs values were in agreement with the recent bibliography. High degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Determining the Equation of State (EoS) Parameters for Ballistic Gelatin

    DTIC Science & Technology

    2015-09-01

    standard deviation. The specific heat measured at room temperature reported in (Winter 1975) is approximately 1.13 cal/g/°C (= 4.73 J /g/K). Fig. 4...Piatt 2010) Table 3 Specific heat capacity, average heat capacity, and standard deviation Temperature (°C) Cp [ J /(g·K)] Cp Cp Cp Average Cp...density amorphous ice and their implications on pressure induced amorphization. J Chem Physics. 2005;122:124710. Appleby-Thomas GJ, Hazell PJ

  10. Precision Geolocation of Active Electromagnetic Sensors Using Stationary Magnetic Sensors

    DTIC Science & Technology

    2009-09-01

    0.0003, 0.0003 ] m TiltMeter Mean Pitch: -1.71576990 and Roll: 0.92591697 LSQ Moment Pitch: 0.00576850 and Roll: -0.35543026 Run #5...Standard deviation of optimized solution: [ 0.0028, 0.0014, 0.0012 ] m TiltMeter Mean Pitch: -1.08757549 and Roll: 1.09065730 LSQ Moment...0.00, 0.00, -434.95 ] Standard deviation of optimized solution: [ 0.0051, 0.0031, 0.0035 ] m TiltMeter Mean Pitch: 0.05301905

  11. An estimator for the standard deviation of a natural frequency. I.

    NASA Technical Reports Server (NTRS)

    Schiff, A. J.; Bogdanoff, J. L.

    1971-01-01

    A brief review of mean-square approximate systems is given. The case in which the masses are deterministic is considered first in the derivation of an estimator for the upper bound of the standard deviation of a natural frequency. Two examples presented include a two-degree-of-freedom system and a case in which the disorder in the springs is perfectly correlated. For purposes of comparison, a Monte Carlo simulation was done on a digital computer.

  12. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-01

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness all quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the lognormal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.

  13. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites: Observed cloud variability at ARM sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-17

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy’s Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness allmore » quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the log normal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.« less

  14. Measurements of leakage from Lake Michigan through three control structures near Chicago, Illinois, April-October 1993

    USGS Publications Warehouse

    Oberg, K.A.; Schmidt, A.R.

    1994-01-01

    A total of 213 measurements of leakage were made at three control structures near Chicago, Ill.--the Chicago River Controlling Works (CRCW), Thomas J. O'Brien Lock and Dam (O'Brien), and Wilmette Pumping Station (Wilmette)--using acoustic Doppler current profilers (ADCP's) and dye-dilution techniques. The CRCW consists of the Chicago Lock and two sets of sluice gates connected by a network of harbor walls. Leakage measurements were made in April, May, July, September, and October 1993 using an ADCP. The mean and standard deviation of leakage measured by the ADCP for the Chicago Lock river gate were 133 and 39 cubic feet per second, respectively. The mean and standard deviation of the leakage measurements at CRCW were 204 and 70 cubic feet per second, respectively. The mean and standard deviation of leakage measurements at O'Brien on September 17, 1993, were 21 and 10 cubic feet per second, respectively. The mean and standard deviation leakage measured at Wilmette using the ADCP were 59 and 8 cubic feet per second, respectively, in April 1993. After the pump bays at Wilmette were sealed in July 1993, the leakage dropped to less than 15 cubic feet per second in September 1993. Discharge estimated by dye-dilution at the Chicago Lock on July 15, 1993, was 160 cubic feet per second, or within 8 percent of the discharge measured with the ADCP. (USGS)

  15. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO)

    PubMed Central

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-01-01

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle’s speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles. PMID:27420073

  16. Reductions in the variations of respiration signals for respiratory-gated radiotherapy when using the video-coaching respiration guiding system

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Jeong; Yea, Ji Woon; Oh, Se An

    2015-07-01

    Respiratory-gated radiation therapy (RGRT) has been used to minimize the dose to normal tissue in lung-cancer radiotherapy. The present research aims to improve the regularity of respiration in RGRT by using a video-coached respiration guiding system. In the study, 16 patients with lung cancer were evaluated. The respiration signals of the patients were measured by using a realtime position management (RPM) respiratory gating system (Varian, USA), and the patients were trained using the video-coaching respiration guiding system. The patients performed free breathing and guided breathing, and the respiratory cycles were acquired for ~5 min. Then, Microsoft Excel 2010 software was used to calculate the mean and the standard deviation for each phase. The standard deviation was computed in order to analyze the improvement in the respiratory regularity with respect to the period and the displacement. The standard deviation of the guided breathing decreased to 48.8% in the inhale peak and 24.2% in the exhale peak compared with the values for the free breathing of patient 6. The standard deviation of the respiratory cycle was found to be decreased when using the respiratory guiding system. The respiratory regularity was significantly improved when using the video-coaching respiration guiding system. Therefore, the system is useful for improving the accuracy and the efficiency of RGRT.

  17. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO).

    PubMed

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-07-13

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle's speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles.

  18. [Study of building quantitative analysis model for chlorophyll in winter wheat with reflective spectrum using MSC-ANN algorithm].

    PubMed

    Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui

    2010-01-01

    Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.

  19. Professionalism in medical students at a private medical college in Karachi, Pakistan.

    PubMed

    Sobani, Zain-ul-abedeen; Mohyuddin, Muhammad Masaud; Farooq, Fahd; Qaiser, Kanza Noor; Gani, Faiz; Bham, Nida Shahab; Raheem, Ahmed; Mehraj, Vikram; Saeed, Syed Abdul; Sharif, Hasanat; Sheerani, Mughis; Zuberi, Rukhsana Wamiq; Beg, Mohamamd Asim

    2013-07-01

    To determine levels of professionalism in undergraduate medical students at a private medical college and assess how changes emerge during their training. The study was conducted at Aga Khan University, a tertiary care teaching hospital, during November and December 2011. Freshmen, Year 3 and Year 5 students were requested to fill out a questionnaire. It was designed to assess the participants' levels of professionalism and how they perceived the professional environment around them by incorporating previously described scales. The questionnaire was re-validated on a random sample of practising clinicians at the same hospital. SPSS 17 was used for statistical analysis. The study sample comprised 204 participants. The mean score for level of individual professionalism was 7.72+/-3.43. Only 13 (6.4%) students had a score one standard deviation above the faculty mean. About 24 (11.8%) were one standard deviation and 35 (17.2%) were 2 standard deviations below the faculty mean. The remaining 130 (63.7%) were >2 standard deviations below the faculty mean. Considering the level of education, the mean score for level of professionalism was 8.00+/-3.39 for freshmen, 6.85+/-3.41 for year 3 students, and 8.40+/-3.34 for year 5 students. The currently employed teaching practices inculcating the values of professionalism in medical students are serving as a buffer to maintain the pre-training levels of professionalism from declining.

  20. Longitudinal meta-analysis of NIST pH Standard Reference Materials(®): a complement to pH key comparisons.

    PubMed

    Pratt, Kenneth W

    2015-04-01

    This meta-analysis assesses the long-term (up to 70 years) within-laboratory variation of the NIST pH Standard Reference Material® (SRM) tetroxalate, phthalate, phosphate, borate, and carbonate buffers. Values of ΔpH(S), the difference between the certified pH value, pH(S), of each SRM issue and the mean of all pH(S) values for the given SRM at that Celsius temperature, t, are graphed as a function of the SRM issue and t. In most cases, |ΔpH(S)| < 0.004. Deviations from the nominal base:acid amount (mole) ratio of a buffer yield t-independent, constant shifts in ΔpH(S). The mean ΔpH(S) characterizes such deviations. The corresponding mole fraction of impurity in the conjugate buffer component is generally <0.3 %. Changes in the equipment, personnel, materials, and methodology of the pH(S) measurement yield t-dependent variations. The standard deviation of ΔpH(S) characterizes such changes. Standard deviations of ΔpH(S) are generally 0.0015 or less. The results provide a long-term, single-institution complement to the time-specific, multi-institution results of pH key comparisons administered by the Consultative Committee for Metrology in Chemistry and Biology (CCQM).

Top