Communications among elements of a space construction ensemble
NASA Technical Reports Server (NTRS)
Davis, Randal L.; Grasso, Christopher A.
1989-01-01
Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.
Gamut mapping in a high-dynamic-range color space
NASA Astrophysics Data System (ADS)
Preiss, Jens; Fairchild, Mark D.; Ferwerda, James A.; Urban, Philipp
2014-01-01
In this paper, we present a novel approach of tone mapping as gamut mapping in a high-dynamic-range (HDR) color space. High- and low-dynamic-range (LDR) images as well as device gamut boundaries can simultaneously be represented within such a color space. This enables a unified transformation of the HDR image into the gamut of an output device (in this paper called HDR gamut mapping). An additional aim of this paper is to investigate the suitability of a specific HDR color space to serve as a working color space for the proposed HDR gamut mapping. For the HDR gamut mapping, we use a recent approach that iteratively minimizes an image-difference metric subject to in-gamut images. A psychophysical experiment on an HDR display shows that the standard reproduction workflow of two subsequent transformations - tone mapping and then gamut mapping - may be improved by HDR gamut mapping.
NASA Technical Reports Server (NTRS)
Rakow, Glenn; McGuirk, Patrick; Kimmery, Clifford; Jaffe, Paul
2006-01-01
The ability to rapidly deploy inexpensive satellites to meet tactical goals has become an important goal for military space systems. In fact, Operationally Responsive Space (ORS) has been in the spotlight at the highest levels. The Office of the Secretary of Defense (OSD) has identified that the critical next step is developing the bus standards and modular interfaces. Historically, satellite components have been constructed based on bus standards and standardized interfaces. However, this has not been done to a degree, which would allow the rapid deployment of a satellite. Advancements in plug-and-play (PnP) technologies for terrestrial applications can serve as a baseline model for a PnP approach for satellite applications. Since SpaceWire (SpW) has become a de facto standard for satellite high-speed (greater than 200Mbp) on-board communications, it has become important for SpW to adapt to this Plug and Play (PnP) environment. Because SpW is simply a bulk transport protocol and lacks built-in PnP features, several changes are required to facilitate PnP with SpW. The first is for Host(s) to figure out what the network looks like, i.e., how pieces of the network, routers and nodes, are connected together; network mapping, and to receive notice of changes to the network. The second is for the components connected to the network to be understood so that they can communicate. The first element, network topology mapping & change of status indication, is being defined (topic of this paper). The second element describing how components are to communicate has been defined by ARFL with the electronic data sheets known as XTEDS. The first element, network mapping, is recent activities performed by Air Force Research Lab (ARFL), Naval Research Lab (NRL), NASA and US industry (Honeywell, Clearwater, FL, and others). This work has resulted in the development of a protocol that will perform the lower level functions of network mapping and Change Of Status (COS) indication required by Plug 'n' Play over SpaceWire. This work will be presented to the SpaceWire working group for standardization under European Cooperation for Space Standardization (ECSS) and to obtain a permanent Protocol ID (see SpaceWire Protocol ID: What Does it Mean to You; IEEE Aerospace Conference 2006). The portion of the Plug 'n' Play protocol that will be described in this paper is how the Host(s) of a SpaceWire network map the network and detect additions and deletions of devices on a SpaceWire network.
The Method of Multiple Spatial Planning Basic Map
NASA Astrophysics Data System (ADS)
Zhang, C.; Fang, C.
2018-04-01
The "Provincial Space Plan Pilot Program" issued in December 2016 pointed out that the existing space management and control information management platforms of various departments were integrated, and a spatial planning information management platform was established to integrate basic data, target indicators, space coordinates, and technical specifications. The planning and preparation will provide supportive decision support, digital monitoring and evaluation of the implementation of the plan, implementation of various types of investment projects and space management and control departments involved in military construction projects in parallel to approve and approve, and improve the efficiency of administrative approval. The space planning system should be set up to delimit the control limits for the development of production, life and ecological space, and the control of use is implemented. On the one hand, it is necessary to clarify the functional orientation between various kinds of planning space. On the other hand, it is necessary to achieve "multi-compliance" of various space planning. Multiple spatial planning intergration need unified and standard basic map(geographic database and technical specificaton) to division of urban, agricultural, ecological three types of space and provide technical support for the refinement of the space control zoning for the relevant planning. The article analysis the main space datum, the land use classification standards, base map planning, planning basic platform main technical problems. Based on the geographic conditions, the results of the census preparation of spatial planning map, and Heilongjiang, Hainan many rules combined with a pilot application.
Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner
NASA Astrophysics Data System (ADS)
Hnilicová, P.; Bittšanský, M.; Dobrota, D.
2014-04-01
In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.
Toward standardized mapping for left atrial analysis and cardiac ablation guidance
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.
2014-03-01
In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.
Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.
Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia
2013-10-24
The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.
Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics
Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia
2013-01-01
The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517
Comparative study of standard space and real space analysis of quantitative MR brain data.
Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M
2011-06-01
To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.
Andersen, Flemming; Watanabe, Hideaki; Bjarkam, Carsten; Danielsen, Erik H; Cumming, Paul
2005-07-15
The analysis of physiological processes in brain by position emission tomography (PET) is facilitated when images are spatially normalized to a standard coordinate system. Thus, PET activation studies of human brain frequently employ the common stereotaxic coordinates of Talairach. We have developed an analogous stereotaxic coordinate system for the brain of the Gottingen miniature pig, based on automatic co-registration of magnetic resonance (MR) images obtained in 22 male pigs. The origin of the pig brain stereotaxic space (0, 0, 0) was arbitrarily placed in the centroid of the pineal gland as identified on the average MRI template. The orthogonal planes were imposed using the line between stereotaxic zero and the optic chiasm. A series of mean MR images in the coronal, sagittal and horizontal planes were generated. To test the utility of the common coordinate system for functional imaging studies of minipig brain, we calculated cerebral blood flow (CBF) maps from normal minipigs and from minipigs with a syndrome of parkisonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-poisoning. These maps were transformed from the native space into the common stereotaxic space. After global normalization of these maps, an undirected search for differences between the groups was then performed using statistical parametric mapping. Using this method, we detected a statistically significant focal increase in CBF in the left cerebellum of the MPTP-lesioned group. We expect the present approach to be of general use in the statistical parametric mapping of CBF and other physiological parameters in living pig brain.
Statistical characterization of the standard map
NASA Astrophysics Data System (ADS)
Ruiz, Guiomar; Tirnakli, Ugur; Borges, Ernesto P.; Tsallis, Constantino
2017-06-01
The standard map, paradigmatic conservative system in the (x, p) phase space, has been recently shown (Tirnakli and Borges (2016 Sci. Rep. 6 23644)) to exhibit interesting statistical behaviors directly related to the value of the standard map external parameter K. A comprehensive statistical numerical description is achieved in the present paper. More precisely, for large values of K (e.g. K = 10) where the Lyapunov exponents are neatly positive over virtually the entire phase space consistently with Boltzmann-Gibbs (BG) statistics, we verify that the q-generalized indices related to the entropy production q{ent} , the sensitivity to initial conditions q{sen} , the distribution of a time-averaged (over successive iterations) phase-space coordinate q{stat} , and the relaxation to the equilibrium final state q{rel} , collapse onto a fixed point, i.e. q{ent}=q{sen}=q{stat}=q{rel}=1 . In remarkable contrast, for small values of K (e.g. K = 0.2) where the Lyapunov exponents are virtually zero over the entire phase space, we verify q{ent}=q{sen}=0 , q{stat} ≃ 1.935 , and q{rel} ≃1.4 . The situation corresponding to intermediate values of K, where both stable orbits and a chaotic sea are present, is discussed as well. The present results transparently illustrate when BG behavior and/or q-statistical behavior are observed.
NASA Astrophysics Data System (ADS)
Peterson, James Preston, II
Unmanned Aerial Systems (UAS) are rapidly blurring the lines between traditional and close range photogrammetry, and between surveying and photogrammetry. UAS are providing an economic platform for performing aerial surveying on small projects. The focus of this research was to describe traditional photogrammetric imagery and Light Detection and Ranging (LiDAR) geospatial products, describe close range photogrammetry (CRP), introduce UAS and computer vision (CV), and investigate whether industry mapping standards for accuracy can be met using UAS collection and CV processing. A 120-acre site was selected and 97 aerial targets were surveyed for evaluation purposes. Four UAS flights of varying heights above ground level (AGL) were executed, and three different target patterns of varying distances between targets were analyzed for compliance with American Society for Photogrammetry and Remote Sensing (ASPRS) and National Standard for Spatial Data Accuracy (NSSDA) mapping standards. This analysis resulted in twelve datasets. Error patterns were evaluated and reasons for these errors were determined. The relationship between the AGL, ground sample distance, target spacing and the root mean square error of the targets is exploited by this research to develop guidelines that use the ASPRS and NSSDA map standard as the template. These guidelines allow the user to select the desired mapping accuracy and determine what target spacing and AGL is required to produce the desired accuracy. These guidelines also address how UAS/CV phenomena affect map accuracy. General guidelines and recommendations are presented that give the user helpful information for planning a UAS flight using CV technology.
Pohlheim, Hartmut
2006-01-01
Multidimensional scaling as a technique for the presentation of high-dimensional data with standard visualization techniques is presented. The technique used is often known as Sammon mapping. We explain the mathematical foundations of multidimensional scaling and its robust calculation. We also demonstrate the use of this technique in the area of evolutionary algorithms. First, we present the visualization of the path through the search space of the best individuals during an optimization run. We then apply multidimensional scaling to the comparison of multiple runs regarding the variables of individuals and multi-criteria objective values (path through the solution space).
Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levnajić, Zoran; Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106; Mezić, Igor
We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone,more » and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.« less
Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.
Levnajić, Zoran; Mezić, Igor
2015-05-01
We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric
Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...
2015-10-09
In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less
NASA Astrophysics Data System (ADS)
Tarnopolski, Mariusz
2018-01-01
The Chirikov standard map and the 2D Froeschlé map are investigated. A few thousand values of the Hurst exponent (HE) and the maximal Lyapunov exponent (mLE) are plotted in a mixed space of the nonlinear parameter versus the initial condition. Both characteristic exponents reveal remarkably similar structures in this space. A tight correlation between the HEs and mLEs is found, with the Spearman rank ρ = 0 . 83 and ρ = 0 . 75 for the Chirikov and 2D Froeschlé maps, respectively. Based on this relation, a machine learning (ML) procedure, using the nearest neighbor algorithm, is performed to reproduce the HE distribution based on the mLE distribution alone. A few thousand HE and mLE values from the mixed spaces were used for training, and then using 2 - 2 . 4 × 105 mLEs, the HEs were retrieved. The ML procedure allowed to reproduce the structure of the mixed spaces in great detail.
Quantum theory of the generalised uncertainty principle
NASA Astrophysics Data System (ADS)
Bruneton, Jean-Philippe; Larena, Julien
2017-04-01
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.
NASA Technical Reports Server (NTRS)
Estefan, J. A.; Sovers, O. J.
1994-01-01
The standard tropospheric calibration model implemented in the operational Orbit Determination Program is the seasonal model developed by C. C. Chao in the early 1970's. The seasonal model has seen only slight modification since its release, particularly in the format and content of the zenith delay calibrations. Chao's most recent standard mapping tables, which are used to project the zenith delay calibrations along the station-to-spacecraft line of sight, have not been modified since they were first published in late 1972. This report focuses principally on proposed upgrades to the zenith delay mapping process, although modeling improvements to the zenith delay calibration process are also discussed. A number of candidate approximation models for the tropospheric mapping are evaluated, including the semi-analytic mapping function of Lanyi, and the semi-empirical mapping functions of Davis, et. al.('CfA-2.2'), of Ifadis (global solution model), of Herring ('MTT'), and of Niell ('NMF'). All of the candidate mapping functions are superior to the Chao standard mapping tables and approximation formulas when evaluated against the current Deep Space Network Mark 3 intercontinental very long baselines interferometry database.
Building perceptual color maps for visualizing interval data
NASA Astrophysics Data System (ADS)
Kalvin, Alan D.; Rogowitz, Bernice E.; Pelah, Adar; Cohen, Aron
2000-06-01
In visualization, a 'color map' maps a range of data values onto a scale of colors. However, unless a color map is e carefully constructed, visual artifacts can be produced. This problem has stimulated considerable interest in creating perceptually based color maps, that is, color maps where equal steps in data value are perceived as equal steps in the color map [Robertson (1988); Pizer (1981); Green (1992); Lefkowitz and Herman, 1992)]. In Rogowitz and Treinish, (1996, 1998) and in Bergman, Treinish and Rogowitz, (1995), we demonstrated that color maps based on luminance or saturation could be good candidates for satisfying this requirement. This work is based on the seminal work of S.S. Stevens (1966), who measured the perceived magnitude of different magnitudes of physical stimuli. He found that for many physical scales, including luminance (cd/m2) and saturation (the 'redness' of a long-wavelength light source), equal ratios in stimulus value produced equal ratios in perceptual magnitude. He interpreted this as indicating that there exists in human cognition a common scale for representing magnitude, and we scale the effects of different physical stimuli to this internal scale. In Rogowitz, Kalvin, Pelahb and Cohen (1999), we used a psychophysical technique to test this hypothesis as it applies to the creation of perceptually uniform color maps. We constructed color maps as trajectories through three-color spaces, a common computer graphics standard (uncalibrated HSV), a common perceptually-based engineering standard for creating visual stimuli (L*a*b*), and a space commonly used in the graphic arts (Munsell). For each space, we created color scales that varied linearly in hue, saturation, or luminance and measured the detectability of increments in hue, saturation or luminance for each of these color scales. We measured the amplitude of the just-detectable Gaussian increments at 20 different values along the range of each color map. For all three color spaces, we found that luminance-based color maps provided the most perceptually- uniform representations of the data. The just-detectable increment was constant at all points in the color map, with the exception of the lowest-luminance values, where a larger increment was required. The saturation-based color maps provided less sensitivity than the luminance-based color maps, requiring much larger increments for detection. For the hue- based color maps, the size of the increment required for detection varied across the range. For example, for the standard 'rainbow' color map (uncalibrated HSV, hue-varying map), a step in the 'green' region required an increment 16 times the size of the increment required in the 'cyan' part of the range. That is, the rainbow color map would not successfully represent changes in the data in the 'green' region of this color map. In this paper, we extend this research by studying the detectability of spatially-modulated Gabor targets based on these hue, saturation and luminance scales. Since, in visualization, the user is called upon to detect and identify patterns that vary in their spatial characteristics, it is important to study how different types of color maps represent data with varying spatial properties. To do so, we measured modulation thresholds for low-(0.2 c/deg) and high-spatial frequency (4.0 c/deg) Gabor patches and compared them with the Gaussian results. As before, we measured increment thresholds for hue, saturation, and luminance modulations. These color scales were constructed as trajectories along the three perceptual dimensions of color (hue, saturation, and luminance) in two color spaces, uncalibrated HSV and calibrated L*a*b. This allowed us to study how the three perceptual dimensions represent magnitude information for test patterns varying in spatial frequency. This design also allowed us to test the hypothesis that the luminance channel best carries high-spatial frequency information while the saturation channel best represents low spatial-frequency information (Mullen 1985; DeValois and DeValois 1988).
Chatake, Toshiyuki; Fujiwara, Satoru
2016-01-01
A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.
NASA Astrophysics Data System (ADS)
Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao
2010-01-01
The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.
Generalized Weyl-Wigner map and Vey quantum mechanics
NASA Astrophysics Data System (ADS)
Dias, Nuno Costa; Prata, João Nuno
2001-12-01
The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.
NASA Astrophysics Data System (ADS)
Kowalewski, M. G.; Janz, S. J.
2015-02-01
Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.
3DView: Space physics data visualizer
NASA Astrophysics Data System (ADS)
Génot, V.; Beigbeder, L.; Popescu, D.; Dufourg, N.; Gangloff, M.; Bouchemit, M.; Caussarieu, S.; Toniutti, J.-P.; Durand, J.; Modolo, R.; André, N.; Cecconi, B.; Jacquey, C.; Pitout, F.; Rouillard, A.; Pinto, R.; Erard, S.; Jourdane, N.; Leclercq, L.; Hess, S.; Khodachenko, M.; Al-Ubaidi, T.; Scherf, M.; Budnik, E.
2018-04-01
3DView creates visualizations of space physics data in their original 3D context. Time series, vectors, dynamic spectra, celestial body maps, magnetic field or flow lines, and 2D cuts in simulation cubes are among the variety of data representation enabled by 3DView. It offers direct connections to several large databases and uses VO standards; it also allows the user to upload data. 3DView's versatility covers a wide range of space physics contexts.
He, Junyu; Christakos, George
2018-05-07
Long- and short-term exposure to PM 2.5 is of great concern in China due to its adverse population health effects. Characteristic of the severity of the situation in China is that in the Jing-Jin-Ji region considered in this work a total of 2725 excess deaths have been attributed to short-term PM 2.5 exposure during the period January 10-31, 2013. Technically, the processing of large space-time PM 2.5 datasets and the mapping of the space-time distribution of PM 2.5 concentrations often constitute high-cost projects. To address this situation, we propose a synthetic modeling framework based on the integration of (a) the Bayesian maximum entropy method that assimilates auxiliary information from land-use regression and artificial neural network (ANN) model outputs based on PM 2.5 monitoring, satellite remote sensing data, land use and geographical records, with (b) a space-time projection technique that transforms the PM 2.5 concentration values from the original spatiotemporal domain onto a spatial domain that moves along the direction of the PM 2.5 velocity spread. An interesting methodological feature of the synthetic approach is that its components (methods or models) are complementary, i.e., one component can compensate for the occasional limitations of another component. Insight is gained in terms of a PM 2.5 case study covering the severe haze Jing-Jin-Ji region during October 1-31, 2015. The proposed synthetic approach explicitly accounted for physical space-time dependencies of the PM 2.5 distribution. Moreover, the assimilation of auxiliary information and the dimensionality reduction achieved by the synthetic approach produced rather impressive results: It generated PM 2.5 concentration maps with low estimation uncertainty (even at counties and villages far away from the monitoring stations, whereas during the haze periods the uncertainty reduction was over 50% compared to standard PM 2.5 mapping techniques); and it also proved to be computationally very efficient (the reduction in computational time was over 20% compared to standard mapping techniques). Copyright © 2018 Elsevier Ltd. All rights reserved.
Current trends in satellite based emergency mapping - the need for harmonisation
NASA Astrophysics Data System (ADS)
Voigt, Stefan
2013-04-01
During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within the global rapid mapping community throughout local/national, regional/supranational and global scales
Classification of fMRI resting-state maps using machine learning techniques: A comparative study
NASA Astrophysics Data System (ADS)
Gallos, Ioannis; Siettos, Constantinos
2017-11-01
We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.
Log-polar mapping-based scale space tracking with adaptive target response
NASA Astrophysics Data System (ADS)
Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing
2017-05-01
Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.
Exploring conservative islands using correlated and uncorrelated noise
NASA Astrophysics Data System (ADS)
da Silva, Rafael M.; Manchein, Cesar; Beims, Marcus W.
2018-02-01
In this work, noise is used to analyze the penetration of regular islands in conservative dynamical systems. For this purpose we use the standard map choosing nonlinearity parameters for which a mixed phase space is present. The random variable which simulates noise assumes three distributions, namely equally distributed, normal or Gaussian, and power law (obtained from the same standard map but for other parameters). To investigate the penetration process and explore distinct dynamical behaviors which may occur, we use recurrence time statistics (RTS), Lyapunov exponents and the occupation rate of the phase space. Our main findings are as follows: (i) the standard deviations of the distributions are the most relevant quantity to induce the penetration; (ii) the penetration of islands induce power-law decays in the RTS as a consequence of enhanced trapping; (iii) for the power-law correlated noise an algebraic decay of the RTS is observed, even though sticky motion is absent; and (iv) although strong noise intensities induce an ergodic-like behavior with exponential decays of RTS, the largest Lyapunov exponent is reminiscent of the regular islands.
Discussion on the 3D visualizing of 1:200 000 geological map
NASA Astrophysics Data System (ADS)
Wang, Xiaopeng
2018-01-01
Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.
Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases
Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.
2007-01-01
The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403
ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing
NASA Astrophysics Data System (ADS)
Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro
2015-10-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.
Performance evaluation of digital phase-locked loops for advanced deep space transponders
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.
1994-01-01
The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.
A financial market model with two discontinuities: Bifurcation structures in the chaotic domain
NASA Astrophysics Data System (ADS)
Panchuk, Anastasiia; Sushko, Iryna; Westerhoff, Frank
2018-05-01
We continue the investigation of a one-dimensional piecewise linear map with two discontinuity points. Such a map may arise from a simple asset-pricing model with heterogeneous speculators, which can help us to explain the intricate bull and bear behavior of financial markets. Our focus is on bifurcation structures observed in the chaotic domain of the map's parameter space, which is associated with robust multiband chaotic attractors. Such structures, related to the map with two discontinuities, have been not studied before. We show that besides the standard bandcount adding and bandcount incrementing bifurcation structures, associated with two partitions, there exist peculiar bandcount adding and bandcount incrementing structures involving all three partitions. Moreover, the map's three partitions may generate intriguing bistability phenomena.
Lorway, Robert; Khan, Shamshad
2014-07-01
This paper explores how the Gates-funded HIV Initiative in India, known as Avahan, produces sociality. Drawing upon ethnographic research conducted between 2006 and 2012, we illustrate how epidemiological surveillance procedures, undergirded by contemporary managerial and entrepreneurial logics, entwine with and become transformed by the everyday practices of men who have sex with men (many of whom sell sex). The coevolution of epidemiology and sociality, with respect to these communities, is explored in relation to: 1) how individual identities are reproduced in association with standardized units of space and time; 2) how knowledge of mapping and enumeration data is employed in the making up of group membership boundaries, revealing how collective interests come to cohere around the project of epidemic prevention; and 3) how knowledge of epidemiological surveillance and procedures provides a basis on which groups collectively realize and execute local security strategies. While monitoring and evaluation (M&E) specialists continually track and standardize the identities, behaviours and social spaces of local populations (through various mapping, typologization and random sampling procedures, which treat space and time as predictable variables), community members simultaneously retranslate and reroute these standardizing processes into "the local" through everyday spatial management practices for health protection. These grounded epidemiologies, we argue, point to vital sites in the co-creation of scientific knowledge-where the quotidian practices of sex workers reassemble epidemiology, continually altering the very objects that surveillance experts are tracking. We further argue that attention to these re-workings can help us unravel the tremendous successes that have been claimed under Avahan in terms of HIV infections averted. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Wigner distribution and 2D classical maps
NASA Astrophysics Data System (ADS)
Sakhr, Jamal
2017-07-01
The Wigner spacing distribution has a long and illustrious history in nuclear physics and in the quantum mechanics of classically chaotic systems. In this paper, a novel connection between the Wigner distribution and 2D classical mechanics is introduced. Based on a well-known correspondence between the Wigner distribution and the 2D Poisson point process, the hypothesis that typical pseudo-trajectories of a 2D ergodic map have a Wignerian nearest-neighbor spacing distribution (NNSD) is put forward and numerically tested. The standard Euclidean metric is used to compute the interpoint spacings. In all test cases, the hypothesis is upheld, and the range of validity of the hypothesis appears to be robust in the sense that it is not affected by the presence or absence of: (i) mixing; (ii) time-reversal symmetry; and/or (iii) dissipation.
NASA Astrophysics Data System (ADS)
Zeng, Huanzhao
2003-12-01
In the linking step of the standard ICC color management workflow for CMYK to CMYK conversion, a CMM takes an AToBn tag (n = 0, 1, or 2) from a source ICC profile to convert a color from the source color space to PCS (profile connection space), and then takes a BToAn tag from the destination ICC profile to convert the color from PCS to the destination color space. This approach may give satisfactory result perceptually or colorimetrically. However, it does not preserve the K channel for CMYK to CMYK conversion, which is often required in graphic art"s market. The problem is that the structure of a BtoAn tag is designed to convert colors from PCS to a device color space ignoring the K values from the source color space. Different approaches have been developed to control K in CMYK to CMYK printing, yet none of them well fits into the "Profile - PCS - Profile" model in the ICC color management system. A traditional approach is to transform the source CMYK to the destination CMYK by 1-D TRC curves and GCR/UCR tables. This method is so simple that it cannot accurately transform colors perceptually or colorimetrically. Another method is to build a 4-D CMYK to CMYK closed-loop lookup table (LUT) (or a deviceLink ICC profile) for the color transformation. However, this approach does not fit into opened color management workflows for it ties the source and the destination color spaces in the color characterization step. A specialized CMM may preserve K for a limit number of colors by mapping those CMYK colors to some carefully chosen PCS colors in both the AToBi tag and the BToAi tag. A more complete solution is to move to smart linking in which gamut mapping is performed in the real-time linking at a CMM. This method seems to solve all problems existed in the CMYK to CMYK conversion. However, it introduces new problems: 1) gamut mapping at real-time linking is often unacceptable slow; 2) gamut mapping may not be optimized or may be unreliable; 3) manual adjustment for building high quality maps does not fit to the smart CMM workflow. A new approach is described in this paper to solve these problems. Instead of using a BtoAn tag from the destination profile for color transformation, a new tag is created to map colors in PCS (L*a*b* or XYZ) with different K values to different CMY values. A set of 3-D LUTs for different K values are created for the conversion from PCS to CMY, and 1-D LUTs are created for the conversion from luminance to K and to guide a CMM to perform the interpolation from KPCS (K plus PCS) to CMYK. The gamut mapping is performed in the step to create the profile, thus avoiding realtime gamut mapping in a CMM. With this approach, the black channel is preserved; the "Profile - PCS - Profile" approach is still valid; and the gamut mapping is not performed during linking in a CMM. Therefore, gamut mapping can be manually adjusted for high quality color mapping, the linking is almost as easy and fast as the standard linking, and the black channel is preserved.
NASA Astrophysics Data System (ADS)
Bellini, A.; Anderson, J.; van der Marel, R. P.; King, I. R.; Piotto, G.; Bedin, L. R.
2017-06-01
We take advantage of the exquisite quality of the Hubble Space Telescope astro-photometric catalog of the core of ωCen presented in the first paper of this series to derive a high-resolution, high-precision, high-accuracy differential-reddening map of the field. The map has a spatial resolution of 2 × 2 arcsec2 over a total field of view of about 4.‧3 × 4.‧3. The differential reddening itself is estimated via an iterative procedure using five distinct color-magnitude diagrams, which provided consistent results to within the 0.1% level. Assuming an average reddening value E(B - V) = 0.12, the differential reddening within the cluster’s core can vary by up to ±10%, with a typical standard deviation of about 4%. Our differential-reddening map is made available to the astronomical community in the form of a multi-extension FITS file. This differential-reddening map is essential for a detailed understanding of the multiple stellar populations of ωCen, as presented in the next paper in this series. Moreover, it provides unique insight into the level of small spatial-scale extinction variations in the Galactic foreground. Based on archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Handler, Louis M.; Hall, Steve C.; Reinhart, Richard C.; Kacpura, Thomas J.
2009-01-01
The Space Telecommunication Radio System (STRS) standard is a Software Defined Radio (SDR) architecture standard developed by NASA. The goal of STRS is to reduce NASA s dependence on custom, proprietary architectures with unique and varying interfaces and hardware and support reuse of waveforms across platforms. The STRS project worked with members of the Object Management Group (OMG), Software Defined Radio Forum, and industry partners to leverage existing standards and knowledge. This collaboration included investigating the use of the OMG s Platform-Independent Model (PIM) SWRadio as the basis for an STRS PIM. This paper details the influence of the OMG technologies on the STRS update effort, findings in the STRS/SWRadio mapping, and provides a summary of the SDR Forum recommendations.
Applications of space technology to developing nations
NASA Technical Reports Server (NTRS)
Freden, S. C.
1976-01-01
The use of imagery from the Landsat spacecraft for the monitoring and management of natural resources in developing countries is discussed. The Landsat imagery can be used to make cartographic maps at scales of 1:250,000 which meet the US National Map Accuracy Standards, providing a means of map updating to correct for river meanders or changing shorelines. The Landsat data can also be used in defining and measuring agricultural areas, identifying pest breeding areas, and monitoring irrigation practices and crop performance. Total volume estimates can be obtained in many cases for surface bodies of water, and subsurface water supplies can be detected from changes in vegetation in some instances.
Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe
NASA Astrophysics Data System (ADS)
Badeke, Ronny; Borries, Claudia; Hoque, Mainul M.; Minkwitz, David
2018-06-01
An accurate forecast of the atmospheric Total Electron Content (TEC) is helpful to investigate space weather influences on the ionosphere and technical applications like satellite-receiver radio links. The purpose of this work is to compare four empirical methods for a 24-h forecast of vertical TEC maps over Europe under geomagnetically quiet conditions. TEC map data are obtained from the Space Weather Application Center Ionosphere (SWACI) and the Universitat Politècnica de Catalunya (UPC). The time-series methods Standard Persistence Model (SPM), a 27 day median model (MediMod) and a Fourier Series Expansion are compared to maps for the entire year of 2015. As a representative of the climatological coefficient models the forecast performance of the Global Neustrelitz TEC model (NTCM-GL) is also investigated. Time periods of magnetic storms, which are identified with the Dst index, are excluded from the validation. By calculating the TEC values with the most recent maps, the time-series methods perform slightly better than the coefficient model NTCM-GL. The benefit of NTCM-GL is its independence on observational TEC data. Amongst the time-series methods mentioned, MediMod delivers the best overall performance regarding accuracy and data gap handling. Quiet-time SWACI maps can be forecasted accurately and in real-time by the MediMod time-series approach.
larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.
Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit
2018-01-01
The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.
NASA Astrophysics Data System (ADS)
Ives, Christopher
2015-04-01
Measuring social values for landscapes is an emerging field of research and is critical to the successful management of urban ecosystems. Green open space planning has traditionally relied on rigid standards and metrics without considering the physical requirements of green spaces that are valued for different reasons and by different people. Relating social landscape values to key environmental variables provides a much stronger evidence base for planning landscapes that are both socially desirable and environmentally sustainable. This study spatially quantified residents' values for green space in the Lower Hunter Valley of New South Wales, Australia by enabling participants to mark their values for specific open spaces on interactive paper maps. The survey instrument was designed to evaluate the effect of spatial scale by providing maps of residents' local area at both suburb and municipality scales. The importance of open space values differed depending on whether they were indicated via marker dots or reported on in a general aspatial sense. This suggests that certain open space functions were inadequately provided for in the local area (specifically, cultural significance and health/therapeutic value). Additionally, all value types recorded a greater abundance of marker dots at the finer (suburb) scale compared to the coarser (municipality) scale, but this pattern was more pronounced for some values than others (e.g. physical exercise value). Finally, significant relationships were observed between the abundance of value marker dots in parks and their environmental characteristics (e.g. percentage of vegetation). These results have interesting implications when considering the compatibility between different functions of green spaces and how planners can incorporate information about social values with more traditional approaches to green space planning.
NASA Astrophysics Data System (ADS)
Wüest, Robert; Nebiker, Stephan
2018-05-01
In this paper we present an app framework for augmenting large-scale walkable maps and orthoimages in museums or public spaces using standard smartphones and tablets. We first introduce a novel approach for using huge orthoimage mosaic floor prints covering several hundred square meters as natural Augmented Reality (AR) markers. We then present a new app architecture and subsequent tests in the Swissarena of the Swiss National Transport Museum in Lucerne demonstrating the capabilities of accurately tracking and augmenting different map topics, including dynamic 3d data such as live air traffic. The resulting prototype was tested with everyday visitors of the museum to get feedback on the usability of the AR app and to identify pitfalls when using AR in the context of a potentially crowded museum. The prototype is to be rolled out to the public after successful testing and optimization of the app. We were able to show that AR apps on standard smartphone devices can dramatically enhance the interactive use of large-scale maps for different purposes such as education or serious gaming in a museum context.
SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining
NASA Technical Reports Server (NTRS)
Acton, C.; Bachman, N.; Semenov, B.; Wright, E.
2013-01-01
SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community
Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain
2012-08-15
The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease-specificity. Accounting, or not, for these various factors in defining stereotaxic space has created the specter of an ever-expanding set of atlases, customized for a particular experiment, that are mutually incompatible. These difficulties continue to plague the brain mapping field. This review article summarizes the evolution of stereotaxic space in term of the basic principles and associated conceptual challenges, the creation of population atlases and the future trends that can be expected in atlas evolution. Copyright © 2012 Elsevier Inc. All rights reserved.
Hu, Qiyue; Peng, Zhengwei; Kostrowicki, Jaroslav; Kuki, Atsuo
2011-01-01
Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.
Linking late cognitive outcome with glioma surgery location using resection cavity maps.
Hendriks, Eef J; Habets, Esther J J; Taphoorn, Martin J B; Douw, Linda; Zwinderman, Aeilko H; Vandertop, W Peter; Barkhof, Frederik; Klein, Martin; De Witt Hamer, Philip C
2018-05-01
Patients with a diffuse glioma may experience cognitive decline or improvement upon resective surgery. To examine the impact of glioma location, cognitive alteration after glioma surgery was quantified and related to voxel-based resection probability maps. A total of 59 consecutive patients (range 18-67 years of age) who had resective surgery between 2006 and 2011 for a supratentorial nonenhancing diffuse glioma (grade I-III, WHO 2007) were included in this observational cohort study. Standardized neuropsychological examination and MRI were obtained before and after surgery. Intraoperative stimulation mapping guided resections towards neurological functions (language, sensorimotor function, and visual fields). Maps of resected regions were constructed in standard space. These resection cavity maps were compared between patients with and without new cognitive deficits (z-score difference >1.5 SD between baseline and one year after resection), using a voxel-wise randomization test and calculation of false discovery rates. Brain regions significantly associated with cognitive decline were classified in standard cortical and subcortical anatomy. Cognitive improvement in any domain occurred in 10 (17%) patients, cognitive decline in any domain in 25 (42%), and decline in more than one domain in 10 (17%). The most frequently affected subdomains were attention in 10 (17%) patients and information processing speed in 9 (15%). Resection regions associated with decline in more than one domain were predominantly located in the right hemisphere. For attention decline, no specific region could be identified. For decline in information speed, several regions were found, including the frontal pole and the corpus callosum. Cognitive decline after resective surgery of diffuse glioma is prevalent, in particular, in patients with a tumor located in the right hemisphere without cognitive function mapping. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Geographic Information System Software to Remodel Population Data Using Dasymetric Mapping Methods
Sleeter, Rachel; Gould, Michael
2007-01-01
The U.S. Census Bureau provides decadal demographic data collected at the household level and aggregated to larger enumeration units for anonymity purposes. Although this system is appropriate for the dissemination of large amounts of national demographic data, often the boundaries of the enumeration units do not reflect the distribution of the underlying statistical phenomena. Conventional mapping methods such as choropleth mapping, are primarily employed due to their ease of use. However, the analytical drawbacks of choropleth methods are well known ranging from (1) the artificial transition of population at the boundaries of mapping units to (2) the assumption that the phenomena is evenly distributed across the enumeration unit (when in actuality there can be significant variation). Many methods to map population distribution have been practiced in geographic information systems (GIS) and remote sensing fields. Many cartographers prefer dasymetric mapping to map population because of its ability to more accurately distribute data over geographic space. Similar to ?choropleth maps?, a dasymetric map utilizes standardized data (for example, census data). However, rather than using arbitrary enumeration zones to symbolize population distribution, a dasymetric approach introduces ancillary information to redistribute the standardized data into zones relative to land use and land cover (LULC), taking into consideration actual changing densities within the boundaries of the enumeration unit. Thus, new zones are created that correlate to the function of the map, capturing spatial variations in population density. The transfer of data from census enumeration units to ancillary-driven homogenous zones is performed by a process called areal interpolation.
Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction
NASA Astrophysics Data System (ADS)
Fehér, L.; Klimčík, C.
2012-07-01
The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.
Cattinelli, Isabella; Bolzoni, Elena; Barbieri, Carlo; Mari, Flavio; Martin-Guerrero, José David; Soria-Olivas, Emilio; Martinez-Martinez, José Maria; Gomez-Sanchis, Juan; Amato, Claudia; Stopper, Andrea; Gatti, Emanuele
2012-03-01
The Balanced Scorecard (BSC) is a validated tool to monitor enterprise performances against specific objectives. Through the choice and the evaluation of strategic Key Performance Indicators (KPIs), it provides a measure of the past company's outcome and allows planning future managerial strategies. The Fresenius Medical Care (FME) BSC makes use of 30 KPIs for a continuous quality improvement strategy within its dialysis clinics. Each KPI is monthly associated to a score that summarizes the clinic efficiency for that month. Standard statistical methods are currently used to analyze the BSC data and to give a comprehensive view of the corporate improvements to the top management. We herein propose the Self-Organizing Maps (SOMs) as an innovative approach to extrapolate information from the FME BSC data and to present it in an easy-readable informative form. A SOM is a computational technique that allows projecting high-dimensional datasets to a two-dimensional space (map), thus providing a compressed representation. The SOM unsupervised (self-organizing) training procedure results in a map that preserves similarity relations existing in the original dataset; in this way, the information contained in the high-dimensional space can be more easily visualized and understood. The present work demonstrates the effectiveness of the SOM approach in extracting useful information from the 30-dimensional BSC dataset: indeed, SOMs enabled both to highlight expected relationships between the KPIs and to uncover results not predictable with traditional analyses. Hence we suggest SOMs as a reliable complementary approach to the standard methods for BSC interpretation.
Spectral flow as a map between N = (2 , 0)-models
NASA Astrophysics Data System (ADS)
Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.
2014-07-01
The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.
Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol
2014-01-01
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
Topological mappings of video and audio data.
Fyfe, Colin; Barbakh, Wesam; Ooi, Wei Chuan; Ko, Hanseok
2008-12-01
We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM).(1) But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts.(2) We show visualisation and clustering results on a data set composed of video data of lips uttering 5 Korean vowels. Finally we note that we may dispense with the probabilistic underpinnings of the product of experts and derive the same algorithm as a minimisation of mean squared error between the prototypes and the data. This leads us to suggest a new algorithm which incorporates local and global information in the clustering. Both ot the new algorithms achieve better results than the standard Self-Organizing Map.
NASA Astrophysics Data System (ADS)
Joshi, G.; Gurung, D. R.
2016-12-01
A powerful 7.8 magnitude earthquake struck Nepal at 06:11 UTC on 25 April 2015. Several subsequent aftershocks were deadliest earthquake in recent history of Nepal. In total about 9000 people died and 22,300 people were injured, and lives of eight million people, almost one-third of the population of Nepal was effected. The event lead to massive campaigned to gather data and information on damage and loss using remote sensing, field inspection, and community survey. Information on distribution of relief materials is other important domain of information necessary for equitable relief distribution. Pre and post-earthquake high resolution satellite images helped in damage area assessment and mapping. Many national and international agencies became active to generate and fill the information vacuum. The challenges included data access bottleneck due to lack of good IT infrastructure; inconsistent products due to absence of standard mapping guidelines; dissemination challenges due to absence of Standard Operating Protocols and single information gateway. These challenges were negating opportunities offered by improved earth observation data availability, increasing engagement of volunteers for emergency mapping, and centralized emergency coordination practice. This paper highlights critical practical challenges encountered during emergency mapping and information management during the earthquake in Nepal. There is greater need to address such challenges to effectively use technological leverages that recent advancement in space science, IT and mapping domain provides.
NASA Technical Reports Server (NTRS)
Bourbakis, N.; Sarkar, D.
1994-01-01
A technique for generation of a 2-D space map by traveling a short distance is described. The space to be mapped can be classified as: (1) space without obstacles, (2) space with stationary obstacles, and (3) space with moving obstacles. This paper presents the methodology used to generate a 2-D map of an unknown navigation space. The ability to minimize the redundancy during traveling and maximize the confidence function for generation of the map are advantages of this technique.
AIRS Maps from Space Processing Software
NASA Technical Reports Server (NTRS)
Thompson, Charles K.; Licata, Stephen J.
2012-01-01
This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.
The flight telerobotic servicer: From functional architecture to computer architecture
NASA Technical Reports Server (NTRS)
Lumia, Ronald; Fiala, John
1989-01-01
After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.
Ceos Wgiss Common Framework for Wgiss Connected Data Assets
NASA Astrophysics Data System (ADS)
Enloe, Y.; Mitchell, A. E.; Albani, M.; Yapur, M.
2016-12-01
The Committee on Earth Observation Satellites (CEOS), established in 1984 to coordinate civil space-borne observations of the Earth, has been building through its Working Group on Information Systems and Services (WGISS), a common data framework to identify and connect data assets at member agencies. Some of these data assets are federated systems such as the CEOS WGISS Integrated Catalog (CWIC), the European Space Agency's FedEO (Federated Earth Observations Missions Access) system, and the International Directory Network (IDN) which is an international effort developed by NASA to assist researchers in locating information on available data sets. A system level team provides coordination and oversight to make this loosely coupled federated system function and evolve. WGISS has identified 2 search standards, the Open Geospatial Consortium (OGC) Catalog Services for the Web (CSW) and the CEOS OpenSearch Best Practices (which references the OGC OpenSearch Geo and Time Extensions and OGC OpenSearch Extension for Earth Observation) as well as an interoperable metadata standard (ISO 19115) for use within the WGISS Connected Assets. Data partners must register their data collections in the IDN using the Global Change Master Directory (GCMD) Keywords. Data partners need to support one of the 2 search standards and be able to map their internal metadata to the ISO 19115 metadata elements. All searchable data must have a data access path. Clients can offer search and access to all or a subset of the satellite data available through the WGISS Connected Data Assets. Clients can offer support for a 2-step search: (1) Discovery through collection search using platform, instrument, science keywords, etc. at the IDN and (2) Search granule metadata at data partners through CWIC or FedEO. There are more than a dozen international agencies that offer their data through the WGISS Federation or working on developing their connections. This list includes European Space Agency, NASA, NOAA, USGS, National Institute for Space Research (Brazil), Canadian Center for Mapping and Earth Observations (CCMEO), the Academy for Opto-Electronics (China), the Indian Space Research Organization (ISRO), EUMETSAT, Russian Federal Space Agency (ROSCOSMOS) and several agencies within Australia.
Standardized unfold mapping: a technique to permit left atrial regional data display and analysis.
Williams, Steven E; Tobon-Gomez, Catalina; Zuluaga, Maria A; Chubb, Henry; Butakoff, Constantine; Karim, Rashed; Ahmed, Elena; Camara, Oscar; Rhode, Kawal S
2017-10-01
Left atrial arrhythmia substrate assessment can involve multiple imaging and electrical modalities, but visual analysis of data on 3D surfaces is time-consuming and suffers from limited reproducibility. Unfold maps (e.g., the left ventricular bull's eye plot) allow 2D visualization, facilitate multimodal data representation, and provide a common reference space for inter-subject comparison. The aim of this work is to develop a method for automatic representation of multimodal information on a left atrial standardized unfold map (LA-SUM). The LA-SUM technique was developed and validated using 18 electroanatomic mapping (EAM) LA geometries before being applied to ten cardiac magnetic resonance/EAM paired geometries. The LA-SUM was defined as an unfold template of an average LA mesh, and registration of clinical data to this mesh facilitated creation of new LA-SUMs by surface parameterization. The LA-SUM represents 24 LA regions on a flattened surface. Intra-observer variability of LA-SUMs for both EAM and CMR datasets was minimal; root-mean square difference of 0.008 ± 0.010 and 0.007 ± 0.005 ms (local activation time maps), 0.068 ± 0.063 gs (force-time integral maps), and 0.031 ± 0.026 (CMR LGE signal intensity maps). Following validation, LA-SUMs were used for automatic quantification of post-ablation scar formation using CMR imaging, demonstrating a weak but significant relationship between ablation force-time integral and scar coverage (R 2 = 0.18, P < 0.0001). The proposed LA-SUM displays an integrated unfold map for multimodal information. The method is applicable to any LA surface, including those derived from imaging and EAM systems. The LA-SUM would facilitate standardization of future research studies involving segmental analysis of the LA.
Growing a hypercubical output space in a self-organizing feature map.
Bauer, H U; Villmann, T
1997-01-01
Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.
2008-03-01
multiplicative corrections as well as space mapping transformations for models defined over a lower dimensional space. A corrected surrogate model for the...correction functions used in [72]. If the low fidelity model g(x̃) is defined over a lower dimensional space then a space mapping transformation is...required. As defined in [21, 72], space mapping is a method of mapping between models of different dimensionality or fidelity. Let P denote the space
Standardized anatomic space for abdominal fat quantification
NASA Astrophysics Data System (ADS)
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.
2014-03-01
The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.
1994-02-01
desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much
Design, Qualification and Lessons Learned of the Shutter Calibration Mechanism for EnMAP Mission
NASA Astrophysics Data System (ADS)
Schmidt, Tilo; Muller, Silvio; Bergander, Arvid; Zajac, Kai; Seifart, Klaus
2015-09-01
The Shutter Calibration Mechanism (SCM) Assembly is one of three mechanisms which are developed by HTS for the EnMAP instrument in subcontract to OHB System AG Munich. EnMAP is the Environmental Mapping and Analysis Program of the German Space Agency DLR.The binary rotary encoder of the SCM using hall-effect sensors was already presented during ESMATS 2011. This paper summarizes the main functions and design features of the Hardware and focuses on qualification testing which has finished successfully in 2014. Of particular interest is the functional testing of the main drive including the precise hall-effect position sensing system and the test of the fail safe mechanism. In addition to standard test campaign required for QM also a shock emission measurement of the fail safe mechanism activation was conducted.Test conduction and results will be presented with focus on deviations from the expected behaviour, mitigation measures and on lessons learned.
Baryon Acoustic Oscillations reconstruction with pixels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obuljen, Andrej; Villaescusa-Navarro, Francisco; Castorina, Emanuele
2017-09-01
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present and analyse a reconstruction method that consists of displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that this method is equivalent to the standard reconstruction technique in the limit where the number of pixelsmore » becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate this method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that this method is able to decrease the uncertainty in the BAO peak position by 30-50% over the typical angular resolution scales of 21 cm intensity mapping experiments.« less
Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.
Zhang, Yu; You, Xuqun; Zhu, Rongjuan
2016-07-01
Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space. © The Author(s) 2016.
Ground control requirements for precision processing of ERTS images
Burger, Thomas C.
1973-01-01
With the successful flight of the ERTS-1 satellite, orbital height images are available for precision processing into products such as 1:1,000,000-scale photomaps and enlargements up to 1:250,000 scale. In order to maintain positional error below 100 meters, control points for the precision processing must be carefully selected, clearly definitive on photos in both X and Y. Coordinates of selected control points measured on existing ½ and 15-minute standard maps provide sufficient accuracy for any space imaging system thus far defined. This procedure references the points to accepted horizontal and vertical datums. Maps as small as 1:250,000 scale can be used as source material for coordinates, but to maintain the desired accuracy, maps of 1:100,000 and larger scale should be used when available.
Mapping Children--Mapping Space.
ERIC Educational Resources Information Center
Pick, Herbert L., Jr.
Research is underway concerning the way the perception, conception, and representation of spatial layout develops. Three concepts are important here--space itself, frame of reference, and cognitive map. Cognitive map refers to a form of representation of the behavioral space, not paired associate or serial response learning. Other criteria…
Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.
Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre
2016-08-22
Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds).
Constrained H1-regularization schemes for diffeomorphic image registration
Mang, Andreas; Biros, George
2017-01-01
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361
Simulating multiprimary LCDs on standard tri-stimulus LC displays
NASA Astrophysics Data System (ADS)
Lebowsky, Fritz; Vonneilich, Katrin; Bonse, Thomas
2008-01-01
Large-scale, direct view TV screens, in particular those based on liquid crystal technology, are beginning to use subpixel structures with more than three subpixels to implement a multi-primary display with up to six primaries. Since their input color space is likely to remain tri-stimulus RGB we first focus on some fundamental constraints. Among them, we elaborate simplified gamut mapping architectures as well as color filter geometry, transparency, and chromaticity coordinates in color space. Based on a 'display centric' RGB color space tetrahedrization combined with linear interpolation we describe a simulation framework which enables optimization for up to 7 primaries. We evaluated the performance through mapping the multi-primary design back onto a RGB LC display gamut without building a prototype multi-primary display. As long as we kept the RGB equivalent output signal within the display gamut we could analyze all desirable multi-primary configurations with regard to colorimetric variance and visually perceived quality. Not only does our simulation tool enable us to verify a novel concept it also demonstrates how carefully one needs to design a multiprimary display for LCD TV applications.
Local Free-Space Mapping and Path Guidance for Mobile Robots.
1988-03-01
CM a CD U 00 Technical Document 1227 March 1988 Local Free- Space Mapping o and Path Guidance for Mobile Robots o William T. Gex N’% Nancy L. Campbell...TITLE (inludvSeocutCl&sas~o*) Local Free- Space Mapping and Path Guidance for Mobile Robots 12. PERSONAL AUTHOR(S) William T. Gex and Nancy L...Description of Robot System... 2 Free- Space Mapping ... 4 Map Construction ... 4 . ,12pping Examplk... 5 ’ft Sensor Unreliability... 8 % Path Guidance
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Ontological Standardization for Historical Map Collections: Studying the Greek Borderlines of 1881
NASA Astrophysics Data System (ADS)
Gkadolou, E.; Tomai, E.; Stefanakis, E.; Kritikos, G.
2012-07-01
Historical maps deliver valuable historical information which is applicable in several domains while they document the spatiotemporal evolution of the geographical entities that are depicted therein. In order to use the historical cartographic information effectively, the maps' semantic documentation becomes a necessity for restoring any semantic ambiguities and structuring the relationship between historical and current geographical space. This paper examines cartographic ontologies as a proposed methodology and presents the first outcomes of the methodology applied for the historical map series «Carte de la nouvelle frontière Turco-Grecque» that sets the borderlines between Greece and Ottoman Empire in 1881. The map entities were modelled and compared to the current ones so as to record the changes in their spatial and thematic attributes and an ontology was developed in Protégé OWL Editor 3.4.4 for the attributes that thoroughly define a historical map and the digitised spatial entities. Special focus was given on the Greek borderline and the changes that it caused to other geographic entities.
Spectral Radiance of a Large-Area Integrating Sphere Source
Walker, James H.; Thompson, Ambler
1995-01-01
The radiance and irradiance calibration of large field-of-view scanning and imaging radiometers for remote sensing and surveillance applications has resulted in the development of novel calibration techniques. One of these techniques is the employment of large-area integrating sphere sources as radiance or irradiance secondary standards. To assist the National Aeronautical and Space Administration’s space based ozone measurement program, a commercially available large-area internally illuminated integrating sphere source’s spectral radiance was characterized in the wavelength region from 230 nm to 400 nm at the National Institute of Standards and Technology. Spectral radiance determinations and spatial mappings of the source indicate that carefully designed large-area integrating sphere sources can be measured with a 1 % to 2 % expanded uncertainty (two standard deviation estimate) in the near ultraviolet with spatial nonuniformities of 0.6 % or smaller across a 20 cm diameter exit aperture. A method is proposed for the calculation of the final radiance uncertainties of the source which includes the field of view of the instrument being calibrated. PMID:29151725
Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems
NASA Astrophysics Data System (ADS)
Bäcker, A.
Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.
CrowdMapping: A Crowdsourcing-Based Terminology Mapping Method for Medical Data Standardization.
Mao, Huajian; Chi, Chenyang; Huang, Boyu; Meng, Haibin; Yu, Jinghui; Zhao, Dongsheng
2017-01-01
Standardized terminology is the prerequisite of data exchange in analysis of clinical processes. However, data from different electronic health record systems are based on idiosyncratic terminology systems, especially when the data is from different hospitals and healthcare organizations. Terminology standardization is necessary for the medical data analysis. We propose a crowdsourcing-based terminology mapping method, CrowdMapping, to standardize the terminology in medical data. CrowdMapping uses a confidential model to determine how terminologies are mapped to a standard system, like ICD-10. The model uses mappings from different health care organizations and evaluates the diversity of the mapping to determine a more sophisticated mapping rule. Further, the CrowdMapping model enables users to rate the mapping result and interact with the model evaluation. CrowdMapping is a work-in-progress system, we present initial results mapping terminologies.
space Radar Image of Long Valley, California
1999-05-01
An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. http://photojournal.jpl.nasa.gov/catalog/PIA01749
Davis, G L; McMullen, M D; Baysdorfer, C; Musket, T; Grant, D; Staebell, M; Xu, G; Polacco, M; Koster, L; Melia-Hancock, S; Houchins, K; Chao, S; Coe, E H
1999-01-01
We have constructed a 1736-locus maize genome map containing1156 loci probed by cDNAs, 545 probed by random genomic clones, 16 by simple sequence repeats (SSRs), 14 by isozymes, and 5 by anonymous clones. Sequence information is available for 56% of the loci with 66% of the sequenced loci assigned functions. A total of 596 new ESTs were mapped from a B73 library of 5-wk-old shoots. The map contains 237 loci probed by barley, oat, wheat, rice, or tripsacum clones, which serve as grass genome reference points in comparisons between maize and other grass maps. Ninety core markers selected for low copy number, high polymorphism, and even spacing along the chromosome delineate the 100 bins on the map. The average bin size is 17 cM. Use of bin assignments enables comparison among different maize mapping populations and experiments including those involving cytogenetic stocks, mutants, or quantitative trait loci. Integration of nonmaize markers in the map extends the resources available for gene discovery beyond the boundaries of maize mapping information into the expanse of map, sequence, and phenotype information from other grass species. This map provides a foundation for numerous basic and applied investigations including studies of gene organization, gene and genome evolution, targeted cloning, and dissection of complex traits. PMID:10388831
RC64, a Rad-Hard Many-Core High- Performance DSP for Space Applications
NASA Astrophysics Data System (ADS)
Ginosar, Ran; Aviely, Peleg; Gellis, Hagay; Liran, Tuvia; Israeli, Tsvika; Nesher, Roy; Lange, Fredy; Dobkin, Reuven; Meirov, Henri; Reznik, Dror
2015-09-01
RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.
RC64, a Rad-Hard Many-Core High-Performance DSP for Space Applications
NASA Astrophysics Data System (ADS)
Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Mandler, Alberto; Lange, Fredy; Dobkin, Reuven; Goldberg, Miki
2014-08-01
RC64, a novel rad-hard 64-core signal processing chip targets DSP performance of 75 GMACs (16bit), 150 GOPS and 20 single precision GFLOPS while dissipating less than 10 Watts. RC64 integrates advanced DSP cores with a multi-bank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 2.5 Gbps full duplex high speed serial links using SpaceFibre and other protocols. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 300 MHz integrated circuit on a 65nm CMOS technology, assembled in hermetically sealed ceramic CCGA624 package and qualified to the highest space standards.
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
2014-03-27
fidelity. This pairing is accomplished through the use of a space mapping technique, which is a process where the design space of a lower fidelity model...is aligned a higher fidelity model. The intent of applying space mapping techniques to the field of surrogate construction is to leverage the
Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob
2002-11-01
We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. Copyright 2002 Wiley-Liss, Inc.
Communication: Time- and space-sliced velocity map electron imaging
NASA Astrophysics Data System (ADS)
Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen
2014-12-01
We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.
Spatial analysis of plutonium-239 + 240 and Americium-241 in soils around Rocky Flats, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litaor, M.I.
1995-05-01
Plutonium and american contamination of soils around Rocky Flats, Colorado resulted from past outdoor storage practices. Four previous studies produce four different Pu isopleth maps. Spatial estimation techniques were not used in the construction of these maps and were also based on an extremely small number of soil samples. The purpose of this study was to elucidate the magnitude of Pu-239 + 240 and Am-241 dispersion in the soil environment east of Rocky Flats using robust spatial estimation techniques. Soils were sampled from 118 plots of 1.01 and 4.05 ha by compositing 25 evenly spaced samples in each plot frommore » the top 0.64 cm. Plutonium-239 + 240 activity ranged from 1.85 to 53 560 Bq/kg with a mean of 1924 Bq/kg and a standard deviation of 6327 Bq/kg. Americium-241 activity ranged from 0.18 to 9990 Bq/kg with a mean of 321 Bq/kg and a standard deviation of 1143 Bq/kg. Geostatistical techniques were used to model the spatial dependency and construct isopleth maps showing Pu-239 + 240 and Am-241 distribution. The isopleth configuration was consistent with the hypothesis that the dominant dispersal mechanism of Pu-239 + 240 was wind dispersion from west to east. The Pu-239 + 240 isopleth map proposed to this study differed significantly in the direction and distance of dispersal from the previously published maps. This ispleth map as well as the Am-241 map should be used as the primary data for future risk assessment associated with public exposure to Pu-239 + 240 and Am-241. 37 refs., 7 figs., 2 tabs.« less
Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.
Riaz, Bushra; Pfeiffer, Christoph; Schneiderman, Justin F
2017-08-01
While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c ) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.
NASA Technical Reports Server (NTRS)
Poulton, C. E. (Principal Investigator); Welch, R. I.
1973-01-01
There are no author-identified significant results in this report. Progress on plans for the development and testing of a practical procedure and system for the uniform mapping and monitoring of natural ecosystems and environmental complexes from space-acquired imagery is discussed. With primary emphasis on ERTS-1 imagery, but supported by appropriate aircraft photography as necessary, the objectives are to accomplish the following: (1) Develop and test in a few selected sites and areas of the western United States a standard format for an ecological and land use legend for making natural resource inventories on a simulated global basis. (2) Based on these same limited geographic areas, identify the potentialities and limitations of the legend concept for the recognition and annotation of ecological analogs and environmental complexes. An additional objective is to determine the optimum combination of space photography, aerial photography, ground data, human data analysis, and automatic data analysis for estimating crop yield in the rice growing areas of California and Louisiana.
Tomaiuolo, F; MacDonald, J D; Caramanos, Z; Posner, G; Chiavaras, M; Evans, A C; Petrides, M
1999-09-01
The pars opercularis occupies the posterior part of the inferior frontal gyrus. Electrical stimulation or damage of this region interferes with language production. The present study investigated the morphology and morphometry of the pars opercularis in 108 normal adult human cerebral hemispheres by means of magnetic resonance imaging. The brain images were transformed into a standardized proportional steoreotaxic space (i.e. that of Talairach and Tournoux) in order to minimize interindividual brain size variability. There was considerable variability in the shape and location of the pars opercularis across brains and between cerebral hemispheres. There was no significant difference or correlation between left and right hemisphere grey matter volumes. There was also no significant difference between sex and side of asymmetry of the pars opercularis. A probability map of the pars opercularis was constructed by averaging its location and extent in each individual normalized brain into Talairach space to aid in localization of activity changes in functional neuroimaging studies.
Magnetic space-based field measurements
NASA Technical Reports Server (NTRS)
Langel, R. A.
1981-01-01
Because the near Earth magnetic field is a complex combination of fields from outside the Earth of fields from its core and of fields from its crust, measurements from space prove to be the only practical way to obtain timely, global surveys. Due to difficulty in making accurate vector measurements, early satellites such as Sputnik and Vanguard measured only the magnitude survey. The attitude accuracy was 20 arc sec. Both the Earth's core fields and the fields arising from its crust were mapped from satellite data. The standard model of the core consists of a scalar potential represented by a spherical harmonics series. Models of the crustal field are relatively new. Mathematical representation is achieved in localized areas by arrays of dipoles appropriately located in the Earth's crust. Measurements of the Earth's field are used in navigation, to map charged particles in the magnetosphere, to study fluid properties in the Earth's core, to infer conductivity of the upper mantels, and to delineate regional scale geological features.
Malaria Risk Mapping for Control in the Republic of Sudan
Noor, Abdisalan M.; ElMardi, Khalid A.; Abdelgader, Tarig M.; Patil, Anand P.; Amine, Ahmed A. A.; Bakhiet, Sahar; Mukhtar, Maowia M.; Snow, Robert W.
2012-01-01
Evidence shows that malaria risk maps are rarely tailored to address national control program ambitions. Here, we generate a malaria risk map adapted for malaria control in Sudan. Community Plasmodium falciparum parasite rate (PfPR) data from 2000 to 2010 were assembled and were standardized to 2–10 years of age (PfPR2–10). Space-time Bayesian geostatistical methods were used to generate a map of malaria risk for 2010. Surfaces of aridity, urbanization, irrigation schemes, and refugee camps were combined with the PfPR2–10 map to tailor the epidemiological stratification for appropriate intervention design. In 2010, a majority of the geographical area of the Sudan had risk of < 1% PfPR2–10. Areas of meso- and hyperendemic risk were located in the south. About 80% of Sudan's population in 2011 was in the areas in the desert, urban centers, or where risk was < 1% PfPR2–10. Aggregated data suggest reducing risks in some high transmission areas since the 1960s. PMID:23033400
Automating the selection of standard parallels for conic map projections
NASA Astrophysics Data System (ADS)
Šavriǒ, Bojan; Jenny, Bernhard
2016-05-01
Conic map projections are appropriate for mapping regions at medium and large scales with east-west extents at intermediate latitudes. Conic projections are appropriate for these cases because they show the mapped area with less distortion than other projections. In order to minimize the distortion of the mapped area, the two standard parallels of conic projections need to be selected carefully. Rules of thumb exist for placing the standard parallels based on the width-to-height ratio of the map. These rules of thumb are simple to apply, but do not result in maps with minimum distortion. There also exist more sophisticated methods that determine standard parallels such that distortion in the mapped area is minimized. These methods are computationally expensive and cannot be used for real-time web mapping and GIS applications where the projection is adjusted automatically to the displayed area. This article presents a polynomial model that quickly provides the standard parallels for the three most common conic map projections: the Albers equal-area, the Lambert conformal, and the equidistant conic projection. The model defines the standard parallels with polynomial expressions based on the spatial extent of the mapped area. The spatial extent is defined by the length of the mapped central meridian segment, the central latitude of the displayed area, and the width-to-height ratio of the map. The polynomial model was derived from 3825 maps-each with a different spatial extent and computationally determined standard parallels that minimize the mean scale distortion index. The resulting model is computationally simple and can be used for the automatic selection of the standard parallels of conic map projections in GIS software and web mapping applications.
Wallace, Nathan D; Ceguerra, Anna V; Breen, Andrew J; Ringer, Simon P
2018-06-01
Atom probe tomography is a powerful microscopy technique capable of reconstructing the 3D position and chemical identity of millions of atoms within engineering materials, at the atomic level. Crystallographic information contained within the data is particularly valuable for the purposes of reconstruction calibration and grain boundary analysis. Typically, analysing this data is a manual, time-consuming and error prone process. In many cases, the crystallographic signal is so weak that it is difficult to detect at all. In this study, a new automated signal processing methodology is demonstrated. We use the affine properties of the detector coordinate space, or the 'detector stack', as the basis for our calculations. The methodological framework and the visualisation tools are shown to be superior to the standard method of crystallographic pole visualisation directly from field evaporation images and there is no requirement for iterations between a full real-space initial tomographic reconstruction and the detector stack. The mapping approaches are demonstrated for aluminium, tungsten, magnesium and molybdenum. Implications for reconstruction calibration, accuracy of crystallographic measurements, reliability and repeatability are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
MapEdit: solution to continuous raster map creation
NASA Astrophysics Data System (ADS)
Rančić, Dejan; Djordjevi-Kajan, Slobodanka
2003-03-01
The paper describes MapEdit, MS Windows TM software for georeferencing and rectification of scanned paper maps. The software produces continuous raster maps which can be used as background in geographical information systems. Process of continuous raster map creation using MapEdit "mosaicking" function is also described as well as the georeferencing and rectification algorithms which are used in MapEdit. Our approach for georeferencing and rectification using four control points and two linear transformations for each scanned map part, together with nearest neighbor resampling method, represents low cost—high speed solution that produce continuous raster maps with satisfactory quality for many purposes (±1 pixel). Quality assessment of several continuous raster maps at different scales that have been created using our software and methodology, has been undertaken and results are presented in the paper. For the quality control of the produced raster maps we referred to three wide adopted standards: US Standard for Digital Cartographic Data, National Standard for Spatial Data Accuracy and US National Map Accuracy Standard. The results obtained during the quality assessment process are given in the paper and show that our maps meat all three standards.
Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick
2018-05-01
This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.
NASA Astrophysics Data System (ADS)
Djallel Dilmi, Mohamed; Mallet, Cécile; Barthes, Laurent; Chazottes, Aymeric
2017-04-01
Rain time series records are generally studied using rainfall rate or accumulation parameters, which are estimated for a fixed duration (typically 1 min, 1 h or 1 day). In this study we use the concept of rain events
. The aim of the first part of this paper is to establish a parsimonious characterization of rain events, using a minimal set of variables selected among those normally used for the characterization of these events. A methodology is proposed, based on the combined use of a genetic algorithm (GA) and self-organizing maps (SOMs). It can be advantageous to use an SOM, since it allows a high-dimensional data space to be mapped onto a two-dimensional space while preserving, in an unsupervised manner, most of the information contained in the initial space topology. The 2-D maps obtained in this way allow the relationships between variables to be determined and redundant variables to be removed, thus leading to a minimal subset of variables. We verify that such 2-D maps make it possible to determine the characteristics of all events, on the basis of only five features (the event duration, the peak rain rate, the rain event depth, the standard deviation of the rain rate event and the absolute rain rate variation of the order of 0.5). From this minimal subset of variables, hierarchical cluster analyses were carried out. We show that clustering into two classes allows the conventional convective and stratiform classes to be determined, whereas classification into five classes allows this convective-stratiform classification to be further refined. Finally, our study made it possible to reveal the presence of some specific relationships between these five classes and the microphysics of their associated rain events.
FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)
,
2006-01-01
PLEASE NOTE: This now-approved 'FGDC Digital Cartographic Standard for Geologic Map Symbolization (PostScript Implementation)' officially supercedes its earlier (2000) Public Review Draft version (see 'Earlier Versions of the Standard' below). In August 2006, the Digital Cartographic Standard for Geologic Map Symbolization was officially endorsed by the Federal Geographic Data Committee (FGDC) as the national standard for the digital cartographic representation of geologic map features (FGDC Document Number FGDC-STD-013-2006). Presented herein is the PostScript Implementation of the standard, which will enable users to directly apply the symbols in the standard to geologic maps and illustrations prepared in desktop illustration and (or) publishing software. The FGDC Digital Cartographic Standard for Geologic Map Symbolization contains descriptions, examples, cartographic specifications, and notes on usage for a wide variety of symbols that may be used on typical, general-purpose geologic maps and related products such as cross sections. The standard also can be used for different kinds of special-purpose or derivative map products and databases that may be focused on a specific geoscience topic (for example, slope stability) or class of features (for example, a fault map). The standard is scale-independent, meaning that the symbols are appropriate for use with geologic mapping compiled or published at any scale. It will be useful to anyone who either produces or uses geologic map information, whether in analog or digital form. Please be aware that this standard is not intended to be used inflexibly or in a manner that will limit one's ability to communicate the observations and interpretations gained from geologic mapping. In certain situations, a symbol or its usage might need to be modified in order to better represent a particular feature on a geologic map or cross section. This standard allows the use of any symbol that doesn't conflict with others in the standard, provided that it is clearly explained on the map and in the database. In addition, modifying the size, color, and (or) lineweight of an existing symbol to suit the needs of a particular map or output device also is permitted, provided that the modified symbol's appearance is not too similar to another symbol on the map. Be aware, however, that reducing lineweights below .125 mm (.005 inch) may cause symbols to plot incorrectly if output at higher resolutions (1800 dpi or higher). For guidelines on symbol usage, as well as on color design and map labeling, please refer to the standard's introductory text. Also found there are informational sections covering concepts of geologic mapping and some definitions of geologic map features, as well as sections on the newly defined concepts and terminology for the scientific confidence and locational accuracy of geologic map features. More information on both the past development and the future maintenance of the FGDC Digital Cartographic Standard for Geologic Map Symbolization can be found at the FGDC Geologic Data Subcommittee website (http://ngmdb.usgs.gov/fgdc_gds/). Earlier Versions of the Standard
Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets.
Demartines, P; Herault, J
1997-01-01
We present a new strategy called "curvilinear component analysis" (CCA) for dimensionality reduction and representation of multidimensional data sets. The principle of CCA is a self-organized neural network performing two tasks: vector quantization (VQ) of the submanifold in the data set (input space); and nonlinear projection (P) of these quantizing vectors toward an output space, providing a revealing unfolding of the submanifold. After learning, the network has the ability to continuously map any new point from one space into another: forward mapping of new points in the input space, or backward mapping of an arbitrary position in the output space.
Li, Zhifei; Qin, Dongliang
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572
Li, Zhifei; Qin, Dongliang; Yang, Feng
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.
NASA Technical Reports Server (NTRS)
Clark, P. E.; Malphrus, Ben; Reuter, Dennis; MacDowall, Robert; Folta, David; Hurford, Terry; Brambora, Cliff; Farrell, William
2017-01-01
BIRCHES is the compact broadband IR spectrometer of the Lunar Ice Cube mission. Lunar Ice Cube is one of 13 6U cubesats that will be deployed by EM1 in cislunar space, qualifying as lunarcubes. The LunarCube paradigm is a proposed approach for extending the affordable CubeSat standard to support access to deep space via cis-lunar/lunar missions. Because the lunar environment contains analogs of most solar system environments, the Moon is an ideal target for both testing critical deep space capabilities and understanding solar system formation and processes. Effectively, as developments are occurring in parallel, 13 prototype deep space cubesats are being flown for EM1. One useful outcome of this 'experiment' will be to determine to what extent it is possible to develop a lunarcube 'bus' with standardized interfaces to all subsystems using reasonable protocols for a variety of payloads. The lunar ice cube mission was developed as the test case in a GSFC R&D study to determine whether the cubesat paradigm could be applied to deep space, science requirements driven missions, and BIRCHES was its payload. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, both also EM1 lunar orbiters, will also be deployed from EM1 and provide complimentary observations to be used in understanding volatile dynamics in the same time frame.
Recent technology products from Space Human Factors research
NASA Technical Reports Server (NTRS)
Jenkins, James P.
1991-01-01
The goals of the NASA Space Human Factors program and the research carried out concerning human factors are discussed with emphasis given to the development of human performance models, data, and tools. The major products from this program are described, which include the Laser Anthropometric Mapping System; a model of the human body for evaluating the kinematics and dynamics of human motion and strength in microgravity environment; an operational experience data base for verifying and validating the data repository of manned space flights; the Operational Experience Database Taxonomy; and a human-computer interaction laboratory whose products are the display softaware and requirements and the guideline documents and standards for applications on human-computer interaction. Special attention is given to the 'Convoltron', a prototype version of a signal processor for synthesizing the head-related transfer functions.
Friedrichs systems in a Hilbert space framework: Solvability and multiplicity
NASA Astrophysics Data System (ADS)
Antonić, N.; Erceg, M.; Michelangeli, A.
2017-12-01
The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.
Noncommutative mapping from the symplectic formalism
NASA Astrophysics Data System (ADS)
De Andrade, M. A.; Neves, C.
2018-01-01
Bopp's shifts will be generalized through a symplectic formalism. A special procedure, like "diagonalization," which drives the completely deformed symplectic matrix to the standard symplectic form was found as suggested by Faddeev-Jackiw. Consequently, the correspondent transformation matrix guides the mapping from commutative to noncommutative (NC) phase-space coordinates. Bopp's shifts may be directly generalized from this mapping. In this context, all the NC and scale parameters, introduced into the brackets, will be lifted to the Hamiltonian. Well-known results, obtained using ⋆-product, will be reproduced without considering that the NC parameters are small (≪1). Besides, it will be shown that different choices for NC algebra among the symplectic variables generate distinct dynamical systems, in which they may not even connect with each other, and that some of them can preserve, break, or restore the symmetry of the system. Further, we will also discuss the charge and mass rescaling in a simple model.
Chimeras and clusters in networks of hyperbolic chaotic oscillators
NASA Astrophysics Data System (ADS)
Cano, A. V.; Cosenza, M. G.
2017-03-01
We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.
High-Throughput Nanoindentation for Statistical and Spatial Property Determination
NASA Astrophysics Data System (ADS)
Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.
2018-04-01
Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.
A Comparative Study of Hawaii Middle School Science Student Academic Achievement
NASA Astrophysics Data System (ADS)
Askew Cain, Peggy
The problem was middle-grade students with specific learning disabilities (SWDs) in reading comprehension perform less well than their peers on standardized assessments. The purpose of this quantitative comparative study was to examine the effect of electronic concept maps on reading comprehension of eighth grade students with SWD reading comprehension in a Hawaii middle school Grade 8 science class on the island of Oahu. The target population consisted of Grade 8 science students for school year 2015-2016. The sampling method was a purposeful sampling with a final sample size of 338 grade 8 science students. De-identified archival records of grade 8 Hawaii standardized science test scores were analyzed using a one way analysis of variance (ANOVA) in SPSS. The finding for hypothesis 1 indicated a significant difference in student achievement between SWDs and SWODs as measured by Hawaii State Assessment (HSA) in science scores (p < 0.05), and for hypothesis 2, a significant difference in instructional modality for SWDs who used concept maps and does who did not as measured by the Hawaii State Assessment in science (p < 0.05). The implications of the findings (a) SWDs performed less well in science achievement than their peers and consequently, and (b) SWODs appeared to remember greater degrees of science knowledge, and answered more questions correctly than SWDs as a result of reading comprehension. Recommendations for practice were for educational leadership and noted: (a) teachers should practice using concept maps with SWDs as a specific reading strategy to support reading comprehension in science classes, (b) involve a strong focus on vocabulary building and concept building during concept map construction because the construction of concept maps sometimes requires frontloading of vocabulary, and (c) model for teachers how concept maps are created and to explain their educational purpose as a tool for learning. Recommendations for future research were to conduct (a) a quantitative comparative study between groups for academic achievement of subtests mean scores of SWDs and SWODs in physical science, earth science, and space science, and (b) a quantitative correlation study to examine relationships and predictive values for academic achievement of SWDs and concept map integration on standardized science assessments.
Optimal Mass Transport for Shape Matching and Comparison
Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng
2015-01-01
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265
Real-space refinement in PHENIX for cryo-EM and crystallography
Afonine, Pavel V.; Poon, Billy K.; Read, Randy J.; ...
2018-06-01
This work describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement ofmore » 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.« less
Real-space refinement in PHENIX for cryo-EM and crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonine, Pavel V.; Poon, Billy K.; Read, Randy J.
This work describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement ofmore » 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.« less
Juang, K W; Lee, D Y; Ellsworth, T R
2001-01-01
The spatial distribution of a pollutant in contaminated soils is usually highly skewed. As a result, the sample variogram often differs considerably from its regional counterpart and the geostatistical interpolation is hindered. In this study, rank-order geostatistics with standardized rank transformation was used for the spatial interpolation of pollutants with a highly skewed distribution in contaminated soils when commonly used nonlinear methods, such as logarithmic and normal-scored transformations, are not suitable. A real data set of soil Cd concentrations with great variation and high skewness in a contaminated site of Taiwan was used for illustration. The spatial dependence of ranks transformed from Cd concentrations was identified and kriging estimation was readily performed in the standardized-rank space. The estimated standardized rank was back-transformed into the concentration space using the middle point model within a standardized-rank interval of the empirical distribution function (EDF). The spatial distribution of Cd concentrations was then obtained. The probability of Cd concentration being higher than a given cutoff value also can be estimated by using the estimated distribution of standardized ranks. The contour maps of Cd concentrations and the probabilities of Cd concentrations being higher than the cutoff value can be simultaneously used for delineation of hazardous areas of contaminated soils.
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
Invariants, Attractors and Bifurcation in Two Dimensional Maps with Polynomial Interaction
NASA Astrophysics Data System (ADS)
Hacinliyan, Avadis Simon; Aybar, Orhan Ozgur; Aybar, Ilknur Kusbeyzi
This work will present an extended discrete-time analysis on maps and their generalizations including iteration in order to better understand the resulting enrichment of the bifurcation properties. The standard concepts of stability analysis and bifurcation theory for maps will be used. Both iterated maps and flows are used as models for chaotic behavior. It is well known that when flows are converted to maps by discretization, the equilibrium points remain the same but a richer bifurcation scheme is observed. For example, the logistic map has a very simple behavior as a differential equation but as a map fold and period doubling bifurcations are observed. A way to gain information about the global structure of the state space of a dynamical system is investigating invariant manifolds of saddle equilibrium points. Studying the intersections of the stable and unstable manifolds are essential for understanding the structure of a dynamical system. It has been known that the Lotka-Volterra map and systems that can be reduced to it or its generalizations in special cases involving local and polynomial interactions admit invariant manifolds. Bifurcation analysis of this map and its higher iterates can be done to understand the global structure of the system and the artifacts of the discretization by comparing with the corresponding results from the differential equation on which they are based.
GRBs as standard candles: There is no “circularity problem” (and there never was)
NASA Astrophysics Data System (ADS)
Graziani, Carlo
2011-02-01
Beginning with the 2002 discovery of the "Amati Relation" of GRB spectra, there has been much interest in the possibility that this and other correlations of GRB phenomenology might be used to make GRBs into standard candles. One recurring apparent difficulty with this program has been that some of the primary observational quantities to be fit as "data" - to wit, the isotropic-equivalent prompt energy Eiso and the collimation-corrected "total" prompt energy Eγ - depend for their construction on the very cosmological models that they are supposed to help constrain. This is the so-called "circularity problem" of standard candle GRBs. This paper is intended to point out that the circularity problem is not in fact a problem at all, except to the extent that it amounts to a self-inflicted wound. It arises essentially because of an unfortunate choice of data variables - "source-frame" variables such as Eiso, which are unnecessarily encumbered by cosmological considerations. If, instead, the empirical correlations of GRB phenomenology which are formulated in source-variables are mapped to the primitive observational variables (such as fluence) and compared to the observations in that space, then all taint of circularity disappears. I also indicate here a set of procedures for encoding high-dimensional empirical correlations (such as between Eiso, Epk(src),tjet(src), and T45(src)) in a "Gaussian Tube" smeared model that includes both the correlation and its intrinsic scatter, and how that source-variable model may easily be mapped to the space of primitive observables, to be convolved with the measurement errors and fashioned into a likelihood. I discuss the projections of such Gaussian tubes into sub-spaces, which may be used to incorporate data from GRB events that may lack some element of the data (for example, GRBs without ascertained jet-break times). In this way, a large set of inhomogeneously observed GRBs may be assimilated into a single analysis, so long as each possesses at least two correlated data attributes.
Remote Memory Access Protocol Target Node Intellectual Property
NASA Technical Reports Server (NTRS)
Haddad, Omar
2013-01-01
The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.
Decomposed direct matrix inversion for fast non-cartesian SENSE reconstructions.
Qian, Yongxian; Zhang, Zhenghui; Wang, Yi; Boada, Fernando E
2006-08-01
A new k-space direct matrix inversion (DMI) method is proposed here to accelerate non-Cartesian SENSE reconstructions. In this method a global k-space matrix equation is established on basic MRI principles, and the inverse of the global encoding matrix is found from a set of local matrix equations by taking advantage of the small extension of k-space coil maps. The DMI algorithm's efficiency is achieved by reloading the precalculated global inverse when the coil maps and trajectories remain unchanged, such as in dynamic studies. Phantom and human subject experiments were performed on a 1.5T scanner with a standard four-channel phased-array cardiac coil. Interleaved spiral trajectories were used to collect fully sampled and undersampled 3D raw data. The equivalence of the global k-space matrix equation to its image-space version, was verified via conjugate gradient (CG) iterative algorithms on a 2x undersampled phantom and numerical-model data sets. When applied to the 2x undersampled phantom and human-subject raw data, the decomposed DMI method produced images with small errors (< or = 3.9%) relative to the reference images obtained from the fully-sampled data, at a rate of 2 s per slice (excluding 4 min for precalculating the global inverse at an image size of 256 x 256). The DMI method may be useful for noise evaluations in parallel coil designs, dynamic MRI, and 3D sodium MRI with fixed coils and trajectories. Copyright 2006 Wiley-Liss, Inc.
The distribution of middle tropospheric carbon monoxide during early October 1984
NASA Technical Reports Server (NTRS)
Reichle, Henry G., Jr.; Connors, Vickie S.; Wallio, H. Andrew; Holland, J. Alvin; Sherrill, Robert T.; Casas, Joseph C.; Gormsen, Barbara B.
1989-01-01
The distribution of middle tropospheric carbon monoxide measure by the Measurement of Air Pollution from Satellites (MAPS) instrument carried aboard the space shuttle is reported. The data represent average mixing ratios in the middle troposphere and are presented in the form of maps that show the carbon monoxide mixing ratios averaged for 6 days of the mission. Comparisons with concurrent, direct measurements taken aboard aircraft show that the inferred concentrations are systematically low by from 20 to 40 percent depending upon which direct measurement calibration standard is used. The data show that there are very large CO sources resulting from biomass burning over South America and southern Africa. Measured mixing ratios were high over northeast Asia and were highly variable over Europe.
Development of large Area Covering Height Model
NASA Astrophysics Data System (ADS)
Jacobsen, K.
2014-04-01
Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting bathymetric height information is an analysis of the wave structure in optical and SAR-images. An overview about the absolute and relative accuracy, the consistency, error distribution and other characteristics as influence of terrain inclination and aspects is given. Partially by post processing the height models can or have to be improved.
Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Limbacher, James
2012-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.
Reciprocal space mapping and single-crystal scattering rods.
Smilgies, Detlef M; Blasini, Daniel R; Hotta, Shu; Yanagi, Hisao
2005-11-01
Reciprocal space mapping using a linear gas detector in combination with a matching Soller collimator has been applied to map scattering rods of well oriented organic microcrystals grown on a solid surface. Formulae are provided to correct image distortions in angular space and to determine the required oscillation range, in order to measure properly integrated scattering intensities.
Search space mapping: getting a picture of coherent laser control.
Shane, Janelle C; Lozovoy, Vadim V; Dantus, Marcos
2006-10-12
Search space mapping is a method for quickly visualizing the experimental parameters that can affect the outcome of a coherent control experiment. We demonstrate experimental search space mapping for the selective fragmentation and ionization of para-nitrotoluene and show how this method allows us to gather information about the dominant trends behind our achieved control.
Mapping Cultural Boundaries in Schools and Communities: Redefining Spaces through Organizing
ERIC Educational Resources Information Center
Wood, Gerald K.; Lemley, Christine K.
2015-01-01
For this study, the authors look specifically at cultural maps that the youth created in Student Involvement Day (SID), a program committed to youth empowerment. In these maps, youth identified spaces in their schools and communities that are open and inclusive of their cultures or spaces where their cultures are excluded. Drawing on critical…
Mapping Inner Space: Learning and Teaching Visual Mapping. Second Edition.
ERIC Educational Resources Information Center
Margulies, Nancy
More than 10 years ago, when "Mapping Inner Space" was first published, a few teachers were using this creative technique and teaching it to their students. Today mapping is widely used in schools, universities, and the corporate world, as well. This second edition of the book explores a variety of mapping styles and also takes a fresh look at the…
ERIC Educational Resources Information Center
Papadopoulos, Konstantinos; Barouti, Marialena; Koustriava, Eleni
2018-01-01
To examine how individuals with visual impairments understand space and the way they develop cognitive maps, we studied the differences in cognitive maps resulting from different methods and tools for spatial coding in large geographical spaces. We examined the ability of 21 blind individuals to create cognitive maps of routes in unfamiliar areas…
ERIC Educational Resources Information Center
Vadeboncoeur, Jennifer A.; Hanif-Shahban, Shenaz A.
2015-01-01
Inspired by Gerald Wood and Elizabeth Lemley's (2015) article entitled "Mapping the Cultural Boundaries in Schools and Communities: Redefining Spaces Through Organizing," this response inquires further into cultural mapping as a social practice. From our perspective, cultural mapping has potential to contribute to place making, as well…
NASA Astrophysics Data System (ADS)
Ginosar, Ran; Aviely, Peleg; Liran, Tuvia; Alon, Dov; Dobkin, Reuven; Goldberg, Michael
2013-08-01
RC64, a novel 64-core many-core signal processing chip targets DSP performance of 12.8 GIPS, 100 GOPS and 12.8 single precision GFLOS while dissipating only 3 Watts. RC64 employs advanced DSP cores, a multi-bank shared memory and a hardware scheduler, supports DDR2 memory and communicates over five proprietary 6.4 Gbps channels. The programming model employs sequential fine-grain tasks and a separate task map to define task dependencies. RC64 is implemented as a 200 MHz ASIC on Tower 130nm CMOS technology, assembled in hermetically sealed ceramic QFP package and qualified to the highest space standards.
Rhesus monkeys (Macaca mulatta) map number onto space
Drucker, Caroline B.; Brannon, Elizabeth M.
2014-01-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. PMID:24762923
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreibmann, E; Shu, H; Cordova, J
Purpose: We report on an automated segmentation algorithm for defining radiation therapy target volumes using spectroscopic MR images (sMRI) acquired at nominal voxel resolution of 100 microliters. Methods: Wholebrain sMRI combining 3D echo-planar spectroscopic imaging, generalized auto-calibrating partially-parallel acquisitions, and elliptical k-space encoding were conducted on 3T MRI scanner with 32-channel head coil array creating images. Metabolite maps generated include choline (Cho), creatine (Cr), and N-acetylaspartate (NAA), as well as Cho/NAA, Cho/Cr, and NAA/Cr ratio maps. Automated segmentation was achieved by concomitantly considering sMRI metabolite maps with standard contrast enhancing (CE) imaging in a pipeline that first uses the watermore » signal for skull stripping. Subsequently, an initial blob of tumor region is identified by searching for regions of FLAIR abnormalities that also display reduced NAA activity using a mean ratio correlation and morphological filters. These regions are used as starting point for a geodesic level-set refinement that adapts the initial blob to the fine details specific to each metabolite. Results: Accuracy of the segmentation model was tested on a cohort of 12 patients that had sMRI datasets acquired pre, mid and post-treatment, providing a broad range of enhancement patterns. Compared to classical imaging, where heterogeneity in the tumor appearance and shape across posed a greater challenge to the algorithm, sMRI’s regions of abnormal activity were easily detected in the sMRI metabolite maps when combining the detail available in the standard imaging with the local enhancement produced by the metabolites. Results can be imported in the treatment planning, leading in general increase in the target volumes (GTV60) when using sMRI+CE MRI compared to the standard CE MRI alone. Conclusion: Integration of automated segmentation of sMRI metabolite maps into planning is feasible and will likely streamline acceptance of this new acquisition modality in clinical practice.« less
The Information Is In the Maps: Representations & Algorithms for Mapping among Geometric Data
2015-09-30
space of all maps is a huge space and an important part of the project has addressed the problem of finding compact representations and encodings...understanding the relationships among its parts, or its connections to other data sets that may share the same or similar structure. Towards this end, we have...for the much smaller spaces of interesting maps within a specific application. The machinery developed here has proven of use across a broad spectrum
NASA Astrophysics Data System (ADS)
Hong, Zixuan; Bian, Fuling
2008-10-01
Geographic space, time space and cognition space are three fundamental and interrelated spaces in geographic information systems for transportation. However, the cognition space and its relationships to the time space and geographic space are often neglected. This paper studies the relationships of these three spaces in urban transportation system from a new perspective and proposes a novel MDS-SOM transformation method which takes the advantages of the techniques of multidimensional scaling (MDS) and self-organizing map (SOM). The MDS-SOM transformation framework includes three kinds of mapping: the geographic-time transformation, the cognition-time transformation and the time-cognition transformation. The transformations in our research provide a better understanding of the interactions of these three spaces and beneficial knowledge is discovered to help the transportation analysis and decision supports.
Construct Maps as a Foundation for Standard Setting
ERIC Educational Resources Information Center
Wyse, Adam E.
2013-01-01
Construct maps are tools that display how the underlying achievement construct upon which one is trying to set cut-scores is related to other information used in the process of standard setting. This article reviews what construct maps are, uses construct maps to provide a conceptual framework to view commonly used standard-setting procedures (the…
NASA Astrophysics Data System (ADS)
Wang, Shi-Hong; Ye, Wei-Ping; Lü, Hua-Ping; Kuang, Jin-Yu; Li, Jing-Hua; Luo, Yun-Lun; Hu, Gang
2003-07-01
Spatiotemporal chaos of a two-dimensional one-way coupled map lattice is used for chaotic cryptography. The chaotic outputs of many space units are used for encryption simultaneously. This system shows satisfactory cryptographic properties of high security, fast encryption (decryption) speed, and robustness against noise disturbances in communication channel. The overall features of this spatiotemporal-chaos-based cryptosystem are better than chaotic cryptosystems known so far, and also than currently used conventional cryptosystems, such as the Advanced Encryption Standard (AES). The project supported by National Natural Science Foundation of China under Grant No. 10175010 and the Special Funds for Major State Basic Research Projects under Grant No. G2000077304
NASA Astrophysics Data System (ADS)
Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard
2013-10-01
The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space
Martinez-Garcia, Marina; Martinez, Luis M.
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps. PMID:28640816
Topographic Independent Component Analysis reveals random scrambling of orientation in visual space.
Martinez-Garcia, Marina; Martinez, Luis M; Malo, Jesús
2017-01-01
Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches which disregard the network function, a clear exception to this trend in the literature is the original approach of Hyvärinen and Hoyer based on infomax and Topographic Independent Component Analysis (TICA). Although TICA successfully addresses a number of other properties of V1 simple and complex cells, in this work we question the validity of the orientation maps obtained from TICA. We argue that the maps predicted by TICA can be analyzed in the retinal space, and when doing so, it is apparent that they lack the required continuity and retinotopy. Here we show that in the orientation maps reported in the TICA literature it is easy to find examples of violation of the continuity between similarly tuned mechanisms in the retinal space, which suggest a random scrambling incompatible with the maps in primates. The new experiments in the retinal space presented here confirm this guess: TICA basis vectors actually follow a random salt-and-pepper organization back in the image space. Therefore, the interesting clusters found in the TICA topology cannot be interpreted as the actual cortical orientation maps found in cats, primates or humans. In conclusion, Topographic ICA does not reproduce cortical orientation maps.
Elementary operators on self-adjoint operators
NASA Astrophysics Data System (ADS)
Molnar, Lajos; Semrl, Peter
2007-03-01
Let H be a Hilbert space and let and be standard *-operator algebras on H. Denote by and the set of all self-adjoint operators in and , respectively. Assume that and are surjective maps such that M(AM*(B)A)=M(A)BM(A) and M*(BM(A)B)=M*(B)AM*(B) for every pair , . Then there exist an invertible bounded linear or conjugate-linear operator and a constant c[set membership, variant]{-1,1} such that M(A)=cTAT*, , and M*(B)=cT*BT, .
NASA Technical Reports Server (NTRS)
Shiokari, T.
1975-01-01
The feasibility and cost savings of using flight-proven components in designing spacecraft were investigated. The components analyzed were (1) large space telescope, (2) stratospheric aerosol and gas equipment, (3) mapping mission, (4) solar maximum mission, and (5) Tiros-N. It is concluded that flight-proven hardware can be used with not-too-extensive modification, and significant savings can be realized. The cost savings for each component are presented.
Route visualization using detail lenses.
Karnick, Pushpak; Cline, David; Jeschke, Stefan; Razdan, Anshuman; Wonka, Peter
2010-01-01
We present a method designed to address some limitations of typical route map displays of driving directions. The main goal of our system is to generate a printable version of a route map that shows the overview and detail views of the route within a single, consistent visual frame. Our proposed visualization provides a more intuitive spatial context than a simple list of turns. We present a novel multifocus technique to achieve this goal, where the foci are defined by points of interest (POI) along the route. A detail lens that encapsulates the POI at a finer geospatial scale is created for each focus. The lenses are laid out on the map to avoid occlusion with the route and each other, and to optimally utilize the free space around the route. We define a set of layout metrics to evaluate the quality of a lens layout for a given route map visualization. We compare standard lens layout methods to our proposed method and demonstrate the effectiveness of our method in generating aesthetically pleasing layouts. Finally, we perform a user study to evaluate the effectiveness of our layout choices.
Backwards compatible high dynamic range video compression
NASA Astrophysics Data System (ADS)
Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.
2014-02-01
This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less
GIS Technologies For The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.
2015-12-01
Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
A pitfall of piecewise-polytropic equation of state inference
NASA Astrophysics Data System (ADS)
Raaijmakers, Geert; Riley, Thomas E.; Watts, Anna L.
2018-05-01
The only messenger radiation in the Universe which one can use to statistically probe the Equation of State (EOS) of cold dense matter is that originating from the near-field vicinities of compact stars. Constraining gravitational masses and equatorial radii of rotating compact stars is a major goal for current and future telescope missions, with a primary purpose of constraining the EOS. From a Bayesian perspective it is necessary to carefully discuss prior definition; in this context a complicating issue is that in practice there exist pathologies in the general relativistic mapping between spaces of local (interior source matter) and global (exterior spacetime) parameters. In a companion paper, these issues were raised on a theoretical basis. In this study we reproduce a probability transformation procedure from the literature in order to map a joint posterior distribution of Schwarzschild gravitational masses and radii into a joint posterior distribution of EOS parameters. We demonstrate computationally that EOS parameter inferences are sensitive to the choice to define a prior on a joint space of these masses and radii, instead of on a joint space interior source matter parameters. We focus on the piecewise-polytropic EOS model, which is currently standard in the field of astrophysical dense matter study. We discuss the implications of this issue for the field.
Kanayet, Frank J; Mattarella-Micke, Andrew; Kohler, Peter J; Norcia, Anthony M; McCandliss, Bruce D; McClelland, James L
2018-02-01
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
Hyers-Ulam stability of a generalized Apollonius type quadratic mapping
NASA Astrophysics Data System (ADS)
Park, Chun-Gil; Rassias, Themistocles M.
2006-10-01
Let X,Y be linear spaces. It is shown that if a mapping satisfies the following functional equation: then the mapping is quadratic. We moreover prove the Hyers-Ulam stability of the functional equation (0.1) in Banach spaces.
North Alabama Lightning Mapping Array (LMA): VHF Source Retrieval Algorithm and Error Analyses
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solakiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J.; Bailey, J.; Krider, E. P.; Bateman, M. G.; Boccippio, D.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA Marshall Space Flight Center (MSFC) and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix Theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50 ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results. However, for many source locations, the Curvature Matrix Theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases
Zaslavsky, Ilya; Baldock, Richard A.; Boline, Jyl
2014-01-01
Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project. PMID:25309417
Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases.
Zaslavsky, Ilya; Baldock, Richard A; Boline, Jyl
2014-01-01
Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.
Peripersonal space representation develops independently from visual experience.
Ricciardi, Emiliano; Menicagli, Dario; Leo, Andrea; Costantini, Marcello; Pietrini, Pietro; Sinigaglia, Corrado
2017-12-15
Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-to-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation.
Rhesus monkeys (Macaca mulatta) map number onto space.
Drucker, Caroline B; Brannon, Elizabeth M
2014-07-01
Humans map number onto space. However, the origins of this association, and particularly the degree to which it depends upon cultural experience, are not fully understood. Here we provide the first demonstration of a number-space mapping in a non-human primate. We trained four adult male rhesus macaques (Macaca mulatta) to select the fourth position from the bottom of a five-element vertical array. Monkeys maintained a preference to choose the fourth position through changes in the appearance, location, and spacing of the vertical array. We next asked whether monkeys show a spatially-oriented number mapping by testing their responses to the same five-element stimulus array rotated ninety degrees into a horizontal line. In these horizontal probe trials, monkeys preferentially selected the fourth position from the left, but not the fourth position from the right. Our results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hengl, Tomislav; Heuvelink, Gerard; Sanderman, Jonathan; MacMillan, Robert
2017-04-01
There is an increasing interest in fitting and applying spatiotemporal models that can be used to assess and monitor soil organic carbon stocks (SOCS), for example, in support of the '4 pourmille' initiative aiming at soil carbon sequestration towards climate change adaptation and mitigation and UN's Land Degradation Neutrality indicators and similar degradation assessment projects at regional and global scales. The land cover mapping community has already produced several spatiotemporal data sets with global coverage and at relatively fine resolution e.g. USGS MODIS land cover annual maps for period 2000-2014; European Space Agency land cover maps at 300 m resolution for the year 2000, 2005 and 2010; Chinese GlobeLand30 dataset available for years 2000 and 2010; Columbia University's WRI GlobalForestWatch with deforestation maps at 30 m resolution for the period 2000-2016 (Hansen et al. 2013). These data sets can be used for land degradation assessment and scenario testing at global and regional scales (Wei et al 2014). Currently, however, no compatible global spatiotemporal data sets exist on status of soil quality and/or soil health (Powlson et al. 2013). This paper describes an initial effort to devise and evaluate a procedure for mapping spatio-temporal changes in SOC stocks using a complete stack of soil forming factors (climate, relief, land cover, land use, lithology and living organisms) represented mainly through remote sensing based time series of Earth images. For model building we used some 75,000 geo-referenced soil profiles and a stacks space-time covariates (land cover, land use, biomass, climate) at two standard resolutions: (1) 10 km resolution with data available for period 1920-2014 and (2) 1000 m resolution with data available for period 2000-2014. The initial results show that, although it is technically feasible to produce space time estimates of SOCS that demonstrate the procedure, the estimates are relatively uncertain (<45% of variation explained) and lead to obvious artifacts, especially in areas that have not be represented in time-dimension (temporal extrapolation). For some regions that possess somewhat adequate amounts of point data in space and time (e.g. USA) relatively credible space time estimates can be produced. By adding more training data (both legacy and newly collected points) these models can be gradually improved until they can become operational for decision making and scenario testing.
Performance Measures for Adaptive Decisioning Systems
1991-09-11
set to hypothesis space mapping best approximates the known map. Two assumptions, a sufficiently representative training set and the ability of the...successful prediction of LINEXT performance. The LINEXT algorithm above performs the decision space mapping on the training-set ele- ments exactly. For a
NASA Astrophysics Data System (ADS)
Zeng, Lu-Chuan; Yao, Jen-Chih
2006-09-01
Recently, Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447] introduced the new iterative procedures with errors for approximating the common fixed point of a couple of quasi-contractive mappings and showed the stability of these iterative procedures with errors in Banach spaces. In this paper, we introduce a new concept of a couple of q-contractive-like mappings (q>1) in a Banach space and apply these iterative procedures with errors for approximating the common fixed point of the couple of q-contractive-like mappings. The results established in this paper improve, extend and unify the corresponding ones of Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447], Chidume [C.E. Chidume, Approximation of fixed points of quasi-contractive mappings in Lp spaces, Indian J. Pure Appl. Math. 22 (1991) 273-386], Chidume and Osilike [C.E. Chidume, M.O. Osilike, Fixed points iterations for quasi-contractive maps in uniformly smooth Banach spaces, Bull. Korean Math. Soc. 30 (1993) 201-212], Liu [Q.H. Liu, On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987) 157-164; Q.H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301-305], Osilike [M.O. Osilike, A stable iteration procedure for quasi-contractive maps, Indian J. Pure Appl. Math. 27 (1996) 25-34; M.O. Osilike, Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math. 28 (1997) 1251-1265] and many others in the literature.
Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.
Dastmalchi, Pouya; Veronis, Georgios
2013-12-30
We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.
Efficient characterization of phase space mapping in axially symmetric optical systems
NASA Astrophysics Data System (ADS)
Barbero, Sergio; Portilla, Javier
2018-01-01
Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.
Flexible cognitive resources: competitive content maps for attention and memory
Franconeri, Steven L.; Alvarez, George A.; Cavanagh, Patrick
2013-01-01
The brain has finite processing resources so that, as tasks become harder, performance degrades. Where do the limits on these resources come from? We focus on a variety of capacity-limited buffers related to attention, recognition, and memory that we claim have a two-dimensional ‘map’ architecture, where individual items compete for cortical real estate. This competitive format leads to capacity limits that are flexible, set by the nature of the content and their locations within an anatomically delimited space. We contrast this format with the standard ‘slot’ architecture and its fixed capacity. Using visual spatial attention and visual short-term memory as case studies, we suggest that competitive maps are a concrete and plausible architecture that limits cognitive capacity across many domains. PMID:23428935
Combined interpretation of multiple geophysical techniques: an archaeological case study
NASA Astrophysics Data System (ADS)
Riedl, S.; Reichmann, S.; Tronicke, J.; Lück, E.
2009-04-01
In order to locate and ascertain the dimensions of an ancient orangery, we explored an area of about 70 m x 60 m in the Rheinsberg Palace Garden (Germany) with multiple geophysical techniques. The Rheinsberg Park, situated about 100 km northwest of Berlin, Germany, was established by the Prussian emperors in the 18th century. Due to redesign of the architecture and the landscaping during the past 300 years, buildings were dismantled and detailed knowledge about some original buildings got lost. We surveyed an area close to a gazebo where, after historical sources, an orangery was planned around the year 1740. However, today it is not clear to what extent this plan has been realized and if remains of this building are still buried in the subsurface. Applied geophysical techniques include magnetic gradiometry, frequency domain electromagnetic (FDEM) and direct current (DC) resistivity mapping as well as ground penetrating radar (GPR). To get an overview of the site, we performed FDEM electrical conductivity mapping using an EM38 instrument and magnetic gradiometry with caesium magnetometers. Both data sets were collected with an in- and crossline data point spacing of ca. 10 cm and 50 cm, respectively. DC resistivity surveying was performed using a pole-pole electrode configuration with an electrode spacing of 1.5 m and a spacing of 1.0 m between individual readings. A 3-D GPR survey was conducted using 200 MHz antennae and in- and crossline spacing of ca. 10 cm and 40 cm, respectively. A standard processing sequence including 3-D migration was applied. A combined interpretation of all collected data sets illustrates that the magnetic gradient and the EM38 conductivity maps is are dominated by anomalies from metallic water pipes from belonging to the irrigation system of the park. The DC resistivity map outlines a rectangular area which might indicate the extension of a former building south of the gazebo. The 3-D GPR data set provides further insights about subsurface structures and relevant geometries. From this data set, we interpret the depth and the extent of foundation and wall remains in the southern and central part of the site indicating the extent of the old orangery. This case study clearly illustrates the benefit of using multiple geophysical methods in archaeological studies. It further illustrates the advantage of 3-D GPR surveying at sites where anthropogenic disturbances (such as metallic pipes and other utilities) might limit the applicability of commonly applied mapping techniques such as magnetic gradiometry or EM38 conductivity mapping.
Standard map in magnetized relativistic systems: fixed points and regular acceleration.
de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B
2010-08-01
We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.
Summary of space imagery studies in Utah and Nevada. [using LANDSAT 1, EREP, and Skylab imagery
NASA Technical Reports Server (NTRS)
Jensen, M. L.; Laylander, P.
1975-01-01
LANDSAT-1, Skylab, and RB-57 imagery acquired within days of each other of the San Rafael swell enabled geological mapping of individual formations of the southern portion of this broad anticlinal feature in eastern Utah. Mapping at a scale of 1/250,000 on an enhanced and enlarged S-190B image resulted in a geological map showing correlative mappable features that are indicated on the geological map of Utah at the same scale. An enhanced enlargement of an S-190B color image at a scale of 1/19,200 of the Bingham Porphyry Copper deposit allowed comparison of a geological map of the area with the space imagery map as fair for the intrusion boundaries and total lack of quality for mapping the sediments. Hydrothermal alteration is only slightly evident on space imagery at Bingham but in the Tintic mining district and the volcanic piles of the Keg and Thomas ranges, Utah, hydrothermal alteration is readily mapped on color enlargements of S-190B (SL-3, T3-3N Tr-2). A mercury soil-gas analyzer was developed for locating hidden mineralized zones which were suggested from space imagery.
Distinguishability notion based on Wootters statistical distance: Application to discrete maps
NASA Astrophysics Data System (ADS)
Gomez, Ignacio S.; Portesi, M.; Lamberti, P. W.
2017-08-01
We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d ¯ for an arbitrary discrete map. Moreover, from d ¯ , we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d ¯ , which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d ¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.
Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly
2011-12-01
Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R² = 0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R² = 0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee.
ESA's satellite communications programme
NASA Astrophysics Data System (ADS)
Bartholome, P.
1985-02-01
The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.
Mapping the maze of terms and definitions in dementia-related wandering.
Algase, D L; Moore, D Helen; Vandeweerd, C; Gavin-Dreschnack, D J
2007-11-01
An operational definition of dementia-related wandering is proposed to aid in clinical recognition, to promote research precision and validity, and to provide a pathway toward standardization of language in wandering science. (1) One-hundred-and-eighty-three journal articles from multiple databases (Medline, OVID, CSA Journals, OCLC First Search, Google Scholar, PubMed, EBSCO) were reviewed to extract alternative terms and definitions for wandering or wandering-related behaviours; (2) terms and definitions were ordered alphabetically into a glossary; (3) a consensus approach was used to group glossary terms with related meanings into possible domains of wandering; (4) four domains (locomotion, drive, space and time) were found sufficient to encompass all wandering definitions; (5) wandering terms were placed into a conceptual map bounded by the four domain concepts and (6) a new provisional definition of wandering was formulated. An empirically-based, operational definition improves clinical and research approaches to wandering and explicates historical inattention to certain beneficial aspects of the behaviour. Adoption of the proposed operational definition of wandering behaviour provides a platform upon which dementia care may be improved and standardized language may evolve in wandering science.
NASA Technical Reports Server (NTRS)
Helfert, Michael R.; Lulla, Kamlesh P.
1990-01-01
Space Shuttle and Skylab-3 photography has been used to map the areal extent of Amazonian smoke palls associated with biomass burning (1973-1988). Areas covered with smoke have increased from approximately 300,000 sq km in 1973 to continental-size smoke palls measuring approximately 3,000,000 sq km in 1985 and 1988. Mapping of these smoke palls has been accomplished using space photography mainly acquired during Space Shuttle missions. Astronaut observations of such dynamic and vital environmental phenomena indicate the possibility of integrating the earth observation capabilities of all space platforms in future Global Change research.
NASA Astrophysics Data System (ADS)
Hengl, Tomislav
2015-04-01
Efficiency of spatial sampling largely determines success of model building. This is especially important for geostatistical mapping where an initial sampling plan should provide a good representation or coverage of both geographical (defined by the study area mask map) and feature space (defined by the multi-dimensional covariates). Otherwise the model will need to extrapolate and, hence, the overall uncertainty of the predictions will be high. In many cases, geostatisticians use point data sets which are produced using unknown or inconsistent sampling algorithms. Many point data sets in environmental sciences suffer from spatial clustering and systematic omission of feature space. But how to quantify these 'representation' problems and how to incorporate this knowledge into model building? The author has developed a generic function called 'spsample.prob' (Global Soil Information Facilities package for R) and which simultaneously determines (effective) inclusion probabilities as an average between the kernel density estimation (geographical spreading of points; analysed using the spatstat package in R) and MaxEnt analysis (feature space spreading of points; analysed using the MaxEnt software used primarily for species distribution modelling). The output 'iprob' map indicates whether the sampling plan has systematically missed some important locations and/or features, and can also be used as an input for geostatistical modelling e.g. as a weight map for geostatistical model fitting. The spsample.prob function can also be used in combination with the accessibility analysis (cost of field survey are usually function of distance from the road network, slope and land cover) to allow for simultaneous maximization of average inclusion probabilities and minimization of total survey costs. The author postulates that, by estimating effective inclusion probabilities using combined geographical and feature space analysis, and by comparing survey costs to representation efficiency, an optimal initial sampling plan can be produced which satisfies both criteria: (a) good representation (i.e. within a tolerance threshold), and (b) minimized survey costs. This sampling analysis framework could become especially interesting for generating sampling plans in new areas e.g. for which no previous spatial prediction model exists. The presentation includes data processing demos with standard soil sampling data sets Ebergotzen (Germany) and Edgeroi (Australia), also available via the GSIF package.
Linear Mapping of Numbers onto Space Requires Attention
ERIC Educational Resources Information Center
Anobile, Giovanni; Cicchini, Guido Marco; Burr, David C.
2012-01-01
Mapping of number onto space is fundamental to mathematics and measurement. Previous research suggests that while typical adults with mathematical schooling map numbers veridically onto a linear scale, pre-school children and adults without formal mathematics training, as well as individuals with dyscalculia, show strong compressive,…
The design of free structure granular mappings: the use of the principle of justifiable granularity.
Pedrycz, Witold; Al-Hmouz, Rami; Morfeq, Ali; Balamash, Abdullah
2013-12-01
The study introduces a concept of mappings realized in presence of information granules and offers a design framework supporting the formation of such mappings. Information granules are conceptually meaningful entities formed on a basis of a large number of experimental input–output numeric data available for the construction of the model. We develop a conceptually and algorithmically sound way of forming information granules. Considering the directional nature of the mapping to be formed, this directionality aspect needs to be taken into account when developing information granules. The property of directionality implies that while the information granules in the input space could be constructed with a great deal of flexibility, the information granules formed in the output space have to inherently relate to those built in the input space. The input space is granulated by running a clustering algorithm; for illustrative purposes, the focus here is on fuzzy clustering realized with the aid of the fuzzy C-means algorithm. The information granules in the output space are constructed with the aid of the principle of justifiable granularity (being one of the underlying fundamental conceptual pursuits of Granular Computing). The construct exhibits two important features. First, the constructed information granules are formed in the presence of information granules already constructed in the input space (and this realization is reflective of the direction of the mapping from the input to the output space). Second, the principle of justifiable granularity does not confine the realization of information granules to a single formalism such as fuzzy sets but helps form the granules expressed any required formalism of information granulation. The quality of the granular mapping (viz. the mapping realized for the information granules formed in the input and output spaces) is expressed in terms of the coverage criterion (articulating how well the experimental data are “covered” by information granules produced by the granular mapping for any input experimental data). Some parametric studies are reported by quantifying the performance of the granular mapping (expressed in terms of the coverage and specificity criteria) versus the values of a certain parameters utilized in the construction of output information granules through the principle of justifiable granularity. The plots of coverage–specificity dependency help determine a knee point and reach a sound compromise between these two conflicting requirements imposed on the quality of the granular mapping. Furthermore, quantified is the quality of the mapping with regard to the number of information granules (implying a certain granularity of the mapping). A series of experiments is reported as well.
Toward digital geologic map standards: a progress report
Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.
1992-01-01
Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial data transfer. It will require separate specifications of digital cartographic quality relating to positional accuracy and ranges of measured and interpreted values such as geologic age and rock composition. Provisional digital geologic map standards will be published for trial implementation. After approximately two years, when comments on the proposed standards have been solicited and modifications made, formal adoption of the standards will be recommended. Widespread acceptance of the new standards will depend on their applicability to the broadest range of earth-science map products and their adaptability to changing cartographic technology.
Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission
NASA Technical Reports Server (NTRS)
Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett
2003-01-01
Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.
Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.
Ben Zion, Yossi; Horwitz, Lawrence
2010-04-01
An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.
Differential operators on the supercircle S1|2 and symbol map
NASA Astrophysics Data System (ADS)
Hamza, Raouafi; Selmi, Zeineb; Boujelben, Jamel
2017-09-01
We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra 𝒦(2) acts on S1|2 as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra 𝔬𝔰𝔭(2|2). We study the space of linear differential operators on weighted densities as a module over 𝔬𝔰𝔭(2|2). We introduce the canonical isomorphism between this space and the corresponding space of symbols. This result allows us to give, in contrast to the classical setting, a classification of the 𝒦(2)-modules 𝔇λ,μk of linear differential operators of order k acting on the superspaces of weighted densities. This work is the simplest superization of a result by Gargoubi and Ovsienko [Modules of differential operators on the real line, Funct. Anal. Appl. 35(1) (2001) 13-18.
Cai, Congbo; Chen, Zhong; van Zijl, Peter C.M.
2017-01-01
The reconstruction of MR quantitative susceptibility mapping (QSM) from local phase measurements is an ill posed inverse problem and different regularization strategies incorporating a priori information extracted from magnitude and phase images have been proposed. However, the anatomy observed in magnitude and phase images does not always coincide spatially with that in susceptibility maps, which could give erroneous estimation in the reconstructed susceptibility map. In this paper, we develop a structural feature based collaborative reconstruction (SFCR) method for QSM including both magnitude and susceptibility based information. The SFCR algorithm is composed of two consecutive steps corresponding to complementary reconstruction models, each with a structural feature based l1 norm constraint and a voxel fidelity based l2 norm constraint, which allows both the structure edges and tiny features to be recovered, whereas the noise and artifacts could be reduced. In the M-step, the initial susceptibility map is reconstructed by employing a k-space based compressed sensing model incorporating magnitude prior. In the S-step, the susceptibility map is fitted in spatial domain using weighted constraints derived from the initial susceptibility map from the M-step. Simulations and in vivo human experiments at 7T MRI show that the SFCR method provides high quality susceptibility maps with improved RMSE and MSSIM. Finally, the susceptibility values of deep gray matter are analyzed in multiple head positions, with the supine position most approximate to the gold standard COSMOS result. PMID:27019480
Gravitons as Embroidery on the Weave
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Rovelli, Carlo
We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.
Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.
2014-01-01
Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous. PMID:24877839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yubing; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Torigian, Drew A.
Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How doesmore » one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suchanecki, Z.; Antoniou, I.; Tasaki, S.
We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. {copyright} {ital 1996 American Institute of Physics.}
Ocean Thermal Feature Recognition, Discrimination and Tracking Using Infrared Satellite Imagery
1991-06-01
rejected if the temperature in the mapped area exceeds classification criteria ............................... 17 viii 2.6 Ideal feature space mapping from...in seconds, and 1P is the side dimension of the pixel in meters. Figure 2.6: Ideal feature space mapping from pattern tile - search tile comparison. 20
Evaluating methods for controlling depth perception in stereoscopic cinematography
NASA Astrophysics Data System (ADS)
Sun, Geng; Holliman, Nick
2009-02-01
Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games.
Osnas, E.E.; Heisey, D.M.; Rolley, R.E.; Samuel, M.D.
2009-01-01
Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, USA. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization. ?? 2009 by the Ecological Society of America.
Summary of space imagery studies in Utah and Nevada
NASA Technical Reports Server (NTRS)
Jensen, M. L. (Principal Investigator)
1975-01-01
The author has identified the following significant results. An enhanced enlargement of a S190B color image at a scale of 1/19,200 of the Bingham porphyry copper deposit has compared a geological map of the area with the space imagery map as fair for the intrusion boundaries and total lack of quality for mapping the sediments. Hydrothermal alteration is only slightly evident on space imagery at Bingham, but in the Tintic mining district and the volcanic piles of the Keg and Thomas ranges, Utah, hydrothermal alteration is readily mapped on color enlargements of S190B. Several sites of calderas were recognized and new ones located on space imagery. One of the tools developed is a mercury soil-gas analyzer that is becoming significant as an aid in locating hidden mineralized zones which were suggested from space imagery. In addition, this tool is a prime aid in locating and better delineating geothermal sites.
Mobile robot motion estimation using Hough transform
NASA Astrophysics Data System (ADS)
Aldoshkin, D. N.; Yamskikh, T. N.; Tsarev, R. Yu
2018-05-01
This paper proposes an algorithm for estimation of mobile robot motion. The geometry of surrounding space is described with range scans (samples of distance measurements) taken by the mobile robot’s range sensors. A similar sample of space geometry in any arbitrary preceding moment of time or the environment map can be used as a reference. The suggested algorithm is invariant to isotropic scaling of samples or map that allows using samples measured in different units and maps made at different scales. The algorithm is based on Hough transform: it maps from measurement space to a straight-line parameters space. In the straight-line parameters, space the problems of estimating rotation, scaling and translation are solved separately breaking down a problem of estimating mobile robot localization into three smaller independent problems. The specific feature of the algorithm presented is its robustness to noise and outliers inherited from Hough transform. The prototype of the system of mobile robot orientation is described.
Geologic map of the Valjean Hills 7.5' quadrangle, San Bernardino County, California
Calzia, J.P.; Troxel, Bennie W.; digital database by Raumann, Christian G.
2003-01-01
FGDC-compliant metadata for the ARC/INFO coverages. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3 above) or plotting the postscript file (2 above).
Business Management System Support Analysis
NASA Technical Reports Server (NTRS)
Parikh, Jay
2008-01-01
The purpose of this research project was to develop a searchable database compiled with internal and external audit findings/observations. The data will correspond to the findings and observations from the date of Center-wide implementation of the ISO 9001-2000 standard to the present (2003-2008). It was derived and extracted from several sources and was in multiple formats. Once extracted, categorization of the findings/observations would be possible. The final data was mapped to the ISO 9001-2000 standard with the understanding that it will be displayed graphically. The data will be used to verify trends, associate risks, and establish timelines to identify strengths and weaknesses to determine areas of improvement in the Kennedy Space Center Business Management System Internal Audit Program.
Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.
Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D
2001-12-17
Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.
2013-08-15
InAsSb, compositionally graded buffer, MBE, infrared, minority carrier lifetime, reciprocal space mapping Ding Wang, Dmitry Donetsky, Youxi Lin, Gela...infrared, minority carrier lifetime; reciprocal space mapping . Introduction GaSb based Ill-Y materials are widely used in the development of mid... space mapping (RSM) at the symmetric (004) and asymmetric (335) Bragg reflections. Figure 3 presents a set of RSM measurements for a structure
Astronaut Kevin Chilton displays map of Scandinavia on flight deck
1994-04-14
STS059-16-032 (9-20 April 1994) --- Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them. Chilton was joined in space by five other NASA astronauts for a week and a half of support to the Space Radar Laboratory (SRL-1) mission and other tasks.
Accuracy of lineaments mapping from space
NASA Technical Reports Server (NTRS)
Short, Nicholas M.
1989-01-01
The use of Landsat and other space imaging systems for lineaments detection is analyzed in terms of their effectiveness in recognizing and mapping fractures and faults, and the results of several studies providing a quantitative assessment of lineaments mapping accuracies are discussed. The cases under investigation include a Landsat image of the surface overlying a part of the Anadarko Basin of Oklahoma, the Landsat images and selected radar imagery of major lineaments systems distributed over much of Canadian Shield, and space imagery covering a part of the East African Rift in Kenya. It is demonstrated that space imagery can detect a significant portion of a region's fracture pattern, however, significant fractions of faults and fractures recorded on a field-produced geological map are missing from the imagery as it is evident in the Kenya case.
Mapping experiment with space station
NASA Technical Reports Server (NTRS)
Wu, Sherman S. C.
1987-01-01
Mapping the earth from space stations can be approached in two areas. One is to collect gravity data for defining a new topographic datum using the earth's gravitational field in terms of spherical harmonics. The other, which should be considered as a very significant contribution of the Space Station, is to search and explore techniques of mapping the earth's topography using either optical or radar images with or without references to ground control points. Geodetic position of ground control points can be predetermined by the Global Positioning System (GPS) for the mapping experiment with the Space Station. It is proposed to establish four ground control points in North America or Africa (including the Sahara Desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting service.
Familiarity expands space and contracts time.
Jafarpour, Anna; Spiers, Hugo
2017-01-01
When humans draw maps, or make judgments about travel-time, their responses are rarely accurate and are often systematically distorted. Distortion effects on estimating time to arrival and the scale of sketch-maps reveal the nature of mental representation of time and space. Inspired by data from rodent entorhinal grid cells, we predicted that familiarity to an environment would distort representations of the space by expanding the size of it. We also hypothesized that travel-time estimation would be distorted in the same direction as space-size, if time and space rely on the same cognitive map. We asked international students, who had lived at a college in London for 9 months, to sketch a south-up map of their college district, estimate travel-time to destinations within the area, and mark their everyday walking routes. We found that while estimates for sketched space were expanded with familiarity, estimates of the time to travel through the space were contracted with familiarity. Thus, we found dissociable responses to familiarity in representations of time and space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
A Control Algorithm for Chaotic Physical Systems
1991-10-01
revision expands the grid to cover the entire area of any attractor that is present. 5 Map Selection The final choices of the state- space mapping process...interval h?; overrange R0 ; control parameter interval AkO and range [kbro, khigh]; iteration depth. "* State- space mapping : 1. Set up grid by expanding
Mapping surrogate gasoline compositions into RON/MON space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Neal; Kraft, Markus; Smallbone, Andrew
2010-06-15
In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane number of any arbitrary TRF mixture. The model is second-order in its complexity and is shown to be more accurate to the standard ''linear-by-volume'' (LbV) model which is often used when no other information is available. Such observations are due to the existence of both synergistic and antagonistic blending of the octane numbers between themore » three components. In particular, antagonistic blending of toluene and iso-octane leads to a maximum in sensitivity that lies on the toluene/iso-octane line. The model equations are inverted so as to map from RON/MON space back into composition space. Enabling one to use two simple formulae to determine, for a given fuel with known RON and MON, the volume fractions of toluene, n-heptane and iso-octane to be blended in order to emulate that fuel. HCCI engine simulations using gasoline with a RON of 98.5 and a MON of 88 were simulated using a TRF fuel, blended according to the derived equations to match the RON and MON. The simulations matched the experimentally obtained pressure profiles well, especially when compared to simulations using only PRF fuels which matched the RON or MON. This suggested that the mapping is accurate and that to emulate a refinery gasoline, it is necessary to match not only the RON but also the MON of the fuel. (author)« less
NASA Astrophysics Data System (ADS)
Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.
2013-09-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its clustering in 2D.
Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.
Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H
2014-01-10
Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.
Hisatake, S; Kobayashi, T
2006-12-25
We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.
Evolutionary multidimensional access architecture featuring cost-reduced components
NASA Astrophysics Data System (ADS)
Farjady, Farsheed; Parker, Michael C.; Walker, Stuart D.
1998-12-01
We describe a three-stage wavelength-routed optical access network, utilizing coarse passband-flattened arrayed- waveguide grating routers. An N-dimensional addressing strategy enables 6912 customers to be bi-directionally addressed with multi-Gb/s data using only 24 wavelengths spaced by 1.6 nm. Coarse wavelength separation allows use of increased tolerance WDM components at the exchange and customer premises. The architecture is designed to map onto standard access network topologies, allowing elegant upgradability from legacy PON infrastructures at low cost. Passband-flattening of the routers is achieved through phase apodization.
2014-08-07
S95-16445 (13-22 July 1995) --- A wide angle view from the rear shows activity in the new Mission Control Center (MCC), opened for operation and dedicated during the STS-70 mission. The Space Shuttle Discovery was just passing over Florida at the time this photo was taken (note mercator map and TV scene on screens). The new MCC, developed at a cost of about 50 million, replaces the main-frame based, NASA-unique design of the old Mission Control with a standard workstation-based, local area network system commonly in use today.
NASA Technical Reports Server (NTRS)
1994-01-01
This vendor equipment list was developed with NASA funding by the Dallas Remote Imaging Group (DRIG) and the Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project as a reference guide to low-cost ground station equipment for direct readout, the capability to acquire information directly from environmental satellites. Products were tested with the following standards in mind: ease of use; user friendliness and completeness of manual and instructions; total system cost for computer, geostationary operational environmental satellites (GOES), and automatic picture transmission (APT) capability under $4000; and vendor stability in the industry.
Generalized contractive mappings and weakly α-admissible pairs in G-metric spaces.
Hussain, N; Parvaneh, V; Hoseini Ghoncheh, S J
2014-01-01
The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results.
Generalized Contractive Mappings and Weakly α-Admissible Pairs in G-Metric Spaces
Hussain, N.; Parvaneh, V.; Hoseini Ghoncheh, S. J.
2014-01-01
The aim of this paper is to present some coincidence and common fixed point results for generalized (ψ, φ)-contractive mappings using partially weakly G-α-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25202742
A quantitative trait locus mixture model that avoids spurious LOD score peaks.
Feenstra, Bjarke; Skovgaard, Ib M
2004-01-01
In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented. PMID:15238544
A quantitative trait locus mixture model that avoids spurious LOD score peaks.
Feenstra, Bjarke; Skovgaard, Ib M
2004-06-01
In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented.
HARMONIC SPACE ANALYSIS OF PULSAR TIMING ARRAY REDSHIFT MAPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roebber, Elinore; Holder, Gilbert, E-mail: roebbere@physics.mcgill.ca
2017-01-20
In this paper, we propose a new framework for treating the angular information in the pulsar timing array (PTA) response to a gravitational wave (GW) background based on standard cosmic microwave background techniques. We calculate the angular power spectrum of the all-sky gravitational redshift pattern induced at the Earth for both a single bright source of gravitational radiation and a statistically isotropic, unpolarized Gaussian random GW background. The angular power spectrum is the harmonic transform of the Hellings and Downs curve. We use the power spectrum to examine the expected variance in the Hellings and Downs curve in both cases.more » Finally, we discuss the extent to which PTAs are sensitive to the angular power spectrum and find that the power spectrum sensitivity is dominated by the quadrupole anisotropy of the gravitational redshift map.« less
Di Guilmi, Julian; Darin, Maria Cecilia; Toscano, Maria; Maya, Gustavo
To demonstrate the initial experience in Argentina using the iSpies indocyanine green (ICG) platform in sentinel lymph node mapping in patients with early-stage cervical cancer. Step-by-step demonstration of the technique using a video and pictures (educative video) (Canadian Task Force classification III). Laparoscopic and robotic sentinel lymph node mapping using ICG has been shown to be safe and feasible; however, in developing countries, the opportunities to use fluorescent imaging through a minimally invasive approach are very limited, given the cost restrictions of acquiring the near-infrared technology and the fluorescent dyes. A 47-year-old woman presented with a stage IB1 squamous cervical cancer. Physical examination revealed a 1.5-cm tumor without evidence of parametrial involvement. Magnetic resonance imaging did not show any evidence of metastatic disease. The patient underwent laparoscopic radical hysterectomy with sentinel lymph node mapping. On laparoscopic exposure of the pelvic spaces, a cervical injection of ICG (1 mL superficial and deep) was administered using a spinal needle at the 3 o'clock and 9 o'clock positions. Sentinel lymph node mapping was then performed using the ICG (Pulsion Medical Systems, Feldkirchen, Germany) and an iSpies near-infrared camera (Karl Storz Endoskope, Tuttlingen, Germany). Bilateral sentinel lymph nodes were detected on the left external iliac artery and in the right obturator space. Both were confirmed ex vivo. The total operative time was 170 minutes. No intraoperative or postoperative complications were reported, and the patient was discharged at 48 hours after surgery. Estimated blood loss was minimal. Sentinel lymph node mapping alone is not the standard of care in our institution, and thus bilateral lymphadenectomy was performed. Ultrastaging is routinely performed when a sentinel lymph node is evaluated. Final pathology revealed a tumor confined to the cervix, with tumor-free margins, and a total of 10 lymph nodes that were negative for any evidence of disease. Disadvantages of this technology compared with the Pinpoint ICG system (Novadaq Technologies; Bonita Springs, FL) is the lack of simultaneous white vision and fluorescence ICG detection, and the to manually change normal vision to infrared vision. An advantage of the Storz iSpies system is its availability in our country, considering that the technology developed by Novadaq is not yet approved in Argentina. Although ICG sentinel lymph node mapping is becoming a standard of care [1,2], a lack of ICG dye or laparoscopic near-infrared technologies could be a deterrent to its use in developing countries. A focus on expanding this technology in countries with limited resources would allow patients the opportunity to avoid the morbidity associated with full lymphadenectomy. Copyright © 2017 American Association of Gynecologic Laparoscopists. Published by Elsevier Inc. All rights reserved.
Transfer of Technology for Cadastral Mapping in Tajikistan Using High Resolution Satellite Data
NASA Astrophysics Data System (ADS)
Kaczynski, R.
2012-07-01
European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km) satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m have been produced so far by the "Fazo" Institute in Tajikistan on the basis of technology elaborated in the framework of this project. Digital cadastral maps are produced in "Fazo" and Cadastral Regional Centers in Tajikistan using ArcMap software. These digital orthophotomaps will also be used for digital mapping of water resources and other needs of the country.
Contractive type non-self mappings on metric spaces of hyperbolic type
NASA Astrophysics Data System (ADS)
Ciric, Ljubomir B.
2006-05-01
Let (X,d) be a metric space of hyperbolic type and K a nonempty closed subset of X. In this paper we study a class of mappings from K into X (not necessarily self-mappings on K), which are defined by the contractive condition (2.1) below, and a class of pairs of mappings from K into X which satisfy the condition (2.28) below. We present fixed point and common fixed point theorems which are generalizations of the corresponding fixed point theorems of Ciric [L.B. Ciric, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts 23 (1998) 25-31; L.B. Ciric, J.S. Ume, M.S. Khan, H.K.T. Pathak, On some non-self mappings, Math. Nachr. 251 (2003) 28-33], Rhoades [B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon. 23 (1978) 457-459] and many other authors. Some examples are presented to show that our results are genuine generalizations of known results from this area.
1998-03-28
This image-based surface map of Pluto was assembled by computer image processing software from four separate images of Pluto disk taken with the European Space Agency Faint Object Camera aboard NASA Hubble Space Telescope.
Putting Space Back on the Map: Globalisation, Place and Identity
ERIC Educational Resources Information Center
Usher, Robin
2002-01-01
In this paper, the author wants to look at notions of "space", in order to examine why "space is in the midst of a renaissance" (Kaplan, 1996, p. 147), why it is, as it were, "back on the map". His intention here is to focus merely on one aspect of current changes in space-time-- the notion and actuality of "cyberspace", the most obvious…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukovskii, E S; Panasenko, E A
2014-09-30
The paper is concerned with the extension of tests for superpositional measurability, Filippov's implicit function lemma and the Scorza Dragoni property to set-valued (and, as a corollary, to single-valued) mappings that fail to satisfy the Carathéodory conditions (the upper Carathéodory conditions) and are not continuous (upper semicontinuous) in the phase variable. The corresponding results depend on the introduction of the space clos{sub ∅}(X) of all closed subsets (including the empty set) of an arbitrary metric space X; a metric on clos{sub ∅}(X) is proposed; the space clos{sub ∅}(X) is shown to be complete whenever the original space X is; a criterion for convergence of a sequence ismore » put forward; mappings with values in clos{sub ∅}(X) are studied. Some results on set-valued mappings satisfying the Carathéodory conditions and having compact values in R{sup n} are shown to hold for mappings with values in clos{sub ∅}(R{sup n}), measurable in the first argument, and continuous in the proposed metric in the second argument. Bibliography: 22 titles.« less
Interoperability in planetary research for geospatial data analysis
NASA Astrophysics Data System (ADS)
Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara
2018-01-01
For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.
Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project
NASA Astrophysics Data System (ADS)
Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.
2011-12-01
The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.
Bubbles, voids, and bumps in time: The new cosmology
NASA Astrophysics Data System (ADS)
Cornell, James
The history and current status of theoretical and observational cosmology are examined in chapters based on the Lowell Lectures, given in Boston and Washington DC in spring 1987. Topics addressed include the Aristotelian, Copernican, Newtonian, and Einsteinian universes; the measurement of the universe (redshifts and standard candles); mapping the universe (slices and bubbles); dark matter and missing mass; and the big bang and cosmic inflation. Six basic outstanding problems are identified, and the potential contributions of planned ground-based and space observatories to their solution are discussed. Particular attention is given to CCD detectors for large ground-based telescopes, the VLA, VLBI arrays, the ESO Very Large Telescope, the 10-m Keck telescope on Mauna Kea, the Hubble Space Telescope, the Gamma-Ray Observatory, and the Advanced X-ray Astrophysics Facility.
Revisiting measuring colour gamut of the color-reproducing system: interpretation aspects
NASA Astrophysics Data System (ADS)
Sysuev, I. A.; Varepo, L. G.; Trapeznikova, O. V.
2018-04-01
According to the ISO standard, the color gamut body volume is used to evaluate the color reproduction quality. The specified volume describes the number of colors that are in a certain area of the color space. There are ways for evaluating the reproduction quality of a multi-colour image using numerical integration methods, but this approach does not provide high accuracy of the analysis. In this connection, the task of increasing the accuracy of the color reproduction evaluation is still relevant. In order to determine the color mass of a color space area, it is suggested to select the necessary color density values from a map corresponding to a given degree of sampling, excluding its mathematical calculations, which reflects the practical significance and novelty of this solution.
Planck 2013 results. XXVI. Background geometry and topology of the Universe
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J. D.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The new cosmic microwave background (CMB) temperature maps from Planck provide the highest-quality full-sky view of the surface of last scattering available to date. This allows us to detect possible departures from the standard model of a globally homogeneous and isotropic cosmology on the largest scales. We search for correlations induced by a possible non-trivial topology with a fundamental domain intersecting, or nearly intersecting, the last scattering surface (at comoving distance χrec), both via a direct search for matched circular patterns at the intersections and by an optimal likelihood search for specific topologies. For the latter we consider flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces. These searches yield no detection of the compact topology with the scale below the diameter of the last scattering surface. For most compact topologies studied the likelihood maximized over the orientation of the space relative to the observed map shows some preference for multi-connected models just larger than the diameter of the last scattering surface. Since this effect is also present in simulated realizations of isotropic maps, we interpret it as the inevitable alignment of mild anisotropic correlations with chance features in a single sky realization; such a feature can also be present, in milder form, when the likelihood is marginalized over orientations. Thus marginalized, the limits on the radius ℛi of the largest sphere inscribed in topological domain (at log-likelihood-ratio Δln ℒ > -5 relative to a simply-connected flat Planck best-fit model) are: in a flat Universe, ℛi> 0.92χrec for the T3 cubic torus; ℛi> 0.71χrec for the T2 chimney; ℛi> 0.50χrec for the T1 slab; and in a positively curved Universe, ℛi> 1.03χrec for the dodecahedral space; ℛi> 1.0χrec for the truncated cube; and ℛi> 0.89χrec for the octahedral space. The limit for a wider class of topologies, i.e., those predicting matching pairs of back-to-back circles, among them tori and the three spherical cases listed above, coming from the matched-circles search, is ℛi> 0.94χrec at 99% confidence level. Similar limits apply to a wide, although not exhaustive, range of topologies. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting where the Bianchi cosmology is decoupled from the standard cosmology, Planck data favour the inclusion of a Bianchi component with a Bayes factor of at least 1.5 units of log-evidence. Indeed, the Bianchi pattern is quite efficient at accounting for some of the large-scale anomalies found in Planck data. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. In the physically motivated setting where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (ω/H)0< 8.1 × 10-10 (95% confidence level).
Interoperability In The New Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.
2015-12-01
As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.
Nomads with Maps: Musical Connections in a Glocalized World
ERIC Educational Resources Information Center
Richerme, Lauren Kapalka
2013-01-01
This article presents the author's views on the concepts of the philosophers Deleuze and Guattari on striated (sedentary) space and smooth (mobile) space, asserting that "nomads" can move freely about their space. She relates these concepts to music education, incorporating Deleuze and Guattari's concept of mapping as it…
Cognitive mapping in mental time travel and mental space navigation.
Gauthier, Baptiste; van Wassenhove, Virginie
2016-09-01
The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hu, Z. W.; Thomas, B. R.; Chernov, A. A.
2001-01-01
Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.
Hu, Z W; Thomas, B R; Chernov, A A
2001-06-01
Double-axis multiple-crystal X-ray topography, rocking-curve measurements and triple-axis reciprocal-space mapping have been combined to characterize protein crystals using a laboratory source. Crystals of lysozyme and lysozyme crystals doped with acetylated lysozyme impurities were examined. It was shown that the incorporation of acetylated lysozyme into crystals of lysozyme induces mosaic domains that are responsible for the broadening and/or splitting of rocking curves and diffraction-space maps along the direction normal to the reciprocal-lattice vector, while the overall elastic lattice strain of the impurity-doped crystals does not appear to be appreciable in high angular resolution reciprocal-space maps. Multiple-crystal monochromatic X-ray topography, which is highly sensitive to lattice distortions, was used to reveal the spatial distribution of mosaic domains in crystals which correlates with the diffraction features in reciprocal space. Discussions of the influence of acetylated lysozyme on crystal perfection are given in terms of our observations.
DOT National Transportation Integrated Search
1997-07-14
These standards represent a guideline for preparing digital data for inclusion in the National Pipeline Mapping System Repository. The standards were created with input from the pipeline industry and government agencies. They address the submission o...
Asymptotically stable phase synchronization revealed by autoregressive circle maps
NASA Astrophysics Data System (ADS)
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Mapping Queer Bioethics: Space, Place, and Locality.
Wahlert, Lance
2016-01-01
This article, which introduces the special issue of the Journal of Homosexuality on "Mapping Queer Bioethics," begins by offering an overview of the analytical scope of the issue. Specifically, the first half of this essay raises critical questions central to the concept of a space-related queer bioethics, such as: How do we appreciate and understand the special needs of queer parties given the constraints of location, space, and geography? The second half of this article describes each feature article in the issue, as well as the subsequent special sections on the ethics of reading literal, health-related maps ("Cartographies") and scrutinizing the history of this journal as concerns LGBT health ("Mapping the Journal of Homosexuality").
1982-09-30
not changed because they are not subject to a careful evaluation. The solution The four job aids contained in this manual provide specific techniques...lesson plans tions. " training design, or * testing NOTICE This manual has been developed using the standards of the Information MappingO writing service...Information Mapping, Inc. S NOTICE This manual has been developed using the standards of the Information MappingS writing service. Infornation Mapping
Parietal and superior frontal visuospatial maps activated by pointing and saccades
Hagler, D.J.; Riecke, L.; Sereno, M.I.
2009-01-01
A recent study from our laboratory demonstrated that parietal cortex contains a map of visual space related to saccades and spatial attention and identified this area as the likely human homologue of the lateral intraparietal (LIP). A human homologue for the parietal reach region (PRR), thought to preferentially encode planned hand movements, has also been recently proposed. Both of these areas, originally identified in the macaque monkey, have been shown to encode space with eye-centered coordinates. Functional magnetic resonance imaging (fMRI) of humans was used to test the hypothesis that the putative human PRR contains a retinotopic map recruited by finger pointing but not saccades and to test more generally for differences in the visuospatial maps recruited by pointing and saccades. We identified multiple maps in both posterior parietal cortex and superior frontal cortex recruited for eye and hand movements, including maps not observed in previous mapping studies. Pointing and saccade maps were generally consistent within single subjects. We have developed new group analysis methods for phase-encoded data, which revealed subtle differences between pointing and saccades, including hemispheric asymmetries, but we did not find evidence of pointing-specific maps of visual space. PMID:17376706
Orbit Determination Issues for Libration Point Orbits
NASA Technical Reports Server (NTRS)
Beckman, Mark; Bauer, Frank (Technical Monitor)
2002-01-01
Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.
The bedrock electrical conductivity map of the UK
NASA Astrophysics Data System (ADS)
Beamish, David
2013-09-01
Airborne electromagnetic (AEM) surveys, when regionally extensive, may sample a wide-range of geological formations. The majority of AEM surveys can provide estimates of apparent (half-space) conductivity and such derived data provide a mapping capability. Depth discrimination of the geophysical mapping information is controlled by the bandwidth of each particular system. The objective of this study is to assess the geological information contained in accumulated frequency-domain AEM survey data from the UK where existing geological mapping can be considered well-established. The methodology adopted involves a simple GIS-based, spatial join of AEM and geological databases. A lithology-based classification of bedrock is used to provide an inherent association with the petrophysical rock parameters controlling bulk conductivity. At a scale of 1:625k, the UK digital bedrock geological lexicon comprises just 86 lithological classifications compared with 244 standard lithostratigraphic assignments. The lowest common AEM survey frequency of 3 kHz is found to provide an 87% coverage (by area) of the UK formations. The conductivities of the unsampled classes have been assigned on the basis of inherent lithological associations between formations. The statistical analysis conducted uses over 8 M conductivity estimates and provides a new UK national scale digital map of near-surface bedrock conductivity. The new baseline map, formed from central moments of the statistical distributions, allows assessments/interpretations of data exhibiting departures from the norm. The digital conductivity map developed here is believed to be the first such UK geophysical map compilation for over 75 years. The methodology described can also be applied to many existing AEM data sets.
EnGeoMAP - geological applications within the EnMAP hyperspectral satellite science program
NASA Astrophysics Data System (ADS)
Boesche, N. K.; Mielke, C.; Rogass, C.; Guanter, L.
2016-12-01
Hyperspectral investigations from near field to space substantially contribute to geological exploration and mining monitoring of raw material and mineral deposits. Due to their spectral characteristics, large mineral occurrences and minefields can be identified from space and the spatial distribution of distinct proxy minerals be mapped. In the frame of the EnMAP hyperspectral satellite science program a mineral and elemental mapping tool was developed - the EnGeoMAP. It contains a basic mineral mapping and a rare earth element mapping approach. This study shows the performance of EnGeoMAP based on simulated EnMAP data of the rare earth element bearing Mountain Pass Carbonatite Complex, USA, and the Rodalquilar and Lomilla Calderas, Spain, which host the economically relevant gold-silver, lead-zinc-silver-gold and alunite deposits. The mountain pass image data was simulated on the basis of AVIRIS Next Generation images, while the Rodalquilar data is based on HyMap images. The EnGeoMAP - Base approach was applied to both images, while the mountain pass image data were additionally analysed using the EnGeoMAP - REE software tool. The results are mineral and elemental maps that serve as proxies for the regional lithology and deposit types. The validation of the maps is based on chemical analyses of field samples. Current airborne sensors meet the spatial and spectral requirements for detailed mineral mapping and future hyperspectral space borne missions will additionally provide a large coverage. For those hyperspectral missions, EnGeoMAP is a rapid data analysis tool that is provided to spectral geologists working in mineral exploration.
Construct Maps: A Tool to Organize Validity Evidence
ERIC Educational Resources Information Center
McClarty, Katie Larsen
2013-01-01
The construct map is a promising tool for organizing the data standard-setting panelists interpret. The challenge in applying construct maps to standard-setting procedures will be the judicious selection of data to include within this organizing framework. Therefore, this commentary focuses on decisions about what to include in the construct map.…
GIO-EMS and International Collaboration in Satellite based Emergency Mapping
NASA Astrophysics Data System (ADS)
Kucera, Jan; Lemoine, Guido; Broglia, Marco
2013-04-01
During the last decade, satellite based emergency mapping has developed into a mature operational stage. The European Union's GMES Initial Operations - Emergency Management Service (GIO-EMS), is operational since April 2012. It's set up differs from other mechanisms (for example from the International Charter "Space and Major Disasters"), as it extends fast satellite tasking and delivery with the value adding map production as a single service, which is available, free of charge, to the authorized users of the service. Maps and vector datasets with standard characteristics and formats ranging from post-disaster damage assessment to recovery and disaster prevention are covered by this initiative. Main users of the service are European civil protection authorities and international organizations active in humanitarian aid. All non-sensitive outputs of the service are accessible to the public. The European Commission's in-house science service Joint Research Centre (JRC) is the technical and administrative supervisor of the GIO-EMS. The EC's DG ECHO Monitoring and Information Centre acts as the service's focal point and DG ENTR is responsible for overall service governance. GIO-EMS also aims to contribute to the synergy with similar existing mechanisms at national and international level. The usage of satellite data for emergency mapping has increased during the last years and this trend is expected to continue because of easier accessibility to suitable satellite and other relevant data in the near future. Furthermore, the data and analyses coming from volunteer emergency mapping communities are expected to further enrich the content of such cartographic products. In the case of major disasters the parallel activity of more providers is likely to generate non-optimal use of resources, e.g. unnecessary duplication; whereas coordination may lead to reduced time needed to cover the disaster area. Furthermore the abundant number of geospatial products of different characteristics and quality can become confusing for users. The urgent need for a better coordination has led to establishment of the International Working Group on Satellite Based Emergency Mapping (IWG-SEM). Members of the IWG-SEM, which include JRC, USGS, DLR-ZKI, SERVIR, Sentinel Asia, UNOSAT, UN-SPIDER, GEO, ITHACA and SERTIT have recognized the need to establish the best practice between operational satellite-based emergency mapping programs. The group intends to: • work with the appropriate organizations on definition of professional standards for emergency mapping, guidelines for product generation and reviewing relevant technical standards and protocols • facilitate communication and collaboration during the major emergencies • stimulate coordination of expertise and capacities. The existence of the group and the cooperation among members already brought benefits during recent disasters in Africa and Europe in 2012 in terms of faster and effective satellite data provision and better product generation.
Fixed points of contractive mappings in b-metric-like spaces.
Hussain, Nawab; Roshan, Jamal Rezaei; Parvaneh, Vahid; Kadelburg, Zoran
2014-01-01
We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results.
Stopa, Marcin; Marciniak, Elżbieta; Rakowicz, Piotr; Stankiewicz, Agnieszka; Marciniak, Tomasz; Dąbrowski, Adam
2017-10-01
To evaluate a new method for volumetric imaging of the preretinal space (also known as the subhyaloid, subcortical, or retrocortical space) and investigate differences in preretinal space volume in vitreomacular adhesion (VMA) and vitreomacular traction (VMT). Nine patients with VMA and 13 with VMT were prospectively evaluated. Automatic inner limiting membrane line segmentation, which exploits graph search theory implementation, and posterior cortical vitreous line segmentation were performed on 141 horizontal spectral domain optical coherence tomography B-scans per patient. Vertical distances (depths) between the posterior cortical vitreous and inner limiting membrane lines were calculated for each optical coherence tomography B-scan acquired. The derived distances were merged and visualized as a color depth map that represented the preretinal space between the posterior surface of the hyaloid and the anterior surface of the retina. The early treatment d retinopathy study macular map was overlaid onto final virtual maps, and preretinal space volumes were calculated for each early treatment diabetic retinopathy study map sector. Volumetric maps representing preretinal space volumes were created for each patient in the VMA and VMT groups. Preretinal space volumes were larger in all early treatment diabetic retinopathy study map macular regions in the VMT group compared with those in the VMA group. The differences reached statistical significance in all early treatment diabetic retinopathy study sectors, except for the superior outer macula and temporal outer macula where significance values were P = 0.05 and P = 0.08, respectively. Overall, the relative differences in preretinal space volumes between the VMT and VMA groups varied from 2.7 to 4.3 in inner regions and 1.8 to 2.9 in outer regions. Our study provides evidence of significant differences in preretinal space volume between eyes with VMA and those with VMT. This may be useful not only in the investigation of preretinal space properties in VMA and VMT, but also in other conditions, such as age-related macular degeneration, diabetic retinopathy, and central retinal vein occlusion.
Local Free Space Mapping and Path Guidance,
1987-03-01
Free Space Mapping and Path Guidance 12. PERSONIAL UTI4OFS) William T. Cex and Nancy L. Campbell 1s. TYPE OF REPORT 13b. iME COVERED 14. DATE OF REPORT...84 JAN 52 A" 1OMON MAYBOfUSED NMlLEMIAUSTEO UNCLASSIFIED ALL OTHE EDTIN A’.SL Y2.7cesson For 7 *5~ IT D, TA ........... iCL ... . LOCAL FREE SPACE ... MAPPING AND PATH GUIDANCE By Distribuition/ Availabiliuy C0e William T. Gex and Nancy L. Campbell I Avail and/or Naval Ocean Systems Center ist speci1 l
Mapping experiment with space station
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1986-01-01
Mapping of the Earth from space stations can be approached in two areas. One is to collect gravity data for defining topographic datum using Earth's gravity field in terms of spherical harmonics. The other is to search and explore techniques of mapping topography using either optical or radar images with or without reference to ground central points. Without ground control points, an integrated camera system can be designed. With ground control points, the position of the space station (camera station) can be precisely determined at any instant. Therefore, terrestrial topography can be precisely mapped either by conventional photogrammetric methods or by current digital technology of image correlation. For the mapping experiment, it is proposed to establish four ground points either in North America or Africa (including the Sahara desert). If this experiment should be successfully accomplished, it may also be applied to the defense charting systems.
Space moving target detection using time domain feature
NASA Astrophysics Data System (ADS)
Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu
2018-01-01
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.
Mapping the global land surface using 1 km AVHRR data
Lauer, D.T.; Eidenshink, J.C.
1998-01-01
The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.
Astronaut Kevin Chilton displays map of Scandinavia on flight deck
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them.
Coming Full Circle in Standard Setting: A Commentary on Wyse
ERIC Educational Resources Information Center
Skaggs, Gary
2013-01-01
The construct map is a particularly good way to approach instrument development, and this author states that he was delighted to read Adam Wyse's thoughts about how to use construct maps for standard setting. For a number of popular standard-setting methods, Wyse shows how typical feedback to panelists fits within a construct map framework.…
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, a Space Shuttle Main Engine, or SSME, stands inside the Engine Shop at Orbiter Processing Facility 3 at NASA's Kennedy Space Center. Each orbiter used three of the engines during launch and ascent into orbit. The engines burn super-cold liquid hydrogen and liquid oxygen and each one produces 155,000 pounds of thrust. The engines, known in the industry as RS-25s, could be reused on multiple shuttle missions. They will be used again later this decade for NASA's Space Launch System rocket. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
Existence of Lipschitz selections of the Steiner map
NASA Astrophysics Data System (ADS)
Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.
2018-02-01
This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.
Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel
2018-01-01
Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.
Study on the mapping of dark matter clustering from real space to redshift space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Song, Yong-Seon
2016-08-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.
Science data archives of Indian Space Research Organisation (ISRO): Chandrayaan-1
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Singh Nain, Jagjeet; Moorthi, Manthira
The Indian Space Research Organisation (ISRO) has started a new initiative to launch dedicated scientific satellites earmarked for planetary exploration, astronomical observation and space sciences. The Chandrayaan-1 mission to Moon is one of the approved missions of this new initiative. The basic objective of the Chandrayaan-1 mission, scheduled for launch in mid 2008, is photoselenological and chemical mapping of the Moon with better spatial and spectral resolution. Consistent with this scientific objective, the following baseline payloads are included in this mission: (i) Terrain mapping stereo camera (TMC) with 20 km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m. (ii) Hyper Spectral Imager in the 400- 920 nm band with 64 channels and spatial resolution of 80m (20 km swath) for mineralogical mapping. (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40 km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m. ISRO offered opportunity to the international scientific community to participate in Chandrayaan- 1 mission and six payloads that complement the basic objective of the Chandrayaan-1 mission have been selected and included in this mission viz., (i) a miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region, (ii) a near infrared spectrometer (SIR-2) from Max Plank Institute, Germany, (iii) a Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 - 3.0 micron), (iv) a sub-keV atom reflecting analyzer (SARA) from Sweden, India, Switzerland and Japan for detection of low energy neutral atoms emanated from the lunar surface,(v) a radiation dose monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (vi) a collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20 km for chemical mapping of the lunar surface from RAL, UK. Science data from the Chandrayaan-1 instruments is planned to be archived by combined efforts from all the instrument and Payload Operations Centre (POC) teams, the Indian Space Science Data Centre (ISSDC), the Chandrayaan-1 Spacecraft Control Centre (SCC). Chandrayaan-1 Science Data Archive (CSDA) is planned at ISSDC is the primary data center for the payload data archives of Indian Space Science Missions. This data center is responsible for the Ingest, Archive, and Dissemination of the payload and related ancillary data for Space Science missions like Chandrayaan-1. The archiving process includes the design, generation, validation and transfer of the data archive. The archive will include raw and reduced data, calibration data, auxiliary data, higher-level derived data products, documentation and software. The CSDA will make use of the well-proven archive standards of the Planetary Data System (PDS) and planned to follow IPDA guidelines. This is to comply with the global standards for long term preservation of the data, maintain their usability and facilitate scientific community with the high quality data for their analysis. The primary users of this facility will be the principal investigators of the science payloads initially till the lock-in period. After this, the data will be made accessible to scientists from other institutions and also to the general public. The raw payload data received through the data reception stations is further processed to generate Level-0 and Level-1 data products, which are stored in the CSDA for subsequent dissemination. According to the well documented Chandrayaan-1 archive plan agreed by the experiment teams, the data collection period is decided to be six months. The first data delivery to long term archive of CSDA after peer review is expected to be eighteen months after launch. At present, Experimenter to Archive ICDs of the instrument data are under the process of review.
Common Calibration Source for Monitoring Long-term Ozone Trends
NASA Technical Reports Server (NTRS)
Kowalewski, Matthew
2004-01-01
Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.
GIM-TEC adaptive ionospheric weather assessment and forecast system
NASA Astrophysics Data System (ADS)
Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.
2013-09-01
The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.
Development and Validation of The SMAP Enhanced Passive Soil Moisture Product
NASA Technical Reports Server (NTRS)
Chan, S.; Bindlish, R.; O'Neill, P.; Jackson, T.; Chaubell, J.; Piepmeier, J.; Dunbar, S.; Colliander, A.; Chen, F.; Entekhabi, D.;
2017-01-01
Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.
Fixed Points of Contractive Mappings in b-Metric-Like Spaces
Hussain, Nawab; Roshan, Jamal Rezaei
2014-01-01
We discuss topological structure of b-metric-like spaces and demonstrate a fundamental lemma for the convergence of sequences. As an application we prove certain fixed point results in the setup of such spaces for different types of contractive mappings. Finally, some periodic point results in b-metric-like spaces are obtained. Two examples are presented in order to verify the effectiveness and applicability of our main results. PMID:25143980
NASA Technical Reports Server (NTRS)
Smedes, H. W.; Linnerud, H. J.; Woolaver, L. B.; Su, M. Y.; Jayroe, R. R.
1972-01-01
Two clustering techniques were used for terrain mapping by computer of test sites in Yellowstone National Park. One test was made with multispectral scanner data using a composite technique which consists of (1) a strictly sequential statistical clustering which is a sequential variance analysis, and (2) a generalized K-means clustering. In this composite technique, the output of (1) is a first approximation of the cluster centers. This is the input to (2) which consists of steps to improve the determination of cluster centers by iterative procedures. Another test was made using the three emulsion layers of color-infrared aerial film as a three-band spectrometer. Relative film densities were analyzed using a simple clustering technique in three-color space. Important advantages of the clustering technique over conventional supervised computer programs are (1) human intervention, preparation time, and manipulation of data are reduced, (2) the computer map, gives unbiased indication of where best to select the reference ground control data, (3) use of easy to obtain inexpensive film, and (4) the geometric distortions can be easily rectified by simple standard photogrammetric techniques.
Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry
NASA Astrophysics Data System (ADS)
Zanardi, Paolo; Campos Venuti, Lorenzo
2018-01-01
We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.
Planetary Data Archiving Activities in Indian Space Research Organisation (isro)
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Srivastava, Pradeep Kumar
The Indian Space Research Organisation (ISRO) has launched its first planetary mission to Moon viz., Chandrayaan-1 on October 22, 2008. The basic objectives of the Chandrayaan-1 mission are photoselenological and chemical mapping of the Moon with improved spatial and spectral resolution. The payloads in this mission are: (i) Terrain mapping stereo camera (TMC) with 20km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m (ii) Hyper Spectral Imager (HySI) in the 400-920 nm band with 64 channels and spatial resolution of 80m (20km swath) for mineralogical mapping (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m (v) Miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region (vi) Near infrared spectrometer (SIR-2) from Max Plank Institute, Germany (vii)Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 -3.0 micron) (viii) Sub-keV Atom Reflecting Analyzer (SARA) from Sweden, India and Japan for detection of low energy neutral atoms emanated from the lunar surface (ix) Radiation Dose Monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (x) Collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20km for chemical mapping of the lunar surface from RAL, UK. A wealth of data has been collected (November 2008 to August 2009) from the above instru-ments during the mission life of Chandrayaan-1 and the science data from these instruments is being archived at Indian Space Science Data Centre (ISSDC). ISRO Science Data Archive (ISDA) identified at ISSDC is the primary data archive for the payload data of current and future Indian space science missions. The data center (ISSDC) is responsible for the Ingest, Archive, and Dissemination of the payload and related ancillary data. The archive includes raw and reduced data, calibration data, auxiliary data, higher-level derived data products, documentation and software. The ISDA makes use of the well-proven archive standards of the Planetary Data System (PDS) and planning to follow IPDA guidelines. This is to comply with the global standards for long term preservation of the data to maintain the usability and facilitate scientific community with the high quality data for their analysis. The data deliveries from various instruments are already started to ISSDC. The science archives received from MiniSAR and M3 are peer reviewed by the host organizations and hence no further reviews planned at ISSDC. For the other instrument data archives, peer reviews are planned at ISSDC, for which the activity will start during April 2010. A pre review has already been carried out for certain instrument data sets and currently the review comments are being incorporated. The data for the first normal phase operation (November 2008 to February 2009) is planned to be made available (through long term archive) sometime during August 2010 to the users. However the data is already available to the PI teams in the PDS standard, for analysis and use in the instrument cross calibration. Chandrayaan-2 is the next planetary mission to Moon from ISRO in future (which will carry rovers; expected to give a good amount of science data, which is also planned to be archived in ISSDC for dissemination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINNEY, Charles E A; Edwards, Kevin Dean; Stoyanov, Miroslav K
2015-01-01
Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allowmore » rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses functions designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional metamodel which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed« less
NASA Astrophysics Data System (ADS)
Shi, Zhong; Huang, Xuexiang; Hu, Tianjian; Tan, Qian; Hou, Yuzhuo
2016-10-01
Space teleoperation is an important space technology, and human-robot motion similarity can improve the flexibility and intuition of space teleoperation. This paper aims to obtain an appropriate kinematics mapping method of coupled Cartesian-joint space for space teleoperation. First, the coupled Cartesian-joint similarity principles concerning kinematics differences are defined. Then, a novel weighted augmented Jacobian matrix with a variable coefficient (WAJM-VC) method for kinematics mapping is proposed. The Jacobian matrix is augmented to achieve a global similarity of human-robot motion. A clamping weighted least norm scheme is introduced to achieve local optimizations, and the operating ratio coefficient is variable to pursue similarity in the elbow joint. Similarity in Cartesian space and the property of joint constraint satisfaction is analysed to determine the damping factor and clamping velocity. Finally, a teleoperation system based on human motion capture is established, and the experimental results indicate that the proposed WAJM-VC method can improve the flexibility and intuition of space teleoperation to complete complex space tasks.
Karma or Immortality: Can Religion Influence Space-Time Mappings?
Li, Heng; Cao, Yu
2018-04-01
People implicitly associate the "past" and "future" with "front" and "back" in their minds according to their cultural attitudes toward time. As the temporal focus hypothesis (TFH) proposes, future-oriented people tend to think about time according to the future-in-front mapping, whereas past-oriented people tend to think about time according to the past-in-front mapping (de la Fuente, Santiago, Román, Dumitrache, & Casasanto, 2014). Whereas previous studies have demonstrated that culture exerts an important influence on people's implicit spatializations of time, we focus specifically on religion, a prominent layer of culture, as potential additional influence on space-time mappings. In Experiment 1 and 2, we observed a difference between the two religious groups, with Buddhists being more past-focused and more frequently conceptualizing the past as ahead of them and the future as behind them, and Taoists more future-focused and exhibiting the opposite space-time mapping. In Experiment 3, we administered a religion prime, in which Buddhists were randomly assigned to visualize the picture of the Buddhas of the Past (Buddha Dipamkara) or the Future (Buddha Maitreya). Results showed that the pictorial icon of Dipamkara increased participants' tendency to conceptualize the past as in front of them. In contrast, the pictorial icon of Maitreya caused a dramatic increase in the rate of future-in-front responses. In Experiment 4, the causal effect of religion on implicit space-time mappings was replicated in atheists. Taken together, these findings provide converging evidence for the hypothesized causal role of religion for temporal focus in determining space-time mappings. Copyright © 2018 Cognitive Science Society, Inc.
Airborne Laser/GPS Mapping of Assateague National Seashore Beach
NASA Technical Reports Server (NTRS)
Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark;
1997-01-01
Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.
Gahm, Jin Kyu; Shi, Yonggang
2018-01-01
Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer’s disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. PMID:29574399
NASA Astrophysics Data System (ADS)
Antonova, N.; Grunt, E.; Merenkov, A.
2017-10-01
The major research objective was to analyze the role of monuments in the formation of local residents’ and guests’ representations about the city, its history and traditions. The authors consider the system of monuments’ location in the urban space as a way of its social construction, as the system of influence on citizens’ aesthetic feelings, as the formation of their attitudes towards maintaining of continuity in the activities of different generations for the improvement of the territory of their permanent residence. Methodology. An urban monument is considered in two ways: as a transfer of historical memory and as a social memory transfer, which includes the experience of previous generations. One of the main provisions of the study is the idea that monuments can lose their former social value, transforming into “simple” objects of a public place. The study was conducted in the city of Yekaterinburg, one of the largest, cultural, scientific and industrial Russian megalopolises in 2015. The primary data was collected using standardized interviews. Four hundred and twenty respondents at the age of and above 18 were questioned on the basis of quota sampling. Interviews with respondents were conducted in order to identify key problems involved and reasons for shaping respondents’ representations of monuments in the urban environment typical for the population of Russian megalopolises. The standardized interview guide included 15 questions. Findings and discussion. Our investigation has revealed that different monuments fulfil various functions in an urban environment (ideological, aesthetic, transferring, valuable, etc.). The study has unequivocally confirmed that objects in the urban space have a different emotional colour background: people paint them in accordance with the feelings that arise in their perception. Hence, some monuments effectively fulfil the functions of social memory transfer: they are remembered, they tell us about the events to which they point. Other monuments in the physical space remain in citizens’ consciousness only as a point on the map of the city. It has been found that “old” and “new” monuments as semantic points of the urban space have an ambiguous perception and a significance for the citizen: some monuments are inscribed in mental maps, while others are ignored or their appearance is condemned.
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.
St-Yves, Ghislain; Naselaris, Thomas
2017-06-20
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. Copyright © 2017. Published by Elsevier Inc.
Liu, Huiling; Xia, Bingbing; Yi, Dehui
2016-01-01
We propose a new feature extraction method of liver pathological image based on multispatial mapping and statistical properties. For liver pathological images of Hematein Eosin staining, the image of R and B channels can reflect the sensitivity of liver pathological images better, while the entropy space and Local Binary Pattern (LBP) space can reflect the texture features of the image better. To obtain the more comprehensive information, we map liver pathological images to the entropy space, LBP space, R space, and B space. The traditional Higher Order Local Autocorrelation Coefficients (HLAC) cannot reflect the overall information of the image, so we propose an average correction HLAC feature. We calculate the statistical properties and the average gray value of pathological images and then update the current pixel value as the absolute value of the difference between the current pixel gray value and the average gray value, which can be more sensitive to the gray value changes of pathological images. Lastly the HLAC template is used to calculate the features of the updated image. The experiment results show that the improved features of the multispatial mapping have the better classification performance for the liver cancer. PMID:27022407
a Novel Approach to Camera Calibration Method for Smart Phones Under Road Environment
NASA Astrophysics Data System (ADS)
Lee, Bijun; Zhou, Jian; Ye, Maosheng; Guo, Yuan
2016-06-01
Monocular vision-based lane departure warning system has been increasingly used in advanced driver assistance systems (ADAS). By the use of the lane mark detection and identification, we proposed an automatic and efficient camera calibration method for smart phones. At first, we can detect the lane marker feature in a perspective space and calculate edges of lane markers in image sequences. Second, because of the width of lane marker and road lane is fixed under the standard structural road environment, we can automatically build a transformation matrix between perspective space and 3D space and get a local map in vehicle coordinate system. In order to verify the validity of this method, we installed a smart phone in the `Tuzhi' self-driving car of Wuhan University and recorded more than 100km image data on the road in Wuhan. According to the result, we can calculate the positions of lane markers which are accurate enough for the self-driving car to run smoothly on the road.
Can rodents conceive hyperbolic spaces?
Urdapilleta, Eugenio; Troiani, Francesca; Stella, Federico; Treves, Alessandro
2015-01-01
The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses should reflect the environment to which the animal has adapted. We show that, according to self-organizing models, if raised in a non-Euclidean hyperbolic cage rats should be able to form hyperbolic grids. For a given range of grid spacing relative to the radius of negative curvature of the hyperbolic surface, such grids are predicted to appear as multi-peaked firing maps, in which each peak has seven neighbours instead of the Euclidean six, a prediction that can be tested in experiments. We thus demonstrate that a useful universal neuronal metric, in the sense of a multi-scale ruler and compass that remain unaltered when changing environments, can be extended to other than the standard Euclidean plane. PMID:25948611
De-MA: a web Database for electron Microprobe Analyses to assist EMP lab manager and users
NASA Astrophysics Data System (ADS)
Allaz, J. M.
2012-12-01
Lab managers and users of electron microprobe (EMP) facilities require comprehensive, yet flexible documentation structures, as well as an efficient scheduling mechanism. A single on-line database system for managing reservations, and providing information on standards, quantitative and qualitative setups (element mapping, etc.), and X-ray data has been developed for this purpose. This system is particularly useful in multi-user facilities where experience ranges from beginners to the highly experienced. New users and occasional facility users will find these tools extremely useful in developing and maintaining high quality, reproducible, and efficient analyses. This user-friendly database is available through the web, and uses MySQL as a database and PHP/HTML as script language (dynamic website). The database includes several tables for standards information, X-ray lines, X-ray element mapping, PHA, element setups, and agenda. It is configurable for up to five different EMPs in a single lab, each of them having up to five spectrometers and as many diffraction crystals as required. The installation should be done on a web server supporting PHP/MySQL, although installation on a personal computer is possible using third-party freeware to create a local Apache server, and to enable PHP/MySQL. Since it is web-based, any user outside the EMP lab can access this database anytime through any web browser and on any operating system. The access can be secured using a general password protection (e.g. htaccess). The web interface consists of 6 main menus. (1) "Standards" lists standards defined in the database, and displays detailed information on each (e.g. material type, name, reference, comments, and analyses). Images such as EDS spectra or BSE can be associated with a standard. (2) "Analyses" lists typical setups to use for quantitative analyses, allows calculation of mineral composition based on a mineral formula, or calculation of mineral formula based on a fixed amount of oxygen, or of cation (using an analysis in element or oxide weight-%); this latter includes re-calculation of H2O/CO2 based on stoichiometry, and oxygen correction for F and Cl. Another option offers a list of any available standards and possible peak or background interferences for a series of elements. (3) "X-ray maps" lists the different setups recommended for element mapping using WDS, and a map calculator to facilitate maps setups and to estimate the total mapping time. (4) "X-ray data" lists all x-ray lines for a specific element (K, L, M, absorption edges, and satellite peaks) in term of energy, wavelength and peak position. A check for possible interferences on peak or background is also possible. Theoretical x-ray peak positions for each crystal are calculated based on the 2d spacing of each crystal and the wavelength of each line. (5) "Agenda" menu displays the reservation dates for each month and for each EMP lab defined. It also offers a reservation request option, this request being sent by email to the EMP manager for approval. (6) Finally, "Admin" is password restricted, and contains all necessary options to manage the database through user-friendly forms. The installation of this database is made easy and knowledge of HTML, PHP, or MySQL is unnecessary to install, configure, manage, or use it. A working database is accessible at http://cub.geoloweb.ch.
Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo; Lee, Dong Ryeol; Lee, Hyun-Hwi
2009-05-27
Reciprocal space mapping with a two-dimensional (2D) area detector in a grazing incidence geometry was applied to determine crystallographic orientations of GaN nanostructures epitaxially grown on a sapphire substrate. By using both unprojected and projected reciprocal space mapping with a proper coordinate transformation, the crystallographic orientations of GaN nanostructures with respect to that of a substrate were unambiguously determined. In particular, the legs of multipods in the wurtzite phase were found to preferentially nucleate on the sides of tetrahedral cores in the zinc blende phase.
AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces
2016-01-01
Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450
1998-06-16
Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Average variograms to guide soil sampling
NASA Astrophysics Data System (ADS)
Kerry, R.; Oliver, M. A.
2004-10-01
To manage land in a site-specific way for agriculture requires detailed maps of the variation in the soil properties of interest. To predict accurately for mapping, the interval at which the soil is sampled should relate to the scale of spatial variation. A variogram can be used to guide sampling in two ways. A sampling interval of less than half the range of spatial dependence can be used, or the variogram can be used with the kriging equations to determine an optimal sampling interval to achieve a given tolerable error. A variogram might not be available for the site, but if the variograms of several soil properties were available on a similar parent material and or particular topographic positions an average variogram could be calculated from these. Averages of the variogram ranges and standardized average variograms from four different parent materials in southern England were used to suggest suitable sampling intervals for future surveys in similar pedological settings based on half the variogram range. The standardized average variograms were also used to determine optimal sampling intervals using the kriging equations. Similar sampling intervals were suggested by each method and the maps of predictions based on data at different grid spacings were evaluated for the different parent materials. Variograms of loss on ignition (LOI) taken from the literature for other sites in southern England with similar parent materials had ranges close to the average for a given parent material showing the possible wider application of such averages to guide sampling.
Energy content of stormtime ring current from phase space mapping simulations
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.
1993-01-01
We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).
Tsirelson's bound and supersymmetric entangled states
Borsten, L.; Brádler, K.; Duff, M. J.
2014-01-01
A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964
NASA Astrophysics Data System (ADS)
Mahmud, M. R.
2014-02-01
This paper presents the simplified and operational approach of mapping the water yield in tropical watershed using space-based multi sensor remote sensing data. Two main critical hydrological rainfall variables namely rainfall and evapotranspiration are being estimated by satellite measurement and reinforce the famous Thornthwaite & Mather water balance model. The satellite rainfall and ET estimates were able to represent the actual value on the ground with accuracy under considerable conditions. The satellite derived water yield had good agreement and relation with actual streamflow. A high bias measurement may result due to; i) influence of satellite rainfall estimates during heavy storm, and ii) large uncertainties and standard deviation of MODIS temperature data product. The output of this study managed to improve the regional scale of hydrology assessment in Peninsular Malaysia.
Monitoring forest land from high altitude and from space
NASA Technical Reports Server (NTRS)
1972-01-01
The significant findings are reported for remote sensing of forest lands conducted during the period October 1, 1965 to December 31, 1972. Forest inventory research included the use of aircraft and space imagery for forest and nonforest land classification, and land use classification by automated procedures, multispectral scanning, and computerized mapping. Forest stress studies involved previsual detection of ponderosa pine under stress from insects and disease, bark bettle infestations in the Black Hills, and root disease impacts on forest stands. Standardization and calibration studies were made to develop a field test of an ERTS-matched four-channel spectrometer. Calibration of focal plane shutters and mathematical modeling of film characteristic curves were also studied. Documents published as a result of all forestry studies funded by NASA for the Earth Resources Survey Program from 1965 through 1972 are listed.
Fixed Point Results of Locally Contractive Mappings in Ordered Quasi-Partial Metric Spaces
Arshad, Muhammad; Ahmad, Jamshaid
2013-01-01
Fixed point results for a self-map satisfying locally contractive conditions on a closed ball in an ordered 0-complete quasi-partial metric space have been established. Instead of monotone mapping, the notion of dominated mappings is applied. We have used weaker metric, weaker contractive conditions, and weaker restrictions to obtain unique fixed points. An example is given which shows that how this result can be used when the corresponding results cannot. Our results generalize, extend, and improve several well-known conventional results. PMID:24062629
NASA Technical Reports Server (NTRS)
Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Harmonic maps of S into a complex Grassmann manifold.
Chern, S S; Wolfson, J
1985-04-01
Let G(k, n) be the Grassmann manifold of all C(k) in C(n), the complex spaces of dimensions k and n, respectively, or, what is the same, the manifold of all projective spaces P(k-1) in P(n-1), so that G(1, n) is the complex projective space P(n-1) itself. We study harmonic maps of the two-dimensional sphere S(2) into G(k, n). The case k = 1 has been the subject of investigation by several authors [see, for example, Din, A. M. & Zakrzewski, W. J. (1980) Nucl. Phys. B 174, 397-406; Eells, J. & Wood, J. C. (1983) Adv. Math. 49, 217-263; and Wolfson, J. G. Trans. Am. Math. Soc., in press]. The harmonic maps S(2) --> G(2, 4) have been studied by Ramanathan [Ramanathan, J. (1984) J. Differ. Geom. 19, 207-219]. We shall describe all harmonic maps S(2) --> G(2, n). The method is based on several geometrical constructions, which lead from a given harmonic map to new harmonic maps, in which the image projective spaces are related by "fundamental collineations." The key result is the degeneracy of some fundamental collineations, which is a global consequence, following from the fact that the domain manifold is S(2). The method extends to G(k, n).
Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space
Lai, Rongjie; Wang, Danny J.J.; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W.
2014-01-01
In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a cross-validation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects. PMID:24686245
Implicit multiplane 3D camera calibration matrices for stereo image processing
NASA Astrophysics Data System (ADS)
McKee, James W.; Burgett, Sherrie J.
1997-12-01
By implicit camera calibration, we mean the process of calibrating cameras without explicitly computing their physical parameters. We introduce a new implicit model based on a generalized mapping between an image plane and multiple, parallel calibration planes (usually between four to seven planes). This paper presents a method of computing a relationship between a point on a three-dimensional (3D) object and its corresponding two-dimensional (2D) coordinate in a camera image. This relationship is expanded to form a mapping of points in 3D space to points in image (camera) space and visa versa that requires only matrix multiplication operations. This paper presents the rationale behind the selection of the forms of four matrices and the algorithms to calculate the parameters for the matrices. Two of the matrices are used to map 3D points in object space to 2D points on the CCD camera image plane. The other two matrices are used to map 2D points on the image plane to points on user defined planes in 3D object space. The mappings include compensation for lens distortion and measurement errors. The number of parameters used can be increased, in a straight forward fashion, to calculate and use as many parameters as needed to obtain a user desired accuracy. Previous methods of camera calibration use a fixed number of parameters which can limit the obtainable accuracy and most require the solution of nonlinear equations. The procedure presented can be used to calibrate a single camera to make 2D measurements or calibrate stereo cameras to make 3D measurements. Positional accuracy of better than 3 parts in 10,000 have been achieved. The algorithms in this paper were developed and are implemented in MATLABR (registered trademark of The Math Works, Inc.). We have developed a system to analyze the path of optical fiber during high speed payout (unwinding) of optical fiber off a bobbin. This requires recording and analyzing high speed (5 microsecond exposure time), synchronous, stereo images of the optical fiber during payout. A 3D equation for the fiber at an instant in time is calculated from the corresponding pair of stereo images as follows. In each image, about 20 points along the 2D projection of the fiber are located. Each of these 'fiber points' in one image is mapped to its projection line in 3D space. Each projection line is mapped into another line in the second image. The intersection of each mapped projection line and a curve fitted to the fiber points of the second image (fiber projection in second image) is calculated. Each intersection point is mapped back to the 3D space. A 3D fiber coordinate is formed from the intersection, in 3D space, of a mapped intersection point with its corresponding projection line. The 3D equation for the fiber is computed from this ordered list of 3D coordinates. This process requires a method of accurately mapping 2D (image space) to 3D (object space) and visa versa.3173
Study on the mapping of dark matter clustering from real space to redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less
Niskanen, Eini; Julkunen, Petro; Säisänen, Laura; Vanninen, Ritva; Karjalainen, Pasi; Könönen, Mervi
2010-08-01
Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Nirfalini Aulia, Dwira; Zahara, Aina
2018-03-01
Public spaces in a planned housing is a place of social interaction for every visitor of public space. The research on public space image uses four public spaces that meet the criteria of public space such as pedestrian sidewalks, public park, water front and worship place. Research on the perception of public space is interesting to investigate because housing development is part of the forming of a society that should design with proper architectural considerations. The purpose of this research is to know the image of public space on the planned housing in Medan City based on the mapping of environmental and behavior cognition and to know the difference between the image that happened to four group respondent. The research method of architecture used in this research is a descriptive qualitative method with case study approach (most similar case). Analysis of data used using mental maps and questionnaires. Then the image of public space is formed based on the elements of public space, wayfinding, route choice, and movement. The image difference that occurs to the housing residents and architecture students, design and planning are outstanding, visitors to the public housing space is good, people who have never visited the public space is inadequate.
A unified theoretical framework for mapping models for the multi-state Hamiltonian.
Liu, Jian
2016-11-28
We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.
Uncertainty visualisation in the Model Web
NASA Astrophysics Data System (ADS)
Gerharz, L. E.; Autermann, C.; Hopmann, H.; Stasch, C.; Pebesma, E.
2012-04-01
Visualisation of geospatial data as maps is a common way to communicate spatially distributed information. If temporal and furthermore uncertainty information are included in the data, efficient visualisation methods are required. For uncertain spatial and spatio-temporal data, numerous visualisation methods have been developed and proposed, but only few tools for visualisation of data in a standardised way exist. Furthermore, usually they are realised as thick clients, and lack functionality of handling data coming from web services as it is envisaged in the Model Web. We present an interactive web tool for visualisation of uncertain spatio-temporal data developed in the UncertWeb project. The client is based on the OpenLayers JavaScript library. OpenLayers provides standard map windows and navigation tools, i.e. pan, zoom in/out, to allow interactive control for the user. Further interactive methods are implemented using jStat, a JavaScript library for statistics plots developed in UncertWeb, and flot. To integrate the uncertainty information into existing standards for geospatial data, the Uncertainty Markup Language (UncertML) was applied in combination with OGC Observations&Measurements 2.0 and JavaScript Object Notation (JSON) encodings for vector and NetCDF for raster data. The client offers methods to visualise uncertain vector and raster data with temporal information. Uncertainty information considered for the tool are probabilistic and quantified attribute uncertainties which can be provided as realisations or samples, full probability distributions functions and statistics. Visualisation is supported for uncertain continuous and categorical data. In the client, the visualisation is realised using a combination of different methods. Based on previously conducted usability studies, a differentiation between expert (in statistics or mapping) and non-expert users has been indicated as useful. Therefore, two different modes are realised together in the tool: (i) adjacent maps showing data and uncertainty separately, and (ii) multidimensional mapping providing different visualisation methods in combination to explore the spatial, temporal and uncertainty distribution of the data. Adjacent maps allow a simpler visualisation by separating value and uncertainty maps for non-experts and a first overview. The multidimensional approach allows a more complex exploration of the data for experts by browsing through the different dimensions. It offers the visualisation of maps, statistic plots and time series in different windows and sliders to interactively move through time, space and uncertainty (thresholds).
GPU-BSM: A GPU-Based Tool to Map Bisulfite-Treated Reads
Manconi, Andrea; Orro, Alessandro; Manca, Emanuele; Armano, Giuliano; Milanesi, Luciano
2014-01-01
Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads. PMID:24842718
Protein Crystal Quality Studies
NASA Technical Reports Server (NTRS)
1998-01-01
Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Modular avionics packaging standardization
NASA Astrophysics Data System (ADS)
Austin, M.; McNichols, J. K.
The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.
Wolff, A P; Groen, G J; Crul, B J
2001-01-01
Selective spinal nerve infiltration blocks are used diagnostically in patients with chronic low back pain radiating into the leg. Generally, a segmental nerve block is considered successful if the pain is reduced substantially. Hypesthesia and elicited paresthesias coinciding with the presumed segmental level are used as controls. The interpretation depends on a standard dermatomal map. However, it is not clear if this interpretation is reliable enough, because standard dermatomal maps do not show the overlap of neighboring dermatomes. The goal of the present study is to establish if dissimilarities exist between areas of hypesthesia, spontaneous pain reported by the patient, pain reduction by local anesthetics, and paresthesias elicited by sensory electrostimulation. A secondary goal is to determine to what extent the interpretation is improved when the overlaps of neighboring dermatomes are taken into account. Patients suffering from chronic low back pain with pain radiating into the leg underwent lumbosacral segmental nerve root blocks at subsequent levels on separate days. Lidocaine (2%, 0.5 mL) mixed with radiopaque fluid (0.25 mL) was injected after verifying the target location using sensory and motor electrostimulation. Sensory changes (pinprick method), paresthesias (reported by the patient), and pain reduction (Numeric Rating Scale) were reported. Hypesthesia and paresthesias were registered in a standard dermatomal map and in an adapted map which included overlap of neighboring dermatomes. The relationships between spinal level of injection, extent of hypesthesia, location of paresthesias, and corresponding dermatome were assessed quantitatively. Comparison of the results between both dermatomal maps was done by paired t-tests. After inclusion, data were processed for 40 segmental nerve blocks (L2-S1) performed in 29 patients. Pain reduction was achieved in 43%. Hypesthetic areas showed a large variability in size and location, and also in comparison to paresthesias. Mean hypesthetic area amounted 2.7 +/- 1.4 (+/- SD: range, 0 to 6; standard map) and 3.6 +/- 1.8 (0 to 6; adapted map; P <.001) dermatomes. In these cases, hypesthesia in the corresponding dermatome was found in 80% (standard map) and 88% of the cases (adapted map, not significant). Paresthesias occurring in the corresponding dermatome were found in 80% (standard map) compared with 98% (adapted map, P <.001). In 85% (standard map) and 88% (adapted map), spontaneous pain was present in the dermatome corresponding to the level of local anesthetic injection. In 55% (standard map) versus 75% (adapted map, P <.005), a combination of spontaneous pain, hypesthesia, and paresthesias was found in the corresponding dermatome. Hypesthetic areas determined after lumbosacral segmental nerve blocks show a large variability in size and location compared with elicited paresthesias. Confirmation of an adequately performed segmental nerve block, determined by coexistence of hypesthesia, elicited paresthesias and pain in the presumed dermatome, is more reliable when the overlap of neighboring dermatomes is taken into account.
Gahm, Jin Kyu; Shi, Yonggang
2018-05-01
Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilson, C.; Dye, R.; Reed, L.
1982-01-01
The errors associated with planimetric mapping of the United States using satellite remote sensing techniques are analyzed. Assumptions concerning the state of the art achievable for satellite mapping systems and platforms in the 1995 time frame are made. An analysis of these performance parameters is made using an interactive cartographic satellite computer model, after first validating the model using LANDSAT 1 through 3 performance parameters. An investigation of current large scale (1:24,000) US National mapping techniques is made. Using the results of this investigation, and current national mapping accuracy standards, the 1995 satellite mapping system is evaluated for its ability to meet US mapping standards for planimetric and topographic mapping at scales of 1:24,000 and smaller.
ERIC Educational Resources Information Center
Glass, Tom
2016-01-01
When students generate mind maps, or concept maps, the maps are usually on paper, computer screens, or a blackboard. Human Mind Maps require few resources and little preparation. The main requirements are space where students can move around and a little creativity and imagination. Mind maps can be used for a variety of purposes, and Human Mind…
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, space shuttle Endeavour goes through transition and retirement processing in high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center. The spacecraft completed 25 missions beginning with its first flight, STS-49, in May 1992, and ending with STS-134 in May 2011. It helped construct the International Space Station in orbit and travelled more than 122 million miles in orbit during its career. The reaction control system pods in the shuttle's nose and aft section were removed for processing before Endeavour was put on public display at the California Science Center in Los Angeles. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
EnviroAtlas - Austin, TX - Estimated Percent Green Space Along Walkable Roads
This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan
2016-07-01
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.
On the mapping associated with the complex representation of functions and processes.
NASA Technical Reports Server (NTRS)
Harger, R. O.
1972-01-01
The mapping between function spaces that is implied by the representation of a real 'bandpass' function by a complex 'low-pass' function is explicitly accepted. The discussion is extended to the representation of stationary random processes where the mapping is between spaces of random processes. This approach clarifies the nature of the complex representation, especially in the case of random processes and, in addition, derives the properties of the complex representation.-
NASA Technical Reports Server (NTRS)
Mankins, John C.
2000-01-01
In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.
NASA Astrophysics Data System (ADS)
Ganor, Ori J.; Moore, Nathan P.; Sun, Hao-Yu; Torres-Chicon, Nesty R.
2014-07-01
We develop an equivalence between two Hilbert spaces: (i) the space of states of U(1) n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T 2; and (ii) the space of ground states of strings on an associated mapping torus with T 2 fiber. The equivalence is deduced by studying the space of ground states of SL(2, ℤ)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T 2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group.
Novelli, Paul [NOAA Climate Monitoring and Diagnostics Lab (CMDL), Boulder, Colorado; Masarie, Ken [Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado
1998-01-01
This database offers select carbon monoxide (CO) mixing ratios from eleven field and aircraft measurement programs around the world. Carbon monoxide mixing ratios in the middle troposphere have been examined for short periods of time by using the Measurement of Air Pollution from Satellites (MAPS) instrument. MAPS measures CO from a space platform, using gas filter correlation radiometry. During the 1981 and 1984 MAPS flights, measurement validation was attempted by comparing space-based measurements of CO to those made in the middle troposphere from aircraft. Before the 1994 MAPS flights aboard the space shuttle Endeavour, a correlative measurement team was assembled to provide the National Aeronautics and Space Administration (NASA) with results of their CO field measurement programs during the April and October shuttle missions. To maximize the usefulness of these correlative data, team members agreed to participate in an intercomparison of CO measurements. The correlative data presented in this database provide an internally consistent, ground-based picture of CO in the lower atmosphere during Spring and Fall 1994. The data show the regional importance of two CO sources: fossil-fuel burning in urbanized areas and biomass burning in regions in the Southern Hemisphere.
Experimental Evaluation of High Performance Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A; Berry, Robert; Durfee, Neal
2016-01-01
Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate themore » refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.« less
The canonical quantization of chaotic maps on the torus
NASA Astrophysics Data System (ADS)
Rubin, Ron Shai
In this thesis, a quantization method for classical maps on the torus is presented. The quantum algebra of observables is defined as the quantization of measurable functions on the torus with generators exp (2/pi ix) and exp (2/pi ip). The Hilbert space we use remains the infinite-dimensional L2/ (/IR, dx). The dynamics is given by a unitary quantum propagator such that as /hbar /to 0, the classical dynamics is returned. We construct such a quantization for the Kronecker map, the cat map, the baker's map, the kick map, and the Harper map. For the cat map, we find the same for the propagator on the plane the same integral kernel conjectured in (HB) using semiclassical methods. We also define a quantum 'integral over phase space' as a trace over the quantum algebra. Using this definition, we proceed to define quantum ergodicity and mixing for maps on the torus. We prove that the quantum cat map and Kronecker map are both ergodic, but only the cat map is mixing, true to its classical origins. For Planck's constant satisfying the integrality condition h = 1/N, with N/in doubz+, we construct an explicit isomorphism between L2/ (/IR, dx) and the Hilbert space of sections of an N-dimensional vector bundle over a θ-torus T2 of boundary conditions. The basis functions are distributions in L2/ (/IR, dx), given by an infinite comb of Dirac δ-functions. In Bargmann space these distributions take on the form of Jacobi ϑ-functions. Transformations from position to momentum representation can be implemented via a finite N-dimensional discrete Fourier transform. With the θ-torus, we provide a connection between the finite-dimensional quantum maps given in the physics literature and the canonical quantization presented here and found in the language of pseudo-differential operators elsewhere in mathematics circles. Specifically, at a fixed point of the dynamics on the θ-torus, we return a finite-dimensional matrix propagator. We present this connection explicitly for several examples.
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
1998-06-16
Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Protein Crystal Quality Studies
NASA Technical Reports Server (NTRS)
1998-01-01
Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Assessing the Age of an Asteroid's Surface with Data from the International Rosetta Mission
NASA Technical Reports Server (NTRS)
Lopez, Juan Carlos
2011-01-01
Rosetta is an international mission led by the European Space Agency (ESA) with key support and instrumentation from the National Aeronautics and Space Administration (NASA). Rosetta is currently on a ten-year mission to catch comet 67P/Churyumov-Gerasimenko (C-G); throughout its voyage, the spacecraft has performed flybys of two main belt asteroids (MBA): Steins and Lutetia. Data on the physical, chemical, and geological properties of these asteroids are currently being processed and analyzed. Accurate interpretation of such data is fundamental in the success of Rosetta's mission and overall objectives. Post-flyby data analyses strive to correlate the size, shape, volume, and rotational rate of Lutetia, in addition to interpreting its multi-color imagining, albedo, and spectral mapping. Although advancements in science have contributed to the examination of celestial bodies, methods to analyze asteroids remain largely empirical, not semi-empirical, nor ab initio. This study aims to interpret and document the scientific methods currently utilized in the characterization of asteroid (21) Lutetia in order to render these processes and methods accessible to the public. Examples include a standardized technique for assessing the age of an asteroid surface, complete with clickable reference maps, methodology of grouping surface characteristics together, and a standardized power law equation for the age. Other examples include determining the density of an object. Context for what both density and age mean is a bi-product of this study. Results of the study will aid in the development of pedagogical material on asteroids for public use, and in creation of an academic database for selected targets that might be used as a reference.
Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices
2006-08-15
approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an
Mapping Opthalmic Terms to a Standardized Vocabulary.
ERIC Educational Resources Information Center
Patrick, Timothy B.; Reid, John C.; Sievert, MaryEllen; Popescu, Mihail; Gigantelli, James W.; Shelton, Mark E.; Schiffman, Jade S.
2000-01-01
Describes work by the American Academy of Ophthalmology (AAO) to expand the standardized vocabulary, Systematized Nomenclature of Medicine (SNOMED), to accommodate a definitive ophthalmic standardized vocabulary. Mapped a practice-based clinical ophthalmic vocabulary to SNOMED and other vocabularies in the Metathesaurus of the Unified Medical…
Soller, David R.
1996-01-01
This report summarizes a technical review of USGS Open-File Report 95-525, 'Cartographic and Digital Standard for Geologic Map Information' and OFR 95-526 (diskettes containing digital representations of the standard symbols). If you are considering the purchase or use of those documents, you should read this report first. For some purposes, OFR 95-525 (the printed document) will prove to be an excellent resource. However, technical review identified significant problems with the two documents that will be addressed by various Federal and State committees composed of geologists and cartographers, as noted below. Therefore, the 2-year review period noted in OFR 95-525 is no longer applicable. Until those problems are resolved and formal standards are issued, you may consult the following World-Wide Web (WWW) site which contains information about development of geologic map standards: URL: http://ncgmp.usgs.gov/ngmdbproject/home.html
NASA Astrophysics Data System (ADS)
Lanya, Indayati; Netera Subadiyasa, N.; Sardiana, Ketut; Putu Ratna Adi, Gst.
2017-01-01
The success of tourism development in Bali gave a negative impact on Subak rice fields, especially on land convertion over 2579 ha year-1 (2002-2013) to the area awakened. Denpasar city has lost rice fields 185 ha year-1 and six Subak, as well as potentially losing 10 Subak, as a result of the allocation of space in the region in the Spatial Planing. UNESCO, in 2012 the establishment of Subak as a cultural heritage. Most Subak rice fields designated as an Urban Green Open Space ( UGOS). Satellite image Iconos 2002, World 2015 View Coverage of Denpasar, and ArcGIS 10.3 software used for mapping the balance of rice field and violation of land use in the area of UGOS. The control strategy over the convertion of spatial land-based environment is done through zoning map. Land conversion of rice fields for 13 years (2002-2015) in Denpasar (572.76 ha), comes standard acreage of rice fields in 2015. Denpasar city has experienced of food deficits, even in the UGOS has awakened 96.04 ha (24.04 ha year-1). A period of 50 years into the future, rice fields which needs to be protected 872.83 ha, buffer area 984.77 ha, and can be converted 499.81 ha.
A methodology for space-time classification of groundwater quality.
Passarella, G; Caputo, M C
2006-04-01
Safeguarding groundwater from civil, agricultural and industrial contamination is matter of great interest in water resource management. During recent years, much legislation has been produced stating the importance of groundwater as a source for drinking water supplies, underlining its vulnerability and defining the required quality standards. Thus, schematic tools, able to characterise the quality and quantity of groundwater systems, are of very great interest in any territorial planning and/or water resource management activity. This paper proposes a groundwater quality classification method which has been applied to a real aquifer, starting from several studies published by the Italian National Hydrogeologic Catastrophe Defence Group (GNDCI). The methodology is based on the concentration values of several parameters used as indexes of the natural hydro-chemical water condition and of potential man-induced modifications of groundwater quality. The resulting maps, although representative of the quality, do not include any information on its evolution in time. In this paper, this "stationary" classification method has been improved by crossing the quality classes with three indexes of temporal behaviour during recent years. It was then applied to data from monitoring campaigns, performed in spring and autumn, from 1990 to 1996, in the plain of Modena aquifer (central Italy). The results are reported in the form of space-time classification table and maps.
EnviroAtlas - Cleveland, OH - Estimated Percent Green Space Along Walkable Roads
This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. In this community, green space is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. In this metric, water is also included in green space. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Percent Green Space Along Walkable Roads
This EnviroAtlas dataset estimates green space along walkable roads. Green space within 25 meters of the road centerline is included and the percentage is based on the total area between street intersections. In this community, green space is defined as Trees and Forest, Grass and Herbaceous, Agriculture, Woody Wetlands, and Emergent Wetlands. In this metric, water is also included in green space. Green space provides valuable benefits to neighborhood residents and walkers by providing shade, improved aesthetics, and outdoor gathering spaces. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
Augmented paper maps: Exploring the design space of a mixed reality system
NASA Astrophysics Data System (ADS)
Paelke, Volker; Sester, Monika
Paper maps and mobile electronic devices have complementary strengths and shortcomings in outdoor use. In many scenarios, like small craft sailing or cross-country trekking, a complete replacement of maps is neither useful nor desirable. Paper maps are fail-safe, relatively cheap, offer superior resolution and provide large scale overview. In uses like open-water sailing it is therefore mandatory to carry adequate maps/charts. GPS based mobile devices, on the other hand, offer useful features like automatic positioning and plotting, real-time information update and dynamic adaptation to user requirements. While paper maps are now commonly used in combination with mobile GPS devices, there is no meaningful integration between the two, and the combined use leads to a number of interaction problems and potential safety issues. In this paper we explore the design space of augmented paper maps in which maps are augmented with additional functionality through a mobile device to achieve a meaningful integration between device and map that combines their respective strengths.
NASA Astrophysics Data System (ADS)
Goto, Shin-itiro; Umeno, Ken
2018-03-01
Maps on a parameter space for expressing distribution functions are exactly derived from the Perron-Frobenius equations for a generalized Boole transform family. Here the generalized Boole transform family is a one-parameter family of maps, where it is defined on a subset of the real line and its probability distribution function is the Cauchy distribution with some parameters. With this reduction, some relations between the statistical picture and the orbital one are shown. From the viewpoint of information geometry, the parameter space can be identified with a statistical manifold, and then it is shown that the derived maps can be characterized. Also, with an induced symplectic structure from a statistical structure, symplectic and information geometric aspects of the derived maps are discussed.
The generalized Lyapunov theorem and its application to quantum channels
NASA Astrophysics Data System (ADS)
Burgarth, Daniel; Giovannetti, Vittorio
2007-05-01
We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.
Linear time-to-space mapping system using double electrooptic beam deflectors.
Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao
2008-12-22
We propose and demonstrate a linear time-to-space mapping system, which is based on two times electrooptic sinusoidal beam deflection. The direction of each deflection is set to be mutually orthogonal with the relative deflection phase of pi/2 rad so that the circular optical beam trajectory can be achieved. The beam spot at the observation plane moves with an uniform velocity and as a result linear time-to-space mapping (an uniform temporal resolution through the mapping) can be realized. The proof-of-concept experiment are carried out and the temporal resolution of 5 ps has been demonstrated using traveling-wave type quasi-velosity-matched electrooptic beam deflectors. The developed system is expected to be applied to characterization of ultrafast optical signal or optical arbitrary waveform shaping for modulated microwave/millimeter-wave generation.
NASA Technical Reports Server (NTRS)
Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.
2017-01-01
Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.
Cooley, Michael J.; Davis, Larry R.; Fishburn, Kristin A.; Lestinsky, Helmut; Moore, Laurence R.
2011-01-01
A full-size style sheet template in PDF that defines the placement of map elements, marginalia, and font sizes and styles accompanies this standard. The GeoPDF US Topo maps are fashioned to conform to this style sheet so that a user can print out a map at the 1:24,000-scale using the dimensions of the traditional standard 7.5-minute quadrangle. Symbology and type specifications for feature content are published separately. In addition, the GeoPDF design allows for custom printing, so that a user may zoom in and out, turn layers on and off, and view or print any combination of layers or any map portion at any desired scale.
NASA Astrophysics Data System (ADS)
Bandos, Igor A.; Ortín, Tomás
2016-08-01
We review and investigate different aspects of scalar fields in supergravity theories both when they parametrize symmetric spaces and when they parametrize spaces of special holonomy which are not necessarily symmetric (Kähler and Quaternionic-Kähler spaces): their rôle in the definition of derivatives of the fermions covariant under the R-symmetry group and (in gauged supergravities) under some gauge group, their dualization into ( d - 2)-forms, their role in the supersymmetry transformation rules (via fermion shifts, for instance) etc. We find a general definition of momentum map that applies to any manifold admitting a Killing vector and coincides with those of the holomorphic and tri-holomorphic momentum maps in Kähler and quaternionic-Kähler spaces and with an independent definition that can be given in symmetric spaces. We show how the momen-tum map occurs ubiquitously: in gauge-covariant derivatives of fermions, in fermion shifts, in the supersymmetry transformation rules of ( d - 2)-forms etc. We also give the general structure of the Noether-Gaillard-Zumino conserved currents in theories with fields of different ranks in any dimension.
NASA Astrophysics Data System (ADS)
Nezir, Veysel; Mustafa, Nizami
2017-04-01
In 2008, P.K. Lin provided the first example of a nonreflexive space that can be renormed to have fixed point property for nonexpansive mappings. This space was the Banach space of absolutely summable sequences l1 and researchers aim to generalize this to c0, Banach space of null sequences. Before P.K. Lin's intriguing result, in 1979, Goebel and Kuczumow showed that there is a large class of non-weak* compact closed, bounded, convex subsets of l1 with fixed point property for nonexpansive mappings. Then, P.K. Lin inspired by Goebel and Kuczumow's ideas to give his result. Similarly to P.K. Lin's study, Hernández-Linares worked on L1 and in his Ph.D. thesis, supervisored under Maria Japón, showed that L1 can be renormed to have fixed point property for affine nonexpansive mappings. Then, related questions for c0 have been considered by researchers. Recently, Nezir constructed several equivalent norms on c0 and showed that there are non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings. In this study, we construct a family of equivalent norms containing those developed by Nezir as well and show that there exists a large class of non-weakly compact closed, bounded, convex subsets of c0 with fixed point property for affine nonexpansive mappings.
Detection of microRNAs in color space.
Marco, Antonio; Griffiths-Jones, Sam
2012-02-01
Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space. However, a number of previously unexplored technical issues arise when using SOLiD technology to characterize microRNAs. Here we explore these technical difficulties. First, since the sequenced reads are longer than the biological sequences, every read is expected to contain linker fragments. The color-calling error rate increases toward the 3(') end of the read such that recognizing the linker sequence for removal becomes problematic. Second, mapping in color space may lead to the loss of the first nucleotide of each read. We propose a sequential trimming and mapping approach to map small RNAs. Using our strategy, we reanalyze three published insect small RNA deep sequencing datasets and characterize 22 new microRNAs. A bash shell script to perform the sequential trimming and mapping procedure, called SeqTrimMap, is available at: http://www.mirbase.org/tools/seqtrimmap/ antonio.marco@manchester.ac.uk Supplementary data are available at Bioinformatics online.
Fundamental Studies on Crashworthiness Design with Uncertainties in the System
2005-01-01
studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...Exposed to Impact Load Using a Space Mapping Technique,” Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott
Fundamental Studies on Crashworthiness Design with Uncertainties in the System
2005-01-01
studied; examples include using the Response Surface Methods (RSM) and Design of Experiment (DOE) [2-4]. Space Mapping (SM) is another practical...to Impact Load Using a Space Mapping Technique," Struct. Multidisc. Optim., Vol. 27, pp. 411-420 (2004). 6. Mayer, R. R., Kikuchi, N. and Scott, R
Consciously Thinking about Consciousness
ERIC Educational Resources Information Center
Tribus, Myron
2004-01-01
Merker hypothesized that because mobile creatures move around and must constantly readjust their map of the world and because the demands are so great for continually processing information for a map of the world, evolution has created a space in the brain where such preprocessing has been eliminated. This space he calls consciousness with the…
Relic neutralino surface at a 100 TeV collider
Bramante, Joseph; Fox, Patrick J.; Martin, Adam; ...
2015-03-11
We map the parameter space for minimal supersymmetric Standard Model neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeVmore » hadron collider, which can discover interneutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: in the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. As a result, we exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.« less
Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model
NASA Astrophysics Data System (ADS)
Kouletsis, I.; Kuchař, K. V.
2002-06-01
The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map
Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science
NASA Astrophysics Data System (ADS)
Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.
2007-12-01
The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.
Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki
2018-04-10
A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P < 0.01) in the mean correlation coefficient between the young, healthy group and the other two groups. A significant difference (P < 0.05) was also recognized in standard deviation of the correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.
Entropy of homeomorphisms on unimodal inverse limit spaces
NASA Astrophysics Data System (ADS)
Bruin, H.; Štimac, S.
2013-04-01
We prove that every self-homeomorphism h : Ks → Ks on the inverse limit space Ks of the tent map Ts with slope s \\in (\\sqrt 2, 2] has topological entropy htop(h) = |R| log s, where R \\in { Z} is such that h and σR are isotopic. Conclusions on all possible values of the entropy of homeomorphisms of the inverse limit space of a (renormalizable) quadratic map are also drawn.
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
Martínez-Graña, A M; Silva, P G; Goy, J L; Elez, J; Valdés, V; Zazo, C
2017-04-15
Geomorphology is fundamental to landscape analysis, as it represents the main parameter that determines the land spatial configuration and facilitates reliefs classification. The goal of this article is the elaboration of thematic maps that enable the determination of different landscape units and elaboration of quality and vulnerability synthetic maps for landscape fragility assessment prior to planning human activities. For two natural spaces, the final synthetic maps were created with direct (visual-perceptual features) and indirect (cartographic models and 3D simulations) methods from thematic maps with GIS technique. This enabled the creation of intrinsic and extrinsic landscape quality maps showing sectors needing most preservation, as well as intrinsic and extrinsic landscape fragility maps (environment response capacity or vulnerability towards human actions). The resulting map shows absorption capacity for areas of maximum and/or minimum human intervention. Sectors of high absorption capacity (minimum need for preservation) are found where the incidence of human intervention is minimum: escarpment bottoms, fitted rivers, sinuous high lands with thick vegetation coverage and valley interiors, or those areas with high landscape quality, low fragility and high absorption capacity, whose average values are found across lower hillsides of some valleys, and sectors with low absorption capacity (areas needing most preservation) found mainly in the inner parts of natural spaces: peaks and upper hillsides, synclines flanks and scattered areas. For the integral analysis of landscape, a mapping methodology has been set. It comprises a valid criterion for rational and sustainable planning, management and protection of natural spaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Zeng, Ping; Mukherjee, Sayan; Zhou, Xiang
2017-01-01
Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects—the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium. PMID:28746338
Choi, Hi-Jae; Zilles, Karl; Mohlberg, Hartmut; Schleicher, Axel; Fink, Gereon R.; Armstrong, Este; Amunts, Katrin
2008-01-01
Anatomical studies in the macaque cortex and functional imaging studies in humans have demonstrated the existence of different cortical areas within the IntraParietal Sulcus (IPS). Such functional segregation, however, does not correlate with presently available architectonic maps of the human brain. This is particularly true for the classical Brodmann map, which is still widely used as an anatomical reference in functional imaging studies. The aim of this cytoarchitectonic mapping study was to use previously defined algorithms to determine whether consistent regions and borders can be found within the cortex of the anterior IPS in a population of ten postmortem human brains. Two areas, the human IntraParietal area 1 (hIP1) and the human IntraParietal area 2 (hIP2), were delineated in serial histological sections of the anterior, lateral bank of the human IPS. The region hIP1 is located posterior and medial to hIP2, and the former is always within the depths of the IPS. The latter, on the other hand, sometimes reaches the free surface of the superior parietal lobule. The delineations were registered to standard reference space, and probabilistic maps were calculated, thereby quantifying the intersubject variability in location and extent of both areas. In the future, they can be a tool in analyzing structure – function relationships and a basis for determining degrees of homology in the IPS among anthropoid primates. We conclude that the human intraparietal sulcus has a finer grained parcellation than shown in Brodmann’s map. PMID:16432904
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
Effectiveness of Mind Mapping in English Teaching among VIII Standard Students
ERIC Educational Resources Information Center
Hallen, D.; Sangeetha, N.
2015-01-01
The aim of the study is to find out the effectiveness of mind mapping technique over conventional method in teaching English at high school level (VIII), in terms of Control and Experimental group. The sample of the study comprised, 60 VIII Standard students in Tiruchendur Taluk. Mind Maps and Achievement Test (Pretest & Posttest) were…
ERIC Educational Resources Information Center
Andrews, Judith; Eade, Eleanor
2013-01-01
Birmingham City University's Library and Learning Resources' strategic aim is to improve student satisfaction. A key element is the achievement of the Customer Excellence Standard. An important component of the standard is the mapping of services to improve quality. Library and Learning Resources has developed a methodology to map these…
Map-IT! A Web-Based GIS Tool for Watershed Science Education.
ERIC Educational Resources Information Center
Curtis, David H.; Hewes, Christopher M.; Lossau, Matthew J.
This paper describes the development of a prototypic, Web-accessible GIS solution for K-12 science education and citizen-based watershed monitoring. The server side consists of ArcView IMS running on an NT workstation. The client is built around MapCafe. The client interface, which runs through a standard Web browser, supports standard MapCafe…
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, the Rotating Service Structure at Launch Complex 39A at NASA's Kennedy Space Center housed space shuttle payloads temporarily so they could be loaded inside the 60-foot-long cargo bay of a shuttle before launch. The RSS, as the structure was known, was hinged to the Fixed Service Structure on one side and rolled on a rail on the other. As its name suggests, the enclosed facility would rotate into place around the shuttle as it stood at the launch pad. Once in place, the RSS protected the shuttle and its cargo. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.
1999-01-01
Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.
Holographic fluorescence mapping using space-division matching method
NASA Astrophysics Data System (ADS)
Abe, Ryosuke; Hayasaki, Yoshio
2017-10-01
Three-dimensional mapping of fluorescence light sources was performed by using self-interference digital holography. The positions of the sources were quantitatively determined by using Gaussian fitting of the axial and lateral intensity distributions obtained from diffraction calculations through position calibration from the observation space to the sample space. A space-division matching method was developed to perform the mapping of many fluorescence light sources, in this experiment, 500 nm fluorescent nanoparticles fixed in gelatin. A fluorescence digital holographic microscope having a 60 × objective lens with a numerical aperture of 1.25 detected 13 fluorescence light sources in a measurable region with a radius of ∼ 20 μm and a height of ∼ 5 μm. It was found that the measurable region had a conical shape resulting from the overlap between two beams.
Noguchi, Kyo; Itoh, Toshihide; Naruto, Norihito; Takashima, Shutaro; Tanaka, Kortaro; Kuroda, Satoshi
2017-01-01
We evaluated whether X-map, a novel imaging technique, can visualize ischemic lesions within 20 hours after the onset in patients with acute ischemic stroke, using noncontrast dual-energy computed tomography (DECT). Six patients with acute ischemic stroke were included in this study. Noncontrast head DECT scans were acquired with 2 X-ray tubes operated at 80 kV and Sn150 kV between 32 minutes and 20 hours after the onset. Using these DECT scans, the X-map was reconstructed based on 3-material decomposition and compared with a simulated standard (120 kV) computed tomography (CT) and diffusion-weighted imaging (DWI). The X-map showed more sensitivity to identify the lesions as an area of lower attenuation value than a simulated standard CT in all 6 patients. The lesions on the X-map correlated well with those on DWI. In 3 of 6 patients, the X-map detected a transient decrease in the attenuation value in the peri-infarct area within 1 day after the onset. The X-map is a powerful tool to supplement a simulated standard CT and characterize acute ischemic lesions. However, the X-map cannot replace a simulated standard CT to diagnose acute cerebral infarction. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Use of IKONOS Data for Mapping Cultural Resources of Stennis Space Center, Mississippi
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Giardino, Marco
2002-01-01
Cultural resource surveys are important for compliance with Federal and State law. Stennis Space Center (SSC) in Mississippi is researching, developing, and validating remote sensing and Geographical Information System (GIS) methods for aiding cultural resource assessments on the center's own land. The suitability of IKONOS satellite imagery for georeferencing scanned historic maps is examined in this viewgraph presentation. IKONOS data can be used to map historic buildings and farmland in Gainsville, MS, and plan archaeological surveys.
Hierarchical Kohonenen net for anomaly detection in network security.
Sarasamma, Suseela T; Zhu, Qiuming A; Huff, Julie
2005-04-01
A novel multilevel hierarchical Kohonen Net (K-Map) for an intrusion detection system is presented. Each level of the hierarchical map is modeled as a simple winner-take-all K-Map. One significant advantage of this multilevel hierarchical K-Map is its computational efficiency. Unlike other statistical anomaly detection methods such as nearest neighbor approach, K-means clustering or probabilistic analysis that employ distance computation in the feature space to identify the outliers, our approach does not involve costly point-to-point computation in organizing the data into clusters. Another advantage is the reduced network size. We use the classification capability of the K-Map on selected dimensions of data set in detecting anomalies. Randomly selected subsets that contain both attacks and normal records from the KDD Cup 1999 benchmark data are used to train the hierarchical net. We use a confidence measure to label the clusters. Then we use the test set from the same KDD Cup 1999 benchmark to test the hierarchical net. We show that a hierarchical K-Map in which each layer operates on a small subset of the feature space is superior to a single-layer K-Map operating on the whole feature space in detecting a variety of attacks in terms of detection rate as well as false positive rate.
Stabilizing embedology: Geometry-preserving delay-coordinate maps
NASA Astrophysics Data System (ADS)
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
Stabilizing embedology: Geometry-preserving delay-coordinate maps.
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
Emergency Response Damage Assessment using Satellite Remote Sensing Data
NASA Astrophysics Data System (ADS)
Clandillon, Stephen; Yésou, Hervé; Schneiderhan, Tobias; de Boissezon, Hélène; de Fraipont, Paul
2013-04-01
During disasters rescue and relief organisations need quick access to reliable and accurate information to be better equipped to do their job. It is increasingly felt that satellites offer a unique near real time (NRT) tool to aid disaster management. A short introduction to the International Charter 'Space and Major Disasters', in operation since 2000 promoting worldwide cooperation among member space agencies, will be given as it is the foundation on which satellite-based, emergency response, damage assessment has been built. Other complementary mechanisms will also be discussed. The user access, triggering mechanism, an essential component for this user-driven service, will be highlighted with its 24/7 single access point. Then, a clear distinction will be made between data provision and geo-information delivery mechanisms to underline the user need for geo-information that is easily integrated into their working environments. Briefly, the path to assured emergency response product quality will be presented beginning with user requirements, expressed early-on, for emergency response value-adding services. Initiatives were then established, supported by national and European institutions, to develop the sector, with SERTIT and DLR being key players, providing support to decision makers in headquarters and relief teams in the field. To consistently meet the high quality levels demanded by users, rapid mapping has been transformed via workflow and quality control standardisation to improve both speed and quality. As such, SERTIT located in Alsace, France, and DLR/ZKI from Bavaria, Germany, join their knowledge in this presentation to report about recent standards as both have ISO certified their rapid mapping services based on experienced, well-trained, 24/7 on-call teams and established systems providing the first crisis analysis product in 6 hours after satellite data reception. The three main product types provided are then outlined: up-to-date pre-event reference maps, disaster extent maps and damage assessment or intensity/grading maps. With Google and open-sourced information the need for the reference maps has diminished, but not altogether, as damage extent and assessment products also require coherent reference geo-information which often has to be produced internally. Increasingly users need up-to-date, highly detailed, customised products; it is in damage assessment that an operator's working environment, geomatic skills and experience can often provide the highest levels of value-adding while adapting to user requests. Accordingly, DLR and SERTIT are involved in R&D work integrating data, e.g. TerraSAR-X and Pléiades sources plus Sentinel simulated data, which have interesting emergency mapping capacities. Their close interaction with the research sector is essential to be at the cutting-edge of the field, implementing effective and efficient analysis methods. Future R&D challenges to further improve the quality of the damage mapping service will be highlighted. Finally, this presentation will show some practical examples and thus how at present, space-based rapid mapping, which has more than 10 years of experience, has come to being able to provide, if rapidly programmed and acquired, geo-information linked to disaster extent and damage assessment from overview scales down to the street level and this with an ever increasing array of satellite data sources.
Coastal wetlands: The present and future role of remote sensing
NASA Technical Reports Server (NTRS)
Carter, V.
1977-01-01
During the past decade, there has been a rapid expansion of remote sensing research and technology development related to coastal wetlands. As a result of this research, all of the 23 coastal states have ongoing or completed wetland inventories, most utilizing aerial photographs as the data source for producing a variety of map products with varying scales, formats, classification systems and intended uses. The U.S. Geological Survey is increasing emphasis on map production and revision for the coastal zone. The new U.S. Fish and Wildlife Service National Wetland Inventory is intended to provide a standardized method for comparison of wetlands on a national basis - it too will use available aerial photographs as a basic data source. At present, satellite data is not used for operational mapping of coastal wetlands because of resolution and geometric constraints. In the future, however, satellite data may provide an accurate reliable and economical source to update wetland inventories and to monitor or evaluate coastal wetlands. The technological improvements accompanying the development and launch of Landsat C and D and the space shuttle promise to make satellite digital data a more powerful tool to supply information for future management decisions for coastal wetlands.
Tropospheric delay ray tracing applied in VLBI analysis
NASA Astrophysics Data System (ADS)
Eriksson, David; MacMillan, D. S.; Gipson, John M.
2014-12-01
Tropospheric delay modeling error continues to be one of the largest sources of error in VLBI (very long baseline interferometry) analysis. For standard operational solutions, we use the VMF1 elevation-dependent mapping functions derived from European Centre for Medium-Range Weather Forecasts data. These mapping functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption is not true, we have instead determined the ray trace delay along the signal path through the troposphere for each VLBI quasar observation. We determined the troposphere refractivity fields from the pressure, temperature, specific humidity, and geopotential height fields of the NASA Goddard Space Flight Center Goddard Earth Observing System version 5 numerical weather model. When applied in VLBI analysis, baseline length repeatabilities were improved compared with using the VMF1 mapping function model for 72% of the baselines and site vertical repeatabilities were better for 11 of 13 sites during the 2 week CONT11 observing period in September 2011. When applied to a larger data set (2011-2013), we see a similar improvement in baseline length and also in site position repeatabilities for about two thirds of the stations in each of the site topocentric components.
Uncertainty quantification in volumetric Particle Image Velocimetry
NASA Astrophysics Data System (ADS)
Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos
2016-11-01
Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.
GlastCam: A Telemetry-Driven Spacecraft Visualization Tool
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.; Tsai, Dean
2009-01-01
Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts
A quantitative analysis of IRAS maps of molecular clouds
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer J.; Adams, Fred C.
1994-01-01
We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.
NASA Astrophysics Data System (ADS)
da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.
2016-04-01
We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.
Advanced Map For Real-Time Process Control
NASA Astrophysics Data System (ADS)
Shiobara, Yasuhisa; Matsudaira, Takayuki; Sashida, Yoshio; Chikuma, Makoto
1987-10-01
MAP, a communications protocol for factory automation proposed by General Motors [1], has been accepted by users throughout the world and is rapidly becoming a user standard. In fact, it is now a LAN standard for factory automation. MAP is intended to interconnect different devices, such as computers and programmable devices, made by different manufacturers, enabling them to exchange information. It is based on the OSI intercomputer com-munications protocol standard under development by the ISO. With progress and standardization, MAP is being investigated for application to process control fields other than factory automation [2]. The transmission response time of the network system and centralized management of data exchanged with various devices for distributed control are import-ant in the case of a real-time process control with programmable controllers, computers, and instruments connected to a LAN system. MAP/EPA and MINI MAP aim at reduced overhead in protocol processing and enhanced transmission response. If applied to real-time process control, a protocol based on point-to-point and request-response transactions limits throughput and transmission response. This paper describes an advanced MAP LAN system applied to real-time process control by adding a new data transmission control that performs multicasting communication voluntarily and periodically in the priority order of data to be exchanged.
Visualization of Discontinuous Galerkin Based High-Order Methods
2015-08-19
function and the reference- to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for...to physical- space mapping functions. This formulation can be used to measure the quality of a high-order element and also for AMR. We find that the
White Space, White Privilege: Mapping Discursive Inquiry into the Self.
ERIC Educational Resources Information Center
Jackson, Ronald L., II
1999-01-01
Explores the role of communication in the strategic self-definition of "whiteness." Uses transcripts from two focus group interviews (with Whites from two historically Black universities) to map the discourses of "White" participants concerning the nature of "whiteness." Implies that the space Whites occupy is not clearly constructed and defined…
First results in terrain mapping for a roving planetary explorer
NASA Technical Reports Server (NTRS)
Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo
1989-01-01
To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.
Mapping ocean tides with satellites - A computer simulation
NASA Technical Reports Server (NTRS)
Won, I. J.; Kuo, J. T.; Jachens, R. C.
1978-01-01
As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.
Bifurcation and Fractal of the Coupled Logistic Map
NASA Astrophysics Data System (ADS)
Wang, Xingyuan; Luo, Chao
The nature of the fixed points of the coupled Logistic map is researched, and the boundary equation of the first bifurcation of the coupled Logistic map in the parameter space is given out. Using the quantitative criterion and rule of system chaos, i.e., phase graph, bifurcation graph, power spectra, the computation of the fractal dimension, and the Lyapunov exponent, the paper reveals the general characteristics of the coupled Logistic map transforming from regularity to chaos, the following conclusions are shown: (1) chaotic patterns of the coupled Logistic map may emerge out of double-periodic bifurcation and Hopf bifurcation, respectively; (2) during the process of double-period bifurcation, the system exhibits self-similarity and scale transform invariability in both the parameter space and the phase space. From the research of the attraction basin and Mandelbrot-Julia set of the coupled Logistic map, the following conclusions are indicated: (1) the boundary between periodic and quasiperiodic regions is fractal, and that indicates the impossibility to predict the moving result of the points in the phase plane; (2) the structures of the Mandelbrot-Julia sets are determined by the control parameters, and their boundaries have the fractal characteristic.
Landsat Image Map Production Methods at the U. S. Geological Survey
Kidwell, R.D.; Binnie, D.R.; Martin, S.
1987-01-01
To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
Memory matters: influence from a cognitive map on animal space use.
Gautestad, Arild O
2011-10-21
A vertebrate individual's cognitive map provides a capacity for site fidelity and long-distance returns to favorable patches. Fractal-geometrical analysis of individual space use based on collection of telemetry fixes makes it possible to verify the influence of a cognitive map on the spatial scatter of habitat use and also to what extent space use has been of a scale-specific versus a scale-free kind. This approach rests on a statistical mechanical level of system abstraction, where micro-scale details of behavioral interactions are coarse-grained to macro-scale observables like the fractal dimension of space use. In this manner, the magnitude of the fractal dimension becomes a proxy variable for distinguishing between main classes of habitat exploration and site fidelity, like memory-less (Markovian) Brownian motion and Levy walk and memory-enhanced space use like Multi-scaled Random Walk (MRW). In this paper previous analyses are extended by exploring MRW simulations under three scenarios: (1) central place foraging, (2) behavioral adaptation to resource depletion (avoidance of latest visited locations) and (3) transition from MRW towards Levy walk by narrowing memory capacity to a trailing time window. A generalized statistical-mechanical theory with the power to model cognitive map influence on individual space use will be important for statistical analyses of animal habitat preferences and the mechanics behind site fidelity and home ranges. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatiotemporal modelling and mapping of the bubonic plague epidemic in India.
Yu, Hwa-Lung; Christakos, George
2006-03-17
This work studies the spatiotemporal evolution of bubonic plague in India during 1896-1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases.
Spatiotemporal modelling and mapping of the bubonic plague epidemic in India
Yu, Hwa-Lung; Christakos, George
2006-01-01
Background This work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Results Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Conclusion Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases. PMID:16545128
sCMOS detector for imaging VNIR spectrometry
NASA Astrophysics Data System (ADS)
Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian
2013-09-01
The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.
An object correlation and maneuver detection approach for space surveillance
NASA Astrophysics Data System (ADS)
Huang, Jian; Hu, Wei-Dong; Xin, Qin; Du, Xiao-Yong
2012-10-01
Object correlation and maneuver detection are persistent problems in space surveillance and maintenance of a space object catalog. We integrate these two problems into one interrelated problem, and consider them simultaneously under a scenario where space objects only perform a single in-track orbital maneuver during the time intervals between observations. We mathematically formulate this integrated scenario as a maximum a posteriori (MAP) estimation. In this work, we propose a novel approach to solve the MAP estimation. More precisely, the corresponding posterior probability of an orbital maneuver and a joint association event can be approximated by the Joint Probabilistic Data Association (JPDA) algorithm. Subsequently, the maneuvering parameters are estimated by optimally solving the constrained non-linear least squares iterative process based on the second-order cone programming (SOCP) algorithm. The desired solution is derived according to the MAP criterions. The performance and advantages of the proposed approach have been shown by both theoretical analysis and simulation results. We hope that our work will stimulate future work on space surveillance and maintenance of a space object catalog.
Cartographic standards to improve maps produced by the Forest Inventory and Analysis program
Charles H. (Hobie) Perry; Mark D. Nelson
2009-01-01
The Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis (FIA) program is incorporating an increasing number of cartographic products in reports, publications, and presentations. To create greater quality and consistency within the national FIA program, a Geospatial Standards team developed cartographic design standards for FIA map...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at themore » altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.« less
Field methods and data processing techniques associated with mapped inventory plots
William A. Bechtold; Stanley J. Zarnoch
1999-01-01
The U.S. Forest Inventory and Analysis (FIA) and Forest Health Monitoring (FHM) programs utilize a fixed-area mapped-plot design as the national standard for extensive forest inventories. The mapped-plot design is explained, as well as the rationale for its selection as the national standard. Ratio-of-means estimators am presented as a method to process data from...
Memory and Space: Towards an Understanding of the Cognitive Map.
Schiller, Daniela; Eichenbaum, Howard; Buffalo, Elizabeth A; Davachi, Lila; Foster, David J; Leutgeb, Stefan; Ranganath, Charan
2015-10-14
More than 50 years of research have led to the general agreement that the hippocampus contributes to memory, but there has been a major schism among theories of hippocampal function over this time. Some researchers argue that the hippocampus plays a broad role in episodic and declarative memory, whereas others argue for a specific role in the creation of spatial cognitive maps and navigation. Although both views have merit, neither provides a complete account of hippocampal function. Guided by recent reviews that attempt to bridge between these views, here we suggest that reconciliation can be accomplished by exploring hippocampal function from the perspective of Tolman's (1948) original conception of a cognitive map as organizing experience and guiding behavior across all domains of cognition. We emphasize recent studies in animals and humans showing that hippocampal networks support a broad range of domains of cognitive maps, that these networks organize specific experiences within the contextually relevant map, and that network activity patterns reflect behavior guided through cognitive maps. These results are consistent with a framework that bridges theories of hippocampal function by conceptualizing the hippocampus as organizing incoming information within the context of a multidimensional cognitive map of spatial, temporal, and associational context. Research of hippocampal function is dominated by two major views. The spatial view argues that the hippocampus tracks routes through space, whereas the memory view suggests a broad role in declarative memory. Both views rely on considerable evidence, but neither provides a complete account of hippocampal function. Here we review evidence that, in addition to spatial context, the hippocampus encodes a wide variety of information about temporal and situational context, about the systematic organization of events in abstract space, and about routes through maps of cognition and space. We argue that these findings cross the boundaries of the memory and spatial views and offer new insights into hippocampal function as a system supporting a broad range of cognitive maps. Copyright © 2015 the authors 0270-6474/15/3513904-08$15.00/0.
Evaluation of color mapping algorithms in different color spaces
NASA Astrophysics Data System (ADS)
Bronner, Timothée.-Florian; Boitard, Ronan; Pourazad, Mahsa T.; Nasiopoulos, Panos; Ebrahimi, Touradj
2016-09-01
The color gamut supported by current commercial displays is only a subset of the full spectrum of colors visible by the human eye. In High-Definition (HD) television technology, the scope of the supported colors covers 35.9% of the full visible gamut. For comparison, Ultra High-Definition (UHD) television, which is currently being deployed on the market, extends this range to 75.8%. However, when reproducing content with a wider color gamut than that of a television, typically UHD content on HD television, some original color information may lie outside the reproduction capabilities of the television. Efficient gamut mapping techniques are required in order to fit the colors of any source content into the gamut of a given display. The goal of gamut mapping is to minimize the distortion, in terms of perceptual quality, when converting video from one color gamut to another. It is assumed that the efficiency of gamut mapping depends on the color space in which it is computed. In this article, we evaluate 14 gamut mapping techniques, 12 combinations of two projection methods across six color spaces as well as R'G'B' Clipping and wrong gamut interpretation. Objective results, using the CIEDE2000 metric, show that the R'G'B' Clipping is slightly outperformed by only one combination of color space and projection method. However, analysis of images shows that R'G'B' Clipping can result in loss of contrast in highly saturated images, greatly impairing the quality of the mapped image.
Sanchez Sorzano, Carlos Oscar; Alvarez-Cabrera, Ana Lucia; Kazemi, Mohsen; Carazo, Jose María; Jonić, Slavica
2016-04-26
Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Zhang, Kechen
2016-01-01
The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are built on a basic unit called a “megamap,” or a cognitive attractor map in which place cells are flexibly recombined to represent a large space. Its inherent flexibility gives the megamap a huge representational capacity and enables the hippocampus to simultaneously represent multiple learned memories and naturally carry nonspatial information at no additional cost. On the other hand, the megamap is dynamically stable, because the underlying network of place cells robustly encodes any location in a large environment given a weak or incomplete input signal from the upstream entorhinal cortex. Our results suggest a general computational strategy by which a hippocampal network enjoys the stability of attractor dynamics without sacrificing the flexibility needed to represent a complex, changing world. PMID:27193320
The architect's perspective on the tour and map perspective.
Papadopoulou, Athina
2015-09-01
Literature in linguistics suggests that when people are asked to provide an oral spatial description, they usually provide a body-centered narrative; they adopt a Tour Perspective, that is, an imaginary tour of the space rather than a Map Perspective, that is, a description focused on spatial relations as seen from above (Linde and Labov in Language 51(1):924-939, 1975; Howald in Discursive constraints on space in narrative: evidence from guilty plea discourse, eVox 3, 2009). I conducted a pilot experiment to address the following questions: Does the formal knowledge of architects--their familiarity with plan drawings and maps--override the tendency to adopt the tour perspective? Does the tour perspective depend on the actual experience of space? Twenty-two graduate students in architecture were asked to respond to the following questions: (1) "Can you describe the layout of your apartment?" (2) "Can you describe the layout of an ideal apartment?" In the responses to the first question most participants used the tour perspective. In the responses to the second question most participants used the map perspective. The results provide evidence that architects' formal knowledge does not override the preference of the tour perspective in descriptions of experienced space. Moreover, that the tour perspective is associated with the actual experience of space.
Use of 3D vision for fine robot motion
NASA Technical Reports Server (NTRS)
Lokshin, Anatole; Litwin, Todd
1989-01-01
An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.
Tracking Resilience to Infections by Mapping Disease Space
Thomas Tate, Ann; Rath, Poonam; Cumnock, Katherine; Schneider, David S.
2016-01-01
Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through “disease space.” We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels. PMID:27088359
Hoffmann, Susanne; Vega-Zuniga, Tomas; Greiter, Wolfgang; Krabichler, Quirin; Bley, Alexandra; Matthes, Mariana; Zimmer, Christiane; Firzlaff, Uwe; Luksch, Harald
2016-11-01
The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals. We probed the visual system of the echolocating bat Phyllostomus discolor and found that binocular high acuity vision is frontally oriented and thus aligned with the biosonar system, whereas monocular visual fields cover a large area of peripheral space. For the first time in echolocating bats, we could show that in contrast with other mammals, visual processing is restricted to the superficial layers of the SC. The topographic representation of visual space, however, followed the general mammalian pattern. In addition, we found a clear topographic representation of sound azimuth in the deeper collicular layers, which was congruent with the superficial visual space map and with a previously documented map of orienting movements. Especially for bats navigating at high speed in densely structured environments, it is vitally important to transfer and coordinate spatial information between sensors and motor systems. Here, we demonstrate first evidence for the existence of congruent maps of sensory space in the bat SC that might serve to generate a unified representation of the environment to guide motor actions. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Error Analyses of the North Alabama Lightning Mapping Array (LMA)
NASA Technical Reports Server (NTRS)
Koshak, W. J.; Solokiewicz, R. J.; Blakeslee, R. J.; Goodman, S. J.; Christian, H. J.; Hall, J. M.; Bailey, J. C.; Krider, E. P.; Bateman, M. G.; Boccippio, D. J.
2003-01-01
Two approaches are used to characterize how accurately the North Alabama Lightning Mapping Array (LMA) is able to locate lightning VHF sources in space and in time. The first method uses a Monte Carlo computer simulation to estimate source retrieval errors. The simulation applies a VHF source retrieval algorithm that was recently developed at the NASA-MSFC and that is similar, but not identical to, the standard New Mexico Tech retrieval algorithm. The second method uses a purely theoretical technique (i.e., chi-squared Curvature Matrix theory) to estimate retrieval errors. Both methods assume that the LMA system has an overall rms timing error of 50ns, but all other possible errors (e.g., multiple sources per retrieval attempt) are neglected. The detailed spatial distributions of retrieval errors are provided. Given that the two methods are completely independent of one another, it is shown that they provide remarkably similar results, except that the chi-squared theory produces larger altitude error estimates than the (more realistic) Monte Carlo simulation.
Response Surface Methods for Spatially-Resolved Optical Measurement Techniques
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.
2003-01-01
Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.
Airborne laser mapping of Assateague National Seashore Beach
Krabill, W.B.; Wright, C.W.; Swift, R.N.; Frederick, E.B.; Manizade, S.S.; Yungel, J.K.; Martin, C.F.; Sonntag, J.G.; Duffy, Mark; Hulslander, William; Brock, John C.
2000-01-01
Results are presented from topographic surveys of the Assateague Island National Seashore using an airborne scanning laser altimeter and kinematic Global Positioning System (GPS) technology. The instrument used was the Airborne Topographic Mapper (ATM), developed by the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility. In November, 1995, and again in May, 1996, these topographic surveys were flown as a functionality check prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to make these measurements to an accuracy of ± 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.
Blind decomposition of Herschel-HIFI spectral maps of the NGC 7023 nebula
NASA Astrophysics Data System (ADS)
Berné, O.; Joblin, C.; Deville, Y.; Pilleri, P.; Pety, J.; Teyssier, D.; Gerin, M.; Fuente, A.
2012-12-01
Large spatial-spectral surveys are more and more common in astronomy. This calls for the need of new methods to analyze such mega- to giga-pixel data-cubes. In this paper we present a method to decompose such observations into a limited and comprehensive set of components. The original data can then be interpreted in terms of linear combinations of these components. The method uses non-negative matrix factorization (NMF) to extract latent spectral end-members in the data. The number of needed end-members is estimated based on the level of noise in the data. A Monte-Carlo scheme is adopted to estimate the optimal end-members, and their standard deviations. Finally, the maps of linear coefficients are reconstructed using non-negative least squares. We apply this method to a set of hyperspectral data of the NGC 7023 nebula, obtained recently with the HIFI instrument onboard the Herschel space observatory, and provide a first interpretation of the results in terms of 3-dimensional dynamical structure of the region.
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, the view from the top of the Fixed Service Structure at Launch Complex 39A at NASA's Kennedy Space Center. The FSS, as the structure is known, is 285 feet high and overlooks the Rotating Service Structure that was rolled into place when a space shuttle was at the pad. The path taken by NASA's massive crawler-transporters that carried the shuttle stack 3 miles from Vehicle Assembly Building are also visible leading up to the launch pad. In the distance are seen the launch pads and support structures at Cape Canaveral Air Force Station for the Atlas V, Delta IV and Falcon 9 rockets. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
NASA Technical Reports Server (NTRS)
Willmott, C. J.; Field, R. T.
1984-01-01
Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent.
NASA Technical Reports Server (NTRS)
Campos-Marquetti, Raul, Jr.; Rockwell, Barnaby
1990-01-01
The nature of spectral lithologic mapping is studied utilizing ratios centered around the wavelength means of TM imagery. Laboratory-derived spectra are analyzed to determine the two-dimensional relationships and distributions visible in spectral ratio feature space. The spectral distributions of various rocks and minerals in ratio feature space are found to be controlled by several spectrally dominant molecules. Three study areas were examined: Rawhide Mining District, Nevada; Manzano Mountains, New Mexico; and the Sevilleta Long Term Ecological Research site in New Mexico. It is shown that, in the comparison of two ratio plots of laboratory reflectance spectra, i.e., 0.66/0.485 micron versus 1.65/2.22 microns with those derived from TM data, several molecules spectrally dominate the reflectance characteristic of surface lithologic units. Utilizing the above ratio combination, two areas are successfully mapped based on their distribution in spectral ratio feature space.
Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V
2000-07-01
A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.
Linguistic and Perceptual Mapping in Spatial Representations: An Attentional Account.
Valdés-Conroy, Berenice; Hinojosa, José A; Román, Francisco J; Romero-Ferreiro, Verónica
2018-03-01
Building on evidence for embodied representations, we investigated whether Spanish spatial terms map onto the NEAR/FAR perceptual division of space. Using a long horizontal display, we measured congruency effects during the processing of spatial terms presented in NEAR or FAR space. Across three experiments, we manipulated the task demands in order to investigate the role of endogenous attention in linguistic and perceptual space mapping. We predicted congruency effects only when spatial properties were relevant for the task (reaching estimation task, Experiment 1) but not when attention was allocated to other features (lexical decision, Experiment 2; and color, Experiment 3). Results showed faster responses for words presented in Near-space in all experiments. Consistent with our hypothesis, congruency effects were observed only when a reaching estimate was requested. Our results add important evidence for the role of top-down processing in congruency effects from embodied representations of spatial terms. Copyright © 2017 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.
2000-01-01
A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.
State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.
Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics
NASA Astrophysics Data System (ADS)
Singh, R.; Bermudez, L. E.
2013-12-01
Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web, they can easily share this information with colleagues or friends via an email that includes URLs (links to web resources) and attachments (inline data). In the case of geospatial information, a user would like to share a map created from different OGC sources, which may include for example, WMS and WFS links, and GML and KML annotations. The emerging OGC file format is called the OGC Web Services Context Document (OWS Context), which allows clients to reproduce a map previously created by someone else. Context sharing is important in a variety of domains, from emergency response, where fire, police and emergency medical personnel need to work off a common map, to multi-national military operations, where coalition forces need to share common data sources, but have cartographic displays in different languages and symbology sets. OWS Contexts can be written in XML (building upon the Atom Syndication Format) or JSON. This presentation will provide an introduction of GeoPackage and OWS Context and how they can be used to advance sharing of Earth and Space Science information.
Laplacian scale-space behavior of planar curve corners.
Zhang, Xiaohong; Qu, Ying; Yang, Dan; Wang, Hongxing; Kymer, Jeff
2015-11-01
Scale-space behavior of corners is important for developing an efficient corner detection algorithm. In this paper, we analyze the scale-space behavior with the Laplacian of Gaussian (LoG) operator on a planar curve which constructs Laplacian Scale Space (LSS). The analytical expression of a Laplacian Scale-Space map (LSS map) is obtained, demonstrating the Laplacian Scale-Space behavior of the planar curve corners, based on a newly defined unified corner model. With this formula, some Laplacian Scale-Space behavior is summarized. Although LSS demonstrates some similarities to Curvature Scale Space (CSS), there are still some differences. First, no new extreme points are generated in the LSS. Second, the behavior of different cases of a corner model is consistent and simple. This makes it easy to trace the corner in a scale space. At last, the behavior of LSS is verified in an experiment on a digital curve.
A Comprehensive Three-Dimensional Cortical Map of Vowel Space
ERIC Educational Resources Information Center
Scharinger, Mathias; Idsardi, William J.; Poe, Samantha
2011-01-01
Mammalian cortex is known to contain various kinds of spatial encoding schemes for sensory information including retinotopic, somatosensory, and tonotopic maps. Tonotopic maps are especially interesting for human speech sound processing because they encode linguistically salient acoustic properties. In this study, we mapped the entire vowel space…
SpaceTime Environmental Image Information for Scene Understanding
2016-04-01
public Internet resources such as Google,65 MapQuest,66 Bing,67 and Yahoo Maps.68 Approved for public release; distribution unlimited. 9 Table 3...azimuth angle 3 Terrain and location: USACE AGC — Satellite/aerial imagery and terrain analysis 4 Terrain and location: Google, MapQuest, Bing, Yahoo ...Maps. [accessed 2015 Dec]. https://www.bing.com/maps/. 68. YAHOO ! Maps. [accessed 2015 Dec]. https://maps.yahoo.com/b/. 69. 557th Weather Wing. US
Topological Schemas of Memory Spaces.
Babichev, Andrey; Dabaghian, Yuri A
2018-01-01
Hippocampal cognitive map-a neuronal representation of the spatial environment-is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework-the memory space-that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as "networks of interconnections among the representations of events," have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature-a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure.
Topographic mapping--the olfactory system.
Imai, Takeshi; Sakano, Hitoshi; Vosshall, Leslie B
2010-08-01
Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.
An Embodiment Perspective on Number-Space Mapping in 3.5-year-old Dutch Children
ERIC Educational Resources Information Center
Noordende, Jaccoline E.; Volman, M(Chiel). J. M.; Leseman, Paul P. M.; Kroesbergen, Evelyn H.
2017-01-01
Previous research suggests that block adding, subtracting and counting direction are early forms of number-space mapping. In this study, an embodiment perspective on these skills was taken. Embodiment theory assumes that cognition emerges through sensory-motor interaction with the environment. In line with this assumption, it was investigated if…
New mapping technologies - mapping and imaging from space
NASA Technical Reports Server (NTRS)
Blom, R. G.
2000-01-01
New and significantly enhanced space based observational capabiities are available which are of potential use to the hazards community. In combination with existing methodologies, these instruments and data can significantly enhance and extend current procedures for seismic zonation and hazards evaluation. This paper provides a brief overview of several of the more useful data sets available.
Mapping Control and Affiliation in Teacher-Student Interaction with State Space Grids
ERIC Educational Resources Information Center
Mainhard, M. Tim; Pennings, Helena J. M.; Wubbels, Theo; Brekelmans, Mieke
2012-01-01
This paper explores how State Space Grids (SSG), a dynamic systems research method, can be used to map teacher-student interactions from moment-to-moment and thereby to incorporate temporal aspects of interaction. Interactions in two secondary school classrooms are described in terms of level of interpersonal control and affiliation, and of…
X-ray Reciprocal Space Mapping of Graded Al x Ga1 - x N Films and Nanowires.
Stanchu, Hryhorii V; Kuchuk, Andrian V; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Zytkiewicz, Zbigniew R; Belyaev, Alexander E; Salamo, Gregory J
2016-12-01
The depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls. Finally, we demonstrate that the developed X-ray reciprocal space map model allows for reliable depth profiles of strain and Al composition determination in both Al x Ga1 - x N films and NWs.
Space mapping method for the design of passive shields
NASA Astrophysics Data System (ADS)
Sergeant, Peter; Dupré, Luc; Melkebeek, Jan
2006-04-01
The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.
Beyond the usual mapping functions in GPS, VLBI and Deep Space tracking.
NASA Astrophysics Data System (ADS)
Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie
2014-05-01
We describe here a new algorithm to model the water contents of the atmosphere (including ZWD) from GPS slant wet delays relative to a single receiver. We first make the assumption that the water vapor contents are mainly governed by a scale height (exponential law), and secondly that the departures from this decaying exponential can be mapped as a set of low degree 3D Zernike functions (w.r.t. space) and Tchebyshev polynomials (w.r.t. time.) We compare this new algorithm with previous algorithms known as mapping functions in GPS, VLBI and Deep Space tracking and give an example with data acquired over a one day time span at the Geodesy Observatory of Tahiti.
Shaded Relief Color Wrapped, Kamchatka Peninsula, Russia
NASA Technical Reports Server (NTRS)
2000-01-01
This shaded relief topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are five rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, Zhilovaya, and Kakhtana. The broad, flat floodplains of the rivers are shown in yellow. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from red through green back to red) represents an equal amount of elevation difference (400 meters, or 1300 feet)similar to contour lines on a standard topographic map. This image contains about 2300 meters (7500 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 240 km (150 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000Mapping Venus: Modeling the Magellan Mission.
ERIC Educational Resources Information Center
Richardson, Doug
1997-01-01
Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua
2018-03-01
The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.
Mapping urban green open space in Bontang city using QGIS and cloud computing
NASA Astrophysics Data System (ADS)
Agus, F.; Ramadiani; Silalahi, W.; Armanda, A.; Kusnandar
2018-04-01
Digital mapping techniques are available freely and openly so that map-based application development is easier, faster and cheaper. A rapid development of Cloud Computing Geographic Information System makes this system can help the needs of the community for the provision of geospatial information online. The presence of urban Green Open Space (GOS) provide great benefits as an oxygen supplier, carbon-binding agent and can contribute to providing comfort and beauty of city life. This study aims to propose a platform application of GIS Cloud Computing (CC) of Bontang City GOS mapping. The GIS-CC platform uses the basic map available that’s free and open source. The research used survey method to collect GOS data obtained from Bontang City Government, while application developing works Quantum GIS-CC. The result section describes the existence of GOS Bontang City and the design of GOS mapping application.
A Basketball Court-Size Global Map of Mars for Education and Public Outreach
NASA Astrophysics Data System (ADS)
Hill, J. R.; Christensen, P. R.
2017-12-01
The Thermal Emission Imaging System (THEMIS) onboard the 2001 Mars Odyssey spacecraft has acquired over 220,000 infrared images of the Martian surface at a resolution of 100 m/pixel since the start of science operations in February 2002. A global map was previously developed by mosaicking together over 24,000 high-quality full-resolution THEMIS daytime infrared images. Although the resulting map has been extremely valuable for scientific and mission operations applications, it has been difficult to communicate this value to students, citizen scientists and the general public, since their interactions with the map have been limited to computer-based geographic information system (GIS) interfaces. We determined that, in order to better communicate the value and importance of mapping the entire Martian surface at this resolution, people need to be able to physically interact with the map and experience its full scale. Therefore, the THEMIS Day IR Global Mosaic with Colorized MOLA Elevation will be printed on a 45ft x 90ft vinyl mat, which will allow observers to walk across and physically experience the map at approximately full resolution (printed at 200 pixels per inch). The size of the map was chosen to fit on a standard high school basketball court, so that a large number of schools will have a sufficiently large indoor surface on which to display the map for education events. The vinyl material and printing process selected for the map have been proven to be wear-resistant in similar applications, as long as everyone who walks on the map wears socks or similarly soft foot coverings. In order to make transportation easier, the map will be printed in two 45ft x 45ft sections, which will be joined together at events to create the full 45ft x 90ft map. The final stages of the map production will take place in early fall 2017, followed by initial education events at Arizona State University and local schools to test the educational activities associated with the map. This project was partially inspired by the National Geographic Society's Giant Traveling Maps Program, was completed with the assistance of the Arizona Geographic Alliance, and was largely funded through the Arizona State University School of Earth and Space Exploration (SESE) Summer Exploration Graduate Fellowship program.
Displays, instruments, and the multi-dimensional world of cartography
NASA Technical Reports Server (NTRS)
Mccleary, George F., Jr.
1989-01-01
Cartographers are creators and purveyors of maps. Maps are representations of space, geographical images of the environment. Maps organize spatial information for convenience, particularly for use in performing tasks which involve the environment. There are many different kinds of maps, and there are as many different uses of maps as there are spatial problems to be solved. Maps and the display instrument dichotomy are examined. Also examined are the categories of map use along with the characteristics of maps.
Design of an image encryption scheme based on a multiple chaotic map
NASA Astrophysics Data System (ADS)
Tong, Xiao-Jun
2013-07-01
In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.
Spatializing Emotion: No Evidence for a Domain-General Magnitude System.
Pitt, Benjamin; Casasanto, Daniel
2017-11-22
People implicitly associate different emotions with different locations in left-right space. Which aspects of emotion do they spatialize, and why? Across many studies people spatialize emotional valence, mapping positive emotions onto their dominant side of space and negative emotions onto their non-dominant side, consistent with theories of metaphorical mental representation. Yet other results suggest a conflicting mapping of emotional intensity (a.k.a., emotional magnitude), according to which people associate more intense emotions with the right and less intense emotions with the left - regardless of their valence; this pattern has been interpreted as support for a domain-general system for representing magnitudes. To resolve the apparent contradiction between these mappings, we first tested whether people implicitly map either valence or intensity onto left-right space, depending on which dimension of emotion they attend to (Experiments 1a, b). When asked to judge emotional valence, participants showed the predicted valence mapping. However, when asked to judge emotional intensity, participants showed no systematic intensity mapping. We then tested an alternative explanation of findings previously interpreted as evidence for an intensity mapping (Experiments 2a, b). These results suggest that previous findings may reflect a left-right mapping of spatial magnitude (i.e., the size of a salient feature of the stimuli) rather than emotion. People implicitly spatialize emotional valence, but, at present, there is no clear evidence for an implicit lateral mapping of emotional intensity. These findings support metaphor theory and challenge the proposal that mental magnitudes are represented by a domain-general metric that extends to the domain of emotion. Copyright © 2017 Cognitive Science Society, Inc.
Elementary maps on nest algebras
NASA Astrophysics Data System (ADS)
Li, Pengtong
2006-08-01
Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.
Digit replacement: A generic map for nonlinear dynamical systems.
García-Morales, Vladimir
2016-09-01
A simple discontinuous map is proposed as a generic model for nonlinear dynamical systems. The orbit of the map admits exact solutions for wide regions in parameter space and the method employed (digit manipulation) allows the mathematical design of useful signals, such as regular or aperiodic oscillations with specific waveforms, the construction of complex attractors with nontrivial properties as well as the coexistence of different basins of attraction in phase space with different qualitative properties. A detailed analysis of the dynamical behavior of the map suggests how the latter can be used in the modeling of complex nonlinear dynamics including, e.g., aperiodic nonchaotic attractors and the hierarchical deposition of grains of different sizes on a surface.
Visual classification of medical data using MLP mapping.
Cağatay Güler, E; Sankur, B; Kahya, Y P; Raudys, S
1998-05-01
In this work we discuss the design of a novel non-linear mapping method for visual classification based on multilayer perceptrons (MLP) and assigned class target values. In training the perceptron, one or more target output values for each class in a 2-dimensional space are used. In other words, class membership information is interpreted visually as closeness to target values in a 2D feature space. This mapping is obtained by training the multilayer perceptron (MLP) using class membership information, input data and judiciously chosen target values. Weights are estimated in such a way that each training feature of the corresponding class is forced to be mapped onto the corresponding 2-dimensional target value.
Standard for the U.S. Geological Survey Historical Topographic Map Collection
Allord, Gregory J.; Fishburn, Kristin A.; Walter, Jennifer L.
2014-01-01
This document defines the digital map product of the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic quadrangle maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. Each printed topographic map is scanned “as is” and captures the content and condition of each map. The HTMC provides ready access to maps that are no longer available for distribution in print. A new generation of topographic maps called “US Topo” was defined in 2009. US Topo maps, though modeled on the legacy 7.5-minute topographic maps, conform to different standards. For more information on the HTMC, see the project Web site at: http://nationalmap.gov/historical/.
NASA Astrophysics Data System (ADS)
Mourra, Olivier; Blancquaert, Thierry; Signorini, Carla; Tonicello, Ferdinando
2008-09-01
The European Cooperation for Space Standardization is an initiative established to develop and maintain a coherent, single set of user-friendly standards for use in all European space activities [1].The standard documents are today grouped in 4 families: Space Project Management, Space ProductAssurance, Space Engineering, and General.The Space Engineering family contains around 60 standards covering several domains. Among them, the ",Electrical and Electronic Standard" has a long history, starting with a PSS document initiated more than 20 years ago [2][3].In 2007 and 2008, the Electrical and Electronic Standard has been reviewed by the European Space Agency, National Space Agencies and European space industries. The new version (ECSS-E-ST-20-C) has just been released. It is proposed to present this new standard and to illustrate a set of major and important power electronic requirements with relevant rationales and technical explanations.The first part of the paper will focus on the main modifications with respect to the existing ECSS-E-20A standard.The other parts will focus on a set of major and important requirements present in the new ECSS-E-ST-20C. The rationales justifying these requirements will be given and sometimes illustrated with specific examples.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space.
Montoro, Pedro R; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a 'positive-up/negative-down' embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis.
Cross-modal metaphorical mapping of spoken emotion words onto vertical space
Montoro, Pedro R.; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando
2015-01-01
From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a ‘positive-up/negative-down’ embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis. PMID:26322007
Mapping Partners Master Drug Dictionary to RxNorm using an NLP-based approach.
Zhou, Li; Plasek, Joseph M; Mahoney, Lisa M; Chang, Frank Y; DiMaggio, Dana; Rocha, Roberto A
2012-08-01
To develop an automated method based on natural language processing (NLP) to facilitate the creation and maintenance of a mapping between RxNorm and a local medication terminology for interoperability and meaningful use purposes. We mapped 5961 terms from Partners Master Drug Dictionary (MDD) and 99 of the top prescribed medications to RxNorm. The mapping was conducted at both term and concept levels using an NLP tool, called MTERMS, followed by a manual review conducted by domain experts who created a gold standard mapping. The gold standard was used to assess the overall mapping between MDD and RxNorm and evaluate the performance of MTERMS. Overall, 74.7% of MDD terms and 82.8% of the top 99 terms had an exact semantic match to RxNorm. Compared to the gold standard, MTERMS achieved a precision of 99.8% and a recall of 73.9% when mapping all MDD terms, and a precision of 100% and a recall of 72.6% when mapping the top prescribed medications. The challenges and gaps in mapping MDD to RxNorm are mainly due to unique user or application requirements for representing drug concepts and the different modeling approaches inherent in the two terminologies. An automated approach based on NLP followed by human expert review is an efficient and feasible way for conducting dynamic mapping. Copyright © 2011 Elsevier Inc. All rights reserved.
USGS standard quadrangle maps for emergency response
Moore, Laurence R.
2009-01-01
The 1:24,000-scale topographic quadrangle was the primary product of the U.S. Geological Survey's (USGS) National Mapping Program from 1947-1992. This map series includes about 54,000 map sheets for the conterminous United States, and is the only uniform map series ever produced that covers this area at such a large scale. This map series partially was revised under several programs, starting as early as 1968, but these programs were not adequate to keep the series current. Through the 1990s the emphasis of the USGS mapping program shifted away from topographic maps and toward more specialized digital data products. Topographic map revision dropped off rapidly after 1999, and stopped completely by 2004. Since 2001, emergency-response and homeland security requirement have revived the question of whether a standard national topographic series is needed. Emergencies such as Hurricane Katrina in 2005 and California wildfires in 2007-08 demonstrated that familiar maps are important to first responders. Maps that have a standard scale, extent, and grids help reduce confusion and save time in emergencies. Traditional maps are designed to allow the human brain to quickly process large amounts of information, and depend on artistic layout and design that cannot be fully automated. In spite of technical advances, creating a traditional, general-purpose topographic map is still expensive. Although the content and layout of traditional topographic maps probably is still desirable, the preferred packaging and delivery of maps has changed. Digital image files are now desired by most users, but to be useful to the emergency-response community, these files must be easy to view and easy to print without specialized geographic information system expertise or software.
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.
2015-09-01
We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.
NASA Astrophysics Data System (ADS)
Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.
2016-11-01
We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is < {f}\\star > =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X.; Schmidt, K. B.; Jones, T. A.
2015-09-20
We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometricmore » redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.« less
Attenuation of multiples in image space
NASA Astrophysics Data System (ADS)
Alvarez, Gabriel F.
In complex subsurface areas, attenuation of 3D specular and diffracted multiples in data space is difficult and inaccurate. In those areas, image space is an attractive alternative. There are several reasons: (1) migration increases the signal-to-noise ratio of the data; (2) primaries are mapped to coherent events in Subsurface Offset Domain Common Image Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) image space is regular and smaller; (4) attenuating the multiples in data space leaves holes in the frequency-Wavenumber space that generate artifacts after migration. I develop a new equation for the residual moveout of specular multiples in ADCIGs and use it for the kernel of an apex-shifted Radon transform to focus and separate the primaries from specular and diffracted multiples. Because of small amplitude, phase and kinematic errors in the multiple estimate, we need adaptive matching and subtraction to estimate the primaries. I pose this problem as an iterative least-squares inversion that simultaneously matches the estimates of primaries and multiples to the data. Standard methods match only the estimate of the multiples. I demonstrate with real and synthetic data that the method produces primaries and multiples with little cross-talk. In 3D, the multiples exhibit residual moveout in SODCIGs in in-line and cross-line offsets. They map away from zero subsurface offsets when migrated with the faster velocity of the primaries. In ADCIGs the residual moveout of the primaries as a function of the aperture angle, for a given azimuth, is flat for those angles that illuminate the reflector. The multiples have residual moveout towards increasing depth for increasing aperture angles at all azimuths. As a function of azimuth, the primaries have better azimuth resolution than the multiples at larger aperture angles. I show, with a real 3D dataset, that even below salt, where illumination is poor, the multiples are well attenuated in ADCIGs with the new Radon transform in planes of azimuth-stacked ADCIGs. The angle stacks of the estimated primaries show little residual multiple energy.
GEMPAK 5.1 - A GENERAL METEOROLOGICAL PACKAGE (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Desjardins, M. L.
1994-01-01
GEMPAK is a general meteorological software package developed at NASA/Goddard Space Flight Center. It includes programs to analyze and display surface, upper-air, and gridded data, including model output. There are very general programs to list, edit, and plot data on maps, to display profiles and time series, to draw and fill contours, to draw streamlines, to plot symbols for clouds, sky cover, and pressure tendency, and draw cross sections in the case of gridded data and sounding data. In addition, there are Barnes objective analysis programs to grid surface and upper-air data. The programs include the capabilities to derive meteorological parameters from those found in the dataset, to perform vertical interpolations of sounding data to different coordinate systems, and to compute an extensive set of gridded diagnostic quantities by specifying various nested combinations of scalars and vector arithmetic, algebraic, and differential operators. The GEMPAK 5.1 graphics/transformation subsystem, GEMPLT, provides device-independent graphics. GEMPLT also has the capability to display output in a variety of map projections or overlaid on satellite imagery. GEMPAK 5.1 is written in FORTRAN 77 and C-language and has been implemented on VAX computers under VMS and on computers running the UNIX operating system. During installation and normal use, this package occupies approximately 100Mb of hard disk space. The UNIX version of GEMPAK includes drivers for several graphic output systems including MIT's X Window System (X11,R4), Sun GKS, PostScript (color and monochrome), Silicon Graphics, and others. The VMS version of GEMPAK also includes drivers for several graphic output systems including PostScript (color and monochrome). The VMS version is delivered with the object code for the Transportable Applications Environment (TAE) program, version 4.1 which serves as a user interface. A color monitor is recommended for displaying maps on video display devices. Data for rendering regional maps is included with this package. The standard distribution medium for the UNIX version of GEMPAK 5.1 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The standard distribution medium for the VMS version of GEMPAK 5.1 is a 6250 BPI 9-track magnetic tape in DEC VAX BACKUP format. The VMS version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. This program was developed in 1985. The current version, GEMPAK 5.1, was released in 1992. The package is delivered with source code. An extensive collection of subroutine libraries allows users to format data for use by GEMPAK, to develop new programs, and to enhance existing ones.
Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings
NASA Astrophysics Data System (ADS)
Hussein Maibed, Zena
2018-05-01
The aim of this paper, we introduce a concept of general extended mapping which is independent of nonexpansive mapping and give an iteration process of families of quasi nonexpansive and of general extended mappings. Also, the existence of common fixed point are studied for these process in the Hilbert spaces.
Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular Frameworks.
Kontijevskis, Aleksejs
2017-04-24
The emergence of the DNA-encoded chemical libraries (DEL) field in the past decade has attracted the attention of the pharmaceutical industry as a powerful mechanism for the discovery of novel drug-like hits for various biological targets. Nuevolution Chemetics technology enables DNA-encoded synthesis of billions of chemically diverse drug-like small molecule compounds, and the efficient screening and optimization of these, facilitating effective identification of drug candidates at an unprecedented speed and scale. Although many approaches have been developed by the cheminformatics community for the analysis and visualization of drug-like chemical space, most of them are restricted to the analysis of a maximum of a few millions of compounds and cannot handle collections of 10 8 -10 12 compounds typical for DELs. To address this big chemical data challenge, we developed the Reduced Complexity Molecular Frameworks (RCMF) methodology as an abstract and very general way of representing chemical structures. By further introducing RCMF descriptors, we constructed a global framework map of drug-like chemical space and demonstrated how chemical space occupied by multi-million-member drug-like Chemetics DNA-encoded libraries and virtual combinatorial libraries with >10 12 members could be analyzed and mapped without a need for library enumeration. We further validate the approach by performing RCMF-based searches in a drug-like chemical universe and mapping Chemetics library selection outputs for LSD1 targets on a global framework chemical space map.
Computations on metric maps in mammals: getting oriented and choosing a multi-destination route.
Gallistel, C R; Cramer, A E
1996-01-01
The capacity to construct a cognitive map is hypothesized to rest on two foundations: (1) dead reckoning (path integration); (2) the perception of the direction and distance of terrain features relative to the animal. A map may be constructed by combining these two sources of positional information, with the result that the positions of all terrain features are represented in the coordinate framework used for dead reckoning. When animals need to become reoriented in a mapped space, results from rats and human toddlers indicate that they focus exclusively on the shape of the perceived environment, ignoring non-geometric features such as surface colors. As a result, in a rectangular space, they are misoriented half the time even when the two ends of the space differ strikingly in their appearance. In searching for a hidden object after becoming reoriented, both kinds of subjects search on the basis of the object's mapped position in the space rather than on the basis of its relationship to a goal sign (e.g. a distinctive container or nearby marker), even though they have demonstrably noted the relationship between the goal and the goal sign. When choosing a multidestination foraging route, vervet monkeys look at least three destinations ahead, even though they are only capable of keeping a maximum of six destinations in mind at once.
Parallel algorithms for mapping pipelined and parallel computations
NASA Technical Reports Server (NTRS)
Nicol, David M.
1988-01-01
Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.
Low rank approximation methods for MR fingerprinting with large scale dictionaries.
Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra
2018-04-01
This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T 1 , T 2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
A Virtual Map to Support People Who Are Blind in Navigation through Real Spaces
ERIC Educational Resources Information Center
Lahav, Orly; Schloerb, David W.; Kumar, Siddarth; Srinivasan, Mandayam A.
2011-01-01
Most of the spatial information needed by sighted people to construct cognitive maps of spaces is gathered through the visual channel. Unfortunately, people who are blind lack the ability to collect the required spatial information in advance. The use of virtual reality as a learning and rehabilitation tool for people with disabilities has been on…
Very High Quality Crystals of Wide-Gap II-VI Semiconductors: What for?
2001-01-01
the reciprocal space mapping , by the etch pit density (EPD) measurements (to determine the density of dislocations) and by the measurement of the width...crystals. The EPD was in the range 5 x 1 + 104 cmn2 for Cdl.,ZnxTe crystals and about 104 cmz for ZnTe. The reciprocal space mapping of the crystals
USDA-ARS?s Scientific Manuscript database
A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...
Geologic map of the Sunnymead 7.5' quadrangle, Riverside County, California
Morton, Douglas M.; Matti, Jonathan C.
2001-01-01
a. This Readme; includes in Appendix I, data contained in sun_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Representation of natural numbers in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, Paul
2001-03-01
This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less
A general number-to-space mapping deficit in developmental dyscalculia.
Huber, S; Sury, D; Moeller, K; Rubinsten, O; Nuerk, H-C
2015-01-01
Previous research on developmental dyscalculia (DD) suggested that deficits in the number line estimation task are related to a failure to represent number magnitude linearly. This conclusion was derived from the observation of logarithmically shaped estimation patterns. However, recent research questioned this idea of an isomorphic relationship between estimation patterns and number magnitude representation. In the present study, we evaluated an alternative hypothesis: impairments in the number line estimation task are due to a general deficit in mapping numbers onto space. Adults with DD and a matched control group had to learn linear and non-linear layouts of the number line via feedback. Afterwards, we assessed their performance how well they learnt the new number-space mappings. We found irrespective of the layouts worse performance of adults with DD. Additionally, in case of the linear layout, we observed that their performance did not differ from controls near reference points, but that differences between groups increased as the distance to reference point increased. We conclude that worse performance of adults with DD in the number line task might be due a deficit in mapping numbers onto space which can be partly overcome relying on reference points. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of Techniques Used to Estimate Cortical Feature Maps
Katta, Nalin; Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.
2011-01-01
Functional properties of neurons are often distributed nonrandomly within a cortical area and form topographic maps that reveal insights into neuronal organization and interconnection. Some functional maps, such as in visual cortex, are fairly straightforward to discern with a variety of techniques, while other maps, such as in auditory cortex, have resisted easy characterization. In order to determine appropriate protocols for establishing accurate functional maps in auditory cortex, artificial topographic maps were probed under various conditions, and the accuracy of estimates formed from the actual maps was quantified. Under these conditions, low-complexity maps such as sound frequency can be estimated accurately with as few as 25 total samples (e.g., electrode penetrations or imaging pixels) if neural responses are averaged together. More samples are required to achieve the highest estimation accuracy for higher complexity maps, and averaging improves map estimate accuracy even more than increasing sampling density. Undersampling without averaging can result in misleading map estimates, while undersampling with averaging can lead to the false conclusion of no map when one actually exists. Uniform sample spacing only slightly improves map estimation over nonuniform sample spacing typical of serial electrode penetrations. Tessellation plots commonly used to visualize maps estimated using nonuniform sampling are always inferior to linearly interpolated estimates, although differences are slight at higher sampling densities. Within primary auditory cortex, then, multiunit sampling with at least 100 samples would likely result in reasonable feature map estimates for all but the highest complexity maps and the highest variability that might be expected. PMID:21889537
Geologic map of the Cucamonga Peak 7.5' quadrangle, San Bernardino County, California
Morton, D.M.; Matti, J.C.; Digital preparation by Koukladas, Catherine; Cossette, P.M.
2001-01-01
a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Cucamonga Peak 7.5’ topographic quadrangle in conjunction with the geologic map.
Geologic map of the Telegraph Peak 7.5' quadrangle, San Bernardino County, California
Morton, D.M.; Woodburne, M.O.; Foster, J.H.; Morton, Gregory; Cossette, P.M.
2001-01-01
a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Telegraph Peak 7.5’ topographic quadrangle in conjunction with the geologic map.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, Daniel; Steinhardt, Charles; Faisst, Andreas
2015-11-01
Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.
Xiao, Dan; Balcom, Bruce J
2012-07-01
Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.
Mapping Perinatal Nursing Process Measurement Concepts to Standard Terminologies.
Ivory, Catherine H
2016-07-01
The use of standard terminologies is an essential component for using data to inform practice and conduct research; perinatal nursing data standardization is needed. This study explored whether 76 distinct process elements important for perinatal nursing were present in four American Nurses Association-recognized standard terminologies. The 76 process elements were taken from a valid paper-based perinatal nursing process measurement tool. Using terminology-supported browsers, the elements were manually mapped to the selected terminologies by the researcher. A five-member expert panel validated 100% of the mapping findings. The majority of the process elements (n = 63, 83%) were present in SNOMED-CT, 28% (n = 21) in LOINC, 34% (n = 26) in ICNP, and 15% (n = 11) in CCC. SNOMED-CT and LOINC are terminologies currently recommended for use to facilitate interoperability in the capture of assessment and problem data in certified electronic medical records. Study results suggest that SNOMED-CT and LOINC contain perinatal nursing process elements and are useful standard terminologies to support perinatal nursing practice in electronic health records. Terminology mapping is the first step toward incorporating traditional paper-based tools into electronic systems.
Analogical processes in children's understanding of spatial representations.
Yuan, Lei; Uttal, David; Gentner, Dedre
2017-06-01
We propose that map reading can be construed as a form of analogical mapping. We tested 2 predictions that follow from this claim: First, young children's patterns of performance in map reading tasks should parallel those found in analogical mapping tasks; and, second, children will benefit from guided alignment instructions that help them see the relational correspondences between the map and the space. In 4 experiments, 3-year-olds completed a map reading task in which they were asked to find hidden objects in a miniature room, using a corresponding map. We manipulated the availability of guided alignment (showing children the analogical mapping between maps and spaces; Experiments 1, 2, and 3a), the format of guided alignment (gesture or relational language; Experiment 2), and the iconicity of maps (Experiments 3a and 3b). We found that (a) young children's difficulties in map reading follow from known patterns of analogical development-for example, focusing on object similarity over relational similarity; and (b) guided alignment based on analogical reasoning led to substantially better performance. Results also indicated that children's map reading performance was affected by the format of guided alignment, the iconicity of the maps, and the order of tasks. The results bear on the developmental mechanisms underlying young children's learning of spatial representations and also suggest ways to support this learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wyborn, L. A.
2007-12-01
The Information Age in Science is being driven partly by the data deluge as exponentially growing volumes of data are being generated by research. Such large volumes of data cannot be effectively processed by humans and efficient and timely processing by computers requires development of specific machine readable formats. Further, as key challenges in earth and space sciences, such as climate change, hazard prediction and sustainable development resources require a cross disciplinary approach, data from various domains will need to be integrated from globally distributed sources also via machine to machine formats. However, it is becoming increasingly apparent that the existing standards can be very domain specific and most existing data transfer formats require human intervention. Where groups from different communities do try combine data across the domain/discipline boundaries much time is spent reformatting and reorganizing the data and it is conservatively estimated that this can take 80% of a project's time and resources. Four different types of standards are required for machine to machine interaction: systems, syntactic, schematic and semantic. Standards at the systems (WMS, WFS, etc) and at the syntactic level (GML, Observation and Measurement, SensorML) are being developed through international standards bodies such as ISO, OGC, W3C, IEEE etc. In contrast standards at the schematic level (e.g., GeoSciML, LandslidesML, WaterML, QuakeML) and at the semantic level (ie ontologies and vocabularies) are currently developing rapidly, in a very uncoordinated way and with little governance. As the size of the community that can machine read each others data depends on the size of the community that has developed the schematic or semantic standards, it is essential that to achieve global integration of earth and space science data, the required standards need to be developed through international collaboration using accepted standard proceedures. Once developed the standards also require some form of governance to maintain and then extend the standard as the science evolves to meet new challenges. A standard that does have some governance is GeoSciML, a data transfer standard for geoscience map data. GeoSciML is currently being developed by a consortium of 7 countries under the auspices of the Commission for the Management of and Application of Geoscience Information (CGI), a commission of the International Union of Geological Sciences. Perhaps other `ML' or ontology and vocabulary development `teams' need to look to their international domain specific specialty societies for endorsement and governance. But the issue goes beyond Earth and Space Sciences, as increasingly cross and intra disciplinary science requires machine to machine interaction with other science disciplines such as physics, chemistry and astronomy. For example, for geochemistry do we develop GeochemistryML or do we extend the existing Chemical Markup Language? Again, the question is who will provide the coordination of the development of the required schematic and semantic standards that underpin machine to machine global integration of science data. Is this a role for ICSU or CODATA or who? In order to address this issue, Geoscience Australia and CSIRO established the Solid Earth and Environmental Grid Community website to enable communities to `advertise' standards development and to provide a community TWIKI where standards can be developed in a globally `open' environment.
National Standard of the Russian Federation for Space Debris Mitigation
NASA Astrophysics Data System (ADS)
Loginov, S.; Yakovlev, M.; Mikhailov, M.; Popkova, L.
2009-03-01
Normative and technical document that define requirements for the mitigation of human-produced near-earth space pollution develops in Russian Federation.NATIONAL STANDARD of the Russian Federation GOST R 52925-2008 «SPACE TECHNOLOGY ITEMS. General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution» was approved in 2008 and entered into force since 1st January of 2009. Requirements of this standard harmonized with requirements of «UN SPACE DEBRIS MITIGATION GUIDELINESÈ»This standard consists of six parts:- Scope;- References to Standards;- Terms & Definitions;- Abbreviations;- General Provisions;- General Requirements on Space Systems for the Mitigation of Human-Produced near-Earth Space Pollution.
Choy, Eunice E Hang; Cheung, Him
2017-11-01
Temporal and spatial representations have been consistently shown to be inextricably intertwined. However, the exact nature of time-space mapping remains unknown. On the one hand, the conceptual metaphor theory postulates unilateral, asymmetric mapping of time onto space, that is, time is perceived in spatial terms but the perception of space is relatively independent of time. On the other hand, a theory of magnitude assumes bilateral and symmetric interactions between temporal and spatial perceptions. In the present paper, we argue that the concepts of linguistic asymmetry, egocentric anchoring, and sensory modality provide potential explanations for why evidences favoring both asymmetry and symmetry have been obtained. We first examine the asymmetry model and suggest that language plays a critical role in it. Next, we discuss the symmetry model in relation to egocentric anchoring and sensory modality. We conclude that since these three factors may jointly account for some conflicting past results regarding the strength and directionality of time-space mapping, they should be taken into serious consideration in future test designs.
The allocation of valenced concepts onto 3D space.
Marmolejo-Ramos, Fernando; Tirado, Carlos; Arshamian, Edward; Vélez, Jorge Iván; Arshamian, Artin
2018-06-01
The valence-space metaphor research area investigates the metaphorical mapping of valenced concepts onto space. Research findings from this area indicate that positive, neutral, and negative concepts are associated with upward, midward, and downward locations, respectively, in the vertical plane. The same research area has also indicated that such concepts seem to have no preferential location on the horizontal plane. The approach-avoidance effect consists in decreasing the distance between positive stimuli and the body (i.e. approach) and increasing the distance between negative stimuli and the body (i.e. avoid). Thus, the valence-space metaphor accounts for the mapping of valenced concepts onto the vertical and horizontal planes, and the approach-avoidance effect accounts for the mapping of valenced concepts onto the "depth" plane. By using a cube conceived for the study of allocation of valenced concepts onto 3D space, we show in three studies that positive concepts are placed in upward locations and near the participants' body, negative concepts are placed in downward locations and far from the participants' body, and neutral concepts are placed in between these concepts in both planes.
VizieR Online Data Catalog: Radio haloes in nearby galaxies (Heesen+, 2018)
NASA Astrophysics Data System (ADS)
Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.
2018-02-01
We present radio continuum observations of 12 nearby (D=2-27Mpc) edge-on galaxies at two different frequencies, namely at 1.4 and 5GHz (one galaxy at 8.5GHz instead of 5GHz). Our sample includes 11 late-type spiral (Sb or Sc) galaxies and one Magellanic-type barred galaxy (SBm), which are all highly inclined (i>=76°). As part of our study we have obtained several additional radio continuum maps. We make these maps publicly available (as well as all the other radio continuum maps in the paper). For 4 galaxies (NGC 55, 253, 891 and 4631) we have used single-dish maps, to correct for the missing zero-spacing flux where necessary. The Effelsberg maps of NGC 253 and 4631 were already presented in Heesen et al. (2009A&A...494..563H) and Mora & Krause (2013A&A...560A..42M), respectively, and the Effelsberg map of NGC 891 was already presented in Dumke (1997, PhD thesis, University of Bonn). We present these maps for completeness. The 4.80-GHz map of NGC 55 obtained with the 64-m Parkes telescope is so far unpublished. Furthermore, we show two maps of NGC 4631 at 1.35 and 1.65GHz observed with the VLA in D- configuration (R. Beck 2016, priv. comm.). The data were observed in August 1996, with 12 h on-source (ID: AG486) and reduced in standard fashion with AIPS. The maps have an angular resolution of 52 arcsec, so that we did not use them in the analysis, but they also show the halo of this galaxy very well. Lastly, we obtained maps of three further edge-on galaxies observed with the VLA (NGC 4157, 4217 and 4634). We reduced the data as described in Section 2, but since we had only one frequency available and no spectral index map, we did not use them in the analysis. The maps of NGC 4157 and 4217 were created by re-reducing archive data (IDs AI23, AF85, AH457 and AS392 for NGC 4157 and ID AM573 for NGC 4217). The map of NGC 4634 was created by using so far unpublished data from the VLA (ID: AD538). (3 data files).
Lugauer, Felix; Wetzl, Jens; Forman, Christoph; Schneider, Manuel; Kiefer, Berthold; Hornegger, Joachim; Nickel, Dominik; Maier, Andreas
2018-06-01
Our aim was to develop and validate a 3D Cartesian Look-Locker [Formula: see text] mapping technique that achieves high accuracy and whole-liver coverage within a single breath-hold. The proposed method combines sparse Cartesian sampling based on a spatiotemporally incoherent Poisson pattern and k-space segmentation, dedicated for high-temporal-resolution imaging. This combination allows capturing tissue with short relaxation times with volumetric coverage. A joint reconstruction of the 3D + inversion time (TI) data via compressed sensing exploits the spatiotemporal sparsity and ensures consistent quality for the subsequent multistep [Formula: see text] mapping. Data from the National Institute of Standards and Technology (NIST) phantom and 11 volunteers, along with reference 2D Look-Locker acquisitions, are used for validation. 2D and 3D methods are compared based on [Formula: see text] values in different abdominal tissues at 1.5 and 3 T. [Formula: see text] maps obtained from the proposed 3D method compare favorably with those from the 2D reference and additionally allow for reformatting or volumetric analysis. Excellent agreement is shown in phantom [bias[Formula: see text] < 2%, bias[Formula: see text] < 5% for (120; 2000) ms] and volunteer data (3D and 2D deviation < 4% for liver, muscle, and spleen) for clinically acceptable scan (20 s) and reconstruction times (< 4 min). Whole-liver [Formula: see text] mapping with high accuracy and precision is feasible in one breath-hold using spatiotemporally incoherent, sparse 3D Cartesian sampling.
Mapping Disaster Risk Reduction and Climate Change Adaptation: progress in South Africa
NASA Astrophysics Data System (ADS)
Storie, Judith M.
2018-05-01
Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA) strategies in Africa are on the increase. South Africa is no different, and a number of strategies have seen the light in aid of reducing disaster risk and adapting to cli-mate change. The DRR and CCA processes include the mapping of location and extent of known and potential hazards, vulnerable communities and environments, and opportunities that may exist to manage these risks. However, the mapping of often fast-changing urban and rural spaces in a standardized manner presents challenges that relate to processes, scales of data capture, level of detail recorded, software and compatibility related to data formats and net-works, human resources skills and understanding, as well as differences in approaches to the nature in which the map-ping processes are executed and spatial data is managed. As a result, projects and implementation of strategies that re-late to the use of such data is affected, and the success of activities based on the data may therefore be uncertain. This paper investigates data custodianship and data categories that is processed and managed across South Africa. It explores the process and content management of disaster risk and climate change related information and defines the challenges that exist in terms of governance. The paper also comments on the challenges and potential solutions for the situation as it gives rise to varying degrees of accuracy, effectiveness for use, and applicability of the spatial data available to affect DRR and improve the value of CCA programmes in the region.
Marcus, Lars
2018-01-01
The world is witnessing unprecedented urbanization, bringing extreme challenges to contemporary practices in urban planning and design. This calls for improved urban models that can generate new knowledge and enhance practical skill. Importantly, any urban model embodies a conception of the relation between humans and the physical environment. In urban modeling this is typically conceived of as a relation between human subjects and an environmental object, thereby reproducing a humans-environment dichotomy. Alternative modeling traditions, such as space syntax that originates in architecture rather than geography, have tried to overcome this dichotomy. Central in this effort is the development of new representations of urban space, such as in the case of space syntax, the axial map. This form of representation aims to integrate both human behavior and the physical environment into one and the same description. Interestingly, models based on these representations have proved to better capture pedestrian movement than regular models. Pedestrian movement, as well as other kinds of human flows in urban space, is essential for urban modeling, since increasingly flows of this kind are understood as the driver in urban processes. Critical for a full understanding of space syntax modeling is the ontology of its' representations, such as the axial map. Space syntax theory here often refers to James Gibson's "Theory of affordances," where the concept of affordances, in a manner similar to axial maps, aims to bridge the subject-object dichotomy by neither constituting physical properties of the environment or human behavior, but rather what emerges in the meeting between the two. In extension of this, the axial map can be interpreted as a representation of how the physical form of the environment affords human accessibility and visibility in urban space. This paper presents a close examination of the form of representations developed in space syntax methodology, in particular in the light of Gibson's "theory of affordances." The overarching aim is to contribute to a theoretical framework for urban models based on affordances, which may support the overcoming of the subject-object dichotomy in such models, here deemed essential for a greater social-ecological sustainability of cities.
Jung, Bo Kyeung; Kim, Jeeyong; Cho, Chi Hyun; Kim, Ju Yeon; Nam, Myung Hyun; Shin, Bong Kyung; Rho, Eun Youn; Kim, Sollip; Sung, Heungsup; Kim, Shinyoung; Ki, Chang Seok; Park, Min Jung; Lee, Kap No; Yoon, Soo Young
2017-04-01
The National Health Information Standards Committee was established in 2004 in Korea. The practical subcommittee for laboratory test terminology was placed in charge of standardizing laboratory medicine terminology in Korean. We aimed to establish a standardized Korean laboratory terminology database, Korea-Logical Observation Identifier Names and Codes (K-LOINC) based on former products sponsored by this committee. The primary product was revised based on the opinions of specialists. Next, we mapped the electronic data interchange (EDI) codes that were revised in 2014, to the corresponding K-LOINC. We established a database of synonyms, including the laboratory codes of three reference laboratories and four tertiary hospitals in Korea. Furthermore, we supplemented the clinical microbiology section of K-LOINC using an alternative mapping strategy. We investigated other systems that utilize laboratory codes in order to investigate the compatibility of K-LOINC with statistical standards for a number of tests. A total of 48,990 laboratory codes were adopted (21,539 new and 16,330 revised). All of the LOINC synonyms were translated into Korean, and 39,347 Korean synonyms were added. Moreover, 21,773 synonyms were added from reference laboratories and tertiary hospitals. Alternative strategies were established for mapping within the microbiology domain. When we applied these to a smaller hospital, the mapping rate was successfully increased. Finally, we confirmed K-LOINC compatibility with other statistical standards, including a newly proposed EDI code system. This project successfully established an up-to-date standardized Korean laboratory terminology database, as well as an updated EDI mapping to facilitate the introduction of standard terminology into institutions. © 2017 The Korean Academy of Medical Sciences.
NASA Astrophysics Data System (ADS)
Yarnykh, V.; Korostyshevskaya, A.
2017-08-01
Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.
The Self-Organized Archive: SPASE, PDS and Archive Cooperatives
NASA Astrophysics Data System (ADS)
King, T. A.; Hughes, J. S.; Roberts, D. A.; Walker, R. J.; Joy, S. P.
2005-05-01
Information systems with high quality metadata enable uses and services which often go beyond the original purpose. There are two types of metadata: annotations which are items that comment on or describe the content of a resource and identification attributes which describe the external properties of the resource itself. For example, annotations may indicate which columns are present in a table of data, whereas an identification attribute would indicate source of the table, such as the observatory, instrument, organization, and data type. When the identification attributes are collected and used as the basis of a search engine, a user can constrain on an attribute, the archive can then self-organize around the constraint, presenting the user with a particular view of the archive. In an archive cooperative where each participating data system or archive may have its own metadata standards, providing a multi-system search engine requires that individual archive metadata be mapped to a broad based standard. To explore how cooperative archives can form a larger self-organized archive we will show how the Space Physics Archive Search and Extract (SPASE) data model will allow different systems to create a cooperative and will use Planetary Data System (PDS) plus existing space physics activities as a demonstration.
Mapping continental-scale biomass burning and smoke palls from the space shuttle
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh; Helfert, Michael
1992-01-01
Space shuttle photographs have been used to map the areal extent of Amazonian smoke palls associated with biomass burning. Areas covered with smoke have increased from approximately 300,000 sq km to continental-size smoke palls of approximately 3,000,000 sq km. The smoke palls interpreted from the STS-48 data indicate that this phenomenon is persistent. Astronaut observations of such dynamic and vital environmental phenomena indicate the possibility of intergrating the earth observation capabilities of all space platforms in future modeling of the earth's dynamic processes.
The statistical kinematical theory of X-ray diffraction as applied to reciprocal-space mapping
Nesterets; Punegov
2000-11-01
The statistical kinematical X-ray diffraction theory is developed to describe reciprocal-space maps (RSMs) from deformed crystals with defects of the structure. The general solutions for coherent and diffuse components of the scattered intensity in reciprocal space are derived. As an example, the explicit expressions for intensity distributions in the case of spherical defects and of a mosaic crystal were obtained. The theory takes into account the instrumental function of the triple-crystal diffractometer and can therefore be used for experimental data analysis.
NASA Astrophysics Data System (ADS)
Realmuto, V. J.; Baxter, S.; Webley, P. W.
2011-12-01
Plume Tracker is the next generation of interactive plume mapping tools pioneered by MAP_SO2. First developed in 1995, MAP_SO2 has been used to study plumes at a number of volcanoes worldwide with data acquired by both airborne and space-borne instruments. The foundation of these tools is a radiative transfer (RT) model, based on MODTRAN, which we use as the forward model for our estimation of ground temperature and sulfur dioxide concentration. Plume Tracker retains the main functions of MAP_SO2, providing interactive tools to input radiance measurements and ancillary data, such as profiles of atmospheric temperature and humidity, to the retrieval procedure, generating the retrievals, and visualizing the resulting retrievals. Plume Tracker improves upon MAP_SO2 in the following areas: (1) an RT model based on an updated version of MODTRAN, (2) a retrieval procedure based on maximizing the vector projection of model spectra onto observed spectra, rather than minimizing the least-squares misfit between the model and observed spectra, (3) an ability to input ozone profiles to the RT model, (4) increased control over the vertical distribution of the atmospheric gas species used in the model, (5) a standard programmatic interface to the RT model code, based on the Component Object Model (COM) interface, which will provide access to any programming language that conforms to the COM standard, and (6) a new binning algorithm that decreases running time by exploiting spatial redundancy in the radiance data. Based on our initial testing, the binning algorithm can reduce running time by an order of magnitude. The Plume Tracker project is a collaborative effort between the Jet Propulsion Laboratory and Geophysical Institute (GI) of the University of Alaska-Fairbanks. Plume Tracker is integrated into the GI's operational plume dispersion modeling system and will ingest temperature and humidity profiles generated by the Weather Research and Forecasting model, together with plume height estimates from the Puff model. The access to timely forecasts of atmospheric conditions, together with the reductions in running time, will increase the utility of Plume Tracker in the Alaska Volcano Observatory's mission to mitigate volcanic hazards in Alaska and the Northern Pacific region.
NASA Technical Reports Server (NTRS)
Idso, S. B.; Jackson, R. D.; Reginato, R. J.
1976-01-01
A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.
A foundation for savantism? Visuo-spatial synaesthetes present with cognitive benefits.
Simner, Julia; Mayo, Neil; Spiller, Mary-Jane
2009-01-01
Individuals with 'time-space' synaesthesia have conscious awareness of mappings between time and space (e.g., they may see months arranged in an ellipse, or years as columns or spirals). These mappings exist in the 3D space around the body or in a virtual space within the mind's eye. Our study shows that these extra-ordinary mappings derive from, or give rise to, superior abilities in the two domains linked by this cross-modal phenomenon (i.e., abilities relating to time, and visualised space). We tested ten time-space synaesthetes with a battery of temporal and visual/spatial tests. Our temporal battery (the Edinburgh [Public and Autobiographical] Events Battery - EEB) assessed both autobiographical and non-autobiographical memory for events. Our visual/spatial tests assessed the ability to manipulate real or imagined objects in 3D space (the Three Dimensional Constructional Praxis test; Visual Object and Space Perception Battery, University of Southern California Mental Rotation Test) as well as assessing visual memory recall (Visual Patterns Test - VPT). Synaesthetes' performance was superior to the control population in every assessment, but was not superior in tasks that do not draw upon abilities related to their mental calendars. Our paper discusses the implications of this temporal-spatial advantage as it relates to normal processing, synaesthetic processing, and to the savant-like condition of hyperthymestic syndrome (Parker et al., 2006).
Fast metabolite identification with Input Output Kernel Regression.
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-06-15
An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Fast metabolite identification with Input Output Kernel Regression
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-01-01
Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628
Identifying Significant Changes in Cerebrovascular Reactivity to Carbon Dioxide.
Sobczyk, O; Crawley, A P; Poublanc, J; Sam, K; Mandell, D M; Mikulis, D J; Duffin, J; Fisher, J A
2016-05-01
Changes in cerebrovascular reactivity can be used to assess disease progression and response to therapy but require discrimination of pathology from normal test-to-test variability. Such variability is due to variations in methodology, technology, and physiology with time. With uniform test conditions, our aim was to determine the test-to-test variability of cerebrovascular reactivity in healthy subjects and in patients with known cerebrovascular disease. Cerebrovascular reactivity was the ratio of the blood oxygen level-dependent MR imaging response divided by the change in carbon dioxide stimulus. Two standardized cerebrovascular reactivity tests were conducted at 3T in 15 healthy men (36.7 ± 16.1 years of age) within a 4-month period and were coregistered into standard space to yield voxelwise mean cerebrovascular reactivity interval difference measures, composing a reference interval difference atlas. Cerebrovascular reactivity interval difference maps were prepared for 11 male patients. For each patient, the test-retest difference of each voxel was scored statistically as z-values of the corresponding voxel mean difference in the reference atlas and then color-coded and superimposed on the anatomic images to create cerebrovascular reactivity interval difference z-maps. There were no significant test-to-test differences in cerebrovascular reactivity in either gray or white matter (mean gray matter, P = .431; mean white matter, P = .857; paired t test) in the healthy cohort. The patient cerebrovascular reactivity interval difference z-maps indicated regions where cerebrovascular reactivity increased or decreased and the probability that the changes were significant. Accounting for normal test-to-test differences in cerebrovascular reactivity enables the assessment of significant changes in disease status (stability, progression, or regression) in patients with time. © 2016 by American Journal of Neuroradiology.
Making Space for Place: Mapping Tools and Practices to Teach for Spatial Justice
ERIC Educational Resources Information Center
Rubel, Laurie H.; Hall-Wieckert, Maren; Lim, Vivian Y.
2017-01-01
This article presents a set of spatial tools for classroom learning about spatial justice. As part of a larger team, we designed a curriculum that engaged 10 learners with 3 spatial tools: (a) an oversized floor map, (b) interactive geographic information systems (GIS) maps, and (c) participatory mapping. We analyze how these tools supported…
Preliminary geologic map of the Elsinore 7.5' Quadrangle, Riverside County, California
Morton, Douglas M.; Weber, F. Harold; Digital preparation: Alvarez, Rachel M.; Burns, Diane
2003-01-01
Open-File Report 03-281 contains a digital geologic map database of the Elsinore 7.5’ quadrangle, Riverside County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in els_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
International Safety Regulation and Standards for Space Travel and Commerce
NASA Astrophysics Data System (ADS)
Pelton, J. N.; Jakhu, R.
The evolution of air travel has led to the adoption of the 1944 Chicago Convention that created the International Civil Aviation Organization (ICAO), headquartered in Montreal, Canada, and the propagation of aviation safety standards. Today, ICAO standardizes and harmonizes commercial air safety worldwide. Space travel and space safety are still at an early stage of development, and the adoption of international space safety standards and regulation still remains largely at the national level. This paper explores the international treaties and conventions that govern space travel, applications and exploration today and analyzes current efforts to create space safety standards and regulations at the national, regional and global level. Recent efforts to create a commercial space travel industry and to license commercial space ports are foreseen as means to hasten a space safety regulatory process.
Preliminary geologic map of the northeast Dillingham quadrangle (D-1, D-2, C-1, and C-2), Alaska
Wilson, Frederic H.; Hudson, Travis L.; Grybeck, Donald; Stoeser, Douglas B.; Preller, Cindi C.; Bickerstaff, Damon; Labay, Keith A.; Miller, Martha L.
2003-01-01
The Correlation of Map Units and Description of Map Units are in a format similar to that of the USGS Geologic Investigations Series (I-series) maps but have not been edited to comply with I-map standards. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the Stratigraphic Nomenclature of the U.S. Geological Survey. ARC/INFO symbolsets (shade and line) as used for these maps have been made available elsewhere as part of Geologic map of Central (Interior) Alaska, published as a USGS Open-File Report (Wilson and others, 1998, http://geopubs.wr.usgs.gov/open-file/of98-133-a/). This product does not include the digital topographic base or land-grid files used to produce the map, nor does it include the AML and related ancillary key and other files used to assemble the components of the map.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy.
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-06-06
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-01-01
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments. PMID:28587309
Automated mapping of the ocean floor using the theory of intrinsic random functions of order k
David, M.; Crozel, D.; Robb, James M.
1986-01-01
High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.
Heralded processes on continuous-variable spaces as quantum maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyrol, Franck; Spagnolo, Nicolò; Blandino, Rémi
2014-12-04
Heralding processes, which only work when a measurement on a part of the system give the good result, are particularly interesting for continuous-variables. They permit non-Gaussian transformations that are necessary for several continuous-variable quantum information tasks. However if maps and quantum process tomography are commonly used to describe quantum transformations in discrete-variable space, they are much rarer in the continuous-variable domain. Also, no convenient tool for representing maps in a way more adapted to the particularities of continuous variables have yet been explored. In this paper we try to fill this gap by presenting such a tool.
2013-08-09
CAPE CANAVERAL, Fla. – Google used an assortment of vehicles to precisely map NASA's Kennedy Space Center in Florida to be featured on the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Google used a car, tricycle and pushcart to maneuver around the center and through some of its facilities. Photo credit: Google/Wendy Wang
FAST TRACK COMMUNICATION: General approach to \\mathfrak {SU}(n) quasi-distribution functions
NASA Astrophysics Data System (ADS)
Klimov, Andrei B.; de Guise, Hubert
2010-10-01
We propose an operational form for the kernel of a mapping between an operator acting in a Hilbert space of a quantum system with an \\mathfrak {SU}(n) symmetry group and its symbol in the corresponding classical phase space. For symmetric irreps of \\mathfrak {SU}(n) , this mapping is bijective. We briefly discuss complications that will occur in the general case.
Time-to-space mapping of femtosecond pulses.
Nuss, M C; Li, M; Chiu, T H; Weiner, A M; Partovi, A
1994-05-01
We report time-to-space mapping of femtosecond light pulses in a temporal holography setup. By reading out a temporal hologram of a short optical pulse with a continuous-wave diode laser, we accurately convert temporal pulse-shape information into a spatial pattern that can be viewed with a camera. We demonstrate real-time acquisition of electric-field autocorrelation and cross correlation of femtosecond pulses with this technique.
2007-06-01
xc)−∇2g(x̃c)](x− xc). The second transformation is a space mapping function P that handles the change in variable dimensions (see Bandler et al. [11...17(2):188–217, 2004. 11. Bandler, J. W., Q. Cheng, S. Dakroury, A. S. Mohamed, M.H. Bakr, K. Madsen, J. Søndergaard. “ Space Mapping : The State of
Chi-Leung So; Thomas L. Eberhardt; Daniel J. Leduc; Leslie H. Groom; Jeffery C. G. Goelz
2010-01-01
Twenty 70-year-old longleaf pine (Pinus palustris Mill.) trees were harvested from a spacing, thinning, and pruning study on the Kisatchie National Forest, LA. Tree property mapping was used to show the property variation within and between three of the trees. The construction of such maps is both time consuming and cost prohibitive using traditional...
US EPA Nonattainment Areas and Designations-Annual PM2.5 (1997 NAAQS)
This web service contains the following layers: PM2.5 Annual 1997 NAAQS State Level and PM2.5 Annual 1997 NAAQS National . It also contains the following tables: maps99.FRED_MAP_VIEWER.%fred_area_map_data and maps99.FRED_MAP_VIEWER.%fred_area_map_view. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997PM25Annual/MapServer) and viewing the layer description.These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 3 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room is furnished in the classic style with the same metal computer cabinets and some of the same monitors in place when the first shuttle mission launched April 12, 1981. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.
Yamazaki, Keisuke
2012-07-01
Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mental map and spatial thinking
NASA Astrophysics Data System (ADS)
Vanzella Castellar, Sonia Maria; Cristiane Strina Juliasz, Paula
2018-05-01
The spatial thinking is a central concept in our researches at the Faculty of Education of University of São Paulo (FE-USP). The cartography is fundamental to this kind of thinking, because it contributes to the development of the representation of space. The spatial representations are the drawings - mental maps - maps, chart, aerial photos, satellite images, graphics and diagrams. To think spatially - including the contents and concepts geographical and their representations - also corresponds to reason, defined by the skills the individual develops to understand the structure, function of a space, and describe your organization and relation to other spaces. The aim of this paper is to analyze the role of mental maps in the development of concepts of city and landscape - structuring concepts for school geography. The purpose is to analyze how students in Geography and Pedagogy - future teachers - and young children in Early Childhood Education think, feel, and appropriate these concepts. The analys is indicates the importance of developing mental map in activities with pedagogy and geography graduate student to know that students at school can be producers of maps. Cartography is a language and allows the student to develop the spatial and temporal relationships and notions such as orientation, distance and location, learning the concepts of geographical science. Mental maps present the basic features of the location such as the conditions - the features verified in one place - and the connections that is to understand how this place connects to other places.
A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism
Basuino, Li; Chambers, Henry F.; Lee, Deok-Sun; Wiest, Olaf G.; Babbitt, Patricia C.
2009-01-01
Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the “effect space” comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism. PMID:19701464
Sidorov, Pavel; Gaspar, Helena; Marcou, Gilles; Varnek, Alexandre; Horvath, Dragos
2015-12-01
Intuitive, visual rendering--mapping--of high-dimensional chemical spaces (CS), is an important topic in chemoinformatics. Such maps were so far dedicated to specific compound collections--either limited series of known activities, or large, even exhaustive enumerations of molecules, but without associated property data. Typically, they were challenged to answer some classification problem with respect to those same molecules, admired for their aesthetical virtues and then forgotten--because they were set-specific constructs. This work wishes to address the question whether a general, compound set-independent map can be generated, and the claim of "universality" quantitatively justified, with respect to all the structure-activity information available so far--or, more realistically, an exploitable but significant fraction thereof. The "universal" CS map is expected to project molecules from the initial CS into a lower-dimensional space that is neighborhood behavior-compliant with respect to a large panel of ligand properties. Such map should be able to discriminate actives from inactives, or even support quantitative neighborhood-based, parameter-free property prediction (regression) models, for a wide panel of targets and target families. It should be polypharmacologically competent, without requiring any target-specific parameter fitting. This work describes an evolutionary growth procedure of such maps, based on generative topographic mapping, followed by the validation of their polypharmacological competence. Validation was achieved with respect to a maximum of exploitable structure-activity information, covering all of Homo sapiens proteins of the ChEMBL database, antiparasitic and antiviral data, etc. Five evolved maps satisfactorily solved hundreds of activity-based ligand classification challenges for targets, and even in vivo properties independent from training data. They also stood chemogenomics-related challenges, as cumulated responsibility vectors obtained by mapping of target-specific ligand collections were shown to represent validated target descriptors, complying with currently accepted target classification in biology. Therefore, they represent, in our opinion, a robust and well documented answer to the key question "What is a good CS map?"
NASA Astrophysics Data System (ADS)
Janidarmian, Majid; Fekr, Atena Roshan; Bokharaei, Vahhab Samadi
2011-08-01
Mapping algorithm which means which core should be linked to which router is one of the key issues in the design flow of network-on-chip. To achieve an application-specific NoC design procedure that minimizes the communication cost and improves the fault tolerant property, first a heuristic mapping algorithm that produces a set of different mappings in a reasonable time is presented. This algorithm allows the designers to identify the set of most promising solutions in a large design space, which has low communication costs while yielding optimum communication costs in some cases. Another evaluated parameter, vulnerability index, is then considered as a principle of estimating the fault-tolerance property in all produced mappings. Finally, in order to yield a mapping which considers trade-offs between these two parameters, a linear function is defined and introduced. It is also observed that more flexibility to prioritize solutions within the design space is possible by adjusting a set of if-then rules in fuzzy logic.
NASA Astrophysics Data System (ADS)
Gardener, Joanna; Cartwright, William; Duxbury, Lesley
2018-05-01
This paper reports on the initial findings of an interdisciplinary study exploring perceptions of space and place through alternate ways of mapping. The research project aims to bring depth and meaning to places by utilising a combination of diverse influences and responses, including emotional, sensory, memory and imaginary. It investigates mapping from a designer's perspective, with further narration from both the cartographic science and fine art perspectives. It examines the role of design and artistic expression in the cartographic process, and its capacity to effect and transform the appearance, reading and meaning of the final cartographic outcome (Robinson 2010). The crossover between the cartographic sciences and the work of artists who explore space and place enables an interrogation of where these fields collide or alternatively merge, in order to challenge the definition of a map. By exploring cartography through the overlapping of the distinct fields of science and art, this study challenges and questions the tipping point of when a map ceases to be a map and becomes art.
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick
2017-04-01
The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.
Yasuda, Akihito; Onuki, Yoshinori; Kikuchi, Shingo; Takayama, Kozo
2010-11-01
The quality by design concept in pharmaceutical formulation development requires establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline powders were prepared based on the standard formulation. The angle of repose, compressibility, cohesion, and dispersibility were measured as the response variables. These responses were predicted quantitatively on the basis of a nonlinear TPS. A large amount of data on these powders was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the powders could be classified into several distinctive clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and powder characteristics. For instance, the quantities of microcrystalline cellulose (MCC) and magnesium stearate (Mg-St) were classified distinctly into each cluster, indicating that the quantities of MCC and Mg-St were crucial for determining the powder characteristics. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline powder formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Geologic map of the Riverside East 7.5' quadrangle, Riverside County, California
Morton, Douglas M.; Cox, Brett F.
2001-01-01
a. This Readme; includes in Appendix I, data contained in rse_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Geologic map of the Corona North 7.5' quadrangle, Riverside and San Bernardino counties, California
Morton, Douglas M.; Gray, C.H.; Bovard, Kelly R.; Dawson, Michael
2002-01-01
a. This Readme; includes in Appendix I, data contained in crn_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced precise 1:24,000- scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Geologic map of the Corona South 7.5' quadrangle, Riverside and Orange counties, California
Gray, C.H.; Morton, Douglas M.; Weber, F. Harold; Digital preparation by Bovard, Kelly R.; O'Brien, Timothy
2002-01-01
a. A Readme file; includes in Appendix I, data contained in crs_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Geologic map of the Lake Mathews 7.5' quadrangle, Riverside County, California
Morton, Douglas M.; Weber, F. Harold
2001-01-01
a. This Readme; includes in Appendix I, data contained in lkm_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous.Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand.In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Geologic map of the Steele Peak 7.5' quadrangle, Riverside County, California
Morton, Douglas M.; digital preparation by Alvarez, Rachel M.; Diep, Van M.
2001-01-01
a. This Readme; includes in Appendix I, data contained in stp_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Geologic map of the Riverside West 7.5' quadrangle, Riverside County, California
Morton, Douglas M.; Cox, Brett F.
2001-01-01
a. This Readme; includes in Appendix I, data contained in rsw_met.txt b. The same graphic as plotted in 2 above. Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Marine deposits are in part overlain by local, mostly alluvial fan, deposits and are labeled Qomf. Grain size follows f.Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above).
Progress of Interoperability in Planetary Research for Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Hare, T. M.; Gaddis, L. R.
2015-12-01
For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.
Systematic exploration of unsupervised methods for mapping behavior
NASA Astrophysics Data System (ADS)
Todd, Jeremy G.; Kain, Jamey S.; de Bivort, Benjamin L.
2017-02-01
To fully understand the mechanisms giving rise to behavior, we need to be able to precisely measure it. When coupled with large behavioral data sets, unsupervised clustering methods offer the potential of unbiased mapping of behavioral spaces. However, unsupervised techniques to map behavioral spaces are in their infancy, and there have been few systematic considerations of all the methodological options. We compared the performance of seven distinct mapping methods in clustering a wavelet-transformed data set consisting of the x- and y-positions of the six legs of individual flies. Legs were automatically tracked by small pieces of fluorescent dye, while the fly was tethered and walking on an air-suspended ball. We find that there is considerable variation in the performance of these mapping methods, and that better performance is attained when clustering is done in higher dimensional spaces (which are otherwise less preferable because they are hard to visualize). High dimensionality means that some algorithms, including the non-parametric watershed cluster assignment algorithm, cannot be used. We developed an alternative watershed algorithm which can be used in high-dimensional spaces when a probability density estimate can be computed directly. With these tools in hand, we examined the behavioral space of fly leg postural dynamics and locomotion. We find a striking division of behavior into modes involving the fore legs and modes involving the hind legs, with few direct transitions between them. By computing behavioral clusters using the data from all flies simultaneously, we show that this division appears to be common to all flies. We also identify individual-to-individual differences in behavior and behavioral transitions. Lastly, we suggest a computational pipeline that can achieve satisfactory levels of performance without the taxing computational demands of a systematic combinatorial approach.
Eisen, Lars; Lozano-Fuentes, Saul
2009-01-01
The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, pingpong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities.The goal of this investigation is to understand the trade space associated with carrying out remotesensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically,this study seeks to understand the surface viewing geometries, ranges, etc. that are available fromseveral commonly proposed mapping orbits architectures.
Quantifying Mapping Orbit Performance in the Vicinity of Primitive Bodies
NASA Technical Reports Server (NTRS)
Pavlak, Thomas A.; Broschart, Stephen B.; Lantoine, Gregory
2015-01-01
Predicting and quantifying the capability of mapping orbits in the vicinity of primitive bodies is challenging given the complex orbit geometries that exist and the irregular shape of the bodies themselves. This paper employs various quantitative metrics to characterize the performance and relative effectiveness of various types of mapping orbits including terminator, quasi-terminator, hovering, ping pong, and conic-like trajectories. Metrics of interest include surface area coverage, lighting conditions, and the variety of viewing angles achieved. The metrics discussed in this investigation are intended to enable mission designers and project stakeholders to better characterize candidate mapping orbits during preliminary mission formulation activities. The goal of this investigation is to understand the trade space associated with carrying out remote sensing campaigns at small primitive bodies in the context of a robotic space mission. Specifically, this study seeks to understand the surface viewing geometries, ranges, etc. that are available from several commonly proposed mapping orbits architectures
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Photographers gather in the Spacecraft Assembly and Encapsulation Facility -2 for a media showing of the Microwave Anisotropy Probe (MAP). The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
Nam, Julia EunJu; Mueller, Klaus
2013-02-01
Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.
Gaspar, Héléna A; Baskin, Igor I; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre
2015-01-26
This paper is devoted to the analysis and visualization in 2-dimensional space of large data sets of millions of compounds using the incremental version of generative topographic mapping (iGTM). The iGTM algorithm implemented in the in-house ISIDA-GTM program was applied to a database of more than 2 million compounds combining data sets of 36 chemicals suppliers and the NCI collection, encoded either by MOE descriptors or by MACCS keys. Taking advantage of the probabilistic nature of GTM, several approaches to data analysis were proposed. The chemical space coverage was evaluated using the normalized Shannon entropy. Different views of the data (property landscapes) were obtained by mapping various physical and chemical properties (molecular weight, aqueous solubility, LogP, etc.) onto the iGTM map. The superposition of these views helped to identify the regions in the chemical space populated by compounds with desirable physicochemical profiles and the suppliers providing them. The data sets similarity in the latent space was assessed by applying several metrics (Euclidean distance, Tanimoto and Bhattacharyya coefficients) to data probability distributions based on cumulated responsibility vectors. As a complementary approach, data sets were compared by considering them as individual objects on a meta-GTM map, built on cumulated responsibility vectors or property landscapes produced with iGTM. We believe that the iGTM methodology described in this article represents a fast and reliable way to analyze and visualize large chemical databases.
NASA Astrophysics Data System (ADS)
Vatanparast, Maryam; Vullum, Per Erik; Nord, Magnus; Zuo, Jian-Min; Reenaas, Turid W.; Holmestad, Randi
2017-09-01
Geometric phase analysis (GPA), a fast and simple Fourier space method for strain analysis, can give useful information on accumulated strain and defect propagation in multiple layers of semiconductors, including quantum dot materials. In this work, GPA has been applied to high resolution Z-contrast scanning transmission electron microscopy (STEM) images. Strain maps determined from different g vectors of these images are compared to each other, in order to analyze and assess the GPA technique in terms of accuracy. The SmartAlign tool has been used to improve the STEM image quality getting more reliable results. Strain maps from template matching as a real space approach are compared with strain maps from GPA, and it is discussed that a real space analysis is a better approach than GPA for aberration corrected STEM images.
Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David
2017-04-01
The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.
Method for determining waveguide temperature for acoustic transceiver used in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko; Ragunathan, Karthik
A method for determining waveguide temperature for at least one waveguide of a transceiver utilized for generating a temperature map. The transceiver generates an acoustic signal that travels through a measurement space in a hot gas flow path defined by a wall such as in a combustor. The method includes calculating a total time of flight for the acoustic signal and subtracting a waveguide travel time from the total time of flight to obtain a measurement space travel time. A temperature map is calculated based on the measurement space travel time. An estimated wall temperature is obtained from the temperaturemore » map. An estimated waveguide temperature is then calculated based on the estimated wall temperature wherein the estimated waveguide temperature is determined without the use of a temperature sensing device.« less
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.