Science.gov

Sample records for standard irradiation facilities

  1. BIOLOGICAL IRRADIATION FACILITY

    DOEpatents

    McCorkle, W.H.; Cern, H.S.

    1962-04-24

    A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

  2. ORNL irradiation creep facility

    SciTech Connect

    Reiley, T.C.; Auble, R.L.; Beckers, R.M.; Bloom, E.E.; Duncan, M.G.; Saltmarsh, M.J.; Shannon, R.H.

    1980-09-01

    A machine was developed at ORNL to measure the rates of elongation observed under irradiation in stressed materials. The source of radiation is a beam of 60 MeV alpha particles from the Oak Ridge Isochronous Cyclotron (ORIC). This choice allows experiments to be performed which simulate the effects of fast neutrons. A brief review of irradiation creep and experimental constraints associated with each measurement technique is given. Factors are presented which lead to the experimental choices made for the Irradiation Creep Facility (ICF). The ICF consists of a helium-filled chamber which houses a high-precision mechanical testing device. The specimen to be tested must be thermally stabilized with respect to the temperature fluctuations imposed by the particle beam which passes through the specimen. Electrical resistance of the specimen is the temperature control parameter chosen. Very high precision in length measurement and temperature control are required to detect the small elongation rates relevant to irradiation creep in the test periods available (approx. 1 day). The apparatus components and features required for the above are presented in some detail, along with the experimental procedures. The damage processes associated with light ions are discussed and displacement rates are calculated. Recent irradiation creep results are given, demonstrating the suitability of the apparatus for high resolution experiments. Also discussed is the suitability of the ICF for making high precision thermal creep measurements.

  3. Triple ion beam irradiation facility

    SciTech Connect

    Lewis, M.B.; Allen, W.R.; Buhl, R.A.; Packan, N.H.; Cook, S.W.; Mansur, L.K.

    1988-12-01

    A unique ion irradiation facility consisting of three accelerators is described. The accelerators can be operated simultaneously to deliver three ion beams on one target sample. The energy ranges of the ions are 50 to 400 keV, 200 keV to 2.5 MeV, and 1.0 to 5.0 MeV. Three different ions in the appropriate mass range can be simultaneously implanted to the same depth in a target specimen as large as 100 mm/sup 2/ in area. Typical depth ranges are 0.1 to 1.0 ..mu..m. The X-Y profiles of all three ion beams are measured by a system of miniature Faraday cups. The low-voltage accelerator can periodically ramp the ion beam energy during the implantation. Three different types of target chambers are in use at this facility. The triple-beam high-vacuum chamber can hold nine transmission electron microscopy specimens at elevated temperature during a irradiation by the three simultaneous beams. A second high-vacuum chamber on the medium-voltage accelerator beamline houses a low- and high-temperature translator and a two-axis goniometer for ion channeling measurements. The third chamber on the high-energy beamline can be gas-filled for special stressed specimen irradiations. Special applications for the surface modification of materials with this facility are described. Appendixes containing operating procedures are also included. 18 refs., 27 figs., 1 tab.

  4. New facility for post irradiation examination of neutron irradiated beryllium

    SciTech Connect

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  5. Development of a triple beam irradiation facility

    NASA Astrophysics Data System (ADS)

    Hamada, S.; Miwa, Y.; Yamaki, D.; Katano, Y.; Nakazawa, T.; Noda, K.

    1998-10-01

    A triple beam ion irradiation facility has been developed to study the synergistic effects of displacement damage, helium and hydrogen atoms on microstructural changes of materials under irradiation environments simulating a fusion reactor. The system consists of a vacuum chamber and three beamlines, which are connected with each electrostatic accelerator. Samples can be irradiated in the wide temperature range from liquid nitrogen to 1273 K in the chamber by replacing two kinds of sample stages alternatively. An austenitic stainless steel was simultaneously irradiated with triple beam of nickel, helium and hydrogen ions at 573-673 K using this facility and TEM observations were carried out from a cross sectional view normal to the incident surface. It was shown that the number density of dislocation loops decreased in the region where hydrogen and helium were deposited in comparison with ones in the region where only displacement damage was induced to a similar damage level.

  6. Monte Carlo simulations and dosimetric studies of an irradiation facility

    NASA Astrophysics Data System (ADS)

    Belchior, A.; Botelho, M. L.; Vaz, P.

    2007-09-01

    There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool—MCNPX—in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.

  7. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.

    PubMed

    Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

    2011-08-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  8. 42 CFR 493.1101 - Standard: Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... local laboratory requirements. (d) Safety procedures must be established, accessible, and observed to... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained...

  9. 42 CFR 493.1101 - Standard: Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... local laboratory requirements. (d) Safety procedures must be established, accessible, and observed to... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained...

  10. 42 CFR 493.1101 - Standard: Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... local laboratory requirements. (d) Safety procedures must be established, accessible, and observed to... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained...

  11. 42 CFR 493.1101 - Standard: Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... local laboratory requirements. (d) Safety procedures must be established, accessible, and observed to... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained...

  12. 42 CFR 493.1101 - Standard: Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... local laboratory requirements. (d) Safety procedures must be established, accessible, and observed to... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Facility Administration for Nonwaived Testing § 493.1101 Standard: Facilities. (a) The laboratory must be constructed, arranged, and maintained...

  13. A Simplified Shuttle Irradiation Facility for ATR

    SciTech Connect

    A. J. Palmer; S. T. Laflin

    1999-08-01

    During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple "low cost" shuttle irradiation facility for ATR has been developed. Cost were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4-5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations.

  14. A Simplified Shuttle Irradiation Facility for ATR

    SciTech Connect

    Palmer, Alma Joseph; Laflin, S. T.

    1999-09-01

    During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple “low cost” shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 – 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch “B” hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

  15. Computational analysis of irradiation facilities at the JSI TRIGA reactor.

    PubMed

    Snoj, Luka; Zerovnik, Gašper; Trkov, Andrej

    2012-03-01

    Characterization and optimization of irradiation facilities in a research reactor is important for optimal performance. Nowadays this is commonly done with advanced Monte Carlo neutron transport computer codes such as MCNP. However, the computational model in such calculations should be verified and validated with experiments. In the paper we describe the irradiation facilities at the JSI TRIGA reactor and demonstrate their computational characterization to support experimental campaigns by providing information on the characteristics of the irradiation facilities. PMID:22154389

  16. Energy Codes and Standards: Facilities

    SciTech Connect

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  17. A new materials irradiation facility at the Kyoto university reactor

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Hayashi, Y.; Yanagita, S.; Xu, Q.; Satoh, Y.; Tsujimoto, H.; Kozuka, T.; Kamae, K.; Mishima, K.; Shiroya, S.; Kobayashi, K.; Utsuro, M.; Fujita, Y.

    2003-02-01

    A new materials irradiation facility with improved control capabilities has been installed at the Kyoto University Reactor (KUR). Several deficiencies of conventional fission neutron material irradiation systems have been corrected. The specimen temperature is controlled both by an electric heater and by the helium pressure in the irradiation tube without exposure to neutrons at temperatures different from the design test conditions. The neutron spectrum is varied by the irradiation position. Irradiation dose is changed by pulling the irradiation capsule up and down during irradiation. Several characteristics of the irradiation field were measured. The typical irradiation intensity is 9.4×10 12 n/cm 2 s (>0.1 MeV) and the irradiation temperature of specimens is controllable from 363 to 773 K with a precision of ±2 K.

  18. Facility for spectral irradiance and radiance responsivity calibrations using uniform sources

    SciTech Connect

    Brown, Steven W.; Eppeldauer, George P.; Lykke, Keith R

    2006-11-10

    Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp-monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However,uncertainties increase dramatically when measuring an instrument's spectral irradiance or radiance responsivity. We describe what we believe to be a new laser-based facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) that was developed to calibrate instruments directly in irradiance or radiance mode with uncertainties approaching or exceeding those available for spectral power responsivity calibrations. In SIRCUS, the emission from high-power, tunable lasers is introduced into an integrating sphere using optical fibers, producing uniform, quasi-Lambertian, high-radiant-flux sources. Reference standard irradiance detectors, calibrated directly against national primary standards for spectral power responsivity and aperture area measurement,are used to determine the irradiance at a reference plane. Knowing the measurement geometry, the source radiance can be readily determined as well. The radiometric properties of the SIRCUS source coupled with state-of-the-art transfer standard radiometers whose responsivities are directly traceable to primary national radiometric scales result in typical combined standard uncertainties in irradiance and radiance responsivity calibrations of less than 0.1%. The details of the facility and its effect on primary national radiometric scales are discussed.

  19. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    SciTech Connect

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  20. The present situation of the irradiation application industry and irradiation facilities in Japan

    NASA Astrophysics Data System (ADS)

    Mizusawa, K.; Baba, T.

    2003-08-01

    The irradiation application industry and irradiation facilities in Japan have been making slow but steady progress for the past 2-3 years. Beside conventional applications, new ones such as carbon fibers and membrane filters have come into the market. There are a lot of new applications about to emerge. PE tubing, already is in the European market, is being evaluated by end users in Japan. Cleaning of dioxin in exhaust gas was successfully tested at a pilot plant. Cross-linked PTFE and polyamide are waiting customers' evaluations as an engineering plastic. Surface cross-linking of artificial polycarbonate teeth has yielded remarkable experimental results. Cross-linking of polycaprolactone will be useful for biodegradable products. Being aware of the future growth of irradiation industry, contract service providers opened new facilities or increased their capability. Beside in-house facilities, there are now three Co-60 facilities and nine EB facilities available for contract irradiation in Japan.

  1. Experimental qualification of a code for optimizing gamma irradiation facilities

    NASA Astrophysics Data System (ADS)

    Mosse, D. C.; Leizier, J. J. M.; Keraron, Y.; Lallemant, T. F.; Perdriau, P. D. M.

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the "Société Générale pour les Techniques Nouvelles" (SGN), a supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. (ERHART, KERARON, 1986) Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the "Laboratoire de Métrologie des Rayonnements Ionisants" (LMRI) of the "Bureau National de Métrologie" (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quantity was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet.

  2. Review of the Advanced Neutron Source (ANS) materials irradiation facilities

    SciTech Connect

    Goland, A.N. )

    1991-03-01

    The purpose of the workshop was to document as accurately as possible the present and future needs for neutron irradiation capacity and facilities as related to the design of the Advanced Neutron Source (ANS) which will be the next generation steady-state research reactor. The report provides the findings and recommendations of the working group. After introductory and background information is presented, the discussion includes the status of the ANS design, in particular in-core materials irradiation facilities design and important experimental parameters. The summary of workshop discussions describes a survey of irradiation-effects research community and opportunities for ex-core irradiation facilities. 20 refs., 2 figs., 4 tabs. (MHB)

  3. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. Irradiation Facilities at the Advanced Test Reactor

    SciTech Connect

    S. Blaine Grover

    2005-12-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

  6. The Advanced Test Reactor Irradiation Facilities and Capabilities

    SciTech Connect

    S. Blaine Grover; Raymond V. Furstenau

    2007-03-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR’s unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

  7. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning.

    PubMed

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-09-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different (137)Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662keV photons greater than 80%. LIBIS complies with high safety standards. PMID:27423023

  8. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  9. LNL irradiation facilities for radiation damage studies on electronic devices

    NASA Astrophysics Data System (ADS)

    Bisello, D.; Candelori, A.; Giubilato, P.; Mattiazzo, S.; Pantano, D.; Silvestrin, L.; Tessaro, M.; Wyss, J.

    2016-11-01

    In this paper we will review the wide range of irradiation facilities installed at the INFN Legnaro National Laboratories and routinely used for radiation damage studies on silicon detectors, electronic components and systems. The SIRAD irradiation facility, dedicated to Single Event Effect (SEE) and bulk damage studies, is installed at the 14MV Tandem XTU accelerator and can deliver ion beams from H up to Au in the energy range from 28MeV to 300MeV. An Ion Electron Emission Microscope, also installed at SIRAD, allows SEE testing with micrometric sensitivity. For total dose tests, two facilities are presently available: an X-rays source and a 60Co γ -ray source. The 7MV Van de Graaff CN accelerator provides 1H beams in the energy range 2-7MeV and currents up to few μA for both total dose and bulk damage studies. At this facility, very high dose rates (up to ˜ 100 krad/s (SiO2)) can be achieved. Finally, also neutron beams are available, produced at the CN accelerator, by the reaction d + Be ⇒ n + B.

  10. Minimum criticality dose evaluation for the Irradiated Fuel Storage Facility

    SciTech Connect

    Kim, S.S.

    1999-09-01

    The Irradiated Fuel Storage Facility (IFSF) is a government-owned, contractor-operated facility located at the Idaho National Engineering and Environmental Laboratory within the Idaho Nuclear Technology and Engineering Center. The mission of the facility is to provide safe dry storage for various types of irradiated fuels. Included are fuel elements such as irradiated ATR, EBR, MTR, Fort St. Vrain, TRIGA, and ROVER Parka fuels. Fuels requiring dry storage are received at the IFSF in fuel-shipping casks. At the facility receiving dock, the casks are removed from the transport vehicle, positioned in a cask transport car, and moved into the fuel-handling cave. Several functions are performed in the fuel-handling cave, including transferring fuel from shipping casks to storage canisters, preparing fuel elements for storage and processing. The minimum postulated criticality dose calculations were performed for the cask-receiving and fuel-handling areas to place criticality alarm system (CAS) detectors. The number of fissions for the minimum accident of concern is based on a dose of 20-rad air at 2 m in 1 min. The eigenvalue calculations were first performed to determine the size of the critical source. Then, two sets of fixed-source calculations were followed to calculate contributions from neutron and capture gamma rays and from prompt gamma rays. Two sets of MCNP calculations involved point and spherical critical sources. Validity of the Monte Carlo results was tested against ANISN deterministic calculations. The flux-to-dose conversion factors are based on ANSI/ANS-6.1.1-1977. All of the MCNP runs used continuous-energy ENDF/B-V cross sections. The BUGLE-80 cross-section library was used for the ANISN calculations.

  11. Characteristics of the Neutron Irradiation Facilities of the PSI Calibration Laboratory

    SciTech Connect

    Hoedlmoser, H.; Schuler, Ch.; Butterweck, G.; Mayer, S.

    2011-12-13

    The neutron radiation fields of the Calibration Laboratory at Paul Scherrer Institute (PSI) are traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. A Berthold LB6411 neutron dose rate meter for neutron radiation is used as a secondary standard. Recently, a thorough characterization of the neutron irradiation fields of the {sup 241}Am-Be and {sup 252}Cf sources by means of reference measurements and a detailed MCNPX simulation of the irradiation facility has been initiated. In this work, the characteristics of the neutron radiation fields are summarized and presented together with model equations and an uncertainty analysis. MCNPX results are shown for the {sup 241}Am-Be source. A comparison of measured and simulated data shows an excellent agreement. From the simulation, valuable information about the neutron fields like the contribution of scattered neutrons in the fields and the energy spectra could be obtained.

  12. Characterization of nuclear transmutations in materials irradiated test facilities

    SciTech Connect

    Gomes, I.C.; Smith, D.L.

    1994-05-01

    This study presents a comparison of nuclear transmutation rates for candidate fusion first wall/blanket structural materials in available, fission test reactors with those produced in a typical fusion spectrum. The materials analyzed in this study include a vanadium alloy (V-4Cr-4Ti), a reduced activation martensitic steel (Fe-9Cr-2WVTa), a high conductivity copper alloy (Cu-Cr-Zr), and the SiC compound. The fission irradiation facilities considered include the EBR-II fast reactor, and two high flux mixed spectrum reactors, HFIR (High Flux Irradiation Reactor) and SM-3 (Russian reactor). The transmutation and dpa rates that occur in these test reactors are compared with the calculated transmutation and dpa rates characteristic of a D-T fusion first wall spectrum. In general, past work has shown that the displacement damage produced in these fission reactors can be correlated to displacement damage in a fusion spectrum; however, the generation of helium and hydrogen through threshold reactions [(n,x,{alpha}) and (n,xp)] are much higher in a fusion spectrum. As shown in this study, the compositional changes for several candidate structural materials exposed to a fast fission reactor spectrum are very low, similar to those for a characteristic fusion spectrum. However, the relatively high thermalized spectrum of a mixed spectrum reactor produces transmutation rates quite different from the ones predicted for a fusion reactor, resulting in substantial differences in the final composition of several candidate alloys after relatively short irradiation time.

  13. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  14. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  15. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an...

  16. 78 FR 16692 - Chemical Facility Anti-Terrorism Standards (CFATS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ..., Chemical Facility Anti-Terrorism Standards (CFATS) for an additional 30 days. \\1\\ See 77 FR 74677. The 60... mandate at 72 FR 17688. Section 550 of the Homeland Security Appropriations Act of 2007 requires a risk... SECURITY Chemical Facility Anti-Terrorism Standards (CFATS) AGENCY: National Protection and...

  17. Fusion materials irradiations at MaRIE's fission fusion facility

    SciTech Connect

    Pitcher, Eric J

    2010-10-06

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

  18. Fusion materials irradiation test facility test-cell instrumentation

    NASA Astrophysics Data System (ADS)

    Fuller, J. L.; Burke, R. J.

    1982-05-01

    Many of the facility instrumentation components and systems currently under development, though specifically designed for FMIT purposes, are similar to those useful for fusion reactors. Various ceramic-insulated signal-cable components are being evaluated for 14-MeV neutron tolerance. Thermocouples are shown to decalibrate in high energy fields. Nondestructive optical viewing of deuteron-induced residual gas flow is planned for beam profiling in real space and phase space. Various optics were irradiated to 10(18) n/cm(2) at 14 MeV with good results. Feasibility of neutron and gamma field imaging was demonstrated using pinhole collimator and microchannel plate devices. Infrared thermography and optical monitoring of the target surface is being investigated. Considerable experience on the compatibility of optical and insulator materials with (highly reactive) lithium was obtained.

  19. Design Standards for School Art Facilities.

    ERIC Educational Resources Information Center

    National Art Education Association, Reston, VA.

    The National Art Education Association (NAEA) began work on this general planning reference for school art facilities in 1989, basing its initial draft on a survey of over 90 different groups, including school districts and state education agencies. The final publication represents the views of a broad-based constituency. Photographs of existing…

  20. Standards for Residential Facilities for the Mentally Retarded.

    ERIC Educational Resources Information Center

    Joint Commission on Accreditation of Hospitals, Chicago, IL.

    Presented are standards for residential facilities for the mentally retarded that were developed by the Joint Commission on Accreditation of Hospitals. The accreditation process is said to have two major objects: setting standards for services and determining the degree to which a specific services complies with the designated standards. The…

  1. 40 CFR 413.04 - Standards for integrated facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Standards for integrated facilities. 413.04 Section 413.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY General Provisions § 413.04 Standards...

  2. Standards for Psychological Services in Long-Term Care Facilities.

    ERIC Educational Resources Information Center

    Morrow-Howell, Nancy; Lichtenberg, Peter A.; Smith, Michael; Frazer, Deborah; Molinari, Victor; Rosowsky, Erlene; Crose, Royda; Stillwell, Nick; Kramer, Nanette; Hartman-Stein, Paula; Qualls, Sara; Salamon, Michael; Duffy, Michael; Parr, Joyce; Gallagher-Thompson, Dolores

    1998-01-01

    Describes the development of standards for psychological practice in long-term care facilities. The standards, which were developed by Psychologists in Long-Term Care, address provider characteristics, methods of referral, assessment practices, treatment, and ethical issues. Offers suggestions for use of the standards. (MKA)

  3. Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment

    SciTech Connect

    1995-11-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing {sup 60}Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally.

  4. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  5. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  6. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  7. Characteristics of the KUR Heavy Water Neutron Irradiation Facility as a neutron irradiation field with variable energy spectra

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2000-10-01

    The Heavy Water Neutron Irradiation Facility (HWNIF) of the Kyoto University Research Reactor (KUR) was updated in March 1996, mainly for the improvement in neutron capture therapy (NCT). A striking feature of the updated facility is that the energy spectrum of the neutron beam can be controlled from almost pure thermal to epi-thermal, within 5 min by remote control under a continuous reactor operation. This feature is advantageous not only to medical science such as NCT, but also to the other research fields such as physics, engineering, biology, etc. The performance of the updated facility as a neutron irradiation field with variable energy spectra, was characterized. Thermal neutron flux, cadmium ratio, gamma-ray dose rate, etc., at the normal irradiation position for various irradiation modes were determined, mainly on the basis of the measurement using gold activation foils and thermo-luminescent dosimeters (TLDs). The emphasis was on the performance of the new neutron energy spectrum shifter and cadmium thermal neutron filter, that control the mixing ratio of thermal and epi-thermal neutrons, through the change in the heavy water thickness of the spectrum shifter and the aperture size of the cadmium filter. The evaluation of neutron energy spectra at the normal irradiation position was also performed for three representative irradiation modes, in which the neutron intensities are largest of all the irradiation modes. In addition, the irradiation characteristics of two irradiation devices, namely the Irradiation Rail Device and the Remote Patient Carrier, which were updated concurrently with the facility update, were evaluated.

  8. 75 FR 1552 - Chemical Facility Anti-Terrorism Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ...-Terrorism Standards, 6 CFR Part 27 (CFATS), on April 9, 2007. See 72 FR 17688. The CFATS interim final rule... chemical facility. See generally 72 FR 17696, 17700-17701. DHS also has authority to determine that a... 6 CFR 27.105; 72 FR 17700-17701. The Department assigns each facility that is initially...

  9. ACSM's Health/Fitness Facility Standards and Guidelines. Second Edition.

    ERIC Educational Resources Information Center

    Peterson, James A., Ed; Tharrett, Stephen J., Ed.

    The American College of Sports Medicine (ACSM) sets the industry standard for certifying professionals involved in health and fitness and their clinical applications. This 5-part publication provides a revised edition of six standards representing the industry's consensus on design and operation of a safe and high-quality health/fitness facility.…

  10. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Facility pest management practice standard. 205.271 Section 205.271 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  11. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Facility pest management practice standard. 205.271 Section 205.271 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  12. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Facility pest management practice standard. 205.271 Section 205.271 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  13. 7 CFR 205.271 - Facility pest management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Facility pest management practice standard. 205.271 Section 205.271 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  14. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    NASA Astrophysics Data System (ADS)

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Dickerson, C.; Gerczak, T. J.; Field, C. R.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.

    2013-04-01

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to ˜200 μA and ˜5 μA, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  15. Single proton counting at the RIKEN cell irradiation facility

    SciTech Connect

    Mäckel, V. Puttaraksa, N.; Kobayashi, T.; Yamazaki, Y.

    2015-08-15

    We present newly developed tapered capillaries with a scintillator window, which enable us to count single protons at the RIKEN cell irradiation setup. Their potential for performing single proton irradiation experiments at our beamline setup is demonstrated with CR39 samples, showing a single proton detection fidelity of 98%.

  16. 75 FR 2445 - Chemical Facility Anti-Terrorism Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... withdrawing the version of this document published in the Federal Register, at 75 FR 1552, on January 12, 2010...-Terrorism Standards, 6 CFR part 27 (CFATS), on April 9, 2007. See 72 FR 17688. The CFATS interim final rule... chemical facility. See generally 72 FR 17696, 17700-17701. DHS also has authority to determine that...

  17. Review of accelerator conceptual design for the International Fusion Materials Irradiation Facility (IFMIF)

    SciTech Connect

    Berwald, D.H.; Rathke, J.W.; Bruhwiler, D.L.

    1996-12-31

    A Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) will be completed in December 1996. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators is a key element of the IFMIF facility. This paper describes the status of the accelerator design as of June, 1996. 7 refs., 3 figs., 1 tab.

  18. An irradiation facility with a horizontal beam for radiobiological studies.

    PubMed

    Czub, J; Banas, D; Braziewicz, J; Choinski, J; Jaskóla, M; Korman, A; Szeflinski, Z; Wójcik, A

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw University. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as in the region of the Bragg peak.

  19. A facility for studying irradiation accelerated corrosion in high temperature water

    NASA Astrophysics Data System (ADS)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  20. Final report of the HFIR (High Flux Isotope Reactor) irradiation facilities improvement project

    SciTech Connect

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987.

  1. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  2. DOE standard: Filter test facility quality program plan

    SciTech Connect

    1999-02-01

    This standard was developed primarily for application in US Department of Energy programs. It contains specific direction for HEPA filter testing performed at a DOE-accepted HEPA Filter Test Facility (FTF). Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to the Office of Nuclear Safety Policy and Standards (EH-31), US Department of Energy, Washington, DC 20585, by letter or by using the self-addressed Document Improvement Proposal form (DOE F 1300.3) appearing at the end of this document.

  3. First multicharged ion irradiation results from the CUEBIT facility at Clemson University

    SciTech Connect

    Shyam, R.; Kulkarni, D. D.; Field, D. A.; Srinadhu, E. S.; Harriss, J. E.; Cutshall, D. B.; Harrell, W. R.; Sosolik, C. E.

    2015-01-09

    A new electron beam ion trap (EBIT) based ion source and beamline were recently commissioned at Clemson University to produce decelerated beams of multi- to highly-charged ions for surface and materials physics research. This user facility is the first installation of a DREEBIT-designed superconducting trap and ion source (EBIS-SC) in the U.S. and includes custom-designed target preparation and irradiation setups. An overview of the source, beamline, and other facilities as well as results from first measurements on irradiated targets are discussed here. Results include extracted charge state distributions and first data on a series of irradiated metal-oxide-semiconductor (MOS) device targets. For the MOS devices, we show that voltage-dependent capacitance can serve as a record of the electronic component of ion stopping power for an irradiated, encapsulated oxide target.

  4. First multicharged ion irradiation results from the CUEBIT facility at Clemson University

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Kulkarni, D. D.; Field, D. A.; Srinadhu, E. S.; Cutshall, D. B.; Harrell, W. R.; Harriss, J. E.; Sosolik, C. E.

    2015-01-01

    A new electron beam ion trap (EBIT) based ion source and beamline were recently commissioned at Clemson University to produce decelerated beams of multi- to highly-charged ions for surface and materials physics research. This user facility is the first installation of a DREEBIT-designed superconducting trap and ion source (EBIS-SC) in the U.S. and includes custom-designed target preparation and irradiation setups. An overview of the source, beamline, and other facilities as well as results from first measurements on irradiated targets are discussed here. Results include extracted charge state distributions and first data on a series of irradiated metal-oxide-semiconductor (MOS) device targets. For the MOS devices, we show that voltage-dependent capacitance can serve as a record of the electronic component of ion stopping power for an irradiated, encapsulated oxide target.

  5. A proton irradiation test facility for space research in Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  6. Improvement of low-temperature irradiation facility at Kyoto University Reactor (KUR)

    NASA Astrophysics Data System (ADS)

    Okada, M.; Kanazawa, S.; Nozaki, T.; Nakagawa, M.; Atobe, K.; Kuramoto, E.; Matsumura, K.; Sano, T.

    2001-05-01

    The low-temperature irradiation facility at the Kyoto University Reactor (KUR) has been upgraded. Cryogenic power has been increased from 37 W to about 58 W at 10 K, and irradiation temperature has been reduced from 20 to 12 K at 5 MW reactor operating power. The maximum fast-neutron flux after these improvements is about 4.77×10 11 n/n cm -2 s -1. Therefore, the maximum fluence of fast-neutrons at the KUR facility is about 1.3×10 17 n cm -2 for the maximum operating time of 77 h per week.

  7. New irradiation facility for biomedical applications at the RA-3 reactor thermal column.

    PubMed

    Miller, M; Quintana, J; Ojeda, J; Langan, S; Thorp, S; Pozzi, E; Sztejnberg, M; Estryk, G; Nosal, R; Saire, E; Agrazar, H; Graiño, F

    2009-07-01

    A new irradiation facility has been developed in the RA-3 reactor in order to perform trials for the treatment of liver metastases using boron neutron capture therapy (BNCT). RA-3 is a production research reactor that works continuously five days a week. It had a thermal column with a small cross section access tunnel that was not accessible during operation. The objective of the work was to perform the necessary modifications to obtain a facility for irradiating a portion of the human liver. This irradiation facility must be operated without disrupting the normal reactor schedule and requires a highly thermalized neutron spectrum, a thermal flux of around 10(10) n cm(-2)s(-1) that is as isotropic and uniform as possible, as well as on-line instrumentation. The main modifications consist of enlarging the access tunnel inside the thermal column to the suitable dimensions, reducing the gamma dose rate at the irradiation position, and constructing properly shielded entrance gates enabled by logical control to safely irradiate and withdraw samples with the reactor at full power. Activation foils and a neutron shielded graphite ionization chamber were used for a preliminary in-air characterization of the irradiation site. The constructed facility is very practical and easy to use. Operational authorization was obtained from radioprotection personnel after confirming radiation levels did not significantly increase after the modification. A highly thermalized and homogenous irradiation field was obtained. Measurements in the empty cavity showed a thermal flux near 10(10) n cm(-2)s(-1), a cadmium ratio of 4100 for gold foils and a gamma dose rate of approximately 5 Gy h(-1).

  8. Design and characterization of an irradiation facility with real-time monitoring

    NASA Astrophysics Data System (ADS)

    Braisted, Jonathan David

    Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The

  9. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect

    S. Blaine Grover

    2008-09-01

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  10. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  11. 76 FR 60390 - Irradiation Treatment; Location of Facilities in the Southern United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Animal and Plant Health Inspection Service 7 CFR Parts 305 and 319 RIN 0579-AD35 Irradiation Treatment; Location of Facilities in the Southern United States AGENCY: Animal and Plant Health Inspection Service... pests or noxious weeds into or through the United States. The Animal and Plant Health Inspection...

  12. Improvement of the High Fluence Irradiation Facility at the University of Tokyo

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto

    2016-08-01

    This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.

  13. The contract facilities for gamma irradiation at Dagneux, France

    NASA Astrophysics Data System (ADS)

    Pellerin, D.; Kavanagh, M. T.

    CONSERVATOME SA have operated a facility at DAGNEUX near LYON, France since 1961. This operation is among the very first of its kind in the entire world. The process is based on gamma rays from Cobalt 60 of which there are three separate units. In addition there is a small experimental unit using Cesium 137. At present CONSERVATOME is owned by TRANSNUCLEAIRE and EPICEA as principal shareholders and so has the support of the French Atomic Energy Commission. This paper describes the larger D3 unit and reviews some of the products treated at DAGNEUX.

  14. SATIF-2 shielding aspects of accelerators, targets and irradiation facilities

    SciTech Connect

    1995-12-31

    Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

  15. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect

    1998-05-01

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  16. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    SciTech Connect

    Franco, Manuel,

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  17. "Toward the development of a diffuse horizontal shortwave irradiance working standard"

    SciTech Connect

    J. Michalsky; R. Dolce; E.G. Dutton; M. Haeffelin; W. Jeffries; T. Stoffel; J. Hickey; A. Los; D. Mathias; L.J.B. McArthur; D. Nelson; R. Philipona; I. Reda; K. Rutledge; G. Zerlaut; B. Forgan; P. Kiedron; C. Long; and C. Gueymard

    2005-04-01

    The first intensive observation period (IOP) to simultaneously measure diffuse horizontal shortwave irradiance (scattered solar radiation that falls on a horizontal surface) with a wide array of shaded pyranometers suggested that a consensus might be reached that would permit the establishment of a standard with a smaller uncertainty than previously achieved. A second IOP has been held to refine the first IOP measurements using a uniform calibration protocol, offset corrections for all instruments and validation of those corrections, improvements in some of the instruments, and better data acquisition. The venue for both IOPs was the Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in northern Oklahoma. The nine days of measurements in October 2003 included a better mixture of clear and overcast conditions than during the first IOP and revealed considerable differences among the instruments responses for different cloud conditions. Four of the 15 instruments were eliminated as candidates to be included in the standard because of noisy signals, inadequate offset correction, or instability with respect to the majority of the measurements. Eight pyranometers agreed to within {+-}2% for clear-sky conditions. Three others have a high bias on clear days relative to these eight, but all eleven agree within {+-}2% on overcast days. The differences and causes of this behavior under clear and cloudy skies are examined.

  18. Toward the Development of a Diffuse Horizontal Shortwave Irradiance Working Standard

    SciTech Connect

    Michalsky, Joseph J.; Dolce, R; Dutton, Ellsworth G.; Haeffelin, M.; Jeffries, W Q.; Stoffel, T; Hickey, J R.; Los, A; Mathias, D; McArthur, LJ B.; Nelson, D. W.; Philipona, J R.; Reda, I; Rutledge, K.; Zerlaut, G.; Forgan, B. W.; Kiedron, P.; Long, Charles N.; Gueymard, C.

    2005-03-18

    The first intensive observation period (IOP) to simultaneously measure diffuse horizontal irradiance in the shortwave with a wide array of shaded pyranometers suggested that a consensus might be reached that would permit the establishment of a standard with a smaller uncertainty than heretofore achieved. A second IOP has been held to refine the first IOP measurements using a uniform calibration protocol, offset corrections for all instruments and validation of those corrections, improvements in some of the instruments, and better data acquisition. The venue for both IOPs was the Department of Energy's Atmospheric Radiation Measurement (ARM) central facility in northern Oklahoma. The nine days of measurements in October 2003 included a better mixture of clear and overcast conditions than during the first IOP and revealed considerable differences among the instruments responses for different cloud conditions. Four of the 15 instruments were eliminated as candidates to be included in the standard because of noisy signals, inadequate offset correction, or instability with respect to the majority of the measurements. Eight pyranometers agreed to within ?2% for clear-sky conditions. Three others have a high bias on clear days relative to these eight, but all eleven agree within ?2% on overcast days. The differences and causes of this behavior under clear and cloudy skies will be examined.

  19. Design of an irradiation facility with a real-time radiation effects monitoring capability

    NASA Astrophysics Data System (ADS)

    Braisted, J.; Schneider, E.; O'Kelly, S.; van der Hoeven, C.

    2011-12-01

    An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the 1.1 MW TRIGA Mark II research reactor at The University of Texas at Austin. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This article presents the layout and characterization of the large in-core irradiation facility and the real-time electronics performance monitoring capability it is designed to support. To demonstrate this capability, an experimental campaign was conducted where the real-time current transfer ratio for 4N25 general-purpose optocouplers was obtained from in-situ voltage measurements. The resultant radiation effects data - current transfer ratio as a function of neutron and gamma dose - was seen to be repeatable and exceptionally finely resolved. Therefore, the real-time capability at UT TRIGA appears competitive with other effects characterization facilities in terms of number and size of testable samples while additionally offering a novel real-time, in-core monitoring capability.

  20. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    NASA Astrophysics Data System (ADS)

    Abdullah, Y.; Hamid, N. A.; Mansor, M. A.; Ahmad, M. H. A. R. M.; Yusof, M. R.; Yazid, H.; Mohamed, A. A.

    2013-06-01

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  1. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  2. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  3. Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility

    DOE PAGES

    Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.; Bradley, P. A.; Baumgaertel, J. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Kline, J. L.; Montgomery, D. S.; et al

    2015-09-17

    Polar-direct-drive experiments conducted at the National Ignition Facility [E. I. Moses, Fusion Sci. Technol. 54, 361 (2008)] performed at laser irradiance between 1 and 2×1015 W/cm2 exhibit increased hard x-ray emission, decreased neutron yield, and reduced areal density as the irradiance is increased. Experimental x-ray images at the higher irradiances show x-ray emission at the equator, as well as degraded symmetry, that is not predicted in hydrodynamic simulations using flux-limited energy transport, but that appear when non-local electron transport together with a model to account for cross beam energy transfer (CBET) is utilized. The reduction in laser power for equatorialmore » beams required in the simulations to reproduce the effects of CBET on the observed symmetry also reproduces the yield degradation consistent with experimental data.« less

  4. Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility

    SciTech Connect

    Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.; Bradley, P. A.; Baumgaertel, J. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Kline, J. L.; Montgomery, D. S.; Obrey, K. A. D.; Shah, R. C.; Tregillis, I. L.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.; Wallace, R. J.; Bhandarkar, S. D.; Fitzsimmons, P.; Hoppe, M. L.; Nikroo, A.; Hohenberger, M.; McKenty, P. W.; Rinderknecht, H. G.; Rosenberg, M. J.; Petrasso, R. D.

    2015-09-17

    Polar-direct-drive experiments conducted at the National Ignition Facility [E. I. Moses, Fusion Sci. Technol. 54, 361 (2008)] performed at laser irradiance between 1 and 2×1015 W/cm2 exhibit increased hard x-ray emission, decreased neutron yield, and reduced areal density as the irradiance is increased. Experimental x-ray images at the higher irradiances show x-ray emission at the equator, as well as degraded symmetry, that is not predicted in hydrodynamic simulations using flux-limited energy transport, but that appear when non-local electron transport together with a model to account for cross beam energy transfer (CBET) is utilized. The reduction in laser power for equatorial beams required in the simulations to reproduce the effects of CBET on the observed symmetry also reproduces the yield degradation consistent with experimental data.

  5. 36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Minimum Security Standards for.... 1234, App. A Appendix A to Part 1234—Minimum Security Standards for Level III Federal Facilities Recommended Standards Chart Level III Perimeter Security Parking: Control of facility parking...

  6. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  7. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  8. Simulation of the neutron flux in the irradiation facility at RA-3 reactor.

    PubMed

    Bortolussi, S; Pinto, J M; Thorp, S I; Farias, R O; Soto, M S; Sztejnberg, M; Pozzi, E C C; Gonzalez, S J; Gadan, M A; Bellino, A N; Quintana, J; Altieri, S; Miller, M

    2011-12-01

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comisión Nacional de Energía Atómica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility.

  9. ALARA considerations for the whole body neutron irradiation facility source removal project at Brookhaven National Laboratory.

    PubMed

    Sullivan, Patrick T

    2006-02-01

    This paper describes the activities that were involved with the safe removal of fourteen PuBe sources from the Brookhaven National Laboratory (BNL) Whole Body Neutron Irradiation Facility (WBNIF). As part of a Department of Energy and BNL effort to reduce the radiological inventory, the WBNIF was identified as having no future use. In order to deactivate the facility and eliminate the need for nuclear safety management and long-term surveillance, it was decided to remove the neutron sources and dismantle the facility. In addition, the sources did not have DOT Special Form documentation so they would need to be encapsulated once removed for offsite storage or disposal. The planning and the administrative as well as engineering controls put in place enabled personnel to safely remove and encapsulate the sources while keeping exposure as low as reasonably achievable (ALARA). PMID:16404183

  10. LLNL Fire Protection Engineering Standard 5.8 Facility Survey Program

    SciTech Connect

    Sharry, J A

    2012-01-04

    This standard describes the LLNL Fire Protection Facility Survey Program. The purpose of this standard is to describe the type of facility surveys required to fulfill the requirements of DOE Order 420.1B, Facility Safety. Nothing in this standard is intended to prevent the development of a FHA using alternative approaches. Alternate approaches, including formatting, will be by exception only, and approved by the Fire Marshal/Fire Protection Engineering Subject Matter Expert in advance of their use.

  11. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    SciTech Connect

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  12. 40 CFR 279.52 - General facility standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plan fails in an emergency; (iii) The facility changes—in its design, construction, operation... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing...

  13. 40 CFR 279.52 - General facility standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plan fails in an emergency; (iii) The facility changes—in its design, construction, operation... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing...

  14. 40 CFR 279.52 - General facility standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plan fails in an emergency; (iii) The facility changes—in its design, construction, operation... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing...

  15. 40 CFR 279.52 - General facility standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan fails in an emergency; (iii) The facility changes—in its design, construction, operation... after an emergency, the emergency coordinator must provide for recycling, storing, or disposing...

  16. A Novel 785-nm Laser Diode-Based System for Standardization of Cell Culture Irradiation

    PubMed Central

    Oliveira, Camila F.; Guimarães, Orlando C.C.; Costa, Carlos A. de Souza; Kurachi, Cristina; Bagnato, Vanderlei S.

    2013-01-01

    Abstract Objective: The purpose of this study was to develop a novel device that concatenates alignment of infrared lasers and parallel procedure of irradiation. The purpose of this is to seek standardization of in vitro cell irradiation, which allows analysis and credible comparisons between outcomes of different experiments. Background data: Experimental data obtained from infrared laser therapies have been strongly dependent upon the irradiation setup. Although further optical alignment is difficult to achieve, in contact irradiation it usually occurs. Moreover, these methods eventually use laser in a serial procedure, extending the time to irradiate experimental samples. Methods: A LASERTable (LT) device was designed to provide similar infrared laser irradiation in 12 wells of a 24 well test plate. It irradiated each well by expanding the laser beam until it covers the well bottom, as occurs with unexpanded irradiation. To evaluate the effectiveness of this device, the spatial distribution of radiation was measured, and the heating of plain culture medium was monitored during the LT operation. The irradiation of LT (up to 25 J/cm2 – 20 mW/cm2; 1.250 sec) was assessed on odontoblast-like cells adhered to the bottom of wells containing 1 mL of plain culture medium. Cell morphology and metabolism were also evaluated. Results: Irradiation with LT presented a Gaussian-like profile when the culture medium was not heated >1°C. It was also observed that the LT made it 10 times faster to perform the experiment than did serial laser irradiation. In addition, the data of this study revealed that the odontoblast-like cells exposed to low-level laser therapy (LLLT) using the LT presented higher metabolism and normal morphology. Conclusions: The experimental LASERTable assessed in this study provided parameters for standardization of infrared cell irradiation, minimizing the time spent to irradiate all samples. Therefore, this device is a helpful tool that can be

  17. Radiation scales on which standard values of the solar constant and solar spectral irradiance are based

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1972-01-01

    The question of radiation scales is critically examined. There are two radiation scales which are of fundamental validity and there are several calibration standards and radiation scales which have been set up for practical convenience. The interrelation between these scales is investigated. It is shown that within the limits of accuracy of irradiance measurements in general and solar irradiance measurements in particular, the proposed standard values of the solar constant and solar spectrum should be considered to be on radiation scales of fundamental validity; those based on absolute electrical units and on the thermodynamic Kelvin temperature scale.

  18. The use of automation with the new pneumatic irradiation facility of the ORNL HFIR

    SciTech Connect

    Dyer, F.F.; Robinson, L.; Emery, J.F. )

    1988-01-01

    The High Flux Isotope Reactor at Oak Ridge National Laboratory has two pneumatic irradiation systems: PT-1 installed in 1970 and PT-2 installed in 1987, which are used for neutron activation analysis. Both systems have been described in the literature. By means of a Gould programmable controller, considerable progress has been made in a cost-effective manner to operate and automate the features of the new facility. A neutron counter is an integral part of the new pneumatic tube, and all of the hardware is present to enable automated delayed neutron counting. Some automation of the old system has also been accomplished by the use of a Zymark general purpose programmable robot. This paper describes the automated features of both systems. The reactor has been shut down for safety evaluation since November 1986, so that no irradiations have been made in the new pneumatic tube.

  19. High School Educational Specifications: Facilities Planning Standards. Edition I.

    ERIC Educational Resources Information Center

    Jefferson County School District R-1, Denver, CO.

    The Jefferson County School District (Colorado) has developed a manual of high school specifications for Design Advisory Groups and consultants to use for planning and designing the district's high school facilities. The specifications are provided to help build facilities that best meet the educational needs of the students to be served.…

  20. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  1. [Assessment of validity of the archived standard curve in endotoxin assay, produced in other facilities].

    PubMed

    Waki, Atsuo; Mori, Tetsuya; Nishijima, Ken-ichi; Honjyo, Kazuyoshi; Kayano, Yuichiro; Yano, Ryoichi; Shiraishi, Hiromi; Takaoka, Aya; Kiyono, Yasushi; Fujibayashi, Yasuhisa

    2014-11-01

    We have reported the possibility of the use of the archived standard curve of endotoxin assay, which is prepared in the same facility from the viewpoint of the accuracy and precision. In this study, the possibility of the use of the archived standard curves prepared in the different facilities was investigated with the same data set in the previous paper. The evaluation was performed with the recovery rate of the concentrations of the standard solutions, as the same method as the previous study. The clotting times of the standard solutions were substituted into the standard curves prepared in the different facilities from those, in which standard solutions were prepared. The recovery rates were 86.1-125.0%, and the range was almost the same as that when the facility preparing standard solutions were the same as that preparing the standard curve. From this data, if the protocols of the preparation of standard solutions, such as mixing and the interval timing until set to the apparatus and so on, can be set the same between the endotoxin test and the preparation of the archived standard curves, the endotoxin concentration calculated with the archived standard curves prepared in other facilities were not varied very much, compared to the true values and the values obtained from the use of the archived standard curves prepared in the same facility.

  2. 34 CFR 76.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Health or safety standards for facilities. 76.683 Section 76.683 Education Office of the Secretary, Department of Education STATE-ADMINISTERED PROGRAMS What... Health or safety standards for facilities. A State and a subgrantee shall comply with any Federal...

  3. 40 CFR 279.52 - General facility standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section. (iv) The plan must list names, addresses, and phone numbers (office and home) of all persons... could threaten human health, or the environment, outside the facility, he must report his findings...

  4. 40 CFR 413.04 - Standards for integrated facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY General Provisions § 413.04 Standards for... § 403.6(e) of EPA's General Pretreatment Regulations. In cases where electroplating process wastewaters... average standard for the electroplating wastewaters must be used. The 30 day average shall be...

  5. Startup of the Fission Converter Epithermal Neutron Irradiation Facility at the MIT Reactor

    SciTech Connect

    Newton, Thomas H. Jr.; Riley, Kent J.; Binns, Peter J.; Kohse, Gordon E.; Hu Linwen; Harling, Otto K.

    2002-08-15

    A new epithermal neutron irradiation facility, based on a fission converter assembly placed in the thermal column outside the reactor core, has been put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). This facility was constructed to provide a high-intensity, forward-directed beam for use in neutron capture therapy with an epithermal flux of [approximately equal to]10{sup 10} n/cm{sup 2}.s at the medical room entrance with negligible fast neutron and gamma-ray contamination. The fission converter assembly consists of 10 or 11 MITR fuel elements placed in an aluminum tank and cooled with D{sub 2}O. Thermal-hydraulic criteria were established based on heat deposition calculations. Various startup tests were performed to verify expected neutronic and thermal-hydraulic behavior. Flow testing showed an almost flat flow distribution across the fuel elements with <5% bypass flow. The total reactivity change caused by operation of the facility was measured at 0.014 {+-} 0.002% {delta}K/K. Thermal power produced by the facility was measured to be 83.1 {+-} 4.2 kW. All of these test results satisfied the thermal-hydraulic safety criteria. In addition, radiation shielding design measurements were made that verified design calculations for the neutronic performance.

  6. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor.

    PubMed

    Colautti, P; Moro, D; Chiriotti, S; Conte, V; Evangelista, L; Altieri, S; Bortolussi, S; Protti, N; Postuma, I

    2014-06-01

    A twin TEPC with electric-field guard tubes has been constructed to be used to characterize the BNCT field of the irradiation facility of LENA reactor. One of the two mini TEPC was doped with 50ppm of (10)B in order to simulate the BNC events occurring in BNCT. By properly processing the two microdosimetric spectra, the gamma, neutron and BNC spectral components can be derived with good precision (~6%). However, direct measurements of (10)B in some doped plastic samples, which were used for constructing the cathode walls, point out the scarce accuracy of the nominal (10)B concentration value. The influence of the Boral(®) door, which closes the irradiation channel, has been measured. The gamma dose increases significantly (+51%) when the Boral(®) door is closed. The crypt-cell-regeneration weighting function has been used to measure the quality, namely the RBEµ value, of the radiation field in different conditions. The measured RBEµ values are only partially consistent with the RBE values of other BNCT facilities.

  7. 39 CFR 254.1 - Adoption of U.S. Access Board Standards as Postal Service Standards of Facility Accessibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Barriers Act (ABA) “Standards for Facility Accessibility,” the following sections of 36 CFR part 1191... THE ARCHITECTURAL BARRIERS ACT § 254.1 Adoption of U.S. Access Board Standards as Postal Service... Barriers Act, Scoping (which contains ABA Chapter 1, Application and Administration, and ABA Chapter...

  8. Development of a facility for high-precision irradiation of cells with carbon ions

    SciTech Connect

    Goethem, Marc-Jan van; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; Luijk, Peter van

    2011-01-15

    Purpose: Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed {+-}1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. Methods: A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. Results: The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing

  9. 49 CFR 37.9 - Standards for accessible transportation facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in ADA Chapter 1, Section 103, of Appendix B to 36 CFR part 1191, the following parties may submit to... requirements set forth in Appendices B and D to 36 CFR part 1191, which apply to buildings and facilities... and D to 36 CFR part 1191 and Appendix A to this part, if the modifications complied with the...

  10. 77 FR 74677 - Chemical Facility Anti-Terrorism Standards (CFATS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ...: Comments that include trade secrets, confidential commercial or financial information, Chemical-terrorism... separately from other comments in response to this notice. Comments containing trade secrets, confidential... authority to regulate the security of high-risk chemical facilities. On April 9, 2007, the Department...

  11. 40 CFR 63.471 - Facility-wide standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this section, affected facility means all solvent cleaning machines, except solvent cleaning machines used in the manufacture and maintenance of aerospace products, solvent cleaning machines used in the manufacture of narrow tubing, and continuous web cleaning machines, located at a major source that are...

  12. 40 CFR 63.471 - Facility-wide standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this section, affected facility means all solvent cleaning machines, except solvent cleaning machines used in the manufacture and maintenance of aerospace products, solvent cleaning machines used in the manufacture of narrow tubing, and continuous web cleaning machines, located at a major source that are...

  13. 40 CFR 63.471 - Facility-wide standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section, affected facility means all solvent cleaning machines, except solvent cleaning machines used in the manufacture and maintenance of aerospace products, solvent cleaning machines used in the manufacture of narrow tubing, and continuous web cleaning machines, located at a major source that are...

  14. 40 CFR 63.471 - Facility-wide standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section, affected facility means all solvent cleaning machines, except solvent cleaning machines used in the manufacture and maintenance of aerospace products, solvent cleaning machines used in the manufacture of narrow tubing, and continuous web cleaning machines, located at a major source that are...

  15. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    SciTech Connect

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine; LaChance, Jeffrey L.; Horne, Douglas B.

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazards from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.

  16. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site.

    PubMed

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Ayala, Juan Marcos; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H(+) and D(+) 100 keV beams) are reported in a second article.

  17. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    NASA Astrophysics Data System (ADS)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  18. 33 CFR 157.304 - Shore-based reception facility: standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Shore-based reception facility... CARRYING OIL IN BULK Exemption From § 157.10a or § 157.10c § 157.304 Shore-based reception facility: standards. No shore-based reception facility may be listed to meet § 157.302(b)(3) unless that...

  19. Method for Standardizing Sonic-Boom Model Pressure Signatures Measured at Several Wind-Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2007-01-01

    Low-boom model pressure signatures are often measured at two or more wind-tunnel facilities. Preliminary measurements are made at small separation distances in a wind tunnel close at hand, and a second set of pressure signatures is measured at larger separation distances in a wind-tunnel facility with a larger test section. In this report, a method for correcting and standardizing the wind-tunnel-measured pressure signatures obtained in different wind tunnel facilities is presented and discussed.

  20. 36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Required. Review/establish uniform standards for construction Required. Review/establish new design... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... control procedures for service contract personnel Required. Construction/Renovation: Install mylar film...

  1. 36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Required. Review/establish uniform standards for construction Required. Review/establish new design... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... control procedures for service contract personnel Required. Construction/Renovation: Install mylar film...

  2. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    SciTech Connect

    Posivak, E.J.; Berger, S.R.; Freitag, A.A.

    2008-07-01

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

  3. Guidelines and Standards for the Technology Infrastructure of 21st Century Educational Facilities.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office of Facilities Planning.

    New York State Regents directed that new guidelines and "standards" be developed for technology infrastructures in educational facilities in order to assist administrators and educators in planning technology integration during retrofits, renovations, or new construction of educational facilities. This document provides the first draft of these…

  4. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... issuance of the guide (74 FR 36780). The comment period closed on September 21, 2009. The staff's responses... COMMISSION Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities... Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This...

  5. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What energy standards... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.165...

  6. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What energy standards... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.165...

  7. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What energy standards... and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Energy Conservation § 102-74.165...

  8. 9 CFR 354.210 - Minimum standards for sanitation, facilities, and operating procedures in official plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Minimum standards for sanitation, facilities, and operating procedures in official plants. 354.210 Section 354.210 Animals and Animal Products... sanitation, facilities, and operating procedures in official plants. The provisions of §§ 354.210 to...

  9. 9 CFR 166.5 - Licensed garbage-treatment facility standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Licensed garbage-treatment facility standards. 166.5 Section 166.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE SWINE HEALTH PROTECTION SWINE HEALTH PROTECTION General Provisions § 166.5 Licensed garbage-treatment facility...

  10. 78 FR 29759 - Chemical Facility Anti-Terrorism Standards Personnel Surety Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...; Chemical Facility Anti-Terrorism Standards Personnel Surety Program'' at 78 FR 17680. In the March 22, 2013... March 22, 2013, at 78 FR 17680, entitled ``Information Collection Request; Chemical Facility Anti... Program Notice and Request for Comments published on March 22, 2013, at 78 FR 17680, is extended....

  11. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect

    Rennich, M.J.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  12. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions

    NASA Astrophysics Data System (ADS)

    Mäckel, V.; Meissl, W.; Ikeda, T.; Clever, M.; Meissl, E.; Kobayashi, T.; Kojima, T. M.; Imamoto, N.; Ogiwara, K.; Yamazaki, Y.

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He2+. In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm3 resolution, while monitoring the target in real time during and after irradiation.

  13. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.

    PubMed

    Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y

    2014-01-01

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.

  14. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions

    SciTech Connect

    Mäckel, V. Meissl, W.; Ikeda, T.; Meissl, E.; Kobayashi, T.; Kojima, T. M.; Ogiwara, K.; Yamazaki, Y.; Clever, M.; Imamoto, N.

    2014-01-15

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He{sup 2+}. In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1–2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm{sup 3} resolution, while monitoring the target in real time during and after irradiation.

  15. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility

    SciTech Connect

    Ramis, R.; Temporal, M.; Canaud, B.; Brandon, V.

    2014-08-15

    The symmetry of a Direct-Drive (DD) irradiation scheme has been analyzed by means of three-dimensional (3D) simulations carried out by the code MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475 (1988)) that includes hydrodynamics, heat transport, and 3D laser ray-tracing. The implosion phase of a target irradiated by the Laser Megajoule (LMJ) facility in the context of the Shock Ignition scheme has been considered. The LMJ facility has been designed for Indirect-Drive, and by this reason that the irradiation scheme must be modified when used for DD. Thus, to improve the implosion uniformity to acceptable levels, the beam centerlines should be realigned and the beam power balance should be adjusted. Several alternatives with different levels of complexity are presented and discussed.

  16. Appointment standardization evaluation in a primary care facility.

    PubMed

    Huang, Yu-Li

    2016-07-11

    Purpose - The purpose of this paper is to evaluate the performance on standardizing appointment slot length in a primary care clinic to understand the impact of providers' preferences and practice differences. Design/methodology/approach - The treatment time data were collected for each provider. There were six patient types: emergency/urgent care (ER/UC), follow-up patient (FU), new patient, office visit (OV), physical exam, and well-child care. Simulation model was developed to capture patient flow and measure patient wait time, provider idle time, cost, overtime, finish time, and the number of patients scheduled. Four scheduling scenarios were compared: scheduled all patients at 20 minutes; scheduled ER/UC, FU, OV at 20 minutes and others at 40 minutes; scheduled patient types on individual provider preference; and scheduled patient types on combined provider preference. Findings - Standardized scheduling among providers increase cost by 57 per cent, patient wait time by 83 per cent, provider idle time by five minutes per patient, overtime by 22 minutes, finish time by 30 minutes, and decrease patient access to care by approximately 11 per cent. An individualized scheduling approach could save as much as 14 per cent on cost and schedule 1.5 more patients. The combined preference method could save about 8 per cent while the number of patients scheduled remained the same. Research limitations/implications - The challenge is to actually disseminate the findings to medical providers and adjust scheduling systems accordingly. Originality/value - This paper concluded standardization of providers' clinic preference and practice negatively impact clinic service quality and access to care.

  17. "Measurement Monday": one facility's approach to standardizing skin impairment documentation.

    PubMed

    Stewart, Suzanne; Bennett, Sally; Blokzyl, Angela; Bowman, Winnie; Butcher, Ida; Chapman, Kelly; Koop, Kelly; Lebo, Barb; Siebecker, Diane; Signs, Heidi; Streeter, Jane; Russo, Catherine; Wenzel, Susan

    2009-12-01

    Accurate, timely wound assessment and documentation is fundamental to nursing practice. A 2005 retrospective chart audit (N = 54) at a rural, 238-bed tertiary care facility in Northeastern Pennsylvania (average daily census 175 to 180) found that complete wound assessment documentation (including measurements) was lacking in 59% of patient charts. The purpose of this quality improvement initiative, led by the Wound Ostomy Continence Nurse (WOCN), was to evaluate and improve nursing assessment and documentation of impaired skin (pressure ulcers, skin tears, open surgical wounds, diabetic ulcers, and venous stasis ulcers). A review of the literature confirmed the importance of consistency, which led to the hospital-wide implementation of education programs and "Measurement Monday." Using AHCPR guidelines of care for pressure ulcers and beginning in January 2006 all wounds were assessed and measured every Monday and the proportion of incomplete charts declined to 38%. Following addition of a wound documentation tool in 2007, the proportion of incomplete records was 14.8%. This quality improvement initiative improved the quality and consistency of wound assessment/measurement and documentation. PMID:20038791

  18. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation?

    PubMed

    Nguyen, Huynh; Morgan, David A F; Forwood, Mark R

    2007-01-01

    For several decades, a dose of 25 kGy of gamma irradiation has been recommended for terminal sterilization of medical products, including bone allografts. Practically, the application of a given gamma dose varies from tissue bank to tissue bank. While many banks use 25 kGy, some have adopted a higher dose, while some choose lower doses, and others do not use irradiation for terminal sterilization. A revolution in quality control in the tissue banking industry has occurred in line with development of quality assurance standards. These have resulted in significant reductions in the risk of contamination by microorganisms of final graft products. In light of these developments, there is sufficient rationale to re-establish a new standard dose, sufficient enough to sterilize allograft bone, while minimizing the adverse effects of gamma radiation on tissue properties. Using valid modifications, several authors have applied ISO standards to establish a radiation dose for bone allografts that is specific to systems employed in bone banking. These standards, and their verification, suggest that the actual dose could be significantly reduced from 25 kGy, while maintaining a valid sterility assurance level (SAL) of 10(-6). The current paper reviews the methods that have been used to develop radiation doses for terminal sterilization of medical products, and the current trend for selection of a specific dose for tissue banks. PMID:16821106

  19. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    SciTech Connect

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab.

  20. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    SciTech Connect

    Maddox, B.S., Westinghouse Hanford

    1996-07-29

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  1. Results from irradiation tests on D0 Run 2a silicon detectors at the Radiation Damage Facility at Fermilab

    SciTech Connect

    Gardner, J.; Cerber, C.; Ke, Z.; Korjanevsky, S.; Leflat, A.; Lehner, F.; Lipton, R.; Lackey, J.; Merkin, M.; Rapidis, P.; Rykalin, V.; Shabalina, E.; Spiegel, L.; Stutte, L.; Webber, B.; /Kansas U. /Kansas State U. /Illinois U., Chicago /Fermilab /Moscow State U. /Zurich U. /NICADD, DeKalb

    2006-03-01

    Several different spare modules of the D0 experiment Silicon Microstrip Tracker (SMT) have been irradiated at the Fermilab Booster Radiation Damage Facility (RDF). The total dose received was 2.1 MRads with a proton flux of {approx} 3 {center_dot} 10{sup 11} p/cm{sup 2} sec. The irradiation was carried out in steps of 0.3 or 0.6 MRad, with several days between the steps to allow for annealing and measurements. The leakage currents and depletion voltages of the devices increased with dose, as expected from bulk radiation damage. The double sided, double metal devices showed worse degradation than the less complex detectors.

  2. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  3. Preliminary results of the International Fusion Materials Irradiation Facility deuteron injector

    SciTech Connect

    Gobin, R.; Adroit, G.; Bogard, D.; Bourdelle, G.; Chauvin, N.; Delferriere, O.; Gauthier, Y.; Girardot, P.; Guiho, P.; Harrault, F.; Jannin, J. L.; Loiseau, D.; Mattei, P.; Roger, A.; Sauce, Y.; Senee, F.; Vacher, T.

    2012-02-15

    In the framework of the IFMIF-EVEDA project (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities), CEA/IRFU is in charge of the design, construction, and characterization of the 140 mA continuous deuteron injector, including the source and the low energy beam line. The electron cyclotron resonance ion source which operates at 2.45 GHz is associated with a 4-electrode extraction system in order to minimize beam divergence at the source exit. Krypton gas injection is foreseen in the 2-solenoid low energy beam line. Such Kr injection will allow reaching a high level of space charge compensation in order to improve the beam matching at the radio frequency quadrupole (RFQ) entrance. The injector construction is now completed on the Saclay site and the first plasma and beam production has been produced in May 2011. This installation will be tested with proton and deuteron beams either in pulsed or continuous mode at Saclay before shipping to Japan. In this paper, after a brief description of the installation, the preliminary results obtained with hydrogen gas injection into the plasma chamber will be reported.

  4. Preliminary results from Charpy impact testing of irradiated JPDR weld metal and commissioning of a facility for machining of irradiated materials

    SciTech Connect

    Iskander, S.K.; Hutton, J.T.; Creech, L.E.; Nanstad, R.K.; Manneschmidt, E.T.; Rosseel, T.M.; Bishop, P.S.

    1999-09-01

    Forty two full-size Charpy specimens were machined from eight trepans that originated from the Japan Power Demonstration Reactor (JPDR). They were also successfully tested and the preliminary results are presented in this report. The trends appear to be reasonable with respect to the location of the specimens with regards to whether they originated from the beltline or the core regions of the vessel, and also whether they were from the inside or outside regions of the vessel wall. A short synopsis regarding commissioning of the facility to machine irradiated materials is also provided.

  5. 20 CFR 1001.121 - Performance standard on facilities and support for Veterans' Employment and Training Service...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LABOR SERVICES FOR VETERANS Standards of Performance Governing State Agency Services to Veterans and Eligible Persons § 1001.121 Performance standard on facilities and support for Veterans' Employment and... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Performance standard on facilities...

  6. 20 CFR 1001.121 - Performance standard on facilities and support for Veterans' Employment and Training Service...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LABOR SERVICES FOR VETERANS Standards of Performance Governing State Agency Services to Veterans and Eligible Persons § 1001.121 Performance standard on facilities and support for Veterans' Employment and... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Performance standard on facilities...

  7. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas... for affected facilities at onshore natural gas processing plants? (a) You may comply with...

  8. 40 CFR 60.5401 - What are the exceptions to the equipment leak standards for affected facilities at onshore...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas... for affected facilities at onshore natural gas processing plants? (a) You may comply with...

  9. 34 CFR 75.683 - Health or safety standards for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Health or safety standards for facilities. 75.683 Section 75.683 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Other Requirements for Certain Projects § 75.683 Health or...

  10. 36 CFR 1150.2 - Applicability: Buildings and facilities subject to guidelines and standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Applicability: Buildings and facilities subject to guidelines and standards. 1150.2 Section 1150.2 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD PRACTICE AND PROCEDURES FOR COMPLIANCE HEARINGS General Information §...

  11. 9 CFR 166.5 - Licensed garbage-treatment facility standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Licensed garbage-treatment facility standards. 166.5 Section 166.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE SWINE HEALTH PROTECTION SWINE HEALTH PROTECTION General Provisions § 166.5...

  12. 9 CFR 166.5 - Licensed garbage-treatment facility standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Licensed garbage-treatment facility standards. 166.5 Section 166.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE SWINE HEALTH PROTECTION SWINE HEALTH PROTECTION General Provisions § 166.5...

  13. AMERICAN STANDARD SPECIFICATIONS FOR MAKING BUILDINGS AND FACILITIES ACCESSIBLE TO, AND USABLE BY, THE PHYSICALLY HANDICAPPED.

    ERIC Educational Resources Information Center

    National Easter Seal Society for Crippled Children and Adults, Chicago, IL.

    THIS STANDARD IS INTENDED TO PROVIDE MINIMUM REQUIREMENTS TO BE USED IN THE CONSTRUCTION OF ALL BUILDINGS AND FACILITIES AND FOR ADOPTION AND ENFORCEMENT BY ADMINISTRATIVE AUTHORITIES IN ORDER TO ALLOW INDIVIDUALS WITH PERMANENT PHYSICAL DISABILITIES TO PURSUE THEIR INTERESTS AND ASPIRATIONS, DEVELOP THEIR TALENTS, AND EXERCISE THEIR SKILLS.…

  14. 40 CFR 267.18 - What are the standards for selecting the location of my facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... demonstrating compliance with this standard are specified in 40 CFR 270.14(b)(11). Facilities which are located in political jurisdictions other than those listed in appendix VI of 40 CFR part 264, are assumed to... in Holocene time. (1) “Fault” means a fracture along which rocks on one side have been displaced...

  15. 40 CFR 267.18 - What are the standards for selecting the location of my facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrating compliance with this standard are specified in 40 CFR 270.14(b)(11). Facilities which are located in political jurisdictions other than those listed in appendix VI of 40 CFR part 264, are assumed to... in Holocene time. (1) “Fault” means a fracture along which rocks on one side have been displaced...

  16. 40 CFR 267.18 - What are the standards for selecting the location of my facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... demonstrating compliance with this standard are specified in 40 CFR 270.14(b)(11). Facilities which are located in political jurisdictions other than those listed in appendix VI of 40 CFR part 264, are assumed to... hazardous waste will be treated or stored within 61 meters (200 feet) of a fault that has had...

  17. 40 CFR 267.18 - What are the standards for selecting the location of my facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... demonstrating compliance with this standard are specified in 40 CFR 270.14(b)(11). Facilities which are located in political jurisdictions other than those listed in appendix VI of 40 CFR part 264, are assumed to... hazardous waste will be treated or stored within 61 meters (200 feet) of a fault that has had...

  18. 40 CFR 267.18 - What are the standards for selecting the location of my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 100-year flood. (1) “100-year flood plain” means any land area that is subject to a one percent or... demonstrating compliance with this standard are specified in 40 CFR 270.14(b)(11). Facilities which are located in political jurisdictions other than those listed in appendix VI of 40 CFR part 264, are assumed...

  19. 78 FR 16698 - Chemical Facility Anti-Terrorism Standards (CFATS) Chemical-Terrorism Vulnerability Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Information (CVI) for an additional 30 days for public comments. \\1\\ See 77 FR 74685. The 60-day Federal... statutory mandate at 72 FR 17688. Section 550 of the Homeland Security Appropriations Act of 2007 requires a... SECURITY Chemical Facility Anti-Terrorism Standards (CFATS) Chemical- Terrorism Vulnerability...

  20. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  1. PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards

    SciTech Connect

    Basso, T. S.; Chalmers, S.; Barikmo, H. O.

    2005-11-01

    This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

  2. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  3. The EB10 10 MeV, 30 kW electron irradiation facility

    NASA Astrophysics Data System (ADS)

    Karlsson, Mikael

    An irradiation plant including a 10 MeV, 30 kW electron accelerator is described. The accelerator is a four stage linac of standing wave type. Using a 90 degrees bending magnet for energy definition it irradiates boxes on a conveyor from below. The system design emphasizes the necessity for documentation of absorbed dose for each irradiated box by continuous monitoring and recording of the beam process parameters. This makes the system well suitable for irradiation sterilization. A magnet at the exit window corrects for the divergent field introduced by the scanning magnet, giving vertical electrons over the full scanning width. This feature provides more uniform irradiation and it also increases the efficiency of the unit by almost 20 %.

  4. Construction of a Post-Irradiated Fuel Examination Shielded Enclosure Facility

    SciTech Connect

    Michael A. Lehto, Ph.D.; Boyd D. Christensen

    2008-05-01

    The U.S. Department of Energy (DOE) has committed to provide funding to the Idaho National Laboratory (INL) for new post-irradiation examination (PIE) equipment in support of advanced fuels development. This equipment will allow researchers at the INL to accurately characterize the behavior of experimental test fuels after they are removed from an experimental reactor also located at the INL. The accurate and detailed characterization of the fuel from the reactor, when used in conjunction with computer modeling, will allow DOE to more quickly understand the behavior of the fuel and to guide further development activities consistent with the missions of the INL and DOE. Due to the highly radioactive nature of the specimen samples that will be prepared and analyzed by the PIE equipment, shielded enclosures are required. The shielded cells will be located in the existing Analytical Laboratory (AL) basement (Rooms B-50 and B-51) at the INL Material and Fuels Complex (MFC). AL Rooms B-50 and B-51 will be modified to establish an area where sample containment and shielding will be provided for the analysis of radioactive fuels and materials while providing adequate protection for personnel and the environment. The area is comprised of three separate shielded cells for PIE instrumentation. Each cell contains an atmosphere interface enclosure (AIE) for contamination containment. The shielding will provide a work area consistent with the as-low-as-reasonably-achievable (ALARA) concept, assuming a source term of 10 samples in each of the three shielded areas. Source strength is assumed to be a maximum of 3 Ci at 0.75 MeV gamma for each sample. Each instrument listed below will be installed in an individual shielded enclosure: Shielded electron probe micro-analyzer (EPMA) Focused ion beam instrument (FIB) Micro-scale x-ray diffractometer (MXRD). The project is designed and expected to be built incrementally as funds are allocated. The initial phase will be to fund the

  5. System for target irradiation in the Iskra-6 high-power laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Eroshenko, V A; Kochemasov, G G; L'vov, L V; Mochalov, M R

    1999-03-31

    An analysis is made of various systems for direct irradiation of a target enabling achievement of a high degree of the irradiation uniformity. The required departure from uniformity of target irradiation, {delta}I/I {<=} 1% - 2%, may be attained when the number of laser beams is N {>=} 80, the diameter of the waist is approximately equal to the target diameter, and the intensity profile in the waist is Gaussian or super-Gaussian. Various methods of forming the necessary intensity distribution in a transverse cross section of a beam are considered. (interaction of laser radiation with matter. laser plasma)

  6. Standard format and content for emergency plans for fuel cycle and materials facilities

    SciTech Connect

    Not Available

    1990-09-01

    This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs.

  7. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    SciTech Connect

    Ellis, Ronald James; Rapp, Juergen

    2014-01-01

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  8. Implant breast reconstruction followed by radiotherapy: Can helical tomotherapy become a standard irradiation treatment?

    SciTech Connect

    Massabeau, Carole; Fournier-Bidoz, Nathalie; Wakil, Georges; Castro Pena, Pablo; Viard, Romain; Zefkili, Sofia; Reyal, Fabien; Campana, Francois; Fourquet, Alain; Kirova, Youlia M.

    2012-01-01

    To evaluate the benefits and limitations of helical tomotherapy (HT) for loco-regional irradiation of patients after a mastectomy and immediate implant-based reconstruction. Ten breast cancer patients with retropectoral implants were randomly selected for this comparative study. Planning target volumes (PTVs) 1 (the volume between the skin and the implant, plus margin) and 2 (supraclavicular, infraclavicular, and internal mammary nodes, plus margin) were 50 Gy in 25 fractions using a standard technique and HT. The extracted dosimetric data were compared using a 2-tailed Wilcoxon matched-pair signed-rank test. Doses for PTV1 and PTV2 were significantly higher with HT (V95 of 98.91 and 97.91%, respectively) compared with the standard technique (77.46 and 72.91%, respectively). Similarly, the indexes of homogeneity were significantly greater with HT (p = 0.002). HT reduced ipsilateral lung volume that received {>=}20 Gy (16.7 vs. 35%), and bilateral lungs (p = 0.01) and neighboring organs received doses that remained well below tolerance levels. The heart volume, which received 25 Gy, was negligible with both techniques. HT can achieve full target coverage while decreasing high doses to the heart and ipsilateral lung. However, the low doses to normal tissue volumes need to be reduced in future studies.

  9. Standardized Mapping of Nursing Assessments across 59 U.S. Military Treatment Facilities

    PubMed Central

    Harman, Tiffany L.; Seeley, Rachael A.; Oliveira, Ivete M.; Sheide, Amy; Kartchner, Tosh; Woolstenhulme, R. Dean; Wilson, Patricia S.; Lau, Lee Min; Matney, Susan A.

    2012-01-01

    OBJECTIVE: Create an interoperable set of nursing flowsheet assessment measures within military treatment facility electronic health records using the 3M Healthcare Data Dictionary (HDD). DESIGN: The project comprised three phases: 1) discovery included an in-depth analysis of the Essentris data to be mapped in the HDD; 2) mapping encompassed the creation of standard operating procedures, mapping heuristics, and the development of mapping tools; and 3) quality assurance incorporated validation of mappings using inter-rater agreement. RESULTS: Of 569,073 flowsheet concepts, 92% were mapped to the HDD. Of these, 31.5% represented LOINC concepts, 15% represented SNOMED CT and 1% represented both. 52.5% were mapped to HDD concepts with no standardized terminology representations. CONCLUSIONS: Nursing flowsheet data can be mapped to standard terminologies but there is not the breadth of coverage necessary to represent nursing assessments. Future work is necessary to develop a standard information model for the nursing process. PMID:23304303

  10. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT--Hatanaka memorial lecture.

    PubMed

    Harling, Otto K

    2009-07-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  11. Comparison of pka energy spectra, gas-atom production and damage energy deposition in neutron irradiation at various facilities

    NASA Astrophysics Data System (ADS)

    Nishiguchi, R.; Shimomura, Y.; Hahn, P. A.; Guinan, M. W.; Kiritani, M.

    1991-03-01

    By dividing neutron-energy spectrum into four energy groups, (I) <10 eV, (II) 10 eV to 0.1 MeV, (III) 0.1 MeV to 10 MeV and (IV) > 10 MeV, contributions to damage parameters (PKA spectrum, damage energy and gas-atom production) from each of the energy group were calculated for neutron irradiations at various facilities with the SPECTER code developed by Greenwood and Smither [1]. The normalized PKA spectra and the gas-atom productions were compared to examine differences in damage parameters. Such comparisons were carried out among (1) irradiations at various positions in different fission reactors (i.e. KUR, JOYO and FFTF-MOTA), and among (2) those at various fission reactors. Damage parameters were also calculated at STARFIRE fusion reactor and RTNS-II. A possible method to correlate damages at different fission reactors is discussed. It is suggested that damages in fusion reactor can be simulated by the superposition of irradiations with fission and D-T neutrons.

  12. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    SciTech Connect

    Eye, R.V.

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  13. RELAP5 Model of a Two-phase ThermoSyphon Experimental Facility for Fuels and Materials Irradiation

    SciTech Connect

    Carbajo, Juan J; McDuffee, Joel Lee

    2013-01-01

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) does not have a separate materials-irradiation flow loop and requires most materials and all fuel experiments to be placed inside a containment. This is necessary to ensure that internal contaminants such as fission products cannot be released into the primary coolant. As part of the safety basis justification, HFIR also requires that all experiments be able to withstand various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. As with any parallel flow system, HFIR is vulnerable to flow excursion events when vapor is generated in one of those flow paths. The effects of these requirements are to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant and to reduce experiment heat loads to ensure boiling doesn t occur. A new experimental facility for materials irradiation and testing in the HFIR is currently being developed to overcome these limitations. The new facility is unique in that it will have its own internal cooling flow totally independent of the reactor primary coolant and boiling is permitted. The reactor primary coolant will cool the outside of this facility without contacting the materials inside. The ThermoSyphon Test Loop (TSTL), a full scale prototype of the proposed irradiation facility to be tested outside the reactor, is being designed and fabricated (Ref. 1). The TSTL is a closed system working as a two-phase thermosyphon. A schematic is shown in Fig. 1. The bottom central part is the boiler/evaporator and contains three electric heaters. The vapor generated by the heaters will rise and be condensed in the upper condenser, the condensate will drain down the side walls and be circulated via a downcomer back into the bottom of the boiler. An external flow system provides coolant that simulates the HFIR primary coolant

  14. Hardware-in-the-loop test facility for the standard missile-3 kinetic warhead

    NASA Astrophysics Data System (ADS)

    Patchan, Robert M.

    2005-05-01

    The Guidance System Evaluation Laboratory of The Johns Hopkins University Applied Physics Laboratory developed a hardware-in-the-loop (HWIL) simulation facility in 2000 for the test and evaluation of the Aegis Ballistic Missile Defense Standard Missile-3 (SM-3) kinetic warhead. We continue to expand on this architecture to facilitate the test of the tactically deployed SM-3 system. An overview and philosophy of the HWIL facility is described. Each of the key test equipment devices is described, along with an upgrade path that provides more accuracy and reliability, as well as increased test capability. The key components are the body dynamics simulation control computer, a scene rendering computer, a resistive-array IR scene projector, and support optics.

  15. [MANAGEMENT STANDARDS FOR QUALIFIED PHYSICIANS AND MEDICAL FACILITIES FOR ENDOVENOUS ABLATION OF VARICOSE VEINS].

    PubMed

    Ogawa, Tomohiro

    2015-05-01

    Endovenous ablation of saphenous veins using laser energy was approved by the Japanese Ministry of Health, Labor and Welfare in 2011 as a more effective, less-invasive method than classical treatment for varicose veins. New medical laser and radiofrequency devices for this purpose were also approved in 2014. A requirement for the treatment of varicose veins with health insurance reimbursement using these devices is a physician with sufficient knowledge of endovenous ablation. The management standards for endovenous ablation set by varicose vein specialist medical societies are used to accredit qualified physicians who have basic clinical experience in the treatment of varicose veins, qualified instructors, and safe, effective medical facilities.

  16. National Institute of Standards and Technology Synchrotron Radiation Facilities for Materials Science

    PubMed Central

    Long, Gabrielle G.; Allen, Andrew J.; Black, David R.; Burdette, Harold E.; Fischer, Daniel A.; Spal, Richard D.; Woicik, Joseph C.

    2001-01-01

    Synchrotron Radiation Facilities, supported by the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, include beam stations at the National Synchrotron Light Source at Brookhaven National Laboratory and at the Advanced Photon Source at Argonne National Laboratory. The emphasis is on materials characterization at the microstructural and at the atomic and molecular levels, where NIST scientists, and researchers from industry, universities and government laboratories perform state-of-the-art x-ray measurements on a broad range of materials. PMID:27500070

  17. Facile Synthesis of Silver Nanoparticles Under {gamma}-Irradiation: Effect of Chitosan Concentration

    SciTech Connect

    Huang, N. M.; Radiman, S.; Ahmad, A.; Idris, H.; Lim, H. N.; Khiew, P. S.; Chiu, W. S.; Tan, T. K.

    2009-06-01

    In the present study, a biopolymer, low molecular weight chitosan had been utilized as a 'green' stabilizing agent for the synthesis of silver nanoparticles under {gamma}-irradiation. The as-synthesized silver nanoparticles have particle diameters in the range of 5 nm-30 nm depending on the percentage of chitosan used (0.1 wt%, 0.5 wt%, 1.0 wt% and 2.0 wt%). It was found that the yield of the silver nanoparticles was in accordance with the concentration of chitosan presence in the solution due to the reduction by the chitosan radical during irradiation. The highly stable chitosan encapsulated silver nanoparticles were characterized using transmission electron microscopy (TEM), UV-Visible spectrophotometer (UV-VIS) and X-ray diffraction spectroscopy (XRD)

  18. 10 CFR 170.21 - Schedule of fees for production and utilization facilities, review of standard referenced design...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of fees Fees 1,2 A. Nuclear Power Reactors Application for Construction Permit Full cost. Early Site... licenses. 170.21 Section 170.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FEES FOR FACILITIES..., approvals of facility standard reference designs, re-qualification and replacement examinations for...

  19. 10 CFR 170.21 - Schedule of fees for production and utilization facilities, review of standard referenced design...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of fees Fees 1,2 A. Nuclear Power Reactors Application for Construction Permit Full cost. Early Site... licenses. 170.21 Section 170.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FEES FOR FACILITIES..., approvals of facility standard reference designs, re-qualification and replacement examinations for...

  20. 10 CFR 170.21 - Schedule of fees for production and utilization facilities, review of standard referenced design...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of fees Fees 1,2 A. Nuclear Power Reactors Application for Construction Permit Full cost. Early Site... licenses. 170.21 Section 170.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FEES FOR FACILITIES..., approvals of facility standard reference designs, re-qualification and replacement examinations for...

  1. 10 CFR 170.21 - Schedule of fees for production and utilization facilities, review of standard referenced design...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of fees Fees 1,2 A. Nuclear Power Reactors Application for Construction Permit Full cost. Early Site... licenses. 170.21 Section 170.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FEES FOR FACILITIES..., approvals of facility standard reference designs, re-qualification and replacement examinations for...

  2. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass standard reference material

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.

    1992-09-30

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Preliminary Specifications (WAPS). The current Waste Acceptance Preliminary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCT). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Envirorunental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability, analytic, and/or redox Standard Reference Material (SRM) for all waste form producers.

  3. Study of the reference standard facility of rhodium-iron resistance thermometer

    NASA Astrophysics Data System (ADS)

    Yin, L.; Lin, P.; Qi, X.

    2014-03-01

    A 704 type 4He cryostat is designed and the "National (China) Temperature Working Standard Group of the ITS-90 at 1.2-24 K" have been composed. A 703 type 3He cryostat have been established and the working temperature of the "National Temperature Working Standard Group of the ITS-90 at 1.2-24 K" is extended to 0.65 K, which is the lowest limit temperature of ITS-90. The 5 rhodium-iron resistance thermometers (RIRTs) which compose the Working Standard Group have been transformed to the International Temperature Scale of 1990 (ITS-90). A set of indexing data is fitted and calculated as the indexing table of the standard facility of RIRT. 42 basis temperature points have been measured at 0.67-26.37 K. The results show that the temperature control level could reach 0.5 mK/30 min. The difference between the temperature value of the 5 RIRTs and the average is less than 1.1 mK, and the comparison measurements uncertainty is 0.95 mK.

  4. Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water.

    PubMed

    Kumar, Vijay Bhooshan; Gedanken, Aharon; Porat, Ze'ev

    2015-09-01

    This work describes the single-step synthesis of GaO(OH) by ultrasonic irradiation of molten gallium in warm water. The ultrasonic energy causes dispersion of the liquid gallium into micrometric spheres, as-well-as decomposition of some of the water into H and OH radicals. The OH radicals and the dissolved oxygen react on the surface of the gallium spheres to form crystallites of GaO(OH). These crystallites prevent the re-coalescence of the gallium spheres, and as the reaction proceeds all the gallium is converted into crystalline GaO(OH).

  5. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  6. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    SciTech Connect

    Phillips, Ann Marie; Meservey, Richard H.

    2003-02-27

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  7. Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: Highly photocatalytic property and enhanced photostability

    SciTech Connect

    Yang, Zhongmei; Zhang, Ping; Ding, Yanhuai; Jiang, Yong; Long, Zhilin; Dai, Wenli

    2011-10-15

    Highlights: {yields} Fabrication of Ag/ZnO heterostructure between the two incompatible phases is realized under UV irradiation in the absence of surfactant. {yields} The synthetic method is facile, low cost, and low carbon, which depends on the photogenerated electrons produced by ZnO under UV light. {yields} Photocatalytic property of the as-synthesized samples is 3.0 times as good as the pure ZnO synthesized under the same condition or the commercial TiO{sub 2} (Degussa, P-25). {yields} The heterostructures exhibit good durability without significant change in the activity even after the third cycle compared to the pure ZnO. -- Abstract: We report a new method to synthesize Ag/ZnO heterostructures assisted by UV irradiation. The formation of Ag/ZnO heterostructures depends on photogenerated electrons produced by ZnO under UV light to reduce high valence silver. Functional property of the Ag/ZnO heterostructures is evaluated by photodegradation of methylene blue (MB) under UV illumination. Results of photodegradation tests reveal that the optimal photocatalytic activity of as-syntheszied samples is about 1.5 times higher than the pure ZnO synthesized in the same condition or commercial TiO{sub 2} (P-25), showing the advantage of the unique structure in the Ag/ZnO heterostructure. Besides, due to the reduced activation of surface oxygen atom, photocatalytic activity of the photocatalysts has no evident decrease even after three recycles.

  8. Irradiation Test Plan for the ATR National Scientific User Facility - University of Wisconsin Pilot Project

    SciTech Connect

    Heather J. MacLean; Kumar Sridharan; Timothy A. Hyde

    2008-06-01

    The performance of advanced nuclear systems critically relies on the performance of the materials used for cladding, duct, and other structural components. In many proposed advanced systems, the reactor design pushes the temperature and the total radiation dose higher than typically seen in a light water reactor. Understanding the stability of these materials under radiation is critical. There are a large number of materials or material systems that have been developed for greater high temperature or high dose performance for which little or no information on radiation response exists. The goal of this experiment is to provide initial data on the radiation response of these materials. The objective of the UW experiment is to irradiate materials of interest for advanced reactor applications at a variety of temperatures (nominally 300°C, 400°C, 500°C, and 700°C) and total dose accumulations (nominally 3 dpa and 6 dpa). Insertion of this irradiation test is proposed for September 2008 (ATR Cycle 143A).

  9. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Riley, K. J.; Binns, P. J.; Harling, O. K.

    2004-08-01

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  10. A state-of-the-art epithermal neutron irradiation facility for neutron capture therapy.

    PubMed

    Riley, K J; Binns, P J; Harling, O K

    2004-08-21

    At the Massachusetts Institute of Technology (MIT) the first fission converter-based epithermal neutron beam (FCB) has proven suitable for use in clinical trials of boron neutron capture therapy (BNCT). The modern facility provides a high intensity beam together with low levels of contamination that is ideally suited for use with future, more selective boron delivery agents. Prescriptions for normal tissue tolerance doses consist of 2 or 3 fields lasting less than 10 min each with the currently available beam intensity, that are administered with an automated beam monitoring and control system to help ensure safety of the patient and staff alike. A quality assurance program ensures proper functioning of all instrumentation and safety interlocks as well as constancy of beam output relative to routine calibrations. Beam line shutters and the medical room walls provide sufficient shielding to enable access and use of the facility without affecting other experiments or normal operation of the multipurpose research reactor at MIT. Medical expertise and a large population in the greater Boston area are situated conveniently close to the university, which operates the research reactor 24 h a day for approximately 300 days per year. The operational characteristics of the facility closely match those established for conventional radiotherapy, which together with a near optimum beam performance ensure that the FCB is capable of determining whether the radiobiological promise of NCT can be realized in routine practice.

  11. 40 CFR 63.11601 - What are the standards for new and existing paints and allied products manufacturing facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... existing paints and allied products manufacturing facilities? 63.11601 Section 63.11601 Protection of... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Standards, Monitoring, and Compliance Requirements § 63.11601 What are the standards for new and existing paints and...

  12. 40 CFR 63.11601 - What are the standards for new and existing paints and allied products manufacturing facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing paints and allied products manufacturing facilities? 63.11601 Section 63.11601 Protection of... Hazardous Air Pollutants for Area Sources: Paints and Allied Products Manufacturing Standards, Monitoring, and Compliance Requirements § 63.11601 What are the standards for new and existing paints and...

  13. Irradiation facility at the TRIGA Mainz for treatment of liver metastases.

    PubMed

    Hampel, G; Wortmann, B; Blaickner, M; Knorr, J; Kratz, J V; Lizón Aguilar, A; Minouchehr, S; Nagels, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L

    2009-07-01

    The TRIGA Mark II reactor at the University of Mainz provides ideal conditions for duplicating BNCT treatment as performed in Pavia, Italy, in 2001 and 2003 [Pinelli, T., Zonta, A., Altieri, S., Barni, S., Braghieri, A., Pedroni, P., Bruschi, P., Chiari, P., Ferrari, C., Fossati, F., Nano, R., Ngnitejeu Tata, S., Prati, U., Ricevuti, G., Roveda, L., Zonta, C., 2002. TAOrMINA: from the first idea to the application to the human liver. In: Sauerwein et al. (Eds.), Research and Development in Neutron Capture Therapy. Proceedings of the 10th International Congress on Neutron Capture Therapy, Monduzzi editore, Bologna, pp. 1065-1072]. In order to determine the optimal parameters for the planned therapy and therefore for the design of the thermal column, calculations were conducted using the MCNP-code and the transport code ATTILA. The results of the parameter study as well as a possible configuration for the irradiation of the liver are presented. PMID:19394836

  14. Development of an x-ray irradiation port for biomedical applications at the CUEBIT facility

    NASA Astrophysics Data System (ADS)

    Medlin, D.; Heffron, W.; Siegel, A.; Wilson, K.; Klingenberger, A.; Gall, A.; Rusin, M.; Dean, D.; Takacs, E.

    2015-01-01

    Because of the importance of x-ray interactions in modern medicine, efforts must be made to combine the fields of biology and physics. This paper reviews the development of an x-ray irradiation port that allows us to study the interaction of x-rays generated by highly charged ions with biological material, such as stem and cancer cells. Our goal is to better understand these interactions in order to improve the techniques of x-ray therapy by narrowing and specifically selecting the range of radiation energies applied. Using the Clemson University Electron Beam Ion Trap (CUEBIT), the generation of quasi-monochromatic x- rays from highly charged ions is possible. In order to maintain the integrity of the cells being studied, the cell culture needs to be oriented horizontally during the irradiation process. This poses a problem, as the highly charged ion beam generated at the CUEBIT is also oriented horizontally. Therefore, we have designed a system that employs a quadrupole bender that directs the ion beam vertically, which allows for the production of x-rays directly under the cell culture. The experimental station consists of a vacuum chamber that attaches to the end of the beam line. This chamber houses the quadrupole bender, a beryllium window for generating x-rays, and the interface between the beryllium window and the cell culture. X-rays must transmit through the bottom of a flask before they interact with the cells. Hence, we implement a procedure to replace the bottom of the flask with a thin layer of Mylar, allowing x-rays to penetrate through easily. We will use this system to study the effects of monochromatic x- rays on stem cells, cancer cells, and their associated proteins.

  15. Streaked radiography of an irradiated foam sample on the National Ignition Facility

    SciTech Connect

    Cooper, A. B. R.; Schneider, M. B.; MacLaren, S. A.; Young, P. E.; Hsing, W. W.; Seugling, R.; Foord, M. E.; Sain, J. D.; May, M. J.; Marrs, R. E.; Maddox, B. R.; Lu, K.; Dodson, K.; Smalyuk, V.; Moore, A. S.; Graham, P.; Foster, J. M.; Back, C. A.; Hund, J. F.

    2013-03-15

    Streaked x-ray radiography images of annular patterns in an evolving tantalum oxide foam under the influence of a driven, subsonic radiation wave were obtained on the National Ignition Facility. This is the first successful radiography measurement of the evolution of well-defined foam features under a driven, subsonic wave in the diffusive regime. A continuous record of the evolution was recorded on an x-ray streak camera, using a slot-apertured point-projection backlighter with an 8 ns nickel source (7.9 keV). Radiography images were obtained for four different annular patterns, which were corrected using a source-dependent flat-field image. The evolution of the foam features was well-modeled using the 3D KULL radiation hydrodynamics code. This experimental and modeling platform can be modified for scaled high-energy-density laboratory astrophysics experiments.

  16. The proposed spallation neutron source and modernized reactor as possible sites for a low temperature irradiation facility in Germany*1

    NASA Astrophysics Data System (ADS)

    Böning, K.; Gläser, W.; Golub, R.; Meier, J.

    1982-07-01

    A feasibility study for a Spallation Neutron Source (SNQ) in Germany was completed in June 1981. In this project an intensity-modulated LINAC (100 pps) would provide a proton beam of energy 1100 MeV and time-average current Īp = 5 mA . Spallation neutrons are produced in the lead material of a rotating target wheel and moderated in a hybrid arrangement consisting of both a small H 2O volume and a large D 2O tank. Here the maximum values of the peak and time-average thermal fluxes are ̂gf th ≈ 1.3 × 10 16 cm -2 s -1 and ¯gf th ≈ 6.5 × 10 14 cm -2 s -1, respectively. A low temperature irradiation facility (LTIF) has been proposed to allow irradiations in the temperature range of 4.5 to 450 K with either thermal neutrons ( ¯gf th ≈ 1 × 10 14 cm -2 s -1) or fast neutrons ( ¯gf f ≈ 2 × 10 13 cm -2 s -1). The advantages and disadvantages of having this LTIF at the SNQ are discussed with respect to the alternative of installing it at a fission reactor. Finally, the example of a possible modernization and upgrading of the Munich research reactor FRM is used to discuss the performance of such a reactor and the concept of a LTIF in this case, and to point out the complementarity of an optimized SNQ (high- ̂gf applications) and such a modernized reactor (high- ¯gf applications).

  17. Spectral Irradiance Calibration in the Infrared. 11; Comparison of (alpha) Bootis and 1 Ceres with a Laboratory Standard

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jesse D.; Wooden, Diane H.; Heere, Karen; Shirley, Eric L.

    1999-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the KI.5 III star alpha Boo is measured from 3 to 30 microns, and that of the C-type asteroid 1 Ceres from 5 to 30 microns. While these "standard" spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically, they provide a model-independent means of calibrating celestial flux in the spectral range from 12 to 30 microns, where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux-calibrated by theoretical modeling of these hot stars, strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  18. Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.

    1998-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  19. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1

    SciTech Connect

    Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

    2003-02-24

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

  20. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  1. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  2. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  3. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  4. 40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection of... NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission... natural gas processing plant? This section applies to the group of all equipment, except...

  5. 40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection of... NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission... natural gas processing plant? This section applies to the group of all equipment, except...

  6. 41 CFR 102-76.65 - What standards must facilities subject to the Architectural Barriers Act meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATION REAL PROPERTY 76-DESIGN AND CONSTRUCTION Architectural Barriers Act § 102-76.65 What standards... CFR part 1191 (ABA Chapters 1 and 2, and Chapters 3 through 10) as the Architectural Barriers Act... facilities subject to the Architectural Barriers Act meet? 102-76.65 Section 102-76.65 Public Contracts...

  7. COMPARISON OF HORIZONTAL SEISMIC COEFFICIENTS DEFINED BY CURRENT AND PREVIOUS DESIGN STANDARDS FOR PORT AND HARBOR FACILITIES

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Ikuta, Akiho

    Japanese design standard for port and harbor facilities was revised in 2007, modifying the method used to calculate the horizontal seismic coefficient, kh. The comprehensive change of the method indicates that the quay walls designed by the previous standard could be lack of earthquake resistance in terms of the current standard. In the present study, the coefficients, kh, calculated by the two standards were compared for the existing quay walls constructed in Kanto area, Japan. In addition, the factors that affected the relationship of two types of coefficients, kh, were identified by means of multiple regression analyses. Only 16 % of the current standard of kh exceeded the previous standard of kh. According to the multiple regression analyses, the ratio of two types of coefficients, kh, tended to increase in the quay walls which were located in a specific port and had the large wall height and the small importance factor.

  8. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    PubMed

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.

  9. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities.

    PubMed

    Patrono, C; Monteiro Gil, O; Giesen, U; Langner, F; Pinto, M; Rabus, H; Testa, A

    2015-09-01

    The aim of the 'BioQuaRT' (Biologically weighted Quantities in RadioTherapy) project is to develop measurement techniques for characterising charged particle track structure on different length scales, and to correlate at the cellular level the track structure properties with the biological effects of radiation. This multi-scale approach will allow characterisation of the radiation qualities used in radiotherapy and the related biological effects. Charged-particle microbeam facilities were chosen as the platforms for all radiobiology experiments in the 'BioQuaRT' project, because they allow targeting single cells (or compartments of a cell) with a predefined number of ionising particles and correlating the cell-by-cell induced damage with type and energy of the radiation and with the number of ions per cell. Within this project, a novel in situ protocol was developed for the analysis of the misrepaired and/or unrepaired chromosome damage induced by charged-particle irradiations at the Physikalisch-Technische Bundesanstalt (PTB) ion microbeam facility. Among the cytogenetic biomarkers to detect and estimate radiation-induced DNA damage in radiobiology, chromosomal aberrations and micronuclei were chosen. The characteristics of the PTB irradiation system required the design of a special in situ assay: specific irradiation dishes with a base made from a biofoil 25-µm thick and only 3000-4000 cells seeded and irradiated per dish. This method was developed on Chinese hamster ovary (CHO) cells, one of the most commonly used cell lines in radiobiology in vitro experiments. The present protocol allows the simultaneous scoring of chromosome aberrations and micronuclei on the same irradiated dish. Thanks to its versatility, this method could also be extended to other radiobiological applications besides the single-ion microbeam irradiations.

  10. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities.

    PubMed

    Patrono, C; Monteiro Gil, O; Giesen, U; Langner, F; Pinto, M; Rabus, H; Testa, A

    2015-09-01

    The aim of the 'BioQuaRT' (Biologically weighted Quantities in RadioTherapy) project is to develop measurement techniques for characterising charged particle track structure on different length scales, and to correlate at the cellular level the track structure properties with the biological effects of radiation. This multi-scale approach will allow characterisation of the radiation qualities used in radiotherapy and the related biological effects. Charged-particle microbeam facilities were chosen as the platforms for all radiobiology experiments in the 'BioQuaRT' project, because they allow targeting single cells (or compartments of a cell) with a predefined number of ionising particles and correlating the cell-by-cell induced damage with type and energy of the radiation and with the number of ions per cell. Within this project, a novel in situ protocol was developed for the analysis of the misrepaired and/or unrepaired chromosome damage induced by charged-particle irradiations at the Physikalisch-Technische Bundesanstalt (PTB) ion microbeam facility. Among the cytogenetic biomarkers to detect and estimate radiation-induced DNA damage in radiobiology, chromosomal aberrations and micronuclei were chosen. The characteristics of the PTB irradiation system required the design of a special in situ assay: specific irradiation dishes with a base made from a biofoil 25-µm thick and only 3000-4000 cells seeded and irradiated per dish. This method was developed on Chinese hamster ovary (CHO) cells, one of the most commonly used cell lines in radiobiology in vitro experiments. The present protocol allows the simultaneous scoring of chromosome aberrations and micronuclei on the same irradiated dish. Thanks to its versatility, this method could also be extended to other radiobiological applications besides the single-ion microbeam irradiations. PMID:25877532

  11. Hypofractionated whole breast irradiation: new standard in early breast cancer after breast-conserving surgery

    PubMed Central

    Kim, Kyung Su; Shin, Kyung Hwan; Choi, Noorie; Lee, Sea-Won

    2016-01-01

    Hypofractionated whole breast irradiation (HF-WBI) has been proved effective and safe and even better for late or acute radiation toxicity for early breast cancer. Moreover, it improves patient convenience, quality of life and is expected to be advantageous in the medical care system by reducing overall cost. In this review, we examined key randomized trials of HF-WBI, focusing on adequate patient selection as suggested by the American Society of Therapeutic Radiology and Oncology (ASTRO) guideline and the radiobiologic aspects of HF-WBI in relation to its adoption into clinical settings. Further investigation to identify the current practice pattern or cost effectiveness is warranted under the national health insurance service system in Korea. PMID:27306774

  12. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  13. 9 CFR 166.5 - Licensed garbage-treatment facility standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this section. (a) Insects and animals shall be controlled. Accumulation of any material at the facility where insects and rodents may breed is prohibited. (b) Equipment used for handling untreated...

  14. 9 CFR 166.5 - Licensed garbage-treatment facility standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this section. (a) Insects and animals shall be controlled. Accumulation of any material at the facility where insects and rodents may breed is prohibited. (b) Equipment used for handling untreated...

  15. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-A, X, XIV, or XVI(AABD) of the Social Security Act must provide that: (a) The State agency will... appropriate persons; (2) Regular planned evaluation of housing and facilities by regularly assigned...

  16. National Bureau of Standards passive solar test facility: Instrumentation and site handbook

    NASA Astrophysics Data System (ADS)

    Mahajan, B. M.

    1984-08-01

    This handbook provides a complete description of the test buildng, thermophysical properties of the building material, location of the sensors installed at the test facility, and data acquisition system and procedures.

  17. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet the energy standards prescribed by the American Society of Heating, Refrigerating, and Air Conditioning Engineers and the Illuminating Engineering Society of North American in ASHRAE/IES Standard...

  18. 41 CFR 102-74.165 - What energy standards must Federal agencies follow for existing facilities?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... meet the energy standards prescribed by the American Society of Heating, Refrigerating, and Air Conditioning Engineers and the Illuminating Engineering Society of North American in ASHRAE/IES Standard...

  19. Santa Fe Public Schools Facilities Master Plan. Elementary School Planning Standards.

    ERIC Educational Resources Information Center

    Santa Fe Public Schools, NM.

    This document contains policies and standards to guide the design and evaluation of elementary schools in the Santa Fe Public School District. These policies and standards can be used for a variety of purposes: to serve as a checklist to evaluate existing schools, to identify capital outlay needs to bring all schools to minimum standards, and to…

  20. 25 CFR 170.810 - To what standards must an IRR transportation facility be maintained?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.810 To what standards must an IRR... standards; (b) AASHTO road and bridge maintenance manuals, latest edition; or (c) Other applicable Federal, State, tribal, or local government maintenance standards as may be negotiated in an ISDEAA...

  1. 25 CFR 170.810 - To what standards must an IRR transportation facility be maintained?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.810 To what standards must an IRR... standards; (b) AASHTO road and bridge maintenance manuals, latest edition; or (c) Other applicable Federal, State, tribal, or local government maintenance standards as may be negotiated in an ISDEAA...

  2. 25 CFR 170.810 - To what standards must an IRR transportation facility be maintained?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.810 To what standards must an IRR... standards; (b) AASHTO road and bridge maintenance manuals, latest edition; or (c) Other applicable Federal, State, tribal, or local government maintenance standards as may be negotiated in an ISDEAA...

  3. 25 CFR 170.810 - To what standards must an IRR transportation facility be maintained?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.810 To what standards must an IRR... standards; (b) AASHTO road and bridge maintenance manuals, latest edition; or (c) Other applicable Federal, State, tribal, or local government maintenance standards as may be negotiated in an ISDEAA...

  4. 25 CFR 170.810 - To what standards must an IRR transportation facility be maintained?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.810 To what standards must an IRR... standards; (b) AASHTO road and bridge maintenance manuals, latest edition; or (c) Other applicable Federal, State, tribal, or local government maintenance standards as may be negotiated in an ISDEAA...

  5. Investigations of irradiation effects on electronic components to be used in VUV-FEL and X-FEL facilities at DESY

    NASA Astrophysics Data System (ADS)

    Rybka, Dominik; Kalicki, Arkadiusz; Pozniak, Krzysztof; Romaniuk, Ryszard; Mukherjee, Bhaskar; Simrock, Stefan

    2005-09-01

    Electronic components during High Energy Physics experiments are exposed to high level of radiation. Radiation environment causes many problems to electronic devices. The goal of several experiments done at DESY (Deutsches Elektronen Synchrotron, Hamburg) was to investigate nature of irradiation effects, caused damages and possible techniques of mitigation. One of aspects of experiments is radiation measurements. The propositions of building radiation monitoring system, using different semiconductor components, are presented. Second aspect is radiation tolerance. Different electronic devices were tested: FPGA chips, CCD sensors, bubble dosimeters and LED diodes. Components were irradiated in TESLA Test Facility 2 tunnel and in laboratory using 241Am/Be neutron source. The results of experiments are included and discussed.

  6. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.; Wootan, D. W.

    2016-05-01

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The MFF fuel operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peak fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in EBR-II experiments. Data from the MFF-3 and MFF-5 assemblies are most comparable to the data obtained from the EBR-II X447 experiment. The two X447 pin breaches were strongly influenced by fuel/cladding chemical interaction (FCCI) at the top of the fuel column. Post irradiation examination data from MFF-3 and MFF-5 are presented and compared to historical EBR-II data.

  7. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  8. 75 FR 80397 - Version One Regional Reliability Standards for Facilities Design, Connections, and Maintenance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., if so, how. \\27\\ Order No. 723, 74 FR 25,442 at P 37-40. 39. WECC proposes to define Functionally... Facilities Design, Connections, and Maintenance; Protection and Control; and Voltage and Reactive December 17...-WECC-1--Transmission Maintenance 11 B. PRC-004-WECC-1--Protection System and Remedial 25 Action...

  9. 75 FR 18850 - National Protection and Programs Directorate; Chemical Facility Anti-Terrorism Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... chemical facility would collect the required information in a single file (or series of files) and upload..., 2009, at 74 FR 27555. Comments were received and responses are in this notice. The purpose of this... August 22, 2007, at 72 FR 47073.) Information Collected DHS may collect the following information...

  10. 77 FR 74685 - Chemical Facility Anti-Terrorism Standards (CFATS) Chemical-Terrorism Vulnerability Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... information provided. Special Instructions: Comments that include trade secrets, confidential commercial or.... Comments containing trade secrets, confidential commercial or financial information, CVI, SSI, or PCII... security of high-risk chemical facilities. On April 9, 2007, the Department issued an Interim Final...

  11. IEEE 1547 National Standard for Interconnecting Distributed Generation: How Could It Help My Facility? Preprint

    SciTech Connect

    Basso, T.; Friedman, N. R.

    2003-11-01

    This article summarizes the purpose, development, and impact of the Institute of Electrical and Electronics Engineers 1547 Standard for Interconnecting Distributed Resources With Electric Power Systems. Also included is a short explanation of supporting standards IEEE P1547.1, P1547.2, and P1547.3.

  12. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true State standards for office space, equipment, and... SERVICES GENERAL ADMINISTRATION-PUBLIC ASSISTANCE PROGRAMS § 205.170 State standards for office space...-A, X, XIV, or XVI(AABD) of the Social Security Act must provide that: (a) The State agency...

  13. 45 CFR 205.170 - State standards for office space, equipment, and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false State standards for office space, equipment, and... SERVICES GENERAL ADMINISTRATION-PUBLIC ASSISTANCE PROGRAMS § 205.170 State standards for office space...-A, X, XIV, or XVI(AABD) of the Social Security Act must provide that: (a) The State agency...

  14. Inactivation Effect of Standard and Fractionated Electron Beam Irradiation on Enveloped and Non-Enveloped Viruses in a Tendon Transplant Model

    PubMed Central

    Schmidt, Tanja; Hoburg, Arnd T.; Gohs, Uwe; Schumann, Wolfgang; Sim-Brandenburg, Jung-Won; Nitsche, Andreas; Scheffler, Sven; Pruss, Axel

    2012-01-01

    Background For increasing allograft tendon safety in reconstructive surgery, an effective sterilization method achieving sterility assurance including viruses without impairing the grafts properties is needed. Fractionated Electron Beam (Ebeam) has shown promising in vitro results. The proof of sufficient virus inactivation is a central part of the process validation. Methods The Ebeam irradiation of the investigated viruses was performed in an optimized manner (oxygen content < 0.1%, −78 °C). Using principles of a tendon model the virus inactivation kinetics for HIV-2, HAV, pseudorabies virus (PRV) and porcine parvovirus (PPV) were calculated as TCID50/ml and D10 value (kGy) for the fractionated (10 × 3.4 kGy) and the standard (1 × 34 kGy) Ebeam irradiation. Results All viruses showed comparable D10 values for both Ebeam treatments. For sufficient virus titer reduction of 4 log10 TCID50/ml, a dose of 34 kGy of the fractionated Ebeam irradiation was necessary in case of HIV-2, which was the most resistant virus investigated in this study. Conclusion The fractionated and the standard Ebeam irradiation procedure revealed comparable and sufficient virus inactivation capacities. In combination with the known good biomechanical properties of fractionated Ebeam irradiated tendons, this method could be a safe and effective option for the terminal sterilization of soft tissue allografts. PMID:22896764

  15. Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Richardson, S.A.

    1986-06-01

    This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance. (JDB)

  16. Development of a frit 202 analytic standard for the Defense Waste Processing Facility

    SciTech Connect

    Schumacher, R.F.; Hardy, B.J.; Sproull, J.F.

    1997-03-30

    During the qualification of Frit 202 samples for the `DWPF Cold Runs`, the need for a reliable chemical frit standard became apparent. A standard was prepared by obtaining a quantity of Frit 202 and grinding into a fine powder. This material was homogenized as one slurry material volume, spray dried to prevent segregation, and hydraulically pressed into discs. These discs were fired and packaged into eleven sub-lots containing approximately 2,000 discs per sub-lot. A number of samples were obtained and analyzed by two analytic laboratories. The chemical analyses were carefully reviewed and evaluated by several statistical means. While there were several statistically significant variations between the sub-lots, it is believed that those variations are partially caused by the variability of the analytic method. These discs should provide a reliable standard for future chemical analyses of DWPF Frits similar in comparison to Frit 202. It is recommended that these discs be used as a standard material included with the representative frit sample to the independent chemical analysis laboratory, and the order of use of these standards be from sub-lot eleven to sub-lot four. It is further recommended that the NIST standard material (93a) be employed along with the 202 standard until confidence in the new standard is gained. The NIST standard should also be used when initial use of a new sub-lot is begun. this procedure should continue to the end of the DWPF program or such time as the chemical composition of the frit is extensively modified.

  17. Standard design for National Ignition Facility x-ray streak and framing cameras

    SciTech Connect

    Kimbrough, J. R.; Bell, P. M.; Bradley, D. K.; Holder, J. P.; Kalantar, D. K.; MacPhee, A. G.; Telford, S.

    2010-10-15

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  18. Irradiation and food processing.

    PubMed

    Sigurbjörnsson, B; Loaharanu, P

    1989-01-01

    After more than four decades of research and development, food irradiation has been demonstrated to be safe, effective and versatile as a process of food preservation, decontamination or disinfection. Its various applications cover: inhibition of sprouting of root crops; insect disinfestation of stored products, fresh and dried food; shelf-life extension of fresh fruits, vegetables, meat and fish; destruction of parasites and pathogenic micro-organisms in food of animal origin; decontamination of spices and food ingredients, etc. Such applications provide consumers with the increase in variety, volume and value of food. Although regulations on food irradiation in different countries are largely unharmonized, national authorities have shown increasing recognition and acceptance of this technology based on the Codex Standard for Irradiated Foods and its associated Code of Practice. Harmonization of national legislations represents an important prerequisite to international trade in irradiated food. Consumers at large are still not aware of the safety and benefits that food irradiation has to offer. Thus, national and international organizations, food industry, trade associations and consumer unions have important roles to play in introducing this technology based on its scientific values. Public acceptance of food irradiation may be slow at the beginning, but should increase at a faster rate in the foreseeable future when consumers are well informed of the safety and benefits of this technology in comparison with existing ones. Commercial applications of food irradiation has already started in 18 countries at present. The volume of food or ingredients treated on a commercial scale varies from country to country ranging from several tons of spices to hundreds of thousands of tons of grains per annum. With the increasing interest of national authorities and the food industry in applying the process, it is anticipated that some 25 countries will use some 55 commercial

  19. SECONDARY STANDARD CALIBRATION, MEASUREMENT AND IRRADIATION CAPABILITIES OF THE INDIVIDUAL MONITORING SERVICE AT THE HELMHOLTZ ZENTRUM MÜNCHEN: ASPECTS OF UNCERTAINTY AND AUTOMATION.

    PubMed

    Greiter, M B; Denk, J; Hoedlmoser, H

    2016-09-01

    The individual monitoring service at the Helmholtz Zentrum München has adopted the recommendations of the ISO 4037 and 6980 standards series as base of its dosimetric systems for X-ray, gamma and beta dosimetry. These standards define technical requirements for radiation spectra and measurement processes, but leave flexibility in the implementation of irradiations as well as in the resulting uncertainty in dose or dose rate. This article provides an example for their practical implementation in the Munich IAEA/WHO secondary standard dosimetry laboratory. It focusses on two aspects: automation issues and uncertainties in calibration. PMID:26838065

  20. INTERACTION OF LASER RADIATION WITH TARGETS Tomographic imaging of a target directly irradiated in experiments on the Iskra-5 iodine laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, R. V.; Garanin, Sergey G.; Zhidkov, N. V.; Oreshkov, O. V.; Potapov, S. V.; Suslov, N. A.; Frolova, N. V.

    2010-12-01

    We set forth the data of experiments involving direct microtarget irradiation by the 12 second-harmonic beams (λ = 0.66 μm) of iodine laser radiation carried out on the Iskra-5 facility. For microtargets we employed glass shells ~500 μm in diameter with ~1-μm thick walls, which were filled with a DT mixture at a pressure pDT approx 3-4 atm. In one of these experiments, a tomographic image of the microtarget was recorded from the images obtained using pinhole cameras, which were arranged along seven different directions. The pinhole images were acquired in the X-ray radiation with photon energies above 1.5 keV. The procedure used for reconstructing the volume luminosity of the microtarget is described. An analysis of the tomographic image suggests that the compressed microtarget domain possesses a complex asymmetric shape; 20-30 μm sized structural elements being clearly visible. The resultant data set allowed us to estimate the initial nonuniformity of microtarget surface irradiation by the laser radiation. The rms nonuniformity of microtarget irradiance was estimated at ~60 %.

  1. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  2. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  3. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  4. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND PROGRAMS...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  5. 77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Regulatory Commission. ACTION: NUREG revision; extension of comment period. SUMMARY: On December 7, 2012 (77 FR 73060), the U.S. Nuclear Regulatory Commission (NRC), solicited comments on the proposed changes to NUREG- 1520, Revision 1, ``Standard Review Plan (SRP) for the Review of a License Application...

  6. 76 FR 23690 - Version One Regional Reliability Standards for Facilities Design, Connections, and Maintenance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Establishment, Approval, and Enforcement of Electric Reliability Standards, Order No. 672, 71 FR 8662 (Feb. 17, 2006), FERC Stats. & Regs. ] 31,204, at P 290, order on reh'g, Order No. 672-A, 71 FR 19814 (Apr. 18... Maintenance; Protection and Control; and Voltage and Reactive, Notice of Proposed Rulemaking, 75 FR...

  7. 36 CFR 1150.2 - Applicability: Buildings and facilities subject to guidelines and standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... States means acquired by the United States through lease-purchase arrangement, constructed or altered for purchase by the United States, or constructed or altered for the use of the United States. Primarily for... 1968, Pub. L. 90-480, as amended, 42 U.S.C. 4151 et seq. (including standards of the United...

  8. 36 CFR 1150.2 - Applicability: Buildings and facilities subject to guidelines and standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... States means acquired by the United States through lease-purchase arrangement, constructed or altered for purchase by the United States, or constructed or altered for the use of the United States. Primarily for... 1968, Pub. L. 90-480, as amended, 42 U.S.C. 4151 et seq. (including standards of the United...

  9. Measurement of the 6Li(n,α) neutron standard cross-section at the GELINA facility

    NASA Astrophysics Data System (ADS)

    Jansson, Kaj; Al-Adili, Ali; Bevilacqua, Riccardo; Gustavsson, Cecilia; Hambsch, Franz-Josef; Pomp, Stephan; Vidali, Marzio

    2016-06-01

    The 6Li(n,α) reaction cross-section is commonly used as a reference cross section. However, it is only considered a neutron standard up to 1MeV. For higher energies, there are discrepancies of several per cents between recent measurements and evaluated data files. In order to extend and establish 6Li(n,α) as a neutron standard above 1MeV these discrepancies must be resolved. Our measurement at the GELINA facility at JRC-IRMM in Geel, Belgium is ongoing. We are using a double twin Frisch-grid setup to detect both α-particles from two 6Li targets and fission products from two 235U reference targets. Our targets have thick backings but are employed in pairs, one forward facing and one backward facing. In this way we still cover, in principle, a solid angle of 4π. We present some preliminary results showing that the existing cross-section data is well reproduced around the resonance at 240 keV. The final data taking will start in the beginning of 2016, when the GELINA facility goes online again after a few months of shut down.

  10. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass standard reference material. [Site Characterization

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.

    1992-09-30

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Preliminary Specifications (WAPS). The current Waste Acceptance Preliminary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCT). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Envirorunental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability, analytic, and/or redox Standard Reference Material (SRM) for all waste form producers.

  11. Standard for metal/nonmetal mining and metal mineral processing facilities. 2004 ed.

    SciTech Connect

    2004-07-01

    This standard addresses the protection of diesel-powered equipment and the storage and handling of flammable and combustible liquids at these specialized sites. The 2004 edition consolidates requirements from NFPA 122 and 121 : Standard on Fire Protection for Self-Propelled and Mobile Surface Mining Equipment. Major changes include a new chapter on fire protection of surface metal mineral processing plants. The Standard is also revised to emphasize the use of a fire risk assessment when determining fire protection criteria. Chapter headings are: Administration; Referenced publications; Definitions; General; Fire risk assessment and risk reduction; Fire detection and suppression equipment; Fire protection for diesel-powered equipment in underground mines; Transfer of flammable or combustible liquids in underground mines; Flammable liquid storage in underground mines; Combustible liquid storage in underground mines; Fire suppression for flammable or combustible liquid storage areas in underground mines; Fire protection of surface mobile and self-propelled equipment; and Fire protection of surface metal mineral processing plants. 3 annexes.

  12. Fat Necrosis After Partial-Breast Irradiation With Brachytherapy or Electron Irradiation Versus Standard Whole-Breast Radiotherapy-4-Year Results of a Randomized Trial

    SciTech Connect

    Loevey, Katalin Fodor, Janos; Major, Tibor; Szabo, Eva; Orosz, Zsolt; Sulyok, Zoltan; Janvary, Levente; Froehlich, Georgina; Kasler, Miklos; Polgar, Csaba

    2007-11-01

    Purpose: To examine the incidence and clinical relevance of fat necrosis after accelerated partial-breast irradiation (PBI) using interstitial high-dose-rate brachytherapy (HDR-BT) in comparison with partial-breast electron irradiation (ELE) and whole-breast irradiation (WBI). Methods and Materials: Between 1998 and 2004, 258 early-stage breast cancer patients were randomized to receive 50 Gy WBI (n = 130) or PBI (n = 128). The latter consisted of either 7 x 5.2 Gy HDR-BT (n = 88) or 50 Gy ELE (n = 40). The incidence of fat necrosis, its impact on cosmetic outcome, accompanying radiologic features, and clinical symptoms were evaluated. Results: The 4-year actuarial rate of fat necrosis was 31.1% for all patients, and 31.9%, 36.5%, and 17.7% after WBI, HDR-BT and ELE, respectively (p{sub WBI/HDR-BT} = 0.26; p{sub WBI/ELE} = 0.11; p{sub ELE/HDR-BT} = 0.025). The respective rate of asymptomatic fat necrosis was 20.2%, 25.3%, and 10% of patients. The incidence of symptomatic fat necrosis was not significantly different after WBI (8.5%), HDR-BT (11.4%), and ELE (7.5%). Symptomatic fat necrosis was significantly associated with a worse cosmetic outcome, whereas asymptomatic fat necrosis was not. Fat necrosis was detectable with mammography and/or ultrasound in each case. Additional imaging examinations were required in 21% of cases and aspiration cytology in 42%. Conclusions: Asymptomatic fat necrosis is a common adverse event of breast-conserving therapy, having no significant clinical relevance in the majority of the cases. The incidence of both symptomatic and asymptomatic fat necrosis is similar after conventional WBI and accelerated partial-breast HDR-BT.

  13. Study of pixel damages in CCD cameras irradiated at the neutron tomography facility of IPEN-CNEN/SP

    NASA Astrophysics Data System (ADS)

    Pugliesi, R.; Andrade, M. L. G.; Dias, M. S.; Siqueira, P. T. D.; Pereira, M. A. S.

    2015-12-01

    A methodology to investigate damages in CCD sensors caused by radiation beams of neutron tomography facilities is proposed. This methodology has been developed in the facility installed at the nuclear research reactor of IPEN-CNEN/SP, and the damages were evaluated by counting of white spots in images. The damage production rate at the main camera position was evaluated to be in the range between 0.008 and 0.040 damages per second. For this range, only 4 to 20 CCD pixels are damaged per tomography, assuring high quality images for hundreds of tomographs. Since the present methodology is capable of quantifying the damage production rate for each type of radiation, it can also be used in other facilities to improve the radiation shielding close of the CCD sensors.

  14. Distribution of radionuclides in an iron calibration standard for a free release measurement facility.

    PubMed

    Hult, Mikael; Stroh, Heiko; Marissens, Gerd; Tzika, Faidra; Lutter, Guillaume; Šurán, Jiri; Kovar, Petr; Skala, Lukas; Sud, Jaromír

    2016-03-01

    A Europallet-sized calibration standard composed of 12 grey cast iron tubes contaminated with (60)Co and (110m)Ag with a mass of 246kg was developed. As the tubes were produced through centrifugal casting it was of particular concern to study the distribution of radionuclides in the radial direction of the tubes. This was done by removing 72 small samples (swarf) of ~0.3g each on both the inside and outside of the tubes. All of the samples were measured in the underground laboratory HADES.

  15. Distribution of radionuclides in an iron calibration standard for a free release measurement facility.

    PubMed

    Hult, Mikael; Stroh, Heiko; Marissens, Gerd; Tzika, Faidra; Lutter, Guillaume; Šurán, Jiri; Kovar, Petr; Skala, Lukas; Sud, Jaromír

    2016-03-01

    A Europallet-sized calibration standard composed of 12 grey cast iron tubes contaminated with (60)Co and (110m)Ag with a mass of 246kg was developed. As the tubes were produced through centrifugal casting it was of particular concern to study the distribution of radionuclides in the radial direction of the tubes. This was done by removing 72 small samples (swarf) of ~0.3g each on both the inside and outside of the tubes. All of the samples were measured in the underground laboratory HADES. PMID:26597655

  16. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PROGRAMS § 10.6 How is the BIA assured that the policies and standards are being applied uniformly and facilities are properly accredited? The tribes and BIA programs will use a phased approach to meeting all non-mandatory detention standards and will document progress on uniform reporting. The BIA Office of...

  17. Facile synthesis of TiO2/microcrystalline cellulose nanocomposites: photocatalytically active material under visible light irradiation

    EPA Science Inventory

    Doped TiO2 nanocomposites were prepared in situ by a facile and simple synthesis utilizing benign and renewable precursors such as microcrystalline cellulose (MC) and TiCl4 through hydrolysis in alkaline medium without the addition of organic solvents. The as-prepared nanocompos...

  18. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation

    PubMed Central

    Jia, Qingxin; Iwashina, Katsuya; Kudo, Akihiko

    2012-01-01

    An efficient BiVO4 thin film electrode for overall water splitting was prepared by dipping an F-doped SnO2 (FTO) substrate electrode in an aqueous nitric acid solution of Bi(NO3)3 and NH4VO3, and subsequently calcining it. X-ray diffraction of the BiVO4 thin film revealed that a photocatalytically active phase of scheelite-monoclinic BiVO4 was obtained. Scanning electron microscopy images showed that the surface of an FTO substrate was uniformly coated with the BiVO4 film with 300–400 nm of the thickness. The BiVO4 thin film electrode gave an excellent anodic photocurrent with 73% of an IPCE at 420 nm at 1.0 V vs. Ag/AgCl. Modification with CoO on the BiVO4 electrode improved the photoelectrochemical property. A photoelectrochemical cell consisting of the BiVO4 thin film electrode with and without CoO, and a Pt counter electrode was constructed for water splitting under visible light irradiation and simulated sunlight irradiation. Photocurrent due to water splitting to form H2 and O2 was confirmed with applying an external bias smaller than 1.23 V that is a theoretical voltage for electrolysis of water. Water splitting without applying external bias under visible light irradiation was demonstrated using a SrTiO3∶Rh photocathode and the BiVO4 photoanode. PMID:22699499

  19. A facile synthesis of arylazonicotinates for dyeing polyester fabrics under microwave irradiation and their biological activity profiles.

    PubMed

    Al-Mousawi, Saleh M; El-Apasery, Morsy A; Mahmoud, Huda M

    2012-09-27

    A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a-e and 9a-c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a-e with active methylene nitriles 3a-d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against gram positive bacteria, gram negative bacteria and yeast were evaluated.

  20. Measurement of ion species in high current ECR H⁺/D⁺ ion source for IFMIF (International Fusion Materials Irradiation Facility).

    PubMed

    Shinto, K; Senée, F; Ayala, J-M; Bolzon, B; Chauvin, N; Gobin, R; Ichimiya, R; Ihara, A; Ikeda, Y; Kasugai, A; Kitano, T; Kondo, K; Marqueta, A; Okumura, Y; Takahashi, H; Valette, M

    2016-02-01

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H(+)) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D(+)) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H(+) ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H(+)/D(+) ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  1. The Irradiation Characteristics of the Kur Heavy Water Facility (ii) - Neutron and Gamma-Ray Dose Measurements with a Twin-Chamber

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2003-06-01

    The Heavy Water Neutron Irradiation Facility of the Kyoto University Reactor can supply neutron energy spectra from almost pure thermal to mainly epi-thermal, using a spectrum shifter and thermal neutron filters. We will report about the measurement of the neutron and gamma-ray doses using a twin-chamber. The used twin-chamber is the combination of a tissue-equivalent ionization-chamber and a graphite ionization chamber, with detecting volumes of 80 cc. From the comparisons between the chamber-measured dose rates and the nominal values, it was confirmed that the relative dependencies of the neutron and gamma-ray doses on the heavy water thickness, were almost the same, excepting the smaller heavy-water-thickness mode, such as CB-0000-F.

  2. LASERS: Laser stand for irradiation of targets by laser pulses from the Iskra-5 facility at a repetition rate of 100 MHz

    NASA Astrophysics Data System (ADS)

    Annenkov, V. I.; Garanin, Sergey G.; Eroshenko, V. A.; Zhidkov, N. V.; Zubkov, A. V.; Kalipanov, S. V.; Kalmykov, N. A.; Kovalenko, V. P.; Krotov, V. A.; Lapin, S. G.; Martynenko, S. P.; Pankratov, V. I.; Faizullin, V. S.; Khrustalev, V. A.; Khudikov, N. M.; Chebotar, V. S.

    2009-08-01

    A train of a few tens of high-power subnanosecond laser pulses with a repetition period of 10 ns is generated in the Iskra-5 facility. The laser pulse train has an energy of up to 300 J and contains up to 40 pulses (by the 0.15 intensity level), the single pulse duration in the train being ~0.5 ns. The results of experiments on conversion of a train of laser pulses to a train of X-ray pulses are presented. Upon irradiation of a tungsten target, a train of X-ray pulses is generated with the shape of an envelope in the spectral band from 0.18 to 0.28 keV similar to that of the envelope of the laser pulse train. The duration of a single X-ray pulse in the train is equal to that of a single laser pulse.

  3. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization.

    PubMed

    Gobin, R; Bogard, D; Cara, P; Chauvin, N; Chel, S; Delferrière, O; Harrault, F; Mattei, P; Mosnier, A; Senée, F; Shidara, H; Okumura, Y

    2014-02-01

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.

  4. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    SciTech Connect

    Gobin, R. Bogard, D.; Chauvin, N.; Chel, S.; Delferrière, O.; Harrault, F.; Mattei, P.; Senée, F.; Mosnier, A.; Shidara, H.

    2014-02-15

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.

  5. Photo-irradiation paradigm: Mapping a remarkable facile technique used for advanced drug, gene and cell delivery.

    PubMed

    Shaker, Mohamed A; Younes, Husam M

    2015-11-10

    Undoubtedly, the progression of photo-irradiation technique has provided a smart engineering tool for the state-of-the-art biomaterials that guide the biomedical and therapeutic domains for promoting the modern pharmaceutical industry. Many investigators had exploited such a potential technique to create/ameliorate numerous pharmaceutical carriers. These carriers show promising applications that vary from small drug to therapeutic protein delivery and from gene to living cell encapsulation design. Harmony between the properties of precisely engineered precursors and the formed network structure broadens the investigator's intellect for both brilliant creations and effective applications. As well, controlling photo-curing at the formulation level, through manipulating the absorption of light stimuli, photoinitiator system and photo-responsive precursor, facilitates the exploration of novel distinctive biomaterials. Discussion of utilizing different photo-curing procedures in designing/formulation of different pharmaceutical carriers is the main emphasis of this review. In addition, recent applications of these intelligent techniques in targeted, controlled, and sustained drug delivery with understanding of photo-irradiation concept and mechanism are illustrated.

  6. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  7. Managing emissions of active pharmaceutical ingredients from manufacturing facilities: an environmental quality standard approach.

    PubMed

    Murray-Smith, Richard J; Coombe, Vyvyan T; Grönlund, Marie Haag; Waern, Fredrik; Baird, James A

    2012-04-01

    Active pharmaceutical ingredient (API) residues have been found to be widespread in the aquatic environment, albeit in most cases at trace levels, with the route to the environment predominantly being via therapeutic use and subsequent excretion to sewer. Although manufacturing discharges may be a low overall contributor to environmental concentrations, they need to be managed effectively so that they do not adversely affect the local receiving environment. In order to achieve this, a risk-based approach is proposed that identifies the long-term and short-term concentrations, referred to as environmental reference concentrations (ERCs) and maximum tolerable concentrations (MTCs), respectively, of an API which should not be exceeded in the aquatic environment receiving effluent from pharmaceutical manufacturing sites. The ERC approach is based on established environmental quality standard concepts currently used in much national and international legislation. Building on these concepts, the approach takes into account indirect exposure of potential consumers such as fish-eating mammals and humans, as well as primary producers (e.g., algae) and primary and secondary consumers (e.g., invertebrates and fish). Although chronic toxicity data are preferred for ERC derivation, acute data, with appropriate considerations of uncertainty, may be used when chronic data are not available. This approach takes all available information into account, particularly for older established medicines that may predate current regulatory requirements for environmental data, and consequently helps prioritize resources for environmental testing. The ERC approach has been applied to 30 of AstraZeneca's APIs. Merits of the approach are discussed together with opportunities for potential future refinement. PMID:22057894

  8. The AMINO experiment: methane photolysis under Solar VUV irradiation on the EXPOSE-R facility of the International Space Station

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Cottin, Hervé; Cloix, Mégane; Jérome, Murielle; Bénilan, Yves; Coll, Patrice; Gazeau, Marie-Claire; Raulin, François; Saiagh, Kafila; Chaput, Didier

    2015-01-01

    The scientific aim of the present campaign is to study the whole chain of methane photo-degradation, as initiated by Solar vacuum-ultraviolet irradiation in Titan's atmosphere. For this purpose, the AMINO experiment on the EXPOSE-R mission has loaded closed cells for gas-phase photochemistry in space conditions. Two different gas mixtures have been exposed, named Titan 1 and Titan 2, involving both N2-CH4 gas mixtures, without and with CO2, respectively. CO2 is added as a source of reactive oxygen in the cells. The cell contents were analysed thanks to infrared absorption spectroscopy, gas chromatography and mass spectrometry. Methane consumption leads to the formation of saturated hydrocarbons, with no detectable influence of CO2. This successful campaign provides a first benchmark for characterizing the whole methane photochemical system in space conditions. A thin film of tholin-like compounds appears to form on the cell walls of the exposed cells.

  9. Single-particle irradiation of mammalian cells at the radiological research accelerator facility: induction of chromosomal changes

    NASA Astrophysics Data System (ADS)

    Geard, C. R.; Brenner, D. J.; Randers-Pehrson, G.; Marino, S. A.

    1991-03-01

    Ionizing radiations have been shown to be able to induce the death of mammalian cells and initiate mutagenic or carcinogenic change. While all three end points are related through chromosomal changes, the latter in particular is of profound concern to human populations. We have undertaken a series of studies wherein mammalian cells were irradiated with low fluences of charged particles (protons, deuterons, helium ions) of defined LET from 10 to about 200 keV per micrometer. Frequencies of induced chromosomal changes were related to fluence at each LET, such that the induction of chromosomal changes per cell per charged particle could be estimated. However, for human exposures from densely ionizing radiation, such as the alpha particles from radon daughters, effects are dominated by the traversal of cells by single particles. Conventional experiments inevitably result in cells being exposed to a distribution (Poisson) of particle traversals. As the effect is unlikely to be a linear function of the number of traversals, a preferred approach would be to irradiate cells with exactly one (or any known number) of particles. To this end we are developing a dedicated beam line (microbeam) on a 4.2 MV Van de Graaff accelerator such that individual particles will vertically traverse individual living mammalian cells positioned by a microscope-based imaging system under computer control. "Conventional" low-fluence and "single-particle" studies will be compared, allowing critical evaluations of the potential of individual high LET charged particles to initiate change. This will have particular relevance both to consideration of the human health risks of radon daughter alpha particles and of basic mechanisms of chromosome aberration formation.

  10. DECOMMISSIONING OF SHIELDED FACILITIES AT WINFRITH USED FOR POST IRRADIATION EXAMINATION OF NUCLEAR FUELS & OTHER ACTIVE ITEMS

    SciTech Connect

    Miller, K.D.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2003-02-27

    This paper describes the approaches used in the clearing, cleaning, decontamination and decommissioning of a very large suite of seven concrete shielded caves and other facilities used by UKAEA at Winfrith Technology Centre, England over a period of about 30 years for the postirradiation examination (PIE) of a wide range of nuclear fuels and other very active components. The basic construction of the facilities will first be described, setting the scene for the major challenges that 1970s' thinking posed for decommissioning engineers. The tendency then to use large and heavy items of equipment supported upon massive steel bench structures produced a series of major problems that had to be overcome. The means of solving these problems by utilization of relatively simple and inexpensive equipment will be described. Later, a further set of challenges was experienced to decontaminate the interior surfaces to allow man entries to be undertaken at acceptable dose rates. The paper will describe the types of tooling used and the range of complementary techniques that were employed to steadily reduce the dose rates down to acceptable levels. Some explanations will also be given for the creation of realistic dose budgets and the methods of recording and continuously assessing the progress against these budgets throughout the project. Some final considerations are given to the commercial approaches to be adopted throughout this major project by the decommissioning engineers. Particular emphasis will be given to the selection of equipment and techniques that are effective so that the whole process can be carried out in a cost-effective and timely manner. The paper also provides brief complementary information obtained during the decommissioning of a plutonium-contaminated facility used for a range of semi-experimental purposes in the late 1970s. The main objective here was to remove the alpha contamination in such a manner that the volume of Plutonium Contaminated Materials (P

  11. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  12. Molten Salt Reactor Experiment Facility (Building 7503) standards/requirements identification document adherence assessment plan at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-02-01

    This is the Phase 2 (adherence) assessment plan for the Building 7503 Molten Salt Reactor Experiment (MSRE) Facility standards/requirements identification document (S/RID). This document outlines the activities to be conducted from FY 1996 through FY 1998 to ensure that the standards and requirements identified in the MSRE S/RID are being implemented properly. This plan is required in accordance with the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 90-2, November 9, 1994, Attachment 1A. This plan addresses the major aspects of the adherence assessment and will be consistent with Energy Systems procedure QA-2. 7 ``Surveillances.``

  13. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  14. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  15. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  16. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  17. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  18. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation.

    PubMed

    Bian, Hao; Yang, Qing; Liu, Hewei; Chen, Feng; Du, Guangqing; Si, Jinhai; Hou, Xun

    2013-03-01

    Netlike or porous microstructures are highly desirable in metal implants and biomedical monitoring applications. However, realization of such microstructures remains technically challenging. Here, we report a facile and environmentally friendly method to prepare netlike microstructures on a stainless steel by taking the full advantage of the liquid-mediated femtosecond laser ablation. An unordered netlike structure and a quasi-ordered array of holes can be fabricated on the surface of stainless steel via an ethanol-mediated femtosecond laser line-scan method. SEM analysis of the surface morphology indicates that the porous netlike structure is in the micrometer scale and the diameter of the quasi-ordered holes ranges from 280 nm to 320 nm. Besides, we find that the obtained structures are tunable by altering the laser processing parameters especially scanning speed.

  19. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    SciTech Connect

    Tan, Wai Kian; Abdul Razak, Khairunisak; Lockman, Zainovia; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  20. 41 CFR 102-81.20 - Are the security standards for new Federally owned and leased facilities the same as the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designed to meet the standards identified in the document entitled “Interagency Security Committee Security Design Criteria for New Federal Office Buildings and Major Modernization Projects,” dated May 28, 2001. The security design criteria for new facilities takes into consideration technology developments,...

  1. 41 CFR 102-81.20 - Are the security standards for new Federally owned and leased facilities the same as the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designed to meet the standards identified in the document entitled “Interagency Security Committee Security Design Criteria for New Federal Office Buildings and Major Modernization Projects,” dated May 28, 2001. The security design criteria for new facilities takes into consideration technology developments,...

  2. 41 CFR 102-81.20 - Are the security standards for new Federally owned and leased facilities the same as the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designed to meet the standards identified in the document entitled “Interagency Security Committee Security Design Criteria for New Federal Office Buildings and Major Modernization Projects,” dated May 28, 2001. The security design criteria for new facilities takes into consideration technology developments,...

  3. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  4. National Fire Codes. A Compilation of NFPA Codes, Standards, Recommended Practices, and Manuals. Volume 4: Building Construction and Facilities. 1969-70.

    ERIC Educational Resources Information Center

    National Fire Protection Association, Boston, MA.

    A selected group of NFPA codes and standards pertaining to building construction and facilities is presented. The recommendations are phrased in terms of performance or objectives, the intent being to permit the utilization of any methods, devices or materials which will produce the desired results. The major topics included are--(1) building…

  5. High Exposure Facility Technical Description

    SciTech Connect

    Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K.; Smith, Alex K.

    2008-02-12

    The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."

  6. Implementation of the OECD principles of good laboratory practice in test facilities complying with a quality system accredited to the ISO/IEC 17025 standard.

    PubMed

    Feller, Etty

    2008-01-01

    Laboratories with a quality system accredited to the ISO/IEC 17025 standard have a definite advantage, compared to non-accredited laboratories, when preparing their facilities for the implementation of the principles of good laboratory practice (GLP) of the Organisation for Economic Co-operation and Development (OECD). Accredited laboratories have an established quality system covering the administrative and technical issues specified in the standard. The similarities and differences between the ISO/IEC 17025 standard and the OECD principles of GLP are compared and discussed. PMID:19351993

  7. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  8. 30 CFR 933.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... support facilities not located at or near the minesite or not within the permit area for a mine. ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 933.827 Section 933.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND...

  9. 30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 910.827 Section 910.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 910.827 Special performance standards—coal processing plants and support facilities not located at...

  10. 30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 947.827 Section 947.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 947.827 Special performance standards—coal processing plants and support facilities not located at...

  11. 30 CFR 937.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 937.827 Section 937.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 937.827 Special performance standards—coal processing plants and support facilities not located at...

  12. 30 CFR 941.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... support facilities not located at or near the minesite or not within the permit area for a mine. ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 941.827 Section 941.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND...

  13. 30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 922.827 Section 922.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 922.827 Special performance standards—coal processing plants and support facilities not located at...

  14. 30 CFR 921.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... support facilities not located at or near the minesite or not within the permit area for a mine. ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 921.827 Section 921.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND...

  15. 30 CFR 939.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... support facilities not located at or near the minesite or not within the permit area for a mine. ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 939.827 Section 939.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND...

  16. 30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 912.827 Section 912.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 912.827 Special performance standards—coal processing plants and support facilities not located at...

  17. Test reactor irradiation coordination

    SciTech Connect

    Heartherly, D.W.; Siman Tov, I.I.; Sparks, D.W.

    1995-10-01

    This task was established to supply and coordinate irradiation services needed by NRC contractors other than ORNL. These services include the design and assembly of irradiation capsules as well as arranging for their exposure, disassembly, and return of specimens. During this period, the final design of the facility and specimen baskets was determined through an iterative process involving the designers and thermal analysts. The resulting design should permit the irradiation of all test specimens to within 5{degrees}C of their desired temperature. Detailing of all parts is ongoing and should be completed during the next reporting period. Procurement of the facility will also be initiated during the next review period.

  18. Randomized Trial of Pentoxifylline and Vitamin E vs Standard Follow-up After Breast Irradiation to Prevent Breast Fibrosis, Evaluated by Tissue Compliance Meter

    SciTech Connect

    Jacobson, Geraldine; Bhatia, Sudershan; Smith, Brian J.; Button, Anna M.; Bodeker, Kellie; Buatti, John

    2013-03-01

    Purpose: To conduct a randomized clinical trial to determine whether the combination of pentoxifylline (PTX) and vitamin E given for 6 months after breast/chest wall irradiation effectively prevents radiation-induced fibrosis (RIF). Methods and Materials: Fifty-three breast cancer patients with localized disease were enrolled and randomized to treatment with oral PTX 400 mg 3 times daily and oral vitamin E 400 IU daily for 6 months after radiation (n=26), or standard follow up (n=27). Tissue compliance meter (TCM) measurements were obtained at 18 months to compare tissue compliance in the irradiated and untreated breast/chest wall in treated subjects and controls. Measurements were obtained at 2 mirror image sites on each breast/chest wall, and the average difference in tissue compliance was scored. Differences in TCM measurements were compared using a t test. Subjects were followed a minimum of 2 years for local recurrence, disease-free survival, and overall survival. Results: The mean difference in TCM measurements in the 2 groups was 0.88 mm, median of 1.00 mm (treated) and 2.10 mm, median of 2.4 mm (untreated). The difference between the 2 groups was significant (P=.0478). Overall survival (100% treated, 90.6% controls at 5 years) and disease-free survival (96.2% treated, 86.8% controls at 5 years) were not significantly different in the 2 groups. Conclusions: This study of postirradiation breast cancer patients treated with PTX/vitamin E or standard follow-up indicated a significant difference in radiation-induced fibrosis as measured by TCM. There was no observed impact on local control or survival within the first 2 years of follow-up. The treatment was safe and well tolerated. Pentoxifylline/vitamin E may be clinically useful in preventing fibrosis after radiation in high-risk patients.

  19. Comparison of two treatment strategies for irradiation of regional lymph nodes in patients with breast cancer: Lymph flow guided portals versus standard radiation fields

    PubMed Central

    Novikov, Sergey Nikolaevich; Kanaev, Sergey Vasilevich; Semiglazov, Vladimir Fedorovich; Jukova, Ludmila Alekseevna; Krzhivitckiy, Pavel Ivanovich

    2014-01-01

    Aim and Background Radiotherapy being an essential part of breast cancer treatment, we evaluate various radiotherapy strategies in patients with breast cancer. Materials and methods Lymph node (LN) scintigraphy was performed in 172 primary patients with BC. LN visualization started 30–360 min after intratumoral injection of 75–150 MBq of 99mTc-nanocolloids. Our standard recommendation for postoperative radiotherapy in patients with LN invasion by BC were as follows: for patients with external localization of tumour – breast + axillary (Ax) + sub-supraclavicular (SSCL) regions; with internal localization – all above + internal mammary nodes (IM). Proposed strategy of lymph flow guided radiotherapy is based on the assumption that only regions that contain ‘hot’ LNs must be included in a treatment volume. Results Among 110 patients with external localization of BC, Ax LNs were visualized in all cases and in 62 patients it was the only region with ‘hot’ LN. Twenty-three patients (20.9%) had drainage to Ax + SSCL, 12 (10.9%) – Ax + IM, 13 (11.8%) – Ax + SSCL + IM regions. After the visualization of lymph flow patterns, standard treatment volume was changed in 87/110 cases (79.1%): in 56.4%, reduced, in 22.7%, enlarged or changed. In 62 patients with tumours in internal quadrants, we revealed the following patterns of lymph-flow: only to the Ax region in 23 (37.1%); Ax + IM, 13 (21%); Ax + SSCL, 15 (24.2%); Ax + IM + ISSCL, 11 (17.7%) cases. After lymph-flow visualization, the standard irradiation volume was reduced in 53/62 (85.5%) cases. Conclusion Visualization of an individual lymph flow pattern from BC can be used for the optimization of standard fields used for irradiation of regional LNs. PMID:25535581

  20. Lunar Spectral Irradiance and Radiance (LUSI): New Instrumentation to Characterize the Moon as a Space-Based Radiometric Standard.

    PubMed

    Smith, Allan W; Lorentz, Steven R; Stone, Thomas C; Datla, Raju V

    2012-01-01

    The need to understand and monitor climate change has led to proposed radiometric accuracy requirements for space-based remote sensing instruments that are very stringent and currently outside the capabilities of many Earth orbiting instruments. A major problem is quantifying changes in sensor performance that occur from launch and during the mission. To address this problem on-orbit calibrators and monitors have been developed, but they too can suffer changes from launch and the harsh space environment. One solution is to use the Moon as a calibration reference source. Already the Moon has been used to remove post-launch drift and to cross-calibrate different instruments, but further work is needed to develop a new model with low absolute uncertainties capable of climate-quality absolute calibration of Earth observing instruments on orbit. To this end, we are proposing an Earth-based instrument suite to measure the absolute lunar spectral irradiance to an uncertainty(1) of 0.5 % (k=1) over the spectral range from 320 nm to 2500 nm with a spectral resolution of approximately 0.3 %. Absolute measurements of lunar radiance will also be acquired to facilitate calibration of high spatial resolution sensors. The instruments will be deployed at high elevation astronomical observatories and flown on high-altitude balloons in order to mitigate the effects of the Earth's atmosphere on the lunar observations. Periodic calibrations using instrumentation and techniques available from NIST will ensure traceability to the International System of Units (SI) and low absolute radiometric uncertainties.

  1. Lunar Spectral Irradiance and Radiance (LUSI): New Instrumentation to Characterize the Moon as a Space-Based Radiometric Standard

    PubMed Central

    Smith, Allan W.; Lorentz, Steven R.; Stone, Thomas C.; Datla, Raju V.

    2012-01-01

    The need to understand and monitor climate change has led to proposed radiometric accuracy requirements for space-based remote sensing instruments that are very stringent and currently outside the capabilities of many Earth orbiting instruments. A major problem is quantifying changes in sensor performance that occur from launch and during the mission. To address this problem on-orbit calibrators and monitors have been developed, but they too can suffer changes from launch and the harsh space environment. One solution is to use the Moon as a calibration reference source. Already the Moon has been used to remove post-launch drift and to cross-calibrate different instruments, but further work is needed to develop a new model with low absolute uncertainties capable of climate-quality absolute calibration of Earth observing instruments on orbit. To this end, we are proposing an Earth-based instrument suite to measure the absolute lunar spectral irradiance to an uncertainty1 of 0.5 % (k=1) over the spectral range from 320 nm to 2500 nm with a spectral resolution of approximately 0.3 %. Absolute measurements of lunar radiance will also be acquired to facilitate calibration of high spatial resolution sensors. The instruments will be deployed at high elevation astronomical observatories and flown on high-altitude balloons in order to mitigate the effects of the Earth’s atmosphere on the lunar observations. Periodic calibrations using instrumentation and techniques available from NIST will ensure traceability to the International System of Units (SI) and low absolute radiometric uncertainties. PMID:26900523

  2. Intraoperative Full-Dose of Partial Breast Irradiation with Electrons Delivered by Standard Linear Accelerators for Early Breast Cancer

    PubMed Central

    Barros, Alfredo Carlos S. D.; Hanna, Samir A.; Carvalho, Heloísa A.; Martella, Eduardo; Andrade, Felipe Eduardo M.; Piato, José Roberto M.; Bevilacqua, José Luiz B.

    2014-01-01

    Purpose. To assess feasibility, efficacy, toxicity, and cosmetic results of intraoperative radiotherapy (IORT) with electrons delivered by standard linear accelerators (Linacs) during breast conserving surgeries for early infiltrating breast cancer (BC) treatment. Materials and Methods. A total of 152 patients with invasive ductal carcinoma (T ≤ 3.0 cm) at low risk for local relapses were treated. All had unicentric lesions by imaging methods and negative sentinel node. After a wide local excision, 21 Gy were delivered on the parenchyma target volume with electron beams. Local recurrences (LR), survival, toxicity, and cosmetic outcomes were analyzed. Results. The median age was 58.3 years (range 40–85); median follow-up was 50.7 months (range 12–101.5). There were 5 cases with LR, 2 cases with distant metastases, and 2 cases with deaths related to BC. The cumulative incidence rates of LR, distant metastases, and BC death were 3.2%, 1.5%, and 1.5%, respectively. Complications were rare, and the cosmetic results were excellent or good in most of the patients. Conclusions. IORT with electrons delivered by standard Linacs is feasible, efficient, and well tolerated and seems to be beneficial for selected patients with early infiltrating BC. PMID:25587452

  3. 7 CFR 353.9 - Standards for accreditation of non-government facilities to perform laboratory seed health...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... facility's physical plant (e.g., laboratory space, office space, greenhouses, vehicles, etc.) must: (i) Have laboratory and office spaces enclosed by walls and locking doors to prevent unauthorized access... dedicated to laboratory functions and has sufficient space to conduct the required tests and store...

  4. 7 CFR 353.9 - Standards for accreditation of non-government facilities to perform laboratory seed health...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... facility's physical plant (e.g., laboratory space, office space, greenhouses, vehicles, etc.) must: (i) Have laboratory and office spaces enclosed by walls and locking doors to prevent unauthorized access... dedicated to laboratory functions and has sufficient space to conduct the required tests and store...

  5. 7 CFR 353.9 - Standards for accreditation of non-government facilities to perform laboratory seed health...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facility's physical plant (e.g., laboratory space, office space, greenhouses, vehicles, etc.) must: (i) Have laboratory and office spaces enclosed by walls and locking doors to prevent unauthorized access... dedicated to laboratory functions and has sufficient space to conduct the required tests and store...

  6. 30 CFR 939.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 939.827 Section 939.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  7. 30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 910.827 Section 910.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  8. 30 CFR 941.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 941.827 Section 941.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  9. 30 CFR 921.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 921.827 Section 921.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH...

  10. 30 CFR 937.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 937.827 Section 937.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  11. 30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 922.827 Section 922.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  12. 30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 912.827 Section 912.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  13. 30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 947.827 Section 947.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  14. 30 CFR 933.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a mine. 933.827 Section 933.827 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  15. 78 FR 8987 - Standards To Prevent, Detect, and Respond to Sexual Abuse and Assault in Confinement Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ...; ] DEPARTMENT OF HOMELAND SECURITY 6 CFR Part 115 RIN 1653-AA65 Standards To Prevent, Detect, and Respond to..., DHS proposed to issue regulations setting standards to prevent, detect, and respond to sexual abuse... SUPPLEMENTARY INFORMATION section in the NPRM (77 FR 75300) for further information on how to comment on...

  16. Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the Fast Flux Test Facility (FFTF) to 180 DPA

    SciTech Connect

    Huang, F.H.

    1992-02-01

    Fracture toughness testing was conducted to investigate the radiation embrittlement of high-nickel superalloys, modified austenitic steels and ferritic steels. These materials have been experimentally proven to possess excellent resistance to void swelling after high neutron exposures. In addition to swelling resistance, post-irradiation fracture resistance is another important criterion for reactor material selection. By means of fracture mechanics techniques the fracture behavior of those highly irradiated alloys was characterized in terms of irradiation and test conditions. Precipitation-strengthened alloys failed by channel fracture with very low postirradiation ductility. The fracture toughness of titanium-modified austenitic stainless steel D9 deteriorates with increasing fluence to about 100 displacement per atom (dpa), the fluence level at which brittle fracture appears to occur. Ferritic steels such as HT9 are the most promising candidate materials for fast and fusion reactor applications. The upper-shelf fracture toughness of alloy HT9 remained adequate after irradiation to 180 dpa although its ductile- brittle transition temperature (DBTT) shift by low temperature irradiation rendered the material susceptible to brittle fracture at room temperature. Understanding the fracture characteristics under various irradiation and test conditions helps reduce the potential for brittle fracture by permitting appropriate measure to be taken.

  17. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L.; Upadhyaya, B.R.; Rowan, W.J.

    1994-10-01

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  18. Economics of food irradiation

    SciTech Connect

    Deitch, J.

    1982-01-01

    This article examines the cost competitiveness of the food irradiation process. An analysis of the principal factors--the product, physical plant, irradiation source, and financing--that impact on cost is made. Equations are developed and used to calculate the size of the source for planned product throughput, efficiency factors, power requirements, and operating costs of sources, radionuclides, and accelerators. Methods of financing and capital investment are discussed. A series of tables show cost breakdowns of sources, buildings, equipment, and essential support facilities for both a cobalt-60 and a 10-MeV electron accelerator facility. Additional tables present irradiation costs as functions of a number of parameters--power input, source size, dose, and hours of annual operation. The use of the numbers in the tables are explained by examples of calculations of the irradiation costs for disinfestation of grains and radicidation of feed.

  19. The spectral irradiance traceability chain at PTB

    SciTech Connect

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-10

    international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

  20. The spectral irradiance traceability chain at PTB

    NASA Astrophysics Data System (ADS)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-01

    international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

  1. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  2. 40 CFR 124.202 - How do I as a facility owner or operator apply for a standardized permit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standardized permit? (a) You must follow the requirements in this subpart as well as those in § 124.31, 40 CFR 270.10, and 40 CFR part 270, subpart J. (b) You must submit to the Director a written Notice of Intent... required under 40 CFR part 270, subpart J....

  3. 40 CFR 124.202 - How do I as a facility owner or operator apply for a standardized permit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standardized permit? (a) You must follow the requirements in this subpart as well as those in § 124.31, 40 CFR 270.10, and 40 CFR part 270, subpart J. (b) You must submit to the Director a written Notice of Intent... required under 40 CFR part 270, subpart J....

  4. 40 CFR 124.202 - How do I as a facility owner or operator apply for a standardized permit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standardized permit? (a) You must follow the requirements in this subpart as well as those in § 124.31, 40 CFR 270.10, and 40 CFR part 270, subpart J. (b) You must submit to the Director a written Notice of Intent... required under 40 CFR part 270, subpart J....

  5. 40 CFR 124.202 - How do I as a facility owner or operator apply for a standardized permit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standardized permit? (a) You must follow the requirements in this subpart as well as those in § 124.31, 40 CFR 270.10, and 40 CFR part 270, subpart J. (b) You must submit to the Director a written Notice of Intent... required under 40 CFR part 270, subpart J....

  6. 40 CFR 124.202 - How do I as a facility owner or operator apply for a standardized permit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standardized permit? (a) You must follow the requirements in this subpart as well as those in § 124.31, 40 CFR 270.10, and 40 CFR part 270, subpart J. (b) You must submit to the Director a written Notice of Intent... required under 40 CFR part 270, subpart J....

  7. A Guide for Developing Standard Operating Job Procedures for the Pump Station Process Wastewater Treatment Facility. SOJP No. 3.

    ERIC Educational Resources Information Center

    Perley, Gordon F.

    This is a guide for standard operating job procedures for the pump station process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up procedures, continuous routine operation procedures, and shut-down procedures. A general description of the equipment used in the process is given. Two…

  8. A Guide for Developing Standard Operating Job Procedures for the Grit Removal Process Wastewater Treatment Facility. SOJP No. 2.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the grit removal process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up, continuous operation, and shut-down procedures. A description of the equipment used in the process is given. Some theoretical material is presented. (BB)

  9. A Guide for Developing Standard Operating Job Procedures for the Primary Sedimentation Process Wastewater Treatment Facility. SOJP No. 4.

    ERIC Educational Resources Information Center

    Charles County Community Coll., La Plata, MD.

    This guide describes standard operating job procedures for the primary sedimentation process of wastewater treatment plants. The primary sedimentation process involves removing settleable and suspended solids, in part, from wastewater by gravitational forces, and scum and other floatable solids from wastewater by mechanical means. Step-by-step…

  10. A Guide for Developing Standard Operating Job Procedures for the Tertiary Multimedia Filtration Process Wastewater Treatment Facility. SOJP No. 7.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary multimedia filtration process of wastewater treatment plants. The major objective of the filtration process is the removal of suspended solids from the reclaimed wastewater. The guide gives step-by-step instructions for pre-start up, start-up, continuous operation, and…

  11. 40 CFR 60.5415 - How do I demonstrate continuous compliance with the standards for my gas well affected facility...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Method 22 at 40 CFR part 60, appendix A-7 monthly. The observation period must be 2 hours and must follow... affirmative defense to a claim for civil penalties for violations of such standards that are caused by..., or severe property damage; and (v) All possible steps were taken to minimize the impact of...

  12. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    SciTech Connect

    Ahn, Byung Du; Park, Jin-Seong; Chung, K. B.

    2014-10-20

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of device performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.

  13. Status of food irradiation in the United States

    NASA Astrophysics Data System (ADS)

    Derr, Donald D.; Engel, Ronald E.

    1993-07-01

    The time immediately preceding the 8th International Meeting on Radiation Processing in September 1992 has been a landmark period for food irradiation in the United States. U.S. regulatory officials, industry and media representatives, and some consumer organizations share the opinion that radiation processing may be part of the solution to microbiological contamination of products of animal origin. Several new regulations being developed by U.S. regulatory agencies and being petitioned by industry groups are outlined. Renewed interest on the part of the U.S. Army in using irradiated foods in many of their nations is reviewed. The first commercial facility designed for food irradiation and two demonstration food irradiation facilities began operations early in 1992. The progress of these facilities is discussed. The North American Free Trade Agreement (NAFTA) and the Uruguay round of GATT negotiations may significantly lower barriers that impede international agricultural trade. International agreement on appropriate control and inspection procedures would eliminate unnecessary differences and improve mutual trust thus facilitating international trade in irradiated foods. The harmonization of radiation process practices, dosimetry standards, and other issues plays a very important role in meeting the provisions of trade agreeements. It is vitally important to address these issues early in the commercialization of food irradiation throughout the trading world. Some comments in that area are provided. Much has been done already to harmonize regulations and facilitate trade; but there is still much to be done. Regardless of how these issues are resolved, they will have a significant impact on the use of radiation processing for foods and the trade of irradiated foods all over the world.

  14. NSUF Irradiated Materials Library

    SciTech Connect

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  15. Management of the irradiated casualty.

    PubMed

    Bland, S A

    2004-09-01

    The initial management of any irradiated casualty is the early identification of the possibility of a significant exposure through dose prediction and recognition of prodromal symptoms. Subsequent management is aimed at supporting the effected systems until there is recovery. Where there is haematological failure, transplantation (bone marrow / stem cell) is possible although limited value in a mass casualty scenario. The provision of gold standard therapy within the field is unlikely to occur and early medical evacuation to an Echelon / Role 4 facility with specialist services will be required. Within the field, early assessment using the above systems of classification could be achieved at Echelon / Role 3 and may be enhanced with the establishment of Radiation Assessment Units. These would select casualties that could benefit from the advanced therapies. A summary of the levels of care is shown in Figure 3.

  16. Positron Annihilation Lifetime Spectroscopy Study of Neutron Irradiated High Temperature Superconductors YBa2Cu3O7-δ for Application in Fusion Facilities

    NASA Astrophysics Data System (ADS)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Eisterer, M.; Weber, H. W.; Sojak, S.; Petriska, M.; Hinca, R.; Degmová, J.; Sabelová, V.

    2012-02-01

    This study focuses on the crystallographic defects introduced by neutron irradiation and the resulting changes of the superconducting properties in the high temperature superconductor YBa2Cu3O7-δ. This material is considered to be most promising for magnet systems in future fusion reactors. Two different bulk samples, pure non-doped YBa2Cu3O7-δ (YBCO) and multi-seed YBa2Cu3O7-δ doped by platinum (MS2F) were studied prior to and after irradiation in the TRIGA MARK II reactor in Vienna. Neutron irradiation is responsible for a significant enhancement of the critical current densities as well as for a reduction in critical temperature. The accumulation of small open volume defects (<0.5 nm) partially causes those changes. These defects were studied by positron annihilation lifetime spectroscopy at room temperature. A high concentration of Cu-O di-vacancies was found in both samples, which increased with neutron fluence. The defect concentration was significantly reduced after a heat treatment.

  17. Direct drive targets for the megajoule facility UFL-2M

    NASA Astrophysics Data System (ADS)

    Rozanov, V. B.; Gus'kov, S. Yu; Vergunova, G. A.; Demchenko, N. N.; Stepanov, R. V.; Doskoch, I. Ya; Yakhin, R. A.; Zmitrenko, N. V.

    2016-03-01

    Development of direct drive target schemes for the megajoule facility is a topical problem of up-to-date inertial fusion physics. The choice of possible schemes and solutions depends essentially on the irradiation conditions. The installations both running (NIF) and under construction (LMJ) are destined to the 3ω irradiation in PDD (polar direct drive) configuration. The UFL-2M installation that is under construction is based on 2ω irradiation and a symmetrical scheme of direct drive target irradiation. Under these conditions possible schemes for direct drive targets demonstrating the ignition and the achievement of gain G=10÷20 are considered in this report. At the same time, the possibilities are analyzed for the target compression and ignition with a reliability reserve at the conditions that can deviate from the standard ones, and if our understanding of the physics of the processes is not completely adequate to the physics of the real processes.

  18. Standard Review Plan for the review of a license application for a low-level radioactive waste disposal facility. Revision 3

    SciTech Connect

    Not Available

    1994-04-01

    The Standard Review Plan (SRP) (NUREG-1200) provides guidance to staff reviewers in the Office of Nuclear Material Safety and Safeguards who perform safety reviews of applications to construct and operate low-level radioactive waste disposal facilities. The SRP ensures the quality and uniformity of the staff reviews and presents a well-defined base from which to evaluate proposed changes in the scope and requirements of the staff reviews. The SRP makes information about the regulatory licensing process widely available and serves to improve the understanding of the staff`s review process by interested members of the public and the industry. Each individual SRP addresses the responsibilities of persons performing the review, the matters that are reviewed, the Commission`s regulations and acceptance criteria necessary for the review, how the review is accomplished, the conclusions that are appropriate, and the implementation requirements.

  19. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  20. Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa

    SciTech Connect

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S; Toloczko, M

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

  1. Elimination of coliforms and Salmonella spp. in sheep meat by gamma irradiation treatment

    PubMed Central

    Henriques, Luciana Salles Vasconcelos; da Costa Henry, Fábio; Barbosa, João Batista; Ladeira, Silvania Alves; de Faria Pereira, Silvia Menezes; da Silva Antonio, Isabela Maria; Teixeira, Gina Nunes; Martins, Meire Lelis Leal; de Carvalho Vital, Helio; dos Prazeres Rodrigues, Dália; dos Reis, Eliane Moura Falavina

    2013-01-01

    This study aimed at evaluating the bacteriological effects of the treatment of sheep meat contaminated with total coliforms, coliforms at 45 °C and Salmonella spp. by using irradiation at doses of 3 kGy and 5 kGy. Thirty sheep meat samples were collected from animals located in Rio de Janeiro State, Brazil, and then grouped in three lots including 10 samples: non-irradiated (control); irradiated with 3 kGy; and irradiated with 5 kGy. Exposure to gamma radiation in a 137Cs source-driven irradiating facility was perfomed at the Nuclear Defense Section of the Brazilian Army Technological Center (CTEx) in Rio de Janeiro. The samples were kept under freezing temperature (−18 °C) until the analyses, which occurred in two and four months after irradiation. The results were interpreted by comparison with the standards of the current legislation and demonstrated that non-irradiated samples were outside the parameters established by law for all groups of bacteria studied. Gamma irradiation was effective in inactivating those microorganisms at both doses tested and the optimal dose was achieved at 3 kGy. The results have shown not only the need for sanitary conditions improvements in slaughter and processing of sheep meat but also the irradiation effectiveness to eliminate coliform bacteria and Salmonella spp. PMID:24688504

  2. Elimination of coliforms and Salmonella spp. in sheep meat by gamma irradiation treatment.

    PubMed

    Henriques, Luciana Salles Vasconcelos; da Costa Henry, Fábio; Barbosa, João Batista; Ladeira, Silvania Alves; de Faria Pereira, Silvia Menezes; da Silva Antonio, Isabela Maria; Teixeira, Gina Nunes; Martins, Meire Lelis Leal; de Carvalho Vital, Helio; dos Prazeres Rodrigues, Dália; dos Reis, Eliane Moura Falavina

    2013-12-01

    This study aimed at evaluating the bacteriological effects of the treatment of sheep meat contaminated with total coliforms, coliforms at 45 °C and Salmonella spp. by using irradiation at doses of 3 kGy and 5 kGy. Thirty sheep meat samples were collected from animals located in Rio de Janeiro State, Brazil, and then grouped in three lots including 10 samples: non-irradiated (control); irradiated with 3 kGy; and irradiated with 5 kGy. Exposure to gamma radiation in a (137)Cs source-driven irradiating facility was performed at the Nuclear Defense Section of the Brazilian Army Technological Center (CTEx) in Rio de Janeiro. The samples were kept under freezing temperature (-18 °C) until the analyses, which occurred in two and four months after irradiation. The results were interpreted by comparison with the standards of the current legislation and demonstrated that non-irradiated samples were outside the parameters established by law for all groups of bacteria studied. Gamma irradiation was effective in inactivating those microorganisms at both doses tested and the optimal dose was achieved at 3 kGy. The results have shown not only the need for sanitary conditions improvements in slaughter and processing of sheep meat but also the irradiation effectiveness to eliminate coliform bacteria and Salmonella spp.

  3. Using the LANSCE irradiation facility to predict the number of fatal soft errors in one of the world’s fastest supercomputers

    NASA Astrophysics Data System (ADS)

    Michalak, S. E.; Harris, K. W.; Hengartner, N. W.; Takala, B. E.; Wender, S. A.

    2005-12-01

    Los Alamos National Laboratory (LANL) is home to the Los Alamos Neutron Science Center (LANSCE). LANSCE is a unique facility because its neutron spectrum closely mimics the neutron spectrum at terrestrial and aircraft altitudes, but is many times more intense. Thus, LANSCE provides an ideal setting for accelerated testing of semiconductor and other devices that are susceptible to cosmic ray induced neutrons. Many industrial companies use LANSCE to estimate device susceptibility to cosmic ray induced neutrons, and it has also been used to test parts from one of LANL's supercomputers, the ASC (Advanced Simulation and Computing Program) Q. This paper discusses our use of the LANSCE facility to study components in Q including a comparison with failure data from Q.

  4. Bandwidth and spectral stray light effects in the NASA GSFC Radiometric Calibration Facility primary transfer radiometer

    NASA Astrophysics Data System (ADS)

    Barnes, Robert A.; Cooper, John W.; Marketon, John E.; Brown, Steven W.; Johnson, B. Carol; Butler, James J.

    2006-08-01

    As part of an effort to reduce uncertainties in the radiometric calibrations of integrating sphere sources and standard lamp irradiance sources, the Goddard Space Flight Center (GSFC) Radiometric Calibration Facility's (RCF) primary radiometer was characterized at the NIST facility for Spectral Irradiance and Radiance Calibrations with Uniform Sources (SIRCUS). Based on those measurements, a nominal slit scattering function was developed for the radiometer. This allowed calculations of band averaged spectral radiances and irradiances for the radiometer's measurements of sphere and standard lamp sources, respectively. From these calculations the effects of bandwidth and spectral stray light were isolated for measurements in the blue spectral region. These effects, which depend on the spectral distribution of the source being measured, can be as large as 8% for measurements at 400 nm. The characterization results and a correction algorithm for these effects are presented here.

  5. Facile preparation of ZnO nanosheets and its photocatalytic activity in the degradation of rhodamine B dye under UV irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Rizwan; Raj, Sudarsan; Yun, Jin Hyeon; Yu, Yeon-Tae; Lee, Joo In; Lee, In-Hwan

    2016-09-01

    We have successfully synthesized high crystalline quality ZnO nanosheets (NSs) structures by a hydrothermal process. The detailed characterizations have shown that the ZnO nanostructures were well crystalline, uniform and had nanosheets-like morphology with an average size of 100-150 nm. The photocatalytic performance of ZnO NSs was examined for use in the degradation of rhodamine B dye, and exhibited ~83.7% and 96.8% dye decomposition within 100 min and 140 min, respectively, under UV irradiation. The results were attributed to the high crystalline quality of ZnO NSs that produced reactive sites over the ZnO catalyst surface to decompose the rhodamine B dye.

  6. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    SciTech Connect

    Not Available

    1994-08-01

    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited to immediate area of the Rust Garage Facility.

  7. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  8. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  9. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  10. Commercial implementation of food irradiation

    NASA Astrophysics Data System (ADS)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104

  11. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  12. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  13. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  14. Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Changle

    2014-11-01

    N-doped ZnO micropolyhedrons were fabricated by calcining the mixture of commercial ZnO (analytical grade) and NH4NO3 at 600 °C for 1.5 h, in which NH4NO3 was utilized as the nitrogen source. The structure, composition, BET specific surface area and optical properties of N-doped ZnO sample were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, wavelength dispersive X-ray fluorescence spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, N2 adsorption-desorption isotherms, and UV-vis diffuse reflectance spectroscopy. The photocatalytic results demonstrated that the as-synthesized N-doped ZnO microcrystals possessed much higher photocatalytic activity than N-doped TiO2 (which was synthesized by calcining the mixture of P25 TiO2 and NH4NO3 at 600 °C for 1.5 h) and commercial pure ZnO in the decomposition of formaldehyde under visible-light (λ > 420 nm) irradiation. The present work suggests that NH4NO3 is a promising nitrogen source for one-step calcination synthesis of microcrystalline N-doped ZnO, which can be applied as a visible-light-activated photocatalyst in efficient utilization of solar energy for treating formaldehyde wastewater.

  15. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation.

    PubMed

    Vadivel, S; Maruthamani, D; Habibi-Yangjeh, A; Paul, Bappi; Dhar, Siddhartha Sankar; Selvam, Kaliyamoorthy

    2016-10-15

    Hybrid organic/inorganic nanocomposites comprised of calcium ferrite (CaFe2O4) and graphitic carbon nitride (g-C3N4) were prepared via a simple two-step process. The hybridized CaFe2O4/g-C3N4 heterostructure was characterized by a variety of techniques, including X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, electrochemical impedance spectroscopy (EIS), and photoelectrochemical studies. Photocatalytic activity of the prepared samples was evaluated against degradation of methylene blue (MB) under visible-light irradiation. The photocatalytic activity of CaFe2O4 30%/g-C3N4 nanocomposite, as optimum photocatalyst, for degradation of MB was superior to the pure CaFe2O4 and g-C3N4 samples. It was demonstrated that the photogenerated holes and superoxide ion radicals were the two main reactive species towards the photocatalytic degradation of MB over the nanocomposite. Based on the experimental results, a possible photocatalytic mechanism for the MB degradation over the nanocomposite was proposed. This work may provide some inspiration for the fabrication of spinel ferrites with efficient photocatalytic performance. PMID:27421115

  16. Facile one-pot synthesis of nickel-incorporated titanium dioxide/graphene oxide composites: Enhancement of photodegradation under visible-irradiation

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Truc; Nguyen-Huy, Chinh; Shin, Eun Woo

    2016-07-01

    Nickel (Ni)-incorporated titanium dioxide (TiO2)/graphene oxide composite photocatalysts were prepared by anchoring the TiO2 and Ni onto the surface of graphene oxide (GO) sheets by a straightforward microwave-assisted, one-pot method for the first time. The as-prepared composite photocatalysts with high Ni content (40-50 wt%) showed good adsorption capacity in the dark and high reaction rate constants under visible illumination while the composite photocatalysts with low Ni content (5-10 wt%) exhibited weak activity. An anatase phase, a small amount of rutile phase and Ni metal were detected using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman measurements identified a small fraction of NiTiO3 only at high Ni content. The formation of NiTiO3 and the increase in the specific surface area (SSA) for 40 and 50 wt% Ni-loaded catalysts improved the adsorption capacity and photocatalytic activity upon exposure to visible light, resulting in very effective removal of dye contaminants under visible light irradiation. Increasing the Ni content up to 40 and 50 wt% induced not only a structural change affording high porosity but also a narrowing of the band gap to 2.51 eV. Meanwhile, the presence of GO in the composite photocatalysts inhibited the agglomeration of Ni particles even at high Ni content, resulting in similar Ni particle sizes regardless of the Ni content. At the same time, Ni metal accelerated the reduction of the GO sheets, as evidenced by the Raman data.

  17. Facile preparation of magnetic C/TiO2/Ni composites and their photocatalytic performance for removal of a dye from water under UV light irradiation.

    PubMed

    Gondal, Mohammed A; Li, Chunli; Chang, Xiaofeng; Sikong, Lek; Yamani, Zain H; Zhou, Qin; Yang, Fan; Lin, Qin

    2012-01-01

    Development of a photocatalyst with high efficiency and separability is still a challenging task in the field of wastewater treatment. In this study, new magnetic separable C/TiO(2)/Ni composite as a photocatalyst was prepared by a facile pyrolysis reaction, using powdered activated carbon (PAC), TiO(2) and Ni(Ac)(2) as precursors. The results proved that the photocatalyst (C/TiO(2)/Ni) synthesized in this work exhibited greater removal activity for Methyl Orange (MO) dye from water as compared with the commercially available well reported TiO(2) nanoparticles (P25). This significant enhancement in the photocatalytic activity for wastewater treatment due to the combination of PAC and TiO(2) could be presumed as the synergetic effect on the contacting interface of TiO(2) and PAC, and such effect was initially demonstrated by electrochemical impedance measurements. Furthermore, the trait that it consists of magnetic properties and therefore is easy to be recycled, which could be harnessed by an external magnet and may have many advantages over pure metal oxides (like TiO(2)) especially in the industrial procedures. PMID:22375540

  18. 40 CFR 60.5410 - How do I demonstrate initial compliance with the standards for my gas well affected facility, my...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facility, and my equipment leaks and sweetening unit affected facilities at onshore natural gas... Performance for Crude Oil and Natural Gas Production, Transmission and Distribution § 60.5410 How do I... at onshore natural gas processing plants? You must determine initial compliance with the...

  19. 40 CFR 60.5410 - How do I demonstrate initial compliance with the standards for my gas well affected facility, my...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facility, and my equipment leaks and sweetening unit affected facilities at onshore natural gas... Performance for Crude Oil and Natural Gas Production, Transmission and Distribution § 60.5410 How do I... at onshore natural gas processing plants? You must determine initial compliance with the...

  20. 48 CFR 9904.414 - Cost accounting standard-cost of money as an element of the cost of facilities capital.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Cost accounting standard... Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND BUDGET PROCUREMENT PRACTICES AND COST ACCOUNTING STANDARDS COST...

  1. 48 CFR 9904.414 - Cost accounting standard-cost of money as an element of the cost of facilities capital.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Cost accounting standard... Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND BUDGET PROCUREMENT PRACTICES AND COST ACCOUNTING STANDARDS COST...

  2. 48 CFR 9904.414 - Cost accounting standard-cost of money as an element of the cost of facilities capital.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Cost accounting standard... Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND BUDGET PROCUREMENT PRACTICES AND COST ACCOUNTING STANDARDS COST...

  3. 48 CFR 9904.414 - Cost accounting standard-cost of money as an element of the cost of facilities capital.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Cost accounting standard... Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL PROCUREMENT POLICY, OFFICE OF MANAGEMENT AND BUDGET PROCUREMENT PRACTICES AND COST ACCOUNTING STANDARDS COST...

  4. Investigation of the effect of some irradiation parameters on the response of various types of dosimeters to electron irradiation

    NASA Astrophysics Data System (ADS)

    Farah, K.; Kuntz, F.; Kadri, O.; Ghedira, L.

    2004-09-01

    Several undyed and dyed polymer films are commercially available for dosimetry in intense radiation fields, especially for radiation processing of food and sterilisation of medical devices. The effects of temperature during irradiation and post-irradiation stability, on the response of these dosimeters are of importance to operators of irradiation facilities. The present study investigates the effects of temperature during irradiation by 2.2 MeV electrons beam accelerator and post irradiation storage on the response of several types of dosimeter films. All dosimeters showed a significant effect of temperature during irradiation and post-irradiation storage.

  5. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  6. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  7. 40 CFR 264.1053 - Standards: Compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1053 Standards: Compressors. (a) Each...

  8. 40 CFR 264.1053 - Standards: Compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1053 Standards: Compressors. (a) Each...

  9. 40 CFR 264.1053 - Standards: Compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1053 Standards: Compressors. (a) Each...

  10. 40 CFR 264.1053 - Standards: Compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1053 Standards: Compressors. (a) Each...

  11. Distilling Complex Model Results into Simple Models for use in Assessing Compliance with Performance Standards for Low Level Waste Disposal Facilities

    SciTech Connect

    Arthur S. Rood

    2007-02-01

    Assessing the long term performance of waste disposal facility requires numerical simulation of saturated and unsaturated groundwater flow and contaminant transport. Complex numerical models have been developed to try to realistically simulate subsurface flow and transport processes. These models provide important information about system behavior and identify important processes, but may not be practical for demonstrating compliance with performance standards because of excessively long computer simulation times and input requirements. Two approaches to distilling the behavior of a complex model into simpler formulations that are practical for demonstrating compliance with performance objectives are examined in this paper. The first approach uses the information obtained from the complex model to develop a simple model that mimics the complex model behavior for stated performance objectives. The simple model may need to include essential processes that are important to assessing performance, such as time-variable infiltration and waste emplacement rates, subsurface heterogeneity, sorption, decay, and radioactive ingrowth. The approach was applied to a Low-Level Waste disposal site at the Idaho National Laboratory where a complex three dimensional vadose zone model was developed first to understand system behavior and important processes. The complex model was distilled down to a relatively simple one-dimensional vadose zone model and three-dimensional aquifer transport model. Comparisons between the simple model and complex model of vadose zone fluxes and groundwater concentrations showed relatively good agreement between the models for both fission and activation products (129I, 36Cl, 99Tc) and actinides (238U, 239Pu, 237Np). Application of the simple model allowed for Monte Carlo uncertainty analysis and simulations of numerous disposal and release scenarios. The second approach investigated was the response surface model. In the response surface model approach

  12. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  13. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  14. Establishing and maintaining a facility representative program at DOE facilities

    SciTech Connect

    1997-10-01

    The purpose of this standard is to help ensure that DOE Facility Representatives are selected based on consistently high standards and from the best qualified candidates, that they receive the necessary training, and that their duties are well understood and documented. The standard defines the duties, responsibilities, and qualifications for Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. Guidance provided includes: (1) an approach for determining the required facility coverage; (2) the duties, responsibilities, and authorities of a Facility Representative; (3) training and qualifications expected of a Facility Representative; and (4) elements necessary for successful Facility Representative Programs at DOE Field Offices. This guidance was written primarily to address nuclear facilities. 12 refs., 2 tabs.

  15. Irradiation subassembly

    DOEpatents

    Seim, O.S.; Filewicz, E.C.; Hutter, E.

    1973-10-23

    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  16. Effect of microwave irradiation on TATB explosive.

    PubMed

    Yu, Weifei; Zhang, Tonglai; Huang, Yigang; Yang, Li; Li, Gang; Li, Haibo; Li, Jinshan; Huang, Hui

    2009-09-15

    Finished TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosive safety under 800W microwave irradiation was experimented. No burning, deflagration and detonation were observed during 30-min continuous irradiation and no remarkable change were observed after irradiation according to HPLC, particles size analysis, and differential thermal analysis. Wet TATB sampled from synthesis line was irradiated with microwave vacuum method and irradiated TATB was measured to accord with military standard specifications including appearance, moisture and volatile, chloride content, HPLC, mean particle size, DTA exothermic peak, ash, acetone soluble content, PH value, etc. Microwave vacuum desiccation was deemed laborsaving, energy-efficient, and practicable compared to conventional processing method. PMID:19324496

  17. Effect of microwave irradiation on TATB explosive.

    PubMed

    Yu, Weifei; Zhang, Tonglai; Huang, Yigang; Yang, Li; Li, Gang; Li, Haibo; Li, Jinshan; Huang, Hui

    2009-09-15

    Finished TATB (1,3,5-triamino-2,4,6-trinitrobenzene) explosive safety under 800W microwave irradiation was experimented. No burning, deflagration and detonation were observed during 30-min continuous irradiation and no remarkable change were observed after irradiation according to HPLC, particles size analysis, and differential thermal analysis. Wet TATB sampled from synthesis line was irradiated with microwave vacuum method and irradiated TATB was measured to accord with military standard specifications including appearance, moisture and volatile, chloride content, HPLC, mean particle size, DTA exothermic peak, ash, acetone soluble content, PH value, etc. Microwave vacuum desiccation was deemed laborsaving, energy-efficient, and practicable compared to conventional processing method.

  18. The solar absolute spectral irradiance 1150-3173 A - May 17, 1982

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Rottman, G. J.

    1983-01-01

    The full-disk solar spectral irradiance in the spectral range 1150-3173 A was obtained from a rocket observation above White Sands Missile Range, NM, on May 17, 1982, half way in time between solar maximum and solar minimum. Comparison with measurements made during solar maximum in 1980 indicate a large decrease in the absolute solar irradiance at wavelengths below 1900 A to approximately solar minimum values. No change above 1900 A from solar maximum to this flight was observed to within the errors of the measurements. Irradiance values lower than the Broadfoot results in the 2100-2500 A spectral range are found, but excellent agreement with Broadfoot between 2500 and 3173 A is found. The absolute calibration of the instruments for this flight was accomplished at the National Bureau of Standards Synchrotron Radiation Facility which significantly improves calibration of solar measurements made in this spectral region.

  19. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  20. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  1. 9 CFR 3.27 - Facilities, outdoor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Guinea Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities...

  2. Irradiated foods

    MedlinePlus

    ... it reduces the risk of food poisoning . Food irradiation is used in many countries. It was first approved in the U.S. to prevent sprouts on white potatoes, and to control insects on wheat and in certain spices and seasonings.

  3. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.

    PubMed

    Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-12-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797

  4. Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation

    PubMed Central

    Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-01-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797

  5. Design and verification of the shielding around the new Neutron Standards Laboratory (LPN) at CIEMAT.

    PubMed

    Méndez-Villafañe, R; Guerrero, J E; Embid, M; Fernández, R; Grandio, R; Pérez-Cejuela, P; Márquez, J L; Alvarez, F; Ortego, P

    2014-10-01

    The construction of the new Neutron Standards Laboratory at CIEMAT (Laboratorio de Patrones Neutrónicos) has been finalised and is ready to provide service. The facility is an ∼8 m×8 m×8 m irradiation vault, following the International Organization for Standardization 8529 recommendations. It relies on several neutron sources: a 5-GBq (5.8× 10(8) s(-1)) (252)Cf source and two (241)Am-Be neutron sources (185 and 11.1 GBq). The irradiation point is located 4 m over the ground level and in the geometrical centre of the room. Each neutron source can be moved remotely from its storage position inside a water pool to the irradiation point. Prior to this, an important task to design the neutron shielding and to choose the most appropriate materials has been developed by the Radiological Security Unit and the Ionizing Radiations Metrology Laboratory. MCNPX was chosen to simulate the irradiation facility. With this information the walls were built with a thickness of 125 cm. Special attention was put on the weak points (main door, air conditioning system, etc.) so that the ambient dose outside the facility was below the regulatory limits. Finally, the Radiation Protection Unit carried out a set of measurements in specific points around the installation with an LB6411 neutron monitor and a Reuter-Stokes high-pressure ion chamber to verify experimentally the results of the simulation.

  6. Updates to ISO 21348 (determining solar irradiances)

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2012-07-01

    The ISO 21348 (Determining Solar Irradiances) International Standard is going through a document update. A consensus solar spectrum, solar indices/proxies descriptions, solar model descriptions, and solar measurement descriptions are among the Annexes that are proposed to the standard. These topics will be reviewed and described. The International Standards Organization (ISO) published IS 21348 in 2007 after 7 years of development by the international scientific community. In ISO, documents are reviewed on a regular basis and reaffirmed, updated, or deleted according to the votes of national delegations represented in ISO. IS 21348 provides guidelines for specifying the process of determining solar irradiances. Solar irradiances are reported through products such as measurement sets, reference spectra, empirical models, theoretical models and solar irradiance proxies or indices. These products are used in scientific and engineering applications to characterize within the natural space environment solar irradiances that are relevant to space systems and materials. Examples of applications using input solar irradiance energy include the determination of atmospheric densities for spacecraft orbit determination, attitude control and re-entry calculations, as well as for debris mitigation and collision avoidance activity. Direct and indirect pressure from solar irradiance upon spacecraft surfaces also affects attitude control separately from atmospheric density effects. Solar irradiances are used to provide inputs for a) calculations of ionospheric parameters, b) photon-induced radiation effects, and c) radiative transfer modeling of planetary atmospheres. Input solar irradiance energy is used to characterize material properties related to spacecraft thermal control, including surface temperatures, reflectivity, absorption and degradation. Solar energy applications requiring a standard process for determining solar irradiance energy include i) solar cell power

  7. Phytosanitary of irradiation of fresh tropical commodities in Hawaii: generic treatments, commercial adoption and current issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hawaii Pride is a pioneer in the use of phytosanitary irradiation. The commercial x-ray irradiation facility , Hawaii Pride LLC, has been shipping papaya and other tropical fruits and vegetables to the United States mainland using irradiation for 11 years. Irradiation is an approved treatment to con...

  8. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  9. Container and waste pile standards for owners and operators of hazardous waste facilities: consolidated permit regulations--Environmental Protection Agency. Amendments to interim final rule.

    PubMed

    1981-11-01

    The Environmental Protection Agency (EPA) is today promulgating amendments to the hazardous waste management regulations regarding the management of hazardous waste in containers and piles and associated permit regulations (40 CFR Part 264, Subparts I and L, and Part 122, Subpart B). These amendments better tailor the standards to the particular type of hazard posed by specific situations. The standards for containers are amended to waive the containment system requirements for wastes that do not contain free liquids, provided that the wastes are protected from contact with accumulated liquid. The standards for waste piles are amended to waive the containment system requirements for wastes that do not contain free liquids, provided that the pile is protected from precipitation by a structure and from surface water run-on and wind dispersal of the waste by the structure or some other means. The Agency believes these amendments believes these amendments will not reduce the level of protection of human health and the environment.

  10. Hazardous waste management system: standards applicable to generators of hazardous waste and standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities--Environmental Protection Agency. Proposed rule.

    PubMed

    1982-10-12

    The Environmental Protection Agency (EPA) is today proposing amendments to its hazardous waste regulations under Subtitle C of the Resource Conservation and Recovery Act (RCRA). These amendments would replace the annual reporting requirements for hazardous waste generators and owners and operators of hazardous waste treatment, storage, ad disposal (TSD) facilities with a biennial survey of representative samples of those populations. This approach will provide verifiable data on a wider range of topics, better serve EPA's long term regulatory needs under RCRA, and reduce significantly the information burden on the regulated community.

  11. Influences of Microwave Irradiation on Environment

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Abe, Y.; Iwata, T.; Kudo, I.; Saito, K.; Okuda, T.

    2004-12-01

    An experimental facility to evaluate the long-duration influence of microwave to environment, a so-called long duration microwave exposure facility (LDMEF), was constructed in Tsukuba in 1994, and so far irradiation tests on plants accumulated over 40,000 hours have been conducted with the aid of 2.45 GHz magnetron. The LDMEF consists of a pair of outdoor electromagnetically isolated areas, one under the influence of microwave irradiation with a 500 W magnetron and one without microwave irradiation. The growth rates of plants in both areas were compared and evaluated with the experimental data for the temperature distribution in the soil and power distribution of microwave. Although any appreciable influence of microwave was not noticed in the power density less than 10 mW/cm2 , the experimental results showed a significant growth rate enhancement when the power density became over 10 mW/cm2 . However, the growth was rather depressed when the power density increased over 15 mW/cm2 . These effects are well explained by the temperature and moisture in the soil which are also under an appreciable influence of microwave irradiation [1,2]. In this context, we newly constructed an indoor irradiation facility, in which the growth conditions of plants under a constant soil temperature can be maintained. In addition, irradiation with a 5.8 GHz magnetron will be conducted in the new facility. In parallel to a series of indoor and outdoor irradiation tests on plants, the influence of microwave irradiation on the growth pattern of albino mouse will be conducted. This experiment will be the first experimental evaluation for the influence of microwave irradiation on animals.

  12. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    SciTech Connect

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility.

  13. Interim status standards for owners and operators of hazardous waste treatment, storage, and disposal facilities--Environmental Protection Agency. Interim final rule and interim final amendments to rules and request for comments.

    PubMed

    1981-11-17

    The Environmental Protection Agency [EPA] has issued standards applicable to owners and operators of hazardous waste management facilities as required by the Resource Conservation and Recovery Act [RCRA]. One of these standards bans the disposal of most containerized liquid hazardous waste in landfills, effective November 19, 1981. As a result of reconsideration of this restriction, EPA is today promulgating an interim final rule to allow the disposal of small containers of liquid and solid hazardous waste in landfills provided that the wastes are placed in overpacked drums [lab packs] in the manner specified in today's rule. The purpose of today's rule is to provide an environmental sound disposal option for generators of small containers of hazardous wastes, such as laboratories.

  14. Standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities: liability requirements. Environmental Protection Agency. Revised interim final rule.

    PubMed

    1982-04-16

    The Environmental Protection Agency is today revising regulations of January 12, 1981, on liability coverage requirements for hazardous waste facility owners or operators. Under these requirements, owners or operators must demonstrate liability coverage for bodily injury and property damage to third parties resulting from facility operations. The major revisions are: addition of the option of a financial test as a means of demonstrating liability coverage to satisfy the requirements; addition of the option of submitting a certificate of insurance as evidence of insurance; and changes in the requirements for the endorsement and certificate. In a future document, EPA will propose to delete two provisions of the January 12, 1981 regulations. These provisions are: the procedure to obtain a variance for liability coverage requirements; and the provision allowing an owner or operator to use State assumption of legal responsibility for liability coverage to satisfy the liability requirements. The January 12, 1981, regulations were issued under an accelerated schedule imposed by a court order. The revisions that are being made today are necessary to eliminate unworkable aspects of the previous regulations, improve their effectiveness, and allow reasonable flexibility in satisfying the requirements.

  15. Higher Early Monocyte and Total Lymphocyte Counts Are Associated with Better Overall Survival after Standard Total Body Irradiation, Cyclophosphamide, and Fludarabine Reduced-Intensity Conditioning Double Umbilical Cord Blood Allogeneic Stem Cell Transplantation in Adults.

    PubMed

    Le Bourgeois, Amandine; Peterlin, Pierre; Guillaume, Thierry; Delaunay, Jacques; Duquesne, Alix; Le Gouill, Steven; Moreau, Philippe; Mohty, Mohamad; Campion, Loïc; Chevallier, Patrice

    2016-08-01

    This single-center retrospective study aimed to report the impact of early hematopoietic and immune recoveries after a standard total body irradiation, cyclophosphamide, and fludarabine (TCF) reduced-intensity conditioning (RIC) regimen for double umbilical cord blood (dUCB) allogeneic stem cell transplantation (allo-SCT) in adults. We analyzed 47 consecutive patients older than 17 years who engrafted after a dUCB TCF allo-SCT performed between January 2006 and April 2013 in our department. Median times for neutrophil and platelet recoveries were 17 (range, 6 to 59) and 37 days (range, 0 to 164), respectively. The 3-year overall (OS) and disease-free survivals, relapse incidence, and nonrelapse mortality were 65.7%, 57.2%, 27.1%, and 19%, respectively. In multivariate analysis, higher day +30 monocyte (≥615/mm(3); hazard ratio [HR], .04; 95% confidence interval [CI], .004 to .36; P < .01) and day +42 lymphocyte (≥395/mm(3); HR, .16; 95% CI, .03 to .78; P = .02) counts were independently associated with better OS. These results suggest that early higher hematopoietic and immune recovery is predictive of survival after dUCB TCF RIC allo-SCT in adults. Factors other than granulocyte colony-stimulating factor, which was used in all cases, favoring expansion of monocytes or lymphocytes, should be tested in the future as part of the UCB transplantation procedure. PMID:27118570

  16. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  17. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. PMID:27423022

  18. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively.

  19. Electron irradiation of dry food products

    NASA Astrophysics Data System (ADS)

    Grünewald, Th.

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10∗∗4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50°C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the iradiation field in a closed conveyor system.

  20. Interim status standards for owners and operators of hazardous waste treatment, storage, and disposal facilities: Environmental Protection Agency. Proposed amendments to rule.

    PubMed

    1982-02-25

    On May 19, 1980, EPA promulgated regulations, applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities during interim status, which prohibited the landfill disposal of most containerized liquid waste or waste containing free liquid on and after November 19, 1981. As a result of issues raised by the regulated community with respect to this prohibition, the Agency is today proposing an amendment to this regulation to allow some containers holding free liquids to be disposed of in a landfill, in some circumstances. In a separate action in today's federal Register, EPA is providing a 90-day extension (from today's date) of the compliance date for the prohibition of landfill disposal of containerized liquid waste and the restrictions on the landfill disposal of liquid ignitable waste to allow time to complete this rulemaking action and to avoid immediately imposing requirements that might be changed as a result of this rulemaking action.

  1. Present status of refurbishment and irradiation technologies in JMTR

    NASA Astrophysics Data System (ADS)

    Inaba, Yoshitomo; Ishihara, Masahiro; Niimi, Motoji; Kawamura, Hiroshi

    2011-10-01

    The Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency is a testing reactor for various neutron irradiation tests on nuclear fuels and materials, as well as for radioisotope production. The operation of JMTR stopped temporarily in August 2006 for refurbishment and improvement. The renewed JMTR will resume operation in Japanese fiscal year 2011. The renewal of aged reactor components, the preparation of new irradiation facilities, and the development of irradiation technologies have been carried out for the resumption of the new JMTR. The new JMTR with the new irradiation facilities and the irradiation technologies will be utilized for the research and development of fission and fusion reactor fuels and materials. This paper describes the present status of the refurbishment and the irradiation technologies focused on instrumentation such as the multi-paired thermocouple which is applicable to irradiation temperature control and a ceramic oxygen sensor in JMTR.

  2. The DA{phi}NE-Light Facility

    SciTech Connect

    Burattini, Emilio; Cinque, Gianfelice; Dabagov, Sultan; Grilli, Antonio; Marcelli, Augusto; Pace, Elisabetta; Piccinini, Massimo; Raco, Agostino; Monti, Francesca

    2004-05-12

    The new Synchrotron Radiation facility at Frascati exploits the intense photon emission from DA{phi}NE, the 0,51 GeV storage ring circulating over 1 A of electrons. Among the three beamlines commissioned, the Synchrotron INfrared Beamline At Da{phi}ne (SINBAD) is fully operational by a brilliant SR beam spanning the entire IR. Recently, the soft X-ray beamline has been characterized and, once implemented the double-crystal monocromator, X-ray Absorption Spectroscopy is applied on material standards in the distinguishing energy region below 4 keV. An UltraViolet line, presently dedicated to photobiology dosimetry, has also given first results on cell irradiation in the UVB band.

  3. Radiometric characterization of the NASA GSFC radiometric calibration facility primary transfer radiometer

    NASA Astrophysics Data System (ADS)

    Cooper, John W.; Brown, Steven W.; Abel, Peter; Marketon, John E.; Butler, James J.

    2004-11-01

    As part of an effort to reduce uncertainties in the radiometric calibrations of integrating sphere sources and standard lamp irradiance sources, the Goddard Space Flight Center (GSFC) Radiometric Calibration Facility (RCF) primary radiometer was characterized at the NIST facility for Spectral Irradiance and Radiance Calibrations with Uniform Sources (SIRCUS). Specifically, the radiometer's slit spectral function was measured and the magnitude of out-of-band stray light was determined. The characterization also revealed significant contributions of spectral stray light due to fluorescence of the radiometer's input sphere. The RCF examined the effects of stray light and sphere fluorescence in the radiometer on source radiance calibrations along with approaches to reduce those sources of measurement error.

  4. Design of YCF-1 mobile γ irradiator

    NASA Astrophysics Data System (ADS)

    Hehu, Zhang; Chuanzhen, Wang

    1993-07-01

    YCF-1 Mobile irradiator is designed by BINE of China. It has been put into running in YanJi city of Jilin province. It is able to be moved to border and distance places and area lumped and spreading out of agricultural products to service. It can play a important role in demonstration and extending irradiation technology in food irradiation, disinfestation, sterilization and quarantine, etc. This paper describes the features and design considerations of mobile irradiator. This irradiator adopted Cesium-137 source. The design capacity of loading source is 9.25PBq (250kCi), A half-time of Cs- 137 is 30.2 years long, exchanging source is not needed utilization rate of energy is higher, and the shielding is thinner, The Weight is lighter, The dose rate on the surface of it is 0.0025mSv/h in accordance with national standard. The internal size of irradiation room is 1800×1800×900mm (L×W×H), The sheilding of irradiation room is a steel shell filled with lead. The thickness of lead is 18cm. The irradiator is installed on a special flat truck. The size of the truck is 7000×3400×4200mm (L×W×H). The weight of irradiator is more than 80 150kw. The main components and parts of irradiator are: source, source racks and hoist, irradiation chamber, storage source chamber, the product's transport system, dose monitoring system, ventilation system and safety interlock system, etc.

  5. A demonstration of CMOS VLSI circuit prototyping in support of the site facility using the 1.2 micron standard cell library developed by National Security Agency

    NASA Astrophysics Data System (ADS)

    Smith, Edwyn D.

    1991-03-01

    Two silicon CMOS application specific integrated circuits (ASICs), a data generation chip, and a data checker chip were designed. The conversion of the data generator circuitry into a pair of CMOS ASIC chips using the 1.2 micron standard cell library is documented. The logic design of the data checker is discussed. The functions of the control circuitry is described. An accurate estimate of timing relationships is essential to make sure that the logic design performs correctly under practical conditions. Timing and delay information are examined.

  6. A demonstration of CMOS VLSI circuit prototyping in support of the site facility using the 1.2 micron standard cell library developed by National Security Agency

    NASA Technical Reports Server (NTRS)

    Smith, Edwyn D.

    1991-01-01

    Two silicon CMOS application specific integrated circuits (ASICs), a data generation chip, and a data checker chip were designed. The conversion of the data generator circuitry into a pair of CMOS ASIC chips using the 1.2 micron standard cell library is documented. The logic design of the data checker is discussed. The functions of the control circuitry is described. An accurate estimate of timing relationships is essential to make sure that the logic design performs correctly under practical conditions. Timing and delay information are examined.

  7. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  8. Future Long-term Measurements of Solar Spectral Irradiance by JPSS TSIS

    NASA Astrophysics Data System (ADS)

    Richard, E. C.; Harber, D.; Harder, J. W.; Pilewskie, P.; Brown, S.; Smith, A.; Lykke, K.

    2011-12-01

    To advance scientific understanding of how solar variability affects climate processes it is important to maintain accurate, long-term records of solar irradiance. Continuation of solar spectral irradiance (SSI) measurements is needed to characterize poorly understood wavelength-dependent climate processes. Measurement challenges in quantifying the influence of SSI variability on climate are achieving sufficient radiometric absolute accuracy and maintaining the long-term relative accuracy. The Total and Spectral Solar Irradiance Sensor (TSIS) is a dual-instrument package that will acquire solar irradiance as part of the Joint Polar Satellite System (JPSS). The TSIS Spectral Irradiance Monitor (SIM) instrument will continue the SSI measurements that began with the SORCE SIM in 2003. The TSIS SIM incorporates design and calibration improvements to better quantify long-term SSI variability. Specific improvements include the pre-launch SI-traceable calibration, the measurement precision, and the long-term relative stability needed to meet the requirements for establishing a climate record of SSI into the future. To quantify the absolute accuracy over the full spectral range, we have developed a SIM Radiometer Facility (SIMRF) utilizing the NIST Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS). This comprehensive facility includes tuneable laser light sources from the ultraviolet to the near infrared matched in radiant power to the solar spectrum and tied to a cryogenic radiometer traceable to the NIST Primary Optical Watt Radiometer (POWR). The full characterization and calibration follows a measurement equation approach at the unit-level for full validation of the end-to-end performance at the instrument-level to achieve a combined standard uncertainty of 0.25% .

  9. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  10. Beneficial uses of nuclear byproducts/sewage sludge irradiation project. Progress report, October 1982-March 1983

    SciTech Connect

    Pierce, J.D.

    1984-11-01

    Gamma irradiation of various commodities in the Sandia Irradiator for Dried Sewage Solids (SIDSS) and the Gamma Irradiation Facility (GIF) continued during this reporting period. One truck-load of grapefruit was irradiated. Pelletized straw was irradiated to doses of 1, 5, 10, 20, and 40 megarads in SIDSS. Sludge, virus, and fungus samples were irradiated. Infected ground pork and infected pig carcasses were irradiated in the GIF as a method of Trichinella spiralis inactivation. Other experiments conducted in the GIF included irradiation of cut flowers to extend their shelf life and irradiation of kepone to induce its degradation. Waste Encapsulation and Storage Facility (WESF) capsule studies at ORNL and SNLA continued. A purchase order was placed for a prototype sludge solar dryer. Sewage Sludge Irradiation Transportation System (SSITS) cask activities included thermal stress analyses of cask performance following separation from the impact limiters during a fire. Analyses of cask performance, when loaded with six strontium-90 (Sr-90) capsules, also were done.

  11. Total body calcium analysis. [neutron irradiation

    NASA Technical Reports Server (NTRS)

    Lewellen, T. K.; Nelp, W. B.

    1974-01-01

    A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.

  12. Novel neutron sources at the Radiological Research Accelerator Facility

    SciTech Connect

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  13. Novel neutron sources at the Radiological Research Accelerator Facility.

    PubMed

    Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  14. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGES

    Xu, Yanping; Garty, G.; Marino, S. A.; Massey, Thomas Neal; Johnson, G. W.; Randers-Pehrson, Gerhard; Brenner, D. J.

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  15. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  16. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  17. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  18. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    PubMed

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of <10min to reach 1 SED. Nevertheless, the unweighted UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. PMID:27318601

  19. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    PubMed

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of <10min to reach 1 SED. Nevertheless, the unweighted UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose.

  20. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  1. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  2. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  3. 20 CFR 654.416 - Sleeping facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Sleeping facilities. 654.416 Section 654.416... THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.416 Sleeping facilities. (a) Sleeping facilities shall be provided for each person. Such facilities shall consist...

  4. 9 CFR 3.51 - Facilities, indoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Facilities, indoor. 3.51 Section 3.51 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... Facilities and Operating Standards § 3.51 Facilities, indoor. (a) Heating. Indoor housing facilities...

  5. 9 CFR 3.102 - Facilities, indoor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... changes in air and water temperatures shall be avoided. (b) Ventilation. Indoor housing facilities shall... Marine Mammals Facilities and Operating Standards § 3.102 Facilities, indoor. (a) Ambient temperature. The air and water temperatures in indoor facilities shall be sufficiently regulated by heating...

  6. New radiation protection calibration facility at CERN.

    PubMed

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations.

  7. Cherry Irradiation Studies. 1984 annual report

    SciTech Connect

    Eakin, D.E.; Hungate, F.P.; Tingey, G.L.; Olsen, K.L.; Fountain, J.B.; Burditt, A.K. Jr.; Moffit, H.R.; Johnson, D.A.; Lunden, J.D.

    1985-04-01

    Fresh cherries, cherry fruit fly larvae, and codling moth larvae were irradiated using the PNL cobalt-60 facility to determine the efficacy of irradiation treatment for insect disinfestation and potential shelf life extension. Irradiation is an effective disinfestation treatment with no significant degradation of fruit at doses well above those required for quarantine treatment. Sufficient codling moth control was achieved at projected doses of less than 25 krad; cherry fruit fly control, at projected doses of less than 15 krad. Dose levels up to 60 krad did not adversely affect cherry quality factors tested. Irradiation above 60 krad reduced the firmness of cherries but had no significant impact on other quality factors tested. Irradiation of cherries below 80 krad did not result in any significant differences in sensory evaluations (appearance, flavor, and firmness) in tests conducted at OSU. Irradiation up to 200 krad at a temperature of about 25/sup 0/C (77/sup 0/F) did not measurably extend shelf life. Irradiation at 500 krad at 25/sup 0/C (77/sup 0/F) increased mold and rotting of cherries tested. There is no apparent advantage of irradiation over low-temperature fumigation.

  8. A SU-8 dish for cell irradiation

    NASA Astrophysics Data System (ADS)

    Arteaga-Marrero, N.; Auzelyte, V.; Olsson, M. G.; Pallon, J.

    2007-10-01

    The objective of the CELLION project is radiation research at low doses. The main cell responses to low dose irradiation are bystander effects, genomic instability and adaptive responses. In order to study these effects it is convenient to make the cells addressable in space and time through locking the cell position. A new alternative dish has been developed for irradiation procedures at the Lund Nuclear Probe. The versatile dish can be used both to cultivate and to hold the cells during the irradiation procedure. The irradiation dish is made of an epoxy-based photopolymer named SU-8 chosen by its flexibility, non-toxicity and biological compatibility to cell attachment. It has been fabricated using a UV lithographic technique. The irradiation dish forms a 2 × 2 mm 2 grid which contains 400 squares. Each square has 80 μm side and is separated from neighbouring ones by 20 μm wide walls. The location of each square is marked by a row letter and column number patterned outside the grid. The Cell Irradiation Facility at the Lund Nuclear Probe utilizes protons to irradiate living cells. A post-cell detection set up is used to control the applied dose, detecting the number of protons after passing through the targeted cell. The transmission requirement is fulfilled by our new irradiation dish. So far, the dish has been used to perform non-targeted irradiation of Hepatoma cells. The cells attach and grow easily on the SU-8 surface. In addition, the irradiation procedure can be performed routinely and faster since the cells are incubated and irradiated in the same surface.

  9. Standardization of UV LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  10. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  11. Irradiation Processing Department monthly report, June 1962

    SciTech Connect

    Not Available

    1992-07-13

    This document details activities of the Irradiation Processing Department during the month of June, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and NPR Project.

  12. Glucose stabilizes collagen sterilized with gamma irradiation.

    PubMed

    Ohan, Mark P; Dunn, Michael G

    2003-12-15

    Gamma irradiation sterilization (gamma-irradiation) fragments and denatures collagen, drastically decreasing critical physical properties. Our goal was to maintain strength and stability of gamma-irradiated collagen by adding glucose, which in theory can initiate crosslink formation in collagen during exposure to gamma-irradiation. Collagen films prepared with and without glucose were gamma-irradiated with a standard dose of 2.5 Mrad. Relative amounts of crosslinking and denaturation were approximated based on solubility and the mechanical properties of the films after hydration, heat denaturation, or incubation in enzymes (collagenase and trypsin). After exposure to gamma-irradiation, collagen films containing glucose had significantly higher mechanical properties, greater resistance to enzymatic degradation, and decreased solubility compared with control films. The entire experiment was repeated with a second set of films that were exposed first to ultraviolet irradiation (254 nm) to provide higher initial strength and then gamma-irradiated. Again, films containing glucose had significantly greater mechanical properties and resistance to enzymatic degradation compared with controls. Gel electrophoresis showed that glucose did not prevent peptide fragmentation; therefore, the higher strength and stability in glucose-incorporated films may be due to glucose-derived crosslinks. The results of this study suggest that glucose may be a useful additive to stabilize collagenous materials or tissues sterilized by gamma-irradiation.

  13. Standards and Administration.

    ERIC Educational Resources Information Center

    Gross, S. P.

    1978-01-01

    Presents a literature review of water quality standards and administration, covering publications of 1976-77. Consideration is given to municipal facilities, National Pollutant Discharge Elimination Systems, regional and international water quality management, and effluent standards. A list of 99 references is also presented. (HM)

  14. Identification of gamma-irradiated papaya, melon and watermelon

    NASA Astrophysics Data System (ADS)

    Marín-Huachaca, Nélida S.; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.

    2004-09-01

    Ionizing radiation can be used to control spoilage microorganisms and to increase the shelf life of fresh fruits and vegetables in replacement for the treatment with chemical fumigants. In order to enforce labelling regulations, methods for detecting the irradiation treatment directly in the produce are required. Recently, a number of detection methods for irradiated food have been adopted by the Codex Comission. A rapid screening method for qualitative detection of irradiation is the DNA Comet Assay. The applicability of the DNA Comet Assay for distinguishing irradiated papaya, melon, and watermelon was evaluated. The samples were treated in a 60Co facility at dose levels of 0.0, 0.5, 0.75, and 1.0kGy. The irradiated samples showed typical DNA fragmentation whereas cells from non-irradiated ones appeared intact. In addition to the DNA Comet Assay also the half-embryo test was applied in melon and watermelon to detect the irradiation treatment.

  15. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  16. 40 CFR 265.18 - Location standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Location standards. 265.18 Section 265...) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General Facility Standards § 265.18 Location standards. The placement of any hazardous waste in...

  17. Hawaii success story in phytosanitary irradiation due to researcher-industry-regulator partnership

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hawaii is a pioneer in the use of phytosanitary irradiation. Irradiation is an approved treatment to control quarantine insect pests in 17 fruits and 7 vegetables for export from Hawaii to the U.S. mainland. Since 2000, the commercial x-ray irradiation facility, Hawaii Pride LLC, on the Big Island h...

  18. Phytosanitary irradiation for export of fresh produce: commercial adoption in Hawaii and current issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hawaii is a pioneer in the use of phytosanitary irradiation. Irradiation is an approved treatment to control quarantine insect pests in 17 fruits and 7 vegetables for export from Hawaii to the U.S. mainland. The commercial x-ray irradiation facility, Hawaii Pride LLC, has been shipping tropical frui...

  19. Comparison of material irradiation conditions for fusion, spallation, stripping and fission neutron sources

    NASA Astrophysics Data System (ADS)

    Vladimirov, P.; Möslang, A.

    2004-08-01

    Selection and development of materials capable of sustaining irradiation conditions expected for a future fusion power reactor remain a big challenge for material scientists. Design of other nuclear facilities either in support of the fusion materials testing program or for other scientific purposes presents a similar problem of irradiation resistant material development. The present study is devoted to an evaluation of the irradiation conditions for IFMIF, ESS, XADS, DEMO and typical fission reactors to provide a basis for comparison of the data obtained for different material investigation programs. The results obtained confirm that no facility, except IFMIF, could fit all user requirements imposed for a facility for simulation of the fusion irradiation conditions.

  20. Irradiated Shellfish: Identification by Photostimulated Luminescence

    PubMed Central

    Di Schiavi, Maria Teresa; Falconi, Grazia; Verità, Francesca Della; Cavallina, Roberta

    2014-01-01

    The irradiation of food is a technology used in the industry to prevent the deterioration of foodstuff in some countries. The European Community legislation states that each Member State must carry out annual checks on the products during commercialisation. The Istituto Zooprofilattico Sperimentale delle regioni Lazio e Toscana (Rome, Italy) has developed and validated the screening method of photostimulated luminescence UNI EN 13751:2009 to identify irradiated shellfish. A total of 30 tests of shellfish samples, consisting of 22 certified as irradiated and 8 not-irradiated samples, were performed. The validation procedure was based on sensitivity and specificity; the compatibility between the screening method and the reference standard EN 13751:2009 was evaluated. Data were processed: 100% sensitivity and 100% specificity were obtained. Results obtained in our laboratory were perfectly compatible with the reference standard. For this reason, the method has been validated and proved to be suitable for its intended use. PMID:27800335

  1. AGC-1 Post Irradiation Examination Status

    SciTech Connect

    David Swank

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

  2. 40 CFR 265.1053 - Standards: Compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1053 Standards: Compressors. (a)...

  3. 40 CFR 265.1053 - Standards: Compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1053 Standards: Compressors. (a)...

  4. 40 CFR 265.1053 - Standards: Compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1053 Standards: Compressors. (a)...

  5. 40 CFR 265.1053 - Standards: Compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 265.1053 Standards: Compressors. (a)...

  6. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials

    PubMed Central

    Broomall, Stacey M.; Ait Ichou, Mohamed; Krepps, Michael D.; Johnsky, Lauren A.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; Betters, Janet L.; Redmond, Brady W.; Rivers, Bryan A.; Liem, Alvin T.; Hill, Jessica M.; Fochler, Edward T.; Roth, Pierce A.; Rosenzweig, C. Nicole; Skowronski, Evan W.

    2015-01-01

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. PMID:26567301

  7. Understanding and simulating the material behavior during multi-particle irradiations

    NASA Astrophysics Data System (ADS)

    Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.

    2016-07-01

    A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems.

  8. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  9. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  10. Production facilities

    SciTech Connect

    Not Available

    1989-01-01

    This book presents a cross section of different solutions to the many unique production problems operators face. Sections address benefit vs. cost options for production facility designs, oil and gas separation processes and equipment, oil treating and desalting systems, and water treating methods and equipment. Papers were selected to give an overall view of factors involved in optimizing the design of cost-effective production facilities.

  11. Standards not that standard.

    PubMed

    Vilanova, Cristina; Tanner, Kristie; Dorado-Morales, Pedro; Villaescusa, Paula; Chugani, Divya; Frías, Alba; Segredo, Ernesto; Molero, Xavier; Fritschi, Marco; Morales, Lucas; Ramón, Daniel; Peña, Carlos; Peretó, Juli; Porcar, Manuel

    2015-01-01

    There is a general assent on the key role of standards in Synthetic Biology. In two consecutive letters to this journal, suggestions on the assembly methods for the Registry of standard biological parts have been described. We fully agree with those authors on the need of a more flexible building strategy and we highlight in the present work two major functional challenges standardization efforts have to deal with: the need of both universal and orthogonal behaviors. We provide experimental data that clearly indicate that such engineering requirements should not be taken for granted in Synthetic Biology. PMID:26435739

  12. Commercial food irradiation

    SciTech Connect

    Black, E.F.; Libby, L.M.

    1983-06-01

    Food irradiation is discussed. Irradiation exposes food to gamma rays from a cobalt-60 or a cesium-137 source, or to high-energy electrons emitted by an electron accelerator. A major advantage is that food can be packaged either before or after treatment. FDA regulations with regard to irradiation are discussed. Comments on an 'Advance Notice' on irradiation, published by the FDA in 1981 are summarized.

  13. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  14. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  15. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  16. 9 CFR 3.26 - Facilities, indoor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Pigs and Hamsters Facilities and Operating Standards § 3.26 Facilities, indoor. (a) Heating. Indoor housing facilities for guinea pigs or hamsters shall be sufficiently heated when necessary to protect the... pigs or hamsters shall be adequately ventilated to provide for the health and comfort of the animals...

  17. 42 CFR 483.374 - Facility reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) STANDARDS AND CERTIFICATION REQUIREMENTS FOR STATES AND LONG TERM CARE FACILITIES Condition of Participation... Inpatient Psychiatric Services for Individuals Under Age 21 § 483.374 Facility reporting. (a) Attestation of... services to individuals under age 21 must attest, in writing, that the facility is in compliance with...

  18. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    NASA Astrophysics Data System (ADS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al2O3 (sapphire) and TiO2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al2O3. Results for MgO and α-Al2O3 show steep negative gradients from 10 to 370 K, whereas that for TiO2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al2O3, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO2, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  19. Thermal analysis of the FSP-1RR irradiation test

    SciTech Connect

    Webb, R.H.; Lyon, W.F. III

    1992-10-14

    The thermal analysis of four unirradiated fuel pins to be tested in the FSP-1RR fuels irradiation experiment was completed. This test is a follow-on experiment in the series of fuel pin irradiation tests conducted by the SP-100 Program in the Fast Flux Test Facility. One of the pins contains several meltwire temperature monitors within the fuel and the Li annulus. A post-irradiation examination will verify the accuracy of the pre-irradiation thermal analysis. The purpose of the pre-irradiation analysis was to determine the appropriate insulating gap gas compositions required to provide the design goal cladding operating temperatures and to ensure that the meltwire temperature ranges in the temperature monitored pin bracket peak irradiation temperatures. This paper discusses the methodology and summarizes the results of the analysis.

  20. Hazard Baseline Downgrade Effluent Treatment Facility

    SciTech Connect

    Blanchard, A.

    1998-10-21

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

  1. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  2. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer. PMID:22860296

  3. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A. K.; Avasthi, D. K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd2Ti2O7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd2Ti2O7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd2Ti2O7 is readily amorphized at an ion fluence 6 × 1012 ions/cm2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 1013 ions/cm2. The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures.

  4. Radiation Sterilization and Food Irradiation Using Gamma Radiation

    NASA Astrophysics Data System (ADS)

    O'Hara, Kevin

    2003-03-01

    Since the introduction of MDS Nordion's first irradiator in the early 1960's, a variety of gamma-processing systems has been developed. Each design is suited to a particular set of requirements - from high-throughput operations of diverse product lots to full automation or batch processing, all using gamma radiation. Gamma irradiator designs include the Centurion irradiator for temperature-sensitive food products like hamburgers and poultry; the Brevion, a compact batch irradiator providing flexibility, timeliness and simplicity on a whole new scale; a JS-10000 irradiator that operates in either automatic or batch mode to enable multipurpose product scheduling and optimum throughput; and, an irradiator that processes full pallets and is ideal for processing high-density products requiring excellent dose uniformity. These innovative irradiator designs help facilities to be more efficient, maximize operating time, improve product turnaround and minimize inventory levels. MDS Nordion's development of improved Point Kernel and Monte Carlo techniques is discussed, including their application in radiation source optimization, production irradiator design and process control. Absorbed-dose calculations also provide insight into the critical areas for dose mapping and routine monitoring, allowing for the optimum placement of dosimeters. Calculations may also be used to determine the absorbed-dose distribution within product, especially in areas of complex geometry such as material interfaces. The use of easily accessible, accurate and validated dose-calculation programs can be used to optimize the irradiation process. Key Words: dosimetry, irradiator design, dose calculation, modelling, modeling, process control, radiation source optimization.

  5. Irradiation-related ischemic heart disease

    SciTech Connect

    Corn, B.W.; Trock, B.J.; Goodman, R.L. )

    1990-04-01

    An expectation for long-term survival has emerged among several groups of cancer patients treated with therapeutic irradiation (eg, Hodgkin's disease, early stage breast cancer). Therefore, the cardiovascular sequelae of thoracic irradiation have recently come under scrutiny. Animal models have demonstrated that cardiac irradiation can directly damage the myocardial microvasculature and can indirectly damage the coronary macrovasculature when coupled with cholesterol feeding. A clear association between thoracic radiotherapy and ischemic heart disease was observed among older clinical studies using radiotherapeutic techniques that are no longer optimal by today's standards. Such a relationship could not be confirmed in modern studies in which treatment factors (such as dose and volume of heart irradiated) were more carefully controlled. 56 references.

  6. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find a pressing…

  7. 21 CFR 58.81 - Standard operating procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage,...

  8. 21 CFR 58.81 - Standard operating procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage,...

  9. 21 CFR 58.81 - Standard operating procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage,...

  10. 21 CFR 58.81 - Standard operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.81 Standard operating procedures. (a) A testing facility shall have standard operating procedures in writing setting... following: (1) Animal room preparation. (2) Animal care. (3) Receipt, identification, storage,...

  11. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets... oily mixtures from oceangoing ships....

  12. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  13. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  14. Standards and Guidelines for Academic Advising.

    ERIC Educational Resources Information Center

    NACADA Journal, 1986

    1986-01-01

    Standards and guidelines for academic advising are presented covering mission, program, organization and administration, human resources, funding, facilities, campus and community relations, and ethics. (MLW)

  15. Thermal energy storage test facility

    NASA Technical Reports Server (NTRS)

    Ternes, M. P.

    1980-01-01

    The thermal behavior of prototype thermal energy storage units (TES) in both heating and cooling modes is determined. Improved and advanced storage systems are developed and performance standards are proposed. The design and construction of a thermal cycling facility for determining the thermal behavior of full scale TES units is described. The facility has the capability for testing with both liquid and air heat transport, at variable heat input/extraction rates, over a temperature range of 0 to 280 F.

  16. UPWT check standard model test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Installation of the check standard model in test section 2 of the Unitary Plan Wind Tunnel (UPWT). Testing was conducted as part of a Data Quality Control assessment in the Research Facilities Branch/Aerodynamics Aerothermodynamics Acoustics Competency.

  17. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect

    Karen A. Moore

    2011-05-01

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  18. NNSA B-Roll: MOX Facility

    SciTech Connect

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  19. NNSA B-Roll: MOX Facility

    ScienceCinema

    None

    2016-07-12

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  20. PV standards overview

    NASA Astrophysics Data System (ADS)

    DeBlasio, Richard

    1997-02-01

    A brief historical perspective and current status of the on going evolution of photovoltaic standards development and the use of these standards in promulgating accepted practices used in producing, measuring, and deploying Photovoltaic (PV) components and systems in the field. After nearly 20 years of experience in developing and writing domestic and international consensus PV standards the need and importance of standard methods and practices continues, as in the past, to be essential for a maturing PV industry. Part of this maturity has been in establishing and maintaining a common ground through the development of consensus standards and furthering the use of standards for PV commercialization in support of test facility accreditation, product certification, systems deployment, and safety code development to assure PV quality, performance, reliability, and safety.

  1. PUREX facility hazards assessment

    SciTech Connect

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  2. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    SciTech Connect

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  3. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGES

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  4. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    SciTech Connect

    A. B. Robinson; D. M. Wachs; D. E. Burkes; D. D. Keiser

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  5. The new 39Ar/40Ar dating facility of the LSCE, background and performances.

    NASA Astrophysics Data System (ADS)

    Scaillet, S.; Nomade, S.; Guillou, H.; Scaillet-Vita, G.

    2007-12-01

    Precise and accurate timescales are increasingly needed in most disciplines of the Earth sciences. To contribute to this challenging task, a new 39Ar/40Ar laboratory, specifically devoted to the dating of very recent (down to 1 ka) volcanic products, has been developed at the LSCE (CEA-IPSL-UVSQ, France). In this contribution, we present the first data obtained from this new facility. The laboratory comprises a VG 5400 mass spectrometer coupled with a high sensitivity and high dynamic range ion counting system. Gas extraction is achieved with a 25 watts C02 laser or a double vacuum furnace depending of the analyzed samples. The full metal vacuum and purification line feature a GP50 and a compact Ti flash getters which permit extremely low blank for all Argon isotopes (e.g. ~ 3.0 10e-19 Moles for 36Ar). Both analytical protocols and hardware were specifically developed and optimized to date extremely young samples. Analytical performances including protocols, flux monitoring as well mass spectrometer discrimination correction method will be presented in the light of data obtained over the last 10 months. All samples were irradiated, under cadmium, in the Β-1 position (~1.0 10e+13 fast n cm-2 s-1) of the 70MWh-1 OSIRIS reactor (Pierre Süe laboratory, CEA-Saclay, France). Irradiation package is composed of home-design Aluminium disks constituting a 4 cm stack (10 to 30 unknowns/irradiation). Analyzed neutrons flux standards indicate less than 1% variation along the 4cm stack and validate the use of this reactor for high-precision 39Ar/40Ar dating. The precision and accuracy of the facility has been checked from cross-comparison of international single grain standards including FCs (28.02Ma), ACR-2 (1.194Ma) and TCR (28.32Ma) using the most recent recommended values for these monitors. A total of 80 grains in two irradiations (10 and 120 minutes) will be presented in details. Results from single-grain analyses agree within errors with those proposed by Renne et al

  6. National Biomedical Tracer Facility: Project definition study

    SciTech Connect

    Heaton, R.; Peterson, E.; Smith, P.

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  7. Emulation of reactor irradiation damage using ion beams

    SciTech Connect

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  8. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  9. DOE uses transportable irradiator for demonstration and testing

    SciTech Connect

    Not Available

    1988-12-01

    The U.S. Dept. of Energy's Pacific Northwest Laboratory (PNL), Richland, Washington (operated by Battelle Memorial Institute), has a transportable irradiator that was built to travel to various locations to demonstrate the benefits of low-dose irradiation for the processing of food. Part of a DOE program designed to establish irradiation facilities in Alaska, Florida, Hawaii, Iowa, Oklahoma, and Washington, the mobile unit can also be used for research, pilot-scale processing, operator training, and education. The irradiation unit consists of two lead-lined cylindrical chambers-an irradiation chamber and a source chamber-inside a steel casing. During operation, the item to be irradiated is placed inside the irradiation chamber, which is then rotated until a window in the chamber lines up with a screened window in the source chamber. The source chamber contains the transportation cask containing the four capsules of cesium-137 that are used as the source of gamma radiation. During operation, the lid of the cask is raised, pulling the capsules into operating position. In this alignment, the product is irradiated for a predetermined length of time. Then the lid of the cask is lowered and the irradiation chamber is rotated back to its original position for removal of the product.

  10. 40 CFR 264.343 - Performance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... particulate matter in excess of 180 milligrams per dry standard cubic meter (0.08 grains per dry...

  11. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to...

  12. 40 CFR 160.43 - Test system care facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to...

  13. 9 CFR 3.79 - Mobile or traveling housing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mobile or traveling housing facilities... Transportation of Nonhuman Primates 2 Facilities and Operating Standards § 3.79 Mobile or traveling housing facilities. (a) Heating, cooling, and temperature. Mobile or traveling housing facilities must...

  14. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  15. Succinonitrile Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).

  16. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1054 Standards:...

  17. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1054 Standards:...

  18. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1054 Standards:...

  19. 40 CFR 264.1060 - Standards: Closed-vent systems and control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1060 Standards:...

  20. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1054 Standards:...