Sample records for standard hydrogen monitoring

  1. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices ismore » also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of

  2. NASA atomic hydrogen standards program: An update

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Kaufmann, D. C.; Adams, W. A.; Deluca, J. J.; Soucy, J. L.

    1976-01-01

    Comparisons are made between the NP series and the NX series of hydrogen masers. A field operable hydrogen maser (NR series) is also described. Atomic hydrogen primary frequency standards are in development stages. Standards are being developed for a hydrogen beam frequency standard and for a concertina hydrogen maser.

  3. Overview of the U.S. DOE Hydrogen Safety, Codes and Standards Program. Part 4: Hydrogen Sensors; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J.; Rivkin, Carl; Burgess, Robert

    Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less

  4. Topics in atomic hydrogen standard research and applications

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1971-01-01

    Hydrogen maser based frequency and time standards have been in continuous use at NASA tracking stations since February 1970, while laboratory work at Goddard has continued in the further development and improvement of hydrogen masers. Concurrently, experimental work has been in progress with a new frequency standard based upon the hydrogen atom using the molecular beam magnetic resonance method. Much of the hydrogen maser technology is directly applicable to the new hydrogen beam standard, and calculations based upon realistic data indicate that the accuracy potential of the hydrogen atomic beam exceeds that of either the cesium beam tube or the hydrogen maser, possibly by several orders of magnitude. In addition, with successful development, the hydrogen beam standard will have several other performance advantages over other devices, particularly exceptional stability and long continuous operating life. Experimental work with a new laboratory hydrogen beam device has recently resulted in the first resonance transition curves, measurements of relative state populations, beam intensities, etc. The most important aspects of both the hydrogen maser and the hydrogen beam work are covered.

  5. Characteristics of advanced hydrogen maser frequency standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1973-01-01

    Measurements with several operational atomic hydrogen maser standards have been made which illustrate the fundamental characteristics of the maser as well as the analysability of the corrections which are made to relate the oscillation frequency to the free, unperturbed, hydrogen standard transition frequency. Sources of the most important perturbations, and the magnitude of the associated errors, are discussed. A variable volume storage bulb hydrogen maser is also illustrated which can provide on the order of 2 parts in 10 to the 14th power or better accuracy in evaluating the wall shift. Since the other basic error sources combined contribute no more than approximately 1 part in 10 to the 14th power uncertainty, the variable volume storage bulb hydrogen maser will have net intrinsic accuracy capability of the order of 2 parts in 10 to the 14th power or better. This is an order of magnitude less error than anticipated with cesium standards and is comparable to the basic limit expected for a free atom hydrogen beam resonance standard.

  6. NASA atomic hydrogen standards program - An update

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Kaufmann, D. C.; Adams, W. A.; Deluca, J. J.; Soucy, J. L.

    1976-01-01

    Some of the design features of NASA hydrogen masers are discussed including the large hydrogen source bulb, the palladium purified, the state selector, the replaceable pumps, the small entrance stem, magnetic shields, the elongated storage bulb, the aluminum cavity, the electronics package, and the autotuner. Attention is also given to the reliability and operating life of these hydrogen atomic standards.

  7. 40 CFR 141.601 - Standard monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Standard monitoring. 141.601 Section... Standard monitoring. (a) Standard monitoring plan. Your standard monitoring plan must comply with paragraphs (a)(1) through (a)(4) of this section. You must prepare and submit your standard monitoring plan...

  8. Survey of hydrogen monitoring devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, W.

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for thismore » monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.« less

  9. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Michael A.; Page, Richard A.

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-statemore » hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according

  10. Standards, documents of relevance and directives in individual monitoring: is European individual monitoring in compliance with standards?

    PubMed

    Fantuzzi, E

    2007-01-01

    Individual monitoring services (IMS) in Europe do not comply with the same legal or approval requirements. Anyway, a degree of harmonisation existing in individual monitoring practices in Europe has been achieved mainly thanks to documents as standards or international recommendations, which with different weight represent invaluable vehicles of condensed information transfer. However, implementation of standards is not straightforward and harmonisation is not directly a consequence. Somehow, 'harmony' is needed also in standards: IEC and ISO standards, on performance requirements for dosemeters sometimes have different approaches (i.e. performance criteria). Moreover, standards do not all refer to reliability, and therefore being in compliance with standards does not by itself assure that dose results are reliable. Standards are not the only reference documents for an IMS. EURADOS working group on 'Harmonisation of Individual Monitoring in Europe', who has been active in the years 2001-2004, suggested a classification of publication on individual monitoring, distinguishing between standards and documents of relevance, which can be both national and international. None of the two categories are mandatory unless specified in legislation. The Council Directive 96/29/EURATOM and its implementation in each EU Member States has fostered harmonisation of the approach (i.e. approval of dosimetric services) and of the reference quantities for individual monitoring within EU, but national legislation still allow substantial differences in individual monitoring from country to country.

  11. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Moore, R. C.

    1985-01-01

    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  12. Continuous Codes and Standards Improvement (CCSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, Carl H; Burgess, Robert M; Buttner, William J

    2015-10-21

    As of 2014, the majority of the codes and standards required to initially deploy hydrogen technologies infrastructure in the United States have been promulgated. These codes and standards will be field tested through their application to actual hydrogen technologies projects. Continuous codes and standards improvement (CCSI) is a process of identifying code issues that arise during project deployment and then developing codes solutions to these issues. These solutions would typically be proposed amendments to codes and standards. The process is continuous because as technology and the state of safety knowledge develops there will be a need to monitor the applicationmore » of codes and standards and improve them based on information gathered during their application. This paper will discuss code issues that have surfaced through hydrogen technologies infrastructure project deployment and potential code changes that would address these issues. The issues that this paper will address include (1) setback distances for bulk hydrogen storage, (2) code mandated hazard analyses, (3) sensor placement and communication, (4) the use of approved equipment, and (5) system monitoring and maintenance requirements.« less

  13. Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.

    1981-01-01

    At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.

  14. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers.

    PubMed

    Ma, G M; Jiang, J; Li, C R; Song, H T; Luo, Y T; Wang, H B

    2015-04-01

    Compared with conventional DGA (dissolved gas analysis) method for on-line monitoring of power transformers, FBG (fiber Bragg grating) hydrogen sensor represents marked advantages over immunity to electromagnetic field, time-saving, and convenience to defect location. Thus, a novel FBG hydrogen sensor based on Pd/Ag (Palladium/Silver) along with polyimide composite film to measure dissolved hydrogen concentration in large power transformers is proposed in this article. With the help of Pd/Ag composite coating, the enhanced performance on mechanical strength and sensitivity is demonstrated, moreover, the response time and sensitivity influenced by oil temperature are solved by correction lines. Sensitivity measurement and temperature calibration of the specific hydrogen sensor have been done respectively in the lab. And experiment results show a high sensitivity of 0.055 pm/(μl/l) with instant response time about 0.4 h under the typical operating temperature of power transformers, which proves a potential utilization inside power transformers to monitor the health status by detecting the dissolved hydrogen concentration.

  15. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  16. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  17. Near-infrared diode laser hydrogen fluoride monitor for dielectric etch

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Pirkle, David R.; Jeffries, Jay B.; McMillin, Brian; Hanson, Ronald K.

    2004-11-01

    A hydrogen fluoride (HF) monitor, using a tunable diode laser, is designed and used to detect the etch endpoints for dielectric film etching in a commercial plasma reactor. The reactor plasma contains HF, a reaction product of feedstock gas CF4 and the hydrogen-containing films (photoresist, SiOCH) on the substrate. A near-infrared diode laser is used to scan the P(3) transition in the first overtone of HF near 1.31 μm to monitor changes in the level of HF concentration in the plasma. Using 200 ms averaging and a signal modulation technique, we estimate a minimum detectable HF absorbance of 6×10-5 in the etch plasma, corresponding to an HF partial pressure of 0.03 mTorr. The sensor could indicate, in situ, the SiOCH over tetraethoxysilane oxide (TEOS) trench endpoint, which was not readily discerned by optical emission. These measurements demonstrate the feasibility of a real-time diode laser-based sensor for etch endpoint monitoring and a potential for process control.

  18. Final Technical Report for GO17004 Regulatory Logic: Codes and Standards for the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakarado, Gary L.

    The objectives of this project are to: develop a robust supporting research and development program to provide critical hydrogen behavior data and a detailed understanding of hydrogen combustion and safety across a range of scenarios, needed to establish setback distances in building codes and minimize the overall data gaps in code development; support and facilitate the completion of technical specifications by the International Organization for Standardization (ISO) for gaseous hydrogen refueling (TS 20012) and standards for on-board liquid (ISO 13985) and gaseous or gaseous blend (ISO 15869) hydrogen storage by 2007; support and facilitate the effort, led by the NFPA,more » to complete the draft Hydrogen Technologies Code (NFPA 2) by 2008; with experimental data and input from Technology Validation Program element activities, support and facilitate the completion of standards for bulk hydrogen storage (e.g., NFPA 55) by 2008; facilitate the adoption of the most recently available model codes (e.g., from the International Code Council [ICC]) in key regions; complete preliminary research and development on hydrogen release scenarios to support the establishment of setback distances in building codes and provide a sound basis for model code development and adoption; support and facilitate the development of Global Technical Regulations (GTRs) by 2010 for hydrogen vehicle systems under the United Nations Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations and Working Party on Pollution and Energy Program (ECE-WP29/GRPE); and to Support and facilitate the completion by 2012 of necessary codes and standards needed for the early commercialization and market entry of hydrogen energy technologies.« less

  19. Passive, Direct-Read Monitoring System for Selective Detection and Quantification of Hydrogen Chloride

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Mihaylov, G. M.; Kirollos, K. S.

    2000-01-01

    Monitoring the exposure of an employee to hydrogen chloride or hydrochloric acid in the presence of other acids has been a challenge to the industrial hygiene community. The capability of a device to differentiate the levels of acid vapors would allow for more accurate determinations of exposure and therefore improved occupational health. In this work, a selective direct-read colorimetric badge system was validated for Short Term Exposure Limit (STEL) monitoring of hydrogen chloride. The passive colorimetric badge system consists of a direct reading badge and a color scale. The badge has a coated indicator layer with a diffusive resistance in the shape of an exclamation mark. An exclamation mark will appear if hydrogen chloride is present in the atmosphere at concentrations at or above 2.0 ppm. By using the color scale, the intensity of the color formed on the badge can be further quantified up to 25 ppm. The system was validated according to a protocol based on the NIOSH Protocol for the Evaluation of Passive Monitors. The badge was exposed to relative humidities ranging from 11% to 92%, temperatures ranging from 7 C to 400 C and air velocities ranging from 5 cm/sec to 170 cm/sec. All experiments were conducted in a laboratory vapor generation system. Hydrofluoric acid, nitric acid, sulfuric acid, chlorine, hydrogen sulfide and organic acids showed no effect on the performance of the hydrogen chloride monitoring system. The passive badge and color scale system exceeded the accuracy requirements as defined by NIOSH. At ambient conditions, the mean coefficient of variation was 10.86 and the mean bias was 1.3%. This data was presented previously at the American Industrial Hygiene Conference and Exposition in Toronto, Canada in June 1999.

  20. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles

    DOE PAGES

    Buttner, William; Rivkin, C.; Burgess, R.; ...

    2017-02-04

    Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less

  1. Study of Improvement of Hydrogen Maser Frequency Standard

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1977-01-01

    The research work dealt primarily with reducing the atom leakage rate using as storage surfaces the FEP Teflon surfaces conventionally used in contemporary hydrogen maser frequency standards. Some work was also done on a possible alternative to the conventional surfaces, but the results here and elsewhere suggest that the alternative surface is not promising enough to warrant much further work.

  2. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide

    PubMed Central

    Jolley, Elizabeth A.

    2017-01-01

    Abstract Non-standard nucleotides are ubiquitous in RNA. Thermodynamic studies with RNA duplexes containing non-standard nucleotides, whether incorporated naturally or chemically, can provide insight into the stability of Watson–Crick pairs and the role of specific functional groups in stabilizing a Watson–Crick pair. For example, an A-U, inosine•U and pseudouridine•A pair each form two hydrogen bonds. However, an RNA duplex containing a central I•U pair or central Ψ•A pair is 2.4 kcal/mol less stable or 1.7 kcal/mol more stable, respectively, than the corresponding duplex containing an A-U pair. In the non-standard nucleotide purine, hydrogen replaces the exocyclic amino group of A. This replacement results in a P•U pair containing only one hydrogen bond. Optical melting studies were performed with RNA duplexes containing P•U pairs adjacent to different nearest neighbors. The resulting thermodynamic parameters were compared to RNA duplexes containing A-U pairs in order to determine the contribution of the hydrogen bond involving the exocyclic amino group. Results indicate a loss of 1.78 kcal/mol, on average, when an internal P•U replaces A-U in an RNA duplex. This value is compared to the thermodynamics of a hydrogen bond determined by similar methods. Nearest neighbor parameters were derived for use in free energy and secondary structure prediction software. PMID:28180321

  3. Clinical evaluation of a miniaturized desktop breath hydrogen analyzer.

    PubMed

    Duan, L P; Braden, B; Clement, T; Caspary, W F; Lembcke, B

    1994-10-01

    A small desktop electrochemical H2 analyzer (EC-60-Hydrogen monitor) was compared with a stationary electrochemical H2 monitor (GMI-exhaled Hydrogen monitor). The EC-60-H2 monitor shows a high degree of precision for repetitive (n = 10) measurements of standard hydrogen mixtures (CV 1-8%). The response time for completion of measurement is shorter than that of the GMI-exhaled H2 monitor (37 sec. vs 53 sec.; p < 0.0001), while reset times are almost identical (54 sec. vs 51 sec. n.s). In a clinical setting, breath H2-concentrations measured with the EC-60-H2 monitor and the GMI-exhaled H2 monitor were in excellent agreement with a linear correlation (Y = 1.12X + 1.022, r2 = 0.9617, n = 115). With increasing H2-concentrations the EC-60-H2 monitor required larger sample volumes for maintaining sufficient precision, and sample volumes greater than 200 ml were required with H2-concentrations > 30 ppm. For routine gastrointestinal function testing, the EC-60-H2 monitor is an satisfactory and reliable, easy to use and inexpensive desktop breath hydrogen analyzer, whereas in patients with difficulty in cooperating (children, people with severe pulmonary insufficiency), special care has to be applied to obtain sufficiently large breath samples.

  4. NASA hydrogen maser accuracy and stability in relation to world standards

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Percival, D. B.

    1973-01-01

    Frequency comparisons were made among five NASA hydrogen masers in 1969 and again in 1972 to a precision of one part in 10 to the 13th power. Frequency comparisons were also made between these masers and the cesium-beam ensembles of several international standards laboratories. The hydrogen maser frequency stabilities as related to IAT were comparable to the frequency stabilities of individual time scales with respect to IAT. The relative frequency variations among the NASA masers, measured after the three-year interval, were 2 + or - 2 parts in 10 to the 13th power. Thus time scales based on hydrogen masers would have excellent long-term stability and uniformity.

  5. Characteristics of Hydrogen Monitoring Systems for Severe Accident Management at a Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.; Grigoryan, A. D.; Petrosyan, A. P.; Movsisyan, M. R.

    2018-02-01

    One of the main objectives of severe accident management at a nuclear power plant is to protect the integrity of the containment, for which the most serious threat is possible ignition of the generated hydrogen. There should be a monitoring system providing information support of NPP personnel, ensuring data on the current state of a containment gaseous environment and trends in its composition changes. Monitoring systems' requisite characteristics definition issues are considered by the example of a particular power unit. Major characteristics important for proper information support are discussed. Some features of progression of severe accident scenarios at considered power unit are described and a possible influence of the hydrogen concentration monitoring system performance on the information support reliability in a severe accident is analyzed. The analysis results show that the following technical characteristics of the combustible gas monitoring systems are important for the proper information support of NPP personnel in the event of a severe accident at a nuclear power plant: measured parameters, measuring ranges and errors, update rate, minimum detectable concentration of combustible gas, monitoring reference points, environmental qualification parameters of the system components. For NPP power units with WWER-440/270 (230) type reactors, which have a relatively small containment volume, the update period for measurement results is a critical characteristic of the containment combustible gas monitoring system, and the choice of monitoring reference points should be focused not so much on the definition of places of possible hydrogen pockets but rather on the definition of places of a possible combustible mixture formation. It may be necessary for the above-mentioned power units to include in the emergency operating procedures measures aimed at a timely heat removal reduction from the containment environment if there are signs of a severe accident phase

  6. ST-segment monitoring: putting standards into practice.

    PubMed

    Flanders, Sonya A

    2007-01-01

    ST-segment monitoring is one key reason that continuous electrocardiographic monitoring is performed in hospitals, and can help with early detection of myocardial ischemia for at-risk patients. Although ST-segment monitoring research, guidelines, and expert consensus statements have been published, ST-segment monitoring has not been implemented in all appropriate clinical areas. The purpose of this article is to present relevant research, review the latest practice standards, and discuss issues important to nurses wishing to implement ST-segment monitoring.

  7. Ar/Ar Dating Independent of Monitor Standard Ages

    NASA Astrophysics Data System (ADS)

    Boswell, S.; Hemming, S. R.

    2015-12-01

    Because the reported age of an analyzed sample is dependent on the age of the co-irradiated monitor standard(s), Ar/Ar dating is a relative dating technique. There is disagreement at the 1% scale in the age of commonly used monitor standards, and there is a great need to improve the inter-laboratory calibrations. Additionally, new approaches and insights are needed to meet the challenge of bringing the Ar/Ar chronometer to the highest possible precision and accuracy. In this spirit, we present a conceptual framework for Ar/Ar dating that does not depend on the age of monitor standards, but only on the K content of a solid standard. The concept is demonstrated by introducing a re-expressed irradiation parameter (JK) that depends on the ratio of 39ArK to 40Ar* rather than the 40Ar*/39ArK ratio. JK is equivalent to the traditional irradiation parameter J and is defined as JK = (39Ar/40K) • (λ/λe). The ultimate precision and accuracy of the method will depend on how precisely and accurately the 39Ar and 40K can be estimated, and will require isotope dilution measurements of both from the same aliquot. We are testing the workability of our technique at the 1% level by measuring weighed and irradiated hornblende and biotite monitor standards using GLO-1 glauconite to define a calibration curve for argon signals versus abundance.

  8. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give

  9. Standards for documenting and monitoring bird reintroduction projects

    USGS Publications Warehouse

    Sutherland, W.J.; Armstrong, D.; Butchart, S.H.M.; Earnhardt, J.M.; Ewen, J.; Jamieson, I.; Jones, C.G.; Lee, R.; Newbery, P.; Nichols, J.D.; Parker, K.A.; Sarrazin, F.; Seddon, P.J.; Shah, N.; Tatayah, V.

    2010-01-01

    It would be much easier to assess the effectiveness of different reintroduction methods, and so improve the success of reintroductions, if there was greater standardization in documentation of the methods and outcomes. We suggest a series of standards for documenting and monitoring the methods and outcomes associated with reintroduction projects for birds. Key suggestions are: documenting the planned release before it occurs, specifying the information required on each release, postrelease monitoring occurring at standard intervals of 1 and 5 years (and 10 for long-lived species), carrying out a population estimate unless impractical, distinguishing restocked and existing individuals when supplementing populations, and documenting the results. We suggest these principles would apply, largely unchanged, to other vertebrate classes. Similar methods could be adopted for invertebrates and plants with appropriate modification. We suggest that organizations publically state whether they will adopt these approaches when undertaking reintroductions. Similar standardization would be beneficial for a wide range of topics in environmental monitoring, ecological studies, and practical conservation. ??2010 Wiley Periodicals, Inc.

  10. Hydrogen as an atomic beam standard

    NASA Technical Reports Server (NTRS)

    Peters, H. E.

    1972-01-01

    After a preliminary discussion of feasibility, new experimental work with a hydrogen beam is described. A space focused magnetic resonance technique with separated oscillatory fields is used with a monochromatic beam of cold hydrogen atoms which are selected from a higher temperature source. The first resonance curves and other experimental results are presented. These results are interpreted from the point of view of accuracy potential and frequency stability, and are compared with hydrogen maser and cesium beam capabilities.

  11. New Mexico state traffic monitoring standards, calendar year 2009-2010

    DOT National Transportation Integrated Search

    2010-01-01

    What follows are New Mexico's State Traffic Monitoring Standards : (NMSTMS) to be used for all New Mexico Traffic Monitoring activities. : The standards were first implemented on October 1, 1988. They : continue to be reviewed and refined on a three-...

  12. Water vapor inhibits hydrogen sulfide detection in pulsed fluorescence sulfur monitors

    NASA Astrophysics Data System (ADS)

    Bluhme, Anders B.; Ingemar, Jonas L.; Meusinger, Carl; Johnson, Matthew S.

    2016-06-01

    The Thermo Scientific 450 Hydrogen Sulfide-Sulfur Dioxide Analyzer measures both hydrogen sulfide (H2S) and sulfur dioxide (SO2). Sulfur dioxide is measured by pulsed fluorescence, while H2S is converted to SO2 with a molybdenum catalyst prior to detection. The 450 is widely used to measure ambient concentrations, e.g., for emissions monitoring and pollution control. An air stream with a constant H2S concentration was generated and the output of the analyzer recorded as a function of relative humidity (RH). The analyzer underreported H2S as soon as the relative humidity was increased. The fraction of undetected H2S increased from 8.3 at 5.3 % RH (294 K) to over 34 % at RH > 80 %. Hydrogen sulfide mole fractions of 573, 1142, and 5145 ppb were tested. The findings indicate that previous results obtained with instruments using similar catalysts should be re-evaluated to correct for interference from water vapor. It is suspected that water decreases the efficiency of the converter unit and thereby reduces the measured H2S concentration.

  13. A Toxicological Evaluation of a Standardized Hydrogenated Extract of Curcumin (CuroWhite™)

    PubMed Central

    Ravikumar, Alastimmanahalli Narasimhiah; Jacob, Joby

    2018-01-01

    A series of toxicological investigations were conducted in order to evaluate the genotoxic potential and repeated-dose oral toxicity of CuroWhite, a proprietary extract of curcumin that has been hydrogenated and standardized to not less than 25% hydrogenated curcuminoid content. All tests were conducted in general accordance with internationally accepted standards. The test item was not mutagenic in the bacterial reverse mutation test or in vitro mammalian chromosomal aberration test, and no in vivo genotoxic activity was observed in rat bone marrow in the micronucleus test. A 90-day repeated-dose study was conducted in male and female Sprague-Dawley rats. Two mortalities occurred in the main and satellite high-dose groups and were determined due to gavage error. No organ specific or other toxic effects of the test item were observed up to the maximum dose of 800 mg/kg bw/day, administered by gavage. NOAEL was, therefore, estimated as 800 mg/kg bw/day. PMID:29610573

  14. A Toxicological Evaluation of a Standardized Hydrogenated Extract of Curcumin (CuroWhite™).

    PubMed

    Ravikumar, Alastimmanahalli Narasimhiah; Jacob, Joby; Gopi, Sreeraj; Jagannath, Tumkur Subbarao

    2018-01-01

    A series of toxicological investigations were conducted in order to evaluate the genotoxic potential and repeated-dose oral toxicity of CuroWhite, a proprietary extract of curcumin that has been hydrogenated and standardized to not less than 25% hydrogenated curcuminoid content. All tests were conducted in general accordance with internationally accepted standards. The test item was not mutagenic in the bacterial reverse mutation test or in vitro mammalian chromosomal aberration test, and no in vivo genotoxic activity was observed in rat bone marrow in the micronucleus test. A 90-day repeated-dose study was conducted in male and female Sprague-Dawley rats. Two mortalities occurred in the main and satellite high-dose groups and were determined due to gavage error. No organ specific or other toxic effects of the test item were observed up to the maximum dose of 800 mg/kg bw/day, administered by gavage. NOAEL was, therefore, estimated as 800 mg/kg bw/day.

  15. Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.

    PubMed

    Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain

    2017-11-27

    A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.

  16. Grayscale standard display function on LCD color monitors

    NASA Astrophysics Data System (ADS)

    De Monte, Denis; Casale, Carlo; Albani, Luigi; Bonfiglio, Silvio

    2007-03-01

    Currently, as a rule, digital medical systems use monochromatic Liquid Crystal Display (LCD) monitors to ensure an accurate reproduction of the Grayscale Standard Display Function (GSDF) as specified in the Digital Imaging and Communications in Medicine (DICOM) Standard. As a drawback, special panels need to be utilized in digital medical systems, while it would be preferable to use regular color panels, which are manufactured on a wide scale and are thus available at by far lower prices. The method proposed introduces a temporal color dithering technique to accurately reproduce the GSDF on color monitors without losing monitor resolution. By exploiting the characteristics of the Human Visual System (HVS) the technique ensures that a satisfactory grayscale reproduction is achieved minimizing perceivable flickering and undesired color artifacts. The algorithm has been implemented in the monitor using a low-cost Field Programmable Gate Array (FPGA). Quantitative evaluations of luminance response on a 3 Mega-pixel color monitor have shown that the compliance with the GSDF can be achieved with the accuracy level required by medical applications. At the same time the measured color deviation is below the threshold perceivable by the human eye.

  17. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  18. Developing policy, standard orders, and quality-assurance monitoring for palliative sedation therapy.

    PubMed

    Ghafoor, Virginia L; Silus, Lauren S

    2011-03-15

    The development of a policy, evidence-based standard orders, and monitoring for palliative sedation therapy (PST) is described. Concerns regarding PST at the University of Minnesota Medical Center (UMMC) arose and needed to be addressed in a formal process. A multidisciplinary group consisting of palliative care physicians, nurse practitioners, clinical nurse specialists, and clinical pharmacy specialists reached consensus on the practice model and medications to be used for PST. Major elements of the plan included the development and implementation of an institutional policy for palliative sedation; standard orders for patient care, sedation, and monitoring; education for staff, patients, and patients' family members; and quality-assurance monitoring. A literature review was performed to identify research and guidelines defining the practice of PST. Policy content includes the use of a standard order set linking patient care, medication administration, the monitoring of sedation, and symptom management. Approval of the policy involved several UMMC committees. An evaluation matrix was used to determine critical areas for PST monitoring and to guide development of a form to monitor quality. A retrospective chart audit using the quality-assurance monitoring form assessed baseline sedation medication and patient outcomes. Assessment of compliance began in the fall of 2008, after the policy and standard orders were approved by the UMMC medical executive committee. In 2008, two cases of PST were monitored using the standardized form. PST cases will be continually monitored and analyzed. Development of policy, standard orders, and quality-assurance monitoring for PST required a formal multidisciplinary process. A process-improvement process is critical to defining institutional policy, educational goals, and outcome metrics for PST.

  19. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    PubMed Central

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  20. National survey of cardiologists' standard of practice for continuous ST-segment monitoring.

    PubMed

    Sandau, Kristin E; Sendelbach, Sue; Frederickson, Joel; Doran, Karen

    2010-03-01

    Continuous ST-segment monitoring can be used to detect early and transient cardiac ischemia. The American Heart Association and American Association of Critical-Care Nurses recommend its use among specific patients, but such monitoring is routine practice in only about half of US hospitals. To determine cardiologists' awareness and practice standards regarding continuous ST-segment monitoring and the physicians' perceptions of appropriate patient selection, benefits and barriers, and usefulness of this technology. An electronic survey was sent to a random sample of 915 US cardiologists from a pool of 4985 certified cardiologists. Of 200 responding cardiologists, 55% were unaware of the consensus guidelines. Of hospitals where respondents admitted patients, 49% had a standard of practice for using continuous ST-segment monitoring for cardiac patients. Most cardiologists agreed or strongly agreed that patients in the cardiovascular laboratory (87.5%) and intensive care unit (80.5%) should have such monitoring. Cardiologists routinely ordered ST monitoring for patients with acute coronary syndrome (67%) and after percutaneous coronary intervention (60%). The primary factor associated with higher perceptions for benefits, clinical usefulness, and past use of continuous ST-segment monitoring was whether or not hospitals in which cardiologists practiced had a standard of practice for using this monitoring. A secondary factor was awareness of published consensus guidelines for such monitoring. Respondents (55%) were unaware of published monitoring guidelines. Hospital leaders could raise awareness by multidisciplinary review of evidence and possibly incorporating continuous ST-segment monitoring into hospitals' standards of practice.

  1. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  2. Hydrogen Fuel Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of themore » development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.« less

  3. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  4. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    PubMed Central

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F.; Dahmene, Fethi

    2017-01-01

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement. PMID:28925961

  5. Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small IV, W; Maitland, D J; Wilson, T S

    2008-06-05

    A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter,more » providing a unique indication of the cumulative gas exposure.« less

  6. Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1979-01-01

    Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.

  7. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  8. Hydrogen-Detection Apparatus

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard; Bourgeois, Chris M.

    1995-01-01

    Apparatus continuously monitors concentration of hydrogen, at level ranging from few parts per million to several percent, in mixture of gases. Simple and fast, providing high sensitivity and linear response. Used to alert technicians to potentially explosive concentrations of residual hydrogen.

  9. Phase-I monitoring of standard deviations in multistage linear profiles

    NASA Astrophysics Data System (ADS)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2018-03-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  10. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  11. Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations

    NASA Technical Reports Server (NTRS)

    Potter, P. D.; Finnie, C.

    1978-01-01

    A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.

  12. Hydrogen Infrastructure Testing and Research Facility | Hydrogen and Fuel

    Science.gov Websites

    stations, enabling NREL to validate current industry standards and methods for hydrogen fueling as well as the HITRF to: Develop, quantify performance of, and improve renewable hydrogen production methods

  13. Safety, Codes, and Standards | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    to develop and test hydrogen sensor technologies. In addition to partnering with organizations in the and Validation of Prototype Hydrogen Sensors, P.K. Sekhar, J. Zhou, M.B. Post, L. Woo, W.J. Buttner , M.B. Post, C. Rivkin, R. Burgess, and W.J. Buttner, International Journal of Hydrogen Energy (March

  14. [Discuss about Alarm Requirements of Standards for Tests of Patient Monitor].

    PubMed

    Feng, Ting

    This paper introduces the alarm requirements of standards of patient monitor and expounds their significance for tests and guidance for patient monitor, then discusses whether technical alarm should not be closed and it latching alarm and non-latching alarm can not exist together.

  15. 40 CFR 75.32 - Determination of monitor data availability for standard missing data procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... availability for standard missing data procedures. 75.32 Section 75.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.32 Determination of monitor data availability for standard missing data procedures...

  16. 40 CFR 75.32 - Determination of monitor data availability for standard missing data procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... availability for standard missing data procedures. 75.32 Section 75.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.32 Determination of monitor data availability for standard missing data procedures...

  17. 40 CFR 75.32 - Determination of monitor data availability for standard missing data procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... availability for standard missing data procedures. 75.32 Section 75.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.32 Determination of monitor data availability for standard missing data procedures...

  18. 40 CFR 75.32 - Determination of monitor data availability for standard missing data procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... availability for standard missing data procedures. 75.32 Section 75.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.32 Determination of monitor data availability for standard missing data procedures...

  19. 40 CFR 75.32 - Determination of monitor data availability for standard missing data procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... availability for standard missing data procedures. 75.32 Section 75.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.32 Determination of monitor data availability for standard missing data procedures...

  20. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  1. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  2. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  3. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  4. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  5. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  6. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination

    PubMed Central

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-01-01

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system. PMID:24912488

  7. The maximum specific hydrogen-producing activity of anaerobic mixed cultures: definition and determination

    NASA Astrophysics Data System (ADS)

    Mu, Yang; Yang, Hou-Yun; Wang, Ya-Zhou; He, Chuan-Shu; Zhao, Quan-Bao; Wang, Yi; Yu, Han-Qing

    2014-06-01

    Fermentative hydrogen production from wastes has many advantages compared to various chemical methods. Methodology for characterizing the hydrogen-producing activity of anaerobic mixed cultures is essential for monitoring reactor operation in fermentative hydrogen production, however there is lack of such kind of standardized methodologies. In the present study, a new index, i.e., the maximum specific hydrogen-producing activity (SHAm) of anaerobic mixed cultures, was proposed, and consequently a reliable and simple method, named SHAm test, was developed to determine it. Furthermore, the influences of various parameters on the SHAm value determination of anaerobic mixed cultures were evaluated. Additionally, this SHAm assay was tested for different types of substrates and bacterial inocula. Our results demonstrate that this novel SHAm assay was a rapid, accurate and simple methodology for determining the hydrogen-producing activity of anaerobic mixed cultures. Thus, application of this approach is beneficial to establishing a stable anaerobic hydrogen-producing system.

  8. Monitoring clinical standards in a chronic peritoneal dialysis program.

    PubMed

    Leung, Dora K C

    2009-02-01

    Multiple factors may influence the effectiveness of a chronic peritoneal dialysis program. Continuous monitoring of various aspects of clinical standards with reviews enhances opportunities for bridging the gap between existing practice and good practice, and good practice to best practice.

  9. Safe Detection System for Hydrogen Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less

  10. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Chen, Rong

    2014-04-15

    A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.

  11. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  12. Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil.

    PubMed

    Zhang, Ya-Nan; Wu, Qilu; Peng, Huijie; Zhao, Yong

    2016-12-01

    A highly-sensitive and temperature-robust photonic crystal fiber (PCF) modal interferometer coated with Pd/WO 3 film was fabricated and studied, aiming for real-time monitoring of dissolved hydrogen concentration in transformer oil. The sensor probe was fabricated by splicing two segments of a single mode fiber (SMF) with both ends of the PCF. Since the collapse of air holes in the PCF in the interfaces between SMF and PCF, a SMF-PCF-SMF interferometer structure was formed. The Pd/WO 3 film was fabricated by sol-gel method and coated on the surface of the PCF by dip-coating method. When the Pd/WO 3 film is exposed to hydrogen, both the length and cladding refractive index of the PCF would be changed, resulting in the resonant wavelength shift of the interferometer. Experimental results showed that the hydrogen measurement sensitivity of the proposed sensor can reach 0.109 pm/(μl/l) in the transformer oil, with the measurement range of 0-10 000 μl/l and response time less than 33 min. Besides, the proposed sensor was temperature-insensitive without any compensation process, easy to fabricate without any tapering, polishing, or etching process, low cost and quickly response without any oil-gas separation device. All these performances satisfy the actual need of real-time monitoring of dissolved hydrogen concentration in the transformer oil.

  13. Sniffer used as portable hydrogen leak detector

    NASA Technical Reports Server (NTRS)

    Dayan, V. H.; Rommel, M. A.

    1966-01-01

    Sniffer type portable monitor detects hydrogen in air, oxygen, nitrogen, or helium. It indicates the presence of hydrogen in contact with activated palladium black by a change in color of a thermochromic paint, and indicates the quantity of hydrogen by a sensor probe and continuous readout.

  14. Inter-monitor standard calibration and tests for Ar-Ar biases

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Turrin, B. D.; Swisher, C. C.; Cox, S. E.; Mesko, G. T.; Chang, S.

    2010-12-01

    A major issue facing the geochronology community is that there are biases between chronometers that have become significant as we interrogate the rock record with ever increasing levels of precision. Despite much progress there are still major issues with building a timescale with multiple chronometers and for testing synchroneity of anomalous events in Earth history. Improvements in methods for determining U-Pb zircon dates has led to their application at precisions of 0.2% or better in rocks even younger than a million years (e.g., Crowley et al., 2007, Geology), and significantly better than 0.1% in some cases (e.g., Bowring et al., 2006, Paleontological Society Papers, Volume 12). Additionally, the inter-calibration experiments for U-Pb using the EARTHTIME tracer have yielded excellent agreement among labs (0.05%) and these values are traceable back to SI units through the EARTHTIME tracer calibration experiment (e.g., Condon et al., in press, Geochimica et Cosmochimica Acta). These advances have greatly extended the need for cross calibrations of the two chronometers and ultimately seamless integration into the Geologic Time Scale. The direct comparison of ages using different chronometers and laboratories is the central aspect in the quest for a highly resolved and accurate time scale of Earth History. A significant obstacle to high precision inter-comparison of U-Pb and Ar-Ar age results is the current inability of Ar-Ar labs to achieve agreement on monitor standard ages at the 0.1% level. At the heart of Ar-Ar geochronology is the assumption of a known absolute age of a standard, to which all applicable unknowns are referenced. While individual labs are able to achieve highly precise apparent ages on monitor standards, the lack of a “gold standard” for Ar-Ar dating means that we do not know who is, or indeed if anybody is correct. In order to improve our understanding of factors that may lead to biases in our own laboratories at Lamont-Doherty Earth

  15. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  16. Hydrogen slush density reference system

    NASA Technical Reports Server (NTRS)

    Weitzel, D. H.; Lowe, L. T.; Ellerbruch, D. A.; Cruz, J. E.; Sindt, C. F.

    1971-01-01

    A hydrogen slush density reference system was designed for calibration of field-type instruments and/or transfer standards. The device is based on the buoyancy principle of Archimedes. The solids are weighed in a low-mass container so arranged that solids and container are buoyed by triple-point liquid hydrogen during the weighing process. Several types of hydrogen slush density transducers were developed and tested for possible use as transfer standards. The most successful transducers found were those which depend on change in dielectric constant, after which the Clausius-Mossotti function is used to relate dielectric constant and density.

  17. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  18. Fiber optic hydrogen sensors: a review

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Dai, Jixiang

    2014-12-01

    Hydrogen is one of the next generation energies in the future, which shows promising applications in aerospace and chemical industries. Hydrogen leakage monitoring is very dangerous and important because of its low ignition energy, high combustion efficiency, and smallest molecule. This paper reviews the state-of-art development of the fiber optic hydrogen sensing technology. The main developing trends of fiber optic hydrogen sensors are based on two kinds of hydrogen sensitive materials, i.e. palladium-alloy thin films and Pt-doped WO3 coatings. In this review work, the advantages and disadvantages of these two kinds of sensing technologies will be evaluated.

  19. Designing and implementing a monitoring program and the standards for conducting point counts

    Treesearch

    C. John Ralph

    1993-01-01

    Choosing between the apparent plethora of methods for monitoring bird populations is a dilemma for a person contemplating beginning a monitoring program. Cooperrider et al. (1986) and Koskimies and Vaisanen (1991) describe many methods. In the Americas, three methods have been suggested as standard (Butcher 1992). They are: point counts for determining habitat...

  20. 78 FR 73112 - Monitoring System Conditions-Transmission Operations Reliability Standards; Interconnection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ..., RM13-14-000 and RM13-15-000] Monitoring System Conditions--Transmission Operations Reliability...) 502-6817, [email protected] . Robert T. Stroh (Legal Information), Office of the General... Reliability Standards ``address the important reliability goal of ensuring that the transmission system is...

  1. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland.

    PubMed

    Checketts, M R; Alladi, R; Ferguson, K; Gemmell, L; Handy, J M; Klein, A A; Love, N J; Misra, U; Morris, C; Nathanson, M H; Rodney, G E; Verma, R; Pandit, J J

    2016-01-01

    This guideline updates and replaces the 4th edition of the AAGBI Standards of Monitoring published in 2007. The aim of this document is to provide guidance on the minimum standards for physiological monitoring of any patient undergoing anaesthesia or sedation under the care of an anaesthetist. The recommendations are primarily aimed at anaesthetists practising in the United Kingdom and Ireland. Minimum standards for monitoring patients during anaesthesia and in the recovery phase are included. There is also guidance on monitoring patients undergoing sedation and also during transfer of anaesthetised or sedated patients. There are new sections discussing the role of monitoring depth of anaesthesia, neuromuscular blockade and cardiac output. The indications for end-tidal carbon dioxide monitoring have been updated. © 2015 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists of Great Britain and Ireland.

  2. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed in each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag... test. (g) For waste-burning kilns not equipped with a wet scrubber, in place of hydrogen chloride..., maintain, and operate a continuous emission monitoring system for monitoring hydrogen chloride emissions...

  3. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain. ...

  4. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain. ...

  5. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain. ...

  6. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain. ...

  7. On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS)*

    PubMed Central

    Quanico, Jusal; Franck, Julien

    2016-01-01

    Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues. PMID:27512083

  8. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    NASA Astrophysics Data System (ADS)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  9. Diagnostic value of different adherence measures using electronic monitoring and virologic failure as reference standards.

    PubMed

    Deschamps, Ann E; De Geest, Sabina; Vandamme, Anne-Mieke; Bobbaers, Herman; Peetermans, Willy E; Van Wijngaerden, Eric

    2008-09-01

    Nonadherence to antiretroviral therapy is a substantial problem in HIV and jeopardizes the success of treatment. Accurate measurement of nonadherence is therefore imperative for good clinical management but no gold standard has been agreed on yet. In a single-center prospective study nonadherence was assessed by electronic monitoring: percentage of doses missed and drug holidays and by three self reports: (1) a visual analogue scale (VAS): percentage of overall doses taken; (2) the Swiss HIV Cohort Study Adherence Questionnaire (SHCS-AQ): percentage of overall doses missed and drug holidays and (3) the European HIV Treatment Questionnaire (EHTQ): percentage of doses missed and drug holidays for each antiretroviral drug separately. Virologic failure prospectively assessed during 1 year, and electronic monitoring were used as reference standards. Using virologic failure as reference standard, the best results were for (1) the SHCS-AQ after electronic monitoring (sensitivity, 87.5%; specificity, 78.6%); (2) electronic monitoring (sensitivity, 75%; specificity, 85.6%), and (3) the VAS combined with the SHCS-AQ before electronic monitoring (sensitivity, 87.5%; specificity, 58.6%). The sensitivity of the complex EHTQ was less than 50%. Asking simple questions about doses taken or missed is more sensitive than complex questioning about each drug separately. Combining the VAS with the SHCS-AQ seems a feasible nonadherence measure for daily clinical practice. Self-reports perform better after electronic monitoring: their diagnostic value could be lower when given independently.

  10. Impacts | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Impacts Impacts Read about NREL's impacts on innovations in hydrogen and fuel cell research and -Splitting Electrodes NREL Shows How Cyanobacteria Build Hydrogen-Producing Enzyme Fuel Cell Systems R&D -Speed Scanner to Monitor Fuel Cell Material Defects Making Fuel Cells Cleaner, Better, and Cheaper GM

  11. California Hydrogen Infrastructure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The projectmore » also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  12. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    2006-04-01

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

  13. Implementation experience of a patient monitoring solution based on end-to-end standards.

    PubMed

    Martinez, I; Fernandez, J; Galarraga, M; Serrano, L; de Toledo, P; Escayola, J; Jimenez-Fernandez, S; Led, S; Martinez-Espronceda, M; Garcia, J

    2007-01-01

    This paper presents a proof-of-concept design of a patient monitoring solution for Intensive Care Unit (ICU). It is end-to-end standards-based, using ISO/IEEE 11073 (X73) in the bedside environment and EN13606 to communicate the information to an Electronic Healthcare Record (EHR) server. At the bedside end a plug-and-play sensor network is implemented, which communicates with a gateway that collects the medical information and sends it to a monitoring server. At this point the server transforms the data frame into an EN13606 extract, to be stored on the EHR server. The presented system has been tested in a laboratory environment to demonstrate the feasibility of this end-to-end standards-based solution.

  14. Weak fault detection and health degradation monitoring using customized standard multiwavelets

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Wang, Yu; Peng, Yizhen; Wei, Chenjun

    2017-09-01

    Due to the nonobvious symptoms contaminated by a large amount of background noise, it is challenging to beforehand detect and predictively monitor the weak faults for machinery security assurance. Multiwavelets can act as adaptive non-stationary signal processing tools, potentially viable for weak fault diagnosis. However, the signal-based multiwavelets suffer from such problems as the imperfect properties missing the crucial orthogonality, the decomposition distortion impossibly reflecting the relationships between the faults and signatures, the single objective optimization and independence for fault prognostic. Thus, customized standard multiwavelets are proposed for weak fault detection and health degradation monitoring, especially the weak fault signature quantitative identification. First, the flexible standard multiwavelets are designed using the construction method derived from scalar wavelets, seizing the desired properties for accurate detection of weak faults and avoiding the distortion issue for feature quantitative identification. Second, the multi-objective optimization combined three dimensionless indicators of the normalized energy entropy, normalized singular entropy and kurtosis index is introduced to the evaluation criterions, and benefits for selecting the potential best basis functions for weak faults without the influence of the variable working condition. Third, an ensemble health indicator fused by the kurtosis index, impulse index and clearance index of the original signal along with the normalized energy entropy and normalized singular entropy by the customized standard multiwavelets is achieved using Mahalanobis distance to continuously monitor the health condition and track the performance degradation. Finally, three experimental case studies are implemented to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed method can quantitatively identify the fault signature of a slight rub on

  15. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    PubMed Central

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  16. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  17. Florida Hydrogen Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  18. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  19. Application of ISO standard 27048: dose assessment for the monitoring of workers for internal radiation exposure.

    PubMed

    Henrichs, K

    2011-03-01

    Besides ongoing developments in the dosimetry of incorporated radionuclides, there are various efforts to improve the monitoring of workers for potential or real intakes of radionuclides. The disillusioning experience with numerous intercomparison projects identified substantial differences between national regulations, concepts, applied programmes and methods, and dose assessment procedures. Measured activities were not directly comparable because of significant differences between measuring frequencies and methods, but also results of case studies for dose assessments revealed differences of orders of magnitude. Besides the general common interest in reliable monitoring results, at least the cross-border activities of workers (e.g. nuclear power plant services) require consistent approaches and comparable results. The International Standardization Organization therefore initiated projects to standardise programmes for the monitoring of workers, the requirements for measuring laboratories and the processes for the quantitative evaluation of monitoring results in terms of internal assessed doses. The strength of the concepts applied by the international working group consists in a unified approach defining the requirements, databases and processes. This paper is intended to give a short introduction into the standardization project followed by a more detailed description of the dose assessment standard, which will be published in the very near future.

  20. A simple pore water hydrogen diffusion syringe sampler

    USGS Publications Warehouse

    Vroblesky, D.A.; Chapelle, F.H.; Bradley, P.M.

    2007-01-01

    Molecular hydrogen (H2) is an important intermediate product and electron donor in microbial metabolism. Concentrations of dissolved H 2 are often diagnostic of the predominant terminal electron-accepting processes in ground water systems or aquatic sediments. H2 concentrations are routinely measured in ground water monitoring wells but are rarely measured in saturated aquatic sediments due to a lack of simple and practical sampling methods. This report describes the design and development (including laboratory and field testing) of a simple, syringe-based H 2 sampler in (1) saturated, riparian sediments, (2) surface water bed sediments, and (3) packed intervals of a fractured bedrock borehole that are inaccessible by standard pumped methods. ?? 2007 National Ground Water Association.

  1. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  2. [Standardization of operation monitoring and control of the clinical laboratory automation system].

    PubMed

    Tao, R

    2000-10-01

    Laboratory automation systems showed up in the 1980s and have been introduced to many clinical laboratories since early 1990s. Meanwhile, it was found that the difference in the specimen tube dimensions, specimen identification formats, specimen carrier transportation equipment architecture, electromechanical interfaces between the analyzers and the automation systems was preventing the systems from being introduced to a wider extent. To standardize the different interfaces and reduce the cost of laboratory automation, NCCLS and JCCLS started establishing standards for laboratory automation in 1996 and 1997 respectively. Operation monitoring and control of the laboratory automation system have been included in their activities, resulting in the publication of an NCCLS proposed standard in 1999.

  3. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    NASA Astrophysics Data System (ADS)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  4. Quality assurance of reference standards from nine European solar-ultraviolet monitoring laboratories.

    PubMed

    Gröbner, Julian; Rembges, Diana; Bais, Alkiviadis F; Blumthaler, Mario; Cabot, Thierry; Josefsson, Weine; Koskela, Tapani; Thorseth, Trond M; Webb, Ann R; Wester, Ulf

    2002-07-20

    A program for quality assurance of reference standards has been initiated among nine solar-UV monitoring laboratories. By means of a traveling lamp package that comprises several 1000-W ANSI code DXW-type quartz-halogen lamps, a 0.1-ohm shunt, and a 6-1/2 digit voltmeter, the irradiance scales used by the nine laboratories were compared with one another; a relative uncertainty of 1.2% was found. The comparison of 15 reference standards yielded differences of as much as 9%; the average difference was less than 3%.

  5. Measuring and monitoring biological diversity: Standard methods for mammals

    USGS Publications Warehouse

    Wilson, Don E.; Cole, F. Russell; Nichols, James D.; Rudran, Rasanayagam; Foster, Mercedes S.

    1996-01-01

    Measuring and Monitoring Biological Diversity: Standard Methods for Mammals provides a comprehensive manual for designing and implementing inventories of mammalian biodiversity anywhere in the world and for any group, from rodents to open-country grazers. The book emphasizes formal estimation approaches, which supply data that can be compared across habitats and over time. Beginning with brief natural histories of the twenty-six orders of living mammals, the book details the field techniques—observation, capture, and sign interpretation—appropriate to different species. The contributors provide guidelines for study design, discuss survey planning, describe statistical techniques, and outline methods of translating field data into electronic formats. Extensive appendixes address such issues as the ethical treatment of animals in research, human health concerns, preserving voucher specimens, and assessing age, sex, and reproductive condition in mammals.Useful in both developed and developing countries, this volume and the Biological Diversity Handbook Series as a whole establish essential standards for a key aspect of conservation biology and resource management.

  6. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  7. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  8. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  9. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  10. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  11. Evaluating OSHA's ethylene oxide standard: employer exposure-monitoring activities in Massachusetts hospitals from 1985 through 1993.

    PubMed Central

    LaMontagne, A D; Kelsey, K T

    1997-01-01

    OBJECTIVES: This study characterized exposure-monitoring activities and findings under the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide (EtO) standard. METHODS: In-depth mail and telephone surveys were followed by on-site interviews at all EtO-using hospitals in Massachusetts (n = 92, 96% participation rate). RESULTS: By 1993, most hospitals had performed personal exposure monitoring for OSHA's 8-hour action level (95%) and the excursion limit (87%), although most did not meet the 1985 implementation deadline. In 1993, 66% of hospitals reported the installation of EtO alarms to fulfill the standard's "alert" requirement. Alarm installation also lagged behind the 1985 deadline and peaked following a series of EtO citations by OSHA. From 1990 through 1992, 23% of hospitals reported having exceeded the action level once or more; 24% reported having exceeded the excursion limit; and 33% reported that workers were accidentally exposed to EtO in the absence of personal monitoring. CONCLUSIONS: Almost a decade after passage of the EtO standard, exposure-monitoring requirements were widely, but not completely, implemented. Work-shift exposures had markedly decreased since the mid-1980s, but overexposures continued to occur widely. OSHA enforcement appears to have stimulated implementation. PMID:9240100

  12. Crossett Hydrogen Sulfide Air Sampling Report

    EPA Pesticide Factsheets

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  13. 40 CFR 415.425 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide Production... achieve the following new source performance standards (NSPS): Subpart AP—Hydrogen Cyanide Pollutant or...

  14. 40 CFR 415.425 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide Production... achieve the following new source performance standards (NSPS): Subpart AP—Hydrogen Cyanide Pollutant or...

  15. 40 CFR 415.425 - New source performance standards (NSPS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide Production... achieve the following new source performance standards (NSPS): Subpart AP—Hydrogen Cyanide Pollutant or...

  16. 40 CFR 415.425 - New source performance standards (NSPS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide Production... achieve the following new source performance standards (NSPS): Subpart AP—Hydrogen Cyanide Pollutant or...

  17. 40 CFR 415.425 - New source performance standards (NSPS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide Production... achieve the following new source performance standards (NSPS): Subpart AP—Hydrogen Cyanide Pollutant or...

  18. Electrostatic Potential Energy within a Protein Monitored by Metal Charge-Dependent Hydrogen Exchange

    PubMed Central

    Anderson, Janet S.; LeMaster, David M.; Hernández, Griselda

    2006-01-01

    Hydrogen exchange measurements on Zn(II)-, Ga(III)-, and Ge(IV)-substituted Pyrococcus furiosus rubredoxin demonstrate that the log ratio of the base-catalyzed rate constants (Δ log kex) varies inversely with the distance out to at least 12 Å from the metal. This pattern is consistent with the variation of the amide nitrogen pK values with the metal charge-dependent changes in the electrostatic potential. Fifteen monitored amides lie within this range, providing an opportunity to assess the strength of electrostatic interactions simultaneously at numerous positions within the structure. Poisson-Boltzmann calculations predict an optimal effective internal dielectric constant of 6. The largest deviations between the experimentally estimated and the predicted ΔpK values appear to result from the conformationally mobile charged side chains of Lys-7 and Glu-48 and from differential shielding of the peptide units arising from their orientation relative to the metal site. PMID:17012322

  19. Tritium monitor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  20. 25 CFR 36.51 - Standard XVIII-Office of Indian Education Programs and Agency monitoring and evaluation...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Standard XVIII-Office of Indian Education Programs and..., DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN... XVIII—Office of Indian Education Programs and Agency monitoring and evaluation responsibilities. (a) The...

  1. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry

    PubMed Central

    Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G

    2015-01-01

    Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544

  2. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  3. Creating and Implementing a Regularized Monitoring and EnforcementSystem for China's Mandatory Standards and Energy Information Label forAppliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jiang

    2007-03-01

    China has developed a comprehensive program of energy efficiency standards and labels for household appliances. In 1989, China first launched its minimum energy performance standards (MEPS), which are now applied to an extensive list of products. In 1998, China launched a voluntary energy endorsement label, which has grown to cover both energy-saving and water-saving products. And, in 2005, China launched a mandatory energy information label that initially covered two products. CLASP has assisted China in developing 11 minimum energy performance standards (MEPS) for 9 products and endorsement labels for 11 products including: refrigerators; air conditioners; televisions; printers; computers; monitors; faxmore » machines; copiers; DVD/VCD players; external power supplies; and set-top boxes. CLASP has also assisted China in the development of the mandatory energy information label. Increasingly, attention is being placed on maximum energy savings from China's standards and labeling (S&L) efforts in order to meet the recently announced goal of reducing China's energy intensity by 20 percent by 2010 with an interim objective of 4 percent in 2006. China's mandatory standards system is heavily focused on the technical requirements for efficiency performance, but historically, it has lacked administrative and personnel capacity to undertake monitoring and enforcement of these legally binding standards. Similarly, resources for monitoring and enforcement have been quite limited. As a consequence, compliance to both the mandatory standards and the mandatory energy information label is uneven with the potential and likely result of lost energy savings. Thus, a major area for improvement, which could significantly increase overall energy savings, is the creation and implementation of a regularized monitoring system for tracking the compliance to, and enforcement of, mandatory standards and the energy information label in China. CLASP has been working with the China National

  4. Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less

  5. 25 CFR 36.51 - Standard XVIII-Office of Indian Education Programs and Agency monitoring and evaluation...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Standard XVIII-Office of Indian Education Programs and Agency monitoring and evaluation responsibilities. 36.51 Section 36.51 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION MINIMUM ACADEMIC STANDARDS FOR THE BASIC EDUCATION OF INDIAN CHILDREN...

  6. Combustion Products Monitor: Trade Study Testing

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Trowbridge, John B.

    2011-01-01

    Current combustion products monitoring on the International Space Station (ISS) uses a handheld device (Compound Specific Analyzer-Combustion Products, CSA-CP) containing electrochemical sensors used to measure the concentration of carbon monoxide (CO), hydrogen chloride (HCl), hydrogen cyanide (HCN), and oxygen (O2). The CO sensor in this device accounts for a well-known cross-sensitivity with hydrogen (H2), which is important, as ISS air can contain up to 100 ppm H2. Unfortunately, this current device is being discontinued, and due to space constraints, the new model cannot accommodate the size of the current CO sensor. Therefore, a trade study was conducted in order to determine which CO sensors on the market were available with compensation for H2, and which instruments used these sensors, while also measuring HCN, O2, and carbon dioxide (CO2). The addition of CO2 to the device is helpful, as current monitoring of this gas requires a second hand-held monitor. By providing a device that will monitor both combustion products and CO2, volume and up-mass can be reduced as these monitors are delivered to ISS.

  7. Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.

    2018-02-01

    To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.

  8. Detection of recurrent Cushing's disease: proposal for standardized patient monitoring following transsphenoidal surgery.

    PubMed

    Ayala, Alejandro; Manzano, Alex J

    2014-09-01

    Transsphenoidal surgery (TSS) is first-line treatment for Cushing's disease (CD), a devastating disorder of hypercortisolism resulting from overproduction of adrenocorticotropic hormone by a pituitary adenoma. Surgical success rates vary widely and disease may recur years after remission is achieved. Recognizing CD recurrence can be challenging; although there is general acceptance among endocrinologists that patients need lifelong follow-up, there are currently no standardized monitoring guidelines. To begin addressing this need we created a novel, systematic algorithm by integrating information from literature on relapse rates in surgically-treated CD patients and our own clinical experiences. Reported recurrence rates range from 3 to 47 % (mean time to recurrence 16-49 months), emphasizing the need for careful post-surgical patient monitoring. We recommend that patients with post-operative serum cortisol <2 µg/dL (measured 2-3 days post-surgery) be monitored semiannually for 3 years and annually thereafter. Patients with post-operative cortisol between 2 and 5 µg/dL may experience persistent or subclinical CD and should be evaluated every 2-3 months until biochemical control is achieved or additional treatment is initiated. Post-operative cortisol >5 µg/dL often signifies persistent disease and second-line treatment (e.g., immediate repeat pituitary surgery, radiotherapy, and/or medical therapy) may be considered. This follow-up algorithm aims to (a) enable early diagnosis and treatment of recurrent CD, thereby minimizing the detrimental effects of hypercortisolism, and (b) begin addressing the need for standardized guidelines for vigilant monitoring of CD patients treated by TSS, as demonstrated by the reported rates of recurrence.

  9. Tritium monitor

    DOEpatents

    Chastagner, P.

    1994-06-14

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  10. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov Websites

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen stations. NRELs research on hydrogen safety provides guidance for safe operation, handling, and use of standards and testing fuel cell and hydrogen components for operation and safety. Building on NRELs Wind-to

  11. Report from the NOAA workshops to standardize protocols for monitoring toxic Pfiesteria species and associated environmental conditions.

    PubMed

    Luttenberg, D; Turgeon, D; Higgins, J

    2001-10-01

    Long-term monitoring of water quality, fish health, and plankton communities in susceptible bodies of water is crucial to identify the environmental factors that contribute to outbreaks of toxic Pfiesteria complex (TPC) species. In the aftermath of the 1997 toxic Pfiesteria outbreaks in North Carolina and Maryland, federal and several state agencies agreed that there was a need to standardize monitoring protocols. The National Oceanic & Atmospheric Administration convened two workshops that brought together state, federal, and academic resource managers and scientific experts to a) seek consensus on responding to and monitoring potential toxic Pfiesteria outbreaks; b) recommend standard parameters and protocols to characterize water quality, fish health, and plankton at historical event sites and potentially susceptible sites; and c) discuss options for integrating monitoring data sets from different states into regional and national assessments. Workshop recommendations included the development of a three-tiered TPC monitoring strategy: Tier 1, rapid event response; Tier 2, comprehensive assessment; and Tier 3, routine monitoring. These tiers correspond to varying levels of water quality, fish health, and plankton monitoring frequency and intensity. Under the strategy, sites are prioritized, depending upon their history and susceptibility to TPC events, and assigned an appropriate level of monitoring activity. Participants also agreed upon a suite of water quality parameters that should be monitored. These recommendations provide guidance to state and federal agencies conducting rapid-response and assessment activities at sites of suspected toxic Pfiesteria outbreaks, as well as to states that are developing such monitoring programs for the first time.

  12. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  13. Update to Practice Standards for Electrocardiographic Monitoring in Hospital Settings: A Scientific Statement From the American Heart Association.

    PubMed

    Sandau, Kristin E; Funk, Marjorie; Auerbach, Andrew; Barsness, Gregory W; Blum, Kay; Cvach, Maria; Lampert, Rachel; May, Jeanine L; McDaniel, George M; Perez, Marco V; Sendelbach, Sue; Sommargren, Claire E; Wang, Paul J

    2017-11-07

    This scientific statement provides an interprofessional, comprehensive review of evidence and recommendations for indications, duration, and implementation of continuous electro cardiographic monitoring of hospitalized patients. Since the original practice standards were published in 2004, new issues have emerged that need to be addressed: overuse of arrhythmia monitoring among a variety of patient populations, appropriate use of ischemia and QT-interval monitoring among select populations, alarm management, and documentation in electronic health records. Authors were commissioned by the American Heart Association and included experts from general cardiology, electrophysiology (adult and pediatric), and interventional cardiology, as well as a hospitalist and experts in alarm management. Strict adherence to the American Heart Association conflict of interest policy was maintained throughout the consensus process. Authors were assigned topics relevant to their areas of expertise, reviewed the literature with an emphasis on publications since the prior practice standards, and drafted recommendations on indications and duration for electrocardiographic monitoring in accordance with the American Heart Association Level of Evidence grading algorithm that was in place at the time of commissioning. The comprehensive document is grouped into 5 sections: (1) Overview of Arrhythmia, Ischemia, and QTc Monitoring; (2) Recommendations for Indication and Duration of Electrocardiographic Monitoring presented by patient population; (3) Organizational Aspects: Alarm Management, Education of Staff, and Documentation; (4) Implementation of Practice Standards; and (5) Call for Research. Many of the recommendations are based on limited data, so authors conclude with specific questions for further research. © 2017 American Heart Association, Inc.

  14. Design and industrial production of frequency standards in the USSR

    NASA Technical Reports Server (NTRS)

    Demidov, Nikolai A.; Uljanov, Adolph A.

    1990-01-01

    Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.

  15. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  16. Transportation Fuels and the Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Gabbard, Alex

    2004-11-01

    An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.

  17. Safety Issues with Hydrogen as a Vehicle Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This reportmore » serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.« less

  18. Safety Issues with Hydrogen as a Vehicle Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Cadwallader; J. S. Herring

    1999-09-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This reportmore » serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.« less

  19. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  20. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  1. Anthropometric standards for Australian primary school children: Towards a system for monitoring and supporting children's development.

    PubMed

    Cochrane, Thomas; Davey, Rachel C; de Castella, F Robert

    2017-03-01

    To provide two foundation elements of a proposed new system to support children's physical and body status development throughout primary school: (a) age and gender appropriate achievement (anthropometric) standards and (b) a system of monitoring, feedback and support. Repeated cross-sectional sampling involving 91 schools across 5 Australian States and Territories between 2000 and 2011. Anthropometric data from 29,928 (14,643 girls, 15,285 boys) Australian children aged between 5 and 12.5 years were used to develop progression standards (norm centiles) covering the primary school years. Measures used were: height, weight, body mass index, per cent body fat, grip strength, standing long jump, cardiorespiratory fitness, sit-ups and sit-and-reach. These norms were then used to develop a Physical Activity and Lifestyle Management (PALM) system that could form the basis for progression, monitoring and reporting of anthropometric achievement standards for children. Tables and representative centile curves (3rd, 15th, 50th, 85th and 97th) for each gender and half-year age group were produced. An illustrative example of the PALM system in operation was also provided. Our research provides gender and half-year age specific anthropometric standards for Australian primary school children. Furthermore, we have developed a monitoring and progression system that could be embedded in school communities to help address the prevalence of underweight, overweight and obesity and decline in physical fitness standards. The proposed system is designed on behalf of children and families and would be administered through school settings. Change, where needed, would be delivered by the supporting school community. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.

  3. 40 CFR 63.3350 - If I use a control device to comply with the emission standards, what monitoring must I do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must be certified by the manufacturer to be accurate to within ±2.0 percent by mass. (e) Continuous... Pollutants: Paper and Other Web Coating General Requirements for Compliance with the Emission Standards and... standards, what monitoring must I do? (a) A summary of monitoring you must do follows: If you operate a web...

  4. 40 CFR 63.3350 - If I use a control device to comply with the emission standards, what monitoring must I do?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must be certified by the manufacturer to be accurate to within ±2.0 percent by mass. (e) Continuous... Pollutants: Paper and Other Web Coating General Requirements for Compliance with the Emission Standards and... standards, what monitoring must I do? (a) A summary of monitoring you must do follows: If you operate a web...

  5. Case studies of hydrogen sulphide occupational exposure incidents in the UK.

    PubMed

    Jones, Kate

    2014-12-15

    The UK Health and Safety Executive has investigated several incidents of workplace accidents involving hydrogen sulphide exposure in recent years. Biological monitoring has been used in some incidents to determine the cause of unconsciousness resulting from these incidents and as a supporting evidence in regulatory enforcement. This paper reports on three case incidents and discusses the use of biological monitoring in such cases. Biological monitoring has a role in identifying hydrogen sulphide exposure in incidents, whether these are occupational or in the wider environment. Sample type, time of collection and sample storage are important factors in the applicability of this technique. For non-fatal incidents, multiple urine samples are recommended at two or more time points between the incident and 15 h post-exposure. For routine occupational monitoring, post-shift samples should be adequate. Due to endogenous levels of urinary thiosulphate, it is likely that exposures in excess of 12 ppm for 30 min (or 360 ppm/min equivalent) would be detectable using biological monitoring. This is within the Acute Exposure Guideline Level 2 (the level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or impaired ability to escape) for hydrogen sulphide. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Hydrogen quantitative risk assessment workshop proceedings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, Katrina M.; Harris, Aaron P.

    2013-09-01

    The Quantitative Risk Assessment (QRA) Toolkit Introduction Workshop was held at Energetics on June 11-12. The workshop was co-hosted by Sandia National Laboratories (Sandia) and HySafe, the International Association for Hydrogen Safety. The objective of the workshop was twofold: (1) Present a hydrogen-specific methodology and toolkit (currently under development) for conducting QRA to support the development of codes and standards and safety assessments of hydrogen-fueled vehicles and fueling stations, and (2) Obtain feedback on the needs of early-stage users (hydrogen as well as potential leveraging for Compressed Natural Gas [CNG], and Liquefied Natural Gas [LNG]) and set priorities for %E2%80%9CVersionmore » 1%E2%80%9D of the toolkit in the context of the commercial evolution of hydrogen fuel cell electric vehicles (FCEV). The workshop consisted of an introduction and three technical sessions: Risk Informed Development and Approach; CNG/LNG Applications; and Introduction of a Hydrogen Specific QRA Toolkit.« less

  7. 40 CFR 98.164 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.164 Monitoring and QA/QC requirements. The GHG emissions data for hydrogen production process units must be quality-assured as specified in... Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated...

  8. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    NASA Technical Reports Server (NTRS)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  9. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  10. Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions.

    PubMed

    Żamojć, Krzysztof; Zdrowowicz, Magdalena; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Chmurzyński, Lech

    2016-05-03

    Hydrogen peroxide is a well-established precursor of reactive oxygen and nitrogen species that are known to contribute to oxidative stress-the crucial factor responsible for the course of a wide range of phy-sicochemical processes as well as the genesis of various diseases, such as cancer and neurodegenerative disorders. Thus, the development of sensitive and selective methods for the detection and quantitative determination of hydrogen peroxide is of great importance in monitoring the in vivo production of that species and elucidating its biological functions. This review highlights the progress that has been made in the development of fluorescent and luminescent probes (excluding nanoparticles) employed to monitor hydrogen peroxide under biological conditions. Attention was focused on probes developed in the past 10 years.

  11. Method for near-real-time continuous air monitoring of phosgene, hydrogen cyanide, and cyanogen chloride

    NASA Astrophysics Data System (ADS)

    Lattin, Frank G.; Paul, Donald G.

    1996-11-01

    A sorbent-based gas chromatographic method provides continuous quantitative measurement of phosgene, hydrogen cyanide, and cyanogen chloride in ambient air. These compounds are subject to workplace exposure limits as well as regulation under terms of the Chemical Arms Treaty and Title III of the 1990 Clean Air Act amendments. The method was developed for on-sit use in a mobile laboratory during remediation operations. Incorporated into the method are automated multi-level calibrations at time weighted average concentrations, or lower. Gaseous standards are prepared in fused silica lined air sampling canisters, then transferred to the analytical system through dynamic spiking. Precision and accuracy studies performed to validate the method are described. Also described are system deactivation and passivation techniques critical to optimum method performance.

  12. Opto-Technical Monitoring - a Standardized Methodology to Assess the Treatment of Historical Stone Surfaces

    NASA Astrophysics Data System (ADS)

    Rahrig, M.; Drewello, R.; Lazzeri, A.

    2018-05-01

    Monitoring is an essential requirement for the planning, assessment and evaluation of conservation measures. It should be based on a standardized and reproducible observation of the historical surface. For many areas and materials suitable methods for long-term monitoring already exist. But hardly any non-destructive testing methods have been used to test new materials for conservation of damaged stone surfaces. The Nano-Cathedral project, funded by the European Union's Horizon 2020 research and innovation program, is developing new materials and technologies for preserving damaged stone surfaces of built heritage. The prototypes developed are adjusted to the needs and problems of a total of six major cultural monuments in Europe. In addition to the testing of the materials under controlled laboratory conditions, the products have been applied to trial areas on the original stone surfaces. For a location-independent standardized assessment of surface changes of the entire trial areas a monitoring method based on opto-technical, non-contact and non-destructive testing methods has been developed. This method involves a three-dimensional measurement of the surface topography using Structured-Light-Scanning and the analysis of the surfaces in different light ranges using high resolution VIS photography, as well as UV-A-fluorescence photography and reflected near-field IR photography. The paper will show the workflow of this methodology, including a detailed description of the equipment used data processing and the advantages for monitoring highly valuable stone surfaces. Alongside the theoretical discussion, the results of two measuring campaigns on trial areas of the Nano-Cathedral project will be shown.

  13. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... installed in each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag... hydrogen chloride testing with EPA Method 321 at 40 CFR part 63, appendix A, an owner or operator must install, calibrate, maintain, and operate a CEMS for monitoring hydrogen chloride emissions discharged to...

  14. 40 CFR 60.2730 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detection system must be installed in each baghouse compartment or cell. For negative pressure or induced... scrubber, in place of hydrogen chloride testing with EPA Method 321 at 40 CFR part 63, appendix A, an owner... for monitoring hydrogen chloride emissions discharged to the atmosphere and record the output of the...

  15. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... leak detection system must be installed in each baghouse compartment or cell. For negative pressure or... scrubber, in place of hydrogen chloride testing with EPA Method 321 at 40 CFR part 63, appendix A, an owner... for monitoring hydrogen chloride emissions discharged to the atmosphere and record the output of the...

  16. Metrology for hydrogen energy applications: a project to address normative requirements

    NASA Astrophysics Data System (ADS)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  17. 40 CFR 98.164 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.164 Monitoring and QA/QC requirements. The GHG emissions data for hydrogen production process units must be quality-assured as specified in..., Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated by reference, see § 98.7). (xi...

  18. Development of primary standards for mass spectrometry to increase accuracy in quantifying environmental contaminants.

    PubMed

    Oates, R P; Mcmanus, Michelle; Subbiah, Seenivasan; Klein, David M; Kobelski, Robert

    2017-07-14

    Internal standards are essential in electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS) to correct for systematic error associated with ionization suppression and/or enhancement. A wide array of instrument setups and interfaces has created difficulty in comparing the quantitation of absolute analyte response across laboratories. This communication demonstrates the use of primary standards as operational qualification standards for LC-MS instruments and their comparison with commonly accepted internal standards. In monitoring the performance of internal standards for perfluorinated compounds, potassium hydrogen phthalate (KHP) presented lower inter-day variability in instrument response than a commonly accepted deuterated perfluorinated internal standard (d3-PFOS), with percent relative standard deviations less than or equal to 6%. The inter-day precision of KHP was greater than d3-PFOS over a 28-day monitoring of perfluorooctanesulfonic acid (PFOS), across concentrations ranging from 0 to 100μg/L. The primary standard trometamol (Trizma) performed as well as known internal standards simeton and tris (2-chloroisopropyl) phosphate (TCPP), with intra-day precision of Trizma response as low as 7% RSD on day 28. The inter-day precision of Trizma response was found to be greater than simeton and TCPP, across concentrations of neonicotinoids ranging from 1 to 100μg/L. This study explores the potential of primary standards to be incorporated into LC-MS/MS methodology to improve the quantitative accuracy in environmental contaminant analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE PAGES

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel; ...

    2017-10-27

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  20. Editors' Choice—Field Trials Testing of Mixed Potential Electrochemical Hydrogen Safety Sensors at Commercial California Hydrogen Filling Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosha, Eric Lanich; Romero, Christopher Jesse; Poppe, Daniel

    Hydrogen safety sensors must meet specific performance requirements, mandated by the U.S. Department of Energy, for hydrogen fueling station monitoring. Here, we describe the long-term performance of two zirconia-based mixed potential electrochemical hydrogen gas sensors, developed specifically with a high sensitivity to hydrogen, low cross-sensitivity, and fast response time. Over a two-year period, sensors with tin-doped indium oxide and strontium doped lanthanum chromite electrodes were deployed at two stations in four field trials tests conducted in Los Angeles. The sensors documented the existence of hydrogen plumes ranging in concentration from 100 to as high as 2700 ppm in the areamore » surrounding the dispenser, consistent with depressurization from 700 bar following vehicle refueling. As expected, the hydrogen concentration reported by the mixed potential sensors was influenced by wind direction. Baseline stability testing at a Chino, CA station showed no measureable baseline drift throughout 206 days of uninterrupted data acquisition. The high baseline stability, excellent correlation with logged fueling/depressurization events, and absence of false alarms suggest that the zirconia-based mixed potential sensor platform is a good candidate for protecting hydrogen infrastructure where frequent calibrations or sensor replacement to reduce the false alarm frequency have been shown to be cost prohibitive.« less

  1. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  2. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  3. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  4. Biodegradation of PCE and TCE in landfill leachate predicted from concentrations of molecular hydrogen: a case study.

    PubMed

    Gonsoulin, Mary E; Wilson, Barbara H; Wilson, John T

    2004-12-01

    The Refuse Hideaway Landfill (23-acre) received municipal, commercial, and industrial waste between 1974 and 1988. It was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural attenuation at the site. We used the concentration of hydrogen to forecast whether reductive dechlorination would continue over time at particular locations in the plume. Based on published literature, reductive dechlorination and natural attenuation of PCE, TCE, and cis-DCE can be expected in the aquifer if the concentration of molecular hydrogen in monitoring wells are adequate (> 1 nanomolar). Reductive dechlorination can be expected to continue as the ground water moves down gradient. Natural attenuation through reductive dechlorination is not expected in flow paths that originate at down gradient monitoring wells with low concentrations of molecular hydrogen (< 1 nanomolar). In three monitoring wells at the margin of the landfill and in five monitoring wells down gradient of the landfill, ground water maintained a molecular hydrogen concentration, ranging from 1.30 to 9.17 nanomolar, that is adequate for reductive dechlorination. In three of the monitoring wells far down gradient of the landfill, the concentration of molecular hydrogen (0.33 to 0.83 nanomolar) was not adequate to support reductive dechlorination. In wells with adequate concentrations of hydrogen, the concentrations of chlorinated volatile organic compounds were attenuated over time, or concentrations of chlorinated volatile organics were below the detection limit. In wells with inadequate concentrations of hydrogen, the concentrations of chlorinated organic compounds attenuated at a slower rate over time. In wells with adequate hydrogen the first order rate of attenuation of PCE, TCE, cis-DCE and total chlorinated volatile organic compounds varies

  5. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement.

    PubMed

    Barczyński, Marcin; Randolph, Gregory W; Cernea, Claudio R; Dralle, Henning; Dionigi, Gianlorenzo; Alesina, Piero F; Mihai, Radu; Finck, Camille; Lombardi, Davide; Hartl, Dana M; Miyauchi, Akira; Serpell, Jonathan; Snyder, Samuel; Volpi, Erivelto; Woodson, Gayle; Kraimps, Jean Louis; Hisham, Abdullah N

    2013-09-01

    Intraoperative neural monitoring (IONM) during thyroid surgery has gained widespread acceptance as an adjunct to the gold standard of visual identification of the recurrent laryngeal nerve (RLN). Contrary to routine dissection of the RLN, most surgeons tend to avoid rather than routinely expose and identify the external branch of the superior laryngeal nerve (EBSLN) during thyroidectomy or parathyroidectomy. IONM has the potential to be utilized for identification of the EBSLN and functional assessment of its integrity; therefore, IONM might contribute to voice preservation following thyroidectomy or parathyroidectomy. We reviewed the literature and the cumulative experience of the multidisciplinary International Neural Monitoring Study Group (INMSG) with IONM of the EBSLN. A systematic search of the MEDLINE database (from 1950 to the present) with predefined search terms (EBSLN, superior laryngeal nerve, stimulation, neuromonitoring, identification) was undertaken and supplemented by personal communication between members of the INMSG to identify relevant publications in the field. The hypothesis explored in this review is that the use of a standardized approach to the functional preservation of the EBSLN can be facilitated by application of IONM resulting in improved preservation of voice following thyroidectomy or parathyroidectomy. These guidelines are intended to improve the practice of neural monitoring of the EBSLN during thyroidectomy or parathyroidectomy and to optimize clinical utility of this technique based on available evidence and consensus of experts. 5 Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management: Standard Operating Procedures with QA/QC

    DTIC Science & Technology

    2015-05-01

    in consultation with the site management . 4.0 DATA TYPES AND QUALITY CONTROL A sampling plan must account for the collection, handling, and...GUIDANCE DOCUMENT Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management : Standard Operating Procedures...Groundwater Monitoring for Site Remediation and Management 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Halden, R.U., Roll, I.B. 5d

  7. Prediction of landslide activation at locations in Beskidy Mountains using standard and real-time monitoring methods

    NASA Astrophysics Data System (ADS)

    Bednarczyk, Z.

    2012-04-01

    The paper presents landslide monitoring methods used for prediction of landslide activity at locations in the Carpathian Mountains (SE Poland). Different types of monitoring methods included standard and real-time early warning measurement with use of hourly data transfer to the Internet were used. Project financed from the EU funds was carried out for the purpose of public road reconstruction. Landslides with low displacement rates (varying from few mm to over 5cm/year) had size of 0.4-2.2mln m3. Flysch layers involved in mass movements represented mixture of clayey soils and sandstones of high moisture content and plasticity. Core sampling and GPR scanning were used for recognition of landslide size and depths. Laboratory research included index, IL oedometer, triaxial and direct shear laboratory tests. GPS-RTK mapping was employed for actualization of landslide morphology. Instrumentation consisted of standard inclinometers, piezometers and pore pressure transducers. Measurements were carried 2006-2011, every month. In May 2010 the first in Poland real-time monitoring system was installed at landslide complex over the Szymark-Bystra public road. It included in-place uniaxial sensors and 3D continuous inclinometers installed to the depths of 12-16m with tilt sensors every 0.5m. Vibrating wire pore pressure and groundwater level transducers together with automatic meteorological station analyzed groundwater and weather conditions. Obtained monitoring and field investigations data provided parameters for LEM and FEM slope stability analysis. They enabled prediction and control of landslide behaviour before, during and after stabilization or partly stabilization works. In May 2010 after the maximum precipitation (100mm/3hours) the rates of observed displacements accelerated to over 11cm in a few days and damaged few standard inclinometer installations. However permanent control of the road area was possible by continuous inclinometer installations. Comprehensive

  8. Monitoring black-footed ferrets during reestablishment of free-ranging populations: Discussion of alternative methods and recommended minimum standards

    USGS Publications Warehouse

    Biggins, Dean E.; Godbey, Jerry L.; Matchett, Marc R.; Hanebury, Louis R.; Livieri, Travis M.; Marinari, Paul E.

    2006-01-01

    Although the monitoring of black-footed ferret (Mustela nigripes) populations following reintroductions has not been haphazard, several ferret recovery groups since 1994 have recommended development of uniform standards prescribing minimum methods, intensities, and frequencies of monitoring that would provide data on population size, mortality rates, and recruitment. Such standards would promote comparability of data among sites, document expectations for those who will attempt to establish new populations, and allow the U.S. Fish and Wildlife Service and other responsible groups to better assess progress made toward achieving recovery objectives. Our recommendations are based on methods that have been successfully used to monitor natural and reintroduced populations of ferrets and are an attempt to balance needs and costs. We suggest a combination of marking ferrets with passive integrated transponder (PIT) tags and annual spotlight searches coupled with automated transponder readers to individually identify survivors. Unmarked ferrets should be captured and implanted with PIT tags whenever possible. These and other methods are detailed. Circumstances that may dictate other methods or more intensive monitoring (e.g., high rates of loss or low recruitment) also are discussed.

  9. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    PubMed

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  10. Fetal heart rate monitoring device using condenser microphone sensor: Validation and comparison to standard devices.

    PubMed

    Ahmad, Husna Azyan Binti; El-Badawy, Ismail M; Singh, Om Prakash; Hisham, Rozana Binti; Malarvili, M B

    2018-04-27

    Fetal heart rate (FHR) monitoring device is highly demanded to assess the fetus health condition in home environments. Conventional standard devices such as ultrasonography and cardiotocography are expensive, bulky and uncomfortable and consequently not suitable for long-term monitoring. Herein, we report a device that can be used to measure fetal heart rate in clinical and home environments. The proposed device measures and displays the FHR on a screen liquid crystal display (LCD). The device consists of hardware that comprises condenser microphone sensor, signal conditioning, microcontroller and LCD, and software that involves the algorithm used for processing the conditioned fetal heart signal prior to FHR display. The device's performance is validated based on analysis of variance (ANOVA) test. FHR data was recorded from 22 pregnant women during the 17th to 37th week of gestation using the developed device and two standard devices; AngelSounds and Electronic Stethoscope. The results show that F-value (1.5) is less than F, (3.1) and p-value (p> 0.05). Accordingly, there is no significant difference between the mean readings of the developed and existing devices. Hence, the developed device can be used for monitoring FHR in clinical and home environments.

  11. Nickel-hydrogen capacity loss on storage

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1989-01-01

    A controlled experiment evaluating the capacity loss experienced by nickel electrodes stored under various conditions of temperature, hydrogen pressure, and electrolyte concentration was conducted using nickel electrodes from four different manufacturers. It was found that capacity loss varied with respect to hydrogen pressure, and storage temperature as well as with respect to electrode manufacturing processes. Impedance characteristics were monitored and found to be indicative of electrode manufacturing processes and capacity loss. Cell testing to evaluate state-of-charge effects on capacity loss were inconclusive as no loss was sustained by the cells tested in this experiment.

  12. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    PubMed

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  13. Directly Relating Gas-Phase Cluster Measurements to Solution-Phase Hydrolysis, the Absolute Standard Hydrogen Electrode Potential, and the Absolute Proton Solvation Energy

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O’Brien, Jeremy T.; Williams, Evan R.

    2009-01-01

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M-(H2O)242+(g)+e−(g)→M(H2O)24+(g) and 2) M(H2O)242+(g)+e−(g)→MOH(H2O)23+(g)+H(g) and the hydrogen atom affinities of MOH(H2O)23+(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e−(g) (standard deviation of 0.02 V) and a real proton solvation free energy of −265 kcal mol−1 are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution. PMID:19440999

  14. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Astrophysics Data System (ADS)

    Springett, James C.

    1994-05-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  15. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  16. 2008 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2008-06-13

    This report summarizes comments from the Peer Review Panel at the 2008 DOE Hydrogen Program Annual Merit Review, held on June 9-13, 2008, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes, and standards; education; systems analysis; and manufacturing.

  17. Chemochromic Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Wiggins, Bryan C.

    2007-01-01

    As fossil fuel supplies decline, hydrogen is quickly becoming an increasingly important fuel source. Currently hydrogen is the prime fuel of today's space vehicles (e.g., Space Shuttle) and featured as a fuel for some prototype vehicles such as the BMW seven series model. Hydrogen is a colorless, odorless gas with a 4% lower explosive limit which makes leak detection a priority. In an effort to support the use of hydrogen, a chemochromic (color changing) sensor was developed that is robust, simple to use, and does not require active operation. It can be made into a thin tape which can be conveniently used for leak detection at flanges, valves, or outlets. Chemochromic sensors can be either reversible or irreversible; however, irreversible chemochromic sensors will be analyzed in this report. The irreversible sensor is useful during hazardous operations when personnel cannot be present. To actively monitor leaks, testing of the irreversible sensor against environmental effects was completed and results indicated this material is suitable for outdoor use in the harsh beachside environment of Kennedy Space Center. The experiments in this report will give additional results to the environmental testing by adding solid rocket booster residue as a variable. The primary motivation for these experiments is to prepare the sensors for the launch pad environment at the Kennedy Space Center. In an effort to simulate the atmosphere at the pads before and after launch, the chemochromic sensors are exposed to solid rocket residue under various conditions.

  18. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    PubMed

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  19. Polymerization Kinetics: Monitoring Monomer Conversion Using an Internal Standard and the Key Role of Sample "t[subscript 0]"

    ERIC Educational Resources Information Center

    Colombani, Olivier; Langelier, Ophelie; Martwong, Ekkachai; Castignolles, Patrice

    2011-01-01

    The use of an internal standard is a conventional and convenient way to monitor the conversion of one or several monomers during a controlled radical polymerization. However, the validity of this technique relies on an accurate determination of the initial monomer-to-internal standard ratio, A[subscript 0], because all subsequent calculations of…

  20. Photoelectrochemical water splitting in separate oxygen and hydrogen cells

    NASA Astrophysics Data System (ADS)

    Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner

    2017-06-01

    Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

  1. 2010 DOE Hydrogen Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This report summarizes comments from the Peer Review Panel at the 2010 DOE Hydrogen Program Annual Merit Review, held on June 7-11, 2010, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; and systems analysis.

  2. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues

    PubMed Central

    Hobson, Keith A.; Atwell, Lisa; Wassenaar, Leonard I.

    1999-01-01

    Despite considerable interest in using stable-hydrogen isotope ratio (δD) measurements in ecological research, it was previously unknown whether hydrogen derived from drinking water, in addition to that derived from diet, contributed to the nonexchangeable hydrogen in animal tissues. We raised four experimental groups of quail (Coturnix coturnix japonica) from hatch on two isotopically distinct diets (mean nonexchangeable δD: −146 and −60‰, Vienna Standard Mean Ocean Water Standard) and drinking waters (mean δD: −130 and +196‰, Vienna Standard Mean Ocean Water Standard). Here we show that both dietary and drinking water hydrogen are incorporated into nonexchangeable hydrogen in both metabolically active (i.e., muscle, liver, blood, fat) and inactive (i.e., feather, nail) tissues. Approximately 20% of hydrogen in metabolically active quail tissues and 26–32% of feathers and nail was derived from drinking water. Our findings suggest environmental interpretations of δD values from modern and fossil animal tissues may need to account for potentially large isotopic differences between drinking water and food and require a good understanding of the physiological ecology of study organisms. PMID:10393937

  3. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  4. Advantages of isotopic depletion of proteins for hydrogen/deuterium exchange experiments monitored by mass spectrometry.

    PubMed

    Bou-Assaf, George M; Chamoun, Jean E; Emmett, Mark R; Fajer, Piotr G; Marshall, Alan G

    2010-04-15

    Solution-phase hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is an excellent tool to study protein-protein interactions and conformational changes in biological systems, especially when traditional methods such as X-ray crystallography or nuclear magnetic resonance are not feasible. Peak overlap among the dozens of proteolytic fragments (including those from autolysis of the protease) can be severe, due to high protein molecular weight(s) and the broad isotopic distributions due to multiple deuterations of many peptides. In addition, different subunits of a protein complex can yield isomeric proteolytic fragments. Here, we show that depletion of (13)C and/or (15)N for one or more protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of the depleted fragment ions, and remove ambiguity in assignment of the m/z values to the correct isomeric peptides. Specifically, it becomes possible to monitor the exchange progress for two isobaric fragments originating from two or more different subunits within the complex, without having to resort to tandem mass spectrometry techniques that can lead to deuterium scrambling in the gas phase. Finally, because the isotopic distribution for a small to medium-size peptide is essentially just the monoisotopic species ((12)C(c)(1)H(h)(14)N(n)(16)O(o)(32)S(s)), it is not necessary to deconvolve the natural abundance distribution for each partially deuterated peptide during HDX data reduction.

  5. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  6. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  7. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  8. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  9. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    benefits over the traditional hydrogen sensors: The technology has excellent temperature stability (4K to 373 K), it can be used in cryogenic fluid applications, it is easy to apply and remove; it requires no power to operate; it has a quick response time; the leak points can be detected visually or electronically; it is nonhazardous, thus environmentally friendly; it can be reversible or irreversible; it does not require on-site monitoring; has a long shelf life; the detector is very durable; and the technology is inexpensive to manufacture.

  10. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  11. Standardizing care and monitoring for anesthesia or procedural sedation delivered outside the operating room.

    PubMed

    Eichhorn, Volker; Henzler, Dietrich; Murphy, Michael F

    2010-08-01

    The purpose of this review is to summarize recommendations for the safe and efficient conductance of sedation and anesthesia at remote locations; and to define safety standards, monitoring techniques, quality of care and procedural eligibility. Anesthesia outside of the operating room is rapidly increasing in numbers, which has seen a growth of older and sicker patients. These circumstances have created a need for guidelines, for both specialist anesthesia providers and nonanesthesia-trained practitioners, that define patient selection, minimum monitoring (hemodynamics and respiration), facility design and equipment, policy framework, recovery facilities and policies. The patient's safety throughout all stages of sedation and/or anesthesia is the most pertinent goal. Recent data emphasize the importance of monitoring pulse oximetry and end-tidal carbon dioxide for any sedating or anesthetic procedure. Substandard monitoring combined with oversedation and subsequent respiratory depression are implicated as the main reasons for catastrophic sedation and anesthetic outcomes at remote locations. Patient selection, procedure appropriateness and location appropriateness are the key elements defining the provision of safe anesthesia care outside the operating room. Titratable, short-acting intravenous drugs are preferred such as propofol and remifentanil.

  12. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    NASA Astrophysics Data System (ADS)

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A. F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-05-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  13. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    USGS Publications Warehouse

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A.F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-01-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species’ phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological “status”, or the ability to track presence–absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  14. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications.

    PubMed

    Denny, Ellen G; Gerst, Katharine L; Miller-Rushing, Abraham J; Tierney, Geraldine L; Crimmins, Theresa M; Enquist, Carolyn A F; Guertin, Patricia; Rosemartin, Alyssa H; Schwartz, Mark D; Thomas, Kathryn A; Weltzin, Jake F

    2014-05-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  15. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.

    PubMed

    Preuster, Patrick; Papp, Christian; Wasserscheid, Peter

    2017-01-17

    The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of

  16. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    PubMed

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  17. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  18. Monitoring Standards for Professional Education.

    ERIC Educational Resources Information Center

    Cameron, Helen

    2001-01-01

    A central issue in professional education is who has a mandate for determining the appropriateness of university curriculum and monitoring its quality. Examination of the accreditation guidelines of seven professions (law, medicine, nursing, psychology, physiotherapy, social work, and teaching) suggests that the relevance of professional…

  19. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  20. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    PubMed Central

    Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.

    2012-01-01

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043

  1. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  2. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  3. Reduction of hydrogen content in pure Ti

    NASA Astrophysics Data System (ADS)

    Ogiwara, N.; Suganuma, K.; Hikichi, Y.; Kamiya, J.; Kinsho, M.; Sukenobu, S.

    2008-03-01

    Pure Ti is adopted as a material for ducts and bellows at the proton accelerator 3 GeV-RCS in J-PARC project, because of its small residual radioactivity. In the particle accelerator, the H2 outgassing due to ion impact is often the dominant source of gas release. As the reduction of hydrogen content will probably suppress ion induced desorption, we attempted to reduce the hydrogen content in the Ti by in-situ vacuum baking. First, thermal desorption behavior and the change in hydrogen content after the heat treatment were investigated. Vacuum firing at temperatures higher than 550°C was effective in reducing the hydrogen content in the Ti. At the same time, the mechanical properties were monitored because grain growth leads to decrease in mechanical strength. Even after treatment at 750°C for 12 hr, the decreases in tensile and yield strength were so small (~10%) that we have no anxiety about the reduction of mechanical strength. Based upon the results of this study, vacuum firing has been applied to reduce the hydrogen content in the Ti bellows and ducts of the RCS machine.

  4. DOE Hydrogen Program: 2006 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliken, J.

    This report summarizes comments from the Peer Review Panel at the FY 2006 DOE Hydrogen Program Annual Merit Review, held on May 16-19, 2006, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  5. DOE Hydrogen Program: 2005 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalk, S. G.

    This report summarizes comments from the Peer Review Panel at the FY 2005 DOE Hydrogen Program Annual Merit Review, held on May 23-26, 2005, in Arlington, Virginia. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  6. DOE Hydrogen Program: 2007 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliken, J.

    This report summarizes comments from the Peer Review Panel at the FY 2007 DOE Hydrogen Program Annual Merit Review, held on May 14-18, 2007, in Washington, D.C. The projects evaluated support the Department of Energy and President Bush's Hydrogen Initiative. The results of this merit review and peer evaluation are major inputs used by DOE to make funding decisions. Project areas include hydrogen production and delivery; hydrogen storage; fuel cells; technology validation; safety, codes and standards; education; and systems analysis.

  7. Continuous ECG Monitoring in Patients With Acute Coronary Syndrome or Heart Failure: EASI Versus Gold Standard.

    PubMed

    Lancia, Loreto; Toccaceli, Andrea; Petrucci, Cristina; Romano, Silvio; Penco, Maria

    2018-05-01

    The purpose of the study was to compare the EASI system with the standard 12-lead surface electrocardiogram (ECG) for the accuracy in detecting the main electrocardiographic parameters (J point, PR, QT, and QRS) commonly monitored in patients with acute coronary syndromes or heart failure. In this observational comparative study, 253 patients who were consecutively admitted to the coronary care unit with acute coronary syndrome or heart failure were evaluated. In all patients, two complete 12-lead ECGs were acquired simultaneously. A total of 6,072 electrocardiographic leads were compared (3,036 standard and 3,036 EASI). No significant differences were found between the investigate parameters of the two measurement methods, either in patients with acute coronary syndrome or in those with heart failure. This study confirmed the accuracy of the EASI system in monitoring the main ECG parameters in patients admitted to the coronary care unit with acute coronary syndrome or heart failure.

  8. Flight Hydrogen Sensor for use in the ISS Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    MSadoques, George, Jr.; Makel, Darby B.

    2005-01-01

    This paper provides a description of the hydrogen sensor Orbital Replacement Unit (ORU) used on the Oxygen Generation Assembly (OGA), to be operated on the International Space Station (ISS). The hydrogen sensor ORU is being provided by Makel Engineering, Inc. (MEI) to monitor the oxygen outlet for the presence of hydrogen. The hydrogen sensor ORU is a triple redundant design where each sensor converts raw measurements to actual hydrogen partial pressure that is reported to the OGA system controller. The signal outputs are utilized for system shutdown in the event that the hydrogen concentration in the oxygen outlet line exceeds the specified shutdown limit. Improvements have been made to the Micro-Electro-Mechanical Systems (MEMS) based sensing element, screening, and calibration process to meet OGA operating requirements. Two flight hydrogen sensor ORUs have successfully completed the acceptance test phase. This paper also describes the sensor s performance during acceptance testing, additional tests planned to extend the operational performance calibration cycle, and integration with the OGA system.

  9. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  10. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  11. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  12. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide... Sources (PSNS): Subpart AP—Hydrogen Cyanide Pollutant or pollutant property PSNS effluent limitations...

  13. Guide for Hydrogen Hazards Analysis on Components and Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Woods, Stephen

    2003-01-01

    The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.

  14. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  15. Biological monitoring and standard setting in the USA: a critical appraisal.

    PubMed

    Rappaport, S M

    1995-05-01

    Occupational exposure limits (OELs) issued in the US by the Occupational Safety and Health Administration (OSHA) require measurements of toxic substances in air rather than in biological samples. Most of OSHA's limits were adopted from the 1968 list of the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs). Although there are no formal requirements to monitor exposures to these substances, it is implicit in the standards that air sampling will be performed. Of the 13 OELs which OSHA has set de novo, 2 (i.e., those for lead and cadmium) require biomonitoring after air sampling has identified the heavily exposed workers. OSHA appears to value biomonitoring in some circumstances but has apparently not found a consistent rationale for using biomarkers to set and enforce its standards. This paper discusses 2 valuable features of biomarkers which should be exploited by OSHA to further its regulatory agenda. The first relates to controversies associated with dose rate which have come into play in setting short-term exposure limits (STELs) when acute effects do not provide the necessary justification. OSHA has not provided evidence that its STELs are needed to reduce the risks of disease (as in the cases of benzene and ethylene oxide). By investigating the exposure-biomarker relationship, it is possible to determine whether the rate of exposure has any influence on the uptake and elimination of toxic substances and, therefore, whether STELs is needed. This is illustrated with data from 2 studies on styrene exposure. The second feature concerns biomonitoring as the primary means of exposure assessment in situations where the biomarker is accumulated over months or years (as in the cases of lead and cadmium). Using data from the lead-battery industry, it is shown that 'correct' compliance decisions are more likely to arise from evaluation of blood lead measurements than from traditional air monitoring.

  16. Development of hydrogen gas getters for TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, J. P.; Mroz, E. J.; Peterson, E.

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzenemore » or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material

  17. Monitoring of tritium

    DOEpatents

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  18. The performance of NASA research hydrogen masers

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Rueger, L. J.

    1980-01-01

    Field operable hydrogen masers based on prior maser designs are presented. These units incorporate improvements in magnetic shielding, lower noise electronics, better thermal control, and have a microprocessor for operation, monitoring, and diagnostic functions. They are ruggedly built for transportability and ease of service anywhere in the world.

  19. A Leak Monitor for Industry

    NASA Technical Reports Server (NTRS)

    1996-01-01

    GenCorp Aerojet Industrial Products, Lewis Research Center, Marshall Space Flight Center, and Case Western Reserve University developed a gas leak detection system, originally for use with the Space Shuttle propulsion system and reusable launch vehicles. The Model HG200 Automated Gas Leak Detection System has miniaturized sensors that can identify extremely low concentrations of hydrogen without requiring oxygen. A microprocessor-based hardware/software system monitors the sensors and displays the source and magnitude of hydrogen leaks in real time. The system detects trace hydrogen around pipes, connectors, flanges and pressure tanks, and has been used by Ford Motor Company in the production of a natural gas-powered car.

  20. DOE Hydrogen Program 2004 Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document summarizes the project evaluations and comments from the DOE Hydrogen Program 2004 Annual Program Review. Hydrogen production, delivery and storage; fuel cells; technology validation; safety, codes and standards; and education R&D projects funded by DOE in FY2004 are reviewed.

  1. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  2. Hydrogen fuel dispensing station for transportation vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S.P.N.; Richmond, A.A.

    1995-07-01

    A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on amore » hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.« less

  3. Evaluation of Blood Glucose Monitoring System in Screening for Neonatal Hypoglycemia: Tighter Accuracy Standard.

    PubMed

    Tsao, Mei-Fen; Chang, Hui-Wen; Chang, Chien-Hsi; Cheng, Chi-Hsuan; Lin, Hsiu-Chen

    2017-05-01

    Neonatal hypoglycemia may cause severe neurological damages; therefore, tight glycemic control is crucial to identify neonate at risk. Previous blood glucose monitoring system (BGMS) failed to perform well in neonates; there are calls for the tightening of accuracy requirements. It remains a need for accurate BGMS for effective bedside diabetes management in neonatal care within a hospital population. A total of 300 neonates were recruited from local hospitals. Accuracy performance of a commercially available BGMS was evaluated against reference instrument in screening for neonatal hypoglycemia, and assessment was made based on the ISO15197:2013 and a tighter standard. At blood glucose level < 47 mg/dl, BGMS assessed met the minimal accuracy requirement of ISO 15197:2013 and tighter standard at 100% and 97.2%, respectively.

  4. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  5. Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems

    PubMed Central

    Lin, Vivian S.; Dickinson, Bryan C.; Chang, Christopher J.

    2014-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application. PMID:23791092

  6. Feasibility of the hydrogen sulfide test for the assessment of drinking water quality in post-earthquake Haiti.

    PubMed

    Weppelmann, Thomas A; Alam, Meer T; Widmer, Jocelyn; Morrissey, David; Rashid, Mohammed H; De Rochars, Valery M Beau; Morris, J Glenn; Ali, Afsar; Johnson, Judith A

    2014-12-01

    In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti's drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.

  7. Feasibility of the Hydrogen Sulfide Test for the Assessment of Drinking Water Quality in Post-Earthquake Haiti

    PubMed Central

    Weppelmann, Thomas A.; Alam, Meer T.; Widmer, Jocelyn; Morrissey, David; Rashid, Mohammed H.; Beau De Rochars, Valery M.; Morris, J. Glenn; Ali, Afsar; Johnson, Judith A.

    2014-01-01

    In 2010 a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and waste water infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholera resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti’s drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65% and a specificity of 93%. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88%, even with fecal coliform concentrations greater than 100 colony forming units per 100 milliliters. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources. PMID:25182685

  8. An in situ tensile test apparatus for polymers in high pressure hydrogen

    DOE PAGES

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; ...

    2014-10-31

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up tomore » 5,000 psi. Here, modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.« less

  9. Acoustically Forced Coaxial Hydrogen/Liquid Oxygen Jet Flames

    DTIC Science & Technology

    2016-05-15

    Briefing Charts 3. DATES COVERED (From - To) 25 April 2016 - 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames...propellants be stored in condensed form – e.g., kerosene, liquid oxygen in rockets • Combustion systems can no longer be designed to meet modern

  10. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Workmore » was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.« less

  11. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  12. Pressure-induced orientational glass phase in molecular para-hydrogen.

    PubMed

    Schelkacheva, T I; Tareyeva, E E; Chtchelkatchev, N M

    2009-02-01

    We propose a theoretical description of a possible orientational glass transition in solid molecular para-hydrogen and ortho-deuterium under pressure supposing that they are mixtures of J=0 and J=2 states of molecules. The theory uses the basic concepts and methods of standard spin-glass theory. We expect our orientational glass to correspond to the II' phase of the high-pressure hydrogen phase diagram.

  13. Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.

    PubMed

    Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J

    2010-12-01

    The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.

  14. a New Value for the Rydberg Constant by Precision Measurement of the Hydrogen Balmer-Beta Transition.

    NASA Astrophysics Data System (ADS)

    Zhao, Ping

    The Rydberg constant {rm R }_infty is determined to a very high accuracy of 3 parts in 10^{10 } by a direct comparison of the four hydrogen and deuterium Balmer-beta transitions with a standard laser from the National Bureau of Standards. This experiment is now the most precise measurement for {rm R}_infty and approaches the limits of accuracy for wavelength or frequency measurements in the visible region. The result is {rm R}_infty = 109 737.315 73 (3) {rm cm}^{-1} with the definition of the meter: c = 299 792 458 m/sec. The experiment also yields the following results: The fine structure splittings 4{rm P}_ {1/2} rightarrow {rm 4P}_{3/2} in H: 1370.9 (3) MHz and in D: 1371.8 (3) MHz. The isotope shifts between H and D in the transitions {rm 2S}_{1/2} rightarrow {rm 4P}_{1/2}: 167 752.4 (3) MHz and {rm 2S}_{1/2 } rightarrow {rm 4P}_{3/2}: 167 753.3 (3) MHz. The experiment utilizes atomic beam laser spectroscopy. A beam of atomic hydrogen (or deuterium) is excited by electron bombardment to the metastable {rm 2S }_{1/2} state and is detected by a secondary electron emission detector. A chopped cw dye laser beam crosses the atomic beam at an angle of 90^circ to eliminate Doppler broadening. The metastables are quenched by laser excitation to {rm 4P}_{1/2} or {rm 4P}_{3/2 } states. The signal is monitored by a lock -in amplifier with the chopper as reference. An iodine (^{127}{ rm I}_2) stabilized helium-neon (He-Ne) laser is the primary standard with an accuracy of 1.6 times 10^{ -10}. Another He-Ne laser is locked to the standard laser with a variable offset frequency controlled by an oscillator. A frequency chain is established by locking together a dye laser, a piezoelectrically controlled measuring etalon and the offset laser. This chain allows the dye laser to scan across the Balmer-beta line in a precisely controllable manner. The lineshape and offset frequency are recorded simultaneously. Possible sources of systematic shifts and errors are carefully

  15. Role of hydrogen ions in standard and activation heap leaching of gold

    NASA Astrophysics Data System (ADS)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  16. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  17. Comparison of diagnostic value using a small, single channel, P-wave centric sternal ECG monitoring patch with a standard 3-lead Holter system over 24 hours.

    PubMed

    Smith, Warren M; Riddell, Fiona; Madon, Morag; Gleva, Marye J

    2017-03-01

    To compare simultaneous recordings from an external patch system specifically designed to ensure better P-wave recordings and standard Holter monitor to determine diagnostic efficacy. Holter monitors are a mainstay of clinical practice, but are cumbersome to access and wear and P-wave signal quality is frequently inadequate. This study compared the diagnostic efficacy of the P-wave centric electrocardiogram (ECG) patch (Carnation Ambulatory Monitor) to standard 3-channel (leads V1, II, and V5) Holter monitor (Northeast Monitoring, Maynard, MA). Patients were referred to a hospital Holter clinic for standard clinical indications. Each patient wore both devices simultaneously and served as their own control. Holter and Patch reports were read in a blinded fashion by experienced electrophysiologists unaware of the findings in the other corresponding ECG recording. All patients, technicians, and physicians completed a questionnaire on comfort and ease of use, and potential complications. In all 50 patients, the P-wave centric patch recording system identified rhythms in 23 patients (46%) that altered management, compared to 6 Holter patients (12%), P<.001. The patch ECG intervals PR, QRS and QT correlated well with the Holter ECG intervals having correlation coefficients of 0.93, 0.86, and 0.94, respectively. Finally, 48 patients (96%) preferred wearing the patch monitor. A single-channel ambulatory patch ECG monitor, designed specifically to ensure that the P-wave component of the ECG be visible, resulted in a significantly improved rhythm diagnosis and avoided inaccurate diagnoses made by the standard 3-channel Holter monitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Association of Implementation of Practice Standards for Electrocardiographic Monitoring With Nurses' Knowledge, Quality of Care, and Patient Outcomes: Findings From the Practical Use of the Latest Standards of Electrocardiography (PULSE) Trial.

    PubMed

    Funk, Marjorie; Fennie, Kristopher P; Stephens, Kimberly E; May, Jeanine L; Winkler, Catherine G; Drew, Barbara J

    2017-02-01

    Although continuous electrocardiographic (ECG) monitoring is ubiquitous in hospitals, monitoring practices are inconsistent. We evaluated implementation of American Heart Association practice standards for ECG monitoring on nurses' knowledge, quality of care, and patient outcomes. The PULSE (Practical Use of the Latest Standards of Electrocardiography) Trial was a 6-year multisite randomized clinical trial with crossover that took place in 65 cardiac units in 17 hospitals. We measured outcomes at baseline, time 2 after group 1 hospitals received the intervention, and time 3 after group 2 hospitals received the intervention. Measurement periods were 15 months apart. The 2-part intervention consisted of an online ECG monitoring education program and strategies to implement and sustain change in practice. Nurses' knowledge (N=3013 nurses) was measured by a validated 20-item online test, quality of care related to ECG monitoring (N=4587 patients) by on-site observation, and patient outcomes (mortality, in-hospital myocardial infarction, and not surviving a cardiac arrest; N=95 884 hospital admissions) by review of administrative, laboratory, and medical record data. Nurses' knowledge improved significantly immediately after the intervention in both groups but was not sustained 15 months later. For most measures of quality of care (accurate electrode placement, accurate rhythm interpretation, appropriate monitoring, and ST-segment monitoring when indicated), the intervention was associated with significant improvement, which was sustained 15 months later. Of the 3 patient outcomes, only in-hospital myocardial infarction declined significantly after the intervention and was sustained. Online ECG monitoring education and strategies to change practice can lead to improved nurses' knowledge, quality of care, and patient outcomes. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01269736. © 2017 American Heart Association, Inc.

  19. Comparison of field olfactometers in a controlled chamber using hydrogen sulfide as the test odorant.

    PubMed

    McGinley, M A; McGinley, C M

    2004-01-01

    A standard method for measuring and quantifying odour in the ambient air utilizes a portable odour detecting and measuring device known as a field olfactometer (US Public Health Service Project Grant A-58-541). The field olfactometer dynamically dilutes the ambient air with carbon-filtered air in distinct ratios known as "Dilutions-to-Threshold" dilution factors (D/Ts), i.e. 2, 4, 7, 15, etc. Thirteen US states and several cities in North America currently utilize field olfactometry as a key component of determining compliance to odour regulations and ordinances. A controlled environmental chamber was utilized, with hydrogen sulfide as the known test odorant. A hydrogen sulfide environment was created in this controlled chamber using an Advanced Calibration Designs, Inc. Cal2000 Hydrogen Sulfide Generator. The hydrogen sulfide concentration inside the chamber was monitored using an Arizona Instruments, Inc. Jerome Model 631 H2S Analyzer. When the environmental chamber reached a desired test concentration, test operators entered the chamber. The dilution-to-threshold odour concentration was measured using a Nasal Ranger Field Olfactometer (St Croix Sensory, Inc.) and a Barnebey Sutcliffe Corp. Scentometer. The actual hydrogen sulfide concentration was also measured at the location in the room where the operators were standing while using the two types of field olfactometers. This paper presents a correlation between dilution-to-threshold values (D/T) and hydrogen sulfide ambient concentration. For example, a D/T of 7 corresponds to ambient H2S concentrations of 5.7-15.6 microg/m3 (4-11 ppbv). During this study, no significant difference was found between results obtained using the Scentometer or the Nasal Ranger (r = 0.82). Also, no significant difference was found between results of multiple Nasal Ranger users (p = 0.309). The field olfactometers yielded hydrogen sulfide thresholds of 0.7-3.0 microg/m3 (0.5-2.0 ppbv). Laboratory olfactometry yielded comparable

  20. Developments in hydrogenation technology for fine-chemical and pharmaceutical applications.

    PubMed

    Machado, R M; Heier, K R; Broekhuis, R R

    2001-11-01

    The continuous innovation in hydrogenation technology is testimony to its growing importance in the manufacture of specialty and fine chemicals. New developments in equipment, process intensification and catalysis represent major themes that have undergone recent advances. Developments in chiral catalysis, methods to support and fix homogeneous catalysts, novel reactor and mixing technology, high-throughput screening, supercritical processing, spectroscopic and electrochemical online process monitoring, monolithic and structured catalysts, and sonochemical activation methods illustrate the scope and breadth of evolving technology applied to hydrogenation.

  1. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    NASA Astrophysics Data System (ADS)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  2. Infrared Instrument for Detecting Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John

    2006-01-01

    The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.

  3. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems.

    PubMed

    Fu, T Y; Gent, P; Kumar, V

    2012-03-01

    This was a head-to-head comparison of two hydrogen-peroxide-based room decontamination systems. To compare the efficacy, efficiency and safety of hydrogen peroxide vapour (HPV; Clarus R, Bioquell, Andover, U.K.) and aerosolized hydrogen peroxide (aHP; SR2, Sterinis, now supplied as Glosair, Advanced Sterilization Products (ASP), Johnson & Johnson Medical Ltd, Wokingham, U.K.) room disinfection systems. Efficacy was tested using 4- and 6-log Geobacillus stearothermophilus biological indicators (BIs) and in-house prepared test discs containing approximately 10(6) meticillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile and Acinetobacter baumannii. Safety was assessed by detecting leakage of hydrogen peroxide using a hand-held detector. Efficiency was assessed by measuring the level of hydrogen peroxide using a hand-held sensor at three locations inside the room, 2 h after the start of the cycles. HPV generally achieved a 6-log reduction, whereas aHP generally achieved less than a 4-log reduction on the BIs and in-house prepared test discs. Uneven distribution was evident for the aHP system but not the HPV system. Hydrogen peroxide leakage during aHP cycles with the door unsealed, as per the manufacturer's operating manual, exceeded the short-term exposure limit (2 ppm) for more than 2 h. When the door was sealed with tape, as per the HPV system, hydrogen peroxide leakage was <1 ppm for both systems. The mean concentration of hydrogen peroxide in the room 2 h after the cycle started was 1.3 [standard deviation (SD) 0.4] ppm and 2.8 (SD 0.8) ppm for the four HPV and aHP cycles, respectively. None of the readings were <2 ppm for the aHP cycles. The HPV system was safer, faster and more effective for biological inactivation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Supercritical hydrogen-free and catalyst-free hydrogenation: Possibilities of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubin, S.P.

    1995-12-01

    In this work, the authors generalize the results of preliminary investigations of a catalyst-free hydrogenation process, which roughly revealed the applicability limits of the method and its potentialities. Experiments were carried out in standard autoclaves of various volume and also in glass ampules placed into an autoclave, which contained the same solvent as the contents of the ampule. The transition into the supercritical state was accomplished by increasing the reactor temperature and, hence, the internal pressure.

  5. The Rydberg constant and proton size from atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Beyer, Axel; Maisenbacher, Lothar; Matveev, Arthur; Pohl, Randolf; Khabarova, Ksenia; Grinin, Alexey; Lamour, Tobias; Yost, Dylan C.; Hänsch, Theodor W.; Kolachevsky, Nikolai; Udem, Thomas

    2017-10-01

    At the core of the “proton radius puzzle” is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

  6. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration.

    PubMed

    Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard

    2017-11-01

    Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-10-01

    This report summarizes comments from the Peer Review Panel at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 16-20, 2014, in Washington, DC. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  8. 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-09-01

    This report summarizes comments from the Peer Review Panel at the 2012 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 14-18, 2012, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  9. 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2011-09-01

    This report summarizes comments from the Peer Review Panel at the 2011 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on May 9-13, 2011, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; education; market transformation; and systems analysis.

  10. 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This report summarizes comments from the Peer Review Panel at the 2015 DOE Hydrogen and Fuel Cells Program Annual Merit Review, held on June 8-12, 2015, in Arlington, Virginia. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes, and standards; market transformation; and systems analysis.

  11. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  12. Feasibility study for distributed dose monitoring in ionizing radiation environments with standard and custom-made optical fibers

    NASA Astrophysics Data System (ADS)

    Van Uffelen, Marco; Berghmans, Francis; Brichard, Benoit; Borgermans, Paul; Decréton, Marc C.

    2002-09-01

    Optical fibers stimulate much interest since many years for their potential use in various nuclear environments, both for radiation tolerant and EMI-free data communication as well as for distributed sensing. Besides monitoring temperature and stress, measuring ionizing doses with optical fibers is particularly essential in applications such as long-term nuclear waste disposal monitoring, and for real-time aging monitoring of power and signal cables installed inside a reactor containment building. Two distinct options exist to perform optical fiber dosimetry. First, find an accurate model for a restricted application field that accounts for all the parameters that influence the radiation response of a standard fiber, or second, develop a dedicated fiber with a response that will solely depend on the deposited energy. Using various models presented in literature, we evaluate both standard commercially available and custom-made optical fibers under gamma radiation, particularly for distributed dosimetry applications with an optical time domain reflectometer (OTDR). We therefore present the radiation induced attenuation at near-infrared telecom wavelengths up to MGy total dose levels, with dose rates ranging from about 1 Gy/h up to 1 kGy/h, whereas temperature was raised step-wise from 25 °C to 85 °C. Our results allow to determine and compare the practical limitations of distributed dose measurements with both fiber types in terms of temperature sensitivity, dose estimation accuracy and spatial resolution.

  13. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. H.

    1987-09-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  14. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1987-01-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  15. The Use of Spontaneous Raman Scattering for Hydrogen Leak Detection

    NASA Technical Reports Server (NTRS)

    Degroot, Wim A.

    1994-01-01

    A fiber optic probe has been built and demonstrated that utilizes back scattered spontaneous Raman spectroscopy to detect and identify gaseous species. The small probe, coupled to the laser and data acquisition equipment with optical fibers, has applications in gaseous leak detection and process monitoring. The probe design and data acquisition system are described. Raman scattering theory has been reviewed and the results of intensity calculations of hydrogen and nitrogen Raman scattering are given. Because the device is in its developmental stage, only preliminary experimental results are presented here. Intensity scans across the rotational-vibrational Raman lines of nitrogen and hydrogen are presented. Nitrogen at a partial pressure of 0.077 MPa was detected. Hydrogen at a partial pressure of 2 kPa approached the lower limit of detectability with the present apparatus. Potential instrument improvements that would allow more sensitive and rapid hydrogen detection are identified.

  16. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  17. Recommendations for standardizing validation procedures assessing physical activity of older persons by monitoring body postures and movements.

    PubMed

    Lindemann, Ulrich; Zijlstra, Wiebren; Aminian, Kamiar; Chastin, Sebastien F M; de Bruin, Eling D; Helbostad, Jorunn L; Bussmann, Johannes B J

    2014-01-10

    Physical activity is an important determinant of health and well-being in older persons and contributes to their social participation and quality of life. Hence, assessment tools are needed to study this physical activity in free-living conditions. Wearable motion sensing technology is used to assess physical activity. However, there is a lack of harmonisation of validation protocols and applied statistics, which make it hard to compare available and future studies. Therefore, the aim of this paper is to formulate recommendations for assessing the validity of sensor-based activity monitoring in older persons with focus on the measurement of body postures and movements. Validation studies of body-worn devices providing parameters on body postures and movements were identified and summarized and an extensive inter-active process between authors resulted in recommendations about: information on the assessed persons, the technical system, and the analysis of relevant parameters of physical activity, based on a standardized and semi-structured protocol. The recommended protocols can be regarded as a first attempt to standardize validity studies in the area of monitoring physical activity.

  18. California-Specific Power-to-Hydrogen and Power-to-Gas Business Case Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichman, Joshua D.; Flores-Espino, Francisco

    Flexible operation of electrolysis systems represents an opportunity to reduce the cost of hydrogen for a variety of end-uses while also supporting grid operations and thereby enabling greater renewable penetration. California is an ideal location to realize that value on account of growing renewable capacity and markets for hydrogen as a fuel cell electric vehicle (FCEV) fuel, refineries, and other end-uses. Shifting the production of hydrogen to avoid high cost electricity and participation in utility and system operator markets along with installing renewable generation to avoid utility charges and increase revenue from the Low Carbon Fuel Standard (LCFS) program canmore » result in around $2.5/kg (21%) reduction in the production and delivery cost of hydrogen from electrolysis. This reduction can be achieved without impacting the consumers of hydrogen. Additionally, future strategies for reducing hydrogen cost were explored and include lower cost of capital, participation in the Renewable Fuel Standard program, capital cost reduction, and increased LCFS value. Each must be achieved independently and could each contribute to further reductions. Using the assumptions in this study found a 29% reduction in cost if all future strategies are realized. Flexible hydrogen production can simultaneously improve the performance and decarbonize multiple energy sectors. The lessons learned from this study should be used to understand near-term cost drivers and to support longer-term research activities to further improve cost effectiveness of grid integrated electrolysis systems.« less

  19. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  20. Hydrogen transmission/storage with a metal hydride/organic slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, R.W.; Rolfe, J.; McClaine, A.

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits:more » it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.« less

  1. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  2. A Comparison of Web-Based Standard Setting and Monitored Standard Setting.

    ERIC Educational Resources Information Center

    Harvey, Anne L.; Way, Walter D.

    Standard setting, when carefully done, can be an expensive and time-consuming process. The modified Angoff method and the benchmark method, as utilized in this study, employ representative panels of judges to provide recommended passing scores to standard setting decision-makers. It has been considered preferable to have the judges meet in a…

  3. Oxygen-hydrogen torch is a small-scale steam generator

    NASA Technical Reports Server (NTRS)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  4. Standard of Care for Neuropsychological Monitoring in Pediatric Neuro-Oncology: Lessons From the Children's Oncology Group (COG).

    PubMed

    Walsh, Karin S; Noll, Robert B; Annett, Robert D; Patel, Sunita K; Patenaude, Andrea F; Embry, Leanne

    2016-02-01

    As the mortality of pediatric cancers has decreased, focus on neuropsychological morbidities of treatment sequelae have increased. Neuropsychological evaluations are essential diagnostic tools that assess cognitive functioning and neurobiological integrity. These tests provide vital information to support ongoing medical care, documenting cognitive morbidity and response to interventions. We frame standards for neuropsychological monitoring of pediatric patients with CNS malignancy or who received cancer-directed therapies involving the CNS and discuss billing for these services in the United States in the context of clinical research. We describe a cost-effective, efficient model of neuropsychological monitoring that may increases access to neuropsychological care. © 2015 Wiley Periodicals, Inc.

  5. Investigative techniques used to locate the liquid hydrogen leakage on the Space Shuttle Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Hammock, William R., Jr.; Cota, Phillip E., Jr.; Rosenbaum, Bernard J.; Barrett, Michael J.

    1991-01-01

    Standard leak detection methods at ambient temperature have been developed in order to prevent excessive leakage from the Space Shuttle liquid oxygen and liquid hydrogen Main Propulsion System. Unacceptable hydrogen leakage was encountered on the Columbia and Atlantis flight vehicles in the summer of 1990 after the standard leak check requirements had been satisfied. The leakage was only detectable when the fuel system was exposed to subcooled liquid hydrogen during External Tank loading operations. Special instrumentation and analytical tools were utilized during a series of propellant tanking tests in order to identify the sources of the hydrogen leakage. After the leaks were located and corrected, the physical characteristics of the leak sources were analyzed in an effort to understand how the discrepancies were introduced and why the leakage had evaded the standard leak detection methods. As a result of the post-leak analysis, corrective actions and leak detection improvements have been implemented in order to preclude a similar incident.

  6. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  7. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  8. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  9. Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles.

    PubMed

    Leonavicius, Karolis; Ramanaviciene, Almira; Ramanavicius, Arunas

    2011-09-06

    A very simple, environmentally friendly, one-step oxidative polymerization route to fabricate polypyrrole (Ppy) nanoparticles of fixed size and morphology was developed and investigated. The herein proposed method is based on the application of sodium dodecyl sulfate and hydrogen peroxide, both easily degradable and cheap materials. The polymerization reaction is performed on 24 h time scale under standard conditions. We monitored a polaronic peak at 465 nm and estimated nanoparticle concentration during various stages of the reaction. Using this data we proposed a mechanism for Ppy nanoparticle formation in accordance with earlier emulsion polymerization mechanisms. Rates of various steps in the polymerization mechanism were accounted for and the resulting particles identified using atomic force microscopy. Application of Ppy nanoparticles prepared by the route presented here seems very promising for biomedical applications where biocompatibility is paramount. In addition, this kind of synthesis could be suitable for the development of solar cells, where very pure and low-cost conducting polymers are required. © 2011 American Chemical Society

  10. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  11. 40 CFR 63.7507 - What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards? 63.7507 Section 63.7507... the hydrogen chloride (HCl) and total selected metals (TSM) standards? (a) As an alternative to the...

  12. 40 CFR 63.7507 - What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards? 63.7507 Section 63.7507... the hydrogen chloride (HCl) and total selected metals (TSM) standards? (a) As an alternative to the...

  13. 40 CFR 63.7507 - What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards? 63.7507 Section 63.7507... the hydrogen chloride (HCl) and total selected metals (TSM) standards? (a) As an alternative to the...

  14. Design and Analysis of a Hydrogen Compression and Storage Station

    DTIC Science & Technology

    2017-12-01

    Holmes THIS PAGE INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection...SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89...than fossil fuels [2]. Renewably generated hydrogen gas, such as the hydrogen station demonstrated at NPS, falls into this category of alternative

  15. Development of indicators for patient care and monitoring standards for secondary health care services of Mumbai.

    PubMed

    Malik, Seema S; D'Souza, Roshni Cynthia; Pashte, Pramod Mukund; Satoskar, Smita Manohar; D'Souza, Remilda Joyce

    2015-01-01

    The Qualitative aspect of health care delivery is one of the major factors in reducing morbidity and mortality in a health care setup. The expanding suburban secondary health care delivery facilities of the Municipal Corporation of Greater Mumbai are an important part of the healthcare backbone of Mumbai and therefore the quality of care delivered here needed standardization. The project was completed over a period of one year from Jan to Dec, 2013 and implemented in three phases. The framework with components and sub-components were developed and formats for data collection were standardized. The benchmarks were based on past performance in the same hospital and probability was used for development of normal range. An Excel spreadsheet was developed to facilitate data analysis. The indicators comprise of 3 components--Statutory Requirements, Patient care & Cure and Administrative efficiency. The measurements made, pointed to the broad areas needing attention. The Indicators for patient care and monitoring standards can be used as a self assessment tool for health care setups for standardization and improvement of delivery of health care services.

  16. The Palm Desert renewable [hydrogen] transportation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less

  17. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  18. Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984

    NASA Astrophysics Data System (ADS)

    Sato, Motoaki; Sutton, A. J.; McGee, K. A.; Russell-Robinson, Susan

    1986-11-01

    Hydrogen (H2) has been monitored continuously at 1.5-m depth at nine sites along the San Andreas and Calaveras faults in central California since December 1980. Site characteristic small noninstrumental diurnal variations were recorded during quiescent periods at most sites. Abrupt H2 changes were observed concurrently at two sites on the Calaveras fault; some of these were correlated with oscillatory fault slips. Large (1000-4000 ppm) H2 increases were recorded at some sites on the San Andreas fault between July 1982 and November 1983, which may be correlated with eleven M ≥ 5 earthquakes that occurred near Coalinga during this period. We attribute both the H2 increases and the triggering of the earthquakes to a large-scale compressive stress field within the ductile mafic crust near the plate boundary. The stress perhaps caused bulging of the base of the brittle upper crust and thus caused dilation of the San Andreas fault zone, allowing the escape of pent-up H2 generated by hydration reaction of the mafic crust. At the same time, mobile serpentinites may have squeezed into the seismogenic fault beneath the Coalinga area triggering the earthquakes.

  19. Calibration of Electret-Based Integral Radon Monitors Using NIST Polyethylene-Encapsulated 226Ra/222Rn Emanation (PERE) Standards

    PubMed Central

    Collé, R.; Kotrappa, P.; Hutchinson, J. M. R.

    1995-01-01

    The recently developed 222Rn emanation standards that are based on polyethylene-encapsulated 226Ra solutions were employed for a first field-measurement application test to demonstrate their efficacy in calibrating passive integral radon monitors. The performance of the capsules was evaluated with respect to the calibration needs of electret ionization chambers (E-PERM®, Rad Elec Inc.). The encapsulated standards emanate well-characterized and known quantities of 222Rn, and were used in two different-sized, relatively-small, accumulation vessels (about 3.6 L and 10 L) which also contained the deployed electret monitors under test. Calculated integral 222Rn activities from the capsules over various accumulation times were compared to the averaged electret responses. Evaluations were made with four encapsulated standards ranging in 226Ra activity from approximately 15 Bq to 540 Bq (with 222Rn emanation fractions of 0.888); over accumulation times from 1 d to 33 d; and with four different types of E-PERM detectors that were independently calibrated. The ratio of the electret chamber response ERn to the integral 222Rn activity IRn was constant (within statistical variations) over the variables of the specific capsule used, the accumulation volume, accumulation time, and detector type. The results clearly demonstrated the practicality and suitability of the encapsulated standards for providing a simple and readily-available calibration for those measurement applications. However, the mean ratio ERn/IRn was approximately 0.91, suggesting a possible systematic bias in the extant E-PERM calibrations. This 9 % systematic difference was verified by an independent test of the E-PERM calibration based on measurements with the NIST radon-in-water standard generator. PMID:29151765

  20. Calibration of Electret-Based Integral Radon Monitors Using NIST Polyethylene-Encapsulated 226Ra/222Rn Emanation (PERE) Standards.

    PubMed

    Collé, R; Kotrappa, P; Hutchinson, J M R

    1995-01-01

    The recently developed 222 Rn emanation standards that are based on polyethylene-encapsulated 226 Ra solutions were employed for a first field-measurement application test to demonstrate their efficacy in calibrating passive integral radon monitors. The performance of the capsules was evaluated with respect to the calibration needs of electret ionization chambers (E-PERM ® , Rad Elec Inc.). The encapsulated standards emanate well-characterized and known quantities of 222 Rn, and were used in two different-sized, relatively-small, accumulation vessels (about 3.6 L and 10 L) which also contained the deployed electret monitors under test. Calculated integral 222 Rn activities from the capsules over various accumulation times were compared to the averaged electret responses. Evaluations were made with four encapsulated standards ranging in 226 Ra activity from approximately 15 Bq to 540 Bq (with 222 Rn emanation fractions of 0.888); over accumulation times from 1 d to 33 d; and with four different types of E-PERM detectors that were independently calibrated. The ratio of the electret chamber response E Rn to the integral 222 Rn activity I Rn was constant (within statistical variations) over the variables of the specific capsule used, the accumulation volume, accumulation time, and detector type. The results clearly demonstrated the practicality and suitability of the encapsulated standards for providing a simple and readily-available calibration for those measurement applications. However, the mean ratio E Rn / I Rn was approximately 0.91, suggesting a possible systematic bias in the extant E-PERM calibrations. This 9 % systematic difference was verified by an independent test of the E-PERM calibration based on measurements with the NIST radon-in-water standard generator.

  1. Development of Press Hardening Steel with High Resistance to Hydrogen Embrittlement

    NASA Astrophysics Data System (ADS)

    Bian, Jian; Mohrbacher, Hardy; Lu, Hongzhou; Wang, Wenjun

    Press hardening has become the state-of-art technology in the car body manufacturing to enhance safety standard and to reduce CO2 emission of new vehicles. However the delayed cracking due to hydrogen embrittlement remains to be a critical issue. Generally press hardening steel is susceptible to hydrogen embrittlement due to ultra-high strength and martensitic microstructure. The hydrogen charging tests clearly demonstrate that only a few ppm of diffusible hydrogen is sufficient to cause such embrittlement. Currently the hydrogen embrittlement cannot be detected in the press hardened components and the embitteled components could collapse in the crash situation with fatal consequences arisen through dramatic loss in both strength and ductility. This paper introduces a new metallurgical solution to increase the resistance to hydrogen embrittlement of conventional press hardening steel based on 22MnB5 by Nb microalloying. In the hydrogen embrittlement and permeation tests the impact of Nb microalloying on the hydrogen embrittlement behavior was investigated under different hydrogen charging conditions and constant load. The test results revealed that Nb addition increases the resistance to hydrogen embrittlement due to reduced hydrogen diffusivity. The focus of this paper is to investigate the precipitation behavior of microalloying elements by using TEM and STEM and to find out the mechanisms leading to higher performance against hydrogen embrittlement of Nb alloyed steels.

  2. Compact hydrogenator

    NASA Technical Reports Server (NTRS)

    Simmonds, P. G. (Inventor)

    1974-01-01

    The development and characteristics of a hydrogenating apparatus are described. The device consists of a reaction chamber which is selectively permeable to atomic hydrogen and catalytically active to a hydrogenating reaction. In one device, hydrogen is pumped out of the reaction chamber while the reactant remains inside to remove molecular hydrogen so that more atomic hydrogen can pass through the walls. In another device, the reactant is pumped through the reaction chamber, and the hydrogen is removed from the material leaving the chamber. The reactant is then cycled through the chamber.

  3. Integrated multi-channel nano-engineered optical hydrogen and temperature sensor detection systems for launch vehicles

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.; Kazemi, A. A.

    2008-08-01

    Launch vehicles and other satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Therefore, there is a critical need for miniaturized sensors and instruments suitable for use in space applications. This paper describes a novel multi-channel integrated nano-engineered optical sensor to detect hydrogen and monitor the temperature. The integrated optic sensor is made of multi-channel waveguide elements that measure hydrogen concentration in real Time. Our sensor is based on the use of a high index waveguide with a Ni/Pd overlay to detect hydrogen. When hydrogen is absorbed into the Ni/Pd alloy there is a change in the absorption of the material and the optical signal in the waveguide is increased. Our design uses a thin alloy (few nanometers thick) overlay which facilitates the absorption of the hydrogen and will result in a response time of approximately few seconds. Like other Pd/Pd-Ni based sensors the device response varies with temperature and hence the effects of temperature variations must be taken into account. One solution to this problem is simultaneous measurement of temperature in addition to hydrogen concentration at the same vicinity. Our approach here is to propose a temperature sensor that can easily be integrated on the same platform as the hydrogen sensor reported earlier by our group. One suitable choice of material system is silicon on insulator (SOI). Here, we propose a micro ring resonators

  4. Growth standard charts for monitoring bodyweight in dogs of different sizes

    PubMed Central

    Salt, Carina; Morris, Penelope J.; Wilson, Derek; Lund, Elizabeth M.; Cole, Tim J.; Butterwick, Richard F.

    2017-01-01

    Limited information is available on what constitutes optimal growth in dogs. The primary aim of this study was to develop evidence-based growth standards for dogs, using retrospective analysis of bodyweight and age data from >6 million young dogs attending a large corporate network of primary care veterinary hospitals across the USA. Electronic medical records were used to generate bodyweight data from immature client-owned dogs, that were healthy and had remained in ideal body condition throughout the first 3 years of life. Growth centile curves were constructed using Generalised Additive Models for Location, Shape and Scale. Curves were displayed graphically as centile charts covering the age range 12 weeks to 2 years. Over 100 growth charts were modelled, specific to different combinations of breed, sex and neuter status. Neutering before 37 weeks was associated with a slight upward shift in growth trajectory, whilst neutering after 37 weeks was associated with a slight downward shift in growth trajectory. However, these shifts were small in comparison to inter-individual variability amongst dogs, suggesting that separate curves for neutered dogs were not needed. Five bodyweight categories were created to cover breeds up to 40kg, using both visual assessment and hierarchical cluster analysis of breed-specific growth curves. For 20/24 of the individual breed centile curves, agreement with curves for the corresponding bodyweight categories was good. For the remaining 4 breed curves, occasional deviation across centile lines was observed, but overall agreement was acceptable. This suggested that growth could be described using size categories rather than requiring curves for specific breeds. In the current study, a series of evidence-based growth standards have been developed to facilitate charting of bodyweight in healthy dogs. Additional studies are required to validate these standards and create a clinical tool for growth monitoring in pet dogs. PMID:28873413

  5. Growth standard charts for monitoring bodyweight in dogs of different sizes.

    PubMed

    Salt, Carina; Morris, Penelope J; German, Alexander J; Wilson, Derek; Lund, Elizabeth M; Cole, Tim J; Butterwick, Richard F

    2017-01-01

    Limited information is available on what constitutes optimal growth in dogs. The primary aim of this study was to develop evidence-based growth standards for dogs, using retrospective analysis of bodyweight and age data from >6 million young dogs attending a large corporate network of primary care veterinary hospitals across the USA. Electronic medical records were used to generate bodyweight data from immature client-owned dogs, that were healthy and had remained in ideal body condition throughout the first 3 years of life. Growth centile curves were constructed using Generalised Additive Models for Location, Shape and Scale. Curves were displayed graphically as centile charts covering the age range 12 weeks to 2 years. Over 100 growth charts were modelled, specific to different combinations of breed, sex and neuter status. Neutering before 37 weeks was associated with a slight upward shift in growth trajectory, whilst neutering after 37 weeks was associated with a slight downward shift in growth trajectory. However, these shifts were small in comparison to inter-individual variability amongst dogs, suggesting that separate curves for neutered dogs were not needed. Five bodyweight categories were created to cover breeds up to 40kg, using both visual assessment and hierarchical cluster analysis of breed-specific growth curves. For 20/24 of the individual breed centile curves, agreement with curves for the corresponding bodyweight categories was good. For the remaining 4 breed curves, occasional deviation across centile lines was observed, but overall agreement was acceptable. This suggested that growth could be described using size categories rather than requiring curves for specific breeds. In the current study, a series of evidence-based growth standards have been developed to facilitate charting of bodyweight in healthy dogs. Additional studies are required to validate these standards and create a clinical tool for growth monitoring in pet dogs.

  6. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  7. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    PubMed

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  8. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

  9. Hydrogen mitigation in submerged arc welding

    NASA Astrophysics Data System (ADS)

    Klimowicz, Steven

    removes the moisture that is added by the water based binder. The second phase of the project was to modify the flux with fluoride additions to remove hydrogen from the arc while welding. The introduction of fluorine into the arc would lower the amount of hydrogen that may be absorbed as diffusible hydrogen by the weld metal. To select the fluorides a series of thermodynamic calculations were performed as well as simple tests to determine the fluorides behavior in a welding arc and flux. From these tests the following fluorides were selected to be used to be added to EM12K flux as oneweight percent additions: SrF 2, K2TiF6, K2SiF6, and LiF. Welds were then run with the experimental fluxes according to AWS A4.3 standard for diffusible hydrogen testing. From these tests it was found that none experimental fluxes were able to achieve a diffusible hydrogen content lower than the original EM12K flux. It was also found that fluoride reduction in a simple flux is a better predictor of fluoride effectiveness than decomposition temperature.

  10. Performance of a Dual Anode Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    Nickel-hydrogen batteries are presently being used for energy storage on satellites in low Earth orbit and in geosynchronous orbit, and have also been selected for use on the proposed Space Station Freedom. Development continues on the cell technology in order to improve the specific energy and lengthen the cycle life. An experimental study was conducted to compare the voltage performance of a nickel-hydrogen cell containing a dual anode with the standard cell design which uses a single hydrogen electrode. Since the principle voltage loss in a nickel-hydrogen cell is attributed to the mass transport and resistive polarization parameters of the nickel electrode, addition of a hydrogen electrode on the other side of the nickel electrode should reduce the electrochemical polarizations by a factor of two. A 3.5 in. diameter boilerplate cell with a single 30 mils thick nickel electrode was cycled under various current conditions to evaluate its performance with a single anode and then with a double anode. A layered separator consisting of one Zircar cloth separator and one radiation-grafted polyethylene separator were used between the electrodes. The electrolyte was 26% KOH, and the tests were done at room temperature. The discharge voltage characteristics were determined as a function of current and depth-of-discharge. At the 4C discharge rate and 50% DOD, the voltage of the dual anode cell was 100 mV higher than the single anode cell. At 75% DOD the dual anode cell voltage was about 130 mV higher than the standard cell design. Resistances of the two c ell designs obtained from the slope of the mid-discharge voltages plotted against various currents indicated that the dual anode cell resistance was one-half of the state-of-the-art cell.

  11. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

  12. [Analysis of breath hydrogen (H2) in diagnosis of gastrointestinal function: validation of a pocket breath H2 test analyzer].

    PubMed

    Braden, B; Braden, C P; Klutz, M; Lembcke, B

    1993-04-01

    Breath hydrogen (H2) analysis, as used in gastroenterologic function tests, requires a stationary analysis system equipped with a gaschromatograph or an electrochemical sensor cell. Now a portable breath H2-analyzer has been miniaturized to pocket size (104 mm x 62 mm x 29 mm). The application of this device in clinical practice has been assessed in comparison to the standard GMI-exhaled monitor. The pocket analyzer showed a linear response to standards with H2-concentrations ranging from 0-100 ppm (n = 7), which was not different from the GMI-apparatus. The correlation of both methods during clinical application (lactose tolerance tests, mouth-to-coecum transit time determined with lactulose) was excellent (Y = 1.08 X + 0.96; r = 0.959). Using the new device, both, analysis (3 s vs. 90 s) and the reset-time (43 s vs. 140 s) were shorter whereas calibration was more feasible with the GMI-apparatus. It is concluded, that the considerably cheaper pocket-sized breath H2-analyzer is as precise and sensitive as the GMI-exhaled monitor, and thus presents a valid alternative for H2-breath tests.

  13. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen

  14. A flexible system for vital signs monitoring in hospital general care wards based on the integration of UNIX-based workstations, standard networks and portable vital signs monitors.

    PubMed Central

    Welch, J. P.; Sims, N.; Ford-Carlton, P.; Moon, J. B.; West, K.; Honore, G.; Colquitt, N.

    1991-01-01

    The article describes a study conducted on general surgical and thoracic surgical floors of a 1000-bed hospital to assess the impact of a new network for portable patient care devices. This network was developed to address the needs of hospital patients who need constant, multi-parameter, vital signs surveillance, but do not require intensive nursing care. Bedside wall jacks were linked to UNIX-based workstations using standard digital network hardware, creating a flexible system (for general care floors of the hospital) that allowed the number of monitored locations to increase and decrease as patient census and acuity levels varied. It also allowed the general care floors to provide immediate, centralized vital signs monitoring for patients who unexpectedly became unstable, and permitted portable monitors to travel with patients as they were transferred between hospital departments. A disk-based log within the workstation automatically collected performance data, including patient demographics, monitor alarms, and network status for analysis. The log has allowed the developers to evaluate the use and performance of the system. PMID:1807720

  15. A flexible system for vital signs monitoring in hospital general care wards based on the integration of UNIX-based workstations, standard networks and portable vital signs monitors.

    PubMed

    Welch, J P; Sims, N; Ford-Carlton, P; Moon, J B; West, K; Honore, G; Colquitt, N

    1991-01-01

    The article describes a study conducted on general surgical and thoracic surgical floors of a 1000-bed hospital to assess the impact of a new network for portable patient care devices. This network was developed to address the needs of hospital patients who need constant, multi-parameter, vital signs surveillance, but do not require intensive nursing care. Bedside wall jacks were linked to UNIX-based workstations using standard digital network hardware, creating a flexible system (for general care floors of the hospital) that allowed the number of monitored locations to increase and decrease as patient census and acuity levels varied. It also allowed the general care floors to provide immediate, centralized vital signs monitoring for patients who unexpectedly became unstable, and permitted portable monitors to travel with patients as they were transferred between hospital departments. A disk-based log within the workstation automatically collected performance data, including patient demographics, monitor alarms, and network status for analysis. The log has allowed the developers to evaluate the use and performance of the system.

  16. 40 CFR 468.03 - Monitoring and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring procedure for TTO, indirect dischargers may monitor for oil and grease and meet the alternate monitoring standards for oil and grease established for PSES and PSNS. Any indirect discharger meeting the alternate monitoring oil and grease standards shall be considered to meet the TTO standard. ...

  17. 40 CFR 468.03 - Monitoring and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring procedure for TTO, indirect dischargers may monitor for oil and grease and meet the alternate monitoring standards for oil and grease established for PSES and PSNS. Any indirect discharger meeting the alternate monitoring oil and grease standards shall be considered to meet the TTO standard. ...

  18. 40 CFR 468.03 - Monitoring and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring procedure for TTO, indirect dischargers may monitor for oil and grease and meet the alternate monitoring standards for oil and grease established for PSES and PSNS. Any indirect discharger meeting the alternate monitoring oil and grease standards shall be considered to meet the TTO standard. ...

  19. 40 CFR 468.03 - Monitoring and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring procedure for TTO, indirect dischargers may monitor for oil and grease and meet the alternate monitoring standards for oil and grease established for PSES and PSNS. Any indirect discharger meeting the alternate monitoring oil and grease standards shall be considered to meet the TTO standard. ...

  20. Fiber optic microsensor technology for detection of hydrogen in space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.

    2008-04-01

    Optical hydrogen sensors are intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Safety remains a top priority since leakage of hydrogen in air during production, storage, transfer and distribution creates an explosive atmosphere for concentrations between 4% (v/v) - the lower explosive limit (LEL) and 74.5% (v/v) - the upper explosive limit (UEL) at room temperature and pressure. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, Launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. This paper describes the successful development and test of a multi-point fiber optic hydrogen sensor system during the static firing of an Evolved Expandable Launch Vehicle at NASA's Stennis Space Center. The system consisted of microsensors (optrodes) using hydrogen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel optoelectronic sensor readout unit that monitored the hydrogen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The paper would discuss the sensor design and performance data under field deployment conditions.

  1. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring*

    PubMed Central

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-01-01

    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  2. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  3. Liquid Hydrogen Sensor Considerations for Space Exploration

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  4. Monitoring design for assessing compliance with numeric nutrient standards for rivers and streams using geospatial variables.

    PubMed

    Williams, Rachel E; Arabi, Mazdak; Loftis, Jim; Elmund, G Keith

    2014-09-01

    Implementation of numeric nutrient standards in Colorado has prompted a need for greater understanding of human impacts on ambient nutrient levels. This study explored the variability of annual nutrient concentrations due to upstream anthropogenic influences and developed a mathematical expression for the number of samples required to estimate median concentrations for standard compliance. A procedure grounded in statistical hypothesis testing was developed to estimate the number of annual samples required at monitoring locations while taking into account the difference between the median concentrations and the water quality standard for a lognormal population. For the Cache La Poudre River in northern Colorado, the relationship between the median and standard deviation of total N (TN) and total P (TP) concentrations and the upstream point and nonpoint concentrations and general hydrologic descriptors was explored using multiple linear regression models. Very strong relationships were evident between the upstream anthropogenic influences and annual medians for TN and TP ( > 0.85, < 0.001) and corresponding standard deviations ( > 0.7, < 0.001). Sample sizes required to demonstrate (non)compliance with the standard depend on the measured water quality conditions. When the median concentration differs from the standard by >20%, few samples are needed to reach a 95% confidence level. When the median is within 20% of the corresponding water quality standard, however, the required sample size increases rapidly, and hundreds of samples may be required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Air Pollution Monitoring | Air Quality Planning & Standards ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. To accomplish this, OAQPS must be able to evaluate the status of the atmosphere as compared to clean air standards and historical information.

  6. Effect of Disinfectants on Glucose Monitors

    PubMed Central

    Mahoney, John J; Lim, Christine G

    2012-01-01

    Background Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. Methods We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Results Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Conclusions Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. PMID:22401326

  7. Effect of disinfectants on glucose monitors.

    PubMed

    Mahoney, John J; Lim, Christine G

    2012-01-01

    Monitoring blood glucose levels is an integral part of routine diabetes management. To minimize the risk of transmission of bloodborne pathogens during monitoring, the Centers for Disease Control and Prevention (CDC) recommends that glucose meters be disinfected after each use whenever they are used to test multiple patients. The objective of this study is to assess the compatibility of some common disinfectants with certain blood glucose meter systems. We tested six disinfectants for adverse impact on meter performance or the exterior meter surfaces. The disinfectants tested were 0.525% sodium hypochlorite, 20% 2-propanol and 10% ethanol, 17.2% isopropanol, 55% isopropanol, 70% isopropanol, and hydrogen peroxide. To assess meter performance, we tested OneTouch® Ultra® blood glucose monitoring systems with control solution before and after application of either water or disinfectant. To assess the effect on exterior meter surfaces, we performed a soaking test to simulate long-term exposure to disinfectant. Paired t-test results showed that the control solution data associated with disinfectant and with water application were not significantly different for each meter type. However, most of the meter types were adversely affected by hydrogen peroxide and/or by the higher concentrations of alcohol-based disinfectants. Although none of the six disinfectants affected meter performance, hydrogen peroxide and isopropanol >20% adversely affected the exterior surfaces of the tested meters. When complying with CDC instructions for meter disinfection, users should use caution and choose disinfectants that have been validated by the meter manufacturer. © 2012 Diabetes Technology Society.

  8. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogenmore » production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.« less

  9. Challenges and opportunities with standardized monitoring for management decison-making

    USDA-ARS?s Scientific Manuscript database

    The importance of monitoring for adaptive management of rangelands has been well established. However, the actual use of monitoring data in rangeland management decisions has been modest despite extensive efforts to develop and implement monitoring programs from local to national scales. More effect...

  10. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, M.; Sugiyama, T.

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of themore » proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.« less

  11. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    PubMed

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. 40 CFR 415.426 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Pretreatment standards for new sources...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.426 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR...

  13. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  14. Mass spectrometric real-time monitoring of an enzymatic phosphorylation assay using internal standards and data-handling freeware.

    PubMed

    Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas

    2016-04-30

    Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Operating Experience Review of the INL HTE Gas Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Cadwallader; K. G. DeWall

    2010-06-01

    This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  16. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  17. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  18. Operating experience review of an INL gas monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  19. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  20. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  1. 40 CFR 60.5408 - What is an optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measuring hydrogen sulfide in acid gas-Tutwiler Procedure? 60.5408 Section 60.5408 Protection of Environment... § 60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure... of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine. (b...

  2. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    DOE PAGES

    Wang, Hsin -Ping; Sutter-Fella, Carolin M.; Lobaccaro, Peter; ...

    2016-06-08

    The thin-film vapor–liquid–solid (TF-VLS) growth technique presents a promising route for high quality, scalable, and cost-effective InP thin films for optoelectronic devices. Toward this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy was used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces themore » relative intragap defect density by 1 order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (V OC) of individual TF-VLS InP solar cells by up to 130 mV and reduced the variance in V OC for the analyzed devices.« less

  3. 40 CFR 98.244 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures specified in § 98.34(c). (b) If you use the mass balance methodology in § 98.243(c), use the...) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum... for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal...

  4. Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS{sub 2} layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, R. K., E-mail: r.joshi@unsw.edu.au, E-mail: alwarappan@cecri.res.in; Sahajwalla, V.; Shukla, S.

    2016-01-15

    Study on hydrogen generation has been of huge interest due to increasing demand for new energy sources. Photoelectrochemical reaction by catalysts was proposed as a promising technique for hydrogen generation. Herein, we report the hydrogen generation via photoelectrochecmial reaction using films of exfoliated 2-dimensional (2D) MoS{sub 2}, which acts as an efficient photocatalyst. The film of chemically exfoliated MoS{sub 2} layers was employed for water splitting, leading to hydrogen generation. The amount of hydrogen was qualitatively monitored by observing overpressure of a water container. The high photo-current generated by MoS{sub 2} film resulted in hydrogen evolution. Our work shows thatmore » 2D MoS{sub 2} is one of the promising candidates as a photocatalyst for light-induced hydrogen generation. High photoelectrocatalytic efficiency of the 2D MoS{sub 2} shows a new way toward hydrogen generation, which is one of the renewable energy sources. The efficient photoelectrocatalytic property of the 2D MoS{sub 2} is possibly due to availability of catalytically active edge sites together with minimal stacking that favors the electron transfer.« less

  5. Hydrogen transport and hydrogen embrittlement in stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, T.P.

    1985-01-01

    In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited themore » greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.« less

  6. Hydrogen Storage | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    research. An International Multi-Laboratory Investigation of Carbon-Based Hydrogen Sorbent Materials Carbon Nanotube Anions, Journal of Materials Research (2012) Manipulation of Hydrogen Binding Energy and Spectroscopy, Journal of Physical Chemistry C (2012) Reactions and Reversible Hydrogenation of Single-Walled

  7. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    PubMed Central

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.

    2013-01-01

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576

  8. Microstructured FBG hydrogen sensor based on Pt-loaded WO3.

    PubMed

    Zhou, Xian; Dai, Yutang; Karanja, Joseph Muna; Liu, Fufei; Yang, Minghong

    2017-04-17

    Hydrogen gas sensing properties of Pt-WO3 films on spiral microstructured fiber Bragg grating (FBG) has been demonstrated. Pt-WO3 film was prepared by hydrothermal method. The spiral microsturctured FBG was fabricated using femtosecond laser. Spiral microstructure FBG hydrogen sensor can detect hydrogen concentration from 0.02% H2 to 4% H2 at room temperature, and the response time is shortened from a few minutes to 10~30 s. Double spiral microstructure at pitch 60 μm and sputtered with 2 μm Pt-WO3 film recorded hydrogen sensitivity of 522 pm/%(v/v) H2 responding to hydrogen gas in air. This translated to approximately 2~4 times higher than the unprocessed standard FBG. The humidity has little effect on the sensing property. The sensor has fast response time, good stability, large detection range and has the good prospect of practical application for hydrogen leak detection.

  9. Flow-Control Unit For Nitrogen And Hydrogen Gases

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Novak, D. W.

    1990-01-01

    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  10. Development of an Inexpensive RGB Color Sensor for the Detection of Hydrogen Cyanide Gas.

    PubMed

    Greenawald, Lee A; Boss, Gerry R; Snyder, Jay L; Reeder, Aaron; Bell, Suzanne

    2017-10-27

    An inexpensive red, green, blue (RGB) color sensor was developed for detecting low ppm concentrations of hydrogen cyanide gas. A piece of glass fiber filter paper containing monocyanocobinamide [CN(H 2 O)Cbi] was placed directly above the RGB color sensor and an on chip LED. Light reflected from the paper was monitored for RGB color change upon exposure to hydrogen cyanide at concentrations of 1.0-10.0 ppm as a function of 25%, 50%, and 85% relative humidity. A rapid color change occurred within 10 s of exposure to 5.0 ppm hydrogen cyanide gas (near the NIOSH recommended exposure limit). A more rapid color change occurred at higher humidity, suggesting a more effective reaction between hydrogen cyanide and CN(H 2 O)Cbi. The sensor could provide the first real time respirator end-of-service-life alert for hydrogen cyanide gas.

  11. An experiment to evaluate liquid hydrogen storage in space

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  12. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  13. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  14. Do Parents Meet Adolescents’ Monitoring Standards? Examination of the Impact on Teen Risk Disclosure and Behaviors if They Don’t

    PubMed Central

    Cottrell, Lesley; Cottrell, Scott; Metzger, Aaron; Ahmadi, Halima; Wang, Bo; Li, Xiaoming; Stanton, Bonita

    2015-01-01

    In this study, we examined how adolescents compare monitoring efforts by their parents to those of a "good parent" standard and assessed the impact of these comparisons on adolescent self-disclosure and risk behavior and their perceptions of their parents' monitoring knowledge. Survey responses from 519 adolescents (12–17 years) at baseline of a larger, longitudinal study examining parental monitoring and adolescent risk were examined. Adolescents’ “good parent comparisons” differed greatly by monitoring areas (e.g., telephone use, health, money); however, between 5.5% and 25.8% of adolescents believed their parents needed to monitor their activities more than they currently were monitoring. Alternatively, between 8.5% and 23.8% of adolescents believed their parents needed to monitor their activities less often. These perceptions significantly distinguished adolescents in terms of their level of disclosure, perceived monitoring knowledge, and risk involvement. Adolescents who viewed their parents as needing to monitor more were less likely to disclose information to their parents (p<.001), less likely to perceive their parents as having greater monitoring knowledge (p<.001), and more likely to be involved in a risk behaviors (p<.001) than adolescents who perceived their parents needed no change. Adolescent disclosure to a parent is a powerful predictor of adolescent risk and poor health outcomes. These findings demonstrate that adolescents' comparisons of their parents' monitoring efforts can predict differences in adolescent disclosure and future risk. Obtaining adolescent "good parent" comparisons may successfully identify intervention opportunities with the adolescent and parent by noting the areas of need and direction of monitoring improvement. PMID:25955160

  15. Do Parents Meet Adolescents' Monitoring Standards? Examination of the Impact on Teen Risk Disclosure and Behaviors if They Don't.

    PubMed

    Cottrell, Lesley; Rishel, Carrie; Lilly, Christa; Cottrell, Scott; Metzger, Aaron; Ahmadi, Halima; Wang, Bo; Li, Xiaoming; Stanton, Bonita

    2015-01-01

    In this study, we examined how adolescents compare monitoring efforts by their parents to those of a "good parent" standard and assessed the impact of these comparisons on adolescent self-disclosure and risk behavior and their perceptions of their parents' monitoring knowledge. Survey responses from 519 adolescents (12-17 years) at baseline of a larger, longitudinal study examining parental monitoring and adolescent risk were examined. Adolescents' "good parent comparisons" differed greatly by monitoring areas (e.g., telephone use, health, money); however, between 5.5% and 25.8% of adolescents believed their parents needed to monitor their activities more than they currently were monitoring. Alternatively, between 8.5% and 23.8% of adolescents believed their parents needed to monitor their activities less often. These perceptions significantly distinguished adolescents in terms of their level of disclosure, perceived monitoring knowledge, and risk involvement. Adolescents who viewed their parents as needing to monitor more were less likely to disclose information to their parents (p<.001), less likely to perceive their parents as having greater monitoring knowledge (p<.001), and more likely to be involved in a risk behaviors (p<.001) than adolescents who perceived their parents needed no change. Adolescent disclosure to a parent is a powerful predictor of adolescent risk and poor health outcomes. These findings demonstrate that adolescents' comparisons of their parents' monitoring efforts can predict differences in adolescent disclosure and future risk. Obtaining adolescent "good parent" comparisons may successfully identify intervention opportunities with the adolescent and parent by noting the areas of need and direction of monitoring improvement.

  16. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34.75 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL...

  17. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  18. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  19. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  20. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  1. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  2. A computerized assessment to compare the impact of standard, stereoscopic, and high-definition laparoscopic monitor displays on surgical technique.

    PubMed

    Feng, Chuan; Rozenblit, Jerzy W; Hamilton, Allan J

    2010-11-01

    standard 2D or 3D laparoscopic monitors.

  3. Hydrogen/deuterium exchange in mass spectrometry.

    PubMed

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  4. [Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].

    PubMed

    Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe

    2003-05-01

    In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.

  5. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  6. Prospects for atomic frequency standards

    NASA Technical Reports Server (NTRS)

    Audoin, C.

    1984-01-01

    The potentialities of different atomic frequency standards which are not yet into field operation, for most of them, but for which preliminary data, obtained in laboratory experiments, give confidence that they may improve greatly the present state of the art are described. The review will mainly cover the following devices: (1) cesium beam frequency standards with optical pumping and detection; (2) optically pumped rubidium cells; (3) magnesium beam; (4) cold hydrogen masers; and (5) traps with stored and cooled ions.

  7. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. FLUSH - PREDICTION OF FLOW PARAMETERS OF SLUSH HYDROGEN

    NASA Technical Reports Server (NTRS)

    Hardy, T.

    1994-01-01

    Slush hydrogen, a mixture of the solid and liquid phases of hydrogen, is a possible source of fuel for the National Aerospace Plane (NASP) Project. Advantages of slush hydrogen over liquid hydrogen include greater heat capacity and greater density. However, practical use of slush hydrogen as a fuel requires systems of lines, valves, etc. which are designed to deliver the fuel in slush form with minimal solid loss as a result of pipe heating or flow friction. Engineers involved with the NASP Project developed FLUSH to calculate the pressure drop and slush hydrogen solid fraction loss for steady-state, one-dimensional flow. FLUSH solves the steady-state, one-dimensional energy equation and the Bernoulli equation for pipe flow. The program performs these calculations for each two-node element--straight pipe length, elbow, valve, fitting, or other part of the piping system--specified by the user. The user provides flow rate, upstream pressure, initial solid hydrogen fraction, element heat leak, and element parameters such as length and diameter. For each element, FLUSH first calculates the pressure drop, then figures the slush solid fraction exiting the element. The code employs GASPLUS routines to calculate thermodynamic properties for the slush hydrogen. FLUSH is written in FORTRAN IV for DEC VAX series computers running VMS. An executable is provided on the tape. The GASPLUS physical properties routines which are required for building the executable are included as one object library on the program media (full source code for GASPLUS is available separately as COSMIC Program Number LEW-15091). FLUSH is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard media) or on a TK50 tape cartridge. FLUSH was developed in 1989.

  9. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.

    PubMed

    Pinto, T S; Malcata, F X; Arrabaça, J D; Silva, J M; Spreitzer, R J; Esquível, M G

    2013-06-01

    Molecular hydrogen (H2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

  10. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  11. Anaerobic Formate and Hydrogen Metabolism.

    PubMed

    Sawers, R Gary; Blokesch, Melanie; Böck, August

    2004-12-01

    During fermentative growth, Escherichia coli degrades carbohydrates via the glycolytic route into two pyruvate molecules. Pyruvate can be reduced to lactate or nonoxidatively cleaved by pyruvate formate lyase into acetyl-coenzyme A (acetyl-CoA) and formate. Acetyl-CoA can be utilized for energy conservation in the phosphotransacetylase (PTA) and acetate kinase (ACK) reaction sequence or can serve as an acceptor for reducing equivalents gathered during pyruvate formation, through the action of alcohol dehydrogenase (AdhE). Formic acid is strongly acidic and has a redox potential of -420 mV under standard conditions and therefore can be classified as a high-energy compound. Its disproportionation into CO2 and molecular hydrogen (Em,7 -420 mV) via the formate hydrogenlyase (FHL) system is therefore of high selective value. The FHL reaction involves the participation of at least seven proteins, most of which are metalloenzymes, with requirements for iron, molybdenum, nickel, or selenium. Complex auxiliary systems incorporate these metals. Reutilization of the hydrogen evolved required the evolution of H2 oxidation systems, which couple the oxidation process to an appropriate energy-conserving terminal reductase. E. coli has two hydrogen-oxidizing enzyme systems. Finally, fermentation is the "last resort" of energy metabolism, since it gives the minimal energy yield when compared with respiratory processes. Consequently, fermentation is used only when external electron acceptors are absent. This has necessitated the establishment of regulatory cascades, which ensure that the metabolic capability is appropriately adjusted to the physiological condition. Here we review the genetics, biochemistry, and regulation of hydrogen metabolism and its hydrogenase maturation system.

  12. Administration of hydrogen-rich saline in mice with allogeneic hematopoietic stem-cell transplantation.

    PubMed

    Yuan, Lijuan; Chen, Xiaoping; Qian, Liren; Shen, Jianliang; Cai, Jianming

    2015-03-12

    Hydrogen, as a novel antioxidant, has been shown to selectively reduce the level of hydroxyl radicals and alleviate acute oxidative stress in many animal experiments. Hydrogen-rich saline provides a high concentration of hydrogen that can be easily and safely applied. Allogeneic hematopoietic stem-cell transplantation (HSCT) has been the most curative therapy for hematological malignancies. However, acute graft-versus-host disease (aGVHD) is the main cause of death in post-transplantation patients. In this study, we examined whether hydrogen-rich saline would show favorable effects on acute GVHD in mice. After lethal irradiation, BALB/c mice received bone marrow transplantation from C57BL/6 mice. Hydrogen-rich saline (5 ml/kg) was given to recipient mice in the hydrogen group once a day by intraperitoneal injection, and saline (5 ml/kg) was given to recipient mice in the saline group. Survival rates were monitored, clinical and pathological scores of aGVHD were determined after bone marrow transplantation (BMT), and the serum cytokine levels were examined on the 7th day after BMT. This study proves that hydrogen-rich saline increased the survival rate, reduced clinical and histopathological scores of aGVHD, promoted the recovery of white blood cells, reduced the serum cytokine levels, and reversed tissue damage after transplantation in mice. Hydrogen has potential as an effective and safe therapeutic agent in aGVHD.

  13. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen

  14. Hydrogen storage methods

    NASA Astrophysics Data System (ADS)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is

  15. Hydrogen and carbon nanotube production via catalytic decomposition of methane

    NASA Astrophysics Data System (ADS)

    Deniz, Cansu; Karatepe, Nilgün

    2013-09-01

    The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.

  16. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  17. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. Hydrogen Fuel Capability Added to Combustor Flametube Rig

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce J.

    2003-01-01

    Facility capabilities have been expanded at Test Cell 23, Research Combustor Lab (RCL23) at the NASA Glenn Research Center, with a new gaseous hydrogen fuel system. The purpose of this facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Previously, this facility only had jet fuel available to perform these various combustor flametube tests. The new hydrogen fuel system will support the testing and development of aircraft combustors with zero carbon dioxide (CO2) emissions. Research information generated from this test rig includes combustor emissions and performance data via gas sampling probes and emissions measuring equipment. The new gaseous hydrogen system is being supplied from a 70 000-standard-ft3 tube trailer at flow rates up to 0.05 lb/s (maximum). The hydrogen supply pressure is regulated, and the flow is controlled with a -in. remotely operated globe valve. Both a calibrated subsonic venturi and a coriolis mass flowmeter are used to measure flow. Safety concerns required the placement of all hydrogen connections within purge boxes, each of which contains a small nitrogen flow that is vented past a hydrogen detector. If any hydrogen leaks occur, the hydrogen detectors alert the operators and automatically safe the facility. Facility upgrades and modifications were also performed on other fluids systems, including the nitrogen gas, cooling water, and air systems. RCL23 can provide nonvitiated heated air to the research combustor, up to 350 psig at 1200 F and 3.0 lb/s. Significant modernization of the facility control systems and the data acquisition systems was completed. A flexible control architecture was installed that allows quick changes of research configurations. The labor-intensive hardware interface has been removed and changed to a software-based system. In addition, the operation of this facility has been greatly enhanced with new software programming and graphic operator interface

  19. Hydrogen-fueled postal vehicle performance evaluation

    NASA Technical Reports Server (NTRS)

    Hall, R. A.

    1979-01-01

    Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.

  20. A Model for Hydrogen Thermal Conductivity and Viscosity Including the Critical Point

    NASA Technical Reports Server (NTRS)

    Wagner, Howard A.; Tunc, Gokturk; Bayazitoglu, Yildiz

    2001-01-01

    In order to conduct a thermal analysis of heat transfer to liquid hydrogen near the critical point, an accurate understanding of the thermal transport properties is required. A review of the available literature on hydrogen transport properties identified a lack of useful equations to predict the thermal conductivity and viscosity of liquid hydrogen. The tables published by the National Bureau of Standards were used to perform a series of curve fits to generate the needed correlation equations. These equations give the thermal conductivity and viscosity of hydrogen below 100 K. They agree with the published NBS tables, with less than a 1.5 percent error for temperatures below 100 K and pressures from the triple point to 1000 KPa. These equations also capture the divergence in the thermal conductivity at the critical point

  1. Hydrogen Fire in a Storage Vessel

    NASA Technical Reports Server (NTRS)

    Hester, Zena M.

    2010-01-01

    On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor

  2. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  3. Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen

    Science.gov Websites

    at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell

  4. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

    PubMed Central

    Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea; Leen Koh, Ai; Sinclair, Robert; Dionne, Jennifer A.

    2017-01-01

    Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation—the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm—to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth of the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. The nanoparticles' ability to remove crystallographic imperfections renders them more durable than their bulk counterparts. PMID:28091597

  5. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles

    DOE PAGES

    Narayan, Tarun C.; Hayee, Fariah; Baldi, Andrea; ...

    2017-01-16

    Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation—the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm—to better understand the reason for this durability. First, using environmental scanning transmission electron microscopy, we monitor the hydrogen absorption process in real time with 3 nm resolution. Then, using dark-field imaging, we structurally examine the reaction intermediates with 1 nm resolution. The reaction proceeds through nucleation and growth ofmore » the new phase in corners of the nanocubes. As the hydrogenated phase propagates across the particles, portions of the lattice misorient by 1.5%, diminishing crystal quality. Once transformed, all the particles explored return to a pristine state. As a result, the nanoparticles’ ability to remove crystallographic imperfections renders them more durable than their bulk counterparts.« less

  6. Use of a pressure sensing sheath: comparison with standard means of blood pressure monitoring in catheterization procedures

    PubMed Central

    Purdy, Phillip D; South, Charles; Klucznik, Richard P; Liu, Kenneth C; Novakovic, Robin L; Puri, Ajit S; Pride, G Lee; Aagaard-Kienitz, Beverly; Ray, Abishek; Elliott, Alan C

    2017-01-01

    Purpose Monitoring of blood pressure (BP) during procedures is variable, depending on multiple factors. Common methods include sphygmomanometer (BP cuff), separate radial artery catheterization, and side port monitoring of an indwelling sheath. Each means of monitoring has disadvantages, including time consumption, added risk, and signal dampening due to multiple factors. We sought an alternative approach to monitoring during procedures in the catheterization laboratory. Methods A new technology involving a 330 µm fiberoptic sensor embedded in the wall of a sheath structure was tested against both radial artery catheter and sphygmomanometer readings obtained simultaneous with readings recorded from the pressure sensing system (PSS). Correlations and Bland–Altman analysis were used to determine whether use of the PSS could substitute for these standard techniques. Results The results indicated highly significant correlations in systolic, diastolic, and mean arterial pressures (MAP) when compared against radial artery catheterization (p<0.0001), and MAP means differed by <4%. Bland–Altman analysis of the data suggested that the sheath measurements can replace a separate radial artery catheter. While less striking, significant correlations were seen when PSS readings were compared against BP cuff readings. Conclusions The PSS has competitive functionality to that seen with a dedicated radial artery catheter for BP monitoring and is available immediately on sheath insertion without the added risk of radial catheterization. The sensor is structurally separated from the primary sheath lumen and readings are unaffected by device introduction through the primary lumen. Time delays and potential complications from radial artery catheterization are avoided. PMID:27422970

  7. A hydrogen maser with cavity auto-tuner for timekeeping

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; He, J. W.; Zhai, Z. C.

    1992-01-01

    A hydrogen maser frequency standard for timekeeping was worked on at the Shanghai Observatory. The maser employs a fast cavity auto-tuner, which can detect and compensate the frequency drift of the high-Q resonant cavity with a short time constant by means of a signal injection method, so that the long term frequency stability of the maser standard is greatly improved. The cavity auto-tuning system and some maser data obtained from the atomic time comparison are described.

  8. Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Wynveen, R. A.

    1983-01-01

    Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.

  9. Ambient air monitoring of Beijing MSW logistics facilities in 2006.

    PubMed

    Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu

    2008-11-01

    In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.

  10. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  11. Hydrogen-related defects in hydrogenated amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Jin, Shu; Ley, Lothar

    1991-07-01

    One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the

  12. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    PubMed

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  13. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  14. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  15. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    NASA Astrophysics Data System (ADS)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  16. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  17. VERIFICATION OF AMBIENT MONITORING TECHNOLOGIES FOR AMMONIA AND HYDROGEN SULFIDE AT ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    The increasing concentration of livestock agriculture into animal feeding operations (AFOs) has raised concerns about the environmental and potential health impact of the emissions from AFOs into the atmosphere. Gaseous ammonia (NH3) and hydrogen sulfide (H2...

  18. Alloys For Corrosive, Hydrogen-Rich Environments

    NASA Technical Reports Server (NTRS)

    Mcpherson, William B.; Bhat, Biliyar N.; Chen, Po-Shou; Kuruvilla, A. K.; Panda, Binayak

    1993-01-01

    "NASA-23" denotes class of alloys resisting both embrittlement by hydrogen and corrosion. Weldable and castable and formed by such standard processes as rolling, forging, and wire drawing. Heat-treated to obtain desired combinations of strength and ductility in ranges of 100 to 180 kpsi yield strength, 120 to 200 kpsi ultimate tensile strength, and 10 to 30 percent elongation at break. Used in place of most common aerospace structural alloy, Inconel(R) 718.

  19. Hydrogen and Fuel Cell Basics | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Hydrogen and Fuel Cell Basics Hydrogen and Fuel Cell Basics NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment basics of NREL's hydrogen and fuel cell research and development. Fuel cell electric vehicles (FCEVs

  20. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  1. Innovation and reliability of atomic standards for PTTI applications

    NASA Technical Reports Server (NTRS)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  2. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    PubMed

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  3. Comparison of hydrogen peroxide and peracetic acid as isolator sterilization agents in a hospital pharmacy.

    PubMed

    Bounoure, Frederic; Fiquet, Herve; Arnaud, Philippe

    2006-03-01

    The efficacy of hydrogen peroxide and peracetic acid as isolator sterilization agents was compared. Sterilization and efficacy tests were conducted in a flexible 0.8-m3 transfer isolator using a standard load of glass bottles and sterile medical devices in their packing paper. Bacillus stearothermophilus spores were placed in six critical locations of the isolator and incubated at 55 degrees C in a culture medium for 14 days. Sterilization by 4.25 mL/m3 of 33% vapor-phase hydrogen peroxide and 12.5 mL/m3 of 3.5% peracetic acid was tested in triplicate. Sterility was validated for hydrogen peroxide and peracetic acid at 60, 90, 120, and 180 minutes and at 90, 120, 150, 180, 210, and 240 minutes, respectively. In an efficacy test conducted with an empty isolator, the sterilization time required to destroy B. stearothermophilus spores was 90 minutes for both sterilants, indicating that they have comparable bactericidal properties. During the validation test with a standard load, the sterilization time using hydrogen peroxide was 150 minutes versus 120 minutes with peracetic acid. The glove cuff was particularly difficult for hydrogen peroxide to sterilize, likely due to its slower diffusion time than that of peracetic acid. Hydrogen peroxide is an environmentally safer agent than peracetic acid; however, its bacteriostatic properties, lack of odor, and poor diffusion time may limit its use in sterilizing some materials. Hydrogen peroxide is a useful alternative to peracetic acid for isolator sterilization in a hospital pharmacy or parenteral nutrition preparation unit.

  4. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  5. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in <110> and <100> silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  6. SSV Launch Monitoring Strategies: HGDS Design Implementation Through System Maturity

    NASA Technical Reports Server (NTRS)

    Shoemaker, Marc D.; Crimi, Thomas

    2010-01-01

    With over 500,000 gallons of liquid hydrogen and liquid oxygen, it is of vital importance to monitor the space shuttle vehicle (SSV) from external tank (ET) load through launch. The Hazardous Gas Detection System (HGDS) was installed as the primary system responsible for monitoring fuel leaks within the orbiter and ET. The HGDS was designed to obtain the lowest possible detection limits with the best resolution while monitoring the SSV for any hydrogen, helium, oxygen, or argon as the main requirement. The HGDS is a redundant mass spectrometer used for real-time monitoring during Power Reactant Storage and Distribution (PRSD) load and ET load through launch or scrub. This system also performs SSV processing leak checks of the Tail Service Mast (TSM) umbilical quick disconnects (QD's), Ground Umbilical Carrier Plate (GUCP) QD's and supports auxiliary power unit (APU) system tests. From design to initial implementation and operations, the HGDS has evolved into a mature and reliable launch support system. This paper will discuss the operational challenges and lessons learned from facing design deficiencies, validation and maintenance efforts, life cycle issues, and evolving requirements

  7. Calibration of electret-based integral radon monitors using NIST polyethylene-encapsulated {sup 226}Ra/{sup 222}Rn emanation (PERE) standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colle, R.; Hutchinson, J.M.R.; Kotrappa, P.

    1995-11-01

    The recently developed {sup 222}Rn emanation standards that are based on polyethylene-encapsulated {sup 226}Ra solutions were employed for a first field-measurement application test to demonstrate their efficacy in calibrating passive integral radon monitors. The performance of the capsules was evaluated with respect to the calibration needs of electret ionization chambers (E-PERM{reg_sign}, Rad Elec Inc.). The encapsulated standards emanate well-characterized and known quantities of {sup 222}Rn, and were used in two different-sized, relatively-small, accumulation vessels (about 3.6 L and 10 L) which also contained the deployed electret monitors under test. Calculated integral {sup 222}Rn activities from the capsules over various accumulationmore » times were compared to the averaged electret responses. Evaluations were made with four encapsulated standards ranging in {sup 226}Ra activity from approximately 15 Bq to 540 Bq (with {sup 222}Rn emanation fractions of 0.888); over accumulation times from 1 d to 33 d; and with four different types of E-PERM detectors that were independently calibrated. The ratio of the electret chamber response E{sub Rn} to the integral {sup 222}Rn activity I{sub Rn} was constant (within statistical variations) over the variables of the specific capsule used, the accumulation volume, accumulation time, and detector type. The results clearly demonstrated the practicality and suitability of the encapsulated standards for providing a simple and readily-available calibration for those measurement applications. However, the mean ratio E{sub Rn}/I{sub Rn} was approximately 0.91, suggesting a possible systematic bias in the extant E-PERM calibrations. This 9% systematic difference was verified by an independent test of the E-PERM calibration based on measurements with the NIST radon-in-water standard generator.« less

  8. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O'Brien, Jeremy T.; Bush, Matthew F.; Williams, Evan R.

    2008-01-01

    In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 ± 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry. PMID:18288835

  9. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  10. Digital High-Current Monitor

    NASA Technical Reports Server (NTRS)

    Cash, B.

    1985-01-01

    Simple technique developed for monitoring direct currents up to several hundred amperes and digitally displaying values directly in current units. Used to monitor current magnitudes beyond range of standard laboratory ammeters, which typically measure 10 to 20 amperes maximum. Technique applicable to any current-monitoring situation.

  11. 40 CFR 60.2730 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... Units Model Rule-Monitoring § 60.2730 What monitoring equipment must I install and what parameters must...) of this section must be expressed in milligrams per dry standard cubic meter corrected to 7 percent...

  12. 40 CFR 60.2730 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY... Units Model Rule-Monitoring § 60.2730 What monitoring equipment must I install and what parameters must...) of this section must be expressed in milligrams per dry standard cubic meter corrected to 7 percent...

  13. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-02

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface.

  14. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.

    PubMed

    Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B

    2005-11-01

    Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

  15. Hydrogen System Component Validation | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Meeting (June 2017) Hydrogen Component Validation: 2016 Annual Progress Report, Danny Terlip, Excerpt from the 2016 DOE Annual Progress Report (February 2017) Hydrogen Component Validation: 2016 Annual Merit Transportation Decisions, NREL Fact Sheet (June 2016) Hydrogen Component Validation: 2015 Annual Progress Report

  16. Numerical Investigation of the Hydrogen Jet Flammable Envelope Extent with Account for Unsteady Phenomena

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Boris; Benard, Pierre

    2010-11-01

    An important aspect of safety analysis in hydrogen applications is determination of the extent of flammable gas envelope in case of hydrogen jet release. Experimental investigations had shown significant disagreements between the extent of average flammable envelope predicted by steady-state numerical methods, and the region observed to support ignition, with proposed cause being non-steady jet phenomena resulting in significant variations of instantaneous gas concentration and velocity fields in the jet. In order to investigate the influence of these transient phenomena, a numerical investigation of hydrogen jet at low Mach number had been performed using unsteady Large Eddy Simulation. Instantaneous hydrogen concentration and velocity fields were monitored to determine instantaneous flammable envelope. The evolution of the instantaneous fields, including the development of the turbulence structures carrying hydrogen, their extent and frequency, and their relation with averaged fields had been characterized. Simulation had shown significant variability of the flammable envelope, with jet flapping causing shedding of large scale rich and lean gas pockets from the main jet core, which persist for significant times and substantially alter the extent of flammability envelope.

  17. Use of a pressure sensing sheath: comparison with standard means of blood pressure monitoring in catheterization procedures.

    PubMed

    Purdy, Phillip D; South, Charles; Klucznik, Richard P; Liu, Kenneth C; Novakovic, Robin L; Puri, Ajit S; Pride, G Lee; Aagaard-Kienitz, Beverly; Ray, Abishek; Elliott, Alan C

    2017-08-01

    Monitoring of blood pressure (BP) during procedures is variable, depending on multiple factors. Common methods include sphygmomanometer (BP cuff), separate radial artery catheterization, and side port monitoring of an indwelling sheath. Each means of monitoring has disadvantages, including time consumption, added risk, and signal dampening due to multiple factors. We sought an alternative approach to monitoring during procedures in the catheterization laboratory. A new technology involving a 330 µm fiberoptic sensor embedded in the wall of a sheath structure was tested against both radial artery catheter and sphygmomanometer readings obtained simultaneous with readings recorded from the pressure sensing system (PSS). Correlations and Bland-Altman analysis were used to determine whether use of the PSS could substitute for these standard techniques. The results indicated highly significant correlations in systolic, diastolic, and mean arterial pressures (MAP) when compared against radial artery catheterization (p<0.0001), and MAP means differed by <4%. Bland-Altman analysis of the data suggested that the sheath measurements can replace a separate radial artery catheter. While less striking, significant correlations were seen when PSS readings were compared against BP cuff readings. The PSS has competitive functionality to that seen with a dedicated radial artery catheter for BP monitoring and is available immediately on sheath insertion without the added risk of radial catheterization. The sensor is structurally separated from the primary sheath lumen and readings are unaffected by device introduction through the primary lumen. Time delays and potential complications from radial artery catheterization are avoided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Why are we prolonging QT interval monitoring?

    PubMed

    Barrett, Trina

    2015-01-01

    At present, monitoring of the QT interval (QTI) is not a standard practice in the medical intensive care unit setting, where many drugs that prolong the QTI are administered. This literature review looked at the current research for evidence-based standards to support QTI monitoring of patients with risk factors for QTI prolongation, which can result in life-threatening arrhythmias such as torsade de pointes. The objective of this article is to establish the existence of evidence-based standards for monitoring of the QTI and to raise awareness in the nursing profession of the need for such monitoring among patients who are at high risk for prolonged QTI. To determine whether published standards for QTI monitoring exist, a search was conducted of the bibliographic databases CINAHL, EBSCOhost, Medline, PubMed, Google Scholar, and the Cochrane Library for the years 2013 and 2014. Also, a survey was conducted to determine whether practice standards for QTI monitoring are being implemented at 4 major hospitals in the Memphis area, including a level 1 trauma center. The database search established the existence of published guidelines that support the need for QTI monitoring. Results of the hospital survey indicated that direct care nurses were not aware of the need to identify high-risk patients, drugs with the potential to prolong QTI that were being administered to their patients, or evidence-based standards for QTI monitoring. Review of the research literature underscored the need for QTI monitoring among high-risk patients, that is, those with genetic conditions that predispose them to QTI prolongation, those with existing cardiac conditions being treated with antiarrhythmic medications, or those who are prescribed any new medication classified as high risk on the basis of clinical research. This need is especially crucial in intensive care unit settings, where many antiarrhythmic medications are administered.

  19. A protocol using coho salmon to monitor Tongass National Forest Land and Resource Management Plan standards and guidelines for fish habitat.

    Treesearch

    M.D. Bryant; Trent McDonald; R. Aho; B.E. Wright; Michelle Bourassa Stahl

    2008-01-01

    We describe a protocol to monitor the effectiveness of the Tongass Land Management Plan (TLMP) management standards for maintaining fish habitat. The protocol uses juvenile coho salmon (Oncorhynchus kisutch) in small tributary streams in forested watersheds. We used a 3-year pilot study to develop detailed methods to estimate juvenile salmonid...

  20. Tighter accuracy standards within point-of-care blood glucose monitoring: how six commonly used systems compare.

    PubMed

    Robinson, Charlotte S; Sharp, Patrick

    2012-05-01

    Blood glucose monitoring systems (BGMS) are used in the hospital environment to manage blood glucose levels in patients at the bedside. The International Organization for Standardization (ISO) 15197:2003 standard is currently used by regulatory bodies as a minimum requirement for the performance of BGMS, specific to self-testing. There are calls for the tightening of accuracy requirements and implementation of a standard specifically for point-of-care (POC) BGMS. The accuracy of six commonly used BGMS was assessed in a clinical setting, with 108 patients' finger stick capillary samples. Using the accuracy criteria from the existing standard and a range of tightened accuracy criteria, system performance was compared. Other contributors to system performance have been measured, including hematocrit sensitivity and meter error rates encountered in the clinical setting. Five of the six BGMS evaluated met current accuracy criteria within the ISO 15197 standard. Only the Optium Xceed system had >95% of all readings within a tightened criteria of ±12.5% from the reference at glucose levels ≥72 mg/dl (4 mmol/liter) and ±9 mg/dl (0.5 mmol/liter) at glucose levels <72 mg/dl (4 mmol/liter). The Nova StatStrip Xpress had the greatest number of error messages observed; Optium Xceed the least. OneTouch Ultra2, Nova StatStrip Xpress, Accu-Chek Performa, and Contour TS products were all significantly influenced by blood hematocrit levels. From evidence obtained during this clinical evaluation, the Optium Xceed system is most likely to meet future anticipated accuracy standards for POC BGMS. In this clinical study, the results demonstrated the Optium Xceed product to have the highest level of accuracy, to have the lowest occurrence of error messages, and to be least influenced by blood hematocrit levels. © 2012 Diabetes Technology Society.

  1. Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.

    PubMed

    Murdoch, L E; Bailey, L; Banham, E; Watson, F; Adams, N M T; Chewins, J

    2016-09-01

    claim autonomous break down of hydrogen peroxide should introduce monitoring procedures to ensure rooms are safe for re-entry and patient occupation. © 2016 The Society for Applied Microbiology.

  2. Characterization of micron-size hydrogen clusters using Mie scattering.

    PubMed

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  3. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  4. Hydrogen Production Cost Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Analysis Hydrogen Production Cost Analysis This interactive map displays the results of a 2011 NREL analysis on the cost of hydrogen from electrolysis at potential sites across the United States. NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11

  5. Hydrogen gas production is associated with reduced interleukin-1β mRNA in peripheral blood after a single dose of acarbose in Japanese type 2 diabetic patients.

    PubMed

    Tamasawa, Atsuko; Mochizuki, Kazuki; Hariya, Natsuyo; Saito, Miyoko; Ishida, Hidenori; Doguchi, Satako; Yanagiya, Syoko; Osonoi, Takeshi

    2015-09-05

    Acarbose, an α-glucosidase inhibitor, leads to the production of hydrogen gas, which reduces oxidative stress. In this study, we examined the effects of a single dose of acarbose immediately before a test meal on postprandial hydrogen gas in breath and peripheral blood interleukin (IL)-1β mRNA expression in Japanese type 2 diabetic patients. Sixteen Japanese patients (14 men, 2 women) participated in this study. The mean±standard deviation age, hemoglobin A1c and body mass index were 52.1±15.4 years, 10.2±2.0%, and 27.7±8.0kg/m(2), respectively. The patients were admitted into our hospital for 2 days and underwent test meals at breakfast without (day 1) or with acarbose (day 2). We performed continuous glucose monitoring and measured hydrogen gas levels in breath, and peripheral blood IL-1β mRNA levels before (0min) and after the test meal (hydrogen gas: 60, 120, 180, and 300min; IL-1β: 180min). The induction of hydrogen gas production and the reduction in peripheral blood IL-1β mRNA after the test meal were not significant between days 1 (without acarbose) and 2 (with acarbose). However, the changes in total hydrogen gas production from day 1 to day 2 were closely and inversely associated with the changes in peripheral blood IL-1β mRNA levels. Our results suggest that an increase in hydrogen gas production is inversely associated with a reduction of the peripheral blood IL-1β mRNA level after a single dose of acarbose in Japanese type 2 diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The clinical effectiveness and cost-effectiveness of point-of-care tests (CoaguChek system, INRatio2 PT/INR monitor and ProTime Microcoagulation system) for the self-monitoring of the coagulation status of people receiving long-term vitamin K antagonist therapy, compared with standard UK practice: systematic review and economic evaluation.

    PubMed

    Sharma, Pawana; Scotland, Graham; Cruickshank, Moira; Tassie, Emma; Fraser, Cynthia; Burton, Chris; Croal, Bernard; Ramsay, Craig R; Brazzelli, Miriam

    2015-06-01

    Self-monitoring (self-testing and self-management) could be a valid option for oral anticoagulation therapy monitoring in the NHS, but current evidence on its clinical effectiveness or cost-effectiveness is limited. We investigated the clinical effectiveness and cost-effectiveness of point-of-care coagulometers for the self-monitoring of coagulation status in people receiving long-term vitamin K antagonist therapy, compared with standard clinic monitoring. We searched major electronic databases (e.g. MEDLINE, MEDLINE In Process & Other Non-Indexed Citations, EMBASE, Bioscience Information Service, Science Citation Index and Cochrane Central Register of Controlled Trials) from 2007 to May 2013. Reports published before 2007 were identified from the existing Cochrane review (major databases searched from inception to 2007). The economic model parameters were derived from the clinical effectiveness review, other relevant reviews, routine sources of cost data and clinical experts' advice. We assessed randomised controlled trials (RCTs) evaluating self-monitoring in people with atrial fibrillation or heart valve disease requiring long-term anticoagulation therapy. CoaguChek(®) XS and S models (Roche Diagnostics, Basel, Switzerland), INRatio2(®) PT/INR monitor (Alere Inc., San Diego, CA USA), and ProTime Microcoagulation system(®) (International Technidyne Corporation, Nexus Dx, Edison, NJ, USA) coagulometers were compared with standard monitoring. Where possible, we combined data from included trials using standard inverse variance methods. Risk of bias assessment was performed using the Cochrane risk of bias tool. A de novo economic model was developed to assess the cost-effectiveness over a 10-year period. We identified 26 RCTs (published in 45 papers) with a total of 8763 participants. CoaguChek was used in 85% of the trials. Primary analyses were based on data from 21 out of 26 trials. Only four trials were at low risk of bias. Major clinical events: self-monitoring

  7. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation

    PubMed Central

    Nualsri, Chatchawin; Kongjan, Prawit; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased. PMID:28207755

  8. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation.

    PubMed

    Nualsri, Chatchawin; Kongjan, Prawit; Reungsang, Alissara; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased.

  9. New solutions for standardization, monitoring and quality management of fluorescence-based imaging systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud; Papon, Gautier

    2016-03-01

    Fluorescence microscopes have become ubiquitous in life sciences laboratories, including those focused on pharmaceuticals, diagnosis, and forensics. For the past few years, the need for both performance guarantees and quantifiable results has driven development in this area. However, the lack of appropriate standards and reference materials makes it difficult or impossible to compare the results of two fluorescence microscopes, or to measure performance fluctuations of one microscope over time. Therefore, the operation of fluorescence microscopes is not monitored as often as their use warrants - an issue that is recognized by both systems manufacturers and national metrology institutes. We have developed a new process that enables the etching of long-term stable fluorescent patterns with sub-micrometer sizes in three dimensions inside glass. In this paper, we present, based on this new process, a fluorescent multi-dimensional ruler and a dedicated software that are suitable for monitoring and quality management of fluorescence-based imaging systems (wide-field, confocal, multiphoton, high content machines). In addition to fluorescence, the same patterns exhibit bright- and dark-field contrast, DIC, and phase contrast, which make them also relevant to monitor these types of microscopes. Non-exhaustively, this new solution enables the measurement of: The stage repositioning accuracy; The illumination and detection homogeneities; The field flatness; The detectors' characteristics; The lateral and axial spatial resolutions; The spectral response (spectrum, intensity and lifetime) of the system. Thanks to the stability of the patterns, microscope performance assessment can be carried out as well in a daily basis as in the long term.

  10. Centaur Standard Shroud (CSS) cryogenic unlatch tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Cryogenic tanking and partial jettison (unlatch) tests were performed on a full scale Centaur vehicle and Centaur Standard Shroud (CSS) to develop and qualify the CSS insulation system, the CSS and Centaur ground-hold purge systems, and the Centaur hydrogen tank flight vent system. Operation of the shroud/Centaur pyrotechnic systems, seals, and the shroud jettison springs, hinges, and other separation systems was demonstrated by a partial jettison of the shroud into catch nets. The Centaur tanks were filled with liquid hydrogen and liquid nitrogen. Prelaunch operations were performed, and data taken to establish system performances. Results from the initial tests showed a higher than expected heat transfer rate to the Centaur hydrogen tank. In addition, the release mechanism for the forward seal between the Centaur and the CSS did not function properly, and the seal was torn during jettison of the shroud.

  11. In-situ monitoring of H2O2 degradation by live cells using voltammetric detection in a lab-on-valve system.

    PubMed

    Lähdesmäki, Ilkka; Park, Young K; Carroll, Andrea D; Decuir, Michael; Ruzicka, Jaromir

    2007-08-01

    This paper describes a method for monitoring the degradation of hydrogen peroxide by cells immobilized on a beaded support. The detection is based on the voltammetric reduction of hydrogen peroxide on a mercury film working electrode, whilst combining the concept of sequential injection (SI) with the lab-on-valve (LOV) manifold allows the measurements to be carried out in real time and automatically, in well-defined conditions. The method is shown to be capable of simultaneously monitoring hydrogen peroxide in the 10-1000 microM range and oxygen in the 160-616 microM range. A correction algorithm has been used to ensure reliable H2O2 results in the presence of varying oxygen levels. The method has been successfully applied to monitoring the degradation of H2O2 by wild-type cells and by catalase-overexpressing mouse embryonic fibroblasts. Since the technique allows the monitoring of the initial response rate, it provides data not accessible by current methods that are end-point-based measurements.

  12. MonitoringResources.org—Supporting coordinated and cost-effective natural resource monitoring across organizations

    USGS Publications Warehouse

    Bayer, Jennifer M.; Scully, Rebecca A.; Weltzin, Jake F.

    2018-05-21

    Natural resource managers who oversee the Nation’s resources require data to support informed decision-making at a variety of spatial and temporal scales that often cross typical jurisdictional boundaries such as states, agency regions, and watersheds. These data come from multiple agencies, programs, and sources, often with their own methods and standards for data collection and organization. Coordinating standards and methods is often prohibitively time-intensive and expensive. MonitoringResources.org offers a suite of tools and resources that support coordination of monitoring efforts, cost-effective planning, and sharing of knowledge among organizations. The website was developed by the Pacific Northwest Aquatic Monitoring Partnership—a collaboration of Federal, state, tribal, local, and private monitoring programs—and the U.S. Geological Survey (USGS), with funding from the Bonneville Power Administration and USGS. It is a key component of a coordinated monitoring and information network.

  13. 40 CFR 417.25 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Fatty Acid... pollutant properties, controlled by this section and attributable to the hydrogenation of fatty acids, which...

  14. Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2018-06-01

    The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.

  15. [Gas chromatography with a Pulsed discharge helium ionization detector for measurement of molecular hydrogen(H2) in the atmosphere].

    PubMed

    Luan, Tian; Fang, Shuang-xi; Zhou, Ling-xi; Wang, Hong-yang; Zhang, Gen

    2015-01-01

    A high precision GC system with a pulsed discharge helium ionization detector was set up based on the commercial Agilent 7890A gas chromatography. The gas is identified by retention time and the concentration is calculated through the peak height. Detection limit of the system is about 1 x 10(-9) (mole fraction, the same as below). The standard deviation of 140 continuous injections with a standard cylinder( concentration is roughly 600 x 10(-9)) is better than 0.3 x 10(-9). Between 409.30 x 10(-9) and 867.74 x 10(-9) molecular hydrogen mole fractions and peak height have good linear response. By using two standards to quantify the air sample, the precision meets the background molecular hydrogen compatibility goal within the World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) program. Atmospheric molecular hydrogen concentration at Guangzhou urban area was preliminarily measured by this method from January to November 2013. The results show that the atmospheric molecular hydrogen mole fraction varies from 450 x 10(-9) to 700 x 10(-9) during the observation period, with the lowest value at 14:00 (Beijing time, the same as below) and the peak value at 20:00. The seasonal variation of atmospheric hydrogen at Guangzhou area was similar with that of the same latitude stations in northern hemisphere.

  16. Remote monitoring of emission activity level from NPP using radiofrequencies 1420, 1665, 1667 MHz in real time.

    PubMed

    Kolotkov, Gennady; Penin, Sergei

    2013-01-01

    The Fukushima nuclear accident showed the importance of timely monitoring and detection of radioactive emissions released from enterprises of the nuclear fuel cycle. Nuclear power plants (NPP) working continuously are a stationary source of gas-aerosol emissions which presented in a ground surface layer persistently. Following radioactive emission, untypical effects can be observed, for example: the occurrences of areas with increased ionization, and increased concentration of some gases caused by photochemical reactions. The gases themselves and their characteristic radiation can be markers of radioactivity and can be monitored by a passive method. Hydrogen atom (H) and hydroxyl radical (OH) are formed in a radioactive plume by radiolysis of water molecules and other hydrogen-containing air components by the high energy electrons from beta-decay of radionuclides. The hydrogen atom and hydroxyl radical can spontaneously radiate at 1420 MHz and 1665-1667 MHz respectively. The passive method of remote monitoring of radiation levels using radio-frequencies of H and OH from radioactive emissions of NPP is described. The model data is indicative of the monitoring of radiation levels using these frequencies. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Guide to Permitting Hydrogen Motor Fuel Dispensing Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, Carl; Buttner, William; Burgess, Robert

    2016-03-28

    The purpose of this guide is to assist project developers, permitting officials, code enforcement officials, and other parties involved in developing permit applications and approving the implementation of hydrogen motor fuel dispensing facilities. The guide facilitates the identification of the elements to be addressed in the permitting of a project as it progresses through the approval process; the specific requirements associated with those elements; and the applicable (or potentially applicable) codes and standards by which to determine whether the specific requirements have been met. The guide attempts to identify all applicable codes and standards relevant to the permitting requirements.

  18. Association of Implementation of Practice Standards for Electrocardiographic Monitoring with Nurses’ Knowledge, Quality of Care, and Patient Outcomes: Findings from the Practical Use of the Latest Standards of Electrocardiography (PULSE) Trial

    PubMed Central

    Funk, Marjorie; Fennie, Kristopher P.; Stephens, Kimberly E.; May, Jeanine L.; Winkler, Catherine G.; Drew, Barbara J.

    2017-01-01

    Background Although continuous electrocardiographic (ECG) monitoring is ubiquitous in hospitals, monitoring practices are inconsistent. We evaluated implementation of American Heart Association practice standards for ECG monitoring on nurses’ knowledge, quality of care, and patient outcomes. Methods and Results The PULSE Trial was a 6-year multi-site randomized clinical trial with crossover that took place in 65 cardiac units in 17 hospitals. We measured outcomes at baseline, Time 2 after Group 1 hospitals received the intervention, and Time 3 after Group 2 hospitals received the intervention. Measurement periods were 15 months apart. The 2-part intervention consisted of an online ECG monitoring education program and strategies to implement and sustain change in practice. Nurses’ knowledge (N=3,013 nurses) was measured by a validated 20-item online test, quality of care related to ECG monitoring (N=4,587 patients) by on-site observation, and patient outcomes (mortality, in-hospital myocardial infarction, and not surviving a cardiac arrest) (N=95,884 hospital admissions) by review of administrative, laboratory, and medical record data. Nurses’ knowledge improved significantly immediately following the intervention in both groups, but was not sustained 15 months later. For most measures of quality of care (accurate electrode placement, accurate rhythm interpretation, appropriate monitoring, and ST-segment monitoring when indicated), the intervention was associated with significant improvement, which was sustained 15 months later. Of the 3 patient outcomes, only in-hospital myocardial infarction declined significantly after the intervention, and was sustained. Conclusions Online ECG monitoring education and strategies to change practice can lead to improved nurses’ knowledge, quality of care, and patient outcomes. PMID:28174175

  19. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-05

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  20. Lightweight, direct-radiating nickel hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Metcalfe, J. R.

    1986-01-01

    Two battery module configurations were developed which, in addition to integrating cylindrical nickel hydrogen (NiH2) cells into batteries, provide advances in the means of mounting, monitoring and thermal control of these cells. The main difference between the two modules is the physical arrangement of the cells: vertical versus horizontal. Direct thermal radiation to deep space is accomplished by substituting the battery structure for an exterior spacecraft panel. Unlike most conventional nickel-cadmium (NiCd) and NiH2 batteries, the cells are not tightly packed together; therefore ancillary heat conducting media to outside radiating areas, and spacecraft deck reinforcements for high mass concentration are not necessary. Testing included electrical characterization and a comprehensive regime of environmental exposures. The designs are flexible with respect to quantity and type of cells, orbit altitude and period, power demand profile, and the extent of cell parameter monitoring. This paper compares the characteristics of the two battery modules and summarizes their performance.

  1. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.

    PubMed

    Leving, Marika T; Horemans, Henricus L D; Vegter, Riemer J K; de Groot, Sonja; Bussmann, Johannes B J; van der Woude, Lucas H V

    2018-01-01

    Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to distinguish five various wheelchair-related activities

  2. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living

    PubMed Central

    Horemans, Henricus L. D.; Vegter, Riemer J. K.; de Groot, Sonja; Bussmann, Johannes B. J.; van der Woude, Lucas H. V.

    2018-01-01

    Background Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. Objective To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Methods Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Results Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Conclusions Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to

  3. Validation of the BPLab(®) 24-hour blood pressure monitoring system according to the European standard BS EN 1060-4:2004 and British Hypertension Society protocol.

    PubMed

    Koudryavtcev, Sergey A; Lazarev, Vyacheslav M

    2011-01-01

    Automatic blood pressure (BP) measuring devices are more and more often used in BP self-checks and in 24-hour BP monitoring. Nowadays, 24-hour BP monitoring is a necessary procedure in arterial hypertension treatment. The aim of this study was to validate the BPLab(®) ambulatory blood pressure monitor according to the European standard BS EN 1060-4:2004 and the British Hypertension Society (BHS) protocol, as well as to work out solutions regarding the suitability of using this device in clinical practice. A group of 85 patients of both sexes and different ages, who voluntarily agreed to take part in the tests and were given detailed instructions on the measurement technique were recruited for this study. The results of the BP measurement obtained by a qualified operator using the BPLab(®) device were compared with the BP values measured using the Korotkov auscultatory method. Data were obtained simultaneously by two experts with experience of over 10 years and had completed a noninvasive BP measurement standardization training course. Discrepancies in the systolic and diastolic BP measurements (N = 510; 255 for each expert) were analyzed according to the criteria specified in the BHS-93 protocol. The device passed the requirements of the European Standard BS EN 1060-4:2004 and was graded 'A' according to the criteria of the BHS protocol for both systolic BP and diastolic BP. The BPLab(®) 24-hour ambulatory blood pressure monitoring device may be recommended for extensive clinical use.

  4. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    PubMed

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  5. Guidelines for certification of International Normalized Ratio (INR) for vitamin K antagonists monitoring according to the EN ISO 22870 standards.

    PubMed

    Brionne-François, Marie; Bauters, Anne; Mouton, Christine; Voisin, Sophie; Flaujac, Claire; Le Querrec, Agnès; Lasne, Dominique

    2018-06-01

    Point of care testing (POCT) must comply with regulatory requirements according to standard EN ISO 22870, which identify biologists as responsible for POCT. INR for vitamin K antagonists (VKAs) monitoring is a test frequently performed in haemostasis laboratories. Bedside INR is useful in emergency room, in particular in case of VKAs overdosage but also for specific populations of patients like paediatrics or geriatrics. INR POCT devices are widely used at home by the patients for self-testing, but their use in the hospital by the clinical staff for bedside measurement is growing, with devices which now comply with standard for POCT accreditation for hospital use. The majority of point of care devices for INR monitoring has shown a good precision and accuracy with results similar to those obtained in laboratory. With the aim to help the multidisciplinary groups for POCT supervision, the medical departments and the biologists to be in accordance with the standard, we present the guidelines of the GFHT (Groupe français d'étude sur l'hémostase et la thrombose, subcommittee "CEC et biologie délocalisée") for the certification of POCT INR. These guidelines are based on the SFBC guidelines for the certification of POCT and on the analysis of the literature to ascertain the justification of clinical need and assess the analytical performance of main analysers used in France, as well as on a survey conducted with biologists.

  6. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  7. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  8. Hydrogen incorporation in high hole density GaN:Mg

    NASA Astrophysics Data System (ADS)

    Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan

    2011-03-01

    We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.

  9. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  10. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways andmore » a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.« less

  11. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  12. Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols

    NASA Astrophysics Data System (ADS)

    Suárez, Andrés

    2018-02-01

    Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.

  13. Metallic hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga

    2018-06-01

    Hydrogen is the simplest and most abundant element in the Universe. There are two pathways for creating metallic hydrogen under high pressures. Over 80 years ago Wigner and Huntington predicted that if solid molecular hydrogen was sufficiently compressed in the T  =  0 K limit, molecules would dissociate to form atomic metallic hydrogen (MH). We have observed this transition at a pressure of 4.95 megabars. MH in this form has probably never existed on Earth or in the Universe; it may be a room temperature superconductor and is predicted to be metastable. If metastable it will have an important technological impact. Liquid metallic hydrogen can also be produced at intermediate pressures and high temperatures and is believed to make up ~90% of the planet Jupiter. We have observed this liquid–liquid transition, also known as the plasma phase transition, at pressures of ~1–2 megabar and temperatures ~1000–2000 K. However, in this paper we shall focus on the Wigner–Huntington transition. We shall discuss the methods used to observe metallic hydrogen at extreme conditions of static pressure in the laboratory, extending our understanding of the phase diagram of the simplest atom in the periodic table.

  14. Hydrogen production by Cyanobacteria.

    PubMed

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-12-21

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  15. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  16. QED Tests and Search for New Physics in Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Salumbides, E. J.; Niu, M. L.; Dickenson, G. D.; Eikema, K. S. E.; Komasa, J.; Pachucki, K.; Ubachs, W.

    2013-06-01

    The hydrogen molecule has been the benchmark system for quantum chemistry, and may provide a test ground for new physics. We present our high-resolution spectroscopic studies on the X ^1Σ^+_g electronic ground state rotational series and fundamenal vibrational tones in molecular hydrogen. In combination with recent accurate ab initio calculations, we demonstrate systematic tests of quantum electrodynamical (QED) effects in molecules. Moreover, the precise comparison between theory and experiment can provide stringent constraints on possible new interactions that extend beyond the Standard Model. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).

  17. Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Hung-Ta; Kang, B. S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2005-10-01

    Pt-gated AlGaN /GaN high electron mobility transistors can be used as room-temperature hydrogen gas sensors at hydrogen concentrations as low as 100ppm. A comparison of the changes in drain and gate current-voltage (I-V) characteristics with the introduction of 500ppm H2 into the measurement ambient shows that monitoring the change in drain-source current provides a wider gate voltage operation range for maximum detection sensitivity and higher total current change than measuring the change in gate current. However, over a narrow gate voltage range, the relative sensitivity of detection by monitoring the gate current changes is up to an order of magnitude larger than that of drain-source current changes. In both cases, the changes are fully reversible in <2-3min at 25°C upon removal of the hydrogen from the ambient.

  18. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  19. Setting standards and monitoring quality in the NHS 1999-2013: a classic case of goal conflict.

    PubMed

    Littlejohns, Peter; Knight, Alec; Littlejohns, Anna; Poole, Tara-Lynn; Kieslich, Katharina

    2017-04-01

    2013 saw the National Health Service (NHS) in England severely criticized for providing poor quality despite successive governments in the previous 15 years, establishing a range of new institutions to improve NHS quality. This study seeks to understand the contributions of political and organizational influences in enabling the NHS to deliver high-quality care through exploring the experiences of two of the major new organizations established to set standards and monitor NHS quality. We used a mixed method approach: first a cross-sectional, in-depth qualitative interview study and then the application of principal agent modeling (Waterman and Meier broader framework). Ten themes were identified as influencing the functioning of the NHS regulatory institutions: socio-political environment; governance and accountability; external relationships; clarity of purpose; organizational reputation; leadership and management; organizational stability; resources; organizational methods; and organizational performance. The organizations could be easily mapped onto the framework, and their transience between the different states could be monitored. We concluded that differing policy objectives for NHS quality monitoring resulted in central involvement and organizational change. This had a disruptive effect on the ability of the NHS to monitor quality. Constant professional leadership, both clinical and managerial, and basing decisions on best evidence, both technical and organizational, helped one institution to deliver on its remit, even within a changing political/policy environment. Application of the Waterman-Meier framework enabled an understanding and description of the dynamic relationship between central government and organizations in the NHS and may predict when tensions will arise in the future. © 2016 The Authors. The International Journal of Health Planning and Management Published by John Wiley & Sons Ltd. © 2016 The Authors. The International Journal of Health

  20. Feasibility demonstration for hydrogen chloride detection using a chemisorption technique and a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Workman, G. L.

    1975-01-01

    A method of measuring concentrations of hydrogen chloride between 1 part per billion and 10 parts per million at standard temperature and pressure is presented. The feasibility of a low-cost device incorporating a chemisorption technique coupled with a quartz crystal microbalance was demonstrated in the field at the Viking B launch using a Titan-Centaur vehicle from Kennedy Space Center on August 20, 1975. Hydrogen chloride is a product of solid rocket combustion. The concentration level of hydrogen chloride for this particular launch was measured as approximately 0.2 parts per million at 4 km from the launch site.

  1. Dispatchable hydrogen production at the forecourt for electricity grid balancing

    NASA Astrophysics Data System (ADS)

    Rahil, Abdulla; Gammon, Rupert; Brown, Neil

    2017-02-01

    The rapid growth of renewable energy (RE) generation and its integration into electricity grids has been motivated by environmental issues and the depletion of fossil fuels. For the same reasons, an alternative to hydrocarbon fuels is needed for vehicles; hence the anticipated uptake of electric and fuel cell vehicles. High penetrations of RE generators with variable and intermittent output threaten to destabilise electricity networks by reducing the ability to balance electricity supply and demand. This can be greatly mitigated by the use of energy storage and demand-side response (DSR) techniques. Hydrogen production by electrolysis is a promising option for providing DSR as well as an emission-free vehicle fuel. Tariff structures can be used to incentivise the operating of electrolysers as controllable (dispatchable) loads. This paper compares the cost of hydrogen production by electrolysis at garage forecourts under both dispatchable and continuous operation, while ensuring no interruption of fuel supply to fuel cell vehicles. An optimisation algorithm is applied to investigate a hydrogen refueling station in both dispatchable and continuous operation. Three scenarios are tested to see whether a reduced off-peak electricity price could lower the cost of electrolytic hydrogen. These scenarios are: 1) "Standard Continuous", where the electrolyser is operated continuously on a standard all-day tariff of 12p/kWh; 2) "Off-peak Only", where it runs only during off-peak periods in a 2-tier tariff system at the lower price of 5p/kWh; and 3) "2-Tier Continuous", operating continuously and paying a low tariff at off- peak times and a high tariff at other times. This study uses the Libyan coastal city of Derna as a case study. The cheapest electricity cost per kg of hydrogen produced was £2.8, which occurred in Scenario 2. The next cheapest, at £5.8 - £6.3, was in Scenario 3, and the most expensive was £6.8/kg in Scenario 1.

  2. Monitoring for airborne allergens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burge, H.A.

    1992-07-01

    Monitoring for allergens can provide some information on the kinds and levels of exposure experienced by local patient populations, providing volumetric methods are used for sample collection and analysis is accurate and consistent. Such data can also be used to develop standards for the specific environment and to begin to develop predictive models. Comparing outdoor allergen aerosols between different monitoring sites requires identical collection and analysis methods and some kind of rational standard, whether arbitrary, or based on recognized health effects.32 references.

  3. Hydrogen sulfide and nonmethane hydrocarbon emissions from broiler houses in the Southeastern United States

    USDA-ARS?s Scientific Manuscript database

    Hydrogen sulfide (H2S) and nonmethane hydrocarbon (NMHC) emissions from two mechanically ventilated commercial broiler houses located in the Southeastern United States were continuously monitored over 12 flocks during the one-year period of 2006-2007 as a joint effort between Iowa State University a...

  4. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.

    PubMed

    Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong

    2016-12-01

    A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  5. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  6. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  7. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  8. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012

  9. The use of the ion probe mass spectrometer in the measurement of hydrogen concentration gradients in Monel K 500

    NASA Technical Reports Server (NTRS)

    Truhan, J. J., Jr.; Hehemann, R. F.

    1974-01-01

    The ion probe mass spectrometer was used to measure hydrogen concentration gradients in cathodically charged Monel K 500. Initial work with the ion probe involved the calibration of the instrument and the establishment of a suitable experimental procedure for this application. Samples of Monel K 500 were cathodically charged in a weak sulfuric acid solution. By varying the current density, different levels of hydrogen were introduced into the samples. Hydrogen concentration gradients were taken by ion sputtering on the surface of these samples and monitoring the behavior of the hydrogen mass peak as a function of time. An attempt was made to determine the relative amounts of hydrogen in the bulk and grain boundaries by analyzing a fresh fracture surface with a higher proportion of grain boundary area. It was found that substantially more hydrogen was detected in the grain boundaries than in the bulk, confirming the predictions of previous workers. A sputter rate determination was made in order to establish the rate of erosion.

  10. Solar hydrogen generator

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Sabol, A. P. (Inventor)

    1977-01-01

    An apparatus, using solar energy to manufacture hydrogen by dissociating water molecules into hydrogen and oxygen molecules is described. Solar energy is concentrated on a globe containing water thereby heating the water to its dissociation temperature. The globe is pervious to hydrogen molecules permitting them to pass through the globe while being essentially impervious to oxygen molecules. The hydrogen molecules are collected after passing through the globe and the oxygen molecules are removed from the globe.

  11. 28 CFR 115.113 - Supervision and monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Supervision and monitoring. 115.113... NATIONAL STANDARDS Standards for Lockups Prevention Planning § 115.113 Supervision and monitoring. (a) For... heightened protection, to include continuous direct sight and sound supervision, single-cell housing, or...

  12. 28 CFR 115.113 - Supervision and monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Supervision and monitoring. 115.113... NATIONAL STANDARDS Standards for Lockups Prevention Planning § 115.113 Supervision and monitoring. (a) For... heightened protection, to include continuous direct sight and sound supervision, single-cell housing, or...

  13. 28 CFR 115.113 - Supervision and monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Supervision and monitoring. 115.113... NATIONAL STANDARDS Standards for Lockups Prevention Planning § 115.113 Supervision and monitoring. (a) For... heightened protection, to include continuous direct sight and sound supervision, single-cell housing, or...

  14. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone.

    PubMed

    Mozo Mulero, Cristina; Sáez, Alfonso; Iniesta, Jesús; Montiel, Vicente

    2018-01-01

    The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (L Pd ) of 0.2 and 0.02 mg cm -2 . The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H 2 SO 4 . Current densities of 10, 15 and 20 mA cm -2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (X R ) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity.

  15. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone

    PubMed Central

    Mozo Mulero, Cristina; Iniesta, Jesús; Montiel, Vicente

    2018-01-01

    The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (LPd) of 0.2 and 0.02 mg cm−2. The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H2SO4. Current densities of 10, 15 and 20 mA cm−2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (XR) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity. PMID:29623115

  16. Solar Luminosity on the Main Sequence, Standard Model and Variations

    NASA Astrophysics Data System (ADS)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  17. Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William J; Rivkin, Carl H; Schmidt, Kara

    Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersionmore » during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.« less

  18. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  19. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  20. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  1. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...? For each by-product hydrogen stream, each end box ventilation system vent, and each mercury thermal...

  2. The ASACUSA antihydrogen and hydrogen program: results and prospects

    NASA Astrophysics Data System (ADS)

    Malbrunot, C.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Ulmer, S.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-03-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of `cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  3. The ASACUSA antihydrogen and hydrogen program: results and prospects

    PubMed Central

    Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-01-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of ‘cold’ antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10−9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’. PMID:29459412

  4. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  5. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.

    PubMed

    Fuller, D C; Suruda, A J

    2000-09-01

    Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities.

  6. Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan

    2018-05-01

    Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.

  7. Prevalence of abnormal lactose breath hydrogen tests in children with functional abdominal pain.

    PubMed

    Garg, Neha; Basu, Srikanta; Singh, Preeti; Kumar, Ruchika; Sharma, Lokesh; Kumar, Praveen

    2017-05-01

    The study was undertaken to determine the prevalence of abnormal lactose breath hydrogen test in children with non-organic chronic abdominal pain. Children with chronic abdominal pain were examined and investigated for organic causes. All children without a known organic cause underwent lactose and glucose breath hydrogen test. After a standard dose of 2 g/kg of lactose to a maximum of 50 g, hydrogen in breath was measured at 15 min intervals for 3 h. A rise of 20 ppm above baseline was considered suggestive of lactose malabsorption. Of 108 children screened, organic causes were found in 46 children. Sixty-two patients without any organic cause underwent hydrogen breath test. Lactose hydrogen breath test (HBT) was positive in 36 of 62 (58%), while 11 (17%) had positive HBT with glucose suggestive of small intestinal bacterial overgrowth (SIBO). Twenty out of 34 (59%) improved on lactose free diet while 8 out of 11 (72%) children of SIBO improved on antibiotics. Lactose malabsorption was seen in 58% of children with non-organic chronic abdominal pain.

  8. Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Foote, John; Litchford, Ron

    2006-01-01

    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  9. Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Gorman, Paul D.; English, Niall J.; MacElroy, J. M. D.

    2012-01-01

    Classical equilibrium molecular dynamics simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250 K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled "1SC 1LC"), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed "1SC 4LC"). However, for the more densely filled H2-THF and pure-H2 systems, in which there is double H2 occupation in the small cage (dubbed "2SC 1LC" and "2SC 4LC," respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these "cage hopping" events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200-250 K range. The "breathing modes," or underlying frequencies governing the variation in the cavities' radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while there is some overlap of small cages' radial breathing modes with lattice acoustic modes.

  10. 40 CFR 63.1258 - Monitoring Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Monitoring Requirements. 63.1258...) National Emission Standards for Pharmaceuticals Production § 63.1258 Monitoring Requirements. (a) The owner...) Monitoring for control devices—(1) Parameters to monitor. Except as specified in paragraph (b)(1)(i) of this...

  11. 40 CFR 60.175 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Zinc... monitor and record the opacity of gases discharged into the atmosphere from any sintering machine. The... volume. (i) The continuous monitoring system performance evaluation required under § 60.13(c) shall be...

  12. 40 CFR 63.8240 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...-product hydrogen stream, each end box ventilation system vent, and each mercury thermal recovery unit vent...

  13. A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.

    DTIC Science & Technology

    1984-09-01

    the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in

  14. Uncertainty propagation in modeling of plasma-assisted hydrogen production from biogas

    NASA Astrophysics Data System (ADS)

    Zaherisarabi, Shadi; Venkattraman, Ayyaswamy

    2016-10-01

    With the growing concern of global warming and the resulting emphasis on decreasing greenhouse gas emissions, there is an ever-increasing need to utilize energy-production strategies that can decrease the burning of fossil fuels. In this context, hydrogen remains an attractive clean-energy fuel that can be oxidized to produce water as a by-product. In spite of being an abundant species, hydrogen is seldom found in a form that is directly usable for energy-production. While steam reforming of methane is one popular technique for hydrogen production, plasma-assisted conversion of biogas (carbon dioxide + methane) to hydrogen is an attractive alternative. Apart from producing hydrogen, the other advantage of using biogas as raw material is the fact that two potent greenhouse gases are consumed. In this regard, modeling is an important tool to understand and optimize plasma-assisted conversion of biogas. The primary goal of this work is to perform a comprehensive statistical study that quantifies the influence of uncertain rate constants thereby determining the key reaction pathways. A 0-D chemical kinetics solver in the OpenFOAM suite is used to perform a series of simulations to propagate the uncertainty in rate constants and the resulting mean and standard deviation of outcomes.

  15. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    PubMed Central

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348

  16. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... being used will be based on information available to the Administrator, which may include, but is not... techniques, or the control system and process monitoring equipment during a malfunction in a manner... the process and control system monitoring equipment, and shall include a standardized checklist to...

  17. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... being used will be based on information available to the Administrator, which may include, but is not... techniques, or the control system and process monitoring equipment during a malfunction in a manner... the process and control system monitoring equipment, and shall include a standardized checklist to...

  18. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  19. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  20. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  1. 40 CFR 192.03 - Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...

  2. Setting standards and monitoring quality in the NHS 1999–2013: a classic case of goal conflict

    PubMed Central

    Knight, Alec; Littlejohns, Anna; Poole, Tara‐Lynn; Kieslich, Katharina

    2016-01-01

    Abstract 2013 saw the National Health Service (NHS) in England severely criticized for providing poor quality despite successive governments in the previous 15 years, establishing a range of new institutions to improve NHS quality. This study seeks to understand the contributions of political and organizational influences in enabling the NHS to deliver high‐quality care through exploring the experiences of two of the major new organizations established to set standards and monitor NHS quality. We used a mixed method approach: first a cross‐sectional, in‐depth qualitative interview study and then the application of principal agent modeling (Waterman and Meier broader framework). Ten themes were identified as influencing the functioning of the NHS regulatory institutions: socio‐political environment; governance and accountability; external relationships; clarity of purpose; organizational reputation; leadership and management; organizational stability; resources; organizational methods; and organizational performance. The organizations could be easily mapped onto the framework, and their transience between the different states could be monitored. We concluded that differing policy objectives for NHS quality monitoring resulted in central involvement and organizational change. This had a disruptive effect on the ability of the NHS to monitor quality. Constant professional leadership, both clinical and managerial, and basing decisions on best evidence, both technical and organizational, helped one institution to deliver on its remit, even within a changing political/policy environment. Application of the Waterman–Meier framework enabled an understanding and description of the dynamic relationship between central government and organizations in the NHS and may predict when tensions will arise in the future. © 2016 The Authors. The International Journal of Health Planning and Management Published by John Wiley & Sons Ltd. PMID:27435020

  3. Electron- and photon-stimulated desorption of atomic hydrogen from radiation-modified alkali halide surfaces

    NASA Astrophysics Data System (ADS)

    Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.

    2000-10-01

    The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.

  4. Hydrogen production from carbonaceous material

    DOEpatents

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  5. Liquid Hydrogen Fill

    NASA Image and Video Library

    2016-08-03

    Technicians with Praxair pressurize the hydrogen trailer before offloading liquid hydrogen during a test of the Ground Operations Demo Unit for liquid hydrogen at NASA's Kennedy Space Center in Florida. The system includes a 33,000 gallon liquid hydrogen storage tank with an internal cold heat exchanger supplied from a cryogenic refrigerator. The primary goal of the testing is to achieve a liquid hydrogen zero boil-off capability. The system was designed, installed and tested by a team of civil servants and contractors from the center's Cryogenic Test Laboratory, with support from engineers at NASA's Glenn Research Center in Cleveland and Stennis Space Center in Mississippi. It may be applicable for use by the Ground Systems Development and Operations Program at Launch Pad 39B.

  6. Wearable sweat detector device design for health monitoring and clinical diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  7. Probing Hydrogen Diffusion under High Pressure

    NASA Astrophysics Data System (ADS)

    Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.

    2012-12-01

    The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large

  8. Capillary whole blood testing by a new portable monitor. Comparison with standard determination of the international normalized ratio.

    PubMed

    de Miguel, Dunia; Burgaleta, Carmen; Reyes, Eduardo; Pascual, Teresa

    2003-07-01

    We evaluated a new portable monitor (AvoSure PT PRO, Menarini Diagnostics, Firenze, Italy) developed to test the prothrombin time in capillary blood and plasma by comparing it with the standard laboratory determination. We studied 62 patients receiving acenocoumarol therapy. The international normalized ratio (INR) in capillary blood was analyzed by 2 methods: AvoSure PT PRO and Thrombotrack Nycomed Analyzer (Axis-Shield, Dundee, Scotland). Parallel studies were performed in plasma samples by a reference method using the Behring Coagulation Timer (Behring Diagnostics, Marburg, Germany). Plasma samples also were tested with the AvoSure PT PRO. Correlation was good for INR values for capillary blood and plasma samples by AvoSure PT PRO and our reference method (R2 = 0.8596) and for capillary blood samples tested by the AvoSure PT PRO and Thrombotrack Nycomed Analyzer (R2 = 0.8875). The correlation for INR in capillary blood and plasma samples by AvoSure PT PRO was 0.6939 (P < .0004). Capillary blood determinations are rapid and effective for monitoring oral anticoagulation therapy and have a high correlation to plasma determinations. AvoSure PT PRO is accurate for controlling INR in plasma and capillary blood samples, may be used in outpatient clinics, and has advantages over previous portable monitors.

  9. Development and Feasibility Testing of a Critical Care EEG Monitoring Database for Standardized Clinical Reporting and Multicenter Collaborative Research.

    PubMed

    Lee, Jong Woo; LaRoche, Suzette; Choi, Hyunmi; Rodriguez Ruiz, Andres A; Fertig, Evan; Politsky, Jeffrey M; Herman, Susan T; Loddenkemper, Tobias; Sansevere, Arnold J; Korb, Pearce J; Abend, Nicholas S; Goldstein, Joshua L; Sinha, Saurabh R; Dombrowski, Keith E; Ritzl, Eva K; Westover, Michael B; Gavvala, Jay R; Gerard, Elizabeth E; Schmitt, Sarah E; Szaflarski, Jerzy P; Ding, Kan; Haas, Kevin F; Buchsbaum, Richard; Hirsch, Lawrence J; Wusthoff, Courtney J; Hopp, Jennifer L; Hahn, Cecil D

    2016-04-01

    The rapid expansion of the use of continuous critical care electroencephalogram (cEEG) monitoring and resulting multicenter research studies through the Critical Care EEG Monitoring Research Consortium has created the need for a collaborative data sharing mechanism and repository. The authors describe the development of a research database incorporating the American Clinical Neurophysiology Society standardized terminology for critical care EEG monitoring. The database includes flexible report generation tools that allow for daily clinical use. Key clinical and research variables were incorporated into a Microsoft Access database. To assess its utility for multicenter research data collection, the authors performed a 21-center feasibility study in which each center entered data from 12 consecutive intensive care unit monitoring patients. To assess its utility as a clinical report generating tool, three large volume centers used it to generate daily clinical critical care EEG reports. A total of 280 subjects were enrolled in the multicenter feasibility study. The duration of recording (median, 25.5 hours) varied significantly between the centers. The incidence of seizure (17.6%), periodic/rhythmic discharges (35.7%), and interictal epileptiform discharges (11.8%) was similar to previous studies. The database was used as a clinical reporting tool by 3 centers that entered a total of 3,144 unique patients covering 6,665 recording days. The Critical Care EEG Monitoring Research Consortium database has been successfully developed and implemented with a dual role as a collaborative research platform and a clinical reporting tool. It is now available for public download to be used as a clinical data repository and report generating tool.

  10. A method for achieving an order-of-magnitude increase in the temporal resolution of a standard CRT computer monitor.

    PubMed

    Fiesta, Matthew P; Eagleman, David M

    2008-09-15

    As the frequency of a flickering light is increased, the perception of flicker is replaced by the perception of steady light at what is known as the critical flicker fusion threshold (CFFT). This threshold provides a useful measure of the brain's information processing speed, and has been used in medicine for over a century both for diagnostic and drug efficacy studies. However, the hardware for presenting the stimulus has not advanced to take advantage of computers, largely because the refresh rates of typical monitors are too slow to provide fine-grained changes in the alternation rate of a visual stimulus. For example, a cathode ray tube (CRT) computer monitor running at 100Hz will render a new frame every 10 ms, thus restricting the period of a flickering stimulus to multiples of 20 ms. These multiples provide a temporal resolution far too low to make precise threshold measurements, since typical CFFT values are in the neighborhood of 35 ms. We describe here a simple and novel technique to enable alternating images at several closely-spaced periods on a standard monitor. The key to our technique is to programmatically control the video card to dynamically reset the refresh rate of the monitor. Different refresh rates allow slightly different frame durations; this can be leveraged to vastly increase the resolution of stimulus presentation times. This simple technique opens new inroads for experiments on computers that require more finely-spaced temporal resolution than a monitor at a single, fixed refresh rate can allow.

  11. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  12. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  13. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  14. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  15. 40 CFR 60.423 - Monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ammonium Sulfate Manufacture § 60.423 Monitoring of operations. (a) The owner or operator of any ammonium sulfate manufacturing... monitoring devices which can be used to determine the mass flow of ammonium sulfate feed material streams to...

  16. Soil quality monitoring: Examples of existing protocols

    Treesearch

    Daniel G. Neary; Carl C. Trettin; Deborah Page-Dumroese

    2010-01-01

    Many forestry and agricultural agencies and organizations worldwide have developed soil monitoring and quality standards and guidelines to ensure future sustainability of land management. These soil monitoring standards are typically developed in response to international initiatives such as the Montreal Process, the Helsinki Ministerial Conference,or in support of...

  17. Soil quality monitoring: examples of existing protocols

    Treesearch

    Daniel G. Neary; Carl C. Trettin; Deborah Page-Dumroese

    2010-01-01

    Many forestry and agricultural agencies and organizations worldwide have developed soil monitoring and quality standards and guidelines to ensure future sustainability of land management. These soil monitoring standards are typically developed in response to international initiatives such as the Montreal Process, the Helsinki Ministerial Conference, or in support of...

  18. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less

  19. Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.

    2013-10-01

    Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflectsmore » the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to

  20. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.