Sample records for standard web services

  1. Information Retrieval System for Japanese Standard Disease-Code Master Using XML Web Service

    PubMed Central

    Hatano, Kenji; Ohe, Kazuhiko

    2003-01-01

    Information retrieval system of Japanese Standard Disease-Code Master Using XML Web Service is developed. XML Web Service is a new distributed processing system by standard internet technologies. With seamless remote method invocation of XML Web Service, users are able to get the latest disease code master information from their rich desktop applications or internet web sites, which refer to this service. PMID:14728364

  2. BioSWR – Semantic Web Services Registry for Bioinformatics

    PubMed Central

    Repchevsky, Dmitry; Gelpi, Josep Ll.

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license. PMID:25233118

  3. BioSWR--semantic web services registry for bioinformatics.

    PubMed

    Repchevsky, Dmitry; Gelpi, Josep Ll

    2014-01-01

    Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.

  4. Exploring NASA GES DISC Data with Interoperable Services

    NASA Technical Reports Server (NTRS)

    Zhao, Peisheng; Yang, Wenli; Hegde, Mahabal; Wei, Jennifer C.; Kempler, Steven; Pham, Long; Teng, William; Savtchenko, Andrey

    2015-01-01

    Overview of NASA GES DISC (NASA Goddard Earth Science Data and Information Services Center) data with interoperable services: Open-standard and Interoperable Services Improve data discoverability, accessibility, and usability with metadata, catalogue and portal standards Achieve data, information and knowledge sharing across applications with standardized interfaces and protocols Open Geospatial Consortium (OGC) Data Services and Specifications Web Coverage Service (WCS) -- data Web Map Service (WMS) -- pictures of data Web Map Tile Service (WMTS) --- pictures of data tiles Styled Layer Descriptors (SLD) --- rendered styles.

  5. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    NASA Astrophysics Data System (ADS)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone wishing to discover the availability of global geological web services and has new functionality to view and use such services including multiple projection support. KEYWORDS : OneGeology; GeoSciML V 3.2; Data exchange; Portal; INSPIRE; Standards; OGC; Interoperability; GeoScience information; WMS; WFS; Cookbook.

  6. Availability of the OGC geoprocessing standard: March 2011 reality check

    NASA Astrophysics Data System (ADS)

    Lopez-Pellicer, Francisco J.; Rentería-Agualimpia, Walter; Béjar, Rubén; Muro-Medrano, Pedro R.; Zarazaga-Soria, F. Javier

    2012-10-01

    This paper presents an investigation about the servers available in March 2011 conforming to the Web Processing Service interface specification published by the geospatial standards organization Open Geospatial Consortium (OGC) in 2007. This interface specification gives support to standard Web-based geoprocessing. The data used in this research were collected using a focused crawler configured for finding OGC Web services. The research goals are (i) to provide a reality check of the availability of Web Processing Service servers, (ii) to provide quantitative data about the use of different features defined in the standard that are relevant for a scalable Geoprocessing Web (e.g. long-running processes, Web-accessible data outputs), and (iii) to test if the advances in the use of search engines and focused crawlers for finding Web services can be applied for finding geoscience processing systems. Research results show the feasibility of the discovery approach and provide data about the implementation of the Web Processing Service specification. These results also show extensive use of features related to scalability, except for those related to technical and semantic interoperability.

  7. The EMBRACE web service collection

    PubMed Central

    Pettifer, Steve; Ison, Jon; Kalaš, Matúš; Thorne, Dave; McDermott, Philip; Jonassen, Inge; Liaquat, Ali; Fernández, José M.; Rodriguez, Jose M.; Partners, INB-; Pisano, David G.; Blanchet, Christophe; Uludag, Mahmut; Rice, Peter; Bartaseviciute, Edita; Rapacki, Kristoffer; Hekkelman, Maarten; Sand, Olivier; Stockinger, Heinz; Clegg, Andrew B.; Bongcam-Rudloff, Erik; Salzemann, Jean; Breton, Vincent; Attwood, Teresa K.; Cameron, Graham; Vriend, Gert

    2010-01-01

    The EMBRACE (European Model for Bioinformatics Research and Community Education) web service collection is the culmination of a 5-year project that set out to investigate issues involved in developing and deploying web services for use in the life sciences. The project concluded that in order for web services to achieve widespread adoption, standards must be defined for the choice of web service technology, for semantically annotating both service function and the data exchanged, and a mechanism for discovering services must be provided. Building on this, the project developed: EDAM, an ontology for describing life science web services; BioXSD, a schema for exchanging data between services; and a centralized registry (http://www.embraceregistry.net) that collects together around 1000 services developed by the consortium partners. This article presents the current status of the collection and its associated recommendations and standards definitions. PMID:20462862

  8. The deegree framework - Spatial Data Infrastructure solution for end-users and developers

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian; Poth, Andreas

    2010-05-01

    The open source software framework deegree is a comprehensive implementa­tion of standards as defined by ISO and Open Geospatial Consortium (OGC). It has been developed with two goals in mind: provide a uniform framework for implementing Spatial Data Infrastructures (SDI) and adhering to standards as strictly as possible. Although being open source software (Lesser GNU Public Li­cense, LGPL), deegree has been developed with a business model in mind: providing the general building blocks of SDIs without license fees and offer cus­tomization, consulting and tailoring by specialized companies. The core of deegree is a comprehensive Java Application Programming Inter­face (API) offering access to spatial features, analysis, metadata and coordinate reference systems. As a library, deegree can and has been integrated as a core module inside spatial information systems. It is reference implementation for several OGC standards and based on an ISO 19107 geometry model. For end users, deegree is shipped as a web application providing easy-to-set-up components for web mapping and spatial analysis. Since 2000, deegree has been the backbone of many productive SDIs, first and foremost for governmental stakeholders (e.g. Federal Agency for Cartography and Geodesy in Germany, the Ministry of Housing, Spatial Planning and the En­vironment in the Netherlands, etc.) as well as for research and development projects as an early adoption of standards, drafts and discussion papers. Be­sides mature standards like Web Map Service, Web Feature Service and Cata­logue Services, deegree also implements rather new standards like the Sensor Observation Service, the Web Processing Service and the Web Coordinate Transformation Service (WCTS). While a robust background in standardization (knowledge and implementation) is a must for consultancy, standard-compliant services and encodings alone do not provide solutions for customers. The added value is comprised by a sophistic­ated set of client software, desktop and web environments. A focus lies on different client solutions for specific standards like the Web Pro­cessing Service and the Web Coordinate Transformation Service. On the other hand, complex geoportal solutions comprised of multiple standards and en­hanced by components for user management, security and map client function­ality show the demanding requirements of real world solutions. The XPlan-GML-standard as defined by the German spatial planing authorities is a good ex­ample of how complex real-world requirements can get. XPlan-GML is intended to provide a framework for digital spatial planning documents and requires complex Geography Markup Language (GML) features along with Symbology Encoding (SE), Filter Encoding (FE), Web Map Services (WMS), Web Feature Services (WFS). This complex in­frastructure should be used by urban and spatial planners and therefore re­quires a user-friendly graphical interface hiding the complexity of the underly­ing infrastructure. Based on challenges faced within customer projects, the importance of easy to use software components is focused. SDI solution should be build upon ISO/OGC-standards, but more important, should be user-friendly and support the users in spatial data management and analysis.

  9. The OGC Sensor Web Enablement framework

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Botts, M.

    2006-12-01

    Sensor observations are at the core of natural sciences. Improvements in data-sharing technologies offer the promise of much greater utilisation of observational data. A key to this is interoperable data standards. The Open Geospatial Consortium's (OGC) Sensor Web Enablement initiative (SWE) is developing open standards for web interfaces for the discovery, exchange and processing of sensor observations, and tasking of sensor systems. The goal is to support the construction of complex sensor applications through real-time composition of service chains from standard components. The framework is based around a suite of standard interfaces, and standard encodings for the message transferred between services. The SWE interfaces include: Sensor Observation Service (SOS)-parameterized observation requests (by observation time, feature of interest, property, sensor); Sensor Planning Service (SPS)-tasking a sensor- system to undertake future observations; Sensor Alert Service (SAS)-subscription to an alert, usually triggered by a sensor result exceeding some value. The interface design generally follows the pattern established in the OGC Web Map Service (WMS) and Web Feature Service (WFS) interfaces, where the interaction between a client and service follows a standard sequence of requests and responses. The first obtains a general description of the service capabilities, followed by obtaining detail required to formulate a data request, and finally a request for a data instance or stream. These may be implemented in a stateless "REST" idiom, or using conventional "web-services" (SOAP) messaging. In a deployed system, the SWE interfaces are supplemented by Catalogue, data (WFS) and portrayal (WMS) services, as well as authentication and rights management. The standard SWE data formats are Observations and Measurements (O&M) which encodes observation metadata and results, Sensor Model Language (SensorML) which describes sensor-systems, Transducer Model Language (TML) which covers low-level data streams, and domain-specific GML Application Schemas for definitions of the target feature types. The SWE framework has been demonstrated in several interoperability testbeds. These were based around emergency management, security, contamination and environmental monitoring scenarios.

  10. Data partitioning enables the use of standard SOAP Web Services in genome-scale workflows.

    PubMed

    Sztromwasser, Pawel; Puntervoll, Pål; Petersen, Kjell

    2011-07-26

    Biological databases and computational biology tools are provided by research groups around the world, and made accessible on the Web. Combining these resources is a common practice in bioinformatics, but integration of heterogeneous and often distributed tools and datasets can be challenging. To date, this challenge has been commonly addressed in a pragmatic way, by tedious and error-prone scripting. Recently however a more reliable technique has been identified and proposed as the platform that would tie together bioinformatics resources, namely Web Services. In the last decade the Web Services have spread wide in bioinformatics, and earned the title of recommended technology. However, in the era of high-throughput experimentation, a major concern regarding Web Services is their ability to handle large-scale data traffic. We propose a stream-like communication pattern for standard SOAP Web Services, that enables efficient flow of large data traffic between a workflow orchestrator and Web Services. We evaluated the data-partitioning strategy by comparing it with typical communication patterns on an example pipeline for genomic sequence annotation. The results show that data-partitioning lowers resource demands of services and increases their throughput, which in consequence allows to execute in-silico experiments on genome-scale, using standard SOAP Web Services and workflows. As a proof-of-principle we annotated an RNA-seq dataset using a plain BPEL workflow engine.

  11. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  12. Proposal for a Web Encoding Service (wes) for Spatial Data Transactio

    NASA Astrophysics Data System (ADS)

    Siew, C. B.; Peters, S.; Rahman, A. A.

    2015-10-01

    Web services utilizations in Spatial Data Infrastructure (SDI) have been well established and standardized by Open Geospatial Consortium (OGC). Similar web services for 3D SDI are also being established in recent years, with extended capabilities to handle 3D spatial data. The increasing popularity of using City Geographic Markup Language (CityGML) for 3D city modelling applications leads to the needs for large spatial data handling for data delivery. This paper revisits the available web services in OGC Web Services (OWS), and propose the background concepts and requirements for encoding spatial data via Web Encoding Service (WES). Furthermore, the paper discusses the data flow of the encoder within web service, e.g. possible integration with Web Processing Service (WPS) or Web 3D Services (W3DS). The integration with available web service could be extended to other available web services for efficient handling of spatial data, especially 3D spatial data.

  13. Increasing the availability and usability of terrestrial ecology data through geospatial Web services and visualization tools (Invited)

    NASA Astrophysics Data System (ADS)

    Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Wei, Y.

    2010-12-01

    Terrestrial ecology data sets are produced from diverse data sources such as model output, field data collection, laboratory analysis and remote sensing observation. These data sets can be created, distributed, and consumed in diverse ways as well. However, this diversity can hinder the usability of the data, and limit data users’ abilities to validate and reuse data for science and application purposes. Geospatial web services, such as those described in this paper, are an important means of reducing this burden. Terrestrial ecology researchers generally create the data sets in diverse file formats, with file and data structures tailored to the specific needs of their project, possibly as tabular data, geospatial images, or documentation in a report. Data centers may reformat the data to an archive-stable format and distribute the data sets through one or more protocols, such as FTP, email, and WWW. Because of the diverse data preparation, delivery, and usage patterns, users have to invest time and resources to bring the data into the format and structure most useful for their analysis. This time-consuming data preparation process shifts valuable resources from data analysis to data assembly. To address these issues, the ORNL DAAC, a NASA-sponsored terrestrial ecology data center, has utilized geospatial Web service technology, such as Open Geospatial Consortium (OGC) Web Map Service (WMS) and OGC Web Coverage Service (WCS) standards, to increase the usability and availability of terrestrial ecology data sets. Data sets are standardized into non-proprietary file formats and distributed through OGC Web Service standards. OGC Web services allow the ORNL DAAC to store data sets in a single format and distribute them in multiple ways and formats. Registering the OGC Web services through search catalogues and other spatial data tools allows for publicizing the data sets and makes them more available across the Internet. The ORNL DAAC has also created a Web-based graphical user interface called Spatial Data Access Tool (SDAT) that utilizes OGC Web services standards and allows data distribution and consumption for users not familiar with OGC standards. SDAT also allows for users to visualize the data set prior to download. Google Earth visualizations of the data set are also provided through SDAT. The use of OGC Web service standards at the ORNL DAAC has enabled an increase in data consumption. In one case, a data set had ~10 fold increase in download through OGC Web service in comparison to the conventional FTP and WWW method of access. The increase in download suggests that users are not only finding the data sets they need but also able to consume them readily in the format they need.

  14. Design Drivers of Water Data Services

    NASA Astrophysics Data System (ADS)

    Valentine, D.; Zaslavsky, I.

    2008-12-01

    The CUAHSI Hydrologic Information System (HIS) is being developed as a geographically distributed network of hydrologic data sources and functions that are integrated using web services so that they function as a connected whole. The core of the HIS service-oriented architecture is a collection of water web services, which provide uniform access to multiple repositories of observation data. These services use SOAP protocols communicating WaterML (Water Markup Language). When a client makes a data or metadata request using a CUAHSI HIS web service, these requests are made in standard manner, following the CUAHSI HIS web service signatures - regardless of how the underlying data source may be organized. Also, regardless of the format in which the data are returned by the source, the web services respond to requests by returning the data in a standard format of WaterML. The goal of WaterML design has been to capture semantics of hydrologic observations discovery and retrieval and express the point observations information model as an XML schema. To a large extent, it follows the representation of the information model as adopted by the CUASHI Observations Data Model (ODM) relational design. Another driver of WaterML design is specifications and metadata adopted by USGS NWIS, EPA STORET, and other federal agencies, as it seeks to provide a common foundation for exchanging both agency data and data collected in multiple academic projects. Another WaterML design principle was to create, in version 1 of HIS in particular, a fairly rigid and simple XML schema which is easy to generate and parse, thus creating the least barrier for adoption by hydrologists. WaterML includes a series of elements that reflect common notions used in describing hydrologic observations, such as site, variable, source, observation series, seriesCatalog, and data values. Each of the three main request methods in the water web services - GetSiteInfo, GetVariableInfo, and GetValues - has a corresponding response element in WaterML: SitesResponse, VariableResponse, and TimeSeriesResponse. The WaterML specification is being adopted by federal agencies. The experimental USGS NWIS Daily Values web service returns WaterML-compliant TImeSeriesResponse. The National Climatic Data Center is also prototyping WaterML for data delivery, and has developed a REST-based service that generates WaterML- compliant output for the NCDC ASOS network. Such agency-supported web services coming online provide a much more efficient way to deliver agency data compared to the web site scraper services that the CUAHSI HIS project has developed initially. The CUAHSI water data web services will continue to serve as the main communication mechanism within CUAHSI HIS, connecting a variety of data sources with a growing set of web service clients being developed in both academia and the commercial sector. The driving forces for the development of web services continue to be: - Application experience and needs of the growing number of CUAHSI HIS users, who experiment with additional data types, analysis modes, data browsing and searching strategies, and provide feedback to WaterML developers; - Data description requirements posed by various federal and state agencies; - Harmonization with standards being adopted or developed in neighboring communities, in particular the relevant standards being explored within the Open Geospatial Consortium. CUAHSI WaterML is a standard output schema for CUAHSI HIS water web services. Its formal specification is available as OGC discussion paper at www.opengeospatial.org/standards/dp/ class="ab'>

  15. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    PubMed Central

    2011-01-01

    Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies. PMID:22024447

  16. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation.

    PubMed

    Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke

    2011-10-24

    The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies.

  17. Grid computing enhances standards-compatible geospatial catalogue service

    NASA Astrophysics Data System (ADS)

    Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang

    2010-04-01

    A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.

  18. Technical note: Harmonizing met-ocean model data via standard web services within small research groups

    NASA Astrophysics Data System (ADS)

    Signell, R. P.; Camossi, E.

    2015-11-01

    Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.

  19. Adding Processing Functionality to the Sensor Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pross, Benjamin; Jirka, Simon; Gräler, Benedikt

    2017-04-01

    The Sensor Web allows discovering, accessing and tasking different kinds of environmental sensors in the Web, ranging from simple in-situ sensors to remote sensing systems. However, (geo-)processing functionality needs to be applied to integrate data from different sensor sources and to generate higher level information products. Yet, a common standardized approach for processing sensor data in the Sensor Web is still missing and the integration differs from application to application. Standardizing not only the provision of sensor data, but also the processing facilitates sharing and re-use of processing modules, enables reproducibility of processing results, and provides a common way to integrate external scalable processing facilities or legacy software. In this presentation, we provide an overview on on-going research projects that develop concepts for coupling standardized geoprocessing technologies with Sensor Web technologies. At first, different architectures for coupling sensor data services with geoprocessing services are presented. Afterwards, profiles for linear regression and spatio-temporal interpolation of the OGC Web Processing Services that allow consuming sensor data coming from and uploading predictions to Sensor Observation Services are introduced. The profiles are implemented in processing services for the hydrological domain. Finally, we illustrate how the R software can be coupled with existing OGC Sensor Web and Geoprocessing Services and present an example, how a Web app can be built that allows exploring the results of environmental models in an interactive way using the R Shiny framework. All of the software presented is available as Open Source Software.

  20. Operational Use of OGC Web Services at the Met Office

    NASA Astrophysics Data System (ADS)

    Wright, Bruce

    2010-05-01

    The Met Office has adopted the Service-Orientated Architecture paradigm to deliver services to a range of customers through Rich Internet Applications (RIAs). The approach uses standard Open Geospatial Consortium (OGC) web services to provide information to web-based applications through a range of generic data services. "Invent", the Met Office beta site, is used to showcase Met Office future plans for presenting web-based weather forecasts, product and information to the public. This currently hosts a freely accessible Weather Map Viewer, written in JavaScript, which accesses a Web Map Service (WMS), to deliver innovative web-based visualizations of weather and its potential impacts to the public. The intention is to engage the public in the development of new web-based services that more accurately meet their needs. As the service is intended for public use within the UK, it has been designed to support a user base of 5 million, the analysed level of UK web traffic reaching the Met Office's public weather information site. The required scalability has been realised through the use of multi-tier tile caching: - WMS requests are made for 256x256 tiles for fixed areas and zoom levels; - a Tile Cache, developed in house, efficiently serves tiles on demand, managing WMS request for the new tiles; - Edge Servers, externally hosted by Akamai, provide a highly scalable (UK-centric) service for pre-cached tiles, passing new requests to the Tile Cache; - the Invent Weather Map Viewer uses the Google Maps API to request tiles from Edge Servers. (We would expect to make use of the Web Map Tiling Service, when it becomes an OGC standard.) The Met Office delivers specialist commercial products to market sectors such as transport, utilities and defence, which exploit a Web Feature Service (WFS) for data relating forecasts and observations to specific geographic features, and a Web Coverage Service (WCS) for sub-selections of gridded data. These are locally rendered as maps or graphs, and combined with the WMS pre-rendered images and text, in a FLEX application, to provide sophisticated, user impact-based view of the weather. The OGC web services supporting these applications have been developed in collaboration with commercial companies. Visual Weather was originally a desktop application for forecasters, but IBL have developed it to expose the full range of forecast and observation data through standard web services (WCS and WMS). Forecasts and observations relating to specific locations and geographic features are held in an Oracle Database, and exposed as a WFS using Snowflake Software's GO-Publisher application. The Met Office has worked closely with both IBL and Snowflake Software to ensure that the web services provided strike a balance between conformance to the standards and performance in an operational environment. This has proved challenging in areas where the standards are rapidly evolving (e.g. WCS) or do not allow adequate description of the Met-Ocean domain (e.g. multiple time coordinates and parametric vertical coordinates). It has also become clear that careful selection of the features to expose, based on the way in which you expect users to query those features, in necessary in order to deliver adequate performance. These experiences are providing useful 'real-world' input in to the recently launched OGC MetOcean Domain Working Group and World Meteorological Organisation (WMO) initiatives in this area.

  1. Developer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-08-21

    NREL's Developer Network, developer.nrel.gov, provides data that users can access to provide data to their own analyses, mobile and web applications. Developers can retrieve the data through a Web services API (application programming interface). The Developer Network handles overhead of serving up web services such as key management, authentication, analytics, reporting, documentation standards, and throttling in a common architecture, while allowing web services and APIs to be maintained and managed independently.

  2. Bioinformatics data distribution and integration via Web Services and XML.

    PubMed

    Li, Xiao; Zhang, Yizheng

    2003-11-01

    It is widely recognized that exchange, distribution, and integration of biological data are the keys to improve bioinformatics and genome biology in post-genomic era. However, the problem of exchanging and integrating biology data is not solved satisfactorily. The eXtensible Markup Language (XML) is rapidly spreading as an emerging standard for structuring documents to exchange and integrate data on the World Wide Web (WWW). Web service is the next generation of WWW and is founded upon the open standards of W3C (World Wide Web Consortium) and IETF (Internet Engineering Task Force). This paper presents XML and Web Services technologies and their use for an appropriate solution to the problem of bioinformatics data exchange and integration.

  3. Unifying Access to National Hydrologic Data Repositories via Web Services

    NASA Astrophysics Data System (ADS)

    Valentine, D. W.; Jennings, B.; Zaslavsky, I.; Maidment, D. R.

    2006-12-01

    The CUAHSI hydrologic information system (HIS) is designed to be a live, multiscale web portal system for accessing, querying, visualizing, and publishing distributed hydrologic observation data and models for any location or region in the United States. The HIS design follows the principles of open service oriented architecture, i.e. system components are represented as web services with well defined standard service APIs. WaterOneFlow web services are the main component of the design. The currently available services have been completely re-written compared to the previous version, and provide programmatic access to USGS NWIS. (steam flow, groundwater and water quality repositories), DAYMET daily observations, NASA MODIS, and Unidata NAM streams, with several additional web service wrappers being added (EPA STORET, NCDC and others.). Different repositories of hydrologic data use different vocabularies, and support different types of query access. Resolving semantic and structural heterogeneities across different hydrologic observation archives and distilling a generic set of service signatures is one of the main scalability challenges in this project, and a requirement in our web service design. To accomplish the uniformity of the web services API, data repositories are modeled following the CUAHSI Observation Data Model. The web service responses are document-based, and use an XML schema to express the semantics in a standard format. Access to station metadata is provided via web service methods, GetSites, GetSiteInfo and GetVariableInfo. The methdods form the foundation of CUAHSI HIS discovery interface and may execute over locally-stored metadata or request the information from remote repositories directly. Observation values are retrieved via a generic GetValues method which is executed against national data repositories. The service is implemented in ASP.Net, and other providers are implementing WaterOneFlow services in java. Reference implementation of WaterOneFlow web services is available. More information about the ongoing development of CUAHSI HIS is available from http://www.cuahsi.org/his/.

  4. The impact of web services at the IRIS DMC

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Trabant, C. M.; Ahern, T. K.; Stults, M.; Suleiman, Y. Y.; Van Fossen, M.; Weertman, B.

    2015-12-01

    The IRIS Data Management Center (DMC) has served the seismological community for nearly 25 years. In that time we have offered data and information from our archive using a variety of mechanisms ranging from email-based to desktop applications to web applications and web services. Of these, web services have quickly become the primary method for data extraction at the DMC. In 2011, the first full year of operation, web services accounted for over 40% of the data shipped from the DMC. In 2014, over ~450 TB of data was delivered directly to users through web services, representing nearly 70% of all shipments from the DMC that year. In addition to handling requests directly from users, the DMC switched all data extraction methods to use web services in 2014. On average the DMC now handles between 10 and 20 million requests per day submitted to web service interfaces. The rapid adoption of web services is attributed to the many advantages they bring. For users, they provide on-demand data using an interface technology, HTTP, that is widely supported in nearly every computing environment and language. These characteristics, combined with human-readable documentation and existing tools make integration of data access into existing workflows relatively easy. For the DMC, the web services provide an abstraction layer to internal repositories allowing for concentrated optimization of extraction workflow and easier evolution of those repositories. Lending further support to DMC's push in this direction, the core web services for station metadata, timeseries data and event parameters were adopted as standards by the International Federation of Digital Seismograph Networks (FDSN). We expect to continue enhancing existing services and building new capabilities for this platform. For example, the DMC has created a federation system and tools allowing researchers to discover and collect seismic data from data centers running the FDSN-standardized services. A future capability will leverage the DMC's MUSTANG project to select data based on data quality measurements. Within five years, the DMC's web services have proven to be a robust and flexible platform that enables continued growth for the DMC. We expect continued enhancements and adoption of web services.

  5. Cool Apps: Building Cryospheric Data Applications with Standards-Based Service Oriented Architecture

    NASA Astrophysics Data System (ADS)

    Oldenburg, J.; Truslove, I.; Collins, J. A.; Liu, M.; Lewis, S.; Brodzik, M.

    2012-12-01

    The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high- quality software in a timely manner, we have adopted a Service- Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-defined service endpoints which follow a RESTful architecture. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/ portal) which depends on many of the aforementioned services, retrieving data in several ways. The maps it displays are obtained through the use of WMS and WFS protocols from a MapServer instance hosted at NSIDC. Links to the scientific data collected on Operation IceBridge campaigns are obtained through ESIP OpenSearch requests service providers that encapsulate our metadata databases. These standards-based web services are also developed at NSIDC and are designed to be used independently of the Portal. This poster provides a visual representation of the relationships described above, with additional details and examples, and more generally outlines the benefits and challenges of this SOA approach.

  6. Proof of Concept Integration of a Single-Level Service-Oriented Architecture into a Multi-Domain Secure Environment

    DTIC Science & Technology

    2008-03-01

    Machine [29]. OC4J applications support Java Servlets , Web services, and the following J2EE specific standards: Extensible Markup Language (XML...IMAP Internet Message Access Protocol IP Internet Protocol IT Information Technology xviii J2EE Java Enterprise Environment JSR 168 Java ...LDAP), World Wide Web Distributed Authoring and Versioning (WebDav), Java Specification Request 168 (JSR 168), and Web Services for Remote

  7. Service-oriented model-encapsulation strategy for sharing and integrating heterogeneous geo-analysis models in an open web environment

    NASA Astrophysics Data System (ADS)

    Yue, Songshan; Chen, Min; Wen, Yongning; Lu, Guonian

    2016-04-01

    Earth environment is extremely complicated and constantly changing; thus, it is widely accepted that the use of a single geo-analysis model cannot accurately represent all details when solving complex geo-problems. Over several years of research, numerous geo-analysis models have been developed. However, a collaborative barrier between model providers and model users still exists. The development of cloud computing has provided a new and promising approach for sharing and integrating geo-analysis models across an open web environment. To share and integrate these heterogeneous models, encapsulation studies should be conducted that are aimed at shielding original execution differences to create services which can be reused in the web environment. Although some model service standards (such as Web Processing Service (WPS) and Geo Processing Workflow (GPW)) have been designed and developed to help researchers construct model services, various problems regarding model encapsulation remain. (1) The descriptions of geo-analysis models are complicated and typically require rich-text descriptions and case-study illustrations, which are difficult to fully represent within a single web request (such as the GetCapabilities and DescribeProcess operations in the WPS standard). (2) Although Web Service technologies can be used to publish model services, model users who want to use a geo-analysis model and copy the model service into another computer still encounter problems (e.g., they cannot access the model deployment dependencies information). This study presents a strategy for encapsulating geo-analysis models to reduce problems encountered when sharing models between model providers and model users and supports the tasks with different web service standards (e.g., the WPS standard). A description method for heterogeneous geo-analysis models is studied. Based on the model description information, the methods for encapsulating the model-execution program to model services and for describing model-service deployment information are also included in the proposed strategy. Hence, the model-description interface, model-execution interface and model-deployment interface are studied to help model providers and model users more easily share, reuse and integrate geo-analysis models in an open web environment. Finally, a prototype system is established, and the WPS standard is employed as an example to verify the capability and practicability of the model-encapsulation strategy. The results show that it is more convenient for modellers to share and integrate heterogeneous geo-analysis models in cloud computing platforms.

  8. FDSN and EarthCube: Coordinating Global Infrastructures within Seismology and Across Other Geophysical Domains

    NASA Astrophysics Data System (ADS)

    Ahern, T. K.; Ekstrom, G.; Grobbelaer, M.; Trabant, C. M.; Van Fossen, M.; Stults, M.; Tsuboi, S.; Beaudoin, B. C.; Bondar, I.

    2016-12-01

    Seismology, by its very nature, requires sharing information across international boundaries and as such seismology evolved as a science that promotes free and open access to data. The International Federation of Digital Seismograph Networks (FDSN) has commission status within IASPEI and as such is the international standards body in our community. In the late 1980s a domain standard for exchanging seismological information was created and the SEED format is still the dominant domain standard. More recently the FDSN standardized web-service interfaces for key services used in our community. The standardization of these services also enabled the development of a federation of data centers. These federated centers, can be accessed through standard FDSN service calls. Client software exists that currently allows seamless and transparent access to all data managed at 14 globally distributed data centers on three continents with plans to expand this more broadly. IRIS is also involved in the EarthCube project funded by the US National Science Foundation. The GEOphysical Web Services (GeoWS) project extended the style of web services endorsed by the FDSN to interdisciplinary domains. IRIS worked with five data centers in other domains (Caltech, UCSD, Columbia University, UNAVCO and Unidata) to develop `similar' service-based interfaces to their data systems that were drawn from the oceanographic, atmospheric, and solid earth divisions within the NSF's geosciences directorate. Additionally IRIS developed GeoWS style web services for six additional data collections that included magnetic observations, field gravity measurements, superconducting gravimetry data, volcano monitoring data, tidal data, and oceanographic observations including those from cabled arrays in the ocean. This presentation will highlight the success the FDSN and GeoWS services have demonstrated within and beyond seismology as well as identifying some next steps being considered.

  9. A Method for Transforming Existing Web Service Descriptions into an Enhanced Semantic Web Service Framework

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng; Song, William; Munro, Malcolm

    Web Services as a new distributed system technology has been widely adopted by industries in the areas, such as enterprise application integration (EAI), business process management (BPM), and virtual organisation (VO). However, lack of semantics in the current Web Service standards has been a major barrier in service discovery and composition. In this chapter, we propose an enhanced context-based semantic service description framework (CbSSDF+) that tackles the problem and improves the flexibility of service discovery and the correctness of generated composite services. We also provide an agile transformation method to demonstrate how the various formats of Web Service descriptions on the Web can be managed and renovated step by step into CbSSDF+ based service description without large amount of engineering work. At the end of the chapter, we evaluate the applicability of the transformation method and the effectiveness of CbSSDF+ through a series of experiments.

  10. Web servicing the biological office.

    PubMed

    Szugat, Martin; Güttler, Daniel; Fundel, Katrin; Sohler, Florian; Zimmer, Ralf

    2005-09-01

    Biologists routinely use Microsoft Office applications for standard analysis tasks. Despite ubiquitous internet resources, information needed for everyday work is often not directly and seamlessly available. Here we describe a very simple and easily extendable mechanism using Web Services to enrich standard MS Office applications with internet resources. We demonstrate its capabilities by providing a Web-based thesaurus for biological objects, which maps names to database identifiers and vice versa via an appropriate synonym list. The client application ProTag makes these features available in MS Office applications using Smart Tags and Add-Ins. http://services.bio.ifi.lmu.de/prothesaurus/

  11. The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*.

    PubMed

    Katayama, Toshiaki; Arakawa, Kazuharu; Nakao, Mitsuteru; Ono, Keiichiro; Aoki-Kinoshita, Kiyoko F; Yamamoto, Yasunori; Yamaguchi, Atsuko; Kawashima, Shuichi; Chun, Hong-Woo; Aerts, Jan; Aranda, Bruno; Barboza, Lord Hendrix; Bonnal, Raoul Jp; Bruskiewich, Richard; Bryne, Jan C; Fernández, José M; Funahashi, Akira; Gordon, Paul Mk; Goto, Naohisa; Groscurth, Andreas; Gutteridge, Alex; Holland, Richard; Kano, Yoshinobu; Kawas, Edward A; Kerhornou, Arnaud; Kibukawa, Eri; Kinjo, Akira R; Kuhn, Michael; Lapp, Hilmar; Lehvaslaiho, Heikki; Nakamura, Hiroyuki; Nakamura, Yasukazu; Nishizawa, Tatsuya; Nobata, Chikashi; Noguchi, Tamotsu; Oinn, Thomas M; Okamoto, Shinobu; Owen, Stuart; Pafilis, Evangelos; Pocock, Matthew; Prins, Pjotr; Ranzinger, René; Reisinger, Florian; Salwinski, Lukasz; Schreiber, Mark; Senger, Martin; Shigemoto, Yasumasa; Standley, Daron M; Sugawara, Hideaki; Tashiro, Toshiyuki; Trelles, Oswaldo; Vos, Rutger A; Wilkinson, Mark D; York, William; Zmasek, Christian M; Asai, Kiyoshi; Takagi, Toshihisa

    2010-08-21

    Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies.

  12. The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*

    PubMed Central

    2010-01-01

    Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies. PMID:20727200

  13. Development of XML Schema for Broadband Digital Seismograms and Data Center Portal

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Tsuboi, S.; Ishihara, Y.; Nagao, H.; Yamagishi, Y.; Watanabe, T.; Yanaka, H.; Yamaji, H.

    2008-12-01

    There are a number of data centers around the globe, where the digital broadband seismograms are opened to researchers. Those centers use their own user interfaces and there are no standard to access and retrieve seismograms from different data centers using unified interface. One of the emergent technologies to realize unified user interface for different data centers is the concept of WebService and WebService portal. Here we have developed a prototype of data center portal for digital broadband seismograms. This WebService portal uses WSDL (Web Services Description Language) to accommodate differences among the different data centers. By using the WSDL, alteration and addition of data center user interfaces can be easily managed. This portal, called NINJA Portal, assumes three WebServices: (1) database Query service, (2) Seismic event data request service, and (3) Seismic continuous data request service. Current system supports both station search of database Query service and seismic continuous data request service. Data centers supported by this NINJA portal will be OHP data center in ERI and Pacific21 data center in IFREE/JAMSTEC in the beginning. We have developed metadata standard for seismological data based on QuakeML for parametric data, which has been developed by ETH Zurich, and XML-SEED for waveform data, which was developed by IFREE/JAMSTEC. The prototype of NINJA portal is now released through IFREE web page (http://www.jamstec.go.jp/pacific21/).

  14. A new reference implementation of the PSICQUIC web service.

    PubMed

    del-Toro, Noemi; Dumousseau, Marine; Orchard, Sandra; Jimenez, Rafael C; Galeota, Eugenia; Launay, Guillaume; Goll, Johannes; Breuer, Karin; Ono, Keiichiro; Salwinski, Lukasz; Hermjakob, Henning

    2013-07-01

    The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).

  15. Using JavaScript and the FDSN web service to create an interactive earthquake information system

    NASA Astrophysics Data System (ADS)

    Fischer, Kasper D.

    2015-04-01

    The FDSN web service provides a web interface to access earthquake meta-data (e. g. event or station information) and waveform date over the internet. Requests are send to a server as URLs and the output is either XML or miniSEED. This makes it hard to read by humans but easy to process with different software. Different data centers are already supporting the FDSN web service, e. g. USGS, IRIS, ORFEUS. The FDSN web service is also part of the Seiscomp3 (http://www.seiscomp3.org) software. The Seismological Observatory of the Ruhr-University switched to Seiscomp3 as the standard software for the analysis of mining induced earthquakes at the beginning of 2014. This made it necessary to create a new web-based earthquake information service for the publication of results to the general public. This has be done by processing the output of a FDSN web service query by javascript running in a standard browser. The result is an interactive map presenting the observed events and further information of events and stations on a single web page as a table and on a map. In addition the user can download event information, waveform data and station data in different formats like miniSEED, quakeML or FDSNxml. The developed code and all used libraries are open source and freely available.

  16. BPELPower—A BPEL execution engine for geospatial web services

    NASA Astrophysics Data System (ADS)

    Yu, Genong (Eugene); Zhao, Peisheng; Di, Liping; Chen, Aijun; Deng, Meixia; Bai, Yuqi

    2012-10-01

    The Business Process Execution Language (BPEL) has become a popular choice for orchestrating and executing workflows in the Web environment. As one special kind of scientific workflow, geospatial Web processing workflows are data-intensive, deal with complex structures in data and geographic features, and execute automatically with limited human intervention. To enable the proper execution and coordination of geospatial workflows, a specially enhanced BPEL execution engine is required. BPELPower was designed, developed, and implemented as a generic BPEL execution engine with enhancements for executing geospatial workflows. The enhancements are especially in its capabilities in handling Geography Markup Language (GML) and standard geospatial Web services, such as the Web Processing Service (WPS) and the Web Feature Service (WFS). BPELPower has been used in several demonstrations over the decade. Two scenarios were discussed in detail to demonstrate the capabilities of BPELPower. That study showed a standard-compliant, Web-based approach for properly supporting geospatial processing, with the only enhancement at the implementation level. Pattern-based evaluation and performance improvement of the engine are discussed: BPELPower directly supports 22 workflow control patterns and 17 workflow data patterns. In the future, the engine will be enhanced with high performance parallel processing and broad Web paradigms.

  17. Some Programs Should Not Run on Laptops - Providing Programmatic Access to Applications Via Web Services

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Gupta, N.; Gupta, S.; Field, E.; Maechling, P.

    2003-12-01

    Modern laptop computers, and personal computers, can provide capabilities that are, in many ways, comparable to workstations or departmental servers. However, this doesn't mean we should run all computations on our local computers. We have identified several situations in which it preferable to implement our seismological application programs in a distributed, server-based, computing model. In this model, application programs on the user's laptop, or local computer, invoke programs that run on an organizational server, and the results are returned to the invoking system. Situations in which a server-based architecture may be preferred include: (a) a program is written in a language, or written for an operating environment, that is unsupported on the local computer, (b) software libraries or utilities required to execute a program are not available on the users computer, (c) a computational program is physically too large, or computationally too expensive, to run on a users computer, (d) a user community wants to enforce a consistent method of performing a computation by standardizing on a single implementation of a program, and (e) the computational program may require current information, that is not available to all client computers. Until recently, distributed, server-based, computational capabilities were implemented using client/server architectures. In these architectures, client programs were often written in the same language, and they executed in the same computing environment, as the servers. Recently, a new distributed computational model, called Web Services, has been developed. Web Services are based on Internet standards such as XML, SOAP, WDSL, and UDDI. Web Services offer the promise of platform, and language, independent distributed computing. To investigate this new computational model, and to provide useful services to the SCEC Community, we have implemented several computational and utility programs using a Web Service architecture. We have hosted these Web Services as a part of the SCEC Community Modeling Environment (SCEC/CME) ITR Project (http://www.scec.org/cme). We have implemented Web Services for several of the reasons sited previously. For example, we implemented a FORTRAN-based Earthquake Rupture Forecast (ERF) as a Web Service for use by client computers that don't support a FORTRAN runtime environment. We implemented a Generic Mapping Tool (GMT) Web Service for use by systems that don't have local access to GMT. We implemented a Hazard Map Calculator Web Service to execute Hazard calculations that are too computationally intensive to run on a local system. We implemented a Coordinate Conversion Web Service to enforce a standard and consistent method for converting between UTM and Lat/Lon. Our experience developing these services indicates both strengths and weakness in current Web Service technology. Client programs that utilize Web Services typically need network access, a significant disadvantage at times. Programs with simple input and output parameters were the easiest to implement as Web Services, while programs with complex parameter-types required a significant amount of additional development. We also noted that Web services are very data-oriented, and adapting object-oriented software into the Web Service model proved problematic. Also, the Web Service approach of converting data types into XML format for network transmission has significant inefficiencies for some data sets.

  18. BioModels.net Web Services, a free and integrated toolkit for computational modelling software.

    PubMed

    Li, Chen; Courtot, Mélanie; Le Novère, Nicolas; Laibe, Camille

    2010-05-01

    Exchanging and sharing scientific results are essential for researchers in the field of computational modelling. BioModels.net defines agreed-upon standards for model curation. A fundamental one, MIRIAM (Minimum Information Requested in the Annotation of Models), standardises the annotation and curation process of quantitative models in biology. To support this standard, MIRIAM Resources maintains a set of standard data types for annotating models, and provides services for manipulating these annotations. Furthermore, BioModels.net creates controlled vocabularies, such as SBO (Systems Biology Ontology) which strictly indexes, defines and links terms used in Systems Biology. Finally, BioModels Database provides a free, centralised, publicly accessible database for storing, searching and retrieving curated and annotated computational models. Each resource provides a web interface to submit, search, retrieve and display its data. In addition, the BioModels.net team provides a set of Web Services which allows the community to programmatically access the resources. A user is then able to perform remote queries, such as retrieving a model and resolving all its MIRIAM Annotations, as well as getting the details about the associated SBO terms. These web services use established standards. Communications rely on SOAP (Simple Object Access Protocol) messages and the available queries are described in a WSDL (Web Services Description Language) file. Several libraries are provided in order to simplify the development of client software. BioModels.net Web Services make one step further for the researchers to simulate and understand the entirety of a biological system, by allowing them to retrieve biological models in their own tool, combine queries in workflows and efficiently analyse models.

  19. Dynamic selection mechanism for quality of service aware web services

    NASA Astrophysics Data System (ADS)

    D'Mello, Demian Antony; Ananthanarayana, V. S.

    2010-02-01

    A web service is an interface of the software component that can be accessed by standard Internet protocols. The web service technology enables an application to application communication and interoperability. The increasing number of web service providers throughout the globe have produced numerous web services providing the same or similar functionality. This necessitates the use of tools and techniques to search the suitable services available over the Web. UDDI (universal description, discovery and integration) is the first initiative to find the suitable web services based on the requester's functional demands. However, the requester's requirements may also include non-functional aspects like quality of service (QoS). In this paper, the authors define a QoS model for QoS aware and business driven web service publishing and selection. The authors propose a QoS requirement format for the requesters, to specify their complex demands on QoS for the web service selection. The authors define a tree structure called quality constraint tree (QCT) to represent the requester's variety of requirements on QoS properties having varied preferences. The paper proposes a QoS broker based architecture for web service selection, which facilitates the requesters to specify their QoS requirements to select qualitatively optimal web service. A web service selection algorithm is presented, which ranks the functionally similar web services based on the degree of satisfaction of the requester's QoS requirements and preferences. The paper defines web service provider qualities to distinguish qualitatively competitive web services. The paper also presents the modelling and selection mechanism for the requester's alternative constraints defined on the QoS. The authors implement the QoS broker based system to prove the correctness of the proposed web service selection mechanism.

  20. Spatial data standards meet meteorological data - pushing the boundaries

    NASA Astrophysics Data System (ADS)

    Wagemann, Julia; Siemen, Stephan; Lamy-Thepaut, Sylvie

    2017-04-01

    The data archive of the European Centre for Medium-Range Weather Forecasts (ECMWF) holds around 120 PB of data and is world's largest archive of meteorological data. This information is of great value for many Earth Science disciplines, but the complexity of the data (up to five dimensions and different time axis domains) and its native data format GRIB, while being an efficient archive format, limits the overall data uptake especially from users outside the MetOcean domain. ECMWF's MARS WebAPI is a very efficient and flexible system for expert users to access and retrieve meteorological data, though challenging for users outside the MetOcean domain. With the help of web-based standards for data access and processing, ECMWF wants to make more than 1 PB of meteorological and climate data easier accessible to users across different Earth Science disciplines. As climate data provider for the H2020 project EarthServer-2, ECMWF explores the feasibility to give on-demand access to it's MARS archive via the OGC standard interface Web Coverage Service (WCS). Despite the potential a WCS for climate and meteorological data offers, the standards-based modelling of meteorological and climate data entails many challenges and reveals the boundaries of the current Web Coverage Service 2.0 standard. Challenges range from valid semantic data models for meteorological data to optimal and efficient data structures for a scalable web service. The presentation reviews the applicability of the current Web Coverage Service 2.0 standard to meteorological and climate data and discusses challenges that are necessary to overcome in order to achieve real interoperability and to ensure the conformant sharing and exchange of meteorological data.

  1. Description and testing of the Geo Data Portal: Data integration framework and Web processing services for environmental science collaboration

    USGS Publications Warehouse

    Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Viger, Roland J.

    2011-01-01

    Interest in sharing interdisciplinary environmental modeling results and related data is increasing among scientists. The U.S. Geological Survey Geo Data Portal project enables data sharing by assembling open-standard Web services into an integrated data retrieval and analysis Web application design methodology that streamlines time-consuming and resource-intensive data management tasks. Data-serving Web services allow Web-based processing services to access Internet-available data sources. The Web processing services developed for the project create commonly needed derivatives of data in numerous formats. Coordinate reference system manipulation and spatial statistics calculation components implemented for the Web processing services were confirmed using ArcGIS 9.3.1, a geographic information science software package. Outcomes of the Geo Data Portal project support the rapid development of user interfaces for accessing and manipulating environmental data.

  2. Easy access to geophysical data sets at the IRIS Data Management Center

    NASA Astrophysics Data System (ADS)

    Trabant, C.; Ahern, T.; Suleiman, Y.; Karstens, R.; Weertman, B.

    2012-04-01

    At the IRIS Data Management Center (DMC) we primarily manage seismological data but also have other geophysical data sets for related fields including atmospheric pressure and gravity measurements and higher level data products derived from raw data. With a few exceptions all data managed by the IRIS DMC are openly available and we serve an international research audience. These data are available via a number of different mechanisms from batch requests submitted through email, web interfaces, near real time streams and more recently web services. Our initial suite of web services offer access to almost all of the raw data and associated metadata managed at the DMC. In addition, we offer services that apply processing to the data before it is sent to the user. Web service technologies are ubiquitous with support available in nearly every programming language and operating system. By their nature web services are programmatic interfaces, but by choosing a simple subset of web service methods we make our data available to a very broad user base. These interfaces will be usable by professional developers as well as non-programmers. Whenever possible we chose open and recognized standards. The data returned to the user is in a variety of formats depending on type, including FDSN SEED, QuakeML, StationXML, ASCII, PNG images and in some cases where no appropriate standard could be found a customized XML format. To promote easy access to seismological data for all researchers we are coordinating with international partners to define web service interfaces standards. Additionally we are working with key partners in Europe to complete the initial implementation of these services. Once a standard has been adopted and implemented at multiple data centers researchers will be able to use the same request tools to access data across multiple data centers. The web services that apply on-demand processing to requested data include the capability to apply instrument corrections and format translations which ultimately allows more researchers to use the data without knowledge of specific data and metadata formats. In addition to serving as a new platform on top of which research scientists will build advanced processing tools we anticipate that they will result in more data being accessible by more users.

  3. A Web Service and Interface for Remote Electronic Device Characterization

    ERIC Educational Resources Information Center

    Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.

    2011-01-01

    A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…

  4. BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.

    PubMed

    Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel

    2015-06-02

    Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.

  5. Cool Apps: Building Cryospheric Data Applications With Standards-Based Service Oriented Architecture

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; Truslove, I.; Billingsley, B. W.; Oldenburg, J.; Brodzik, M.; Lewis, S.; Liu, M.

    2012-12-01

    The National Snow and Ice Data Center (NSIDC) holds a large collection of cryospheric data, and is involved in a number of informatics research and development projects aimed at improving the discoverability and accessibility of these data. To develop high-quality software in a timely manner, we have adopted a Service-Oriented Architecture (SOA) approach for our core technical infrastructure development. Data services at NSIDC are internally exposed to other tools and applications through standards-based service interfaces. These standards include OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting), various OGC (Open Geospatial Consortium) standards including WMS (Web Map Service) and WFS (Web Feature Service), ESIP (Federation of Earth Sciences Information Partners) OpenSearch, and NSIDC-specific RESTful services. By taking a standards-based approach, we are able to use off-the-shelf tools and libraries to consume, translate and broker these data services, and thus develop applications faster. Additionally, by exposing public interfaces to these services we provide valuable data services to technical collaborators; for example, NASA Reverb (http://reverb.echo.nasa.gov) uses NSIDC's WMS services. Our latest generation of web applications consume these data services directly. The most complete example of this is the Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal) which depends on many of the aforementioned services, and clearly exhibits many of the advantages of building applications atop a service-oriented architecture. This presentation outlines the architectural approach and components and open standards and protocols adopted at NSIDC, demonstrates the interactions and uses of public and internal service interfaces currently powering applications including the IceBridge Data Portal, and outlines the benefits and challenges of this approach.

  6. Sensor Web Interoperability Testbed Results Incorporating Earth Observation Satellites

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Daniel J.; Alameh, Nadine; Bambacus, Myra; Cappelaere, Pat; Falke, Stefan; Derezinski, Linda; Zhao, Piesheng

    2007-01-01

    This paper describes an Earth Observation Sensor Web scenario based on the Open Geospatial Consortium s Sensor Web Enablement and Web Services interoperability standards. The scenario demonstrates the application of standards in describing, discovering, accessing and tasking satellites and groundbased sensor installations in a sequence of analysis activities that deliver information required by decision makers in response to national, regional or local emergencies.

  7. Web Services as Building Blocks for an Open Coastal Observing System

    NASA Astrophysics Data System (ADS)

    Breitbach, G.; Krasemann, H.

    2012-04-01

    In coastal observing systems it is needed to integrate different observing methods like remote sensing, in-situ measurements, and models into a synoptic view of the state of the observed region. This integration can be based solely on web services combining data and metadata. Such an approach is pursued for COSYNA (Coastal Observing System for Northern and Artic seas). Data from satellite and radar remote sensing, measurements of buoys, stations and Ferryboxes are the observation part of COSYNA. These data are assimilated into models to create pre-operational forecasts. For discovering data an OGC Web Feature Service (WFS) is used by the COSYNA data portal. This Web Feature Service knows the necessary metadata not only for finding data, but in addition the URLs of web services to view and download the data. To make the data from different resources comparable a common vocabulary is needed. For COSYNA the standard names from CF-conventions are stored within the metadata whenever possible. For the metadata an INSPIRE and ISO19115 compatible data format is used. The WFS is fed from the metadata-system using database-views. Actual data are stored in two different formats, in NetCDF-files for gridded data and in an RDBMS for time-series-like data. The web service URLs are mostly standard based the standards are mainly OGC standards. Maps were created from netcdf files with the help of the ncWMS tool whereas a self-developed java servlet is used for maps of moving measurement platforms. In this case download of data is offered via OGC SOS. For NetCDF-files OPeNDAP is used for the data download. The OGC CSW is used for accessing extended metadata. The concept of data management in COSYNA will be presented which is independent of the special services used in COSYNA. This concept is parameter and data centric and might be useful for other observing systems.

  8. Collaboratively Conceived, Designed and Implemented: Matching Visualization Tools with Geoscience Data Collections and Geoscience Data Collections with Visualization Tools via the ToolMatch Service.

    NASA Astrophysics Data System (ADS)

    Hoebelheinrich, N. J.; Lynnes, C.; West, P.; Ferritto, M.

    2014-12-01

    Two problems common to many geoscience domains are the difficulties in finding tools to work with a given dataset collection, and conversely, the difficulties in finding data for a known tool. A collaborative team from the Earth Science Information Partnership (ESIP) has gotten together to design and create a web service, called ToolMatch, to address these problems. The team began their efforts by defining an initial, relatively simple conceptual model that addressed the two uses cases briefly described above. The conceptual model is expressed as an ontology using OWL (Web Ontology Language) and DCterms (Dublin Core Terms), and utilizing standard ontologies such as DOAP (Description of a Project), FOAF (Friend of a Friend), SKOS (Simple Knowledge Organization System) and DCAT (Data Catalog Vocabulary). The ToolMatch service will be taking advantage of various Semantic Web and Web standards, such as OpenSearch, RESTful web services, SWRL (Semantic Web Rule Language) and SPARQL (Simple Protocol and RDF Query Language). The first version of the ToolMatch service was deployed in early fall 2014. While more complete testing is required, a number of communities besides ESIP member organizations have expressed interest in collaborating to create, test and use the service and incorporate it into their own web pages, tools and / or services including the USGS Data Catalog service, DataONE, the Deep Carbon Observatory, Virtual Solar Terrestrial Observatory (VSTO), and the U.S. Global Change Research Program. In this session, presenters will discuss the inception and development of the ToolMatch service, the collaborative process used to design, refine, and test the service, and future plans for the service.

  9. The Use of RESTful Web Services in Medical Informatics and Clinical Research and Its Implementation in Europe.

    PubMed

    Aerts, Jozef

    2017-01-01

    RESTful web services nowadays are state-of-the-art in business transactions over the internet. They are however not very much used in medical informatics and in clinical research, especially not in Europe. To make an inventory of RESTful web services that can be used in medical informatics and clinical research, including those that can help in patient empowerment in the DACH region and in Europe, and to develop some new RESTful web services for use in clinical research and regulatory review. A literature search on available RESTful web services has been performed and new RESTful web services have been developed on an application server using the Java language. Most of the web services found originate from institutes and organizations in the USA, whereas no similar web services could be found that are made available by European organizations. New RESTful web services have been developed for LOINC codes lookup, for UCUM conversions and for use with CDISC Standards. A comparison is made between "top down" and "bottom up" web services, the latter meant to answer concrete questions immediately. The lack of RESTful web services made available by European organizations in healthcare and medical informatics is striking. RESTful web services may in short future play a major role in medical informatics, and when localized for the German language and other European languages, can help to considerably facilitate patient empowerment. This however requires an EU equivalent of the US National Library of Medicine.

  10. Enhancing the AliEn Web Service Authentication

    NASA Astrophysics Data System (ADS)

    Zhu, Jianlin; Saiz, Pablo; Carminati, Federico; Betev, Latchezar; Zhou, Daicui; Mendez Lorenzo, Patricia; Grigoras, Alina Gabriela; Grigoras, Costin; Furano, Fabrizio; Schreiner, Steffen; Vladimirovna Datskova, Olga; Sankar Banerjee, Subho; Zhang, Guoping

    2011-12-01

    Web Services are an XML based technology that allow applications to communicate with each other across disparate systems. Web Services are becoming the de facto standard that enable inter operability between heterogeneous processes and systems. AliEn2 is a grid environment based on web services. The AliEn2 services can be divided in three categories: Central services, deployed once per organization; Site services, deployed on each of the participating centers; Job Agents running on the worker nodes automatically. A security model to protect these services is essential for the whole system. Current implementations of web server, such as Apache, are not suitable to be used within the grid environment. Apache with the mod_ssl and OpenSSL only supports the X.509 certificates. But in the grid environment, the common credential is the proxy certificate for the purpose of providing restricted proxy and delegation. An Authentication framework was taken for AliEn2 web services to add the ability to accept X.509 certificates and proxy certificates from client-side to Apache Web Server. The authentication framework could also allow the generation of access control policies to limit access to the AliEn2 web services.

  11. An Open Source Tool to Test Interoperability

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.

    2012-12-01

    Scientists interact with information at various levels from gathering of the raw observed data to accessing portrayed processed quality control data. Geoinformatics tools help scientist on the acquisition, storage, processing, dissemination and presentation of geospatial information. Most of the interactions occur in a distributed environment between software components that take the role of either client or server. The communication between components includes protocols, encodings of messages and managing of errors. Testing of these communication components is important to guarantee proper implementation of standards. The communication between clients and servers can be adhoc or follow standards. By following standards interoperability between components increase while reducing the time of developing new software. The Open Geospatial Consortium (OGC), not only coordinates the development of standards but also, within the Compliance Testing Program (CITE), provides a testing infrastructure to test clients and servers. The OGC Web-based Test Engine Facility, based on TEAM Engine, allows developers to test Web services and clients for correct implementation of OGC standards. TEAM Engine is a JAVA open source facility, available at Sourceforge that can be run via command line, deployed in a web servlet container or integrated in developer's environment via MAVEN. The TEAM Engine uses the Compliance Test Language (CTL) and TestNG to test HTTP requests, SOAP services and XML instances against Schemas and Schematron based assertions of any type of web service, not only OGC services. For example, the OGC Web Feature Service (WFS) 1.0.0 test has more than 400 test assertions. Some of these assertions includes conformance of HTTP responses, conformance of GML-encoded data; proper values for elements and attributes in the XML; and, correct error responses. This presentation will provide an overview of TEAM Engine, introduction of how to test via the OGC Testing web site and description of performing local tests. It will also provide information about how to participate in the open source code development of TEAM Engine.

  12. Evolution of System Architectures: Where Do We Need to Fail Next?

    NASA Astrophysics Data System (ADS)

    Bermudez, Luis; Alameh, Nadine; Percivall, George

    2013-04-01

    Innovation requires testing and failing. Thomas Edison was right when he said "I have not failed. I've just found 10,000 ways that won't work". For innovation and improvement of standards to happen, service Architectures have to be tested and tested. Within the Open Geospatial Consortium (OGC), testing of service architectures has occurred for the last 15 years. This talk will present an evolution of these service architectures and a possible future path. OGC is a global forum for the collaboration of developers and users of spatial data products and services, and for the advancement and development of international standards for geospatial interoperability. The OGC Interoperability Program is a series of hands-on, fast paced, engineering initiatives to accelerate the development and acceptance of OGC standards. Each initiative is organized in threads that provide focus under a particular theme. The first testbed, OGC Web Services phase 1, completed in 2003 had four threads: Common Architecture, Web Mapping, Sensor Web and Web Imagery Enablement. The Common Architecture was a cross-thread theme, to ensure that the Web Mapping and Sensor Web experiments built on a base common architecture. The architecture was based on the three main SOA components: Broker, Requestor and Provider. It proposed a general service model defining service interactions and dependencies; categorization of service types; registries to allow discovery and access of services; data models and encodings; and common services (WMS, WFS, WCS). For the latter, there was a clear distinction on the different services: Data Services (e.g. WMS), Application services (e.g. Coordinate transformation) and server-side client applications (e.g. image exploitation). The latest testbed, OGC Web Service phase 9, completed in 2012 had 5 threads: Aviation, Cross-Community Interoperability (CCI), Security and Services Interoperability (SSI), OWS Innovations and Compliance & Interoperability Testing & Evaluation (CITE). Compared to the first testbed, OWS-9 did not have a separate common architecture thread. Instead the emphasis was on brokering information models, securing them and making data available efficiently on mobile devices. The outcome is an architecture based on usability and non-intrusiveness while leveraging mediation of information models from different communities. This talk will use lessons learned from the evolution from OGC Testbed phase 1 to phase 9 to better understand how global and complex infrastructures evolve to support many communities including the Earth System Science Community.

  13. Policy for Establishing and Maintaining Publicly Accessible Department of Defense Web Information Service

    DTIC Science & Technology

    1997-07-18

    the Marine Corps Exchange. If these sites contain commercial advertisements or sponsorships, the appropriate disclaimer below shall be given...or the information, products or services contained therein. For other than authorized activities such as military exchanges and Morale...posted to the commercial site. 4.9. Design Standards and Non-standard Features ( ActiveX and Java) 4.9.1. Design of publicly accessible web

  14. Multi-National Information Sharing -- Cross Domain Collaborative Information Environment (CDCIE) Solution. Revision 4

    DTIC Science & Technology

    2005-04-12

    Hardware, Database, and Operating System independence using Java • Enterprise-class Architecture using Java2 Enterprise Edition 1.4 • Standards based...portal applications. Compliance with the Java Specification Request for Portlet APIs (JSR-168) (Portlet API) and Web Services for Remote Portals...authentication and authorization • Portal Standards using Java Specification Request for Portlet APIs (JSR-168) (Portlet API) and Web Services for Remote

  15. Design and development of a tele-healthcare information system based on web services and HL7 standards.

    PubMed

    Huang, Ean-Wen; Hung, Rui-Suan; Chiou, Shwu-Fen; Liu, Fei-Ying; Liou, Der-Ming

    2011-01-01

    Information and communication technologies progress rapidly and many novel applications have been developed in many domains of human life. In recent years, the demand for healthcare services has been growing because of the increase in the elderly population. Consequently, a number of healthcare institutions have focused on creating technologies to reduce extraneous work and improve the quality of service. In this study, an information platform for tele- healthcare services was implemented. The architecture of the platform included a web-based application server and client system. The client system was able to retrieve the blood pressure and glucose levels of a patient stored in measurement instruments through Bluetooth wireless transmission. The web application server assisted the staffs and clients in analyzing the health conditions of patients. In addition, the server provided face-to-face communications and instructions through remote video devices. The platform deployed a service-oriented architecture, which consisted of HL7 standard messages and web service components. The platform could transfer health records into HL7 standard clinical document architecture for data exchange with other organizations. The prototyping system was pretested and evaluated in a homecare department of hospital and a community management center for chronic disease monitoring. Based on the results of this study, this system is expected to improve the quality of healthcare services.

  16. Finding, Browsing and Getting Data Easily Using SPDF Web Services

    NASA Technical Reports Server (NTRS)

    Candey, R.; Chimiak, R.; Harris, B.; Johnson, R.; Kovalick, T.; Lal, N.; Leckner, H.; Liu, M.; McGuire, R.; Papitashvili, N.; hide

    2010-01-01

    The NASA GSFC Space Physics Data Facility (5PDF) provides heliophysics science-enabling information services for enhancing scientific research and enabling integration of these services into the Heliophysics Data Environment paradigm, via standards-based approach (SOAP) and Representational State Transfer (REST) web services in addition to web browser, FTP, and OPeNDAP interfaces. We describe these interfaces and the philosophies behind these web services, and show how to call them from various languages, such as IDL and Perl. We are working towards a "one simple line to call" philosophy extolled in the recent VxO discussions. Combining data from many instruments and missions enables broad research analysis and correlation and coordination with other experiments and missions.

  17. WIWS: a protein structure bioinformatics Web service collection.

    PubMed

    Hekkelman, M L; Te Beek, T A H; Pettifer, S R; Thorne, D; Attwood, T K; Vriend, G

    2010-07-01

    The WHAT IF molecular-modelling and drug design program is widely distributed in the world of protein structure bioinformatics. Although originally designed as an interactive application, its highly modular design and inbuilt control language have recently enabled its deployment as a collection of programmatically accessible web services. We report here a collection of WHAT IF-based protein structure bioinformatics web services: these relate to structure quality, the use of symmetry in crystal structures, structure correction and optimization, adding hydrogens and optimizing hydrogen bonds and a series of geometric calculations. The freely accessible web services are based on the industry standard WS-I profile and the EMBRACE technical guidelines, and are available via both REST and SOAP paradigms. The web services run on a dedicated computational cluster; their function and availability is monitored daily.

  18. Rolling Deck to Repository (R2R): Big Data and Standard Services for the Fleet Community

    NASA Astrophysics Data System (ADS)

    Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Smith, S. R.; Stocks, K. I.

    2014-12-01

    The Rolling Deck to Repository (R2R; http://rvdata.us/) program curates underway environmental sensor data from the U.S. academic oceanographic research fleet, ensuring data sets are routinely and consistently documented, preserved in long-term archives, and disseminated to the science community. Currently 25 in-service vessels contribute 7 terabytes of data to R2R each year, acquired from a full suite of geophysical, oceanographic, meteorological, and navigational sensors on over 400 cruises worldwide. To accommodate this large volume and variety of data, R2R has developed highly efficient stewardship procedures. These include scripted "break out" of cruise data packages from each vessel based on standard filename and directory patterns; automated harvest of cruise metadata from the UNOLS Office via Web Services and from OpenXML-based forms submitted by vessel operators; scripted quality assessment routines that calculate statistical summaries and standard ratings for selected data types; adoption of community-standard controlled vocabularies for vessel codes, instrument types, etc, provided by the NERC Vocabulary Server, in lieu of maintaining custom local term lists; and a standard package structure based on the IETF BagIt format for delivering data to long-term archives. Documentation and standard post-field products, including quality-controlled shiptrack navigation data for every cruise, are published in multiple services and formats to satisfy a diverse range of clients. These include Catalog Service for Web (CSW), GeoRSS, and OAI-PMH discovery services via a GeoNetwork portal; OGC Web Map and Feature Services for GIS clients; a citable Digital Object Identifier (DOI) for each dataset; ISO 19115-2 standard geospatial metadata records suitable for submission to long-term archives as well as the POGO global catalog; and Linked Open Data resources with a SPARQL query endpoint for Semantic Web clients. R2R participates in initiatives such as the Ocean Data Interoperability Platform (ODIP) and the NSF EarthCube OceanLink project to promote community-standard formats, vocabularies, and services among ocean data providers.

  19. Leveraging Open Standard Interfaces in Accessing and Processing NASA Data Model Outputs

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Alameh, N. S.; Hoijarvi, K.; de La Beaujardiere, J.; Bambacus, M. J.

    2006-12-01

    An objective of NASA's Earth Science Division is to develop advanced information technologies for processing, archiving, accessing, visualizing, and communicating Earth Science data. To this end, NASA and other federal agencies have collaborated with the Open Geospatial Consortium (OGC) to research, develop, and test interoperability specifications within projects and testbeds benefiting the government, industry, and the public. This paper summarizes the results of a recent effort under the auspices of the OGC Web Services testbed phase 4 (OWS-4) to explore standardization approaches for accessing and processing the outputs of NASA models of physical phenomena. Within the OWS-4 context, experiments were designed to leverage the emerging OGC Web Processing Service (WPS) and Web Coverage Service (WCS) specifications to access, filter and manipulate the outputs of the NASA Goddard Earth Observing System (GEOS) and Goddard Chemistry Aerosol Radiation and Transport (GOCART) forecast models. In OWS-4, the intent is to provide the users with more control over the subsets of data that they can extract from the model results as well as over the final portrayal of that data. To meet that goal, experiments have been designed to test the suitability of use of OGC's Web Processing Service (WPS) and Web Coverage Service (WCS) for filtering, processing and portraying the model results (including slices by height or by time), and to identify any enhancements to the specs to meet the desired objectives. This paper summarizes the findings of the experiments highlighting the value of the Web Processing Service in providing standard interfaces for accessing and manipulating model data within spatial and temporal frameworks. The paper also points out the key shortcomings of the WPS especially in terms in comparison with a SOAP/WSDL approach towards solving the same problem.

  20. Data Mining Web Services for Science Data Repositories

    NASA Astrophysics Data System (ADS)

    Graves, S.; Ramachandran, R.; Keiser, K.; Maskey, M.; Lynnes, C.; Pham, L.

    2006-12-01

    The maturation of web services standards and technologies sets the stage for a distributed "Service-Oriented Architecture" (SOA) for NASA's next generation science data processing. This architecture will allow members of the scientific community to create and combine persistent distributed data processing services and make them available to other users over the Internet. NASA has initiated a project to create a suite of specialized data mining web services designed specifically for science data. The project leverages the Algorithm Development and Mining (ADaM) toolkit as its basis. The ADaM toolkit is a robust, mature and freely available science data mining toolkit that is being used by several research organizations and educational institutions worldwide. These mining services will give the scientific community a powerful and versatile data mining capability that can be used to create higher order products such as thematic maps from current and future NASA satellite data records with methods that are not currently available. The package of mining and related services are being developed using Web Services standards so that community-based measurement processing systems can access and interoperate with them. These standards-based services allow users different options for utilizing them, from direct remote invocation by a client application to deployment of a Business Process Execution Language (BPEL) solutions package where a complex data mining workflow is exposed to others as a single service. The ability to deploy and operate these services at a data archive allows the data mining algorithms to be run where the data are stored, a more efficient scenario than moving large amounts of data over the network. This will be demonstrated in a scenario in which a user uses a remote Web-Service-enabled clustering algorithm to create cloud masks from satellite imagery at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  1. Global Federation of Data Services in Seismology: Extending the Concept to Interdisciplinary Science

    NASA Astrophysics Data System (ADS)

    Ahern, T. K.; Trabant, C. M.; Stults, M.; Van Fossen, M.

    2015-12-01

    The International Federation of Digital Seismograph Networks (FDSN) sets international standards, formats, and access protocols for global seismology. Recently the availability of an FDSN standard for web services has enabled the development of a federated model of data access. With a growing number of internationally distributed data centers supporting identical web services the task of federation is now fully realizable. This presentation will highlight the advances the seismological community has made in the past year towards federated access to seismological data including waveforms, earthquake event catalogs, and metadata describing seismic stations. As part of the NSF EarthCube project, IRIS and its partners have been extending the concept of standard web services to other domains. Our primary partners include Lamont Doherty Earth Observatory (marine geophysics), Caltech (tectonic plate reconstructions), SDSC (hydrology), UNAVCO (geodesy), and Unidata (atmospheric sciences). Additionally IRIS is working with partners at NOAA's NGDC, NEON, UTEP, WOVODAT, Intermagnet, Global Geodynamics Program, and the Ocean Observatory Initiative (OOI) to develop web services for those domains. The ultimate goal is to allow discovery, access, and utilization of cross-domain data sources. IRIS and a variety of US and European partners have been involved in the Cooperation between Europe and the US (CoopEUS) project where interdisciplinary data integration is a key topic.

  2. Going, going, still there: using the WebCite service to permanently archive cited Web pages.

    PubMed

    Eysenbach, Gunther

    2006-01-01

    Scholars are increasingly citing electronic "web references" which are not preserved in libraries or full text archives. WebCite is a new standard for citing web references. To "webcite" a document involves archiving the cited Web page through www.webcitation.org and citing the WebCite permalink instead of (or in addition to) the unstable live Web page.

  3. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.

  4. Grid Enabled Geospatial Catalogue Web Service

    NASA Technical Reports Server (NTRS)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  5. BioXSD: the common data-exchange format for everyday bioinformatics web services.

    PubMed

    Kalas, Matús; Puntervoll, Pål; Joseph, Alexandre; Bartaseviciūte, Edita; Töpfer, Armin; Venkataraman, Prabakar; Pettifer, Steve; Bryne, Jan Christian; Ison, Jon; Blanchet, Christophe; Rapacki, Kristoffer; Jonassen, Inge

    2010-09-15

    The world-wide community of life scientists has access to a large number of public bioinformatics databases and tools, which are developed and deployed using diverse technologies and designs. More and more of the resources offer programmatic web-service interface. However, efficient use of the resources is hampered by the lack of widely used, standard data-exchange formats for the basic, everyday bioinformatics data types. BioXSD has been developed as a candidate for standard, canonical exchange format for basic bioinformatics data. BioXSD is represented by a dedicated XML Schema and defines syntax for biological sequences, sequence annotations, alignments and references to resources. We have adapted a set of web services to use BioXSD as the input and output format, and implemented a test-case workflow. This demonstrates that the approach is feasible and provides smooth interoperability. Semantics for BioXSD is provided by annotation with the EDAM ontology. We discuss in a separate section how BioXSD relates to other initiatives and approaches, including existing standards and the Semantic Web. The BioXSD 1.0 XML Schema is freely available at http://www.bioxsd.org/BioXSD-1.0.xsd under the Creative Commons BY-ND 3.0 license. The http://bioxsd.org web page offers documentation, examples of data in BioXSD format, example workflows with source codes in common programming languages, an updated list of compatible web services and tools and a repository of feature requests from the community.

  6. Installing and Executing Information Object Analysis, Intent, Dissemination, and Enhancement (IOAIDE) and Its Dependencies

    DTIC Science & Technology

    2017-02-01

    Image Processing Web Server Administration ...........................17 Fig. 18 Microsoft ASP.NET MVC 4 installation...algorithms are made into client applications that can be accessed from an image processing web service2 developed following Representational State...Transfer (REST) standards by a mobile app, laptop PC, and other devices. Similarly, weather tweets can be accessed via the Weather Digest Web Service

  7. ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology.

    PubMed

    Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.

  8. OntoGene web services for biomedical text mining.

    PubMed

    Rinaldi, Fabio; Clematide, Simon; Marques, Hernani; Ellendorff, Tilia; Romacker, Martin; Rodriguez-Esteban, Raul

    2014-01-01

    Text mining services are rapidly becoming a crucial component of various knowledge management pipelines, for example in the process of database curation, or for exploration and enrichment of biomedical data within the pharmaceutical industry. Traditional architectures, based on monolithic applications, do not offer sufficient flexibility for a wide range of use case scenarios, and therefore open architectures, as provided by web services, are attracting increased interest. We present an approach towards providing advanced text mining capabilities through web services, using a recently proposed standard for textual data interchange (BioC). The web services leverage a state-of-the-art platform for text mining (OntoGene) which has been tested in several community-organized evaluation challenges,with top ranked results in several of them.

  9. OntoGene web services for biomedical text mining

    PubMed Central

    2014-01-01

    Text mining services are rapidly becoming a crucial component of various knowledge management pipelines, for example in the process of database curation, or for exploration and enrichment of biomedical data within the pharmaceutical industry. Traditional architectures, based on monolithic applications, do not offer sufficient flexibility for a wide range of use case scenarios, and therefore open architectures, as provided by web services, are attracting increased interest. We present an approach towards providing advanced text mining capabilities through web services, using a recently proposed standard for textual data interchange (BioC). The web services leverage a state-of-the-art platform for text mining (OntoGene) which has been tested in several community-organized evaluation challenges, with top ranked results in several of them. PMID:25472638

  10. SWE-based Observation Data Delivery from the Instrument to the User - Sensor Web Technology in the NeXOS Project

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Toma, Daniel; Martinez, Enoc; Delory, Eric; Pearlman, Jay; Rieke, Matthes; Stasch, Christoph

    2017-04-01

    The rapidly evolving technology for building Web-based (spatial) information infrastructures and Sensor Webs, there are new opportunities to improve the process how ocean data is collected and managed. A central element in this development is the suite of Sensor Web Enablement (SWE) standards specified by the Open Geospatial Consortium (OGC). This framework of standards comprises on the one hand data models as well as formats for measurement data (ISO/OGC Observations and Measurement, O&M) and metadata describing measurement processes and sensors (OGC Sensor Model Language, SensorML). On the other hand the SWE standards comprise (Web service) interface specifications for pull-based access to observation data (OGC Sensor Observation Service, SOS) and for controlling or configuring sensors (OGC Sensor Planning Service, SPS). Also within the European INSPIRE framework the SWE standards play an important role as the SOS is the recommended download service interface for O&M-encoded observation data sets. In the context of the EU-funded Oceans of Tomorrow initiative the NeXOS (Next generation, Cost-effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) project is developing a new generation of in-situ sensors that make use of the SWE standards to facilitate the data publication process and the integration into Web based information infrastructures. This includes the development of a dedicated firmware for instruments and sensor platforms (SEISI, Smart Electronic Interface for Sensors and Instruments) maintained by the Universitat Politècnica de Catalunya (UPC). Among other features, SEISI makes use of OGC SWE standards such OGC-PUCK, to enable a plug-and-play mechanism for sensors based on SensorML encoded metadata. Thus, if a new instrument is attached to a SEISI-based platform, it automatically configures the connection to these instruments, automatically generated data files compliant with the ISO/OGC Observations and Measurements standard and initiates the data transmission into the NeXOS Sensor Web infrastructure. Besides these platform-related developments, NeXOS has realised the full path of data transmission from the sensor to the end user application. The conceptual architecture design is implemented by a series of open source SWE software packages provided by 52°North. This comprises especially different SWE server components (i.e. OGC Sensor Observation Service), tools for data visualisation (e.g. the 52°North Helgoland SOS viewer), and an editor for providing SensorML-based metadata (52°North smle). As a result, NeXOS has demonstrated how the SWE standards help to improve marine observation data collection. Within this presentation, we will present the experiences and findings of the NeXOS project and will provide recommendation for future work directions.

  11. jORCA: easily integrating bioinformatics Web Services.

    PubMed

    Martín-Requena, Victoria; Ríos, Javier; García, Maximiliano; Ramírez, Sergio; Trelles, Oswaldo

    2010-02-15

    Web services technology is becoming the option of choice to deploy bioinformatics tools that are universally available. One of the major strengths of this approach is that it supports machine-to-machine interoperability over a network. However, a weakness of this approach is that various Web Services differ in their definition and invocation protocols, as well as their communication and data formats-and this presents a barrier to service interoperability. jORCA is a desktop client aimed at facilitating seamless integration of Web Services. It does so by making a uniform representation of the different web resources, supporting scalable service discovery, and automatic composition of workflows. Usability is at the top of the jORCA agenda; thus it is a highly customizable and extensible application that accommodates a broad range of user skills featuring double-click invocation of services in conjunction with advanced execution-control, on the fly data standardization, extensibility of viewer plug-ins, drag-and-drop editing capabilities, plus a file-based browsing style and organization of favourite tools. The integration of bioinformatics Web Services is made easier to support a wider range of users. .

  12. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    USGS Publications Warehouse

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  13. Web service activities at the IRIS DMC to support federated and multidisciplinary access

    NASA Astrophysics Data System (ADS)

    Trabant, Chad; Ahern, Timothy K.

    2013-04-01

    At the IRIS Data Management Center (DMC) we have developed a suite of web service interfaces to access our large archive of, primarily seismological, time series data and related metadata. The goals of these web services include providing: a) next-generation and easily used access interfaces for our current users, b) access to data holdings in a form usable for non-seismologists, c) programmatic access to facilitate integration into data processing workflows and d) a foundation for participation in federated data discovery and access systems. To support our current users, our services provide access to the raw time series data and metadata or conversions of the raw data to commonly used formats. Our services also support simple, on-the-fly signal processing options that are common first steps in many workflows. Additionally, high-level data products derived from raw data are available via service interfaces. To support data access by researchers unfamiliar with seismic data we offer conversion of the data to broadly usable formats (e.g. ASCII text) and data processing to convert the data to Earth units. By their very nature, web services are programmatic interfaces. Combined with ubiquitous support for web technologies in programming & scripting languages and support in many computing environments, web services are very well suited for integrating data access into data processing workflows. As programmatic interfaces that can return data in both discipline-specific and broadly usable formats, our services are also well suited for participation in federated and brokered systems either specific to seismology or multidisciplinary. Working within the International Federation of Digital Seismograph Networks, the DMC collaborated on the specification of standardized web service interfaces for use at any seismological data center. These data access interfaces, when supported by multiple data centers, will form a foundation on which to build discovery and access mechanisms for data sets spanning multiple centers. To promote the adoption of these standardized services the DMC has developed portable implementations of the software needed to host these interfaces, minimizing the work required at each data center. Within the COOPEUS project framework, the DMC is working with EU partners to install web services implementations at multiple data centers in Europe.

  14. Environmental Models as a Service: Enabling Interoperability ...

    EPA Pesticide Factsheets

    Achieving interoperability in environmental modeling has evolved as software technology has progressed. The recent rise of cloud computing and proliferation of web services initiated a new stage for creating interoperable systems. Scientific programmers increasingly take advantage of streamlined deployment processes and affordable cloud access to move algorithms and data to the web for discoverability and consumption. In these deployments, environmental models can become available to end users through RESTful web services and consistent application program interfaces (APIs) that consume, manipulate, and store modeling data. RESTful modeling APIs also promote discoverability and guide usability through self-documentation. Embracing the RESTful paradigm allows models to be accessible via a web standard, and the resulting endpoints are platform- and implementation-agnostic while simultaneously presenting significant computational capabilities for spatial and temporal scaling. RESTful APIs present data in a simple verb-noun web request interface: the verb dictates how a resource is consumed using HTTP methods (e.g., GET, POST, and PUT) and the noun represents the URL reference of the resource on which the verb will act. The RESTful API can self-document in both the HTTP response and an interactive web page using the Open API standard. This lets models function as an interoperable service that promotes sharing, documentation, and discoverability. Here, we discuss the

  15. EarthServer: Use of Rasdaman as a data store for use in visualisation of complex EO data

    NASA Astrophysics Data System (ADS)

    Clements, Oliver; Walker, Peter; Grant, Mike

    2013-04-01

    The European Commission FP7 project EarthServer is establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending cutting-edge Array Database technology. EarthServer is built around the Rasdaman Raster Data Manager which extends standard relational database systems with the ability to store and retrieve multi-dimensional raster data of unlimited size through an SQL style query language. Rasdaman facilitates visualisation of data by providing several Open Geospatial Consortium (OGC) standard interfaces through its web services wrapper, Petascope. These include the well established standards, Web Coverage Service (WCS) and Web Map Service (WMS) as well as the emerging standard, Web Coverage Processing Service (WCPS). The WCPS standard allows the running of ad-hoc queries on the data stored within Rasdaman, creating an infrastructure where users are not restricted by bandwidth when manipulating or querying huge datasets. Here we will show that the use of EarthServer technologies and infrastructure allows access and visualisation of massive scale data through a web client with only marginal bandwidth use as opposed to the current mechanism of copying huge amounts of data to create visualisations locally. For example if a user wanted to generate a plot of global average chlorophyll for a complete decade time series they would only have to download the result instead of Terabytes of data. Firstly we will present a brief overview of the capabilities of Rasdaman and the WCPS query language to introduce the ways in which it is used in a visualisation tool chain. We will show that there are several ways in which WCPS can be utilised to create both standard and novel web based visualisations. An example of a standard visualisation is the production of traditional 2d plots, allowing users the ability to plot data products easily. However, the query language allows the creation of novel/custom products, which can then immediately be plotted with the same system. For more complex multi-spectral data, WCPS allows the user to explore novel combinations of bands in standard band-ratio algorithms through a web browser with dynamic updating of the resultant image. To visualise very large datasets Rasdaman has the capability to dynamically scale a dataset or query result so that it can be appraised quickly for use in later unscaled queries. All of these techniques are accessible through a web based GIS interface increasing the number of potential users of the system. Lastly we will show the advances in dynamic web based 3D visualisations being explored within the EarthServer project. By utilising the emerging declarative 3D web standard X3DOM as a tool to visualise the results of WCPS queries we introduce several possible benefits, including quick appraisal of data for outliers or anomalous data points and visualisation of the uncertainty of data alongside the actual data values.

  16. Description of the U.S. Geological Survey Geo Data Portal data integration framework

    USGS Publications Warehouse

    Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Lucido, Jessica M.

    2012-01-01

    The U.S. Geological Survey has developed an open-standard data integration framework for working efficiently and effectively with large collections of climate and other geoscience data. A web interface accesses catalog datasets to find data services. Data resources can then be rendered for mapping and dataset metadata are derived directly from these web services. Algorithm configuration and information needed to retrieve data for processing are passed to a server where all large-volume data access and manipulation takes place. The data integration strategy described here was implemented by leveraging existing free and open source software. Details of the software used are omitted; rather, emphasis is placed on how open-standard web services and data encodings can be used in an architecture that integrates common geographic and atmospheric data.

  17. Remote Sensing Information Gateway: A free application and web service for fast, convenient, interoperable access to large repositories of atmospheric data

    NASA Astrophysics Data System (ADS)

    Plessel, T.; Szykman, J.; Freeman, M.

    2012-12-01

    EPA's Remote Sensing Information Gateway (RSIG) is a widely used free applet and web service for quickly and easily retrieving, visualizing and saving user-specified subsets of atmospheric data - by variable, geographic domain and time range. Petabytes of available data include thousands of variables from a set of NASA and NOAA satellites, aircraft, ground stations and EPA air-quality models. The RSIG applet is used by atmospheric researchers and uses the rsigserver web service to obtain data and images. The rsigserver web service is compliant with the Open Geospatial Consortium Web Coverage Service (OGC-WCS) standard to facilitate data discovery and interoperability. Since rsigserver is publicly accessible, it can be (and is) used by other applications. This presentation describes the architecture and technical implementation details of this successful system with an emphasis on achieving convenience, high-performance, data integrity and security.

  18. A verification strategy for web services composition using enhanced stacked automata model.

    PubMed

    Nagamouttou, Danapaquiame; Egambaram, Ilavarasan; Krishnan, Muthumanickam; Narasingam, Poonkuzhali

    2015-01-01

    Currently, Service-Oriented Architecture (SOA) is becoming the most popular software architecture of contemporary enterprise applications, and one crucial technique of its implementation is web services. Individual service offered by some service providers may symbolize limited business functionality; however, by composing individual services from different service providers, a composite service describing the intact business process of an enterprise can be made. Many new standards have been defined to decipher web service composition problem namely Business Process Execution Language (BPEL). BPEL provides an initial work for forming an Extended Markup Language (XML) specification language for defining and implementing business practice workflows for web services. The problems with most realistic approaches to service composition are the verification of composed web services. It has to depend on formal verification method to ensure the correctness of composed services. A few research works has been carried out in the literature survey for verification of web services for deterministic system. Moreover the existing models did not address the verification properties like dead transition, deadlock, reachability and safetyness. In this paper, a new model to verify the composed web services using Enhanced Stacked Automata Model (ESAM) has been proposed. The correctness properties of the non-deterministic system have been evaluated based on the properties like dead transition, deadlock, safetyness, liveness and reachability. Initially web services are composed using Business Process Execution Language for Web Service (BPEL4WS) and it is converted into ESAM (combination of Muller Automata (MA) and Push Down Automata (PDA)) and it is transformed into Promela language, an input language for Simple ProMeLa Interpreter (SPIN) tool. The model is verified using SPIN tool and the results revealed better recital in terms of finding dead transition and deadlock in contrast to the existing models.

  19. SensorWeb 3G: Extending On-Orbit Sensor Capabilities to Enable Near Realtime User Configurability

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Tran, Daniel; Davies, Ashley; Sullivan, Don; Ames, Troy; hide

    2010-01-01

    This research effort prototypes an implementation of a standard interface, Web Coverage Processing Service (WCPS), which is an Open Geospatial Consortium(OGC) standard, to enable users to define, test, upload and execute algorithms for on-orbit sensor systems. The user is able to customize on-orbit data products that result from raw data streaming from an instrument. This extends the SensorWeb 2.0 concept that was developed under a previous Advanced Information System Technology (AIST) effort in which web services wrap sensors and a standardized Extensible Markup Language (XML) based scripting workflow language orchestrates processing steps across multiple domains. SensorWeb 3G extends the concept by providing the user controls into the flight software modules associated with on-orbit sensor and thus provides a degree of flexibility which does not presently exist. The successful demonstrations to date will be presented, which includes a realistic HyspIRI decadal mission testbed. Furthermore, benchmarks that were run will also be presented along with future demonstration and benchmark tests planned. Finally, we conclude with implications for the future and how this concept dovetails into efforts to develop "cloud computing" methods and standards.

  20. BioXSD: the common data-exchange format for everyday bioinformatics web services

    PubMed Central

    Kalaš, Matúš; Puntervoll, Pæl; Joseph, Alexandre; Bartaševičiūtė, Edita; Töpfer, Armin; Venkataraman, Prabakar; Pettifer, Steve; Bryne, Jan Christian; Ison, Jon; Blanchet, Christophe; Rapacki, Kristoffer; Jonassen, Inge

    2010-01-01

    Motivation: The world-wide community of life scientists has access to a large number of public bioinformatics databases and tools, which are developed and deployed using diverse technologies and designs. More and more of the resources offer programmatic web-service interface. However, efficient use of the resources is hampered by the lack of widely used, standard data-exchange formats for the basic, everyday bioinformatics data types. Results: BioXSD has been developed as a candidate for standard, canonical exchange format for basic bioinformatics data. BioXSD is represented by a dedicated XML Schema and defines syntax for biological sequences, sequence annotations, alignments and references to resources. We have adapted a set of web services to use BioXSD as the input and output format, and implemented a test-case workflow. This demonstrates that the approach is feasible and provides smooth interoperability. Semantics for BioXSD is provided by annotation with the EDAM ontology. We discuss in a separate section how BioXSD relates to other initiatives and approaches, including existing standards and the Semantic Web. Availability: The BioXSD 1.0 XML Schema is freely available at http://www.bioxsd.org/BioXSD-1.0.xsd under the Creative Commons BY-ND 3.0 license. The http://bioxsd.org web page offers documentation, examples of data in BioXSD format, example workflows with source codes in common programming languages, an updated list of compatible web services and tools and a repository of feature requests from the community. Contact: matus.kalas@bccs.uib.no; developers@bioxsd.org; support@bioxsd.org PMID:20823319

  1. OOSTethys - Open Source Software for the Global Earth Observing Systems of Systems

    NASA Astrophysics Data System (ADS)

    Bridger, E.; Bermudez, L. E.; Maskey, M.; Rueda, C.; Babin, B. L.; Blair, R.

    2009-12-01

    An open source software project is much more than just picking the right license, hosting modular code and providing effective documentation. Success in advancing in an open collaborative way requires that the process match the expected code functionality to the developer's personal expertise and organizational needs as well as having an enthusiastic and responsive core lead group. We will present the lessons learned fromOOSTethys , which is a community of software developers and marine scientists who develop open source tools, in multiple languages, to integrate ocean observing systems into an Integrated Ocean Observing System (IOOS). OOSTethys' goal is to dramatically reduce the time it takes to install, adopt and update standards-compliant web services. OOSTethys has developed servers, clients and a registry. Open source PERL, PYTHON, JAVA and ASP tool kits and reference implementations are helping the marine community publish near real-time observation data in interoperable standard formats. In some cases publishing an OpenGeospatial Consortium (OGC), Sensor Observation Service (SOS) from NetCDF files or a database or even CSV text files could take only minutes depending on the skills of the developer. OOSTethys is also developing an OGC standard registry, Catalog Service for Web (CSW). This open source CSW registry was implemented to easily register and discover SOSs using ISO 19139 service metadata. A web interface layer over the CSW registry simplifies the registration process by harvesting metadata describing the observations and sensors from the “GetCapabilities” response of SOS. OPENIOOS is the web client, developed in PERL to visualize the sensors in the SOS services. While the number of OOSTethys software developers is small, currently about 10 around the world, the number of OOSTethys toolkit implementers is larger and growing and the ease of use has played a large role in spreading the use of interoperable standards compliant web services widely in the marine community.

  2. Sensor Webs with a Service-Oriented Architecture for On-demand Science Products

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ungar, Stephen; Ames, Troy; Justice, Chris; Frye, Stuart; Chien, Steve; Tran, Daniel; Cappelaere, Patrice; Derezinsfi, Linda; Paules, Granville; hide

    2007-01-01

    This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Ofice (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.

  3. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.

  4. QTIMaps: A Model to Enable Web Maps in Assessment

    ERIC Educational Resources Information Center

    Navarrete, Toni; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep

    2011-01-01

    Test-based e-Assessment approaches are mostly focused on the assessment of knowledge and not on that of other skills, which could be supported by multimedia interactive services. This paper presents the QTIMaps model, which combines the IMS QTI standard with web maps services enabling the computational assessment of geographical skills. We…

  5. Deploying and sharing U-Compare workflows as web services.

    PubMed

    Kontonatsios, Georgios; Korkontzelos, Ioannis; Kolluru, Balakrishna; Thompson, Paul; Ananiadou, Sophia

    2013-02-18

    U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare's components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform.

  6. Deploying and sharing U-Compare workflows as web services

    PubMed Central

    2013-01-01

    Background U-Compare is a text mining platform that allows the construction, evaluation and comparison of text mining workflows. U-Compare contains a large library of components that are tuned to the biomedical domain. Users can rapidly develop biomedical text mining workflows by mixing and matching U-Compare’s components. Workflows developed using U-Compare can be exported and sent to other users who, in turn, can import and re-use them. However, the resulting workflows are standalone applications, i.e., software tools that run and are accessible only via a local machine, and that can only be run with the U-Compare platform. Results We address the above issues by extending U-Compare to convert standalone workflows into web services automatically, via a two-click process. The resulting web services can be registered on a central server and made publicly available. Alternatively, users can make web services available on their own servers, after installing the web application framework, which is part of the extension to U-Compare. We have performed a user-oriented evaluation of the proposed extension, by asking users who have tested the enhanced functionality of U-Compare to complete questionnaires that assess its functionality, reliability, usability, efficiency and maintainability. The results obtained reveal that the new functionality is well received by users. Conclusions The web services produced by U-Compare are built on top of open standards, i.e., REST and SOAP protocols, and therefore, they are decoupled from the underlying platform. Exported workflows can be integrated with any application that supports these open standards. We demonstrate how the newly extended U-Compare enhances the cross-platform interoperability of workflows, by seamlessly importing a number of text mining workflow web services exported from U-Compare into Taverna, i.e., a generic scientific workflow construction platform. PMID:23419017

  7. A New User Interface for On-Demand Customizable Data Products for Sensors in a SensorWeb

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Sullivan, Don

    2011-01-01

    A SensorWeb is a set of sensors, which can consist of ground, airborne and space-based sensors interoperating in an automated or autonomous collaborative manner. The NASA SensorWeb toolbox, developed at NASA/GSFC in collaboration with NASA/JPL, NASA/Ames and other partners, is a set of software and standards that (1) enables users to create virtual private networks of sensors over open networks; (2) provides the capability to orchestrate their actions; (3) provides the capability to customize the output data products and (4) enables automated delivery of the data products to the users desktop. A recent addition to the SensorWeb Toolbox is a new user interface, together with web services co-resident with the sensors, to enable rapid creation, loading and execution of new algorithms for processing sensor data. The web service along with the user interface follows the Open Geospatial Consortium (OGC) standard called Web Coverage Processing Service (WCPS). This presentation will detail the prototype that was built and how the WCPS was tested against a HyspIRI flight testbed and an elastic computation cloud on the ground with EO-1 data. HyspIRI is a future NASA decadal mission. The elastic computation cloud stores EO-1 data and runs software similar to Amazon online shopping.

  8. Next generation of weather generators on web service framework

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.; Ines, A. V. M.

    2016-12-01

    Weather generator is a statistical model that synthesizes possible realization of long-term historical weather in future. It generates several tens to hundreds of realizations stochastically based on statistical analysis. Realization is essential information as a crop modeling's input for simulating crop growth and yield. Moreover, they can be contributed to analyzing uncertainty of weather to crop development stage and to decision support system on e.g. water management and fertilizer management. Performing crop modeling requires multidisciplinary skills which limit the usage of weather generator only in a research group who developed it as well as a barrier for newcomers. To improve the procedures of performing weather generators as well as the methodology to acquire the realization in a standard way, we implemented a framework for providing weather generators as web services, which support service interoperability. Legacy weather generator programs were wrapped in the web service framework. The service interfaces were implemented based on an international standard that was Sensor Observation Service (SOS) defined by Open Geospatial Consortium (OGC). Clients can request realizations generated by the model through SOS Web service. Hierarchical data preparation processes required for weather generator are also implemented as web services and seamlessly wired. Analysts and applications can invoke services over a network easily. The services facilitate the development of agricultural applications and also reduce the workload of analysts on iterative data preparation and handle legacy weather generator program. This architectural design and implementation can be a prototype for constructing further services on top of interoperable sensor network system. This framework opens an opportunity for other sectors such as application developers and scientists in other fields to utilize weather generators.

  9. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.

  10. Going, going, still there: using the WebCite service to permanently archive cited web pages.

    PubMed

    Eysenbach, Gunther; Trudel, Mathieu

    2005-12-30

    Scholars are increasingly citing electronic "web references" which are not preserved in libraries or full text archives. WebCite is a new standard for citing web references. To "webcite" a document involves archiving the cited Web page through www.webcitation.org and citing the WebCite permalink instead of (or in addition to) the unstable live Web page. This journal has amended its "instructions for authors" accordingly, asking authors to archive cited Web pages before submitting a manuscript. Almost 200 other journals are already using the system. We discuss the rationale for WebCite, its technology, and how scholars, editors, and publishers can benefit from the service. Citing scholars initiate an archiving process of all cited Web references, ideally before they submit a manuscript. Authors of online documents and websites which are expected to be cited by others can ensure that their work is permanently available by creating an archived copy using WebCite and providing the citation information including the WebCite link on their Web document(s). Editors should ask their authors to cache all cited Web addresses (Uniform Resource Locators, or URLs) "prospectively" before submitting their manuscripts to their journal. Editors and publishers should also instruct their copyeditors to cache cited Web material if the author has not done so already. Finally, WebCite can process publisher submitted "citing articles" (submitted for example as eXtensible Markup Language [XML] documents) to automatically archive all cited Web pages shortly before or on publication. Finally, WebCite can act as a focussed crawler, caching retrospectively references of already published articles. Copyright issues are addressed by honouring respective Internet standards (robot exclusion files, no-cache and no-archive tags). Long-term preservation is ensured by agreements with libraries and digital preservation organizations. The resulting WebCite Index may also have applications for research assessment exercises, being able to measure the impact of Web services and published Web documents through access and Web citation metrics.

  11. 42 CFR 495.108 - Posting of required information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 495.108 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY.... (a) CMS posts, on its Internet Web site, the following information regarding EPs, eligible hospitals...

  12. Apollo: Giving application developers a single point of access to public health models using structured vocabularies and Web services

    PubMed Central

    Wagner, Michael M.; Levander, John D.; Brown, Shawn; Hogan, William R.; Millett, Nicholas; Hanna, Josh

    2013-01-01

    This paper describes the Apollo Web Services and Apollo-SV, its related ontology. The Apollo Web Services give an end-user application a single point of access to multiple epidemic simulators. An end user can specify an analytic problem—which we define as a configuration and a query of results—exactly once and submit it to multiple epidemic simulators. The end user represents the analytic problem using a standard syntax and vocabulary, not the native languages of the simulators. We have demonstrated the feasibility of this design by implementing a set of Apollo services that provide access to two epidemic simulators and two visualizer services. PMID:24551417

  13. Apollo: giving application developers a single point of access to public health models using structured vocabularies and Web services.

    PubMed

    Wagner, Michael M; Levander, John D; Brown, Shawn; Hogan, William R; Millett, Nicholas; Hanna, Josh

    2013-01-01

    This paper describes the Apollo Web Services and Apollo-SV, its related ontology. The Apollo Web Services give an end-user application a single point of access to multiple epidemic simulators. An end user can specify an analytic problem-which we define as a configuration and a query of results-exactly once and submit it to multiple epidemic simulators. The end user represents the analytic problem using a standard syntax and vocabulary, not the native languages of the simulators. We have demonstrated the feasibility of this design by implementing a set of Apollo services that provide access to two epidemic simulators and two visualizer services.

  14. A new information architecture, website and services for the CMS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Lucas; Rusack, Eleanor; Zemleris, Vidmantas

    2012-01-01

    The age and size of the CMS collaboration at the LHC means it now has many hundreds of inhomogeneous web sites and services, and hundreds of thousands of documents. We describe a major initiative to create a single coherent CMS internal and public web site. This uses the Drupal web Content Management System (now supported by CERN/IT) on top of a standard LAMP stack (Linux, Apache, MySQL, and php/perl). The new navigation, content and search services are coherently integrated with numerous existing CERN services (CDS, EDMS, Indico, phonebook, Twiki) as well as many CMS internal Web services. We describe themore » information architecture, the system design, implementation and monitoring, the document and content database, security aspects, and our deployment strategy, which ensured continual smooth operation of all systems at all times.« less

  15. A new Information Architecture, Website and Services for the CMS Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Lucas; Rusack, Eleanor; Zemleris, Vidmantas

    2012-12-01

    The age and size of the CMS collaboration at the LHC means it now has many hundreds of inhomogeneous web sites and services, and hundreds of thousands of documents. We describe a major initiative to create a single coherent CMS internal and public web site. This uses the Drupal web Content Management System (now supported by CERN/IT) on top of a standard LAMP stack (Linux, Apache, MySQL, and php/perl). The new navigation, content and search services are coherently integrated with numerous existing CERN services (CDS, EDMS, Indico, phonebook, Twiki) as well as many CMS internal Web services. We describe the information architecture; the system design, implementation and monitoring; the document and content database; security aspects; and our deployment strategy, which ensured continual smooth operation of all systems at all times.

  16. Security and Dependability Solutions for Web Services and Workflows

    NASA Astrophysics Data System (ADS)

    Kokolakis, Spyros; Rizomiliotis, Panagiotis; Benameur, Azzedine; Sinha, Smriti Kumar

    In this chapter we present an innovative approach towards the design and application of Security and Dependability (S&D) solutions for Web services and service-based workflows. Recently, several standards have been published that prescribe S&D solutions for Web services, e.g. OASIS WS-Security. However,the application of these solutions in specific contexts has been proven problematic. We propose a new framework for the application of such solutions based on the SERENITY S&D Pattern concept. An S&D Pattern comprises all the necessary information for the implementation, verification, deployment, and active monitoring of an S&D Solution. Thus, system developers may rely on proven solutions that are dynamically deployed and monitored by the Serenity Runtime Framework. Finally, we further extend this approach to cover the case of executable workflows which are realised through the orchestration of Web services.

  17. SAS- Semantic Annotation Service for Geoscience resources on the web

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  18. Architecture of the local spatial data infrastructure for regional climate change research

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny

    2013-04-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the spatial data infrastructure as well as its publication according to OGC CSW (Catalog Service Web) specification 4. Computational and mapping web services to work with geospatial datasets based on OWS (OGC Web Services) standards: WMS, WFS, WPS 5. Geoportal as a key element of thematic regional spatial data infrastructure providing also software framework for dedicated web applications development To realize web mapping services Geoserver software is used since it provides natural WPS implementation as a separate software module. To provide geospatial metadata services GeoNetwork Opensource (http://geonetwork-opensource.org) product is planned to be used for it supports ISO 19115/ISO 19119/ISO 19139 metadata standards as well as ISO CSW 2.0 profile for both client and server. To implement thematic applications based on geospatial web services within the framework of local SDI geoportal the following open source software have been selected: 1. OpenLayers JavaScript library, providing basic web mapping functionality for the thin client such as web browser 2. GeoExt/ExtJS JavaScript libraries for building client-side web applications working with geodata services. The web interface developed will be similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. The work is partially supported by RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2.1 and IP 131.

  19. Agility: Agent - Ility Architecture

    DTIC Science & Technology

    2002-10-01

    existing and emerging standards (e.g., distributed objects, email, web, search engines , XML, Java, Jini). Three agent system components resulted from...agents and other Internet resources and operate over the web (AgentGram), a yellow pages service that uses Internet search engines to locate XML ads for agents and other Internet resources (WebTrader).

  20. The QuakeSim Project: Web Services for Managing Geophysical Data and Applications

    NASA Astrophysics Data System (ADS)

    Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet

    2008-04-01

    We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.

  1. EO Domain Specific Knowledge Enabled Services (KES-B)

    NASA Astrophysics Data System (ADS)

    Varas, J.; Busto, J.; Torguet, R.

    2004-09-01

    This paper recovers and describes a number of major statements with respect to the vision, mission and technological approaches of the Technological Research Project (TRP) "EO Domain Specific Knowledge Enabled Services" (project acronym KES-B), which is currently under development at the European Space Research Institute (ESRIN) under contract "16397/02/I- SB". Resulting from the on-going R&D activities, the KES-B project aims are to demonstrate with a prototype system the feasibility of the application of innovative knowledge-based technologies to provide services for easy, scheduled and controlled exploitation of EO resources (e.g.: data, algorithms, procedures, storage, processors, ...), to automate the generation of products, and to support users in easily identifying and accessing the required information or products by using their own vocabulary, domain knowledge and preferences. The ultimate goals of KES-B are summarized in the provision of the two main types of KES services: 1st the Search service (also referred to as Product Exploitation or Information Retrieval; and 2nd the Production service (also referred to as Information Extraction), with the strategic advantage that they are enabled by Knowledge consolidated (formalized) within the system. The KES-B system technical solution approach is driven by a strong commitment for the adoption of industry (XML-based) language standards, aiming to have an interoperable, scalable and flexible operational prototype. In that sense, the Search KES services builds on the basis of the adoption of consolidated and/or emergent W3C semantic-web standards. Remarkably the languages/models Dublin Core (DC), Universal Resource Identifier (URI), Resource Description Framework (RDF) and Ontology Web Language (OWL), and COTS like Protege [1] and JENA [2] are being integrated in the system as building bricks for the construction of the KES based Search services. On the other hand, the Production KES services builds on top of workflow management standards and tools. In this side, the Business Process Execution Language (BPEL), the Web Services Definition Language (WSDL), and the Collaxa [3] COTS tool for workflow management are being integrated for the construction of the KES-B Production Services. The KES-B platform (web portal and web-server) architecture is build on the basis of the J2EE reference architecture. These languages represent the mean for the codification of the different types of knowledge that are to be formalized in the system. This representing the ontological architecture of the system. This shall enable in fact the interoperability with other KES-based systems committing as well to those standards. The motivation behind this vision is pointing towards the construction of the Semantic-web based GRID supply- chain infrastructure for EO-services, in line with the INSPIRE initiative suggestions.

  2. A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.

    2015-12-01

    Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014, 11th International Conf. on Hydroinformatics, New York, NY.

  3. Realising the Uncertainty Enabled Model Web

    NASA Astrophysics Data System (ADS)

    Cornford, D.; Bastin, L.; Pebesma, E. J.; Williams, M.; Stasch, C.; Jones, R.; Gerharz, L.

    2012-12-01

    The FP7 funded UncertWeb project aims to create the "uncertainty enabled model web". The central concept here is that geospatial models and data resources are exposed via standard web service interfaces, such as the Open Geospatial Consortium (OGC) suite of encodings and interface standards, allowing the creation of complex workflows combining both data and models. The focus of UncertWeb is on the issue of managing uncertainty in such workflows, and providing the standards, architecture, tools and software support necessary to realise the "uncertainty enabled model web". In this paper we summarise the developments in the first two years of UncertWeb, illustrating several key points with examples taken from the use case requirements that motivate the project. Firstly we address the issue of encoding specifications. We explain the usage of UncertML 2.0, a flexible encoding for representing uncertainty based on a probabilistic approach. This is designed to be used within existing standards such as Observations and Measurements (O&M) and data quality elements of ISO19115 / 19139 (geographic information metadata and encoding specifications) as well as more broadly outside the OGC domain. We show profiles of O&M that have been developed within UncertWeb and how UncertML 2.0 is used within these. We also show encodings based on NetCDF and discuss possible future directions for encodings in JSON. We then discuss the issues of workflow construction, considering discovery of resources (both data and models). We discuss why a brokering approach to service composition is necessary in a world where the web service interfaces remain relatively heterogeneous, including many non-OGC approaches, in particular the more mainstream SOAP and WSDL approaches. We discuss the trade-offs between delegating uncertainty management functions to the service interfaces themselves and integrating the functions in the workflow management system. We describe two utility services to address conversion between uncertainty types, and between the spatial / temporal support of service inputs / outputs. Finally we describe the tools being generated within the UncertWeb project, considering three main aspects: i) Elicitation of uncertainties on model inputs. We are developing tools to enable domain experts to provide judgements about input uncertainties from UncertWeb model components (e.g. parameters in meteorological models) which allow panels of experts to engage in the process and reach a consensus view on the current knowledge / beliefs about that parameter or variable. We are developing systems for continuous and categorical variables as well as stationary spatial fields. ii) Visualisation of the resulting uncertain outputs from the end of the workflow, but also at intermediate steps. At this point we have prototype implementations driven by the requirements from the use cases that motivate UncertWeb. iii) Sensitivity and uncertainty analysis on model outputs. Here we show the design of the overall system we are developing, including the deployment of an emulator framework to allow computationally efficient approaches. We conclude with a summary of the open issues and remaining challenges we are facing in UncertWeb, and provide a brief overview of how we plan to tackle these.

  4. Transforming War Fighting through the Use of Service Based Architecture (SBA) Technology

    DTIC Science & Technology

    2006-05-04

    near-real-time video & telemetry to users on network using standard web-based protocols – Provides web-based access to archived video files MTI...Target Tracks Service Capabilities – Disseminates near-real-time MTI and Target Tracks to users on network based on consumer specified geographic...filter IBS SIGINT Service Capabilities – Disseminates near-real-time IBS SIGINT data to users on network based on consumer specified geographic filter

  5. Department of Agriculture, Food Safety and Inspection Service

    MedlinePlus

    ... FSIS Forms Administrative Forms Standard Forms Skip Navigation Web Content Viewer (JSR 286) Actions ${title} Loading... Information ... resources and information on Siluriformes fish, including catfish Web Content Viewer (JSR 286) Actions ${title} Loading... Information ...

  6. Datacube Services in Action, Using Open Source and Open Standards

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Misev, D.

    2016-12-01

    Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.

  7. Exploring U.S Cropland - A Web Service based Cropland Data Layer Visualization, Dissemination and Querying System (Invited)

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Han, W.; di, L.

    2010-12-01

    The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.

  8. UltiMatch-NL: A Web Service Matchmaker Based on Multiple Semantic Filters

    PubMed Central

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters. PMID:25157872

  9. UltiMatch-NL: a Web service matchmaker based on multiple semantic filters.

    PubMed

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.

  10. Semantic Web Services Challenge, Results from the First Year. Series: Semantic Web And Beyond, Volume 8.

    NASA Astrophysics Data System (ADS)

    Petrie, C.; Margaria, T.; Lausen, H.; Zaremba, M.

    Explores trade-offs among existing approaches. Reveals strengths and weaknesses of proposed approaches, as well as which aspects of the problem are not yet covered. Introduces software engineering approach to evaluating semantic web services. Service-Oriented Computing is one of the most promising software engineering trends because of the potential to reduce the programming effort for future distributed industrial systems. However, only a small part of this potential rests on the standardization of tools offered by the web services stack. The larger part of this potential rests upon the development of sufficient semantics to automate service orchestration. Currently there are many different approaches to semantic web service descriptions and many frameworks built around them. A common understanding, evaluation scheme, and test bed to compare and classify these frameworks in terms of their capabilities and shortcomings, is necessary to make progress in developing the full potential of Service-Oriented Computing. The Semantic Web Services Challenge is an open source initiative that provides a public evaluation and certification of multiple frameworks on common industrially-relevant problem sets. This edited volume reports on the first results in developing common understanding of the various technologies intended to facilitate the automation of mediation, choreography and discovery for Web Services using semantic annotations. Semantic Web Services Challenge: Results from the First Year is designed for a professional audience composed of practitioners and researchers in industry. Professionals can use this book to evaluate SWS technology for their potential practical use. The book is also suitable for advanced-level students in computer science.

  11. NaviCell Web Service for network-based data visualization.

    PubMed

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei

    2015-07-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. NaviCell Web Service for network-based data visualization

    PubMed Central

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P. A.; Barillot, Emmanuel; Zinovyev, Andrei

    2015-01-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. PMID:25958393

  13. 78 FR 63158 - United States Standards for Grades of Okra

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...: Agricultural Marketing Service, USDA. ACTION: Final notice. SUMMARY: The Agricultural Marketing Service (AMS) of the Department of Agriculture (USDA) is revising the voluntary United States Standards for Grades... available on the Specialty Crops Inspection Division Web site at www.ams.usda.gov/scihome . SUPPLEMENTARY...

  14. WebGIS based community services architecture by griddization managements and crowdsourcing services

    NASA Astrophysics Data System (ADS)

    Wang, Haiyin; Wan, Jianhua; Zeng, Zhe; Zhou, Shengchuan

    2016-11-01

    Along with the fast economic development of cities, rapid urbanization, population surge, in China, the social community service mechanisms need to be rationalized and the policy standards need to be unified, which results in various types of conflicts and challenges for community services of government. Based on the WebGIS technology, the article provides a community service architecture by gridding management and crowdsourcing service. The WEBGIS service architecture includes two parts: the cloud part and the mobile part. The cloud part refers to community service centres, which can instantaneously response the emergency, visualize the scene of the emergency, and analyse the data from the emergency. The mobile part refers to the mobile terminal, which can call the centre, report the event, collect data and verify the feedback. This WebGIS based community service systems for Huangdao District of Qingdao, were awarded the “2015’ national innovation of social governance case of typical cases”.

  15. Developing Interoperable Air Quality Community Portals

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Husar, R. B.; Yang, C. P.; Robinson, E. M.; Fialkowski, W. E.

    2009-04-01

    Web portals are intended to provide consolidated discovery, filtering and aggregation of content from multiple, distributed web sources targeted at particular user communities. This paper presents a standards-based information architectural approach to developing portals aimed at air quality community collaboration in data access and analysis. An important characteristic of the approach is to advance beyond the present stand-alone design of most portals to achieve interoperability with other portals and information sources. We show how using metadata standards, web services, RSS feeds and other Web 2.0 technologies, such as Yahoo! Pipes and del.icio.us, helps increase interoperability among portals. The approach is illustrated within the context of the GEOSS Architecture Implementation Pilot where an air quality community portal is being developed to provide a user interface between the portals and clearinghouse of the GEOSS Common Infrastructure and the air quality community catalog of metadata and data services.

  16. Web scraping technologies in an API world.

    PubMed

    Glez-Peña, Daniel; Lourenço, Anália; López-Fernández, Hugo; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino

    2014-09-01

    Web services are the de facto standard in biomedical data integration. However, there are data integration scenarios that cannot be fully covered by Web services. A number of Web databases and tools do not support Web services, and existing Web services do not cover for all possible user data demands. As a consequence, Web data scraping, one of the oldest techniques for extracting Web contents, is still in position to offer a valid and valuable service to a wide range of bioinformatics applications, ranging from simple extraction robots to online meta-servers. This article reviews existing scraping frameworks and tools, identifying their strengths and limitations in terms of extraction capabilities. The main focus is set on showing how straightforward it is today to set up a data scraping pipeline, with minimal programming effort, and answer a number of practical needs. For exemplification purposes, we introduce a biomedical data extraction scenario where the desired data sources, well-known in clinical microbiology and similar domains, do not offer programmatic interfaces yet. Moreover, we describe the operation of WhichGenes and PathJam, two bioinformatics meta-servers that use scraping as means to cope with gene set enrichment analysis. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Utilization of services in a randomized trial testing phone- and web-based interventions for smoking cessation.

    PubMed

    Zbikowski, Susan M; Jack, Lisa M; McClure, Jennifer B; Deprey, Mona; Javitz, Harold S; McAfee, Timothy A; Catz, Sheryl L; Richards, Julie; Bush, Terry; Swan, Gary E

    2011-05-01

    Phone counseling has become standard for behavioral smoking cessation treatment. Newer options include Web and integrated phone-Web treatment. No prior research, to our knowledge, has systematically compared the effectiveness of these three treatment modalities in a randomized trial. Understanding how utilization varies by mode, the impact of utilization on outcomes, and predictors of utilization across each mode could lead to improved treatments. One thousand two hundred and two participants were randomized to phone, Web, or combined phone-Web cessation treatment. Services varied by modality and were tracked using automated systems. All participants received 12 weeks of varenicline, printed guides, an orientation call, and access to a phone supportline. Self-report data were collected at baseline and 6-month follow-up. Overall, participants utilized phone services more often than the Web-based services. Among treatment groups with Web access, a significant proportion logged in only once (37% phone-Web, 41% Web), and those in the phone-Web group logged in less often than those in the Web group (mean = 2.4 vs. 3.7, p = .0001). Use of the phone also was correlated with increased use of the Web. In multivariate analyses, greater use of the phone- or Web-based services was associated with higher cessation rates. Finally, older age and the belief that certain treatments could improve success were consistent predictors of greater utilization across groups. Other predictors varied by treatment group. Opportunities for enhancing treatment utilization exist, particularly for Web-based programs. Increasing utilization more broadly could result in better overall treatment effectiveness for all intervention modalities.

  18. The Geo Data Portal an Example Physical and Application Architecture Demonstrating the Power of the "Cloud" Concept.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Walker, J.; Kunicki, T.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics (CIDA), in holding with the President's Digital Government Strategy and the Department of Interior's IT Transformation initiative, has evolved its data center and application architecture toward the "cloud" paradigm. In this case, "cloud" refers to a goal of developing services that may be distributed to infrastructure anywhere on the Internet. This transition has taken place across the entire data management spectrum from data center location to physical hardware configuration to software design and implementation. In CIDA's case, physical hardware resides in Madison at the Wisconsin Water Science Center, in South Dakota at the Earth Resources Observation and Science Center (EROS), and in the near future at a DOI approved commercial vendor. Tasks normally conducted on desktop-based GIS software with local copies of data in proprietary formats are now done using browser-based interfaces to web processing services drawing on a network of standard data-source web services. Organizations are gaining economies of scale through data center consolidation and the creation of private cloud services as well as taking advantage of the commoditization of data processing services. Leveraging open standards for data and data management take advantage of this commoditization and provide the means to reliably build distributed service based systems. This presentation will use CIDA's experience as an illustration of the benefits and hurdles of moving to the cloud. Replicating, reformatting, and processing large data sets, such as downscaled climate projections, traditionally present a substantial challenge to environmental science researchers who need access to data subsets and derived products. The USGS Geo Data Portal (GDP) project uses cloud concepts to help earth system scientists' access subsets, spatial summaries, and derivatives of commonly needed very large data. The GDP project has developed a reusable architecture and advanced processing services that currently accesses archives hosted at Lawrence Livermore National Lab, Oregon State University, the University Corporation for Atmospheric Research, and the U.S. Geological Survey, among others. Several examples of how the GDP project uses cloud concepts will be highlighted in this presentation: 1) The high bandwidth network connectivity of large data centers reduces the need for data replication and storage local to processing services. 2) Standard data serving web services, like OPeNDAP, Web Coverage Services, and Web Feature Services allow GDP services to remotely access custom subsets of data in a variety of formats, further reducing the need for data replication and reformatting. 3) The GDP services use standard web service APIs to allow browser-based user interfaces to run complex and compute-intensive processes for users from any computer with an Internet connection. The combination of physical infrastructure and application architecture implemented for the Geo Data Portal project offer an operational example of how distributed data and processing on the cloud can be used to aid earth system science.

  19. Investigating Methods for Serving Visualizations of Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  20. Advances on Sensor Web for Internet of Things

    NASA Astrophysics Data System (ADS)

    Liang, S.; Bermudez, L. E.; Huang, C.; Jazayeri, M.; Khalafbeigi, T.

    2013-12-01

    'In much the same way that HTML and HTTP enabled WWW, the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE), envisioned in 2001 [1] will allow sensor webs to become a reality.'. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not a simple task. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. SWE standardizes web service interfaces, sensor descriptions and data encodings as building blocks for a Sensor Web. SWE standards are now mature specifications (version 2.0) with approved OGC compliance test suites and tens of independent implementations. Many earth and space science organizations and government agencies are using the SWE standards to publish and share their sensors and observations. While SWE has been demonstrated very effective for scientific sensors, its complexity and the computational overhead may not be suitable for resource-constrained tiny sensors. In June 2012, a new OGC Standards Working Group (SWG) was formed called the Sensor Web Interface for Internet of Things (SWE-IoT) SWG. This SWG focuses on developing one or more OGC standards for resource-constrained sensors and actuators (e.g., Internet of Things devices) while leveraging the existing OGC SWE standards. In the near future, billions to trillions of small sensors and actuators will be embedded in real- world objects and connected to the Internet facilitating a concept called the Internet of Things (IoT). By populating our environment with real-world sensor-based devices, the IoT is opening the door to exciting possibilities for a variety of application domains, such as environmental monitoring, transportation and logistics, urban informatics, smart cities, as well as personal and social applications. The current SWE-IoT development aims on modeling the IoT components and defining a standard web service that makes the observations captured by IoT devices easily accessible and allows users to task the actuators on the IoT devices. The SWE IoT model links things with sensors and reuses the OGC Observation and Model (O&M) to link sensors with features of interest and observed properties Unlike most SWE standards, the SWE-IoT defines a RESTful web interface for users to perform CRUD (i.e., create, read, update, and delete) functions on resources, including Things, Sensors, Actuators, Observations, Tasks, etc. Inspired by the OASIS Open Data Protocol (OData), the SWE-IoT web service provides the multi-faceted query, which means that users can query from different entity collections and link from one entity to other related entities. This presentation will introduce the latest development of the OGC SWE-IoT standards. Potential applications and implications in Earth and Space science will also be discussed. [1] Mike Botts, Sensor Web Enablement White Paper, Open GIS Consortium, Inc. 2002

  1. Seahawk: moving beyond HTML in Web-based bioinformatics analysis.

    PubMed

    Gordon, Paul M K; Sensen, Christoph W

    2007-06-18

    Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therefore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis. We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format. As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, ad hoc analysis workflow creation without the assistance of a programmer.

  2. Seahawk: moving beyond HTML in Web-based bioinformatics analysis

    PubMed Central

    Gordon, Paul MK; Sensen, Christoph W

    2007-01-01

    Background Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis. Results We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format. Conclusion As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, ad hoc analysis workflow creation without the assistance of a programmer. PMID:17577405

  3. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  4. Going, Going, Still There: Using the WebCite Service to Permanently Archive Cited Web Pages

    PubMed Central

    Trudel, Mathieu

    2005-01-01

    Scholars are increasingly citing electronic “web references” which are not preserved in libraries or full text archives. WebCite is a new standard for citing web references. To “webcite” a document involves archiving the cited Web page through www.webcitation.org and citing the WebCite permalink instead of (or in addition to) the unstable live Web page. This journal has amended its “instructions for authors” accordingly, asking authors to archive cited Web pages before submitting a manuscript. Almost 200 other journals are already using the system. We discuss the rationale for WebCite, its technology, and how scholars, editors, and publishers can benefit from the service. Citing scholars initiate an archiving process of all cited Web references, ideally before they submit a manuscript. Authors of online documents and websites which are expected to be cited by others can ensure that their work is permanently available by creating an archived copy using WebCite and providing the citation information including the WebCite link on their Web document(s). Editors should ask their authors to cache all cited Web addresses (Uniform Resource Locators, or URLs) “prospectively” before submitting their manuscripts to their journal. Editors and publishers should also instruct their copyeditors to cache cited Web material if the author has not done so already. Finally, WebCite can process publisher submitted “citing articles” (submitted for example as eXtensible Markup Language [XML] documents) to automatically archive all cited Web pages shortly before or on publication. Finally, WebCite can act as a focussed crawler, caching retrospectively references of already published articles. Copyright issues are addressed by honouring respective Internet standards (robot exclusion files, no-cache and no-archive tags). Long-term preservation is ensured by agreements with libraries and digital preservation organizations. The resulting WebCite Index may also have applications for research assessment exercises, being able to measure the impact of Web services and published Web documents through access and Web citation metrics. PMID:16403724

  5. Service-oriented workflow to efficiently and automatically fulfill products in a highly individualized web and mobile environment

    NASA Astrophysics Data System (ADS)

    Qiao, Mu

    2015-03-01

    Service Oriented Architecture1 (SOA) is widely used in building flexible and scalable web sites and services. In most of the web or mobile photo book and gifting business space, the products ordered are highly variable without a standard template that one can substitute texts or images from similar to that of commercial variable data printing. In this paper, the author describes a SOA workflow in a multi-sites, multi-product lines fulfillment system where three major challenges are addressed: utilization of hardware and equipment, highly automation with fault recovery, and highly scalable and flexible with order volume fluctuation.

  6. KBWS: an EMBOSS associated package for accessing bioinformatics web services.

    PubMed

    Oshita, Kazuki; Arakawa, Kazuharu; Tomita, Masaru

    2011-04-29

    The availability of bioinformatics web-based services is rapidly proliferating, for their interoperability and ease of use. The next challenge is in the integration of these services in the form of workflows, and several projects are already underway, standardizing the syntax, semantics, and user interfaces. In order to deploy the advantages of web services with locally installed tools, here we describe a collection of proxy client tools for 42 major bioinformatics web services in the form of European Molecular Biology Open Software Suite (EMBOSS) UNIX command-line tools. EMBOSS provides sophisticated means for discoverability and interoperability for hundreds of tools, and our package, named the Keio Bioinformatics Web Service (KBWS), adds functionalities of local and multiple alignment of sequences, phylogenetic analyses, and prediction of cellular localization of proteins and RNA secondary structures. This software implemented in C is available under GPL from http://www.g-language.org/kbws/ and GitHub repository http://github.com/cory-ko/KBWS. Users can utilize the SOAP services implemented in Perl directly via WSDL file at http://soap.g-language.org/kbws.wsdl (RPC Encoded) and http://soap.g-language.org/kbws_dl.wsdl (Document/literal).

  7. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  8. Pragmatic service development and customisation with the CEDA OGC Web Services framework

    NASA Astrophysics Data System (ADS)

    Pascoe, Stephen; Stephens, Ag; Lowe, Dominic

    2010-05-01

    The CEDA OGC Web Services framework (COWS) emphasises rapid service development by providing a lightweight layer of OGC web service logic on top of Pylons, a mature web application framework for the Python language. This approach gives developers a flexible web service development environment without compromising access to the full range of web application tools and patterns: Model-View-Controller paradigm, XML templating, Object-Relational-Mapper integration and authentication/authorization. We have found this approach useful for exploring evolving standards and implementing protocol extensions to meet the requirements of operational deployments. This paper outlines how COWS is being used to implement customised WMS, WCS, WFS and WPS services in a variety of web applications from experimental prototypes to load-balanced cluster deployments serving 10-100 simultaneous users. In particular we will cover 1) The use of Climate Science Modeling Language (CSML) in complex-feature aware WMS, WCS and WFS services, 2) Extending WMS to support applications with features specific to earth system science and 3) A cluster-enabled Web Processing Service (WPS) supporting asynchronous data processing. The COWS WPS underpins all backend services in the UK Climate Projections User Interface where users can extract, plot and further process outputs from a multi-dimensional probabilistic climate model dataset. The COWS WPS supports cluster job execution, result caching, execution time estimation and user management. The COWS WMS and WCS components drive the project-specific NCEO and QESDI portals developed by the British Atmospheric Data Centre. These portals use CSML as a backend description format and implement features such as multiple WMS layer dimensions and climatology axes that are beyond the scope of general purpose GIS tools and yet vital for atmospheric science applications.

  9. A BPMN solution for chaining OGC services to quality assure location-based crowdsourced data

    NASA Astrophysics Data System (ADS)

    Meek, Sam; Jackson, Mike; Leibovici, Didier G.

    2016-02-01

    The Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard enables access to a centralized repository of processes and services from compliant clients. A crucial part of the standard includes the provision to chain disparate processes and services to form a reusable workflow. To date this has been realized by methods such as embedding XML requests, using Business Process Execution Language (BPEL) engines and other external orchestration engines. Although these allow the user to define tasks and data artifacts as web services, they are often considered inflexible and complicated, often due to vendor specific solutions and inaccessible documentation. This paper introduces a new method of flexible service chaining using the standard Business Process Markup Notation (BPMN). A prototype system has been developed upon an existing open source BPMN suite to illustrate the advantages of the approach. The motivation for the software design is qualification of crowdsourced data for use in policy-making. The software is tested as part of a project that seeks to qualify, assure, and add value to crowdsourced data in a biological monitoring use case.

  10. Security concept in 'MyAngelWeb' a website for the individual patient at risk of emergency.

    PubMed

    Pinciroli, F; Nahaissi, D; Boschini, M; Ferrari, R; Meloni, G; Camnasio, M; Spaggiari, P; Carnerone, G

    2000-11-01

    We describe the Security Plan for the 'MyAngelWeb' service. The different actors involved in the service are subject to different security procedures. The core of the security system is implemented at the host site by means of a DBMS and standard Information Technology tools. Hardware requirements for sustainable security are needed at the web-site construction sites. They are not needed at the emergency physician's site. At the emergency physician's site, a two-way authentication system (password and test phrase method) is implemented.

  11. Security concept in 'MyAngelWeb((R))' a website for the individual patient at risk of emergency.

    PubMed

    Pinciroli; Nahaissi; Boschini; Ferrari; Meloni; Camnasio; Spaggiari; Carnerone

    2000-11-01

    We describe the Security Plan for the 'MyAngelWeb' service. The different actors involved in the service are subject to different security procedures. The core of the security system is implemented at the host site by means of a DBMS and standard Information Technology tools. Hardware requirements for sustainable security are needed at the web-site construction sites. They are not needed at the emergency physician's site. At the emergency physician's site, a two-way authentication system (password and test phrase method) is implemented.

  12. A resource oriented webs service for environmental modeling

    NASA Astrophysics Data System (ADS)

    Ferencik, Ioan

    2013-04-01

    Environmental modeling is a largely adopted practice in the study of natural phenomena. Environmental models can be difficult to build and use and thus sharing them within the community is an important aspect. The most common approach to share a model is to expose it as a web service. In practice the interaction with this web service is cumbersome due to lack of standardized contract and the complexity of the model being exposed. In this work we investigate the use of a resource oriented approach in exposing environmental models as web services. We view a model as a layered resource build atop the object concept from Object Oriented Programming, augmented with persistence capabilities provided by an embedded object database to keep track of its state and implementing the four basic principles of resource oriented architectures: addressability, statelessness, representation and uniform interface. For implementation we use exclusively open source software: Django framework, dyBase object oriented database and Python programming language. We developed a generic framework of resources structured into a hierarchy of types and consequently extended this typology with recurses specific to the domain of environmental modeling. To test our web service we used cURL, a robust command-line based web client.

  13. eSciMart: Web Platform for Scientific Software Marketplace

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Demichev, A. P.

    2016-10-01

    In this paper we suggest a design of a web marketplace where users of scientific application software and databases, presented in the form of web services, as well as their providers will have presence simultaneously. The model, which will be the basis for the web marketplace is close to the customer-to-customer (C2C) model, which has been successfully used, for example, on the auction sites such as eBay (ebay.com). Unlike the classical model of C2C the suggested marketplace focuses on application software in the form of web services, and standardization of API through which application software will be integrated into the web marketplace. A prototype of such a platform, entitled eSciMart, is currently being developed at SINP MSU.

  14. A Framework for Sharing and Integrating Remote Sensing and GIS Models Based on Web Service

    PubMed Central

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a “black box” and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users. PMID:24901016

  15. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    PubMed

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  16. A System to Provide Real-Time Collaborative Situational Awareness by Web Enabling a Distributed Sensor Network

    NASA Technical Reports Server (NTRS)

    Panangadan, Anand; Monacos, Steve; Burleigh, Scott; Joswig, Joseph; James, Mark; Chow, Edward

    2012-01-01

    In this paper, we describe the architecture of both the PATS and SAP systems and how these two systems interoperate with each other forming a unified capability for deploying intelligence in hostile environments with the objective of providing actionable situational awareness of individuals. The SAP system works in concert with the UICDS information sharing middleware to provide data fusion from multiple sources. UICDS can then publish the sensor data using the OGC's Web Mapping Service, Web Feature Service, and Sensor Observation Service standards. The system described in the paper is able to integrate a spatially distributed sensor system, operating without the benefit of the Web infrastructure, with a remote monitoring and control system that is equipped to take advantage of SWE.

  17. New Interfaces to Web Documents and Services

    NASA Technical Reports Server (NTRS)

    Carlisle, W. H.

    1996-01-01

    This paper reports on investigations into how to extend capabilities of the Virtual Research Center (VRC) for NASA's Advanced Concepts Office. The work was performed as part of NASA's 1996 Summer Faculty Fellowship program, and involved research into and prototype development of software components that provide documents and services for the World Wide Web (WWW). The WWW has become a de-facto standard for sharing resources over the internet, primarily because web browsers are freely available for the most common hardware platforms and their operating systems. As a consequence of the popularity of the internet, tools, and techniques associated with web browsers are changing rapidly. New capabilities are offered by companies that support web browsers in order to achieve or remain a dominant participant in internet services. Because a goal of the VRC is to build an environment for NASA centers, universities, and industrial partners to share information associated with Advanced Concepts Office activities, the VRC tracks new techniques and services associated with the web in order to determine the their usefulness for distributed and collaborative engineering research activities. Most recently, Java has emerged as a new tool for providing internet services. Because the major web browser providers have decided to include Java in their software, investigations into Java were conducted this summer.

  18. Utilization of Services in a Randomized Trial Testing Phone- and Web-Based Interventions for Smoking Cessation

    PubMed Central

    Jack, Lisa M.; McClure, Jennifer B.; Deprey, Mona; Javitz, Harold S.; McAfee, Timothy A.; Catz, Sheryl L.; Richards, Julie; Bush, Terry; Swan, Gary E.

    2011-01-01

    Introduction: Phone counseling has become standard for behavioral smoking cessation treatment. Newer options include Web and integrated phone–Web treatment. No prior research, to our knowledge, has systematically compared the effectiveness of these three treatment modalities in a randomized trial. Understanding how utilization varies by mode, the impact of utilization on outcomes, and predictors of utilization across each mode could lead to improved treatments. Methods: One thousand two hundred and two participants were randomized to phone, Web, or combined phone–Web cessation treatment. Services varied by modality and were tracked using automated systems. All participants received 12 weeks of varenicline, printed guides, an orientation call, and access to a phone supportline. Self-report data were collected at baseline and 6-month follow-up. Results: Overall, participants utilized phone services more often than the Web-based services. Among treatment groups with Web access, a significant proportion logged in only once (37% phone–Web, 41% Web), and those in the phone–Web group logged in less often than those in the Web group (mean = 2.4 vs. 3.7, p = .0001). Use of the phone also was correlated with increased use of the Web. In multivariate analyses, greater use of the phone- or Web-based services was associated with higher cessation rates. Finally, older age and the belief that certain treatments could improve success were consistent predictors of greater utilization across groups. Other predictors varied by treatment group. Conclusions: Opportunities for enhancing treatment utilization exist, particularly for Web-based programs. Increasing utilization more broadly could result in better overall treatment effectiveness for all intervention modalities. PMID:21330267

  19. Development of Virtual Resource Based IoT Proxy for Bridging Heterogeneous Web Services in IoT Networks.

    PubMed

    Jin, Wenquan; Kim, DoHyeun

    2018-05-26

    The Internet of Things is comprised of heterogeneous devices, applications, and platforms using multiple communication technologies to connect the Internet for providing seamless services ubiquitously. With the requirement of developing Internet of Things products, many protocols, program libraries, frameworks, and standard specifications have been proposed. Therefore, providing a consistent interface to access services from those environments is difficult. Moreover, bridging the existing web services to sensor and actuator networks is also important for providing Internet of Things services in various industry domains. In this paper, an Internet of Things proxy is proposed that is based on virtual resources to bridge heterogeneous web services from the Internet to the Internet of Things network. The proxy enables clients to have transparent access to Internet of Things devices and web services in the network. The proxy is comprised of server and client to forward messages for different communication environments using the virtual resources which include the server for the message sender and the client for the message receiver. We design the proxy for the Open Connectivity Foundation network where the virtual resources are discovered by the clients as Open Connectivity Foundation resources. The virtual resources represent the resources which expose services in the Internet by web service providers. Although the services are provided by web service providers from the Internet, the client can access services using the consistent communication protocol in the Open Connectivity Foundation network. For discovering the resources to access services, the client also uses the consistent discovery interface to discover the Open Connectivity Foundation devices and virtual resources.

  20. SCHeMA web-based observation data information system

    NASA Astrophysics Data System (ADS)

    Novellino, Antonio; Benedetti, Giacomo; D'Angelo, Paolo; Confalonieri, Fabio; Massa, Francesco; Povero, Paolo; Tercier-Waeber, Marie-Louise

    2016-04-01

    It is well recognized that the need of sharing ocean data among non-specialized users is constantly increasing. Initiatives that are built upon international standards will contribute to simplify data processing and dissemination, improve user-accessibility also through web browsers, facilitate the sharing of information across the integrated network of ocean observing systems; and ultimately provide a better understanding of the ocean functioning. The SCHeMA (Integrated in Situ Chemical MApping probe) Project is developing an open and modular sensing solution for autonomous in situ high resolution mapping of a wide range of anthropogenic and natural chemical compounds coupled to master bio-physicochemical parameters (www.schema-ocean.eu). The SCHeMA web system is designed to ensure user-friendly data discovery, access and download as well as interoperability with other projects through a dedicated interface that implements the Global Earth Observation System of Systems - Common Infrastructure (GCI) recommendations and the international Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards. This approach will insure data accessibility in compliance with major European Directives and recommendations. Being modular, the system allows the plug-and-play of commercially available probes as well as new sensor probess under development within the project. The access to the network of monitoring probes is provided via a web-based system interface that, being implemented as a SOS (Sensor Observation Service), is providing standard interoperability and access tosensor observations systems through O&M standard - as well as sensor descriptions - encoded in Sensor Model Language (SensorML). The use of common vocabularies in all metadatabases and data formats, to describe data in an already harmonized and common standard is a prerequisite towards consistency and interoperability. Therefore, the SCHeMA SOS has adopted the SeaVox common vocabularies populated by SeaDataNet network of National Oceanographic Data Centres. The SCHeMA presentation layer, a fundamental part of the software architecture, offers to the user a bidirectional interaction with the integrated system allowing to manage and configure the sensor probes; view the stored observations and metadata, and handle alarms. The overall structure of the web portal developed within the SCHeMA initiative (Sensor Configuration, development of Core Profile interface for data access via OGC standard, external services such as web services, WMS, WFS; and Data download and query manager) will be presented and illustrated with examples of ongoing tests in costal and open sea.

  1. A Framework for Integrating Oceanographic Data Repositories

    NASA Astrophysics Data System (ADS)

    Rozell, E.; Maffei, A. R.; Beaulieu, S. E.; Fox, P. A.

    2010-12-01

    Oceanographic research covers a broad range of science domains and requires a tremendous amount of cross-disciplinary collaboration. Advances in cyberinfrastructure are making it easier to share data across disciplines through the use of web services and community vocabularies. Best practices in the design of web services and vocabularies to support interoperability amongst science data repositories are only starting to emerge. Strategic design decisions in these areas are crucial to the creation of end-user data and application integration tools. We present S2S, a novel framework for deploying customizable user interfaces to support the search and analysis of data from multiple repositories. Our research methods follow the Semantic Web methodology and technology development process developed by Fox et al. This methodology stresses the importance of close scientist-technologist interactions when developing scientific use cases, keeping the project well scoped and ensuring the result meets a real scientific need. The S2S framework motivates the development of standardized web services with well-described parameters, as well as the integration of existing web services and applications in the search and analysis of data. S2S also encourages the use and development of community vocabularies and ontologies to support federated search and reduce the amount of domain expertise required in the data discovery process. S2S utilizes the Web Ontology Language (OWL) to describe the components of the framework, including web service parameters, and OpenSearch as a standard description for web services, particularly search services for oceanographic data repositories. We have created search services for an oceanographic metadata database, a large set of quality-controlled ocean profile measurements, and a biogeographic search service. S2S provides an application programming interface (API) that can be used to generate custom user interfaces, supporting data and application integration across these repositories and other web resources. Although initially targeted towards a general oceanographic audience, the S2S framework shows promise in many science domains, inspired in part by the broad disciplinary coverage of oceanography. This presentation will cover the challenges addressed by the S2S framework, the research methods used in its development, and the resulting architecture for the system. It will demonstrate how S2S is remarkably extensible, and can be generalized to many science domains. Given these characteristics, the framework can simplify the process of data discovery and analysis for the end user, and can help to shift the responsibility of search interface development away from data managers.

  2. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain.

    PubMed

    Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A

    2011-11-29

    Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.

  3. Development of spatial density maps based on geoprocessing web services: application to tuberculosis incidence in Barcelona, Spain

    PubMed Central

    2011-01-01

    Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392

  4. EarthServer - an FP7 project to enable the web delivery and analysis of 3D/4D models

    NASA Astrophysics Data System (ADS)

    Laxton, John; Sen, Marcus; Passmore, James

    2013-04-01

    EarthServer aims at open access and ad-hoc analytics on big Earth Science data, based on the OGC geoservice standards Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS). The WCS model defines "coverages" as a unifying paradigm for multi-dimensional raster data, point clouds, meshes, etc., thereby addressing a wide range of Earth Science data including 3D/4D models. WCPS allows declarative SQL-style queries on coverages. The project is developing a pilot implementing these standards, and will also investigate the use of GeoSciML to describe coverages. Integration of WCPS with XQuery will in turn allow coverages to be queried in combination with their metadata and GeoSciML description. The unified service will support navigation, extraction, aggregation, and ad-hoc analysis on coverage data from SQL. Clients will range from mobile devices to high-end immersive virtual reality, and will enable 3D model visualisation using web browser technology coupled with developing web standards. EarthServer is establishing open-source client and server technology intended to be scalable to Petabyte/Exabyte volumes, based on distributed processing, supercomputing, and cloud virtualization. Implementation will be based on the existing rasdaman server technology developed. Services using rasdaman technology are being installed serving the atmospheric, oceanographic, geological, cryospheric, planetary and general earth observation communities. The geology service (http://earthserver.bgs.ac.uk/) is being provided by BGS and at present includes satellite imagery, superficial thickness data, onshore DTMs and 3D models for the Glasgow area. It is intended to extend the data sets available to include 3D voxel models. Use of the WCPS standard allows queries to be constructed against single or multiple coverages. For example on a single coverage data for a particular area can be selected or data with a particular range of pixel values. Queries on multiple surfaces can be constructed to calculate, for example, the thickness between two surfaces in a 3D model or the depth from ground surface to the top of a particular geologic unit. In the first version of the service a simple interface showing some example queries has been implemented in order to show the potential of the technologies. The project aims to develop the services available in light of user feedback, both in terms of the data available, the functionality and the interface. User feedback on the services guides the software and standards development aspects of the project, leading to enhanced versions of the software which will be implemented in upgraded versions of the services during the lifetime of the project.

  5. A Web Policy Primer.

    ERIC Educational Resources Information Center

    Levine, Elliott

    2001-01-01

    Sound technology policies can spell the difference between an effective website and an online nightmare. An effective web development policy addresses six key areas: roles and responsibilities, content/educational value, privacy and safety, adherence to copyright laws, technical standards, and use of commercial sites and services. (MLH)

  6. Adapting the CUAHSI Hydrologic Information System to OGC standards

    NASA Astrophysics Data System (ADS)

    Valentine, D. W.; Whitenack, T.; Zaslavsky, I.

    2010-12-01

    The CUAHSI Hydrologic Information System (HIS) provides web and desktop client access to hydrologic observations via water data web services using an XML schema called “WaterML”. The WaterML 1.x specification and the corresponding Water Data Services have been the backbone of the HIS service-oriented architecture (SOA) and have been adopted for serving hydrologic data by several federal agencies and many academic groups. The central discovery service, HIS Central, is based on an metadata catalog that references 4.7 billion observations, organized as 23 million data series from 1.5 million sites from 51 organizations. Observations data are published using HydroServer nodes that have been deployed at 18 organizations. Usage of HIS has increased by 8x from 2008 to 2010, and doubled in usage from 1600 data series a day in 2009 to 3600 data series a day in the first half of 2010. The HIS central metadata catalog currently harvests information from 56 Water Data Services. We collaborate on the catalog updates with two federal partners, USGS and US EPA: their data series are periodically reloaded into the HIS metadata catalog. We are pursuing two main development directions in the HIS project: Cloud-based computing, and further compliance with Open Geospatial Consortium (OGC) standards. The goal of moving to cloud-computing is to provide a scalable collaborative system with a simpler deployment and less dependence of hardware maintenance and staff. This move requires re-architecting the information models underlying the metadata catalog, and Water Data Services to be independent of the underlying relational database model, allowing for implementation on both relational databases, and cloud-based processing systems. Cloud-based HIS central resources can be managed collaboratively; partners share responsibility for their metadata by publishing data series information into the centralized catalog. Publishing data series will use REST-based service interfaces, like OData, as the basis for ingesting data series information into a cloud-hosted catalog. The future HIS services involve providing information via OGC Standards that will allow for observational data access from commercial GIS applications. Use of standards will allow for tools to access observational data from other projects using standards, such as the Ocean Observatories Initiative, and for tools from such projects to be integrated into the HIS toolset. With international collaborators, we have been developing a water information exchange language called “WaterML 2.0” which will be used to deliver observations data over OGC Sensor Observation Services (SOS). A software stack of OGC standard services will provide access to HIS information. In addition to SOS, Web Mapping and Feature Services (WMS, and WFS) will provide access to location information. Catalog Services for the Web (CSW) will provide a catalog for water information that is both centralized, and distributed. We intend the OGC standards supplement the existing HIS service interfaces, rather than replace the present service interfaces. The ultimate goal of this development is expand access to hydrologic observations data, and create an environment where these data can be seamlessly integrated with standards-compliant data resources.

  7. A Query Language for Handling Big Observation Data Sets in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Autermann, Christian; Stasch, Christoph; Jirka, Simon; Koppe, Roland

    2017-04-01

    The Sensor Web provides a framework for the standardized Web-based sharing of environmental observations and sensor metadata. While the issue of varying data formats and protocols is addressed by these standards, the fast growing size of observational data is imposing new challenges for the application of these standards. Most solutions for handling big observational datasets currently focus on remote sensing applications, while big in-situ datasets relying on vector features still lack a solid approach. Conventional Sensor Web technologies may not be adequate, as the sheer size of the data transmitted and the amount of metadata accumulated may render traditional OGC Sensor Observation Services (SOS) unusable. Besides novel approaches to store and process observation data in place, e.g. by harnessing big data technologies from mainstream IT, the access layer has to be amended to utilize and integrate these large observational data archives into applications and to enable analysis. For this, an extension to the SOS will be discussed that establishes a query language to dynamically process and filter observations at storage level, similar to the OGC Web Coverage Service (WCS) and it's Web Coverage Processing Service (WCPS) extension. This will enable applications to request e.g. spatial or temporal aggregated data sets in a resolution it is able to display or it requires. The approach will be developed and implemented in cooperation with the The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research whose catalogue of data compromises marine observations of physical, chemical and biological phenomena from a wide variety of sensors, including mobile (like research vessels, aircrafts or underwater vehicles) and stationary (like buoys or research stations). Observations are made with a high temporal resolution and the resulting time series may span multiple decades.

  8. Implementation of data node in spatial information grid based on WS resource framework and WS notification

    NASA Astrophysics Data System (ADS)

    Zhang, Dengrong; Yu, Le

    2006-10-01

    Abstract-An approach of constructing a data node in spatial information grid (SIG) based on Web Service Resource Framework (WSRF) and Web Service Notification (WSN) is described in this paper. Attentions are paid to construct and implement SIG's resource layer, which is the most important part. A study on this layer find out, it is impossible to require persistent interaction with the clients of the services in common SIG architecture because of inheriting "stateless" and "not persistent" limitations of Web Service. A WSRF/WSN-based data node is designed to hurdle this short comes. Three different access modes are employed to test the availability of this node. Experimental results demonstrate this service node can successfully respond to standard OGC requests and returns specific spatial data in different network environment, also is stateful, dynamic and persistent.

  9. Global Federation of Data Services in Seismology: Extending the Concept to Interdisciplinary Science

    NASA Astrophysics Data System (ADS)

    Ahern, Tim; Trabant, Chad; Stults, Mike; VanFossen, Mick

    2016-04-01

    The International Federation of Digital Seismograph Networks (FDSN) sets international standards, formats, and access protocols for global seismology. Recently the availability of an FDSN standard for web services has enabled the development of a federated model of data access. With a growing number of internationally distributed data centers supporting compatible web services the task of federation is now fully realizable. The utility of this approach is already starting to bear fruit in seismology. This presentation will highlight the advances the seismological community has made in the past year towards federated access to seismological data including waveforms, earthquake event catalogs, and metadata describing seismic stations. It will include a discussion of an IRIS Federator as well as an emerging effort to develop an FDSN Federator that will allow seamless access to seismological information across multiple FDSN data centers. As part of the NSF EarthCube initiative as well as the US-European data coordination project (COOPEUS), IRIS and several partners, collectively called GeoWS, have been extending the concept of standard web services to other domains. Our primary partners include Lamont Doherty Earth Observatory (marine geophysics), Caltech (tectonic plate reconstructions), SDSC (hydrology), UNAVCO (geodesy), and Unidata (atmospheric sciences). Additionally, IRIS is working with partners at NOAA's National Centers for Environmental Information (NCEI) , NEON, UTEP, WOVOdat, INTERMAGNET, Global Geodynamics Program, and the Ocean Observatory Initiative (OOI) to develop web services for those domains. The ultimate goal is to allow discovery, access, and utilization of cross-domain data sources. One of the significant outcomes of this effort is the development of a simple text and metadata representation for tabular data called GeoCSV, that allows straightforward interpretation of information from multiple domains by non-domain experts.

  10. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability.

    PubMed

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-08-31

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human's daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner.

  11. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture tests the combination of Gauge data in a WPS that is triggered by a meteorological alert. The data is translated into OGC WaterML 2.0 time series data format and will be ingested in a SOS 2.0. SOS data is visualized in a SOS Client that is able to handle time series. The meteorological forecast data (with the supervision of an operator manipulating the WPS user interface) ingests with WaterML 2.0 time series and terrain data is input for a flooding modelling algorithm. The WPS is able to produce flooding datasets in the form of coverages that is offered to clients via a WCS 2.0 service or a WMS 1.3 service, and downloaded and visualized by the respective clients. The WPS triggers a notification or an alert that will be monitored from an emergency control response service. Acronyms AS: Alert Service ES: Event Service ICT: Information and Communication Technology NS: Notification Service OGC: Open Geospatial Consortium RIBASE: River Basin Standards Interoperability Pilot SOS: Sensor Observation Service WaterML: Water Markup Language WCS: Web Coverage Service WMS: Web Map Service WPS: Web Processing Service

  12. Air Quality uFIND: User-oriented Tool Set for Air Quality Data Discovery and Access

    NASA Astrophysics Data System (ADS)

    Hoijarvi, K.; Robinson, E. M.; Husar, R. B.; Falke, S. R.; Schultz, M. G.; Keating, T. J.

    2012-12-01

    Historically, there have been major impediments to seamless and effective data usage encountered by both data providers and users. Over the last five years, the international Air Quality (AQ) Community has worked through forums such as the Group on Earth Observations AQ Community of Practice, the ESIP AQ Working Group, and the Task Force on Hemispheric Transport of Air Pollution to converge on data format standards (e.g., netCDF), data access standards (e.g., Open Geospatial Consortium Web Coverage Services), metadata standards (e.g., ISO 19115), as well as other conventions (e.g., CF Naming Convention) in order to build an Air Quality Data Network. The centerpiece of the AQ Data Network is the web service-based tool set: user-oriented Filtering and Identification of Networked Data. The purpose of uFIND is to provide rich and powerful facilities for the user to: a) discover and choose a desired dataset by navigation through the multi-dimensional metadata space using faceted search, b) seamlessly access and browse datasets, and c) use uFINDs facilities as a web service for mashups with other AQ applications and portals. In a user-centric information system such as uFIND, the user experience is improved by metadata that includes the general fields for discovery as well as community-specific metadata to narrow the search beyond space, time and generic keyword searches. However, even with the community-specific additions, the ISO 19115 records were formed in compliance with the standard, so that other standards-based search interface could leverage this additional information. To identify the fields necessary for metadata discovery we started with the ISO 19115 Core Metadata fields and fields that were needed for a Catalog Service for the Web (CSW) Record. This fulfilled two goals - one to create valid ISO 19115 records and the other to be able to retrieve the records through a Catalog Service for the Web query. Beyond the required set of fields, the AQ Community added additional fields using a combination of keywords and ISO 19115 fields. These extensions allow discovery by measurement platform or observed phenomena. Beyond discovery metadata, the AQ records include service identification objects that allow standards-based clients, such as some brokers, to access the data found via OGC WCS or WMS data access protocols. uFIND, is one such smart client, this combination of discovery and access metadata allows the user to preview each registered dataset through spatial and temporal views; observe the data access and usage pattern and also find links to dataset-specific metadata directly in uFIND. The AQ data providers also benefit from this architecture since their data products are easier to find and re-use, enhancing the relevance and importance of their products. Finally, the earth science community at large benefits from the Service Oriented Architecture of uFIND, since it is a service itself and allows service-based interfacing with providers and users of the metadata, allowing uFIND facets to be further refined for a particular AQ application or completely repurposed for other Earth Science domains that use the same set of data access and metadata standards.

  13. Spatial Data Services for Interdisciplinary Applications from the NASA Socioeconomic Data and Applications Center

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; MacManus, K.; Vinay, S.; Yetman, G.

    2016-12-01

    The Socioeconomic Data and Applications Center (SEDAC), one of 12 Distributed Active Archive Centers (DAACs) in the NASA Earth Observing System Data and Information System (EOSDIS), has developed a variety of operational spatial data services aimed at providing online access, visualization, and analytic functions for geospatial socioeconomic and environmental data. These services include: open web services that implement Open Geospatial Consortium (OGC) specifications such as Web Map Service (WMS), Web Feature Service (WFS), and Web Coverage Service (WCS); spatial query services that support Web Processing Service (WPS) and Representation State Transfer (REST); and web map clients and a mobile app that utilize SEDAC and other open web services. These services may be accessed from a variety of external map clients and visualization tools such as NASA's WorldView, NOAA's Climate Explorer, and ArcGIS Online. More than 200 data layers related to population, settlements, infrastructure, agriculture, environmental pollution, land use, health, hazards, climate change and other aspects of sustainable development are available through WMS, WFS, and/or WCS. Version 2 of the SEDAC Population Estimation Service (PES) supports spatial queries through WPS and REST in the form of a user-defined polygon or circle. The PES returns an estimate of the population residing in the defined area for a specific year (2000, 2005, 2010, 2015, or 2020) based on SEDAC's Gridded Population of the World version 4 (GPWv4) dataset, together with measures of accuracy. The SEDAC Hazards Mapper and the recently released HazPop iOS mobile app enable users to easily submit spatial queries to the PES and see the results. SEDAC has developed an operational virtualized backend infrastructure to manage these services and support their continual improvement as standards change, new data and services become available, and user needs evolve. An ongoing challenge is to improve the reliability and performance of the infrastructure, in conjunction with external services, to meet both research and operational needs.

  14. Lightweight Advertising and Scalable Discovery of Services, Datasets, and Events Using Feedcasts

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Movva, S.

    2010-12-01

    Broadcast feeds (Atom or RSS) are a mechanism for advertising the existence of new data objects on the web, with metadata and links to further information. Users then subscribe to the feed to receive updates. This concept has already been used to advertise the new granules of science data as they are produced (datacasting), with browse images and metadata, and to advertise bundles of web services (service casting). Structured metadata is introduced into the XML feed format by embedding new XML tags (in defined namespaces), using typed links, and reusing built-in Atom feed elements. This “infocasting” concept can be extended to include many other science artifacts, including data collections, workflow documents, topical geophysical events (hurricanes, forest fires, etc.), natural hazard warnings, and short articles describing a new science result. The common theme is that each infocast contains machine-readable, structured metadata describing the object and enabling further manipulation. For example, service casts contain type links pointing to the service interface description (e.g., WSDL for SOAP services), service endpoint, and human-readable documentation. Our Infocasting project has three main goals: (1) define and evangelize micro-formats (metadata standards) so that providers can easily advertise their web services, datasets, and topical geophysical events by adding structured information to broadcast feeds; (2) develop authoring tools so that anyone can easily author such service advertisements, data casts, and event descriptions; and (3) provide a one-stop, Google-like search box in the browser that allows discovery of service, data and event casts visible on the web, and services & data registered in the GEOSS repository and other NASA repositories (GCMD & ECHO). To demonstrate the event casting idea, a series of micro-articles—with accompanying event casts containing links to relevant datasets, web services, and science analysis workflows--will be authored for several kinds of geophysical events, such as hurricanes, smoke plume events, tsunamis, etc. The talk will describe our progress so far, and some of the issues with leveraging existing metadata standards to define lightweight micro-formats.

  15. Advancements in Open Geospatial Standards for Photogrammetry and Remote Sensing from Ogc

    NASA Astrophysics Data System (ADS)

    Percivall, George; Simonis, Ingo

    2016-06-01

    The necessity of open standards for effective sharing and use of remote sensing continues to receive increasing emphasis in policies of agencies and projects around the world. Coordination on the development of open standards for geospatial information is a vital step to insure that the technical standards are ready to support the policy objectives. The mission of the Open Geospatial Consortium (OGC) is to advance development and use of international standards and supporting services that promote geospatial interoperability. To accomplish this mission, OGC serves as the global forum for the collaboration of geospatial data / solution providers and users. Photogrammetry and remote sensing are sources of the largest and most complex geospatial information. Some of the most mature OGC standards for remote sensing include the Sensor Web Enablement (SWE) standards, the Web Coverage Service (WCS) suite of standards, encodings such as NetCDF, GMLJP2 and GeoPackage, and the soon to be approved Discrete Global Grid Systems (DGGS) standard. In collaboration with ISPRS, OGC working with government, research and industrial organizations continue to advance the state of geospatial standards for full use of photogrammetry and remote sensing.

  16. SBMLmod: a Python-based web application and web service for efficient data integration and model simulation.

    PubMed

    Schäuble, Sascha; Stavrum, Anne-Kristin; Bockwoldt, Mathias; Puntervoll, Pål; Heiland, Ines

    2017-06-24

    Systems Biology Markup Language (SBML) is the standard model representation and description language in systems biology. Enriching and analysing systems biology models by integrating the multitude of available data, increases the predictive power of these models. This may be a daunting task, which commonly requires bioinformatic competence and scripting. We present SBMLmod, a Python-based web application and service, that automates integration of high throughput data into SBML models. Subsequent steady state analysis is readily accessible via the web service COPASIWS. We illustrate the utility of SBMLmod by integrating gene expression data from different healthy tissues as well as from a cancer dataset into a previously published model of mammalian tryptophan metabolism. SBMLmod is a user-friendly platform for model modification and simulation. The web application is available at http://sbmlmod.uit.no , whereas the WSDL definition file for the web service is accessible via http://sbmlmod.uit.no/SBMLmod.wsdl . Furthermore, the entire package can be downloaded from https://github.com/MolecularBioinformatics/sbml-mod-ws . We envision that SBMLmod will make automated model modification and simulation available to a broader research community.

  17. Design and Development of a Framework Based on Ogc Web Services for the Visualization of Three Dimensional Large-Scale Geospatial Data Over the Web

    NASA Astrophysics Data System (ADS)

    Roccatello, E.; Nozzi, A.; Rumor, M.

    2013-05-01

    This paper illustrates the key concepts behind the design and the development of a framework, based on OGC services, capable to visualize 3D large scale geospatial data streamed over the web. WebGISes are traditionally bounded to a bi-dimensional simplified representation of the reality and though they are successfully addressing the lack of flexibility and simplicity of traditional desktop clients, a lot of effort is still needed to reach desktop GIS features, like 3D visualization. The motivations behind this work lay in the widespread availability of OGC Web Services inside government organizations and in the technology support to HTML 5 and WebGL standard of the web browsers. This delivers an improved user experience, similar to desktop applications, therefore allowing to augment traditional WebGIS features with a 3D visualization framework. This work could be seen as an extension of the Cityvu project, started in 2008 with the aim of a plug-in free OGC CityGML viewer. The resulting framework has also been integrated in existing 3DGIS software products and will be made available in the next months.

  18. A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate pieces of this system progress, they will be combined and generalized to form a sort of social network for nationally consistent hydrologic modeling.

  19. 76 FR 53371 - Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    .... until 2 p.m. and a dinner break is scheduled from 5 p.m. until 6:30 p.m. The EPA's Web site for the... preferences on speaking times may not be able to be fulfilled. If you will require the service of a translator... hearing schedules, including lists of speakers, will be posted on the EPA's Web site at http://www.epa.gov...

  20. ChEMBL web services: streamlining access to drug discovery data and utilities

    PubMed Central

    Davies, Mark; Nowotka, Michał; Papadatos, George; Dedman, Nathan; Gaulton, Anna; Atkinson, Francis; Bellis, Louisa; Overington, John P.

    2015-01-01

    ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology. PMID:25883136

  1. Opal web services for biomedical applications.

    PubMed

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  2. Persistent identifiers for web service requests relying on a provenance ontology design pattern

    NASA Astrophysics Data System (ADS)

    Car, Nicholas; Wang, Jingbo; Wyborn, Lesley; Si, Wei

    2016-04-01

    Delivering provenance information for datasets produced from static inputs is relatively straightforward: we represent the processing actions and data flow using provenance ontologies and link to stored copies of the inputs stored in repositories. If appropriate detail is given, the provenance information can then describe what actions have occurred (transparency) and enable reproducibility. When web service-generated data is used by a process to create a dataset instead of a static inputs, we need to use sophisticated provenance representations of the web service request as we can no longer just link to data stored in a repository. A graph-based provenance representation, such as the W3C's PROV standard, can be used to model the web service request as a single conceptual dataset and also as a small workflow with a number of components within the same provenance report. This dual representation does more than just allow simplified or detailed views of a dataset's production to be used where appropriate. It also allow persistent identifiers to be assigned to instances of a web service requests, thus enabling one form of dynamic data citation, and for those identifiers to resolve to whatever level of detail implementers think appropriate in order for that web service request to be reproduced. In this presentation we detail our reasoning in representing web service requests as small workflows. In outline, this stems from the idea that web service requests are perdurant things and in order to most easily persist knowledge of them for provenance, we should represent them as a nexus of relationships between endurant things, such as datasets and knowledge of particular system types, as these endurant things are far easier to persist. We also describe the ontology design pattern that we use to represent workflows in general and how we apply it to different types of web service requests. We give examples of specific web service requests instances that were made by systems at Australia's National Computing Infrastructure and show how one can 'click' through provenance interfaces to see the dual representations of the requests using provenance management tooling we have built.

  3. 76 FR 18831 - Updating Regulations Issued Under the Fair Labor Standards Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... time zone, or log onto the WHD's Web site for a nationwide listing of Wage and Hour District and Area... credits. The Department is also not proceeding with the proposed rule that service managers, service writers, service advisors, and service salesman are exempted from the overtime provision. We have also...

  4. Group Membership Based Authorization to CADC Resources

    NASA Astrophysics Data System (ADS)

    Damian, A.; Dowler, P.; Gaudet, S.; Hill, N.

    2012-09-01

    The Group Membership Service (GMS), implemented at the Canadian Astronomy Data Centre (CADC), is a prototype of what could eventually be an IVOA standard for a distributed and interoperable group membership protocol. Group membership is the core authorization concept that enables teamwork and collaboration amongst astronomers accessing distributed resources and services. The service integrates and complements other access control related IVOA standards such as single-sign-on (SSO) using X.509 proxy certificates and the Credential Delegation Protocol (CDP). The GMS has been used at CADC for several years now, initially as a subsystem and then as a stand-alone Web service. It is part of the authorization mechanism for controlling the access to restricted Web resources as well as the VOSpace service hosted by the CADC. We present the role that GMS plays within the access control system at the CADC, including the functionality of the service and how the different CADC services make use of it to assert user authorization to resources. We also describe the main advantages and challenges of using the service as well as future work to increase its robustness and functionality.

  5. Progress on big data publication and documentation for machine-to-machine discovery, access, and processing

    NASA Astrophysics Data System (ADS)

    Walker, J. I.; Blodgett, D. L.; Suftin, I.; Kunicki, T.

    2013-12-01

    High-resolution data for use in environmental modeling is increasingly becoming available at broad spatial and temporal scales. Downscaled climate projections, remotely sensed landscape parameters, and land-use/land-cover projections are examples of datasets that may exceed an individual investigation's data management and analysis capacity. To allow projects on limited budgets to work with many of these data sets, the burden of working with them must be reduced. The approach being pursued at the U.S. Geological Survey Center for Integrated Data Analytics uses standard self-describing web services that allow machine to machine data access and manipulation. These techniques have been implemented and deployed in production level server-based Web Processing Services that can be accessed from a web application or scripted workflow. Data publication techniques that allow machine-interpretation of large collections of data have also been implemented for numerous datasets at U.S. Geological Survey data centers as well as partner agencies and academic institutions. Discovery of data services is accomplished using a method in which a machine-generated metadata record holds content--derived from the data's source web service--that is intended for human interpretation as well as machine interpretation. A distributed search application has been developed that demonstrates the utility of a decentralized search of data-owner metadata catalogs from multiple agencies. The integrated but decentralized system of metadata, data, and server-based processing capabilities will be presented. The design, utility, and value of these solutions will be illustrated with applied science examples and success stories. Datasets such as the EPA's Integrated Climate and Land Use Scenarios, USGS/NASA MODIS derived land cover attributes, and downscaled climate projections from several sources are examples of data this system includes. These and other datasets, have been published as standard, self-describing, web services that provide the ability to inspect and subset the data. This presentation will demonstrate this file-to-web service concept and how it can be used from script-based workflows or web applications.

  6. A web service system supporting three-dimensional post-processing of medical images based on WADO protocol.

    PubMed

    He, Longjun; Xu, Lang; Ming, Xing; Liu, Qian

    2015-02-01

    Three-dimensional post-processing operations on the volume data generated by a series of CT or MR images had important significance on image reading and diagnosis. As a part of the DIOCM standard, WADO service defined how to access DICOM objects on the Web, but it didn't involve three-dimensional post-processing operations on the series images. This paper analyzed the technical features of three-dimensional post-processing operations on the volume data, and then designed and implemented a web service system for three-dimensional post-processing operations of medical images based on the WADO protocol. In order to improve the scalability of the proposed system, the business tasks and calculation operations were separated into two modules. As results, it was proved that the proposed system could support three-dimensional post-processing service of medical images for multiple clients at the same moment, which met the demand of accessing three-dimensional post-processing operations on the volume data on the web.

  7. Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach.

    PubMed

    Marco-Ruiz, Luis; Pedrinaci, Carlos; Maldonado, J A; Panziera, Luca; Chen, Rong; Bellika, J Gustav

    2016-08-01

    The high costs involved in the development of Clinical Decision Support Systems (CDSS) make it necessary to share their functionality across different systems and organizations. Service Oriented Architectures (SOA) have been proposed to allow reusing CDSS by encapsulating them in a Web service. However, strong barriers in sharing CDS functionality are still present as a consequence of lack of expressiveness of services' interfaces. Linked Services are the evolution of the Semantic Web Services paradigm to process Linked Data. They aim to provide semantic descriptions over SOA implementations to overcome the limitations derived from the syntactic nature of Web services technologies. To facilitate the publication, discovery and interoperability of CDS services by evolving them into Linked Services that expose their interfaces as Linked Data. We developed methods and models to enhance CDS SOA as Linked Services that define a rich semantic layer based on machine interpretable ontologies that powers their interoperability and reuse. These ontologies provided unambiguous descriptions of CDS services properties to expose them to the Web of Data. We developed models compliant with Linked Data principles to create a semantic representation of the components that compose CDS services. To evaluate our approach we implemented a set of CDS Linked Services using a Web service definition ontology. The definitions of Web services were linked to the models developed in order to attach unambiguous semantics to the service components. All models were bound to SNOMED-CT and public ontologies (e.g. Dublin Core) in order to count on a lingua franca to explore them. Discovery and analysis of CDS services based on machine interpretable models was performed reasoning over the ontologies built. Linked Services can be used effectively to expose CDS services to the Web of Data by building on current CDS standards. This allows building shared Linked Knowledge Bases to provide machine interpretable semantics to the CDS service description alleviating the challenges on interoperability and reuse. Linked Services allow for building 'digital libraries' of distributed CDS services that can be hosted and maintained in different organizations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Supporting NEESPI with Data Services - The SIB-ESS-C e-Infrastructure

    NASA Astrophysics Data System (ADS)

    Gerlach, R.; Schmullius, C.; Frotscher, K.

    2009-04-01

    Data discovery and retrieval is commonly among the first steps performed for any Earth science study. The way scientific data is searched and accessed has changed significantly over the past two decades. Especially the development of the World Wide Web and the technologies that evolved along shortened the data discovery and data exchange process. On the other hand the amount of data collected and distributed by earth scientists has increased exponentially requiring new concepts for data management and sharing. One such concept to meet the demand is to build up Spatial Data Infrastructures (SDI) or e-Infrastructures. These infrastructures usually contain components for data discovery allowing users (or other systems) to query a catalogue or registry and retrieve metadata information on available data holdings and services. Data access is typically granted using FTP/HTTP protocols or, more advanced, through Web Services. A Service Oriented Architecture (SOA) approach based on standardized services enables users to benefit from interoperability among different systems and to integrate distributed services into their application. The Siberian Earth System Science Cluster (SIB-ESS-C) being established at the University of Jena (Germany) is such a spatial data infrastructure following these principles and implementing standards published by the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO). The prime objective is to provide researchers with focus on Siberia with the technical means for data discovery, data access, data publication and data analysis. The region of interest covers the entire Asian part of the Russian Federation from the Ural to the Pacific Ocean including the Ob-, Lena- and Yenissey river catchments. The aim of SIB-ESS-C is to provide a comprehensive set of data products for Earth system science in this region. Although SIB-ESS-C will be equipped with processing capabilities for in-house data generation (mainly from Earth Observation), current data holdings of SIB-ESS-C have been created in collaboration with a number of partners in previous and ongoing research projects (e.g. SIBERIA-II, SibFORD, IRIS). At the current development stage the SIB-ESS-C system comprises a federated metadata catalogue accessible through the SIB-ESS-C Web Portal or from any OGC-CSW compliant client. Due to full interoperability with other metadata catalogues users of the SIB-ESS-C Web Portal are able to search external metadata repositories. The Web Portal contains also a simple visualization component which will be extended to a comprehensive visualization and analysis tool in the near future. All data products are already accessible as a Web Mapping Service and will be made available as Web Feature and Web Coverage Services soon allowing users to directly incorporate the data into their application. The SIB-ESS-C infrastructure will be further developed as one node in a network of similar systems (e.g. NASA GIOVANNI) in the NEESPI region.

  9. Restful API Architecture Based on Laravel Framework

    NASA Astrophysics Data System (ADS)

    Chen, Xianjun; Ji, Zhoupeng; Fan, Yu; Zhan, Yongsong

    2017-10-01

    Web service has been an industry standard tech for message communication and integration between heterogeneous systems. RESTFUL API has become mainstream web service development paradigm after SOAP, how to effectively construct RESTFUL API remains a research hotspots. This paper presents a development model of RESTFUL API construction based on PHP language and LARAVEL framework. The key technical problems that need to be solved during the construction of RESTFUL API are discussed, and implementation details based on LARAVEL are given.

  10. The interoperability skill of the Geographic Portal of the ISPRA - Geological Survey of Italy

    NASA Astrophysics Data System (ADS)

    Pia Congi, Maria; Campo, Valentina; Cipolloni, Carlo; Delogu, Daniela; Ventura, Renato; Battaglini, Loredana

    2010-05-01

    The Geographic Portal of Geological Survey of Italy (ISPRA) available at http://serviziogeologico.apat.it/Portal was planning according to standard criteria of the INSPIRE directive. ArcIMS services and at the same time WMS and WFS services had been realized to satisfy the different clients. For each database and web-services the metadata had been wrote in agreement with the ISO 19115. The management architecture of the portal allow it to encode the clients input and output requests both in ArcXML and in GML language. The web-applications and web-services had been realized for each database owner of Land Protection and Georesources Department concerning the geological map at the scale 1:50.000 (CARG Project) and 1:100.000, the IFFI landslide inventory, the boreholes due Law 464/84, the large-scale geological map and all the raster format maps. The portal thus far published is at the experimental stage but through the development of a new graphical interface achieves the final version. The WMS and WFS services including metadata will be re-designed. The validity of the methodology and the applied standards allow to look ahead to the growing developments. In addition to this it must be borne in mind that the capacity of the new geological standard language (GeoSciML), which is already incorporated in the web-services deployed, will be allow a better display and query of the geological data according to the interoperability. The characteristics of the geological data demand for the cartographic mapping specific libraries of symbols not yet available in a WMS service. This is an other aspect regards the standards of the geological informations. Therefore at the moment were carried out: - a library of geological symbols to be used for printing, with a sketch of system colors and a library for displaying data on video, which almost completely solves the problems of the coverage point and area data (also directed) but that still introduces problems for the linear data (solutions: ArcIMS services from Arcmap projects or a specific SLD implementation for WMS services); - an update of "Guidelines for the supply of geological data" in a short time will be published; - the Geological Survey of Italy is officially involved in the IUGS-CGI working group for the processing and experimentation on the new GeoSciML language with the WMS/WFS services. The availability of geographic informations occurs through the metadata that can be distributed online so that search engines can find them through specialized research. The collected metadata in catalogs are structured in a standard (ISO 19135). The catalogs are a ‘common' interface to locate, view and query data and metadata services, web services and other resources. Then, while working in a growing sector of the environmental knowledgement the focus is to collect the participation of other subjects that contribute to the enrichment of the informative content available, so as to be able to arrive to a real portal of national interest especially in case of disaster management.

  11. Advances in a distributed approach for ocean model data interoperability

    USGS Publications Warehouse

    Signell, Richard P.; Snowden, Derrick P.

    2014-01-01

    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  12. Worldwide telemedicine services based on distributed multimedia electronic patient records by using the second generation Web server hyperwave.

    PubMed

    Quade, G; Novotny, J; Burde, B; May, F; Beck, L E; Goldschmidt, A

    1999-01-01

    A distributed multimedia electronic patient record (EPR) is a central component of a medicine-telematics application that supports physicians working in rural areas of South America, and offers medical services to scientists in Antarctica. A Hyperwave server is used to maintain the patient record. As opposed to common web servers--and as a second generation web server--Hyperwave provides the capability of holding documents in a distributed web space without the problem of broken links. This enables physicians to browse through a patient's record by using a standard browser even if the patient's record is distributed over several servers. The patient record is basically implemented on the "Good European Health Record" (GEHR) architecture.

  13. OpenFlyData: an exemplar data web integrating gene expression data on the fruit fly Drosophila melanogaster.

    PubMed

    Miles, Alistair; Zhao, Jun; Klyne, Graham; White-Cooper, Helen; Shotton, David

    2010-10-01

    Integrating heterogeneous data across distributed sources is a major requirement for in silico bioinformatics supporting translational research. For example, genome-scale data on patterns of gene expression in the fruit fly Drosophila melanogaster are widely used in functional genomic studies in many organisms to inform candidate gene selection and validate experimental results. However, current data integration solutions tend to be heavy weight, and require significant initial and ongoing investment of effort. Development of a common Web-based data integration infrastructure (a.k.a. data web), using Semantic Web standards, promises to alleviate these difficulties, but little is known about the feasibility, costs, risks or practical means of migrating to such an infrastructure. We describe the development of OpenFlyData, a proof-of-concept system integrating gene expression data on D. melanogaster, combining Semantic Web standards with light-weight approaches to Web programming based on Web 2.0 design patterns. To support researchers designing and validating functional genomic studies, OpenFlyData includes user-facing search applications providing intuitive access to and comparison of gene expression data from FlyAtlas, the BDGP in situ database, and FlyTED, using data from FlyBase to expand and disambiguate gene names. OpenFlyData's services are also openly accessible, and are available for reuse by other bioinformaticians and application developers. Semi-automated methods and tools were developed to support labour- and knowledge-intensive tasks involved in deploying SPARQL services. These include methods for generating ontologies and relational-to-RDF mappings for relational databases, which we illustrate using the FlyBase Chado database schema; and methods for mapping gene identifiers between databases. The advantages of using Semantic Web standards for biomedical data integration are discussed, as are open issues. In particular, although the performance of open source SPARQL implementations is sufficient to query gene expression data directly from user-facing applications such as Web-based data fusions (a.k.a. mashups), we found open SPARQL endpoints to be vulnerable to denial-of-service-type problems, which must be mitigated to ensure reliability of services based on this standard. These results are relevant to data integration activities in translational bioinformatics. The gene expression search applications and SPARQL endpoints developed for OpenFlyData are deployed at http://openflydata.org. FlyUI, a library of JavaScript widgets providing re-usable user-interface components for Drosophila gene expression data, is available at http://flyui.googlecode.com. Software and ontologies to support transformation of data from FlyBase, FlyAtlas, BDGP and FlyTED to RDF are available at http://openflydata.googlecode.com. SPARQLite, an implementation of the SPARQL protocol, is available at http://sparqlite.googlecode.com. All software is provided under the GPL version 3 open source license.

  14. The Weakest Link: Library Catalogs.

    ERIC Educational Resources Information Center

    Young, Terrence E., Jr.

    2002-01-01

    Describes methods of correcting MARC records in online public access catalogs in school libraries. Highlights include in-house methods; professional resources; conforming to library cataloging standards; vendor services, including Web-based services; software specifically developed for record cleanup; and outsourcing. (LRW)

  15. An efficient architecture to support digital pathology in standard medical imaging repositories.

    PubMed

    Marques Godinho, Tiago; Lebre, Rui; Silva, Luís Bastião; Costa, Carlos

    2017-07-01

    In the past decade, digital pathology and whole-slide imaging (WSI) have been gaining momentum with the proliferation of digital scanners from different manufacturers. The literature reports significant advantages associated with the adoption of digital images in pathology, namely, improvements in diagnostic accuracy and better support for telepathology. Moreover, it also offers new clinical and research applications. However, numerous barriers have been slowing the adoption of WSI, among which the most important are performance issues associated with storage and distribution of huge volumes of data, and lack of interoperability with other hospital information systems, most notably Picture Archive and Communications Systems (PACS) based on the DICOM standard. This article proposes an architecture of a Web Pathology PACS fully compliant with DICOM standard communications and data formats. The solution includes a PACS Archive responsible for storing whole-slide imaging data in DICOM WSI format and offers a communication interface based on the most recent DICOM Web services. The second component is a zero-footprint viewer that runs in any web-browser. It consumes data using the PACS archive standard web services. Moreover, it features a tiling engine especially suited to deal with the WSI image pyramids. These components were designed with special focus on efficiency and usability. The performance of our system was assessed through a comparative analysis of the state-of-the-art solutions. The results demonstrate that it is possible to have a very competitive solution based on standard workflows. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Developing Federated Services within Seismology: IRIS' involvement in the CoopEUS Project

    NASA Astrophysics Data System (ADS)

    Ahern, T. K.; Trabant, C. M.; Stults, M.

    2014-12-01

    As a founding member of the CoopEUS initiative, IRIS Data Services has partnered with five data centers in Europe and the UC Berkeley (NCEDC) in the US to implement internationally standardized web services to access seismological data using identical methodologies. The International Federation of Digital Seismograph Networks (FDSN) holds commission status within IASPEI/IUGG and as such is the international body that governs data exchange formats and access protocols within seismology. The CoopEUS project involves IRIS and UNAVCO as part of the EarthScope project and the European collaborators are all members of the European Plate Observing System (EPOS). CoopEUS includes one work package that attempts to coordinate data access between EarthScope and EPOS facilities. IRIS has worked with its partners in the FDSN to develop and adopt three key international service standards within seismology. These include 1) fdsn-dataselect, a service that returns time series data in a variety of standard formats, 2) fdsn-station, a service that returns related metadata about a seismic station in stationXML format, and 3) fdsn-event, a service that returns information about earthquakes and other seismic events in QuakeML format. Currently the 5 European data centers supporting these services include the ORFEUS Data Centre in the Netherlands, the GFZ German Research Centre for Geosciences in Potsdam, Germany, ETH Zurich in Switzerland, INGV in Rome, Italy, and the RESIF Data Centre in Grenoble France. Presently these seven centres can all be accessed using standardized web services with identical service calls and returns results in standardized ways. IRIS is developing an IRIS federator that will allow a client to seamlessly access information across the federated centers. Details and current status of the IRIS Federator will be presented.

  17. cPath: open source software for collecting, storing, and querying biological pathways.

    PubMed

    Cerami, Ethan G; Bader, Gary D; Gross, Benjamin E; Sander, Chris

    2006-11-13

    Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.

  18. rasdaman Array Database: current status

    NASA Astrophysics Data System (ADS)

    Merticariu, George; Toader, Alexandru

    2015-04-01

    rasdaman (Raster Data Manager) is a Free Open Source Array Database Management System which provides functionality for storing and processing massive amounts of raster data in the form of multidimensional arrays. The user can access, process and delete the data using SQL. The key features of rasdaman are: flexibility (datasets of any dimensionality can be processed with the help of SQL queries), scalability (rasdaman's distributed architecture enables it to seamlessly run on cloud infrastructures while offering an increase in performance with the increase of computation resources), performance (real-time access, processing, mixing and filtering of arrays of any dimensionality) and reliability (legacy communication protocol replaced with a new one based on cutting edge technology - Google Protocol Buffers and ZeroMQ). Among the data with which the system works, we can count 1D time series, 2D remote sensing imagery, 3D image time series, 3D geophysical data, and 4D atmospheric and climate data. Most of these representations cannot be stored only in the form of raw arrays, as the location information of the contents is also important for having a correct geoposition on Earth. This is defined by ISO 19123 as coverage data. rasdaman provides coverage data support through the Petascope service. Extensions were added on top of rasdaman in order to provide support for the Geoscience community. The following OGC standards are currently supported: Web Map Service (WMS), Web Coverage Service (WCS), and Web Coverage Processing Service (WCPS). The Web Map Service is an extension which provides zoom and pan navigation over images provided by a map server. Starting with version 9.1, rasdaman supports WMS version 1.3. The Web Coverage Service provides capabilities for downloading multi-dimensional coverage data. Support is also provided for several extensions of this service: Subsetting Extension, Scaling Extension, and, starting with version 9.1, Transaction Extension, which defines request types for inserting, updating and deleting coverages. A web client, designed for both novice and experienced users, is also available for the service and its extensions. The client offers an intuitive interface that allows users to work with multi-dimensional coverages by abstracting the specifics of the standard definitions of the requests. The Web Coverage Processing Service defines a language for on-the-fly processing and filtering multi-dimensional raster coverages. rasdaman exposes this service through the WCS processing extension. Demonstrations are provided online via the Earthlook website (earthlook.org) which presents use-cases from a wide variety of application domains, using the rasdaman system as processing engine.

  19. Web Map Services (WMS) Global Mosaic

    NASA Technical Reports Server (NTRS)

    Percivall, George; Plesea, Lucian

    2003-01-01

    The WMS Global Mosaic provides access to imagery of the global landmass using an open standard for web mapping. The seamless image is a mosaic of Landsat 7 scenes; geographically-accurate with 30 and 15 meter resolutions. By using the OpenGIS Web Map Service (WMS) interface, any organization can use the global mosaic as a layer in their geospatial applications. Based on a trade study, an implementation approach was chosen that extends a previously developed WMS hosting a Landsat 5 CONUS mosaic developed by JPL. The WMS Global Mosaic supports the NASA Geospatial Interoperability Office goal of providing an integrated digital representation of the Earth, widely accessible for humanity's critical decisions.

  20. Modern Data Center Services Supporting Science

    NASA Astrophysics Data System (ADS)

    Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.

    2011-12-01

    The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web application frameworks such as Groovy and Grails. Data discovery is being improved and simplified by leveraging ISO metadata standards along with ESRI Geoportal Server.

  1. The CUAHSI Water Data Center: Enabling Data Publication, Discovery and Re-use

    NASA Astrophysics Data System (ADS)

    Seul, M.; Pollak, J.

    2014-12-01

    The CUAHSI Water Data Center (WDC) supports a standards-based, services-oriented architecture for time-series data and provides a separate service to publish spatial data layers as shape files. Two new services that the WDC offers are a cloud-based server (Cloud HydroServer) for publishing data and a web-based client for data discovery. The Cloud HydroServer greatly simplifies data publication by eliminating the need for scientists to set up an SQL-server data base, a requirement that has proven to be a significant barrier, and ensures greater reliability and continuity of service. Uploaders have been developed to simplify the metadata documentation process. The web-based data client eliminates the need for installing a program to be used as a client and works across all computer operating systems. The services provided by the WDC is a foundation for big data use, re-use, and meta-analyses. Using data transmission standards enables far more effective data sharing and discovery; standards used by the WDC are part of a global set of standards that should enable scientists to access unprecedented amount of data to address larger-scale research questions than was previously possible. A central mission of the WDC is to ensure these services meet the needs of the water science community and are effective at advancing water science.

  2. Vocabularies in the VO

    NASA Astrophysics Data System (ADS)

    Gray, A. J. G.; Gray, N.; Ounis, I.

    2009-09-01

    There are multiple vocabularies and thesauri within astronomy, of which the best known are the 1993 IAU Thesaurus and the keyword list maintained by A&A, ApJ and MNRAS. The IVOA has agreed on a standard for publishing vocabularies, based on the W3C skos standard, to allow greater automated interaction with them, in particular on the Web. This allows links with the Semantic Web and looks forward to richer applications using the technologies of that domain. Vocabulary-aware applications can benefit from improvements in both precision and recall when searching for bibliographic or science data, and lightweight intelligent filtering for services such as VOEvent streams. In this paper we present two applications, the Vocabulary Explorer and its companion the Mapping Editor, which have been developed to support the use of vocabularies in the Virtual Observatory. These combine Semantic Web and Information Retrieval technologies to illustrate the way in which formal vocabularies might be used in a practical application, provide an online service which will allow astronomers to explore and relate existing vocabularies, and provide a service which translates free text user queries into vocabulary terms.

  3. Consistent data recording across a health system and web-enablement allow service quality comparisons: online data for commissioning dermatology services.

    PubMed

    Dmitrieva, Olga; Michalakidis, Georgios; Mason, Aaron; Jones, Simon; Chan, Tom; de Lusignan, Simon

    2012-01-01

    A new distributed model of health care management is being introduced in England. Family practitioners have new responsibilities for the management of health care budgets and commissioning of services. There are national datasets available about health care providers and the geographical areas they serve. These data could be better used to assist the family practitioner turned health service commissioners. Unfortunately these data are not in a form that is readily usable by these fledgling family commissioning groups. We therefore Web enabled all the national hospital dermatology treatment data in England combining it with locality data to provide a smart commissioning tool for local communities. We used open-source software including the Ruby on Rails Web framework and MySQL. The system has a Web front-end, which uses hypertext markup language cascading style sheets (HTML/CSS) and JavaScript to deliver and present data provided by the database. A combination of advanced caching and schema structures allows for faster data retrieval on every execution. The system provides an intuitive environment for data analysis and processing across a large health system dataset. Web-enablement has enabled data about in patients, day cases and outpatients to be readily grouped, viewed, and linked to other data. The combination of web-enablement, consistent data collection from all providers; readily available locality data; and a registration based primary system enables the creation of data, which can be used to commission dermatology services in small areas. Standardized datasets collected across large health enterprises when web enabled can readily benchmark local services and inform commissioning decisions.

  4. Weather forecasting with open source software

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Dörnbrack, Andreas

    2013-04-01

    To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.

  5. Web-based services for drug design and discovery.

    PubMed

    Frey, Jeremy G; Bird, Colin L

    2011-09-01

    Reviews of the development of drug discovery through the 20(th) century recognised the importance of chemistry and increasingly bioinformatics, but had relatively little to say about the importance of computing and networked computing in particular. However, the design and discovery of new drugs is arguably the most significant single application of bioinformatics and cheminformatics to have benefitted from the increases in the range and power of the computational techniques since the emergence of the World Wide Web, commonly now referred to as simply 'the Web'. Web services have enabled researchers to access shared resources and to deploy standardized calculations in their search for new drugs. This article first considers the fundamental principles of Web services and workflows, and then explores the facilities and resources that have evolved to meet the specific needs of chem- and bio-informatics. This strategy leads to a more detailed examination of the basic components that characterise molecules and the essential predictive techniques, followed by a discussion of the emerging networked services that transcend the basic provisions, and the growing trend towards embracing modern techniques, in particular the Semantic Web. In the opinion of the authors, the issues that require community action are: increasing the amount of chemical data available for open access; validating the data as provided; and developing more efficient links between the worlds of cheminformatics and bioinformatics. The goal is to create ever better drug design services.

  6. A Web Service Protocol Realizing Interoperable Internet of Things Tasking Capability

    PubMed Central

    Huang, Chih-Yuan; Wu, Cheng-Hung

    2016-01-01

    The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable devices using the Internet. By interconnecting everyday appliances, various monitoring, and physical mashup applications can be constructed to improve human’s daily life. In general, IoT devices provide two main capabilities: sensing and tasking capabilities. While the sensing capability is similar to the World-Wide Sensor Web, this research focuses on the tasking capability. However, currently, IoT devices created by different manufacturers follow different proprietary protocols and are locked in many closed ecosystems. This heterogeneity issue impedes the interconnection between IoT devices and damages the potential of the IoT. To address this issue, this research aims at proposing an interoperable solution called tasking capability description that allows users to control different IoT devices using a uniform web service interface. This paper demonstrates the contribution of the proposed solution by interconnecting different IoT devices for different applications. In addition, the proposed solution is integrated with the OGC SensorThings API standard, which is a Web service standard defined for the IoT sensing capability. Consequently, the Extended SensorThings API can realize both IoT sensing and tasking capabilities in an integrated and interoperable manner. PMID:27589759

  7. 77 FR 44475 - Final Definitions, Requirements, and Selection Criteria; Charter Schools Program (CSP)-Charter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... to the field of special education. Discussion: We agree that improving access to charter schools for..., standards, assessments, special education services and access to charter schools by students with.... Department of Education's Web site ( ed.gov ), data.ed.gov , the National Charter School Resource Center Web...

  8. Cloud-based Web Services for Near-Real-Time Web access to NPP Satellite Imagery and other Data

    NASA Astrophysics Data System (ADS)

    Evans, J. D.; Valente, E. G.

    2010-12-01

    We are building a scalable, cloud computing-based infrastructure for Web access to near-real-time data products synthesized from the U.S. National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP) and other geospatial and meteorological data. Given recent and ongoing changes in the the NPP and NPOESS programs (now Joint Polar Satellite System), the need for timely delivery of NPP data is urgent. We propose an alternative to a traditional, centralized ground segment, using distributed Direct Broadcast facilities linked to industry-standard Web services by a streamlined processing chain running in a scalable cloud computing environment. Our processing chain, currently implemented on Amazon.com's Elastic Compute Cloud (EC2), retrieves raw data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and synthesizes data products such as Sea-Surface Temperature, Vegetation Indices, etc. The cloud computing approach lets us grow and shrink computing resources to meet large and rapid fluctuations (twice daily) in both end-user demand and data availability from polar-orbiting sensors. Early prototypes have delivered various data products to end-users with latencies between 6 and 32 minutes. We have begun to replicate machine instances in the cloud, so as to reduce latency and maintain near-real time data access regardless of increased data input rates or user demand -- all at quite moderate monthly costs. Our service-based approach (in which users invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored and composite (e.g., false-color multiband) products on demand. To facilitate broad impact and adoption of our technology, we have emphasized open, industry-standard software interfaces and open source software. Through our work, we envision the widespread establishment of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sensors. A scalable architecture based on cloud computing ensures cost-effective, real-time processing and delivery of NPP and other data. Access via standard Web services maximizes its interoperability and usefulness.

  9. Current state of web accessibility of Malaysian ministries websites

    NASA Astrophysics Data System (ADS)

    Ahmi, Aidi; Mohamad, Rosli

    2016-08-01

    Despite the fact that Malaysian public institutions have progressed considerably on website and portal usage, web accessibility has been reported as one of the issues deserves special attention. Consistent with the government moves to promote an effective use of web and portal, it is essential for the government institutions to ensure compliance with established standards and guidelines on web accessibility. This paper evaluates accessibility of 25 Malaysian ministries websites using automated tools i.e. WAVE and Achecker. Both tools are designed to objectively evaluate web accessibility in conformance with Web Content Accessibility Guidelines 2.0 (WCAG 2.0) and United States Rehabilitation Act 1973 (Section 508). The findings reported somewhat low compliance to web accessibility standard amongst the ministries. Further enhancement is needed in the aspect of input elements such as label and checkbox to be associated with text as well as image-related elements. This findings could be used as a mechanism for webmasters to locate and rectify errors pertaining to the web accessibility and to ensure equal access of the web information and services to all citizen.

  10. Clinical Predictive Modeling Development and Deployment through FHIR Web Services.

    PubMed

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.

  11. Business Models of E-Government: Research on Dynamic E-Government Based on Web Services

    NASA Astrophysics Data System (ADS)

    Li, Yan; Yang, Jiumin

    Government transcends all sectors in a society. It provides not only the legal, political and economic infrastructure to support other sectors, but also exerts significant influence on the social factors that contribute to their development. With its maturity of technologies and management, e-government will eventually enter into the time of 'one-stop' services. Among others, the technology of Web services is the major contributor to this achievement. Web services provides a new way of standard-based software technology, letting programmers combine existing computer system in new ways over the Internet within one business or across many, and would thereby bring about profound and far-reaching impacts on e-government. This paper introduced the business modes of e-government, architecture of dynamic e-government and its key technologies. Finally future prospect of dynamic e-government was also briefly discussed.

  12. Clinical Predictive Modeling Development and Deployment through FHIR Web Services

    PubMed Central

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207

  13. Towards Semantic Web Services on Large, Multi-Dimensional Coverages

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2009-04-01

    Observed and simulated data in the Earth Sciences often come as coverages, the general term for space-time varying phenomena as set forth by standardization bodies like the Open GeoSpatial Consortium (OGC) and ISO. Among such data are 1-d time series, 2-D surface data, 3-D surface data time series as well as x/y/z geophysical and oceanographic data, and 4-D metocean simulation results. With increasing dimensionality the data sizes grow exponentially, up to Petabyte object sizes. Open standards for exploiting coverage archives over the Web are available to a varying extent. The OGC Web Coverage Service (WCS) standard defines basic extraction operations: spatio-temporal and band subsetting, scaling, reprojection, and data format encoding of the result - a simple interoperable interface for coverage access. More processing functionality is available with products like Matlab, Grid-type interfaces, and the OGC Web Processing Service (WPS). However, these often lack properties known as advantageous from databases: declarativeness (describe results rather than the algorithms), safe in evaluation (no request can keep a server busy infinitely), and optimizable (enable the server to rearrange the request so as to produce the same result faster). WPS defines a geo-enabled SOAP interface for remote procedure calls. This allows to webify any program, but does not allow for semantic interoperability: a function is identified only by its function name and parameters while the semantics is encoded in the (only human readable) title and abstract. Hence, another desirable property is missing, namely an explicit semantics which allows for machine-machine communication and reasoning a la Semantic Web. The OGC Web Coverage Processing Service (WCPS) language, which has been adopted as an international standard by OGC in December 2008, defines a flexible interface for the navigation, extraction, and ad-hoc analysis of large, multi-dimensional raster coverages. It is abstract in that it does not anticipate any particular protocol. One such protocol is given by the OGC Web Coverage Service (WCS) Processing Extension standard which ties WCPS into WCS. Another protocol which makes WCPS an OGC Web Processing Service (WPS) Profile is under preparation. Thereby, WCPS bridges WCS and WPS. The conceptual model of WCPS relies on the coverage model of WCS, which in turn is based on ISO 19123. WCS currently addresses raster-type coverages where a coverage is seen as a function mapping points from a spatio-temporal extent (its domain) into values of some cell type (its range). A retrievable coverage has an identifier associated, further the CRSs supported and, for each range field (aka band, channel), the interpolation methods applicable. The WCPS language offers access to one or several such coverages via a functional, side-effect free language. The following example, which derives the NDVI (Normalized Difference Vegetation Index) from given coverages C1, C2, and C3 within the regions identified by the binary mask R, illustrates the language concept: for c in ( C1, C2, C3 ), r in ( R ) return encode( (char) (c.nir - c.red) / (c.nir + c.red), H˜DF-EOS\\~ ) The result is a list of three HDF-EOS encoded images containing masked NDVI values. Note that the same request can operate on coverages of any dimensionality. The expressive power of WCPS includes statistics, image, and signal processing up to recursion, to maintain safe evaluation. As both syntax and semantics of any WCPS expression is well known the language is Semantic Web ready: clients can construct WCPS requests on the fly, servers can optimize such requests (this has been investigated extensively with the rasdaman raster database system) and automatically distribute them for processing in a WCPS-enabled computing cloud. The WCPS Reference Implementation is being finalized now that the standard is stable; it will be released in open source once ready. Among the future tasks is to extend WCPS to general meshes, in synchronization with the WCS standard. In this talk WCPS is presented in the context of OGC standardization. The author is co-chair of OGC's WCS Working Group (WG) and Coverages WG.

  14. Cloud computing geospatial application for water resources based on free and open source software and open standards - a prototype

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj

    2016-04-01

    Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.

  15. Service Oriented Architecture for Coast Guard Command and Control

    DTIC Science & Technology

    2007-03-01

    Operations BPEL4WS The Business Process Execution Language for Web Services BPMN Business Process Modeling Notation CASP Computer Aided Search Planning...Business Process Modeling Notation ( BPMN ) provides a standardized graphical notation for drawing business processes in a workflow. Software tools

  16. US EPA Nonattainment Areas and Designations

    EPA Pesticide Factsheets

    This web service contains the following state level layers:Ozone 8-hr (1997 standard), Ozone 8-hr (2008 standard), Lead (2008 standard), SO2 1-hr (2010 standard), PM2.5 24hr (2006 standard), PM2.5 Annual (1997 standard), PM2.5 Annual (2012 standard), and PM10 (1987 standard). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NonattainmentAreas/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each

  17. Technical Note: Harmonizing met-ocean model data via standard web services within small research groups

    USGS Publications Warehouse

    Signell, Richard; Camossi, E.

    2016-01-01

    Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.

  18. Technical note: Harmonising metocean model data via standard web services within small research groups

    NASA Astrophysics Data System (ADS)

    Signell, Richard P.; Camossi, Elena

    2016-05-01

    Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.

  19. From global action against malaria to local issues: state of the art and perspectives of web platforms dealing with malaria information.

    PubMed

    Briand, Dominique; Roux, Emmanuel; Desconnets, Jean Christophe; Gervet, Carmen; Barcellos, Christovam

    2018-03-21

    Since prehistory to present times and despite a rough combat against it, malaria remains a concern for human beings. While evolutions of science and technology through times allowed for some infectious diseases eradication in the 20th century, malaria resists. This review aims at assessing how Internet and web technologies are used in fighting malaria. Precisely, how do malaria fighting actors profit from these developments, how do they deal with ensuing phenomena, such as the increase of data volume, and did these technologies bring new opportunities for fighting malaria? Eleven web platforms linked to spatio-temporal malaria information are reviewed, focusing on data, metadata, web services and categories of users. Though the web platforms are highly heterogeneous the review reveals that the latest advances in web technologies are underused. Information are rarely updated dynamically, metadata catalogues are absent, web services are more and more used, but rarely standardized, and websites are mainly dedicated to scientific communities, essentially researchers. Improvement of systems interoperability, through standardization, is an opportunity to be seized in order to allow real time information exchange and online multisource data analysis. To facilitate multidisciplinary/multiscale studies, the web of linked data and the semantic web innovations can be used in order to formalize the different view points of actors involved in the combat against malaria. By doing so, new malaria fighting strategies could take place, to tackle the bottlenecks listed in the United Nation Millennium Development Goals reports, but also specific issues highlighted by the World Health Organization such as malaria elimination in international borders.

  20. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    NASA Astrophysics Data System (ADS)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is described. The project was created as a testbed for evaluating and prototyping key technologies for rapid acquisition and distribution of data products for decision support systems to monitor floods and enable flood risk assessment. The system provides access to real-time products on rainfall estimates and flood potential forecast derived from the Tropical Rainfall Measuring Mission (TRMM) mission with lag time of 6 h, alerts from the Global Disaster Alert and Coordination System (GDACS) with lag time of 4 h, and the Coupled Routing and Excess STorage (CREST) model to generate alerts. These are alerts are used to trigger satellite observations. With deployed SPS service for NASA's EO-1 satellite it is possible to automatically task sensor with re-image capability of less 8 h. Therefore, with enabled computational and storage services provided by Grid and cloud infrastructure it was possible to generate flood maps within 24-48 h after trigger was alerted. To enable interoperability between system components and services OGC-compliant standards are utilized. [1] Hluchy L., Kussul N., Shelestov A., Skakun S., Kravchenko O., Gripich Y., Kopp P., Lupian E., "The Data Fusion Grid Infrastructure: Project Objectives and Achievements," Computing and Informatics, 2010, vol. 29, no. 2, pp. 319-334.

  1. Low-energy, low-budget sensor web enablement of an amateur weather station

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Herrnkind, S.; Klump, J.

    2008-12-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a "proof of concept" we equipped an amateur weather station with low-budget, standard components to read the data from its base station and feed it into a sensor observation service using its standard web- service interface. We chose the weather station as an example because of its simple measured phenomena and its low data volume. As sensor observation service we chose the open source software package offered by the 52North consortium. Power consumption can be problematic when deploying a sensor platform in the field. Instead of a common PC we used a Network Storage Link Unit (NSLU2) with a Linux operating system, a configuration also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 2 to 5 Watt, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular setup is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple setup, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  2. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    NASA Astrophysics Data System (ADS)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and metamorphic character. For high resolution maps physical properties, bedding characteristics and weathering also need to be added. Furthermore, Geological data held by national geological surveys is generally described in national language of the country. The project has to deal with the multilingual issue, an important requirement of the INSPIRE directive. The project provides a list of harmonized vocabularies, a set of web services to deal with them, and a web site for helping the geoscientists while mapping the terms used into the national datasets into these vocabularies. The web services provided by each data provider, with the particular component that allows them to deliver the harmonised data model and to handle the multilingualism, are the first part of the architecture. The project also implements a web portal that provides several functionalities. Thanks to the common data model implemented by each web service delivering a part of the geological map, and using OGC SLD standards, the client offers the following option. A user can request for a sub-selection of the map, for instance searching on a particular attribute such as "age is quaternary", and display only the parts of the map according to the filter. Using the web services on the common vocabularies, the data displayed are translated. The project started September 2008 for two years, with 29 partners from 20 countries (20 partners are Geological Surveys). The budget is 3.25 M€, with a European Commission contribution of 2.6 M€. The paper will describe the technical solutions to implement OneGeology-Europe components: the profile of the common data model to exchange geological data, the web services to view and access geological data; and a geoportal to provide the user with a user-friendly way to discover, view and access geological data.

  3. ChEMBL web services: streamlining access to drug discovery data and utilities.

    PubMed

    Davies, Mark; Nowotka, Michał; Papadatos, George; Dedman, Nathan; Gaulton, Anna; Atkinson, Francis; Bellis, Louisa; Overington, John P

    2015-07-01

    ChEMBL is now a well-established resource in the fields of drug discovery and medicinal chemistry research. The ChEMBL database curates and stores standardized bioactivity, molecule, target and drug data extracted from multiple sources, including the primary medicinal chemistry literature. Programmatic access to ChEMBL data has been improved by a recent update to the ChEMBL web services (version 2.0.x, https://www.ebi.ac.uk/chembl/api/data/docs), which exposes significantly more data from the underlying database and introduces new functionality. To complement the data-focused services, a utility service (version 1.0.x, https://www.ebi.ac.uk/chembl/api/utils/docs), which provides RESTful access to commonly used cheminformatics methods, has also been concurrently developed. The ChEMBL web services can be used together or independently to build applications and data processing workflows relevant to drug discovery and chemical biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. A SOA-based approach to geographical data sharing

    NASA Astrophysics Data System (ADS)

    Li, Zonghua; Peng, Mingjun; Fan, Wei

    2009-10-01

    In the last few years, large volumes of spatial data have been available in different government departments in China, but these data are mainly used within these departments. With the e-government project initiated, spatial data sharing become more and more necessary. Currently, the Web has been used not only for document searching but also for the provision and use of services, known as Web services, which are published in a directory and may be automatically discovered by software agents. Particularly in the spatial domain, the possibility of accessing these large spatial datasets via Web services has motivated research into the new field of Spatial Data Infrastructure (SDI) implemented using service-oriented architecture. In this paper a Service-Oriented Architecture (SOA) based Geographical Information Systems (GIS) is proposed, and a prototype system is deployed based on Open Geospatial Consortium (OGC) standard in Wuhan, China, thus that all the departments authorized can access the spatial data within the government intranet, and also these spatial data can be easily integrated into kinds of applications.

  5. The Service Environment for Enhanced Knowledge and Research (SEEKR) Framework

    NASA Astrophysics Data System (ADS)

    King, T. A.; Walker, R. J.; Weigel, R. S.; Narock, T. W.; McGuire, R. E.; Candey, R. M.

    2011-12-01

    The Service Environment for Enhanced Knowledge and Research (SEEKR) Framework is a configurable service oriented framework to enable the discovery, access and analysis of data shared in a community. The SEEKR framework integrates many existing independent services through the use of web technologies and standard metadata. Services are hosted on systems by using an application server and are callable by using REpresentational State Transfer (REST) protocols. Messages and metadata are transferred with eXtensible Markup Language (XML) encoding which conform to a published XML schema. Space Physics Archive Search and Extract (SPASE) metadata is central to utilizing the services. Resources (data, documents, software, etc.) are described with SPASE and the associated Resource Identifier is used to access and exchange resources. The configurable options for the service can be set by using a web interface. Services are packaged as web application resource (WAR) files for direct deployment on application services such as Tomcat or Jetty. We discuss the composition of the SEEKR framework, how new services can be integrated and the steps necessary to deploying the framework. The SEEKR Framework emerged from NASA's Virtual Magnetospheric Observatory (VMO) and other systems and we present an overview of these systems from a SEEKR Framework perspective.

  6. Integrating the Web and continuous media through distributed objects

    NASA Astrophysics Data System (ADS)

    Labajo, Saul P.; Garcia, Narciso N.

    1998-09-01

    The Web has rapidly grown to become the standard for documents interchange on the Internet. At the same time the interest on transmitting continuous media flows on the Internet, and its associated applications like multimedia on demand, is also growing. Integrating both kinds of systems should allow building real hypermedia systems where all media objects can be linked from any other, taking into account temporal and spatial synchronization. A way to achieve this integration is using the Corba architecture. This is a standard for open distributed systems. There are also recent efforts to integrate Web and Corba systems. We use this architecture to build a service for distribution of data flows endowed with timing restrictions. We use to integrate it with the Web, by one side Java applets that can use the Corba architecture and are embedded on HTML pages. On the other side, we also benefit from the efforts to integrate Corba and the Web.

  7. 75 FR 32318 - Enhancing Airline Passenger Protections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... required to adopt, follow, and audit customer service plans and establishing minimum standards for the... customer service plans in their contracts of carriage; increasing the number of carriers that must respond... several rulemaking initiatives, that CeRI will use different Web technologies and approaches to enhance...

  8. cPath: open source software for collecting, storing, and querying biological pathways

    PubMed Central

    Cerami, Ethan G; Bader, Gary D; Gross, Benjamin E; Sander, Chris

    2006-01-01

    Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling. PMID:17101041

  9. Beyond accuracy: creating interoperable and scalable text-mining web services.

    PubMed

    Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2016-06-15

    The biomedical literature is a knowledge-rich resource and an important foundation for future research. With over 24 million articles in PubMed and an increasing growth rate, research in automated text processing is becoming increasingly important. We report here our recently developed web-based text mining services for biomedical concept recognition and normalization. Unlike most text-mining software tools, our web services integrate several state-of-the-art entity tagging systems (DNorm, GNormPlus, SR4GN, tmChem and tmVar) and offer a batch-processing mode able to process arbitrary text input (e.g. scholarly publications, patents and medical records) in multiple formats (e.g. BioC). We support multiple standards to make our service interoperable and allow simpler integration with other text-processing pipelines. To maximize scalability, we have preprocessed all PubMed articles, and use a computer cluster for processing large requests of arbitrary text. Our text-mining web service is freely available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/#curl : Zhiyong.Lu@nih.gov. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  10. Applying Sensor Web Technology to Marine Sensor Data

    NASA Astrophysics Data System (ADS)

    Jirka, Simon; del Rio, Joaquin; Mihai Toma, Daniel; Nüst, Daniel; Stasch, Christoph; Delory, Eric

    2015-04-01

    In this contribution we present two activities illustrating how Sensor Web technology helps to enable a flexible and interoperable sharing of marine observation data based on standards. An important foundation is the Sensor Web Architecture developed by the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management). This architecture relies on the Open Geospatial Consortium's (OGC) Sensor Web Enablement (SWE) framework. It is an exemplary solution for facilitating the interoperable exchange of marine observation data within and between (research) organisations. The architecture addresses a series of functional and non-functional requirements which are fulfilled through different types of OGC SWE components. The diverse functionalities offered by the NeXOS Sensor Web architecture are shown in the following overview: - Pull-based observation data download: This is achieved through the OGC Sensor Observation Service (SOS) 2.0 interface standard. - Push-based delivery of observation data to allow users the subscription to new measurements that are relevant for them: For this purpose there are currently several specification activities under evaluation (e.g. OGC Sensor Event Service, OGC Publish/Subscribe Standards Working Group). - (Web-based) visualisation of marine observation data: Implemented through SOS client applications. - Configuration and controlling of sensor devices: This is ensured through the OGC Sensor Planning Service 2.0 interface. - Bridging between sensors/data loggers and Sensor Web components: For this purpose several components such as the "Smart Electronic Interface for Sensor Interoperability" (SEISI) concept are developed; this is complemented by a more lightweight SOS extension (e.g. based on the W3C Efficient XML Interchange (EXI) format). To further advance this architecture, there is on-going work to develop dedicated profiles of selected OGC SWE specifications that provide stricter guidance how these standards shall be applied to marine data (e.g. SensorML 2.0 profiles stating which metadata elements are mandatory building upon the ESONET Sensor Registry developments, etc.). Within the NeXOS project the presented architecture is implemented as a set of open source components. These implementations can be re-used by all interested scientists and data providers needing tools for publishing or consuming oceanographic sensor data. In further projects such as the European project FixO3 (Fixed-point Open Ocean Observatories), these software development activities are complemented with additional efforts to provide guidance how Sensor Web technology can be applied in an efficient manner. This way, not only software components are made available but also documentation and information resources that help to understand which types of Sensor Web deployments are best suited to fulfil different types of user requirements.

  11. The Joy of Playing with Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Smith, A. T.; Xing, Z.; Armstrong, E. M.; Thompson, C. K.; Huang, T.

    2013-12-01

    The web is no longer just an after thought. It is no longer just a presentation layer filled with HTML, CSS, JavaScript, Frameworks, 3D, and more. It has become the medium of our communication. It is the database of all databases. It is the computing platform of all platforms. It has transformed the way we do science. Web service is the de facto method for communication between machines over the web. Representational State Transfer (REST) has standardized the way we architect services and their interfaces. In the Earth Science domain, we are familiar with tools and services such as Open-Source Project for Network Data Access Protocol (OPeNDAP), Thematic Realtime Environmental Distributed Data Services (THREDDS), and Live Access Server (LAS). We are also familiar with various data formats such as NetCDF3/4, HDF4/5, GRIB, TIFF, etc. One of the challenges for the Earth Science community is accessing information within these data. There are community-accepted readers that our users can download and install. However, the Application Programming Interface (API) between these readers is not standardized, which leads to non-portable applications. Webification (w10n) is an emerging technology, developed at the Jet Propulsion Laboratory, which exploits the hierarchical nature of a science data artifact to assign a URL to each element within the artifact. (e.g. a granule file). By embracing standards such as JSON, XML, and HTML5 and predictable URL, w10n provides a simple interface that enables tool-builders and researchers to develop portable tools/applications to interact with artifacts of various formats. The NASA Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is the designated data center for observational products relevant to the physical state of the ocean. Over the past year PO.DAAC has been evaluating w10n technology by webifying its archive holdings to provide simplified access to oceanographic science artifacts and as a service to enable future tools and services development. In this talk, we will focus on a w10n-based system called Distributed Oceanographic Webification Service (DOWS) being developed at PO.DAAC to provide a newer and simpler method for working with observational data artifacts. As a continued effort at PO.DAAC to provide better tools and services to visualize our data, the talk will discuss the latest in web-based data visualization tools/frameworks (such as d3.js, Three.js, Leaflet.js, and more) and techniques for working with webified oceanographic science data in both a 2D and 3D web approach.

  12. Decentralized Orchestration of Composite Ogc Web Processing Services in the Cloud

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Shea, G. Y. K.; Cao, J.

    2016-09-01

    Current web-based GIS or RS applications generally rely on centralized structure, which has inherent drawbacks such as single points of failure, network congestion, and data inconsistency, etc. The inherent disadvantages of traditional GISs need to be solved for new applications on Internet or Web. Decentralized orchestration offers performance improvements in terms of increased throughput and scalability and lower response time. This paper investigates build time and runtime issues related to decentralized orchestration of composite geospatial processing services based on OGC WPS standard specification. A case study of dust storm detection was demonstrated to evaluate the proposed method and the experimental results indicate that the method proposed in this study is effective for its ability to produce the high quality solution at a low cost of communications for geospatial processing service composition problem.

  13. Born semantic: linking data from sensors to users and balancing hardware limitations with data standards

    NASA Astrophysics Data System (ADS)

    Buck, Justin; Leadbetter, Adam

    2015-04-01

    New users for the growing volume of ocean data for purposes such as 'big data' data products and operational data assimilation/ingestion require data to be readily ingestible. This can be achieved via the application of World Wide Web Consortium (W3C) Linked Data and Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standards to data management. As part of several Horizons 2020 European projects (SenseOCEAN, ODIP, AtlantOS) the British Oceanographic Data Centre (BODC) are working on combining existing data centre architecture and SWE software such as Sensor Observation Services with a Linked Data front end. The standards to enable data delivery are proven and well documented1,2 There are practical difficulties when SWE standards are applied to real time data because of internal hardware bandwidth restrictions and a requirement to constrain data transmission costs. A pragmatic approach is proposed where sensor metadata and data output in OGC standards are implemented "shore-side" with sensors and instruments transmitting unique resolvable web linkages to persistent OGC SensorML records published at the BODC. References: 1. World Wide Web Consortium. (2013). Linked Data. Available: http://www.w3.org/standards/semanticweb/data. Last accessed 8th October 2014. 2. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available: http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014.

  14. Adopting Cloud Computing in the Pakistan Navy

    DTIC Science & Technology

    2015-06-01

    administrative aspect is required to operate optimally, provide synchronized delivery of cloud services, and integrate multi-provider cloud environment...AND ABBREVIATIONS ANSI American National Standards Institute AWS Amazon web services CIA Confidentiality Integrity Availability CIO Chief...also adopted cloud computing as an integral component of military operations conducted either locally or remotely. With the use of 2 cloud services

  15. Application of ESE Data and Tools to Air Quality Management: Services for Helping the Air Quality Community use ESE Data (SHAirED)

    NASA Technical Reports Server (NTRS)

    Falke, Stefan; Husar, Rudolf

    2011-01-01

    The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.

  16. The GeoDataPortal: A Standards-based Environmental Modeling Data Access and Manipulation Toolkit

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Kunicki, T.; Booth, N.; Suftin, I.; Zoerb, R.; Walker, J.

    2010-12-01

    Environmental modelers from fields of study such as climatology, hydrology, geology, and ecology rely on many data sources and processing methods that are common across these disciplines. Interest in inter-disciplinary, loosely coupled modeling and data sharing is increasing among scientists from the USGS, other agencies, and academia. For example, hydrologic modelers need downscaled climate change scenarios and land cover data summarized for the watersheds they are modeling. Subsequently, ecological modelers are interested in soil moisture information for a particular habitat type as predicted by the hydrologic modeler. The USGS Center for Integrated Data Analytics Geo Data Portal (GDP) project seeks to facilitate this loose model coupling data sharing through broadly applicable open-source web processing services. These services simplify and streamline the time consuming and resource intensive tasks that are barriers to inter-disciplinary collaboration. The GDP framework includes a catalog describing projects, models, data, processes, and how they relate. Using newly introduced data, or sources already known to the catalog, the GDP facilitates access to sub-sets and common derivatives of data in numerous formats on disparate web servers. The GDP performs many of the critical functions needed to summarize data sources into modeling units regardless of scale or volume. A user can specify their analysis zones or modeling units as an Open Geospatial Consortium (OGC) standard Web Feature Service (WFS). Utilities to cache Shapefiles and other common GIS input formats have been developed to aid in making the geometry available for processing via WFS. Dataset access in the GDP relies primarily on the Unidata NetCDF-Java library’s common data model. Data transfer relies on methods provided by Unidata’s Thematic Real-time Environmental Data Distribution System Data Server (TDS). TDS services of interest include the Open-source Project for a Network Data Access Protocol (OPeNDAP) standard for gridded time series, the OGC’s Web Coverage Service for high-density static gridded data, and Unidata’s CDM-remote for point time series. OGC WFS and Sensor Observation Service (SOS) are being explored as mechanisms to serve and access static or time series data attributed to vector geometry. A set of standardized XML-based output formats allows easy transformation into a wide variety of “model-ready” formats. Interested users will have the option of submitting custom transformations to the GDP or transforming the XML output as a post-process. The GDP project aims to support simple, rapid development of thin user interfaces (like web portals) to commonly needed environmental modeling-related data access and manipulation tools. Standalone, service-oriented components of the GDP framework provide the metadata cataloging, data subset access, and spatial-statistics calculations needed to support interdisciplinary environmental modeling.

  17. Distributing flight dynamics products via the World Wide Web

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Matusow, David

    1996-01-01

    The NASA Flight Dynamics Products Center (FDPC), which make available selected operations products via the World Wide Web, is reported on. The FDPC can be accessed from any host machine connected to the Internet. It is a multi-mission service which provides Internet users with unrestricted access to the following standard products: antenna contact predictions; ground tracks; orbit ephemerides; mean and osculating orbital elements; earth sensor sun and moon interference predictions; space flight tracking data network summaries; and Shuttle transport system predictions. Several scientific data bases are available through the service.

  18. ERDDAP - An Easier Way for Diverse Clients to Access Scientific Data From Diverse Sources

    NASA Astrophysics Data System (ADS)

    Mendelssohn, R.; Simons, R. A.

    2008-12-01

    ERDDAP is a new open-source, web-based service that aggregates data from other web services: OPeNDAP grid servers (THREDDS), OPeNDAP sequence servers (Dapper), NOS SOAP service, SOS (IOOS, OOStethys), microWFS, DiGIR (OBIS, BMDE). Regardless of the data source, ERDDAP makes all datasets available to clients via standard (and enhanced) DAP requests and makes some datasets accessible via WMS. A client's request also specifies the desired format for the results, e.g., .asc, .csv, .das, .dds, .dods, htmlTable, XHTML, .mat, netCDF, .kml, .png, or .pdf (formats more directly useful to clients). ERDDAP interprets a client request, requests the data from the data source (in the appropriate way), reformats the data source's response, and sends the result to the client. Thus ERDDAP makes data from diverse sources available to diverse clients via standardized interfaces. Clients don't have to install libraries to get data from ERDDAP because ERDDAP is RESTful and resource-oriented: a URL completely defines a data request and the URL can be used in any application that can send a URL and receive a file. This also makes it easy to use ERDDAP in mashups with other web services. ERDDAP could be extended to support other protocols. ERDDAP's hub and spoke architecture simplifies adding support for new types of data sources and new types of clients. ERDDAP includes metadata management support, catalog services, and services to make graphs and maps.

  19. Using Standardized Lexicons for Report Template Validation with LexMap, a Web-based Application.

    PubMed

    Hostetter, Jason; Wang, Kenneth; Siegel, Eliot; Durack, Jeremy; Morrison, James J

    2015-06-01

    An enormous amount of data exists in unstructured diagnostic and interventional radiology reports. Free text or non-standardized terminologies limit the ability to parse, extract, and analyze these report data elements. Medical lexicons and ontologies contain standardized terms for relevant concepts including disease entities, radiographic technique, and findings. The use of standardized terms offers the potential to improve reporting consistency and facilitate computer analysis. The purpose of this project was to implement an interface to aid in the creation of standards-compliant reporting templates for use in interventional radiology. Non-standardized procedure report text was analyzed and referenced to RadLex, SNOMED-CT, and LOINC. Using JavaScript, a web application was developed which determined whether exact terms or synonyms in reports existed within these three reference resources. The NCBO BioPortal Annotator web service was used to map terms, and output from this application was used to create an interactive annotated version of the original report. The application was successfully used to analyze and modify five distinct reports for the Society of Interventional Radiology's standardized reporting project.

  20. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  1. Automatically exposing OpenLifeData via SADI semantic Web Services.

    PubMed

    González, Alejandro Rodríguez; Callahan, Alison; Cruz-Toledo, José; Garcia, Adrian; Egaña Aranguren, Mikel; Dumontier, Michel; Wilkinson, Mark D

    2014-01-01

    Two distinct trends are emerging with respect to how data is shared, collected, and analyzed within the bioinformatics community. First, Linked Data, exposed as SPARQL endpoints, promises to make data easier to collect and integrate by moving towards the harmonization of data syntax, descriptive vocabularies, and identifiers, as well as providing a standardized mechanism for data access. Second, Web Services, often linked together into workflows, normalize data access and create transparent, reproducible scientific methodologies that can, in principle, be re-used and customized to suit new scientific questions. Constructing queries that traverse semantically-rich Linked Data requires substantial expertise, yet traditional RESTful or SOAP Web Services cannot adequately describe the content of a SPARQL endpoint. We propose that content-driven Semantic Web Services can enable facile discovery of Linked Data, independent of their location. We use a well-curated Linked Dataset - OpenLifeData - and utilize its descriptive metadata to automatically configure a series of more than 22,000 Semantic Web Services that expose all of its content via the SADI set of design principles. The OpenLifeData SADI services are discoverable via queries to the SHARE registry and easy to integrate into new or existing bioinformatics workflows and analytical pipelines. We demonstrate the utility of this system through comparison of Web Service-mediated data access with traditional SPARQL, and note that this approach not only simplifies data retrieval, but simultaneously provides protection against resource-intensive queries. We show, through a variety of different clients and examples of varying complexity, that data from the myriad OpenLifeData can be recovered without any need for prior-knowledge of the content or structure of the SPARQL endpoints. We also demonstrate that, via clients such as SHARE, the complexity of federated SPARQL queries is dramatically reduced.

  2. Assessing the quality of infertility resources on the World Wide Web: tools to guide clients through the maze of fact and fiction.

    PubMed

    Okamura, Kyoko; Bernstein, Judith; Fidler, Anne T

    2002-01-01

    The Internet has become a major source of health information for women, but information placed on the World Wide Web does not routinely undergo a peer review process before dissemination. In this study, we present an analysis of 197 infertility-related Web sites for quality and accountability, using JAMA's minimal core standards for responsible print. Only 2% of the web sites analyzed met all four recommended standards, and 50.8% failed to report any of the four. Commercial web sites were more likely to fail to meet minimum standards (71.2%) than those with educational (46.8%) or supportive (29.8%) elements. Web sites with educational and informational components were most common (70.6%), followed by commercial sites (52.8%) and sites that offered a forum for infertility support and activism (28.9%). Internet resources available to infertile patients are at best variable. The current state of infertility-related materials on the World Wide Web offers unprecedented opportunities to improve services to a growing number of e-health users. Because of variations in quality of site content, women's health clinicians must assume responsibility for a new role as information monitor. This study provides assessment tools clinicians can apply and share with clients.

  3. 7 CFR 29.6131 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.6131 Section 29.6131 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., or the web portion of tobacco leaves reduced to scrap by any process. Summary of Standard Grades ...

  4. 7 CFR 29.2441 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.2441 Section 29.2441 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... the web portions of tobacco leaves reduced to scrap by any process. summary of standard grades ...

  5. Turning Interoperability Operational with GST

    NASA Astrophysics Data System (ADS)

    Schaeben, Helmut; Gabriel, Paul; Gietzel, Jan; Le, Hai Ha

    2013-04-01

    GST - Geosciences in space and time is being developed and implemented as hub to facilitate the exchange of spatially and temporally indexed multi-dimensional geoscience data and corresponding geomodels amongst partners. It originates from TUBAF's contribution to the EU project "ProMine" and its perspective extensions are TUBAF's contribution to the actual EU project "GeoMol". As of today, it provides basic components of a geodata infrastructure as required to establish interoperability with respect to geosciences. Generally, interoperability means the facilitation of cross-border and cross-sector information exchange, taking into account legal, organisational, semantic and technical aspects, cf. Interoperability Solutions for European Public Administrations (ISA), cf. http://ec.europa.eu/isa/. Practical interoperability for partners of a joint geoscience project, say European Geological Surveys acting in a border region, means in particular provision of IT technology to exchange spatially and maybe additionally temporally indexed multi-dimensional geoscience data and corresponding models, i.e. the objects composing geomodels capturing the geometry, topology, and various geoscience contents. Geodata Infrastructure (GDI) and interoperability are objectives of several inititatives, e.g. INSPIRE, OneGeology-Europe, and most recently EGDI-SCOPE to name just the most prominent ones. Then there are quite a few markup languages (ML) related to geographical or geological information like GeoSciML, EarthResourceML, BoreholeML, ResqML for reservoir characterization, earth and reservoir models, and many others featuring geoscience information. Several Web Services are focused on geographical or geoscience information. The Open Geospatial Consortium (OGC) promotes specifications of a Web Feature Service (WFS), a Web Map Service (WMS), a Web Coverage Serverice (WCS), a Web 3D Service (W3DS), and many more. It will be clarified how GST is related to these initiatives, especially how it complies with existing or developing standards or quasi-standards and how it applies and extents services towards interoperability in the Earth sciences.

  6. GEMSS: grid-infrastructure for medical service provision.

    PubMed

    Benkner, S; Berti, G; Engelbrecht, G; Fingberg, J; Kohring, G; Middleton, S E; Schmidt, R

    2005-01-01

    The European GEMSS Project is concerned with the creation of medical Grid service prototypes and their evaluation in a secure service-oriented infrastructure for distributed on demand/supercomputing. Key aspects of the GEMSS Grid middleware include negotiable QoS support for time-critical service provision, flexible support for business models, and security at all levels in order to ensure privacy of patient data as well as compliance to EU law. The GEMSS Grid infrastructure is based on a service-oriented architecture and is being built on top of existing standard Grid and Web technologies. The GEMSS infrastructure offers a generic Grid service provision framework that hides the complexity of transforming existing applications into Grid services. For the development of client-side applications or portals, a pluggable component framework has been developed, providing developers with full control over business processes, service discovery, QoS negotiation, and workflow, while keeping their underlying implementation hidden from view. A first version of the GEMSS Grid infrastructure is operational and has been used for the set-up of a Grid test-bed deploying six medical Grid service prototypes including maxillo-facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simulation, cardiovascular simulation and advanced image reconstruction. The GEMSS Grid infrastructure is based on standard Web Services technology with an anticipated future transition path towards the OGSA standard proposed by the Global Grid Forum. GEMSS demonstrates that the Grid can be used to provide medical practitioners and researchers with access to advanced simulation and image processing services for improved preoperative planning and near real-time surgical support.

  7. Standardized acquisition, storing and provision of 3D enabled spatial data

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Maier, S.; Peinsipp-Byma, E.

    2017-05-01

    In the area of working with spatial data, in addition to the classic, two-dimensional geometrical data (maps, aerial images, etc.), the needs for three-dimensional spatial data (city models, digital elevation models, etc.) is increasing. Due to this increased demand the acquiring, storing and provision of 3D enabled spatial data in Geographic Information Systems (GIS) is more and more important. Existing proprietary solutions quickly reaches their limits during data exchange and data delivery to other systems. They generate a large workload, which will be very costly. However, it is noticeable that these expenses and costs can generally be significantly reduced using standards. The aim of this research is therefore to develop a concept in the field of three-dimensional spatial data that runs on existing standards whenever possible. In this research, the military image analysts are the preferred user group of the system. To achieve the objective of the widest possible use of standards in spatial 3D data, existing standards, proprietary interfaces and standards under discussion have been analyzed. Since the here used GIS of the Fraunhofer IOSB is already using and supporting OGC (Open Geospatial Consortium) and NATO-STANAG (NATO-Standardization Agreement) standards for the most part of it, a special attention for possible use was laid on their standards. The most promising standard is the OGC standard 3DPS (3D Portrayal Service) with its occurrences W3DS (Web 3D Service) and WVS (Web View Service). A demo system was created, using a standardized workflow from the data acquiring, storing and provision and showing the benefit of our approach.

  8. Symmetric Key Services Markup Language (SKSML)

    NASA Astrophysics Data System (ADS)

    Noor, Arshad

    Symmetric Key Services Markup Language (SKSML) is the eXtensible Markup Language (XML) being standardized by the OASIS Enterprise Key Management Infrastructure Technical Committee for requesting and receiving symmetric encryption cryptographic keys within a Symmetric Key Management System (SKMS). This protocol is designed to be used between clients and servers within an Enterprise Key Management Infrastructure (EKMI) to secure data, independent of the application and platform. Building on many security standards such as XML Signature, XML Encryption, Web Services Security and PKI, SKSML provides standards-based capability to allow any application to use symmetric encryption keys, while maintaining centralized control. This article describes the SKSML protocol and its capabilities.

  9. 48 CFR 311.7001 - Section 508 accessibility standards for HHS Web site content and communications materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Section 508 accessibility... Acquisition Regulations System HEALTH AND HUMAN SERVICES COMPETITION AND ACQUISITION PLANNING DESCRIBING... acquisition of communications products and services, including content in any format, such as reports...

  10. Telecommunications: Systems and Services. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Abramson, Gertrude, Ed.

    This document contains the following papers on telecommunications systems and services from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Using the Web To Provide Parent Progress Reports on Standards for All Students: Developing the System" (Kevin M. Anderson and Cindy L. Anderson); (2) "Computer and…

  11. [Internet presence of psychiatrists in private practice. Status, chances and legal framework].

    PubMed

    Kuhnigk, O; Ramuschkat, M; Schreiner, J; Schäfer, I; Reimer, J

    2013-05-01

    Physicians increasingly use home pages to call attention to their practice. Based on predefined criteria, this study examines the web presence of psychiatrists and medical psychotherapists in private practice. All registered psychiatrists and psychotherapists of six northern German states were examined in May 2010 with regards to existence and quality of their web presence. Homepages were evaluated by means of a standardized criteria catalogue with 42 items. Statistical analysis comprised descriptive and analytic approaches (ANOVA, linear models). The analysis included 956 physicians, 168 of whom (17.6%) had a web presence. More physicians in city states had a web presence as compared to those in states with larger territories. However, there was no difference between eastern and western states. Male as compared to female physicians more often possessed an Internet presence. The average score was 19 (± 5.2) out of 42 items, with practices with more than one physician scoring higher than single physician practices. Websites often contained general information about the practice, medical services and diseases, and rarely online services, professional information about the physician, access for disabled, emergency services and holiday substitution. Legal requirements were not sufficiently considered by more than half of the physicians. Only a smaller number of psychiatrists and psychotherapists in private practice make use of their own web presence. The quality of information varies. The criteria catalogue used in this study may offer a guideline for development of a good quality Internet presence. A consensus Internet guideline with participation of physician chambers and medical societies would be of use to establish quality standards.

  12. EarthServer: Visualisation and use of uncertainty as a data exploration tool

    NASA Astrophysics Data System (ADS)

    Walker, Peter; Clements, Oliver; Grant, Mike

    2013-04-01

    The Ocean Science/Earth Observation community generates huge datasets from satellite observation. Until recently it has been difficult to obtain matching uncertainty information for these datasets and to apply this to their processing. In order to make use of uncertainty information when analysing "Big Data" we need both the uncertainty itself (attached to the underlying data) and a means of working with the combined product without requiring the entire dataset to be downloaded. The European Commission FP7 project EarthServer (http://earthserver.eu) is addressing the problem of accessing and ad-hoc analysis of extreme-size Earth Science data using cutting-edge Array Database technology. The core software (Rasdaman) and web services wrapper (Petascope) allow huge datasets to be accessed using Open Geospatial Consortium (OGC) standard interfaces including the well established standards, Web Coverage Service (WCS) and Web Map Service (WMS) as well as the emerging standard, Web Coverage Processing Service (WCPS). The WCPS standard allows the running of ad-hoc queries on any of the data stored within Rasdaman, creating an infrastructure where users are not restricted by bandwidth when manipulating or querying huge datasets. The ESA Ocean Colour - Climate Change Initiative (OC-CCI) project (http://www.esa-oceancolour-cci.org/), is producing high-resolution, global ocean colour datasets over the full time period (1998-2012) where high quality observations were available. This climate data record includes per-pixel uncertainty data for each variable, based on an analytic method that classifies how much and which types of water are present in a pixel, and assigns uncertainty based on robust comparisons to global in-situ validation datasets. These uncertainty values take two forms, Root Mean Square (RMS) and Bias uncertainty, respectively representing the expected variability and expected offset error. By combining the data produced through the OC-CCI project with the software from the EarthServer project we can produce a novel data offering that allows the use of traditional exploration and access mechanisms such as WMS and WCS. However the real benefits can be seen when utilising WCPS to explore the data . We will show two major benefits to this infrastructure. Firstly we will show that the visualisation of the combined chlorophyll and uncertainty datasets through a web based GIS portal gives users the ability to instantaneously assess the quality of the data they are exploring using traditional web based plotting techniques as well as through novel web based 3 dimensional visualisation. Secondly we will showcase the benefits available when combining these data with the WCPS standard. The uncertainty data can be utilised in queries using the standard WCPS query language. This allows selection of data either for download or use within the query, based on the respective uncertainty values as well as the possibility of incorporating both the chlorophyll data and uncertainty data into complex queries to produce additional novel data products. By filtering with uncertainty at the data source rather than the client we can minimise traffic over the network allowing huge datasets to be worked on with a minimal time penalty.

  13. Sensor web enablement in a network of low-energy, low-budget amateur weather stations

    NASA Astrophysics Data System (ADS)

    Herrnkind, S.; Klump, J.; Schmidt, G.

    2009-04-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a „proof of concept" we equipped amateur weather stations with low-budget, standard components to read the data from its base station and feed the weather observation data into the sensor observation service using its standard web-service interface. We chose amateur weather station as an example because of the simplicity of measured phenomena and low data volume. As sensor observation service we chose the open source software package offered by the 52°North consortium. Furthermore, we investigated registry services for sensors and measured phenomena. When deploying a sensor platform in the field, power consumption can be an issue. Instead of common PCs we used Network Storage Link Units (NSLU2) with a Linux operating system, also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 1W, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular set-up is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple set-up, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  14. AMBIT RESTful web services: an implementation of the OpenTox application programming interface.

    PubMed

    Jeliazkova, Nina; Jeliazkov, Vedrin

    2011-05-16

    The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF) representation, or initiate the associated calculations.The AMBIT web services package has been developed as an extension of AMBIT modules, adding the ability to create (Quantitative) Structure-Activity Relationship (QSAR) models and providing an OpenTox API compliant interface. The representation of data and processing resources in W3C Resource Description Framework facilitates integrating the resources as Linked Data. By uploading datasets with chemical structures and arbitrary set of properties, they become automatically available online in several formats. The services provide unified interfaces to several descriptor calculation, machine learning and similarity searching algorithms, as well as to applicability domain and toxicity prediction models. All Toxtree modules for predicting the toxicological hazard of chemical compounds are also integrated within this package. The complexity and diversity of the processing is reduced to the simple paradigm "read data from a web address, perform processing, write to a web address". The online service allows to easily run predictions, without installing any software, as well to share online datasets and models. The downloadable web application allows researchers to setup an arbitrary number of service instances for specific purposes and at suitable locations. These services could be used as a distributed framework for processing of resource-intensive tasks and data sharing or in a fully independent way, according to the specific needs. The advantage of exposing the functionality via the OpenTox API is seamless interoperability, not only within a single web application, but also in a network of distributed services. Last, but not least, the services provide a basis for building web mashups, end user applications with friendly GUIs, as well as embedding the functionalities in existing workflow systems.

  15. AMBIT RESTful web services: an implementation of the OpenTox application programming interface

    PubMed Central

    2011-01-01

    The AMBIT web services package is one of the several existing independent implementations of the OpenTox Application Programming Interface and is built according to the principles of the Representational State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every compound, data set or predictive method has a unique web address, used to retrieve its Resource Description Framework (RDF) representation, or initiate the associated calculations. The AMBIT web services package has been developed as an extension of AMBIT modules, adding the ability to create (Quantitative) Structure-Activity Relationship (QSAR) models and providing an OpenTox API compliant interface. The representation of data and processing resources in W3C Resource Description Framework facilitates integrating the resources as Linked Data. By uploading datasets with chemical structures and arbitrary set of properties, they become automatically available online in several formats. The services provide unified interfaces to several descriptor calculation, machine learning and similarity searching algorithms, as well as to applicability domain and toxicity prediction models. All Toxtree modules for predicting the toxicological hazard of chemical compounds are also integrated within this package. The complexity and diversity of the processing is reduced to the simple paradigm "read data from a web address, perform processing, write to a web address". The online service allows to easily run predictions, without installing any software, as well to share online datasets and models. The downloadable web application allows researchers to setup an arbitrary number of service instances for specific purposes and at suitable locations. These services could be used as a distributed framework for processing of resource-intensive tasks and data sharing or in a fully independent way, according to the specific needs. The advantage of exposing the functionality via the OpenTox API is seamless interoperability, not only within a single web application, but also in a network of distributed services. Last, but not least, the services provide a basis for building web mashups, end user applications with friendly GUIs, as well as embedding the functionalities in existing workflow systems. PMID:21575202

  16. Research on sudden environmental pollution public service platform construction based on WebGIS

    NASA Astrophysics Data System (ADS)

    Bi, T. P.; Gao, D. Y.; Zhong, X. Y.

    2016-08-01

    In order to actualize the social sharing and service of the emergency-response information for sudden pollution accidents, the public can share the risk source information service, dangerous goods control technology service and so on, The SQL Server and ArcSDE software are used to establish a spatial database to restore all kinds of information including risk sources, hazardous chemicals and handling methods in case of accidents. Combined with Chinese atmospheric environmental assessment standards, the SCREEN3 atmospheric dispersion model and one-dimensional liquid diffusion model are established to realize the query of related information and the display of the diffusion effect under B/S structure. Based on the WebGIS technology, C#.Net language is used to develop the sudden environmental pollution public service platform. As a result, the public service platform can make risk assessments and provide the best emergency processing services.

  17. GeoNetwork powered GI-cat: a geoportal hybrid solution

    NASA Astrophysics Data System (ADS)

    Baldini, Alessio; Boldrini, Enrico; Santoro, Mattia; Mazzetti, Paolo

    2010-05-01

    To the aim of setting up a Spatial Data Infrastructures (SDI) the creation of a system for the metadata management and discovery plays a fundamental role. An effective solution is the use of a geoportal (e.g. FAO/ESA geoportal), that has the important benefit of being accessible from a web browser. With this work we present a solution based integrating two of the available frameworks: GeoNetwork and GI-cat. GeoNetwork is an opensource software designed to improve accessibility of a wide variety of data together with the associated ancillary information (metadata), at different scale and from multidisciplinary sources; data are organized and documented in a standard and consistent way. GeoNetwork implements both the Portal and Catalog components of a Spatial Data Infrastructure (SDI) defined in the OGC Reference Architecture. It provides tools for managing and publishing metadata on spatial data and related services. GeoNetwork allows harvesting of various types of web data sources e.g. OGC Web Services (e.g. CSW, WCS, WMS). GI-cat is a distributed catalog based on a service-oriented framework of modular components and can be customized and tailored to support different deployment scenarios. It can federate a multiplicity of catalogs services, as well as inventory and access services in order to discover and access heterogeneous ESS resources. The federated resources are exposed by GI-cat through several standard catalog interfaces (e.g. OGC CSW AP ISO, OpenSearch, etc.) and by the GI-cat extended interface. Specific components implement mediation services for interfacing heterogeneous service providers, each of which exposes a specific standard specification; such components are called Accessors. These mediating components solve providers data modelmultiplicity by mapping them onto the GI-cat internal data model which implements the ISO 19115 Core profile. Accessors also implement the query protocol mapping; first they translate the query requests expressed according to the interface protocols exposed by GI-cat into the multiple query dialects spoken by the resource service providers. Currently, a number of well-accepted catalog and inventory services are supported, including several OGC Web Services, THREDDS Data Server, SeaDataNet Common Data Index, GBIF and OpenSearch engines. A GeoNetwork powered GI-cat has been developed in order to exploit the best of the two frameworks. The new system uses a modified version of GeoNetwork web interface in order to add the capability of querying also the specified GI-cat catalog and not only the GeoNetwork internal database. The resulting system consists in a geoportal in which GI-cat plays the role of the search engine. This new system allows to distribute the query on the different types of data sources linked to a GI-cat. The metadata results of the query are then visualized by the Geonetwork web interface. This configuration was experimented in the framework of GIIDA, a project of the Italian National Research Council (CNR) focused on data accessibility and interoperability. A second advantage of this solution is achieved setting up a GeoNetwork catalog amongst the accessors of the GI-cat instance. Such a configuration will allow in turn GI-cat to run the query against the internal GeoNetwork database. This allows to have both the harvesting and the metadata editor functionalities provided by GeoNetwork and the distributed search functionality of GI-cat available in a consistent way through the same web interface.

  18. Restful Implementation of Catalogue Service for Geospatial Data Provenance

    NASA Astrophysics Data System (ADS)

    Jiang, L. C.; Yue, P.; Lu, X. C.

    2013-10-01

    Provenance, also known as lineage, is important in understanding the derivation history of data products. Geospatial data provenance helps data consumers to evaluate the quality and reliability of geospatial data. In a service-oriented environment, where data are often consumed or produced by distributed services, provenance could be managed by following the same service-oriented paradigm. The Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW) is used for the registration and query of geospatial data provenance by extending ebXML Registry Information Model (ebRIM). Recent advance of the REpresentational State Transfer (REST) paradigm has shown great promise for the easy integration of distributed resources. RESTful Web Service aims to provide a standard way for Web clients to communicate with servers based on REST principles. The existing approach for provenance catalogue service could be improved by adopting the RESTful design. This paper presents the design and implementation of a catalogue service for geospatial data provenance following RESTful architecture style. A middleware named REST Converter is added on the top of the legacy catalogue service to support a RESTful style interface. The REST Converter is composed of a resource request dispatcher and six resource handlers. A prototype service is developed to demonstrate the applicability of the approach.

  19. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  20. User Interface Composition with COTS-UI and Trading Approaches: Application for Web-Based Environmental Information Systems

    NASA Astrophysics Data System (ADS)

    Criado, Javier; Padilla, Nicolás; Iribarne, Luis; Asensio, Jose-Andrés

    Due to the globalization of the information and knowledge society on the Internet, modern Web-based Information Systems (WIS) must be flexible and prepared to be easily accessible and manageable in real-time. In recent times it has received a special interest the globalization of information through a common vocabulary (i.e., ontologies), and the standardized way in which information is retrieved on the Web (i.e., powerful search engines, and intelligent software agents). These same principles of globalization and standardization should also be valid for the user interfaces of the WIS, but they are built on traditional development paradigms. In this paper we present an approach to reduce the gap of globalization/standardization in the generation of WIS user interfaces by using a real-time "bottom-up" composition perspective with COTS-interface components (type interface widgets) and trading services.

  1. Borderless Geospatial Web (bolegweb)

    NASA Astrophysics Data System (ADS)

    Cetl, V.; Kliment, T.; Kliment, M.

    2016-06-01

    The effective access and use of geospatial information (GI) resources acquires a critical value of importance in modern knowledge based society. Standard web services defined by Open Geospatial Consortium (OGC) are frequently used within the implementations of spatial data infrastructures (SDIs) to facilitate discovery and use of geospatial data. This data is stored in databases located in a layer, called the invisible web, thus are ignored by search engines. SDI uses a catalogue (discovery) service for the web as a gateway to the GI world through the metadata defined by ISO standards, which are structurally diverse to OGC metadata. Therefore, a crosswalk needs to be implemented to bridge the OGC resources discovered on mainstream web with those documented by metadata in an SDI to enrich its information extent. A public global wide and user friendly portal of OGC resources available on the web ensures and enhances the use of GI within a multidisciplinary context and bridges the geospatial web from the end-user perspective, thus opens its borders to everybody. Project "Crosswalking the layers of geospatial information resources to enable a borderless geospatial web" with the acronym BOLEGWEB is ongoing as a postdoctoral research project at the Faculty of Geodesy, University of Zagreb in Croatia (http://bolegweb.geof.unizg.hr/). The research leading to the results of the project has received funding from the European Union Seventh Framework Programme (FP7 2007-2013) under Marie Curie FP7-PEOPLE-2011-COFUND. The project started in the November 2014 and is planned to be finished by the end of 2016. This paper provides an overview of the project, research questions and methodology, so far achieved results and future steps.

  2. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  3. MOWServ: a web client for integration of bioinformatic resources

    PubMed Central

    Ramírez, Sergio; Muñoz-Mérida, Antonio; Karlsson, Johan; García, Maximiliano; Pérez-Pulido, Antonio J.; Claros, M. Gonzalo; Trelles, Oswaldo

    2010-01-01

    The productivity of any scientist is affected by cumbersome, tedious and time-consuming tasks that try to make the heterogeneous web services compatible so that they can be useful in their research. MOWServ, the bioinformatic platform offered by the Spanish National Institute of Bioinformatics, was released to provide integrated access to databases and analytical tools. Since its release, the number of available services has grown dramatically, and it has become one of the main contributors of registered services in the EMBRACE Biocatalogue. The ontology that enables most of the web-service compatibility has been curated, improved and extended. The service discovery has been greatly enhanced by Magallanes software and biodataSF. User data are securely stored on the main server by an authentication protocol that enables the monitoring of current or already-finished user’s tasks, as well as the pipelining of successive data processing services. The BioMoby standard has been greatly extended with the new features included in the MOWServ, such as management of additional information (metadata such as extended descriptions, keywords and datafile examples), a qualified registry, error handling, asynchronous services and service replication. All of them have increased the MOWServ service quality, usability and robustness. MOWServ is available at http://www.inab.org/MOWServ/ and has a mirror at http://www.bitlab-es.com/MOWServ/. PMID:20525794

  4. MOWServ: a web client for integration of bioinformatic resources.

    PubMed

    Ramírez, Sergio; Muñoz-Mérida, Antonio; Karlsson, Johan; García, Maximiliano; Pérez-Pulido, Antonio J; Claros, M Gonzalo; Trelles, Oswaldo

    2010-07-01

    The productivity of any scientist is affected by cumbersome, tedious and time-consuming tasks that try to make the heterogeneous web services compatible so that they can be useful in their research. MOWServ, the bioinformatic platform offered by the Spanish National Institute of Bioinformatics, was released to provide integrated access to databases and analytical tools. Since its release, the number of available services has grown dramatically, and it has become one of the main contributors of registered services in the EMBRACE Biocatalogue. The ontology that enables most of the web-service compatibility has been curated, improved and extended. The service discovery has been greatly enhanced by Magallanes software and biodataSF. User data are securely stored on the main server by an authentication protocol that enables the monitoring of current or already-finished user's tasks, as well as the pipelining of successive data processing services. The BioMoby standard has been greatly extended with the new features included in the MOWServ, such as management of additional information (metadata such as extended descriptions, keywords and datafile examples), a qualified registry, error handling, asynchronous services and service replication. All of them have increased the MOWServ service quality, usability and robustness. MOWServ is available at http://www.inab.org/MOWServ/ and has a mirror at http://www.bitlab-es.com/MOWServ/.

  5. Pollux: Enhancing the Quality of Service of the Global Information Grid (GIG)

    DTIC Science & Technology

    2009-06-01

    and throughput of standard-based and/or COTS-based QoS-enabled pub/sub technologies, including DDS, JMS, Web Services, and CORBA. 2. The DDS QoS...of ser- vice pICKER (QUICKER) model-driven engineering ( MDE ) toolchain shown in Figure 8. QUICKER extends the Platform-Independent Component Modeling

  6. Psychometric Properties of Scores from the Web-based LibQUAL+ Study of Perceptions of Library Service Quality.

    ERIC Educational Resources Information Center

    Cook, Colleen; Thompson, Bruce

    2001-01-01

    Investigated the psychometric integrity of scores from the LibQUAL+ evaluation of perceived library service quality conducted by ARL (Association of Research Libraries). Examines score structure, score reliability, score correlation and concurrent validity coefficients, scale means, and scale standardized norms, and considers the potential of the…

  7. A service-based framework for pharmacogenomics data integration

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Bai, Xiaoying; Li, Jing; Ding, Cong

    2010-08-01

    Data are central to scientific research and practices. The advance of experiment methods and information retrieval technologies leads to explosive growth of scientific data and databases. However, due to the heterogeneous problems in data formats, structures and semantics, it is hard to integrate the diversified data that grow explosively and analyse them comprehensively. As more and more public databases are accessible through standard protocols like programmable interfaces and Web portals, Web-based data integration becomes a major trend to manage and synthesise data that are stored in distributed locations. Mashup, a Web 2.0 technique, presents a new way to compose content and software from multiple resources. The paper proposes a layered framework for integrating pharmacogenomics data in a service-oriented approach using the mashup technology. The framework separates the integration concerns from three perspectives including data, process and Web-based user interface. Each layer encapsulates the heterogeneous issues of one aspect. To facilitate the mapping and convergence of data, the ontology mechanism is introduced to provide consistent conceptual models across different databases and experiment platforms. To support user-interactive and iterative service orchestration, a context model is defined to capture information of users, tasks and services, which can be used for service selection and recommendation during a dynamic service composition process. A prototype system is implemented and cases studies are presented to illustrate the promising capabilities of the proposed approach.

  8. Sharing on Web 3d Models of Ancient Theatres. a Methodological Workflow

    NASA Astrophysics Data System (ADS)

    Scianna, A.; La Guardia, M.; Scaduto, M. L.

    2016-06-01

    In the last few years, the need to share on the Web the knowledge of Cultural Heritage (CH) through navigable 3D models has increased. This need requires the availability of Web-based virtual reality systems and 3D WEBGIS. In order to make the information available to all stakeholders, these instruments should be powerful and at the same time very user-friendly. However, research and experiments carried out so far show that a standardized methodology doesn't exist. All this is due both to complexity and dimensions of geometric models to be published, on the one hand, and to excessive costs of hardware and software tools, on the other. In light of this background, the paper describes a methodological approach for creating 3D models of CH, freely exportable on the Web, based on HTML5 and free and open source software. HTML5, supporting the WebGL standard, allows the exploration of 3D spatial models using most used Web browsers like Chrome, Firefox, Safari, Internet Explorer. The methodological workflow here described has been tested for the construction of a multimedia geo-spatial platform developed for three-dimensional exploration and documentation of the ancient theatres of Segesta and of Carthage, and the surrounding landscapes. The experimental application has allowed us to explore the potential and limitations of sharing on the Web of 3D CH models based on WebGL standard. Sharing capabilities could be extended defining suitable geospatial Web-services based on capabilities of HTML5 and WebGL technology.

  9. GENESIS SciFlo: Choreographing Interoperable Web Services on the Grid using a Semantically-Enabled Dataflow Execution Environment

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Xing, Z.

    2007-12-01

    The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* & Globus Alliance toolkits), and enables scientists to do multi- instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. SciFlo also publishes its own SOAP services for space/time query and subsetting of Earth Science datasets, and automated access to large datasets via lists of (FTP, HTTP, or DAP) URLs which point to on-line HDF or netCDF files. Typical distributed workflows obtain datasets by calling standard WMS/WCS servers or discovering and fetching data granules from ftp sites; invoke remote analysis operators available as SOAP services (interface described by a WSDL document); and merge results into binary containers (netCDF or HDF files) for further analysis using local executable operators. Naming conventions (HDFEOS and CF-1.0 for netCDF) are exploited to automatically understand and read on-line datasets. More interoperable conventions, and broader adoption of existing converntions, are vital if we are to "scale up" automated choreography of Web Services beyond toy applications. Recently, the ESIP Federation sponsored a collaborative activity in which several ESIP members developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, the benefits of doing collaborative science analysis at the "touch of a button" once services are connected, and further collaborations that are being pursued.

  10. OpenSearch technology for geospatial resources discovery

    NASA Astrophysics Data System (ADS)

    Papeschi, Fabrizio; Enrico, Boldrini; Mazzetti, Paolo

    2010-05-01

    In 2005, the term Web 2.0 has been coined by Tim O'Reilly to describe a quickly growing set of Web-based applications that share a common philosophy of "mutually maximizing collective intelligence and added value for each participant by formalized and dynamic information sharing". Around this same period, OpenSearch a new Web 2.0 technology, was developed. More properly, OpenSearch is a collection of technologies that allow publishing of search results in a format suitable for syndication and aggregation. It is a way for websites and search engines to publish search results in a standard and accessible format. Due to its strong impact on the way the Web is perceived by users and also due its relevance for businesses, Web 2.0 has attracted the attention of both mass media and the scientific community. This explosive growth in popularity of Web 2.0 technologies like OpenSearch, and practical applications of Service Oriented Architecture (SOA) resulted in an increased interest in similarities, convergence, and a potential synergy of these two concepts. SOA is considered as the philosophy of encapsulating application logic in services with a uniformly defined interface and making these publicly available via discovery mechanisms. Service consumers may then retrieve these services, compose and use them according to their current needs. A great degree of similarity between SOA and Web 2.0 may be leading to a convergence between the two paradigms. They also expose divergent elements, such as the Web 2.0 support to the human interaction in opposition to the typical SOA machine-to-machine interaction. According to these considerations, the Geospatial Information (GI) domain, is also moving first steps towards a new approach of data publishing and discovering, in particular taking advantage of the OpenSearch technology. A specific GI niche is represented by the OGC Catalog Service for Web (CSW) that is part of the OGC Web Services (OWS) specifications suite, which provides a set of services for discovery, access, and processing of geospatial resources in a SOA framework. GI-cat is a distributed CSW framework implementation developed by the ESSI Lab of the Italian National Research Council (CNR-IMAA) and the University of Florence. It provides brokering and mediation functionalities towards heterogeneous resources and inventories, exposing several standard interfaces for query distribution. This work focuses on a new GI-cat interface which allows the catalog to be queried according to the OpenSearch syntax specification, thus filling the gap between the SOA architectural design of the CSW and the Web 2.0. At the moment, there is no OGC standard specification about this topic, but an official change request has been proposed in order to enable the OGC catalogues to support OpenSearch queries. In this change request, an OpenSearch extension is proposed providing a standard mechanism to query a resource based on temporal and geographic extents. Two new catalog operations are also proposed, in order to publish a suitable OpenSearch interface. This extended interface is implemented by the modular GI-cat architecture adding a new profiling module called "OpenSearch profiler". Since GI-cat also acts as a clearinghouse catalog, another component called "OpenSearch accessor" is added in order to access OpenSearch compliant services. An important role in the GI-cat extension, is played by the adopted mapping strategy. Two different kind of mappings are required: query, and response elements mapping. Query mapping is provided in order to fit the simple OpenSearch query syntax to the complex CSW query expressed by the OGC Filter syntax. GI-cat internal data model is based on the ISO-19115 profile, that is more complex than the simple XML syndication formats, such as RSS 2.0 and Atom 1.0, suggested by OpenSearch. Once response elements are available, in order to be presented, they need to be translated from the GI-cat internal data model, to the above mentioned syndication formats; the mapping processing, is bidirectional. When GI-cat is used to access OpenSearch compliant services, the CSW query must be mapped to the OpenSearch query, and the response elements, must be translated according to the GI-cat internal data model. As results of such extensions, GI-cat provides a user friendly facade to the complex CSW interface, thus enabling it to be queried, for example, using a browser toolbar.

  11. XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services

    PubMed Central

    Wagener, Johannes; Spjuth, Ola; Willighagen, Egon L; Wikberg, Jarl ES

    2009-01-01

    Background Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. Results We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. Conclusion XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics. PMID:19732427

  12. XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services.

    PubMed

    Wagener, Johannes; Spjuth, Ola; Willighagen, Egon L; Wikberg, Jarl E S

    2009-09-04

    Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics.

  13. A Formal Semantics for the WS-BPEL Recovery Framework

    NASA Astrophysics Data System (ADS)

    Dragoni, Nicola; Mazzara, Manuel

    While current studies on Web services composition are mostly focused - from the technical viewpoint - on standards and protocols, this work investigates the adoption of formal methods for dependable composition. The Web Services Business Process Execution Language (WS-BPEL) - an OASIS standard widely adopted both in academic and industrial environments - is considered as a touchstone for concrete composition languages and an analysis of its ambiguous Recovery Framework specification is offered. In order to show the use of formal methods, a precise and unambiguous description of its (simplified) mechanisms is provided by means of a conservative extension of the π-calculus. This has to be intended as a well known case study providing methodological arguments for the adoption of formal methods in software specification. The aspect of verification is not the main topic of the paper but some hints are given.

  14. Programmatic access to data and information at the IRIS DMC via web services

    NASA Astrophysics Data System (ADS)

    Weertman, B. R.; Trabant, C.; Karstens, R.; Suleiman, Y. Y.; Ahern, T. K.; Casey, R.; Benson, R. B.

    2011-12-01

    The IRIS Data Management Center (DMC) has developed a suite of web services that provide access to the DMC's time series holdings, their related metadata and earthquake catalogs. In addition, services are available to perform simple, on-demand time series processing at the DMC prior to being shipped to the user. The primary goal is to provide programmatic access to data and processing services in a manner usable by and useful to the research community. The web services are relatively simple to understand and use and will form the foundation on which future DMC access tools will be built. Based on standard Web technologies they can be accessed programmatically with a wide range of programming languages (e.g. Perl, Python, Java), command line utilities such as wget and curl or with any web browser. We anticipate these services being used for everything from simple command line access, used in shell scripts and higher programming languages to being integrated within complex data processing software. In addition to improving access to our data by the seismological community the web services will also make our data more accessible to other disciplines. The web services available from the DMC include ws-bulkdataselect for the retrieval of large volumes of miniSEED data, ws-timeseries for the retrieval of individual segments of time series data in a variety of formats (miniSEED, SAC, ASCII, audio WAVE, and PNG plots) with optional signal processing, ws-station for station metadata in StationXML format, ws-resp for the retrieval of instrument response in RESP format, ws-sacpz for the retrieval of sensor response in the SAC poles and zeros convention and ws-event for the retrieval of earthquake catalogs. To make the services even easier to use, the DMC is developing a library that allows Java programmers to seamlessly retrieve and integrate DMC information into their own programs. The library will handle all aspects of dealing with the services and will parse the returned data. By using this library a developer will not need to learn the details of the service interfaces or understand the data formats returned. This library will be used to build the software bridge needed to request data and information from within MATLAB°. We also provide several client scripts written in Perl for the retrieval of waveform data, metadata and earthquake catalogs using command line programs. For more information on the DMC's web services please visit http://www.iris.edu/ws/

  15. Common Data Format (CDF) and Coordinated Data Analysis Web (CDAWeb)

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.

    2010-01-01

    The Coordinated Data Analysis Web (CDAWeb) data browsing system provides plotting, listing and open access v ia FTP, HTTP, and web services (REST, SOAP, OPeNDAP) for data from mo st NASA Heliophysics missions and is heavily used by the community. C ombining data from many instruments and missions enables broad resear ch analysis and correlation and coordination with other experiments a nd missions. Crucial to its effectiveness is the use of a standard se lf-describing data format, in this case, the Common Data Format (CDF) , also developed at the Space Physics Data facility , and the use of metadata standa rds (easily edited with SKTeditor ). CDAweb is based on a set of IDL routines, CDAWlib . . The CDF project also maintains soft ware and services for translating between many standard formats (CDF. netCDF, HDF, FITS, XML) .

  16. Assuring the privacy and security of transmitting sensitive electronic health information.

    PubMed

    Peng, Charlie; Kesarinath, Gautam; Brinks, Tom; Young, James; Groves, David

    2009-11-14

    The interchange of electronic health records between healthcare providers and public health organizations has become an increasingly desirable tool in reducing healthcare costs, improving healthcare quality, and protecting population health. Assuring privacy and security in nationwide sharing of Electronic Health Records (EHR) in an environment such as GRID has become a top challenge and concern. The Centers for Disease Control and Prevention's (CDC) and The Science Application International Corporation (SAIC) have jointly conducted a proof of concept study to find and build a common secure and reliable messaging platform (the SRM Platform) to handle this challenge. The SRM Platform is built on the open standards of OASIS, World Wide Web Consortium (W3C) web-services standards, and Web Services Interoperability (WS-I) specifications to provide the secure transport of sensitive EHR or electronic medical records (EMR). Transmitted data may be in any digital form including text, data, and binary files, such as images. This paper identifies the business use cases, architecture, test results, and new connectivity options for disparate health networks among PHIN, NHIN, Grid, and others.

  17. VisPort: Web-Based Access to Community-Specific Visualization Functionality [Shedding New Light on Exploding Stars: Visualization for TeraScale Simulation of Neutrino-Driven Supernovae (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M Pauline

    2007-06-30

    The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less

  18. Modern Technologies aspects for Oceanographic Data Management and Dissemination : The HNODC Implementation

    NASA Astrophysics Data System (ADS)

    Lykiardopoulos, A.; Iona, A.; Lakes, V.; Batis, A.; Balopoulos, E.

    2009-04-01

    The development of new technologies for the aim of enhancing Web Applications with Dynamically data access was the starting point for Geospatial Web Applications to developed at the same time as well. By the means of these technologies the Web Applications embed the capability of presenting Geographical representations of the Geo Information. The induction in nowadays, of the state of the art technologies known as Web Services, enforce the Web Applications to have interoperability among them i.e. to be able to process requests from each other via a network. In particular throughout the Oceanographic Community, modern Geographical Information systems based on Geospatial Web Services are now developed or will be developed shortly in the near future, with capabilities of managing the information itself fully through Web Based Geographical Interfaces. The exploitation of HNODC Data Base, through a Web Based Application enhanced with Web Services by the use of open source tolls may be consider as an ideal case of such implementation. Hellenic National Oceanographic Data Center (HNODC) as a National Public Oceanographic Data provider and at the same time a member of the International Net of Oceanographic Data Centers( IOC/IODE), owns a very big volume of Data and Relevant information about the Marine Ecosystem. For the efficient management and exploitation of these Data, a relational Data Base has been constructed with a storage of over 300.000 station data concerning, physical, chemical and biological Oceanographic information. The development of a modern Web Application for the End User worldwide to be able to explore and navigate throughout HNODC data via the use of an interface with the capability of presenting Geographical representations of the Geo Information, is today a fact. The application is constituted with State of the art software components and tools such as: • Geospatial and no Spatial Web Services mechanisms • Geospatial open source tools for the creation of Dynamic Geographical Representations. • Communication protocols (messaging mechanisms) in all Layers such as XML and GML together with SOAP protocol via Apache/Axis. At the same time the application may interact with any other SOA application either in sending or receiving Geospatial Data through Geographical Layers, since it inherits the big advantage of interoperability between Web Services systems. Roughly the Architecture can denoted as follows: • At the back End Open source PostgreSQL DBMS stands as the data storage mechanism with more than one Data Base Schemas cause of the separation of the Geospatial Data and the non Geospatial Data. • UMN Map Server and Geoserver are the mechanisms for: Represent Geospatial Data via Web Map Service (WMS) Querying and Navigating in Geospatial and Meta Data Information via Web Feature Service (WFS) oAnd in the near future Transacting and processing new or existing Geospatial Data via Web Processing Service (WPS) • Map Bender, a geospatial portal site management software for OGC and OWS architectures acts as the integration module between the Geospatial Mechanisms. Mapbender comes with an embedded data model capable to manage interfaces for displaying, navigating and querying OGC compliant web map and feature services (WMS and transactional WFS). • Apache and Tomcat stand again as the Web Service middle Layers • Apache Axis with it's embedded implementation of the SOAP protocol ("Simple Object Access Protocol") acts as the No spatial data Mechanism of Web Services. These modules of the platform are still under development but their implementation will be fulfilled in the near future. • And a new Web user Interface for the end user based on enhanced and customized version of a MapBender GUI, a powerful Web Services client. For HNODC the interoperability of Web Services is the big advantage of the developed platform since it is capable to act in the future as provider and consumer of Web Services in both ways: • Either as data products provider for external SOA platforms. • Or as consumer of data products from external SOA platforms for new applications to be developed or for existing applications to be enhanced. A great paradigm of Data Managenet integration and dissemination via the use of such technologies is the European's Union Research Project Seadatanet, with the main objective to develop a standardized distributed system for managing and disseminating the large and diverse data sets and to enhance the currently existing infrastructures with Web Services Further more and when the technology of Web Processing Service (WPS), will be mature enough and applicable for development, the derived data products will be able to have any kind of GIS functionality for consumers across the network. From this point of view HNODC, joins the global scientific community by providing and consuming application Independent data products.

  19. Use of ebRIM-based CSW with sensor observation services for registry and discovery of remote-sensing observations

    NASA Astrophysics Data System (ADS)

    Chen, Nengcheng; Di, Liping; Yu, Genong; Gong, Jianya; Wei, Yaxing

    2009-02-01

    Recent advances in Sensor Web geospatial data capture, such as high-resolution in satellite imagery and Web-ready data processing and modeling technologies, have led to the generation of large numbers of datasets from real-time or near real-time observations and measurements. Finding which sensor or data complies with criteria such as specific times, locations, and scales has become a bottleneck for Sensor Web-based applications, especially remote-sensing observations. In this paper, an architecture for use of the integration Sensor Observation Service (SOS) with the Open Geospatial Consortium (OGC) Catalogue Service-Web profile (CSW) is put forward. The architecture consists of a distributed geospatial sensor observation service, a geospatial catalogue service based on the ebXML Registry Information Model (ebRIM), SOS search and registry middleware, and a geospatial sensor portal. The SOS search and registry middleware finds the potential SOS, generating data granule information and inserting the records into CSW. The contents and sequence of the services, the available observations, and the metadata of the observations registry are described. A prototype system is designed and implemented using the service middleware technology and a standard interface and protocol. The feasibility and the response time of registry and retrieval of observations are evaluated using a realistic Earth Observing-1 (EO-1) SOS scenario. Extracting information from SOS requires the same execution time as record generation for CSW. The average data retrieval response time in SOS+CSW mode is 17.6% of that of the SOS-alone mode. The proposed architecture has the more advantages of SOS search and observation data retrieval than the existing sensor Web enabled systems.

  20. A Serviced-based Approach to Connect Seismological Infrastructures: Current Efforts at the IRIS DMC

    NASA Astrophysics Data System (ADS)

    Ahern, Tim; Trabant, Chad

    2014-05-01

    As part of the COOPEUS initiative to build infrastructure that connects European and US research infrastructures, IRIS has advocated for the development of Federated services based upon internationally recognized standards using web services. By deploying International Federation of Digital Seismograph Networks (FDSN) endorsed web services at multiple data centers in the US and Europe, we have shown that integration within seismological domain can be realized. By deploying identical methods to invoke the web services at multiple centers this approach can significantly ease the methods through which a scientist can access seismic data (time series, metadata, and earthquake catalogs) from distributed federated centers. IRIS has developed an IRIS federator that helps a user identify where seismic data from global seismic networks can be accessed. The web services based federator can build the appropriate URLs and return them to client software running on the scientists own computer. These URLs are then used to directly pull data from the distributed center in a very peer-based fashion. IRIS is also involved in deploying web services across horizontal domains. As part of the US National Science Foundation's (NSF) EarthCube effort, an IRIS led EarthCube Building Block's project is underway. When completed this project will aid in the discovery, access, and usability of data across multiple geoscienece domains. This presentation will summarize current IRIS efforts in building vertical integration infrastructure within seismology working closely with 5 centers in Europe and 2 centers in the US, as well as how we are taking first steps toward horizontal integration of data from 14 different domains in the US, in Europe, and around the world.

  1. Electronic freight management (EFM) standards strategy

    DOT National Transportation Integrated Search

    2006-04-01

    The EFM initiative is a U.S. Department of Transportation (DOT)-sponsored research effort aimed at improving the operating efficiency, safety, and security of freight movement. The initiative involves conducting a deployment test using Web services t...

  2. GIS Technologies For The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.

    2015-12-01

    Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.

  3. Establishing Transportation Framework Services Using the Open Geospatial Consortium Web Feature Service Specification

    NASA Astrophysics Data System (ADS)

    Yang, C.; Wong, D. W.; Phillips, T.; Wright, R. A.; Lindsey, S.; Kafatos, M.

    2005-12-01

    As a teamed partnership of the Center for Earth Observing and Space Research (CEOSR) at George Mason University (GMU), Virginia Department of Transportation (VDOT), Bureau of Transportation Statistics at the Department of Transportation (BTS/DOT), and Intergraph, we established Transportation Framework Data Services using Open Geospatial Consortium (OGC)'s Web Feature Service (WFS) Specification to enable the sharing of transportation data among the federal level with data from BTS/DOT, the state level through VDOT, the industries through Intergraph. CEOSR develops WFS solutions using Intergraph software. Relevant technical documents are also developed and disseminated through the partners. The WFS is integrated with operational geospatial systems at CEOSR and VDOT. CEOSR works with Intergraph on developing WFS solutions and technical documents. GeoMedia WebMap WFS toolkit is used with software and technical support from Intergraph. ESRI ArcIMS WFS connector is used with GMU's campus license of ESRI products. Tested solutions are integrated with framework data service operational systems, including 1) CEOSR's interoperable geospatial information services, FGDC clearinghouse Node, Geospatial One Stop (GOS) portal, and WMS services, 2) VDOT's state transportation data and GIS infrastructure, and 3)BTS/DOT's national transportation data. The project presents: 1) develop and deploy an operational OGC WFS 1.1 interfaces at CEOSR for registering with FGDC/GOS Portal and responding to Web ``POST'' requests for transportation Framework data as listed in Table 1; 2) build the WFS service that can return the data that conform to the drafted ANSI/INCITS L1 Standard (when available) for each identified theme in the format given by OGC Geography Markup Language (GML) Version 3.0 or higher; 3) integrate the OGC WFS with CEOSR's clearinghouse nodes, 4) establish a formal partnership to develop and share WFS-based geospatial interoperability technology among GMU, VDOT, BTS/DOT, and Intergraph; and 5) develop WFS-based solutions and technical documents using the GeoMedia WebMap WFS toolkit. Geospatial Web Feature Service is demonstrated to be more efficient in sharing vector data and supports direct Internet access transportation data. Developed WFS solutions also enhanced the interoperable service provided by CEOSR through the FGDC clearinghouse node and the GOS Portal.

  4. Design, Implementation and Applications of 3d Web-Services in DB4GEO

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Kuper, P. V.; Dittrich, A.; Wild, P.; Butwilowski, E.; Al-Doori, M.

    2013-09-01

    The object-oriented database architecture DB4GeO was originally designed to support sub-surface applications in the geo-sciences. This is reflected in DB4GeO's geometric data model as well as in its import and export functions. Initially, these functions were designed for communication with 3D geological modeling and visualization tools such as GOCAD or MeshLab. However, it soon became clear that DB4GeO was suitable for a much wider range of applications. Therefore it is natural to move away from a standalone solution and to open the access to DB4GeO data by standardized OGC web-services. Though REST and OGC services seem incompatible at first sight, the implementation in DB4GeO shows that OGC-based implementation of web-services may use parts of the DB4GeO-REST implementation. Starting with initial solutions in the history of DB4GeO, this paper will introduce the design, adaptation (i.e. model transformation), and first steps in the implementation of OGC Web Feature (WFS) and Web Processing Services (WPS), as new interfaces to DB4GeO data and operations. Among its capabilities, DB4GeO can provide data in different data formats like GML, GOCAD, or DB3D XML through a WFS, as well as its ability to run operations like a 3D-to-2D service, or mesh-simplification (Progressive Meshes) through a WPS. We then demonstrate, an Android-based mobile 3D augmented reality viewer for DB4GeO that uses the Web Feature Service to visualize 3D geo-database query results. Finally, we explore future research work considering DB4GeO in the framework of the research group "Computer-Aided Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models".

  5. EFEHR - the European Facilities for Earthquake Hazard and Risk: beyond the web-platform

    NASA Astrophysics Data System (ADS)

    Danciu, Laurentiu; Wiemer, Stefan; Haslinger, Florian; Kastli, Philipp; Giardini, Domenico

    2017-04-01

    European Facilities for Earthquake Hazard and Risk (EEFEHR) represents the sustainable community resource for seismic hazard and risk in Europe. The EFEHR web platform is the main gateway to access data, models and tools as well as provide expertise relevant for assessment of seismic hazard and risk. The main services (databases and web-platform) are hosted at ETH Zurich and operated by the Swiss Seismological Service (Schweizerischer Erdbebendienst SED). EFEHR web-portal (www.efehr.org) collects and displays (i) harmonized datasets necessary for hazard and risk modeling, e.g. seismic catalogues, fault compilations, site amplifications, vulnerabilities, inventories; (ii) extensive seismic hazard products, namely hazard curves, uniform hazard spectra and maps for national and regional assessments. (ii) standardized configuration files for re-computing the regional seismic hazard models; (iv) relevant documentation of harmonized datasets, models and web-services. Today, EFEHR distributes full output of the 2013 European Seismic Hazard Model, ESHM13, as developed within the SHARE project (http://www.share-eu.org/); the latest results of the 2014 Earthquake Model of the Middle East (EMME14), derived within the EMME Project (www.emme-gem.org); the 2001 Global Seismic Hazard Assessment Project (GSHAP) results and the 2015 updates of the Swiss Seismic Hazard. New datasets related to either seismic hazard or risk will be incorporated as they become available. We present the currents status of the EFEHR platform, with focus on the challenges, summaries of the up-to-date datasets, user experience and feedback, as well as the roadmap to future technological innovation beyond the web-platform development. We also show the new services foreseen to fully integrate with the seismological core services of European Plate Observing System (EPOS).

  6. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  7. An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.

    PubMed

    Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya

    2015-01-01

    Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.

  8. Geospatial Web Services in Real Estate Information System

    NASA Astrophysics Data System (ADS)

    Radulovic, Aleksandra; Sladic, Dubravka; Govedarica, Miro; Popovic, Dragana; Radovic, Jovana

    2017-12-01

    Since the data of cadastral records are of great importance for the economic development of the country, they must be well structured and organized. Records of real estate on the territory of Serbia met many problems in previous years. To prevent problems and to achieve efficient access, sharing and exchange of cadastral data on the principles of interoperability, domain model for real estate is created according to current standards in the field of spatial data. The resulting profile of the domain model for the Serbian real estate cadastre is based on the current legislation and on Land Administration Domain Model (LADM) which is specified in the ISO19152 standard. Above such organized data, and for their effective exchange, it is necessary to develop a model of services that must be provided by the institutions interested in the exchange of cadastral data. This is achieved by introducing a service-oriented architecture in the information system of real estate cadastre and with that ensures efficiency of the system. It is necessary to develop user services for download, review and use of the real estate data through the web. These services should be provided to all users who need access to cadastral data (natural and legal persons as well as state institutions) through e-government. It is also necessary to provide search, view and download of cadastral spatial data by specifying geospatial services. Considering that real estate contains geometric data for parcels and buildings it is necessary to establish set of geospatial services that would provide information and maps for the analysis of spatial data, and for forming a raster data. Besides the theme Cadastral parcels, INSPIRE directive specifies several themes that involve data on buildings and land use, for which data can be provided from real estate cadastre. In this paper, model of geospatial services in Serbia is defined. A case study of using these services to estimate which household is at risk of flooding using the Web Processing Service (WPS) spatial analysis is described.

  9. Operational Marine Data Acquisition and Delivery Powered by Web and Geospatial Standards

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Buck, J. J. H.

    2015-12-01

    As novel sensor types and new platforms are deployed to monitor the global oceans, the volumes of scientific and environmental data collected in the marine context are rapidly growing. In order to use these data in both the traditional operational modes and in innovative "Big Data" applications the data must be readily understood by software agents. One approach to achieving this is the application of both World Wide Web and Open Geospatial Consortium standards: namely Linked Data1 and Sensor Web Enablement2 (SWE). The British Oceanographic Data Centre (BODC) is adopting this strategy in a number of European Commission funded projects (NETMAR; SenseOCEAN; Ocean Data Interoperability Platform - ODIP; and AtlantOS) to combine its existing data archiving architecture with SWE components (such as Sensor Observation Services) and a Linked Data interface. These will evolve the data management and data transfer from a process that requires significant manual intervention to an automated operational process enabling the rapid, standards-based, ingestion and delivery of data. This poster will show the current capabilities of BODC and the status of on-going implementation of this strategy. References1. World Wide Web Consortium. (2013). Linked Data. Available:http://www.w3.org/standards/semanticweb/data. Last accessed 7th April 20152. Open Geospatial Consortium. (2014). Sensor Web Enablement (SWE). Available:http://www.opengeospatial.org/ogc/markets-technologies/swe. Last accessed 8th October 2014

  10. Flexible Web services integration: a novel personalised social approach

    NASA Astrophysics Data System (ADS)

    Metrouh, Abdelmalek; Mokhati, Farid

    2018-05-01

    Dynamic composition or integration remains one of the key objectives of Web services technology. This paper aims to propose an innovative approach of dynamic Web services composition based on functional and non-functional attributes and individual preferences. In this approach, social networks of Web services are used to maintain interactions between Web services in order to select and compose Web services that are more tightly related to user's preferences. We use the concept of Web services community in a social network of Web services to reduce considerably their search space. These communities are created by the direct involvement of Web services providers.

  11. An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm

    PubMed Central

    Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya

    2015-01-01

    Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the “quality of service” as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services. PMID:26504894

  12. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  13. Generic Sensor Data Fusion Services for Web-enabled Environmental Risk Management and Decision-Support Systems

    NASA Astrophysics Data System (ADS)

    Sabeur, Zoheir; Middleton, Stuart; Veres, Galina; Zlatev, Zlatko; Salvo, Nicola

    2010-05-01

    The advancement of smart sensor technology in the last few years has led to an increase in the deployment of affordable sensors for monitoring the environment around Europe. This is generating large amounts of sensor observation information and inevitably leading to problems about how to manage large volumes of data as well as making sense out the data for decision-making. In addition, the various European Directives (Water Framework Diectives, Bathing Water Directives, Habitat Directives, etc.. ) which regulate human activities in the environment and the INSPIRE Directive on spatial information management regulations have implicitely led the designated European Member States environment agencies and authorities to put in place new sensor monitoring infrastructure and share information about environmental regions under their statutory responsibilities. They will need to work cross border and collectively reach environmental quality standards. They will also need to regularly report to the EC on the quality of the environments of which they are responsible and make such information accessible to the members of the public. In recent years, early pioneering work on the design of service oriented architecture using sensor networks has been achieved. Information web-services infrastructure using existing data catalogues and web-GIS map services can now be enriched with the deployment of new sensor observation and data fusion and modelling services using OGC standards. The deployment of the new services which describe sensor observations and intelligent data-processing using data fusion techniques can now be implemented and provide added value information with spatial-temporal uncertainties to the next generation of decision support service systems. The new decision support service systems have become key to implement across Europe in order to comply with EU environmental regulations and INSPIRE. In this paper, data fusion services using OGC standards with sensor observation data streams are described in context of a geo-distributed service infrastructure specialising in multiple environmental risk management and decision-support. The sensor data fusion services are deployed and validated in two use cases. These are respectively concerned with: 1) Microbial risks forecast in bathing waters; and 2) Geohazards in urban zones during underground tunneling activities. This research was initiated in the SANY Integrated Project(www.sany-ip.org) and funded by the European Commission under the 6th Framework Programme.

  14. Connecting long-tail scientists with big data centers using SaaS

    NASA Astrophysics Data System (ADS)

    Percivall, G. S.; Bermudez, L. E.

    2012-12-01

    Big data centers and long tail scientists represent two extremes in the geoscience research community. Interoperability and inter-use based on software-as-a-service (SaaS) increases access to big data holdings by this underserved community of scientists. Large, institutional data centers have long been recognized as vital resources in the geoscience community. Permanent data archiving and dissemination centers provide "access to the data and (are) a critical source of people who have experience in the use of the data and can provide advice and counsel for new applications." [NRC] The "long-tail of science" is the geoscience researchers that work separate from institutional data centers [Heidorn]. Long-tail scientists need to be efficient consumers of data from large, institutional data centers. Discussions in NSF EarthCube capture the challenges: "Like the vast majority of NSF-funded researchers, Alice (a long-tail scientist) works with limited resources. In the absence of suitable expertise and infrastructure, the apparently simple task that she assigns to her graduate student becomes an information discovery and management nightmare. Downloading and transforming datasets takes weeks." [Foster, et.al.] The long-tail metaphor points to methods to bridge the gap, i.e., the Web. A decade ago, OGC began building a geospatial information space using open, web standards for geoprocessing [ORM]. Recently, [Foster, et.al.] accurately observed that "by adopting, adapting, and applying semantic web and SaaS technologies, we can make the use of geoscience data as easy and convenient as consumption of online media." SaaS places web services into Cloud Computing. SaaS for geospatial is emerging rapidly building on the first-generation geospatial web, e.g., OGC Web Coverage Service [WCS] and the Data Access Protocol [DAP]. Several recent examples show progress in applying SaaS to geosciences: - NASA's Earth Data Coherent Web has a goal to improve science user experience using Web Services (e.g. W*S, SOAP, RESTful) to reduce barriers to using EOSDIS data [ECW]. - NASA's LANCE provides direct access to vast amounts of satellite data using the OGC Web Map Tile Service (WMTS). - NOAA's Unified Access Framework for Gridded Data (UAF Grid) is a web service based capability for direct access to a variety of datasets using netCDF, OPeNDAP, THREDDS, WMS and WCS. [UAF] Tools to access SaaS's are many and varied: some proprietary, others open source; some run in browsers, others are stand-alone applications. What's required is interoperability using web interfaces offered by the data centers. NOAA's UAF service stack supports Matlab, ArcGIS, Ferret, GrADS, Google Earth, IDV, LAS. Any SaaS that offers OGC Web Services (WMS, WFS, WCS) can be accessed by scores of clients [OGC]. While there has been much progress in the recent year toward offering web services for the long-tail of scientists, more needs to be done. Web services offer data access but more than access is needed for inter-use of data, e.g. defining data schemas that allow for data fusion, addressing coordinate systems, spatial geometry, and semantics for observations. Connecting long-tail scientists with large, data centers using SaaS and, in the future, semantic web, will address this large and currently underserved user community.

  15. 7 CFR 1726.302 - Notice and publication of listed contract forms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Utilities Service, Program Development and Regulatory Analysis, U.S. Department of Agriculture, Stop 1522... standard forms of contract are also available on the RUS Web site at: http://www.usda.gov/rus/electric...

  16. Evaluating the ISDN Market.

    ERIC Educational Resources Information Center

    Liss, Alan

    1996-01-01

    Discusses bandwidth on demand technologies, including frame relay and ISDNs (integrated services digital networks). Topics include tariff policies; lack of standards; market conditions; growth in the Internet market and the World Wide Web; and the growing need for remote access. (LRW)

  17. Standards-Based Open-Source Planetary Map Server: Lunaserv

    NASA Astrophysics Data System (ADS)

    Estes, N. M.; Silva, V. H.; Bowley, K. S.; Lanjewar, K. K.; Robinson, M. S.

    2018-04-01

    Lunaserv is a planetary capable Web Map Service developed by the LROC SOC. It enables researchers to serve their own planetary data to a wide variety of GIS clients without any additional processing or download steps.

  18. UkrVO astronomical WEB services

    NASA Astrophysics Data System (ADS)

    Mazhaev, A.

    2017-02-01

    Ukraine Virtual Observatory (UkrVO) has been a member of the International Virtual Observatory Alliance (IVOA) since 2011. The virtual observatory (VO) is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS) of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  19. Efficient Authorization of Rich Presence Using Secure and Composed Web Services

    NASA Astrophysics Data System (ADS)

    Li, Li; Chou, Wu

    This paper presents an extended Role-Based Access Control (RBAC) model for efficient authorization of rich presence using secure web services composed with an abstract presence data model. Following the information symmetry principle, the standard RBAC model is extended to support context sensitive social relations and cascaded authority. In conjunction with the extended RBAC model, we introduce an extensible presence architecture prototype using WS-Security and WS-Eventing to secure rich presence information exchanges based on PKI certificates. Applications and performance measurements of our presence system are presented to show that the proposed RBAC framework for presence and collaboration is well suited for real-time communication and collaboration.

  20. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  1. Research of marine sensor web based on SOA and EDA

    NASA Astrophysics Data System (ADS)

    Jiang, Yongguo; Dou, Jinfeng; Guo, Zhongwen; Hu, Keyong

    2015-04-01

    A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean `instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.

  2. DataFed: A Federated Data System for Visualization and Analysis of Spatio-Temporal Air Quality Data

    NASA Astrophysics Data System (ADS)

    Husar, R. B.; Hoijarvi, K.

    2017-12-01

    DataFed is a distributed web-services-based computing environment for accessing, processing, and visualizing atmospheric data in support of air quality science and management. The flexible, adaptive environment facilitates the access and flow of atmospheric data from provider to users by enabling the creation of user-driven data processing/visualization applications. DataFed `wrapper' components, non-intrusively wrap heterogeneous, distributed datasets for access by standards-based GIS web services. The mediator components (also web services) map the heterogeneous data into a spatio-temporal data model. Chained web services provide homogeneous data views (e.g., geospatial, time views) using a global multi-dimensional data model. In addition to data access and rendering, the data processing component services can be programmed for filtering, aggregation, and fusion of multidimensional data. A complete application software is written in a custom made data flow language. Currently, the federated data pool consists of over 50 datasets originating from globally distributed data providers delivering surface-based air quality measurements, satellite observations, emissions data as well as regional and global-scale air quality models. The web browser-based user interface allows point and click navigation and browsing the XYZT multi-dimensional data space. The key applications of DataFed are for exploring spatial pattern of pollutants, seasonal, weekly, diurnal cycles and frequency distributions for exploratory air quality research. Since 2008, DataFed has been used to support EPA in the implementation of the Exceptional Event Rule. The data system is also used at universities in the US, Europe and Asia.

  3. Open Standards in Practice: An OGC China Forum Initiative

    NASA Astrophysics Data System (ADS)

    Yue, Peng; Zhang, Mingda; Taylor, Trevor; Xie, Jibo; Zhang, Hongping; Tong, Xiaochong; Yu, Jinsongdi; Huang, Juntao

    2016-11-01

    Open standards like OGC standards can be used to improve interoperability and support machine-to-machine interaction over the Web. In the Big Data era, standard-based data and processing services from various vendors could be combined to automate the extraction of information and knowledge from heterogeneous and large volumes of geospatial data. This paper introduces an ongoing OGC China forum initiative, which will demonstrate how OGC standards can benefit the interaction among multiple organizations in China. The ability to share data and processing functions across organizations using standard services could change traditional manual interactions in their business processes, and provide on-demand decision support results by on-line service integration. In the initiative, six organizations are involved in two “MashUp” scenarios on disaster management. One “MashUp” is to derive flood maps in the Poyang Lake, Jiangxi. And the other one is to generate turbidity maps on demand in the East Lake, Wuhan, China. The two scenarios engage different organizations from the Chinese community by integrating sensor observations, data, and processing services from them, and improve the automation of data analysis process using open standards.

  4. Protocol for a Randomized Controlled Trial of Proactive Web-Based Versus Telephone-Based Information and Support: Can Electronic Platforms Deliver Effective Care for Lung Cancer Patients?

    PubMed

    Paul, Christine L; Boyes, Allison W; O'Brien, Lorna; Baker, Amanda L; Henskens, Frans A; Roos, Ian; Clinton-McHarg, Tara; Bellamy, Douglas; Colburn, Glenda; Rose, Shiho; Cox, Martine E; Fradgley, Elizabeth A; Baird, Hannah; Barker, Daniel

    2016-10-26

    Community-based services such as telephone support lines can provide valuable informational, emotional, and practical support for cancer patients via telephone- or Web-based (live chat or email) platforms. However, very little rigorous research has examined the efficacy of such services in improving patient outcomes. This study will determine whether: proactive telephone or Web-delivered support produces outcomes superior to printed information; and Web-delivered support produces outcomes comparable to telephone support. A consecutive sample of 501 lung cancer outpatients will be recruited from 50 Australian health services to participate in a patient-randomized controlled trial (RCT). Eligible individuals must: be 18 years or older; have received a lung cancer diagnosis (including mesothelioma) within the previous 4 months; have an approximate life expectancy of at least 6 months; and have Internet access. Participants will be randomly allocated to receive: (1) an information booklet, (2) proactive telephone support, or (3) proactive Web support, chat, and/or email. The primary patient outcomes will be measured by the General Health Questionnaire (GHQ-12) and Health Education and Impact Questionnaire (heiQ) at 3 and 6 months post recruitment. The acceptability of proactive recruitment strategies will also be assessed. It is hypothesized that participants receiving telephone or Web support will report reduced distress (GHQ-12 scores that are 0.3 standard deviations (SD) lower) and greater self-efficacy (heiQ scores that are 0.3 SDs higher) than participants receiving booklets. Individuals receiving Web support will report heiQ scores within 0.29 SDs of individuals receiving telephone support. If proven effective, electronic approaches such as live-chat and email have the potential to increase the accessibility and continuity of supportive care delivered by community-based services. This evidence may also inform the redesigning of helpline-style services to be effective and responsive to patient needs.

  5. Sharing environmental models: An Approach using GitHub repositories and Web Processing Services

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Nuest, Daniel; Pross, Benjamin

    2016-04-01

    The GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) project established a spatial data infrastructure for scientific geospatial data and metadata (http://geoportal-glues.ufz.de), where different regional collaborative projects researching the impacts of climate and socio-economic changes on sustainable land management can share their underlying base scenarios and datasets. One goal of the project is to ease the sharing of computational models between institutions and to make them easily executable in Web-based infrastructures. In this work, we present such an approach for sharing computational models relying on GitHub repositories (http://github.com) and Web Processing Services. At first, model providers upload their model implementations to GitHub repositories in order to share them with others. The GitHub platform allows users to submit changes to the model code. The changes can be discussed and reviewed before merging them. However, while GitHub allows sharing and collaborating of model source code, it does not actually allow running these models, which requires efforts to transfer the implementation to a model execution framework. We thus have extended an existing implementation of the OGC Web Processing Service standard (http://www.opengeospatial.org/standards/wps), the 52°North Web Processing Service (http://52north.org/wps) platform to retrieve all model implementations from a git (http://git-scm.com) repository and add them to the collection of published geoprocesses. The current implementation is restricted to models implemented as R scripts using WPS4R annotations (Hinz et al.) and to Java algorithms using the 52°North WPS Java API. The models hence become executable through a standardized Web API by multiple clients such as desktop or browser GIS and modelling frameworks. If the model code is changed on the GitHub platform, the changes are retrieved by the service and the processes will be updated accordingly. The admin tool of the 52°North WPS was extended to support automated retrieval and deployment of computational models from GitHub repositories. Once the R code is available in the GitHub repo, the contained process can be easily deployed and executed by simply defining the GitHub repository URL in the WPS admin tool. We illustrate the usage of the approach by sharing and running a model for land use system archetypes developed by the Helmholtz Centre for Environmental Research (UFZ, see Vaclavik et al.). The original R code was extended and published in the 52°North WPS using both, public and non-public datasets (Nüst et al., see also https://github.com/52North/glues-wps). Hosting the analysis in a Git repository now allows WPS administrators, client developers, and modelers to easily work together on new versions or completely new web processes using the powerful GitHub collaboration platform. References: Hinz, M. et. al. (2013): Spatial Statistics on the Geospatial Web. In: The 16th AGILE International Conference on Geographic Information Science, Short Papers. http://www.agile-online.org/Conference_Paper/CDs/agile_2013/Short_Papers/SP_S3.1_Hinz.pdf Nüst, D. et. al.: (2015): Open and reproducible global land use classification. In: EGU General Assembly Conference Abstracts . Vol. 17. European Geophysical Union, 2015, p. 9125, http://meetingorganizer.copernicus. org/EGU2015/EGU2015- 9125.pdf Vaclavik, T., et. al. (2013): Mapping global land system archetypes. Global Environmental Change 23(6): 1637-1647. Online available: October 9, 2013, DOI: 10.1016/j.gloenvcha.2013.09.004

  6. Data Sets and Data Services at the Northern California Earthquake Data Center

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Zuzlewski, S.; Allen, R. M.

    2014-12-01

    The Northern California Earthquake Data Center (NCEDC) houses a unique and comprehensive data archive and provides real-time services for a variety of seismological and geophysical data sets that encompass northern and central California. We have over 80 terabytes of continuous and event-based time series data from broadband, short-period, strong motion, and strain sensors as well as continuous and campaign GPS data at both standard and high sample rates in both raw and RINEX format. The Northen California Seismic System (NCSS), operated by UC Berkeley and USGS Menlo Park, has recorded over 890,000 events from 1984 to the present, and the NCEDC provides catalog, parametric information, moment tensors and first motion mechanisms, and time series data for these events. We also host and provide event catalogs, parametric information, and event waveforms for DOE enhanced geothermal system monitoring in northern California and Nevada. The NCEDC provides a variety of ways for users to access these data. The most recent development are web services, which provide interactive, command-line, or program-based workflow access to data. Web services use well-established server and client protocols and RESTful software architecture that allow users to easily submit queries and receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, simple text, or MiniSEED depending on the service and selected output format. The NCEDC supports all FDSN-defined web services as well as a number of IRIS-defined and NCEDC-defined services. We also continue to support older email-based and browser-based access to data. NCEDC data and web services can be found at http://www.ncedc.org and http://service.ncedc.org.

  7. Northern California Earthquake Data Center: Data Sets and Data Services

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Allen, R. M.; Zuzlewski, S.

    2015-12-01

    The Northern California Earthquake Data Center (NCEDC) provides a permanent archive and real-time data distribution services for a unique and comprehensive data set of seismological and geophysical data sets encompassing northern and central California. We provide access to over 85 terabytes of continuous and event-based time series data from broadband, short-period, strong motion, and strain sensors as well as continuous and campaign GPS data at both standard and high sample rates. The Northen California Seismic System (NCSS), operated by UC Berkeley and USGS Menlo Park, has recorded over 900,000 events from 1984 to the present, and the NCEDC serves catalog, parametric information, moment tensors and first motion mechanisms, and time series data for these events. We also serve event catalogs, parametric information, and event waveforms for DOE enhanced geothermal system monitoring in northern California and Nevada. The NCEDC provides a several ways for users to access these data. The most recent development are web services, which provide interactive, command-line, or program-based workflow access to data. Web services use well-established server and client protocols and RESTful software architecture that allow users to easily submit queries and receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, simple text, or MiniSEED depending on the service and selected output format. The NCEDC supports all FDSN-defined web services as well as a number of IRIS-defined and NCEDC-defined services. We also continue to support older email-based and browser-based access to data. NCEDC data and web services can be found at http://www.ncedc.org and http://service.ncedc.org.

  8. Standards-based sensor interoperability and networking SensorWeb: an overview

    NASA Astrophysics Data System (ADS)

    Bolling, Sam

    2012-06-01

    The War fighter lacks a unified Intelligence, Surveillance, and Reconnaissance (ISR) environment to conduct mission planning, command and control (C2), tasking, collection, exploitation, processing, and data discovery of disparate sensor data across the ISR Enterprise. Legacy sensors and applications are not standardized or integrated for assured, universal access. Existing tasking and collection capabilities are not unified across the enterprise, inhibiting robust C2 of ISR including near-real time, cross-cueing operations. To address these critical needs, the National Measurement and Signature Intelligence (MASINT) Office (NMO), and partnering Combatant Commands and Intelligence Agencies are developing SensorWeb, an architecture that harmonizes heterogeneous sensor data to a common standard for users to discover, access, observe, subscribe to and task sensors. The SensorWeb initiative long term goal is to establish an open commercial standards-based, service-oriented framework to facilitate plug and play sensors. The current development effort will produce non-proprietary deliverables, intended as a Government off the Shelf (GOTS) solution to address the U.S. and Coalition nations' inability to quickly and reliably detect, identify, map, track, and fully understand security threats and operational activities.

  9. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor (ASDP) was recently developed to merge PM2.5 estimates from National Aeronautics and Space Administration (NASA) satellite data and AirNow observational data, creating more precise maps and gridded data products for under-monitored areas. The ASDP can easily incorporate other data feeds, including fire and smoke locations, to build enhanced real-time air quality data products. In this presentation, we provide an overview of the features and functions of IMS, an explanation of how data moves through IMS, the rationale of the system architecture, and highlights of the ASDP as an example of the modularity and scalability of IMS.

  10. Cloud Based Web 3d GIS Taiwan Platform

    NASA Astrophysics Data System (ADS)

    Tsai, W.-F.; Chang, J.-Y.; Yan, S. Y.; Chen, B.

    2011-09-01

    This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.

  11. The climate4impact platform: Providing, tailoring and facilitating climate model data access

    NASA Astrophysics Data System (ADS)

    Pagé, Christian; Pagani, Andrea; Plieger, Maarten; Som de Cerff, Wim; Mihajlovski, Andrej; de Vreede, Ernst; Spinuso, Alessandro; Hutjes, Ronald; de Jong, Fokke; Bärring, Lars; Vega, Manuel; Cofiño, Antonio; d'Anca, Alessandro; Fiore, Sandro; Kolax, Michael

    2017-04-01

    One of the main objectives of climate4impact is to provide standardized web services and tools that are reusable in other portals. These services include web processing services, web coverage services and web mapping services (WPS, WCS and WMS). Tailored portals can be targeted to specific communities and/or countries/regions while making use of those services. Easier access to climate data is very important for the climate change impact communities. To fulfill this objective, the climate4impact (http://climate4impact.eu/) web portal and services has been developed, targeting climate change impact modellers, impact and adaptation consultants, as well as other experts using climate change data. It provides to users harmonized access to climate model data through tailored services. It features static and dynamic documentation, Use Cases and best practice examples, an advanced search interface, an integrated authentication and authorization system with the Earth System Grid Federation (ESGF), a visualization interface with ADAGUC web mapping tools. In the latest version, statistical downscaling services, provided by the Santander Meteorology Group Downscaling Portal, were integrated. An innovative interface to integrate statistical downscaling services will be released in the upcoming version. The latter will be a big step in bridging the gap between climate scientists and the climate change impact communities. The climate4impact portal builds on the infrastructure of an international distributed database that has been set to disseminate the results from the global climate model results of the Coupled Model Intercomparison project Phase 5 (CMIP5). This database, the ESGF, is an international collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of climate model data. The European FP7 project IS-ENES, Infrastructure for the European Network for Earth System modelling, supports the European contribution to ESGF and contributes to the ESGF open source effort, notably through the development of search, monitoring, quality control, and metadata services. In its second phase, IS-ENES2 supports the implementation of regional climate model results from the international Coordinated Regional Downscaling Experiments (CORDEX). These services were extended within the European FP7 Climate Information Portal for Copernicus (CLIPC) project, and some could be later integrated into the European Copernicus platform.

  12. Update to a guide to standardized highway lighting pole hardware.

    DOT National Transportation Integrated Search

    2013-03-01

    This report describes the development of an updated Online Guide to Luminaire Supports. The Guide is a web-based content : management system for luminaire support systems that allows full viewing, submission, management, and reporting services : to i...

  13. Development of RESTful services and map-based user interface tools for access and delivery of data and metadata from the Marine-Geo Digital Library

    NASA Astrophysics Data System (ADS)

    Morton, J. J.; Ferrini, V. L.

    2015-12-01

    The Marine Geoscience Data System (MGDS, www.marine-geo.org) operates an interactive digital data repository and metadata catalog that provides access to a variety of marine geology and geophysical data from throughout the global oceans. Its Marine-Geo Digital Library includes common marine geophysical data types and supporting data and metadata, as well as complementary long-tail data. The Digital Library also includes community data collections and custom data portals for the GeoPRISMS, MARGINS and Ridge2000 programs, for active source reflection data (Academic Seismic Portal), and for marine data acquired by the US Antarctic Program (Antarctic and Southern Ocean Data Portal). Ensuring that these data are discoverable not only through our own interfaces but also through standards-compliant web services is critical for enabling investigators to find data of interest.Over the past two years, MGDS has developed several new RESTful web services that enable programmatic access to metadata and data holdings. These web services are compliant with the EarthCube GeoWS Building Blocks specifications and are currently used to drive our own user interfaces. New web applications have also been deployed to provide a more intuitive user experience for searching, accessing and browsing metadata and data. Our new map-based search interface combines components of the Google Maps API with our web services for dynamic searching and exploration of geospatially constrained data sets. Direct introspection of nearly all data formats for hundreds of thousands of data files curated in the Marine-Geo Digital Library has allowed for precise geographic bounds, which allow geographic searches to an extent not previously possible. All MGDS map interfaces utilize the web services of the Global Multi-Resolution Topography (GMRT) synthesis for displaying global basemap imagery and for dynamically provide depth values at the cursor location.

  14. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata) about the data values in combination with information about the sensor systems. Also the CUAHSI model is supported by a large and active international user community. The 52° North SOS data model can be modeled as a sub-set of the CUHASI data model. In our implementation the 52° North SWE data model is implemented as database views of the CUHASI model to avoid redundant data storage. An essential aspect in TERENO Northeast is the use of standard OGS web services to facilitate data exchange and interoperability. A uniform treatment of sensor data can be realized through OGC Sensor Web Enablement (SWE) which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service (SAS) for sending alerts.

  15. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application

    NASA Astrophysics Data System (ADS)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim

    2014-05-01

    The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web application enables an intuitive navigation through all available information and allows the visualization of geological maps (2D), seismic transects (2D/3D), wells (2D/3D), and the 3D-model. These achievements will alleviate spatial and geological data management within the German State Geological Offices and foster the interoperability of heterogeneous systems. It will provide guidance to a systematic subsurface management across system, domain and administrative boundaries on the basis of a federated spatial data infrastructure, and include the public in the decision processes (e-Governance). Yet, the interoperability of the systems has to be strongly propelled forward through agreements on standards that need to be decided upon in responsible committees. The project B3D is funded with resources from the European Fund for Regional Development (EFRE).

  16. A Pragmatic Approach to Sustainable Interoperability for the Web 2.0 World

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Sankaran, S.

    2015-12-01

    In the geosciences, interoperability is a fundamental requirement. Members of various standards organizations such as the OGC and ISO-TC 211 have done yeomen services to promote a standards-centric approach to manage the interoperability challenges that organizations face today. The specific challenges that organizations face when adopting interoperability patterns are very many. One approach, that of mandating the use of specific standards has been reasonably successful. But scientific communities, as with all others, ultimately want their solutions to be widely accepted and used. And to this end there is a crying need to explore all possible interoperability patterns without restricting the choices to mandated standards. Standards are created by a slow and deliberative process that sometimes takes a long time to come to fruition and therefore sometime feel to fall short of user expectations. It seems therefore that organizations are left with a series of perceived orthogonal requirements when they want to pursue interoperability. They want a robust but agile solution, a mature approach that also needs to satisfy latest technology trends and so on. Sustainable interoperability patterns need to be forward looking and should choose the patterns and paradigms of the Web 2.0 generation. To this end, the key is to choose platform technologies that embrace multiple interoperability mechanisms that are built on fundamental "open" principles and which align with popular mainstream patterns. We seek to explore data-, metadata- and web service-related interoperability patterns through the prism of building solutions that encourage strong implementer and end-user engagement, improved usability and scalability considerations, and appealing developer frameworks that can grow the audience. The path to tread is not new, and the geocommunity only needs to observe and align its end goals with current Web 2.0 patterns to realize all the benefits that today we all take for granted as part of our everyday use of technology.

  17. US EPA Nonattainment Areas and Designations-PM10 (1987 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layer: PM10 Nonattainment Areas (1987 NAAQS). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1987PM10/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The metho

  18. US EPA Nonattainment Areas and Designations-Lead (2008 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: Lead NAA 2008 NAAQS and Lead NAA Centroids 2008 NAAQS. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2008Lead/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure l

  19. US EPA Nonattainment Areas and Designations-8 Hour Ozone (2008 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: Ozone 2008 NAAQS NAA State Level and Ozone 2008 NAAQS NAA National Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2008Ozone8hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-

  20. US EPA Nonattainment Areas and Designations-8 Hour Ozone (1997 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: Ozone 1997 NAAQS NAA State Level and Ozone 1997 NAAQS NAA National Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997Ozone8hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short

  1. eodataservice.org: how to enable cross-continental interoperability of the European Space Agency and Australian Geoscience Landsat datacubes

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Barboni, Damiano; Natali, Stefano; Evans, Ben; Steer, Adam; Hogan, Patrik; Baumann, Peter

    2017-04-01

    Globally, billions of dollars are invested annually in Earth observations that support public services, commercial activity, and scientific inquiry. The Common Data Framework [1] for Earth Observation data summarises the current standards for the international community to adopt a common approach so that this significant data can be readily accessible. Concurrently, the "Copernicus Cooperation Arrangement" between the European Commission and the Australian Government is just one in a number of recent agreements signed to facilitate Satellite Earth Observation data sharing among the users' communities. The typical approach implemented in these initiatives is the establishment of a regional data access hub managed by the regional entity to collect data at full scale or over the local region, improve access services and provide high-performance environment in which all the data can be analysed. Furthermore, a number of datacube-aware platforms and services have emerged that enable a new collaborative approach for analysing the vast quantities of satellite imagery and other Earth Observations, making it quicker and easier to explore a time series of image data. In this context, the H2020-funded EarthServer2 project brings together multiple organisations in Europe, Australia and United States to allow federated data holdings to be analysed using web-based access to petabytes of multidimensional geospatial datasets. The aim is to create and ensure that these large spatial data sources can be accessed based on OGC standards, namely Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) that provide efficient&timely retrieval of large volumes of geospatial data as well as on-the-fly processing. In this study, we provide an overview of the existing European Space Agency and Australian Geoscience Landsat datacubes, how the regional datacube structures differ, how interoperability is enabled through standards, and finally how the datacubes can be visualized on a virtual globe (NASA - ESA WebWorldWind) based on a WC(P)S query via any standard internet browser. The current study is co-financed by the European Space Agency under the MaaS project (ESRIN Contract No. 4000114186/15/I-LG) and the European Union's Horizon 2020 research and innovation programme under the EarthServer-2 project (Grant Agreement No. 654367) [1] Common framework for Earth-Observation data, March 23, 2016 (https://www.whitehouse.gov/sites/default/files/microsites/ostp/common_framework_for_earth_observation_data.pdf)

  2. DISTANT EARLY WARNING SYSTEM for Tsunamis - A wide-area and multi-hazard approach

    NASA Astrophysics Data System (ADS)

    Hammitzsch, Martin; Lendholt, Matthias; Wächter, Joachim

    2010-05-01

    The DEWS (Distant Early Warning System) [1] project, funded under the 6th Framework Programme of the European Union, has the objective to create a new generation of interoperable early warning systems based on an open sensor platform. This platform integrates OGC [2] SWE [3] compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements in the case of tsunami early warning. Based on the upstream information flow DEWS focuses on the improvement of downstream capacities of warning centres especially by improving information logistics for effective and targeted warning message aggregation for a multilingual environment. Multiple telecommunication channels will be used for the dissemination of warning messages. Wherever possible, existing standards have been integrated. The Command and Control User Interface (CCUI), a rich client application based on Eclipse RCP (Rich Client Platform) [4] and the open source GIS uDig [5], integrates various OGC services. Using WMS (Web Map Service) [6] and WFS (Web Feature Service) [7] spatial data are utilized to depict the situation picture and to integrate a simulation system via WPS (Web Processing Service) [8] to identify affected areas. Warning messages are compiled and transmitted in the OASIS [9] CAP (Common Alerting Protocol) [10] standard together with addressing information defined via EDXL-DE (Emergency Data Exchange Language - Distribution Element) [11]. Internal interfaces are realized with SOAP [12] web services. Based on results of GITEWS [13] - in particular the GITEWS Tsunami Service Bus [14] - the DEWS approach provides an implementation for tsunami early warning systems but other geological paradigms are going to follow, e.g. volcanic eruptions or landslides. Therefore in future also multi-hazard functionality is conceivable. The specific software architecture of DEWS makes it possible to dock varying sensors to the system and to extend the CCUI with hazard specific functionality. The presentation covers the DEWS project, the system architecture and the CCUI in conjunction with details of information logistics. The DEWS Wide Area Centre connecting national centres to allow the international communication and warning exchange is presented also. REFERENCES: [1] DEWS, www.dews-online.org [2] OGC, www.opengeospatial.org [3] SWE, www.opengeospatial.org/projects/groups/sensorweb [4] Eclipse RCP, www.eclipse.org/home/categories/rcp.php [5] uDig, udig.refractions.net [6] WMS, www.opengeospatial.org/standards/wms [7] WFS, www.opengeospatial.org/standards/wfs [8] WPS, www.opengeospatial.org/standards/wps [9] OASIS, www.oasis-open.org [10] CAP, www.oasis-open.org/specs/#capv1.1 [11] EDXL-DE, www.oasis-open.org/specs/#edxlde-v1.0 [12] SOAP, www.w3.org/TR/soap [13] GITEWS (German Indonesian Tsunami Early Warning System) is a project of the German Federal Government to aid the recon¬struction of the tsunami-prone Indian Ocean region, www.gitews.org [14] The Tsunami Service Bus is the GITEWS sensor system integration platform offering standardised services for the detection and monitoring of tsunamis

  3. Generating Mosaics of Astronomical Images

    NASA Technical Reports Server (NTRS)

    Bergou, Attila; Berriman, Bruce; Good, John; Jacob, Joseph; Katz, Daniel; Laity, Anastasia; Prince, Thomas; Williams, Roy

    2005-01-01

    "Montage" is the name of a service of the National Virtual Observatory (NVO), and of software being developed to implement the service via the World Wide Web. Montage generates science-grade custom mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. "Science-grade" in this context signifies that terrestrial and instrumental features are removed from images in a way that can be described quantitatively. "Custom" refers to user-specified parameters of projection, coordinates, size, rotation, and spatial sampling. The greatest value of Montage is expected to lie in its ability to analyze images at multiple wavelengths, delivering them on a common projection, coordinate system, and spatial sampling, and thereby enabling further analysis as though they were part of a single, multi-wavelength image. Montage will be deployed as a computation-intensive service through existing astronomy portals and other Web sites. It will be integrated into the emerging NVO architecture and will be executed on the TeraGrid. The Montage software will also be portable and publicly available.

  4. maxdLoad2 and maxdBrowse: standards-compliant tools for microarray experimental annotation, data management and dissemination.

    PubMed

    Hancock, David; Wilson, Michael; Velarde, Giles; Morrison, Norman; Hayes, Andrew; Hulme, Helen; Wood, A Joseph; Nashar, Karim; Kell, Douglas B; Brass, Andy

    2005-11-03

    maxdLoad2 is a relational database schema and Java application for microarray experimental annotation and storage. It is compliant with all standards for microarray meta-data capture; including the specification of what data should be recorded, extensive use of standard ontologies and support for data exchange formats. The output from maxdLoad2 is of a form acceptable for submission to the ArrayExpress microarray repository at the European Bioinformatics Institute. maxdBrowse is a PHP web-application that makes contents of maxdLoad2 databases accessible via web-browser, the command-line and web-service environments. It thus acts as both a dissemination and data-mining tool. maxdLoad2 presents an easy-to-use interface to an underlying relational database and provides a full complement of facilities for browsing, searching and editing. There is a tree-based visualization of data connectivity and the ability to explore the links between any pair of data elements, irrespective of how many intermediate links lie between them. Its principle novel features are: the flexibility of the meta-data that can be captured, the tools provided for importing data from spreadsheets and other tabular representations, the tools provided for the automatic creation of structured documents, the ability to browse and access the data via web and web-services interfaces. Within maxdLoad2 it is very straightforward to customise the meta-data that is being captured or change the definitions of the meta-data. These meta-data definitions are stored within the database itself allowing client software to connect properly to a modified database without having to be specially configured. The meta-data definitions (configuration file) can also be centralized allowing changes made in response to revisions of standards or terminologies to be propagated to clients without user intervention.maxdBrowse is hosted on a web-server and presents multiple interfaces to the contents of maxd databases. maxdBrowse emulates many of the browse and search features available in the maxdLoad2 application via a web-browser. This allows users who are not familiar with maxdLoad2 to browse and export microarray data from the database for their own analysis. The same browse and search features are also available via command-line and SOAP server interfaces. This both enables scripting of data export for use embedded in data repositories and analysis environments, and allows access to the maxd databases via web-service architectures. maxdLoad2 http://www.bioinf.man.ac.uk/microarray/maxd/ and maxdBrowse http://dbk.ch.umist.ac.uk/maxdBrowse are portable and compatible with all common operating systems and major database servers. They provide a powerful, flexible package for annotation of microarray experiments and a convenient dissemination environment. They are available for download and open sourced under the Artistic License.

  5. Concept of a spatial data infrastructure for web-mapping, processing and service provision for geo-hazards

    NASA Astrophysics Data System (ADS)

    Weinke, Elisabeth; Hölbling, Daniel; Albrecht, Florian; Friedl, Barbara

    2017-04-01

    Geo-hazards and their effects are distributed geographically over wide regions. The effective mapping and monitoring is essential for hazard assessment and mitigation. It is often best achieved using satellite imagery and new object-based image analysis approaches to identify and delineate geo-hazard objects (landslides, floods, forest fires, storm damages, etc.). At the moment, several local/national databases and platforms provide and publish data of different types of geo-hazards as well as web-based risk maps and decision support systems. Also, the European commission implemented the Copernicus Emergency Management Service (EMS) in 2015 that publishes information about natural and man-made disasters and risks. Currently, no platform for landslides or geo-hazards as such exists that enables the integration of the user in the mapping and monitoring process. In this study we introduce the concept of a spatial data infrastructure for object delineation, web-processing and service provision of landslide information with the focus on user interaction in all processes. A first prototype for the processing and mapping of landslides in Austria and Italy has been developed within the project Land@Slide, funded by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program ASAP. The spatial data infrastructure and its services for the mapping, processing and analysis of landslides can be extended to other regions and to all types of geo-hazards for analysis and delineation based on Earth Observation (EO) data. The architecture of the first prototypical spatial data infrastructure includes four main areas of technical components. The data tier consists of a file storage system and the spatial data catalogue for the management of EO-data, other geospatial data on geo-hazards, as well as descriptions and protocols for the data processing and analysis. An interface to extend the data integration from external sources (e.g. Sentinel-2 data) is planned for the possibility of rapid mapping. The server tier consists of java based web and GIS server. Sub and main services are part of the service tier. Sub services are for example map services, feature editing services, geometry services, geoprocessing services and metadata services. For (meta)data provision and to support data interoperability, web standards of the OGC and the rest-interface is used. Four central main services are designed and developed: (1) a mapping service (including image segmentation and classification approaches), (2) a monitoring service to monitor changes over time, (3) a validation service to analyze landslide delineations from different sources and (4) an infrastructure service to identify affected landslides. The main services use and combine parts of the sub services. Furthermore, a series of client applications based on new technology standards making use of the data and services offered by the spatial data infrastructure. Next steps include the design to extend the current spatial data infrastructure to other areas and geo-hazard types to develop a spatial data infrastructure that can assist targeted mapping and monitoring of geo-hazards on a global context.

  6. Improving Data Catalogs with Free and Open Source Software

    NASA Astrophysics Data System (ADS)

    Schweitzer, R.; Hankin, S.; O'Brien, K.

    2013-12-01

    The Global Earth Observation Integrated Data Environment (GEO-IDE) is NOAA's effort to successfully integrate data and information with partners in the national US-Global Earth Observation System (US-GEO) and the international Global Earth Observation System of Systems (GEOSS). As part of the GEO-IDE, the Unified Access Framework (UAF) is working to build momentum towards the goal of increased data integration and interoperability. The UAF project is moving towards this goal with an approach that includes leveraging well known and widely used standards, as well as free and open source software. The UAF project shares the widely held conviction that the use of data standards is a key ingredient necessary to achieve interoperability. Many community-based consensus standards fail, though, due to poor compliance. Compliance problems emerge for many reasons: because the standards evolve through versions, because documentation is ambiguous or because individual data providers find the standard inadequate as-is to meet their special needs. In addition, minimalist use of standards will lead to a compliant service, but one which is of low quality. In this presentation, we will be discussing the UAF effort to build a catalog cleaning tool which is designed to crawl THREDDS catalogs, analyze the data available, and then build a 'clean' catalog of data which is standards compliant and has a uniform set of data access services available. These data services include, among others, OPeNDAP, Web Coverage Service (WCS) and Web Mapping Service (WMS). We will also discuss how we are utilizing free and open source software and services to both crawl, analyze and build the clean data catalog, as well as our efforts to help data providers improve their data catalogs. We'll discuss the use of open source software such as DataNucleus, Thematic Realtime Environmental Distributed Data Services (THREDDS), ncISO and the netCDF Java Common Data Model (CDM). We'll also demonstrate how we are using free services such as Google Charts to create an easily identifiable visual metaphor which describes the quality of data catalogs. Using this rubric, in conjunction with the ncISO metadata quality rubric, will allow data providers to identify non-compliance issues in their data catalogs, thereby improving data availability to their users and to data discovery systems

  7. Network of Research Infrastructures for European Seismology (NERIES)-Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Rives, S.; Thomy, P.; Euchner, F.; Schorlemmer, D.; Saul, J.; Heinloo, A.; Bossu, R.; van Eck, T.

    2009-04-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach based on the concept of an internet service oriented architecture (SOA) to establish a cyberinfrastructure for distributed and heterogeneous data streams and services. Moreover, one of the goals of NERIES is to design and develop a Web portal that acts as the uppermost layer of the infrastructure and provides rendering capabilities for the underlying sets of data The Web services that are currently being designed and implemented will deliver data that has been adopted to appropriate formats. The parametric information about a seismic event is delivered using a seismology-specific Extensible mark-up Language(XML) format called QuakeML (https://quake.ethz.ch/quakeml), which has been formalized and implemented in coordination with global earthquake-information agencies. Uniform Resource Identifiers (URIs) are used to assign identifiers to (1) seismic-event parameters described by QuakeML, and (2) generic resources, for example, authorities, locations providers, location methods, software adopted, and so on, described by use of a data model constructed with the resource description framework (RDF) and accessible as a service. The European-Mediterranean Seismological Center (EMSC) has implemented a unique event identifier (UNID) that will create the seismic event URI used by the QuakeML data model. Access to data such as broadband waveform, accelerometric data and stations inventories will be also provided through a set of Web services that will wrap the middleware used by the seismological observatory or institute that is supplying the data. Each single application of the portal consists of a Java-based JSR-168-standard portlet (often provided with interactive maps for data discovery). In specific cases, it will be possible to distribute the deployment of the portlets among the data providers, such as seismological agencies, because of the adoption, within the distributed architecture of the NERIES portal of the Web Services for Remote Portlets (WSRP) standard for presentation-oriented web services The purpose of the portal is to provide to the user his own environment where he can surf and retrieve the data of interest, offering a set of shopping carts with storage and management facilities. This approach involves having the user interact with dedicated tools in order to compose personalized datasets that can be downloaded or combined with other information available either through the NERIES network of Web services or through the user`s own carts. Administrative applications also are provided to perform monitoring tasks such as retrieving service statistics or scheduling submitted data requests. An administrative tool is included that allows the RDF model to be extended, within certain constraints, with new classes and properties.

  8. Network of Research Infrastructures for European Seismology (NERIES) - Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Rives, S.; Thomy, P.; Euchner, F.; Schorlemmer, D.; Saul, J.; Heinloo, A.; Bossu, R.; van Eck, T.

    2008-12-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach based on the concept of an internet service oriented architecture (SOA) to establish a cyberinfrastructure for distributed and heterogeneous data streams and services. Moreover, one of the goals of NERIES is to design and develop a Web portal that acts as the uppermost layer of the infrastructure and provides rendering capabilities for the underlying sets of data The Web services that are currently being designed and implemented will deliver data that has been adopted to appropriate formats. The parametric information about a seismic event is delivered using a seismology- specific Extensible mark-up Language(XML) format called QuakeML (https://quake.ethz.ch/quakeml), which has been formalized and implemented in coordination with global earthquake-information agencies. Uniform Resource Identifiers (URIs) are used to assign identifiers to (1) seismic-event parameters described by QuakeML, and (2) generic resources, for example, authorities, locations providers, location methods, software adopted, and so on, described by use of a data model constructed with the resource description framework (RDF) and accessible as a service. The European-Mediterranean Seismological Center (EMSC) has implemented a unique event identifier (UNID) that will create the seismic event URI used by the QuakeML data model. Access to data such as broadband waveform, accelerometric data and stations inventories will be also provided through a set of Web services that will wrap the middleware used by the seismological observatory or institute that is supplying the data. Each single application of the portal consists of a Java-based JSR-168-standard portlet (often provided with interactive maps for data discovery). In specific cases, it will be possible to distribute the deployment of the portlets among the data providers, such as seismological agencies, because of the adoption, within the distributed architecture of the NERIES portal of the Web Services for Remote Portlets (WSRP) standard for presentation-oriented web services The purpose of the portal is to provide to the user his own environment where he can surf and retrieve the data of interest, offering a set of shopping carts with storage and management facilities. This approach involves having the user interact with dedicated tools in order to compose personalized datasets that can be downloaded or combined with other information available either through the NERIES network of Web services or through the user's own carts. Administrative applications also are provided to perform monitoring tasks such as retrieving service statistics or scheduling submitted data requests. An administrative tool is included that allows the RDF model to be extended, within certain constraints, with new classes and properties.

  9. The IRIS Federator: Accessing Seismological Data Across Data Centers

    NASA Astrophysics Data System (ADS)

    Trabant, C. M.; Van Fossen, M.; Ahern, T. K.; Weekly, R. T.

    2015-12-01

    In 2013 the International Federation of Digital Seismograph Networks (FDSN) approved a specification for web service interfaces for accessing seismological station metadata, time series and event parameters. Since then, a number of seismological data centers have implemented FDSN service interfaces, with more implementations in development. We have developed a new system called the IRIS Federator which leverages this standardization and provides the scientific community with a service for easy discovery and access of seismological data across FDSN data centers. These centers are located throughout the world and this work represents one model of a system for data collection across geographic and political boundaries.The main components of the IRIS Federator are a catalog of time series metadata holdings at each data center and a web service interface for searching the catalog. The service interface is designed to support client­-side federated data access, a model in which the client (software run by the user) queries the catalog and then collects the data from each identified center. By default the results are returned in a format suitable for direct submission to those web services, but could also be formatted in a simple text format for general data discovery purposes. The interface will remove any duplication of time series channels between data centers according to a set of business rules by default, however a user may request results with all duplicate time series entries included. We will demonstrate how client­-side federation is being incorporated into some of the DMC's data access tools. We anticipate further enhancement of the IRIS Federator to improve data discovery in various scenarios and to improve usefulness to communities beyond seismology.Data centers with FDSN web services: http://www.fdsn.org/webservices/The IRIS Federator query interface: http://service.iris.edu/irisws/fedcatalog/1/

  10. Using Semantic Web technologies for the generation of domain-specific templates to support clinical study metadata standards.

    PubMed

    Jiang, Guoqian; Evans, Julie; Endle, Cory M; Solbrig, Harold R; Chute, Christopher G

    2016-01-01

    The Biomedical Research Integrated Domain Group (BRIDG) model is a formal domain analysis model for protocol-driven biomedical research, and serves as a semantic foundation for application and message development in the standards developing organizations (SDOs). The increasing sophistication and complexity of the BRIDG model requires new approaches to the management and utilization of the underlying semantics to harmonize domain-specific standards. The objective of this study is to develop and evaluate a Semantic Web-based approach that integrates the BRIDG model with ISO 21090 data types to generate domain-specific templates to support clinical study metadata standards development. We developed a template generation and visualization system based on an open source Resource Description Framework (RDF) store backend, a SmartGWT-based web user interface, and a "mind map" based tool for the visualization of generated domain-specific templates. We also developed a RESTful Web Service informed by the Clinical Information Modeling Initiative (CIMI) reference model for access to the generated domain-specific templates. A preliminary usability study is performed and all reviewers (n = 3) had very positive responses for the evaluation questions in terms of the usability and the capability of meeting the system requirements (with the average score of 4.6). Semantic Web technologies provide a scalable infrastructure and have great potential to enable computable semantic interoperability of models in the intersection of health care and clinical research.

  11. Lowering the Barrier for Standards-Compliant and Discoverable Hydrological Data Publication

    NASA Astrophysics Data System (ADS)

    Kadlec, J.

    2013-12-01

    The growing need for sharing and integration of hydrological and climate data across multiple organizations has resulted in the development of distributed, services-based, standards-compliant hydrological data management and data hosting systems. The problem with these systems is complicated set-up and deployment. Many existing systems assume that the data publisher has remote-desktop access to a locally managed server and experience with computer network setup. For corporate websites, shared web hosting services with limited root access provide an inexpensive, dynamic web presence solution using the Linux, Apache, MySQL and PHP (LAMP) software stack. In this paper, we hypothesize that a webhosting service provides an optimal, low-cost solution for hydrological data hosting. We propose a software architecture of a standards-compliant, lightweight and easy-to-deploy hydrological data management system that can be deployed on the majority of existing shared internet webhosting services. The architecture and design is validated by developing Hydroserver Lite: a PHP and MySQL-based hydrological data hosting package that is fully standards-compliant and compatible with the Consortium of Universities for Advancement of Hydrologic Sciences (CUAHSI) hydrologic information system. It is already being used for management of field data collection by students of the McCall Outdoor Science School in Idaho. For testing, the Hydroserver Lite software has been installed on multiple different free and low-cost webhosting sites including Godaddy, Bluehost and 000webhost. The number of steps required to set-up the server is compared with the number of steps required to set-up other standards-compliant hydrologic data hosting systems including THREDDS, IstSOS and MapServer SOS.

  12. Applications of Dynamic Deployment of Services in Industrial Automation

    NASA Astrophysics Data System (ADS)

    Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.

    Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.

  13. Open Data, Jupyter Notebooks and Geospatial Data Standards Combined - Opening up large volumes of marine and climate data to other communities

    NASA Astrophysics Data System (ADS)

    Clements, O.; Siemen, S.; Wagemann, J.

    2017-12-01

    The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool to generate reproducible workflows for environmental data analysis.

  14. Interoperable web applications for sharing data and products of the International DORIS Service

    NASA Astrophysics Data System (ADS)

    Soudarin, L.; Ferrage, P.

    2017-12-01

    The International DORIS Service (IDS) was created in 2003 under the umbrella of the International Association of Geodesy (IAG) to foster scientific research related to the French satellite tracking system DORIS and to deliver scientific products, mostly related to the International Earth rotation and Reference systems Service (IERS). Since its start, the organization has continuously evolved, leading to additional and improved operational products from an expanded set of DORIS Analysis Centers. In addition, IDS has developed services for sharing data and products with the users. Metadata and interoperable web applications are proposed to explore, visualize and download the key products such as the position time series of the geodetic points materialized at the ground tracking stations. The Global Geodetic Observing System (GGOS) encourages the IAG Services to develop such interoperable facilities on their website. The objective for GGOS is to set up an interoperable portal through which the data and products produced by the IAG Services can be served to the user community. We present the web applications proposed by IDS to visualize time series of geodetic observables or to get information about the tracking ground stations and the tracked satellites. We discuss the future plans for IDS to meet the recommendations of GGOS. The presentation also addresses the needs for the IAG Services to adopt common metadata thesaurus to describe data and products, and interoperability standards to share them.

  15. Online plot services for paleomagnetism and rock magnetism

    NASA Astrophysics Data System (ADS)

    Hatakeyama, T.

    2017-12-01

    In paleomagnetism and rock magnetism, a lot of types of original plots are used for obtained data from measurements. Many researchers in paleomagnetism often use not only general-purpose plotting programs such as Microsoft Excel but also single-purpose tools. A large benefit of using the latter tools is that we can make a beautiful figure for our own data. However, those programs require specific environment for their operation such as type of hardware and platform, type of operation system and its version, libraries for execution and so on. Therefore, it is difficult to share the result and graphics among the collaborators who use different environments on their PCs. Thus, one of the best solution is likely a program operated on popular environment. The most popular is web environment as we all know. Almost all current operating systems have web browsers as standard and all people use them regularly. Now we provide a web-based service plotting paleomagnetic results easily.We develop original programs with a command-line user interface (non-GUI), and we prepared web pages for input of the simple measured data and options and a wrapper script which transfers the entered values to the program. The results, analyzed values and plotted graphs from the program are shown in the HTML page and downloadable. Our plot services are provided in http://mage-p.org/mageplot/. In this talk, we introduce our program and service and discuss the philosophy and efficiency of these services.

  16. A platform for exploration into chaining of web services for clinical data transformation and reasoning.

    PubMed

    Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María Del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat

    2016-01-01

    The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer.

  17. A grid-enabled web service for low-resolution crystal structure refinement.

    PubMed

    O'Donovan, Daniel J; Stokes-Rees, Ian; Nam, Yunsun; Blacklow, Stephen C; Schröder, Gunnar F; Brunger, Axel T; Sliz, Piotr

    2012-03-01

    Deformable elastic network (DEN) restraints have proved to be a powerful tool for refining structures from low-resolution X-ray crystallographic data sets. Unfortunately, optimal refinement using DEN restraints requires extensive calculations and is often hindered by a lack of access to sufficient computational resources. The DEN web service presented here intends to provide structural biologists with access to resources for running computationally intensive DEN refinements in parallel on the Open Science Grid, the US cyberinfrastructure. Access to the grid is provided through a simple and intuitive web interface integrated into the SBGrid Science Portal. Using this portal, refinements combined with full parameter optimization that would take many thousands of hours on standard computational resources can now be completed in several hours. An example of the successful application of DEN restraints to the human Notch1 transcriptional complex using the grid resource, and summaries of all submitted refinements, are presented as justification.

  18. Semantic enrichment of medical forms - semi-automated coding of ODM-elements via web services.

    PubMed

    Breil, Bernhard; Watermann, Andreas; Haas, Peter; Dziuballe, Philipp; Dugas, Martin

    2012-01-01

    Semantic interoperability is an unsolved problem which occurs while working with medical forms from different information systems or institutions. Standards like ODM or CDA assure structural homogenization but in order to compare elements from different data models it is necessary to use semantic concepts and codes on an item level of those structures. We developed and implemented a web-based tool which enables a domain expert to perform semi-automated coding of ODM-files. For each item it is possible to inquire web services which result in unique concept codes without leaving the context of the document. Although it was not feasible to perform a totally automated coding we have implemented a dialog based method to perform an efficient coding of all data elements in the context of the whole document. The proportion of codable items was comparable to results from previous studies.

  19. The GEOSS Clearinghouse based on the GeoNetwork opensource

    NASA Astrophysics Data System (ADS)

    Liu, K.; Yang, C.; Wu, H.; Huang, Q.

    2010-12-01

    The Global Earth Observation System of Systems (GEOSS) is established to support the study of the Earth system in a global community. It provides services for social management, quick response, academic research, and education. The purpose of GEOSS is to achieve comprehensive, coordinated and sustained observations of the Earth system, improve monitoring of the state of the Earth, increase understanding of Earth processes, and enhance prediction of the behavior of the Earth system. In 2009, GEO called for a competition for an official GEOSS clearinghouse to be selected as a source to consolidating catalogs for Earth observations. The Joint Center for Intelligent Spatial Computing at George Mason University worked with USGS to submit a solution based on the open-source platform - GeoNetwork. In the spring of 2010, the solution is selected as the product for GEOSS clearinghouse. The GEOSS Clearinghouse is a common search facility for the Intergovernmental Group on Ea rth Observation (GEO). By providing a list of harvesting functions in Business Logic, GEOSS clearinghouse can collect metadata from distributed catalogs including other GeoNetwork native nodes, webDAV/sitemap/WAF, catalog services for the web (CSW)2.0, GEOSS Component and Service Registry (http://geossregistries.info/), OGC Web Services (WCS, WFS, WMS and WPS), OAI Protocol for Metadata Harvesting 2.0, ArcSDE Server and Local File System. Metadata in GEOSS clearinghouse are managed in a database (MySQL, Postgresql, Oracle, or MckoiDB) and an index of the metadata is maintained through Lucene engine. Thus, EO data, services, and related resources can be discovered and accessed. It supports a variety of geospatial standards including CSW and SRU for search, FGDC and ISO metadata, and WMS related OGC standards for data access and visualization, as linked from the metadata.

  20. Modeling Adaptable Business Service for Enterprise Collaboration

    NASA Astrophysics Data System (ADS)

    Boukadi, Khouloud; Vincent, Lucien; Burlat, Patrick

    Nowadays, a Service Oriented Architecture (SOA) seems to be one of the most promising paradigms for leveraging enterprise information systems. SOA creates opportunities for enterprises to provide value added service tailored for on demand enterprise collaboration. With the emergence and rapid development of Web services technologies, SOA is being paid increasing attention and has become widespread. In spite of the popularity of SOA, a standardized framework for modeling and implementing business services are still in progress. For the purpose of supporting these service-oriented solutions, we adopt a model driven development approach. This paper outlines the Contextual Service Oriented Modeling and Analysis (CSOMA) methodology and presents UML profiles for the PIM level service-oriented architectural modeling, as well as its corresponding meta-models. The proposed PIM (Platform Independent Model) describes the business SOA at a high level of abstraction regardless of techniques involved in the application employment. In addition, all essential service-specific concerns required for delivering quality and context-aware service are covered. Some of the advantages of this approach are that it is generic and thus not closely allied with Web service technology as well as specifically treating the service adaptability during the design stage.

  1. Personalization of Rule-based Web Services.

    PubMed

    Choi, Okkyung; Han, Sang Yong

    2008-04-04

    Nowadays Web users have clearly expressed their wishes to receive personalized services directly. Personalization is the way to tailor services directly to the immediate requirements of the user. However, the current Web Services System does not provide any features supporting this such as consideration of personalization of services and intelligent matchmaking. In this research a flexible, personalized Rule-based Web Services System to address these problems and to enable efficient search, discovery and construction across general Web documents and Semantic Web documents in a Web Services System is proposed. This system utilizes matchmaking among service requesters', service providers' and users' preferences using a Rule-based Search Method, and subsequently ranks search results. A prototype of efficient Web Services search and construction for the suggested system is developed based on the current work.

  2. Using the RxNorm web services API for quality assurance purposes.

    PubMed

    Peters, Lee; Bodenreider, Olivier

    2008-11-06

    Auditing large, rapidly evolving terminological systems is still a challenge. In the case of RxNorm, a standardized nomenclature for clinical drugs, we argue that quality assurance processes can benefit from the recently released application programming interface (API) provided by RxNav. We demonstrate the usefulness of the API by performing a systematic comparison of alternative paths in the RxNorm graph, over several thousands of drug entities. This study revealed potential errors in RxNorm, currently under review. The results also prompted us to modify the implementation of RxNav to navigate the RxNorm graph more accurately. The RxNav web services API used in this experiment is robust and fast.

  3. Using the RxNorm Web Services API for Quality Assurance Purposes

    PubMed Central

    Peters, Lee; Bodenreider, Olivier

    2008-01-01

    Auditing large, rapidly evolving terminological systems is still a challenge. In the case of RxNorm, a standardized nomenclature for clinical drugs, we argue that quality assurance processes can benefit from the recently released application programming interface (API) provided by RxNav. We demonstrate the usefulness of the API by performing a systematic comparison of alternative paths in the RxNorm graph, over several thousands of drug entities. This study revealed potential errors in RxNorm, currently under review. The results also prompted us to modify the implementation of RxNav to navigate the RxNorm graph more accurately. The RxNorm web services API used in this experiment is robust and fast. PMID:18999038

  4. Distributed spatial information integration based on web service

    NASA Astrophysics Data System (ADS)

    Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng

    2008-10-01

    Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.

  5. Distributed spatial information integration based on web service

    NASA Astrophysics Data System (ADS)

    Tong, Hengjian; Zhang, Yun; Shao, Zhenfeng

    2009-10-01

    Spatial information systems and spatial information in different geographic locations usually belong to different organizations. They are distributed and often heterogeneous and independent from each other. This leads to the fact that many isolated spatial information islands are formed, reducing the efficiency of information utilization. In order to address this issue, we present a method for effective spatial information integration based on web service. The method applies asynchronous invocation of web service and dynamic invocation of web service to implement distributed, parallel execution of web map services. All isolated information islands are connected by the dispatcher of web service and its registration database to form a uniform collaborative system. According to the web service registration database, the dispatcher of web services can dynamically invoke each web map service through an asynchronous delegating mechanism. All of the web map services can be executed at the same time. When each web map service is done, an image will be returned to the dispatcher. After all of the web services are done, all images are transparently overlaid together in the dispatcher. Thus, users can browse and analyze the integrated spatial information. Experiments demonstrate that the utilization rate of spatial information resources is significantly raised thought the proposed method of distributed spatial information integration.

  6. GIS Services, Visualization Products, and Interoperability at the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC)

    NASA Astrophysics Data System (ADS)

    Baldwin, R.; Ansari, S.; Reid, G.; Lott, N.; Del Greco, S.

    2007-12-01

    The main goal in developing and deploying Geographic Information System (GIS) services at NOAA's National Climatic Data Center (NCDC) is to provide users with simple access to data archives while integrating new and informative climate products. Several systems at NCDC provide a variety of climatic data in GIS formats and/or map viewers. The Online GIS Map Services provide users with data discovery options which flow into detailed product selection maps, which may be queried using standard "region finder" tools or gazetteer (geographical dictionary search) functions. Each tabbed selection offers steps to help users progress through the systems. A series of additional base map layers or data types have been added to provide companion information. New map services include: Severe Weather Data Inventory, Local Climatological Data, Divisional Data, Global Summary of the Day, and Normals/Extremes products. THREDDS Data Server technology is utilized to provide access to gridded multidimensional datasets such as Model, Satellite and Radar. This access allows users to download data as a gridded NetCDF file, which is readable by ArcGIS. In addition, users may subset the data for a specific geographic region, time period, height range or variable prior to download. The NCDC Weather Radar Toolkit (WRT) is a client tool which accesses Weather Surveillance Radar 1988 Doppler (WSR-88D) data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. As more users become accustom to GIS, questions of better, cheaper, faster access soon follow. Expanding use and availability can best be accomplished through standards which promote interoperability. Our GIS related products provide Open Geospatial Consortium (OGC) compliant Web Map Services (WMS), Web Feature Services (WFS), Web Coverage Services (WCS) and Federal Geographic Data Committee (FGDC) metadata as a complement to the map viewers. KML/KMZ data files (soon to be compliant OGC specifications) also provide access.

  7. Cost-effectiveness of FENO-based and web-based monitoring in paediatric asthma management: a randomised controlled trial.

    PubMed

    Beerthuizen, Thijs; Voorend-van Bergen, Sandra; van den Hout, Wilbert B; Vaessen-Verberne, Anja A; Brackel, Hein J; Landstra, Anneke M; van den Berg, Norbert J; de Jongste, Johan C; Merkus, Peter J; Pijnenburg, Mariëlle W; Sont, Jacob K

    2016-07-01

    In children with asthma, web-based monitoring and inflammation-driven therapy may lead to improved asthma control and reduction in medications. However, the cost-effectiveness of these monitoring strategies is yet unknown. We assessed the cost-effectiveness of web-based monthly monitoring and of 4-monthly monitoring of FENO as compared with standard care. An economic evaluation was performed alongside a randomised controlled multicentre trial with a 1-year follow-up. Two hundred and seventy-two children with asthma, aged 4-18 years, were randomised to one of three strategies. In standard care, treatment was adapted according to Asthma Control Test (ACT) at 4-monthly visits, in the web-based strategy also according to web-ACT at 1 month intervals, and in the FENO-based strategy according to ACT and FENO at 4-monthly visits. Outcome measures were patient utilities, healthcare costs, societal costs and incremental cost per quality-adjusted life year (QALY) gained. No statistically significant differences were found in QALYs and costs between the three strategies. The web-based strategy had 77% chance of being most cost-effective from a healthcare perspective at a willingness to pay a generally accepted €40 000/QALY. The FENO-based strategy had 83% chance of being most cost-effective at €40 000/QALY from a societal perspective. Economically, web-based monitoring was preferred from a healthcare perspective, while the FENO-based strategy was preferred from a societal perspective, although in QALYs and costs no statistically significant changes were found as compared with standard care. As clinical outcomes also favoured the web-based and FENO-based strategies, these strategies may be useful additions to standard care. Netherlands Trial Register (NTR1995). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Providing Multi-Page Data Extraction Services with XWRAPComposer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ling; Zhang, Jianjun; Han, Wei

    2008-04-30

    Dynamic Web data sources – sometimes known collectively as the Deep Web – increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deepmore » Web. To address these challenges, we present DYNABOT, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DYNABOT has three unique characteristics. First, DYNABOT utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DYNABOT employs a modular, self-tuning system architecture for focused crawling of the Deep Web using service class descriptions. Third, DYNABOT incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.« less

  9. An Automated End-To Multi-Agent Qos Based Architecture for Selection of Geospatial Web Services

    NASA Astrophysics Data System (ADS)

    Shah, M.; Verma, Y.; Nandakumar, R.

    2012-07-01

    Over the past decade, Service-Oriented Architecture (SOA) and Web services have gained wide popularity and acceptance from researchers and industries all over the world. SOA makes it easy to build business applications with common services, and it provides like: reduced integration expense, better asset reuse, higher business agility, and reduction of business risk. Building of framework for acquiring useful geospatial information for potential users is a crucial problem faced by the GIS domain. Geospatial Web services solve this problem. With the help of web service technology, geospatial web services can provide useful geospatial information to potential users in a better way than traditional geographic information system (GIS). A geospatial Web service is a modular application designed to enable the discovery, access, and chaining of geospatial information and services across the web that are often both computation and data-intensive that involve diverse sources of data and complex processing functions. With the proliferation of web services published over the internet, multiple web services may provide similar functionality, but with different non-functional properties. Thus, Quality of Service (QoS) offers a metric to differentiate the services and their service providers. In a quality-driven selection of web services, it is important to consider non-functional properties of the web service so as to satisfy the constraints or requirements of the end users. The main intent of this paper is to build an automated end-to-end multi-agent based solution to provide the best-fit web service to service requester based on QoS.

  10. NCI's national environmental research data collection: metadata management built on standards and preparing for the semantic web

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Bastrakova, Irina; Evans, Ben; Gohar, Kashif; Santana, Fabiana; Wyborn, Lesley

    2015-04-01

    National Computational Infrastructure (NCI) manages national environmental research data collections (10+ PB) as part of its specialized high performance data node of the Research Data Storage Infrastructure (RDSI) program. We manage 40+ data collections using NCI's Data Management Plan (DMP), which is compatible with the ISO 19100 metadata standards. We utilize ISO standards to make sure our metadata is transferable and interoperable for sharing and harvesting. The DMP is used along with metadata from the data itself, to create a hierarchy of data collection, dataset and time series catalogues that is then exposed through GeoNetwork for standard discoverability. This hierarchy catalogues are linked using a parent-child relationship. The hierarchical infrastructure of our GeoNetwork catalogues system aims to address both discoverability and in-house administrative use-cases. At NCI, we are currently improving the metadata interoperability in our catalogue by linking with standardized community vocabulary services. These emerging vocabulary services are being established to help harmonise data from different national and international scientific communities. One such vocabulary service is currently being established by the Australian National Data Services (ANDS). Data citation is another important aspect of the NCI data infrastructure, which allows tracking of data usage and infrastructure investment, encourage data sharing, and increasing trust in research that is reliant on these data collections. We incorporate the standard vocabularies into the data citation metadata so that the data citation become machine readable and semantically friendly for web-search purpose as well. By standardizing our metadata structure across our entire data corpus, we are laying the foundation to enable the application of appropriate semantic mechanisms to enhance discovery and analysis of NCI's national environmental research data information. We expect that this will further increase the data discoverability and encourage the data sharing and reuse within the community, increasing the value of the data much further than its current use.

  11. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... insect, web, or frass is present or there is definite evidence of insect feeding. ...

  12. MedlinePlus Connect: Web Service

    MedlinePlus

    ... https://medlineplus.gov/connect/service.html MedlinePlus Connect: Web Service To use the sharing features on this ... if you implement MedlinePlus Connect by contacting us . Web Service Overview The parameters for the Web service ...

  13. Focused Crawling of the Deep Web Using Service Class Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, D; Liu, L; Critchlow, T

    2004-06-21

    Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address thesemore » challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.« less

  14. Web GIS in practice IV: publishing your health maps and connecting to remote WMS sources using the Open Source UMN MapServer and DM Solutions MapLab

    PubMed Central

    Boulos, Maged N Kamel; Honda, Kiyoshi

    2006-01-01

    Open Source Web GIS software systems have reached a stage of maturity, sophistication, robustness and stability, and usability and user friendliness rivalling that of commercial, proprietary GIS and Web GIS server products. The Open Source Web GIS community is also actively embracing OGC (Open Geospatial Consortium) standards, including WMS (Web Map Service). WMS enables the creation of Web maps that have layers coming from multiple different remote servers/sources. In this article we present one easy to implement Web GIS server solution that is based on the Open Source University of Minnesota (UMN) MapServer. By following the accompanying step-by-step tutorial instructions, interested readers running mainstream Microsoft® Windows machines and with no prior technical experience in Web GIS or Internet map servers will be able to publish their own health maps on the Web and add to those maps additional layers retrieved from remote WMS servers. The 'digital Asia' and 2004 Indian Ocean tsunami experiences in using free Open Source Web GIS software are also briefly described. PMID:16420699

  15. ASCOT: A Collaborative Platform for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Marcos, D.; Connolly, A. J.; Krughoff, K. S.; Smith, I.; Wallace, S. C.

    2012-09-01

    The digital networks are changing the way that knowledge is created, structured, curated, consumed, archived and referenced. Projects like Wikipedia, Github or Galaxy Zoo have shown the potential of online communities to develop and communicate ideas. ASCOT is a web based framework that facilitates collaboration among astronomers providing a simple way to share, explore, interact and analyze large amounts of data from a broad range of sources available trough the Virtual Observatories (VO). Designed with a strong emphasis on usability, ASCOT takes advantage of the latest generation of web standards and cloud technologies to implement an extendable and customizable stack of web tools and services.

  16. Molray--a web interface between O and the POV-Ray ray tracer.

    PubMed

    Harris, M; Jones, T A

    2001-08-01

    A publicly available web-based interface is presented for producing high-quality ray-traced images and movies from the molecular-modelling program O [Jones et al. (1991), Acta Cryst. A47, 110-119]. The interface allows the user to select O-plot files and set parameters to create standard input files for the popular ray-tracing renderer POV-Ray, which can then produce publication-quality still images or simple movies. To ensure ease of use, we have made this service available to the O user community via the World Wide Web. The public Molray server is available at http://xray.bmc.uu.se/molray.

  17. A web service for service composition to aid geospatial modelers

    NASA Astrophysics Data System (ADS)

    Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.

    2012-04-01

    The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and alleviated from the technicalities of workflow definitions (type matching, identification of external services endpoints, binding issues, etc.) and focus on their intended application. Moreover, the user may submit an incomplete workflow definition, and leverage CaaS recommendations (that may derive from an aggregated knowledge base of user feedback, underpinned by Web 2.0 technologies) to execute it. This is of particular interest for multidisciplinary scientific contexts, where different communities may benefit of each other knowledge through model chaining. Indeed, the CaaS approach is presented as an attempt to combine the recent advances in service-oriented computing with collaborative research principles, and social network information in general. Arguably, it may be considered a fundamental capability of the Model Web. The CaaS concept is being investigated in several application scenarios identified in the FP7 UncertWeb and EuroGEOSS projects. Key aspects of the described CaaS solution are: it provides a standard WPS interface for invoking Business Processes and allows on the fly recursive compositions of Business Processes into other Composite Processes; it is designed according to the extended SOA (broker-based) and the System-of-Systems approach, to support the reuse and integration of existing resources, in compliance with the GEOSS Model Web architecture. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 248488.

  18. MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations.

    PubMed

    Hospital, Adam; Andrio, Pau; Fenollosa, Carles; Cicin-Sain, Damjan; Orozco, Modesto; Gelpí, Josep Lluís

    2012-05-01

    MDWeb and MDMoby constitute a web-based platform to help access to molecular dynamics (MD) in the standard and high-throughput regime. The platform provides tools to prepare systems from PDB structures mimicking the procedures followed by human experts. It provides inputs and can send simulations for three of the most popular MD packages (Amber, NAMD and Gromacs). Tools for analysis of trajectories, either provided by the user or retrieved from our MoDEL database (http://mmb.pcb.ub.es/MoDEL) are also incorporated. The platform has two ways of access, a set of web-services based on the BioMoby framework (MDMoby), programmatically accessible and a web portal (MDWeb). http://mmb.irbbarcelona.org/MDWeb; additional information and methodology details can be found at the web site ( http://mmb.irbbarcelona.org/MDWeb/help.php)

  19. 3DNOW: Image-Based 3d Reconstruction and Modeling via Web

    NASA Astrophysics Data System (ADS)

    Tefera, Y.; Poiesi, F.; Morabito, D.; Remondino, F.; Nocerino, E.; Chippendale, P.

    2018-05-01

    This paper presents a web-based 3D imaging pipeline, namely 3Dnow, that can be used by anyone without the need of installing additional software other than a browser. By uploading a set of images through the web interface, 3Dnow can generate sparse and dense point clouds as well as mesh models. 3D reconstructed models can be downloaded with standard formats or previewed directly on the web browser through an embedded visualisation interface. In addition to reconstructing objects, 3Dnow offers the possibility to evaluate and georeference point clouds. Reconstruction statistics, such as minimum, maximum and average intersection angles, point redundancy and density can also be accessed. The paper describes all features available in the web service and provides an analysis of the computational performance using servers with different GPU configurations.

  20. Towards an e-Health Cloud Solution for Remote Regions at Bahia-Brazil.

    PubMed

    Sarinho, V T; Mota, A O; Silva, E P

    2017-12-19

    This paper presents CloudMedic, an e-Health Cloud solution that manages health care services in remote regions of Bahia-Brazil. For that, six main modules: Clinic, Hospital, Supply, Administrative, Billing and Health Business Intelligence, were developed to control the health flow among health actors at health institutions. They provided database model and procedures for health business rules, a standard gateway for data maintenance between web views and database layer, and a multi-front-end framework based on web views and web commands configurations. These resources were used by 2042 health actors in 261 health posts covering health demands from 118 municipalities at Bahia state. They also managed approximately 2.4 million health service 'orders and approximately 13.5 million health exams for more than 1.3 million registered patients. As a result, a collection of health functionalities available in a cloud infrastructure was successfully developed, deployed and validated in more than 28% of Bahia municipalities. A viable e-Health Cloud solution that, despite municipality limitations in remote regions, decentralized and improved the access to health care services at Bahia state.

  1. Provenance-Based Approaches to Semantic Web Service Discovery and Usage

    ERIC Educational Resources Information Center

    Narock, Thomas William

    2012-01-01

    The World Wide Web Consortium defines a Web Service as "a software system designed to support interoperable machine-to-machine interaction over a network." Web Services have become increasingly important both within and across organizational boundaries. With the recent advent of the Semantic Web, web services have evolved into semantic…

  2. Addressing data access challenges in seismology

    NASA Astrophysics Data System (ADS)

    Trabant, C. M.; Ahern, T.; Weertman, B.; Benson, R. B.; Van Fossen, M.; Weekly, R. T.; Casey, R. E.; Suleiman, Y. Y.; Stults, M.

    2016-12-01

    The development of web services at the IRIS Data Management Center (DMC) over the last 6 years represents the most significant enhancement of data access ever introduced at the DMC. These web services have allowed the us to focus our internal operations around a single, consistent data access layer while facilitating development of a new generation of tools and methods for researchers to conduct their work. This effort led the DMC to propose standardized web service interfaces within the International Federation of Digital Seismograph Networks (FDSN), enabling other seismological data centers to offer data using compatible interfaces. With this new foundation, we now turn our attention to more advanced data access challenges. In particular, we will present the status of two developments intending to address 1) access to data of consistent quality for science and 2) discovery and access of data from multiple data centers. To address the challenge of requesting high or consistent quality data we will introduce our Research-Ready Data Sets (RRDS) initiative. The purpose of the RRDS project is to reduce the time a researcher spends culling and otherwise identifying data appropriate for given study. RRDS will provide users with additional criteria related to data quality that can be specified when requesting data. Leveraging the data quality measurements provided by our MUSTANG system, these criteria will include ambient noise, completeness, dead channel identification and more. To address the challenge of seismological data discovery and access, we have built and continue to improve the IRIS Federator. The Federator takes advantage of the FDSN-standard web services at various data centers to help a user locate specific channels, wherever they may be offered globally. The search interface provides results that are pre-formatted requests, ready for submission to each data center that serves that data. These two developments are aimed squarely at reducing the time researchers spend searching for, collecting and preparing data for processing.

  3. Standardised online data access and publishing for Earth Systems and Climate data in Australia

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Druken, K. A.; Trenham, C.; Wang, J.; Wyborn, L. A.; Smillie, J.; Allen, C.; Porter, D.

    2015-12-01

    The National Computational Infrastructure (NCI) hosts Australia's largest repository (10+ PB) of research data collections spanning a wide range of fields from climate, coasts, oceans, and geophysics through to astronomy, bioinformatics, and the social sciences. Spatial scales range from global to local ultra-high resolution, requiring storage volumes from MB to PB. The data have been organised to be highly connected to both the NCI HPC and cloud resources (e.g., interactive visualisation and analysis environments). Researchers can login to utilise the high performance infrastructure for these data collections, or access the data via standards-based web services. Our aim is to provide a trusted platform to support interdisciplinary research across all the collections as well as services for use of the data within individual communities. We thus cater to a wide range of researcher needs, whilst needing to maintain a consistent approach to data management and publishing. All research data collections hosted at NCI are governed by a data management plan, prior to being published through a variety of platforms and web services such as OPeNDAP, HTTP, and WMS. The data management plan ensures the use of standard formats (when available) that comply with relevant data conventions (e.g., CF-Convention) and metadata standards (e.g., ISO19115). Digital Object Identifiers (DOIs) can be minted at NCI and assigned to datasets and collections. Large scale data growth and use in a variety of research fields has led to a rise in, and acceptance of, open spatial data formats such as NetCDF4/HDF5, prompting a need to extend these data conventions to fields such as geophysics and satellite Earth observations. The fusion of DOI-minted data that is discoverable and accessible via metadata and web services, creates a complete picture of data hosting, discovery, use, and citation. This enables standardised and reproducible data analysis.

  4. Linking to EPA Publications in the National Service Center for Environmental Publications (NSCEP)

    EPA Pesticide Factsheets

    Linking to a document at NSCEP rather than uploading your own copy meets EPA standards and best practices for web content. If you follow this procedure, you can link directly to the PDF document without NSCEP's viewing pane or navigation.

  5. Interoperability in Personalized Adaptive Learning

    ERIC Educational Resources Information Center

    Aroyo, Lora; Dolog, Peter; Houben, Geert-Jan; Kravcik, Milos; Naeve, Ambjorn; Nilsson, Mikael; Wild, Fridolin

    2006-01-01

    Personalized adaptive learning requires semantic-based and context-aware systems to manage the Web knowledge efficiently as well as to achieve semantic interoperability between heterogeneous information resources and services. The technological and conceptual differences can be bridged either by means of standards or via approaches based on the…

  6. Best Practices for Making Scientific Data Discoverable and Accessible through Integrated, Standards-Based Data Portals

    NASA Astrophysics Data System (ADS)

    Lucido, J. M.

    2013-12-01

    Scientists in the fields of hydrology, geophysics, and climatology are increasingly using the vast quantity of publicly-available data to address broadly-scoped scientific questions. For example, researchers studying contamination of nearshore waters could use a combination of radar indicated precipitation, modeled water currents, and various sources of in-situ monitoring data to predict water quality near a beach. In discovering, gathering, visualizing and analyzing potentially useful data sets, data portals have become invaluable tools. The most effective data portals often aggregate distributed data sets seamlessly and allow multiple avenues for accessing the underlying data, facilitated by the use of open standards. Additionally, adequate metadata are necessary for attribution, documentation of provenance and relating data sets to one another. Metadata also enable thematic, geospatial and temporal indexing of data sets and entities. Furthermore, effective portals make use of common vocabularies for scientific methods, units of measure, geologic features, chemical, and biological constituents as they allow investigators to correctly interpret and utilize data from external sources. One application that employs these principles is the National Ground Water Monitoring Network (NGWMN) Data Portal (http://cida.usgs.gov/ngwmn), which makes groundwater data from distributed data providers available through a single, publicly accessible web application by mediating and aggregating native data exposed via web services on-the-fly into Open Geospatial Consortium (OGC) compliant service output. That output may be accessed either through the map-based user interface or through the aforementioned OGC web services. Furthermore, the Geo Data Portal (http://cida.usgs.gov/climate/gdp/), which is a system that provides users with data access, subsetting and geospatial processing of large and complex climate and land use data, exemplifies the application of International Standards Organization (ISO) metadata records to enhance data discovery for both human and machine interpretation. Lastly, the Water Quality Portal (http://www.waterqualitydata.us/) achieves interoperable dissemination of water quality data by referencing a vocabulary service for mapping constituents and methods between the USGS and USEPA. The NGWMN Data Portal, Geo Data Portal and Water Quality Portal are three examples of best practices when implementing data portals that provide distributed scientific data in an integrated, standards-based approach.

  7. Extracting scientific articles from a large digital archive: BioStor and the Biodiversity Heritage Library.

    PubMed

    Page, Roderic D M

    2011-05-23

    The Biodiversity Heritage Library (BHL) is a large digital archive of legacy biological literature, comprising over 31 million pages scanned from books, monographs, and journals. During the digitisation process basic metadata about the scanned items is recorded, but not article-level metadata. Given that the article is the standard unit of citation, this makes it difficult to locate cited literature in BHL. Adding the ability to easily find articles in BHL would greatly enhance the value of the archive. A service was developed to locate articles in BHL based on matching article metadata to BHL metadata using approximate string matching, regular expressions, and string alignment. This article locating service is exposed as a standard OpenURL resolver on the BioStor web site http://biostor.org/openurl/. This resolver can be used on the web, or called by bibliographic tools that support OpenURL. BioStor provides tools for extracting, annotating, and visualising articles from the Biodiversity Heritage Library. BioStor is available from http://biostor.org/.

  8. US EPA Nonattainment Areas and Designations-SO2 (2010 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layer: SO2 2010 NAAQS State Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2010SO21hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The methods and a

  9. US EPA Nonattainment Areas and Designations-24 Hour PM2.5 (2006 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: PM2.5 24hr 2006 NAAQS State Level and PM2.5 24hr 2006 NAAQS National. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2006PM2524hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-ter

  10. US EPA Nonattainment Areas and Designations-Annual PM2.5 (1997 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layers: PM2.5 Annual 1997 NAAQS State Level and PM2.5 Annual 1997 NAAQS National . It also contains the following tables: maps99.FRED_MAP_VIEWER.%fred_area_map_data and maps99.FRED_MAP_VIEWER.%fred_area_map_view. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997PM25Annual/MapServer) and viewing the layer description.These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there

  11. US EPA Nonattainment Areas and Designations-Annual PM2.5 (2012 NAAQS)

    EPA Pesticide Factsheets

    This web service contains the following layer: PM2.5 Annual 2012 NAAQS State Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2012PM25Annual/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The me

  12. Building Capacity for a Long-Term, in-Situ, National-Scale Phenology Monitoring Network: Successes, Challenges and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Browning, D. M.

    2014-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) is a national-scale science and monitoring initiative focused on phenology - the study of seasonal life-cycle events such as leafing, flowering, reproduction, and migration - as a tool to understand the response of biodiversity to environmental variation and change. USA-NPN provides a hierarchical, national monitoring framework that enables other organizations to leverage the capacity of the Network for their own applications - minimizing investment and duplication of effort - while promoting interoperability. Network participants can leverage: (1) Standardized monitoring protocols that have been broadly vetted, tested and published; (2) A centralized National Phenology Database (NPDb) for maintaining, archiving and replicating data, with standard metadata, terms-of-use, web-services, and documentation of QA/QC, plus tools for discovery, visualization and download of raw data and derived data products; and/or (3) A national in-situ, multi-taxa phenological monitoring system, Nature's Notebook, which enables participants to observe and record phenology of plants and animals - based on the protocols and information management system (IMS) described above - via either web or mobile applications. The protocols, NPDb and IMS, and Nature's Notebook represent a hierarchy of opportunities for involvement by a broad range of interested stakeholders, from individuals to agencies. For example, some organizations have adopted (e.g., the National Ecological Observatory Network or NEON) -- or are considering adopting (e.g., the Long-Term Agroecosystems Network or LTAR) -- the USA-NPN standardized protocols, but will develop their own database and IMS with web services to promote sharing of data with the NPDb. Other organizations (e.g., the Inventory and Monitoring Programs of the National Wildlife Refuge System and the National Park Service) have elected to use Nature's Notebook to support their phenological monitoring programs. We highlight the challenges and benefits of integrating phenology monitoring within existing and emerging national monitoring networks, and showcase opportunities that exist when standardized protocols are adopted and implemented to promote data interoperability and sharing.

  13. Process model-based atomic service discovery and composition of composite semantic web services using web ontology language for services (OWL-S)

    NASA Astrophysics Data System (ADS)

    Paulraj, D.; Swamynathan, S.; Madhaiyan, M.

    2012-11-01

    Web Service composition has become indispensable as a single web service cannot satisfy complex functional requirements. Composition of services has received much interest to support business-to-business (B2B) or enterprise application integration. An important component of the service composition is the discovery of relevant services. In Semantic Web Services (SWS), service discovery is generally achieved by using service profile of Ontology Web Languages for Services (OWL-S). The profile of the service is a derived and concise description but not a functional part of the service. The information contained in the service profile is sufficient for atomic service discovery, but it is not sufficient for the discovery of composite semantic web services (CSWS). The purpose of this article is two-fold: first to prove that the process model is a better choice than the service profile for service discovery. Second, to facilitate the composition of inter-organisational CSWS by proposing a new composition method which uses process ontology. The proposed service composition approach uses an algorithm which performs a fine grained match at the level of atomic process rather than at the level of the entire service in a composite semantic web service. Many works carried out in this area have proposed solutions only for the composition of atomic services and this article proposes a solution for the composition of composite semantic web services.

  14. Automatic geospatial information Web service composition based on ontology interface matching

    NASA Astrophysics Data System (ADS)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  15. Benchmark Intelligent Agent Systems for Distributed Battle Tracking

    DTIC Science & Technology

    2008-06-20

    services in the military and other domains, each entity in the benchmark system exposes a standard set of Web services. Jess ( Java Expert Shell...System) is a rule engine for the Java platform and is an interpreter for the Jess rule language. It is used here to implement policies that maintain...battle tracking system (DBTS), maintaining distributed situation awareness. The Java Agent DEvelopment (JADE) framework is a software framework

  16. EOforge: Generic Open Framework for Earth Observation Data Processing Systems

    DTIC Science & Technology

    2006-09-01

    Allow the use of existing interfaces, i.e. MUIS: ESA multimission catalogue for EO products. • Support last EO systems technologies, i.e. MASS ...5. Extensibility and configurability to allow customisation and the inclusion of new functionality. 6. Multi-instrument and multi-mission processing...such as: • MUIS: ESA multimission catalogue for EO products. • MASS (Multi-Application Support Service System): ESA web services technology standard

  17. New Generation Sensor Web Enablement

    PubMed Central

    Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob

    2011-01-01

    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760

  18. First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Manaud, N.; Gonzalez, J.

    2014-04-01

    We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.

  19. Towards Web-based representation and processing of health information

    PubMed Central

    Gao, Sheng; Mioc, Darka; Yi, Xiaolun; Anton, Francois; Oldfield, Eddie; Coleman, David J

    2009-01-01

    Background There is great concern within health surveillance, on how to grapple with environmental degradation, rapid urbanization, population mobility and growth. The Internet has emerged as an efficient way to share health information, enabling users to access and understand data at their fingertips. Increasingly complex problems in the health field require increasingly sophisticated computer software, distributed computing power, and standardized data sharing. To address this need, Web-based mapping is now emerging as an important tool to enable health practitioners, policy makers, and the public to understand spatial health risks, population health trends and vulnerabilities. Today several web-based health applications generate dynamic maps; however, for people to fully interpret the maps they need data source description and the method used in the data analysis or statistical modeling. For the representation of health information through Web-mapping applications, there still lacks a standard format to accommodate all fixed (such as location) and variable (such as age, gender, health outcome, etc) indicators in the representation of health information. Furthermore, net-centric computing has not been adequately applied to support flexible health data processing and mapping online. Results The authors of this study designed a HEalth Representation XML (HERXML) schema that consists of the semantic (e.g., health activity description, the data sources description, the statistical methodology used for analysis), geometric, and cartographical representations of health data. A case study has been carried on the development of web application and services within the Canadian Geospatial Data Infrastructure (CGDI) framework for community health programs of the New Brunswick Lung Association. This study facilitated the online processing, mapping and sharing of health information, with the use of HERXML and Open Geospatial Consortium (OGC) services. It brought a new solution in better health data representation and initial exploration of the Web-based processing of health information. Conclusion The designed HERXML has been proven to be an appropriate solution in supporting the Web representation of health information. It can be used by health practitioners, policy makers, and the public in disease etiology, health planning, health resource management, health promotion and health education. The utilization of Web-based processing services in this study provides a flexible way for users to select and use certain processing functions for health data processing and mapping via the Web. This research provides easy access to geospatial and health data in understanding the trends of diseases, and promotes the growth and enrichment of the CGDI in the public health sector. PMID:19159445

  20. Graph-Based Semantic Web Service Composition for Healthcare Data Integration.

    PubMed

    Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  1. Graph-Based Semantic Web Service Composition for Healthcare Data Integration

    PubMed Central

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602

  2. The taxonomic name resolution service: an online tool for automated standardization of plant names

    PubMed Central

    2013-01-01

    Background The digitization of biodiversity data is leading to the widespread application of taxon names that are superfluous, ambiguous or incorrect, resulting in mismatched records and inflated species numbers. The ultimate consequences of misspelled names and bad taxonomy are erroneous scientific conclusions and faulty policy decisions. The lack of tools for correcting this ‘names problem’ has become a fundamental obstacle to integrating disparate data sources and advancing the progress of biodiversity science. Results The TNRS, or Taxonomic Name Resolution Service, is an online application for automated and user-supervised standardization of plant scientific names. The TNRS builds upon and extends existing open-source applications for name parsing and fuzzy matching. Names are standardized against multiple reference taxonomies, including the Missouri Botanical Garden's Tropicos database. Capable of processing thousands of names in a single operation, the TNRS parses and corrects misspelled names and authorities, standardizes variant spellings, and converts nomenclatural synonyms to accepted names. Family names can be included to increase match accuracy and resolve many types of homonyms. Partial matching of higher taxa combined with extraction of annotations, accession numbers and morphospecies allows the TNRS to standardize taxonomy across a broad range of active and legacy datasets. Conclusions We show how the TNRS can resolve many forms of taxonomic semantic heterogeneity, correct spelling errors and eliminate spurious names. As a result, the TNRS can aid the integration of disparate biological datasets. Although the TNRS was developed to aid in standardizing plant names, its underlying algorithms and design can be extended to all organisms and nomenclatural codes. The TNRS is accessible via a web interface at http://tnrs.iplantcollaborative.org/ and as a RESTful web service and application programming interface. Source code is available at https://github.com/iPlantCollaborativeOpenSource/TNRS/. PMID:23324024

  3. Developing a Web-based system by integrating VGI and SDI for real estate management and marketing

    NASA Astrophysics Data System (ADS)

    Salajegheh, J.; Hakimpour, F.; Esmaeily, A.

    2014-10-01

    Property importance of various aspects, especially the impact on various sectors of the economy and the country's macroeconomic is clear. Because of the real, multi-dimensional and heterogeneous nature of housing as a commodity, the lack of an integrated system includes comprehensive information of property, the lack of awareness of some actors in this field about comprehensive information about property and the lack of clear and comprehensive rules and regulations for the trading and pricing, several problems arise for the people involved in this field. In this research implementation of a crowd-sourced Web-based real estate support system is desired. Creating a Spatial Data Infrastructure (SDI) in this system for collecting, updating and integrating all official data about property is also desired in this study. In this system a Web2.0 broker and technologies such as Web services and service composition has been used. This work aims to provide comprehensive and diverse information about property from different sources. For this purpose five-level real estate support system architecture is used. PostgreSql DBMS is used to implement the desired system. Geoserver software is also used as map server and reference implementation of OGC (Open Geospatial Consortium) standards. And Apache server is used to run web pages and user interfaces. Integration introduced methods and technologies provide a proper environment for various users to use the system and share their information. This goal is only achieved by cooperation between all involved organizations in real estate with implementation their required infrastructures in interoperability Web services format.

  4. The VO-Dance web application at the IA2 data center

    NASA Astrophysics Data System (ADS)

    Molinaro, Marco; Knapic, Cristina; Smareglia, Riccardo

    2012-09-01

    Italian center for Astronomical Archives (IA2, http://ia2.oats.inaf.it) is a national infrastructure project of the Italian National Institute for Astrophysics (Istituto Nazionale di AstroFisica, INAF) that provides services for the astronomical community. Besides data hosting for the Large Binocular Telescope (LBT) Corporation, the Galileo National Telescope (Telescopio Nazionale Galileo, TNG) Consortium and other telescopes and instruments, IA2 offers proprietary and public data access through user portals (both developed and mirrored) and deploys resources complying the Virtual Observatory (VO) standards. Archiving systems and web interfaces are developed to be extremely flexible about adding new instruments from other telescopes. VO resources publishing, along with data access portals, implements the International Virtual Observatory Alliance (IVOA) protocols providing astronomers with new ways of analyzing data. Given the large variety of data flavours and IVOA standards, the need for tools to easily accomplish data ingestion and data publishing arises. This paper describes the VO-Dance tool, that IA2 started developing to address VO resources publishing in a dynamical way from already existent database tables or views. The tool consists in a Java web application, potentially DBMS and platform independent, that stores internally the services' metadata and information, exposes restful endpoints to accept VO queries for these services and dynamically translates calls to these endpoints to SQL queries coherent with the published table or view. In response to the call VO-Dance translates back the database answer in a VO compliant way.

  5. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation. This immense intensive calculation needs to be performed for a major part of European landscape. A LINUX version of the commercial LimA software for noise mapping analysis has been implemented on a test cluster within the German D-GRID computer network. Results and performance indicators will be presented. The presentation is an extension to last-years presentation "Spatial Data Infrastructures and Grid Computing: the GDI-Grid project" that described the gridification concept developed in the GDI-Grid project and provided an overview of the conceptual gaps between Grid Computing and Spatial Data Infrastructures. Results from the GDI-Grid project are incorporated in the OGC-OGF (Open Grid Forum) collaboration efforts as well as the OGC WPS 2.0 standards working group developing the next major version of the WPS specification.

  6. Reliable Execution Based on CPN and Skyline Optimization for Web Service Composition

    PubMed Central

    Ha, Weitao; Zhang, Guojun

    2013-01-01

    With development of SOA, the complex problem can be solved by combining available individual services and ordering them to best suit user's requirements. Web services composition is widely used in business environment. With the features of inherent autonomy and heterogeneity for component web services, it is difficult to predict the behavior of the overall composite service. Therefore, transactional properties and nonfunctional quality of service (QoS) properties are crucial for selecting the web services to take part in the composition. Transactional properties ensure reliability of composite Web service, and QoS properties can identify the best candidate web services from a set of functionally equivalent services. In this paper we define a Colored Petri Net (CPN) model which involves transactional properties of web services in the composition process. To ensure reliable and correct execution, unfolding processes of the CPN are followed. The execution of transactional composition Web service (TCWS) is formalized by CPN properties. To identify the best services of QoS properties from candidate service sets formed in the TCSW-CPN, we use skyline computation to retrieve dominant Web service. It can overcome that the reduction of individual scores to an overall similarity leads to significant information loss. We evaluate our approach experimentally using both real and synthetically generated datasets. PMID:23935431

  7. Reliable execution based on CPN and skyline optimization for Web service composition.

    PubMed

    Chen, Liping; Ha, Weitao; Zhang, Guojun

    2013-01-01

    With development of SOA, the complex problem can be solved by combining available individual services and ordering them to best suit user's requirements. Web services composition is widely used in business environment. With the features of inherent autonomy and heterogeneity for component web services, it is difficult to predict the behavior of the overall composite service. Therefore, transactional properties and nonfunctional quality of service (QoS) properties are crucial for selecting the web services to take part in the composition. Transactional properties ensure reliability of composite Web service, and QoS properties can identify the best candidate web services from a set of functionally equivalent services. In this paper we define a Colored Petri Net (CPN) model which involves transactional properties of web services in the composition process. To ensure reliable and correct execution, unfolding processes of the CPN are followed. The execution of transactional composition Web service (TCWS) is formalized by CPN properties. To identify the best services of QoS properties from candidate service sets formed in the TCSW-CPN, we use skyline computation to retrieve dominant Web service. It can overcome that the reduction of individual scores to an overall similarity leads to significant information loss. We evaluate our approach experimentally using both real and synthetically generated datasets.

  8. Web-GIS visualisation of permafrost-related Remote Sensing products for ESA GlobPermafrost

    NASA Astrophysics Data System (ADS)

    Haas, A.; Heim, B.; Schaefer-Neth, C.; Laboor, S.; Nitze, I.; Grosse, G.; Bartsch, A.; Kaab, A.; Strozzi, T.; Wiesmann, A.; Seifert, F. M.

    2016-12-01

    The ESA GlobPermafrost (www.globpermafrost.info) provides a remote sensing service for permafrost research and applications. The service comprises of data product generation for various sites and regions as well as specific infrastructure allowing overview and access to datasets. Based on an online user survey conducted within the project, the user community extensively applies GIS software to handle remote sensing-derived datasets and requires preview functionalities before accessing them. In response, we develop the Permafrost Information System PerSys which is conceptualized as an open access geospatial data dissemination and visualization portal. PerSys will allow visualisation of GlobPermafrost raster and vector products such as land cover classifications, Landsat multispectral index trend datasets, lake and wetland extents, InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, and land surface temperature datasets. The datasets will be published as WebGIS services relying on OGC-standardized Web Mapping Service (WMS) and Web Feature Service (WFS) technologies for data display and visualization. The WebGIS environment will be hosted at the AWI computing centre where a geodata infrastructure has been implemented comprising of ArcGIS for Server 10.4, PostgreSQL 9.2 and a browser-driven data viewer based on Leaflet (http://leafletjs.com). Independently, we will provide an `Access - Restricted Data Dissemination Service', which will be available to registered users for testing frequently updated versions of project datasets. PerSys will become a core project of the Arctic Permafrost Geospatial Centre (APGC) within the ERC-funded PETA-CARB project (www.awi.de/petacarb). The APGC Data Catalogue will contain all final products of GlobPermafrost, allow in-depth dataset search via keywords, spatial and temporal coverage, data type, etc., and will provide DOI-based links to the datasets archived in the long-term, open access PANGAEA data repository.

  9. Advancements in Data Access at the IRIS Data Management Center to Broaden Data Use

    NASA Astrophysics Data System (ADS)

    Benson, R. B.; Trabant, C. M.; Ahern, T. K.

    2013-12-01

    The IRIS Data Management Center (DMC) has been serving digital seismic data for more than 20 years and has offered a variety of access mechanisms that have stood the test of time. However, beginning in 2010, and in response to multiple needs being requested from the IRIS DMC, we have developed web service interfaces to access our primary data repository. These new interfaces have rapidly grown in popularity. In 2013, the third full year of their operation, these services were responsible for half of all the data shipped from the DMC. In the same time period, the amount of data shipped from the other data access mechanisms has also increased. This non-linear growth of data shipments reflects the increased data usage by the research community. We believe that our new web service interfaces are well suited to fit future data access needs and signify a significant evolution in integrating different scientific data sets. Based on standardized web technologies, support for writing access software is ubiquitous. As fundamentally programmatic interfaces, the services are well suited for integration into data processing systems, in particular large-scale data processing systems. Their programmatic nature also makes then well suited for use with brokering systems where, for example, data from multiple disciplines can be integrated. In addition to providing access to raw data, the DMC created web services that apply simple, on-the-fly processing and format conversion. Processing the data (e.g. converting to Earth units) and formatting the result into something generally usable (e.g. ASCII) removes important barriers for users working in other disciplines. The end result is that we are shipping a much larger amount of data in a manner more directly usable by users. Many of these principles will be applied to the DMC's future work in the NSF's EarthCube Web Service Building Blocks project.

  10. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  11. BingEO: Enable Distributed Earth Observation Data for Environmental Research

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yang, C.; Xu, Y.

    2010-12-01

    Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data accumulated already and still growing, BingEO will allow these resources to be utilized more widely, intensively, efficiently and economically in earth science applications.

  12. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2016-12-01

    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic heterogeneity, (ii) an introduction of new paradigm for reusing existing and new standards as well as tools and models without the need of their implementation in the Cyberinfrastructures of water-related disciplines, and (iii) an investigation of a methodology by which distributed models can be coupled in a workflow using the GS services.

  13. The use of geospatial web services for exchanging utilities data

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Joanna

    2013-04-01

    Geographic information technologies and related geo-information systems currently play an important role in the management of public administration in Poland. One of these tasks is to maintain and update Geodetic Evidence of Public Utilities (GESUT), part of the National Geodetic and Cartographic Resource, which contains an important for many institutions information of technical infrastructure. It requires an active exchange of data between the Geodesy and Cartography Documentation Centers and institutions, which administrate transmission lines. The administrator of public utilities, is legally obliged to provide information about utilities to GESUT. The aim of the research work was to develop a universal data exchange methodology, which can be implemented on a variety of hardware and software platforms. This methodology use Unified Modeling Language (UML), eXtensible Markup Language (XML), and Geography Markup Language (GML). The proposed methodology is based on the two different strategies: Model Driven Architecture (MDA) and Service Oriented Architecture (SOA). Used solutions are consistent with the INSPIRE Directive and ISO 19100 series standards for geographic information. On the basis of analysis of the input data structures, conceptual models were built for both databases. Models were written in the universal modeling language: UML. Combined model that defines a common data structure was also built. This model was transformed into developed for the exchange of geographic information GML standard. The structure of the document describing the data that may be exchanged is defined in the .xsd file. Network services were selected and implemented in the system designed for data exchange based on open source tools. Methodology was implemented and tested. Data in the agreed data structure and metadata were set up on the server. Data access was provided by geospatial network services: data searching possibilities by Catalog Service for the Web (CSW), data collection by Web Feature Service (WFS). WFS provides also operation for modification data, for example to update them by utility administrator. The proposed solution significantly increases the efficiency of data exchange and facilitates maintenance the National Geodetic and Cartographic Resource.

  14. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... means that the insect, web, frass or other evidence of insects is present on the portion of kernel. ...

  15. Evolution of a Common Controller

    DTIC Science & Technology

    2012-04-01

    focused on distribution but with the same design concepts used in MOCU. Remote Operator Control Services (ROCS) will use an HTML5 enabled browser to...provide the presentation layer. HTML5 and WebGL provide most of the capability provided within MOCU 3 but in a standardized format. Data is

  16. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  17. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  18. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  19. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  20. 7 CFR 29.3036 - Leaf surface.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf surface. 29.3036 Section 29.3036 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf surface. The smoothness or roughness of the web or lamina of a tobacco leaf. Leaf surface is...

  1. 7 CFR 29.1082 - Waste.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Waste. 29.1082 Section 29.1082 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1082 Waste. The portion or portions of the web of tobacco leaves which have been lost or...

  2. Web service module for access to g-Lite

    NASA Astrophysics Data System (ADS)

    Goranova, R.; Goranov, G.

    2012-10-01

    G-Lite is a lightweight grid middleware for grid computing installed on all clusters of the European Grid Infrastructure (EGI). The middleware is partially service-oriented and does not provide well-defined Web services for job management. The existing Web services in the environment cannot be directly used by grid users for building service compositions in the EGI. In this article we present a module of well-defined Web services for job management in the EGI. We describe the architecture of the module and the design of the developed Web services. The presented Web services are composable and can participate in service compositions (workflows). An example of usage of the module with tools for service compositions in g-Lite is shown.

  3. OpenFIRE - A Web GIS Service for Distributing the Finnish Reflection Experiment Datasets

    NASA Astrophysics Data System (ADS)

    Väkevä, Sakari; Aalto, Aleksi; Heinonen, Aku; Heikkinen, Pekka; Korja, Annakaisa

    2017-04-01

    The Finnish Reflection Experiment (FIRE) is a land-based deep seismic reflection survey conducted between 2001 and 2003 by a research consortium of the Universities of Helsinki and Oulu, the Geological Survey of Finland, and a Russian state-owned enterprise SpetsGeofysika. The dataset consists of 2100 kilometers of high-resolution profiles across the Archaean and Proterozoic nuclei of the Fennoscandian Shield. Although FIRE data have been available on request since 2009, the data have remained underused outside the original research consortium. The original FIRE data have been quality-controlled. The shot gathers have been cross-checked and comprehensive errata has been created. The brute stacks provided by the Russian seismic contractor have been reprocessed into seismic sections and replotted. A complete documentation of the intermediate processing steps is provided together with guidelines for setting up a computing environment and plotting the data. An open access web service "OpenFIRE" for the visualization and the downloading of FIRE data has been created. The service includes a mobile-responsive map application capable of enriching seismic sections with data from other sources such as open data from the National Land Survey and the Geological Survey of Finland. The AVAA team of the Finnish Open Science and Research Initiative has provided a tailored Liferay portal with necessary web components such as an API (Application Programming Interface) for download requests. INSPIRE (Infrastructure for Spatial Information in Europe) -compliant discovery metadata have been produced and geospatial data will be exposed as Open Geospatial Consortium standard services. The technical guidelines of the European Plate Observing System have been followed and the service could be considered as a reference application for sharing reflection seismic data. The OpenFIRE web service is available at www.seismo.helsinki.fi/openfire

  4. An open, interoperable, transdisciplinary approach to a point cloud data service using OGC standards and open source software.

    NASA Astrophysics Data System (ADS)

    Steer, Adam; Trenham, Claire; Druken, Kelsey; Evans, Benjamin; Wyborn, Lesley

    2017-04-01

    High resolution point clouds and other topology-free point data sources are widely utilised for research, management and planning activities. A key goal for research and management users is making these data and common derivatives available in a way which is seamlessly interoperable with other observed and modelled data. The Australian National Computational Infrastructure (NCI) stores point data from a range of disciplines, including terrestrial and airborne LiDAR surveys, 3D photogrammetry, airborne and ground-based geophysical observations, bathymetric observations and 4D marine tracers. These data are stored alongside a significant store of Earth systems data including climate and weather, ecology, hydrology, geoscience and satellite observations, and available from NCI's National Environmental Research Data Interoperability Platform (NERDIP) [1]. Because of the NERDIP requirement for interoperability with gridded datasets, the data models required to store these data may not conform to the LAS/LAZ format - the widely accepted community standard for point data storage and transfer. The goal for NCI is making point data discoverable, accessible and useable in ways which allow seamless integration with earth observation datasets and model outputs - in turn assisting researchers and decision-makers in the often-convoluted process of handling and analyzing massive point datasets. With a use-case of providing a web data service and supporting a derived product workflow, NCI has implemented and tested a web-based point cloud service using the Open Geospatial Consortium (OGC) Web Processing Service [2] as a transaction handler between a web-based client and server-side computing tools based on a native Linux operating system. Using this model, the underlying toolset for driving a data service is flexible and can take advantage of NCI's highly scalable research cloud. Present work focusses on the Point Data Abstraction Library (PDAL) [3] as a logical choice for efficiently handling LAS/LAZ based point workflows, and native HDF5 libraries for handling point data kept in HDF5-based structures (eg NetCDF4, SPDlib [4]). Points stored in database tables (eg postgres-pointcloud [5]) will be considered as testing continues. Visualising and exploring massive point datasets in a web browser alongside multiple datasets has been demonstrated by the entwine-3D tiles project [6]. This is a powerful interface which enables users to investigate and select appropriate data, and is also being investigated as a potential front-end to a WPS-based point data service. In this work we show preliminary results for a WPS-based point data access system, in preparation for demonstration at FOSS4G 2017, Boston (http://2017.foss4g.org/) [1] http://nci.org.au/data-collections/nerdip/ [2] http://www.opengeospatial.org/standards/wps [3] http://www.pdal.io [4] http://www.spdlib.org/doku.php [5] https://github.com/pgpointcloud/pointcloud [6] http://cesium.entwine.io

  5. Global Imagery Browse Services (GIBS) - Rapidly Serving NASA Imagery for Applications and Science Users

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Ilavajhala, S.; Plesea, L.; Hall, J. R.; Boller, R. A.; Chang, G.; Sadaqathullah, S.; Kim, R.; Murphy, K. J.; Thompson, C. K.

    2012-12-01

    Expedited processing of imagery from NASA satellites for near-real time use by non-science applications users has a long history, especially since the beginning of the Terra and Aqua missions. Several years ago, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near-real time data products from a variety of Earth Observing System (EOS) instruments. NASA's Earth Observing System Data and Information System (EOSDIS) began exploring methods to distribute these data as imagery in an intuitive, geo-referenced format, which would be available within three hours of acquisition. Toward this end, EOSDIS has developed the Global Imagery Browse Services (GIBS, http://earthdata.nasa.gov/gibs) to provide highly responsive, scalable, and expandable imagery services. The baseline technology chosen for GIBS was a Tiled Web Mapping Service (TWMS) developed at the Jet Propulsion Laboratory. Using this, global images and mosaics are divided into tiles with fixed bounding boxes for a pyramid of fixed resolutions. Initially, the satellite imagery is created at the existing data systems for each sensor, ensuring the oversight of those most knowledgeable about the science. There, the satellite data is geolocated and converted to an image format such as JPEG, TIFF, or PNG. The GIBS ingest server retrieves imagery from the various data systems and converts them into image tiles, which are stored in a highly-optimized raster format named Meta Raster Format (MRF). The image tiles are then served to users via HTTP by means of an Apache module. Services are available for the entire globe (lat-long projection) and for both polar regions (polar stereographic projection). Requests to the services can be made with the non-standard, but widely known, TWMS format or via the well-known OGC Web Map Tile Service (WMTS) standard format. Standard OGC Web Map Service (WMS) access to the GIBS server is also available. In addition, users may request a KML pyramid. This variety of access methods allows stakeholders to develop visualization/browse clients for a diverse variety of specific audiences. Currently, EOSDIS is providing an OpenLayers web client, Worldview (http://earthdata.nasa.gov/worldview), as an interface to GIBS. A variety of other existing clients can also be developed using such tools as Google Earth, Google Earth browser Plugin, ESRI's Adobe Flash/Flex Client Library, NASA World Wind, Perceptive Pixel Client, Esri's iOS Client Library, and OpenLayers for Mobile. The imagery browse capabilities from GIBS can be combined with other EOSDIS services (i.e. ECHO OpenSearch) via a client that ties them both together to provide an interface that enables data download from the onscreen imagery. Future plans for GIBS include providing imagery based on science quality data from the entire data record of these EOS instruments.

  6. Sealife: a semantic grid browser for the life sciences applied to the study of infectious diseases.

    PubMed

    Schroeder, Michael; Burger, Albert; Kostkova, Patty; Stevens, Robert; Habermann, Bianca; Dieng-Kuntz, Rose

    2006-01-01

    The objective of Sealife is the conception and realisation of a semantic Grid browser for the life sciences, which will link the existing Web to the currently emerging eScience infrastructure. The SeaLife Browser will allow users to automatically link a host of Web servers and Web/Grid services to the Web content he/she is visiting. This will be accomplished using eScience's growing number of Web/Grid Services and its XML-based standards and ontologies. The browser will identify terms in the pages being browsed through the background knowledge held in ontologies. Through the use of Semantic Hyperlinks, which link identified ontology terms to servers and services, the SeaLife Browser will offer a new dimension of context-based information integration. In this paper, we give an overview over the different components of the browser and their interplay. This SeaLife Browser will be demonstrated within three application scenarios in evidence-based medicine, literature & patent mining, and molecular biology, all relating to the study of infectious diseases. The three applications vertically integrate the molecule/cell, the tissue/organ and the patient/population level by covering the analysis of high-throughput screening data for endocytosis (the molecular entry pathway into the cell), the expression of proteins in the spatial context of tissue and organs, and a high-level library on infectious diseases designed for clinicians and their patients. For more information see http://www.biote.ctu-dresden.de/sealife.

  7. Development of Integration Framework for Sensor Network and Satellite Image based on OGC Web Services

    NASA Astrophysics Data System (ADS)

    Ninsawat, Sarawut; Yamamoto, Hirokazu; Kamei, Akihide; Nakamura, Ryosuke; Tsuchida, Satoshi; Maeda, Takahisa

    2010-05-01

    With the availability of network enabled sensing devices, the volume of information being collected by networked sensors has increased dramatically in recent years. Over 100 physical, chemical and biological properties can be sensed using in-situ or remote sensing technology. A collection of these sensor nodes forms a sensor network, which is easily deployable to provide a high degree of visibility into real-world physical processes as events unfold. The sensor observation network could allow gathering of diverse types of data at greater spatial and temporal resolution, through the use of wired or wireless network infrastructure, thus real-time or near-real time data from sensor observation network allow researchers and decision-makers to respond speedily to events. However, in the case of environmental monitoring, only a capability to acquire in-situ data periodically is not sufficient but also the management and proper utilization of data also need to be careful consideration. It requires the implementation of database and IT solutions that are robust, scalable and able to interoperate between difference and distributed stakeholders to provide lucid, timely and accurate update to researchers, planners and citizens. The GEO (Global Earth Observation) Grid is primarily aiming at providing an e-Science infrastructure for the earth science community. The GEO Grid is designed to integrate various kinds of data related to the earth observation using the grid technology, which is developed for sharing data, storage, and computational powers of high performance computing, and is accessible as a set of services. A comprehensive web-based system for integrating field sensor and data satellite image based on various open standards of OGC (Open Geospatial Consortium) specifications has been developed. Web Processing Service (WPS), which is most likely the future direction of Web-GIS, performs the computation of spatial data from distributed data sources and returns the outcome in a standard format. The interoperability capabilities and Service Oriented Architecture (SOA) of web services allow incorporating between sensor network measurement available from Sensor Observation Service (SOS) and satellite remote sensing data from Web Mapping Service (WMS) as distributed data sources for WPS. Various applications have been developed to demonstrate the efficacy of integrating heterogeneous data source. For example, the validation of the MODIS aerosol products (MOD08_D3, the Level-3 MODIS Atmosphere Daily Global Product) by ground-based measurements using the sunphotometer (skyradiometer, Prede POM-02) installed at Phenological Eyes Network (PEN) sites in Japan. Furthermore, the web-based framework system for studying a relationship between calculated Vegetation Index from MODIS satellite image surface reflectance (MOD09GA, the Surface Reflectance Daily L2G Global 1km and 500m Product) and Gross Primary Production (GPP) field measurement at flux tower site in Thailand and Japan has been also developed. The success of both applications will contribute to maximize data utilization and improve accuracy of information by validate MODIS satellite products using high degree of accuracy and temporal measurement of field measurement data.

  8. Evolving EO-1 Sensor Web Testbed Capabilities in Pursuit of GEOSS

    NASA Technical Reports Server (NTRS)

    Mandi, Dan; Ly, Vuong; Frye, Stuart; Younis, Mohamed

    2006-01-01

    A viewgraph presentation to evolve sensor web capabilities in pursuit of capabilities to support Global Earth Observing System of Systems (GEOSS) is shown. The topics include: 1) Vision to Enable Sensor Webs with "Hot Spots"; 2) Vision Extended for Communication/Control Architecture for Missions to Mars; 3) Key Capabilities Implemented to Enable EO-1 Sensor Webs; 4) One of Three Experiments Conducted by UMBC Undergraduate Class 12-14-05 (1 - 3); 5) Closer Look at our Mini-Rovers and Simulated Mars Landscae at GSFC; 6) Beginning to Implement Experiments with Standards-Vision for Integrated Sensor Web Environment; 7) Goddard Mission Services Evolution Center (GMSEC); 8) GMSEC Component Catalog; 9) Core Flight System (CFS) and Extension for GMSEC for Flight SW; 10) Sensor Modeling Language; 11) Seamless Ground to Space Integrated Message Bus Demonstration (completed December 2005); 12) Other Experiments in Queue; 13) Acknowledgements; and 14) References.

  9. Publishing Platform for Aerial Orthophoto Maps, the Complete Stack

    NASA Astrophysics Data System (ADS)

    Čepický, J.; Čapek, L.

    2016-06-01

    When creating set of orthophoto maps from mosaic compositions, using airborne systems, such as popular drones, we need to publish results of the work to users. Several steps need to be performed in order get large scale raster data published. As first step, data have to be shared as service (OGC WMS as view service, OGC WCS as download service). But for some applications, OGC WMTS is handy as well, for faster view of the data. Finally the data have to become a part of web mapping application, so that they can be used and evaluated by non-technical users. In this talk, we would like to present automated line of those steps, where user puts in orthophoto image and as a result, OGC Open Web Services are published as well as web mapping application with the data. The web mapping application can be used as standard presentation platform for such type of big raster data to generic user. The publishing platform - Geosense online map information system - can be also used for combination of data from various resources and for creating of unique map compositions and as input for better interpretations of photographed phenomenons. The whole process is successfully tested with eBee drone with raster data resolution 1.5-4 cm/px on many areas and result is also used for creation of derived datasets, usually suited for property management - the records of roads, pavements, traffic signs, public lighting, sewage system, grave locations, and others.

  10. Leveraging the BPEL Event Model to Support QoS-aware Process Execution

    NASA Astrophysics Data System (ADS)

    Zaid, Farid; Berbner, Rainer; Steinmetz, Ralf

    Business processes executed using compositions of distributed Web Services are susceptible to different fault types. The Web Services Business Process Execution Language (BPEL) is widely used to execute such processes. While BPEL provides fault handling mechanisms to handle functional faults like invalid message types, it still lacks a flexible native mechanism to handle non-functional exceptions associated with violations of QoS levels that are typically specified in a governing Service Level Agreement (SLA), In this paper, we present an approach to complement BPEL's fault handling, where expected QoS levels and necessary recovery actions are specified declaratively in form of Event-Condition-Action (ECA) rules. Our main contribution is leveraging BPEL's standard event model which we use as an event space for the created ECA rules. We validate our approach by an extension to an open source BPEL engine.

  11. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures

    PubMed Central

    Kinjo, Akira R.; Bekker, Gert-Jan; Suzuki, Hirofumi; Tsuchiya, Yuko; Kawabata, Takeshi; Ikegawa, Yasuyo; Nakamura, Haruki

    2017-01-01

    The Protein Data Bank Japan (PDBj, http://pdbj.org), a member of the worldwide Protein Data Bank (wwPDB), accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins. We herein outline the updated web user interfaces together with RESTful web services and the backend relational database that support the former. To enhance the interoperability of the PDB data, we have previously developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, which is now a wwPDB standard called wwPDB/RDF. We have enhanced the connectivity of the wwPDB/RDF data by incorporating various external data resources. Services for searching, comparing and analyzing the ever-increasing large structures determined by hybrid methods are also described. PMID:27789697

  12. Space Weather Services and Products of RWC Russia in 2007

    NASA Astrophysics Data System (ADS)

    Burov, Viatcheslav; Avdyushin, Sergei; Denisova, Valentina

    RWC Russia (Institute of Applied Geophysics) - forecasting center unites activity of the National Heliogeophysic Service of Russia and Regional Warning Center ISES. The Center has been operating since 1974. There are several services that carry out gathering, processing and spreading of the total information data flow, (including both Russian and foreign-exchange data), and forecasts. Forecasting activities results are issued in the form of special messages, the major part of which corresponds to standard codes. Our Web page: www.geospace.ru are represented the current data and the forecasts. At present both a weekly 7-day geomagnetic forecast and the actual disturbance activity information for the previous week are available on the Web page. And, the data of some ionosphere and magnetic stations are available on this page too. Various types of our forecast alert and routine observations are considered in the report

  13. A Proposal for a Thesaurus for Web Services in Solar Radiation

    NASA Technical Reports Server (NTRS)

    Gschwind, Benoit; Menard, Lionel; Ranchin, Thierry; Wald, Lucien; Stackhouse, Paul W., Jr.

    2007-01-01

    Metadata are necessary to discover, describe and exchange any type of information, resource and service at a large scale. A significant amount of effort has been made in the field of geography and environment to establish standards. Efforts still remain to address more specific domains such as renewable energies. This communication focuses on solar energy and more specifically on aspects in solar radiation that relate to geography and meteorology. A thesaurus in solar radiation is proposed for the keys elements in solar radiation namely time, space and radiation types. The importance of time-series in solar radiation is outlined and attributes of the key elements are discussed. An XML schema for encoding metadata is proposed. The exploitation of such a schema in web services is discussed. This proposal is a first attempt at establishing a thesaurus for describing data and applications in solar radiation.

  14. Web Services--A Buzz Word with Potentials

    Treesearch

    János T. Füstös

    2006-01-01

    The simplest definition of a web service is an application that provides a web API. The web API exposes the functionality of the solution to other applications. The web API relies on other Internet-based technologies to manage communications. The resulting web services are pervasive, vendor-independent, language-neutral, and very low-cost. The main purpose of a web API...

  15. BioServices: a common Python package to access biological Web Services programmatically.

    PubMed

    Cokelaer, Thomas; Pultz, Dennis; Harder, Lea M; Serra-Musach, Jordi; Saez-Rodriguez, Julio

    2013-12-15

    Web interfaces provide access to numerous biological databases. Many can be accessed to in a programmatic way thanks to Web Services. Building applications that combine several of them would benefit from a single framework. BioServices is a comprehensive Python framework that provides programmatic access to major bioinformatics Web Services (e.g. KEGG, UniProt, BioModels, ChEMBLdb). Wrapping additional Web Services based either on Representational State Transfer or Simple Object Access Protocol/Web Services Description Language technologies is eased by the usage of object-oriented programming. BioServices releases and documentation are available at http://pypi.python.org/pypi/bioservices under a GPL-v3 license.

  16. Research on the development and preliminary application of Beijing agricultural sci-tech service hotline WebApp in agricultural consulting services

    NASA Astrophysics Data System (ADS)

    Yu, Weishui; Luo, Changshou; Zheng, Yaming; Wei, Qingfeng; Cao, Chengzhong

    2017-09-01

    To deal with the “last kilometer” problem during the agricultural science and technology information service, we analyzed the feasibility, necessity and advantages of WebApp applied to agricultural information service and discussed the modes of WebApp used in agricultural information service based on the requirements analysis and the function of WebApp. To overcome the existing App’s defects of difficult installation and weak compatibility between the mobile operating systems, the Beijing Agricultural Sci-tech Service Hotline WebApp was developed based on the HTML and JAVA technology. The WebApp has greater compatibility and simpler operation than the Native App, what’s more, it can be linked to the WeChat public platform making it spread easily and run directly without setup process. The WebApp was used to provide agricultural expert consulting services and agriculture information push, obtained a good preliminary application achievement. Finally, we concluded the creative application of WebApp in agricultural consulting services and prospected the development of WebApp in agricultural information service.

  17. Building Geospatial Web Services for Ecological Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Hiatt, S. H.; Hashimoto, H.; Melton, F. S.; Michaelis, A. R.; Milesi, C.; Nemani, R. R.; Wang, W.

    2008-12-01

    The Terrestrial Observation and Prediction System (TOPS) at NASA Ames Research Center is a modeling system that generates a suite of gridded data products in near real-time that are designed to enhance management decisions related to floods, droughts, forest fires, human health, as well as crop, range, and forest production. While these data products introduce great possibilities for assisting management decisions and informing further research, realization of their full potential is complicated by their shear volume and by the need for a necessary infrastructure for remotely browsing, visualizing, and analyzing the data. In order to address these difficulties we have built an OGC-compliant WMS and WCS server based on an open source software stack that provides standardized access to our archive of data. This server is built using the open source Java library GeoTools which achieves efficient I/O and image rendering through Java Advanced Imaging. We developed spatio-temporal raster management capabilities using the PostGrid raster indexation engine. We provide visualization and browsing capabilities through a customized Ajax web interface derived from the kaMap project. This interface allows resource managers to quickly assess ecosystem conditions and identify significant trends and anomalies from within their web browser without the need to download source data or install special software. Our standardized web services also expose TOPS data to a range of potential clients, from web mapping applications to virtual globes and desktop GIS packages. However, support for managing the temporal dimension of our data is currently limited in existing software systems. Future work will attempt to overcome this shortcoming by building time-series visualization and analysis tools that can be integrated with existing geospatial software.

  18. Advancing Collaboration through Hydrologic Data and Model Sharing

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  19. Development of the private practice management standards for psychology.

    PubMed

    Mathews, Rebecca; Stokes, David; Littlefield, Lyn; Collins, Leah

    2011-01-01

    This paper describes the process of developing a set of private practice management standards to support Australian psychologists and promote high quality services to the public. A review of the literature was conducted to identify management standards relevant to psychology, which were further developed in consultation with a panel of experts in psychology or in the development of standards. Forty-three psychologists in independent private practice took part in either a survey (n=22) to provide feedback on the relevance of, and their compliance with, the identified standards, or a 6-month pilot study (n=21) in which a web-based self-assessment instrument evaluating the final set of standards and performance indicators was implemented in their practice to investigate self-reported change in management procedures. The pilot study demonstrated good outcomes for practitioners when evaluation of compliance to the standards was operationalized in a self-assessment format. Study results are based on a small sample size. Nevertheless, relevance and utility of the standards was found providing an initial version of management standards that have relevance to the practice of psychology in Australia, along with a system for evaluating psychological service provision to ensure best practice in service delivery. © 2010 National Association for Healthcare Quality.

  20. Developing a Metadata Infrastructure to facilitate data driven science gateway and to provide Inspire/GEMINI compliance for CLIPC

    NASA Astrophysics Data System (ADS)

    Mihajlovski, Andrej; Plieger, Maarten; Som de Cerff, Wim; Page, Christian

    2016-04-01

    The CLIPC project is developing a portal to provide a single point of access for scientific information on climate change. This is made possible through the Copernicus Earth Observation Programme for Europe, which will deliver a new generation of environmental measurements of climate quality. The data about the physical environment which is used to inform climate change policy and adaptation measures comes from several categories: satellite measurements, terrestrial observing systems, model projections and simulations and from re-analyses (syntheses of all available observations constrained with numerical weather prediction systems). These data categories are managed by different communities: CLIPC will provide a single point of access for the whole range of data. The CLIPC portal will provide a number of indicators showing impacts on specific sectors which have been generated using a range of factors selected through structured expert consultation. It will also, as part of the transformation services, allow users to explore the consequences of using different combinations of driving factors which they consider to be of particular relevance to their work or life. The portal will provide information on the scientific quality and pitfalls of such transformations to prevent misleading usage of the results. The CLIPC project will develop an end to end processing chain (indicator tool kit), from comprehensive information on the climate state through to highly aggregated decision relevant products. Indicators of climate change and climate change impact will be provided, and a tool kit to update and post process the collection of indicators will be integrated into the portal. The CLIPC portal has a distributed architecture, making use of OGC services provided by e.g., climate4impact.eu and CEDA. CLIPC has two themes: 1. Harmonized access to climate datasets derived from models, observations and re-analyses 2. A climate impact tool kit to evaluate, rank and aggregate indicators Key is the availability of standardized metadata, describing indicator data and services. This will enable standardization and interoperability between the different distributed services of CLIPC. To disseminate CLIPC indicator data, transformed data products to enable impacts assessments and climate change impact indicators a standardized meta-data infrastructure is provided. The challenge is that compliance of existing metadata to INSPIRE ISO standards and GEMINI standards needs to be extended to further allow the web portal to be generated from the available metadata blueprint. The information provided in the headers of netCDF files available through multiple catalogues, allow us to generate ISO compliant meta data which is in turn used to generate web based interface content, as well as OGC compliant web services such as WCS and WMS for front end and WPS interactions for the scientific users to combine and generate new datasets. The goal of the metadata infrastructure is to provide a blueprint for creating a data driven science portal, generated from the underlying: GIS data, web services and processing infrastructure. In the presentation we will present the results and lessons learned.

  1. Development of Web Mapping Service Capabilities to Support NASA Disasters Applications/App Development

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.

    2014-01-01

    During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.

  2. Development of Web Mapping Service Capabilities to Support NASA Disasters Applications / App Development

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.

    2014-01-01

    During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.

  3. Realizing the potential of the CUAHSI Water Data Center to advance Earth Science

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Seul, M.; Pollak, J.; Couch, A.

    2015-12-01

    The CUAHSI Water Data Center has developed a cloud-based system for data publication, discovery and access. Key features of this system are a semantically enabled catalog to discover data across more than 100 different services and delivery of data and metadata in a standard format. While this represents a significant technical achievement, the purpose of this system is to support data reanalysis for advancing science. A new web-based client, HydroClient, improves access to the data from previous clients. This client is envisioned as the first step in a workflow that can involve visualization and analysis using web-processing services, followed by download to local computers for further analysis. The release of the WaterML library in the R package CRAN repository is an initial attempt at linking the WDC services in a larger analysis workflow. We are seeking community input on other resources required to make the WDC services more valuable in scientific research and education.

  4. Building Self-configuring Services Using Service-specific Knowledge

    DTIC Science & Technology

    2004-12-01

    no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control...OF PAGES 180 19a. NAME OF RESPONSIBLE PERSON a . REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev...Abstract Network applications such as Web browsing, video conferencing, instant messaging, file sharing, and online gaming are becoming a necessity for more

  5. Framework for ReSTful Web Services in OSGi

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Norris, Jeffrey S.; Powell, Mark W.; Crockett, Thomas M.; Mittman, David S.; Fox, Jason M.; Joswig, Joseph C.; Wallick, Michael N.; Torres, Recaredo J.; Rabe, Kenneth

    2009-01-01

    Ensemble ReST is a software system that eases the development, deployment, and maintenance of server-side application programs to perform functions that would otherwise be performed by client software. Ensemble ReST takes advantage of the proven disciplines of ReST (Representational State Transfer. ReST leverages the standardized HTTP protocol to enable developers to offer services to a diverse variety of clients: from shell scripts to sophisticated Java application suites

  6. An XML transfer schema for exchange of genomic and genetic mapping data: implementation as a web service in a Taverna workflow.

    PubMed

    Paterson, Trevor; Law, Andy

    2009-08-14

    Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. We have developed a simple generic XML schema (GenomicMappingData.xsd - GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data.

  7. An XML transfer schema for exchange of genomic and genetic mapping data: implementation as a web service in a Taverna workflow

    PubMed Central

    Paterson, Trevor; Law, Andy

    2009-01-01

    Background Genomic analysis, particularly for less well-characterized organisms, is greatly assisted by performing comparative analyses between different types of genome maps and across species boundaries. Various providers publish a plethora of on-line resources collating genome mapping data from a multitude of species. Datasources range in scale and scope from small bespoke resources for particular organisms, through larger web-resources containing data from multiple species, to large-scale bioinformatics resources providing access to data derived from genome projects for model and non-model organisms. The heterogeneity of information held in these resources reflects both the technologies used to generate the data and the target users of each resource. Currently there is no common information exchange standard or protocol to enable access and integration of these disparate resources. Consequently data integration and comparison must be performed in an ad hoc manner. Results We have developed a simple generic XML schema (GenomicMappingData.xsd – GMD) to allow export and exchange of mapping data in a common lightweight XML document format. This schema represents the various types of data objects commonly described across mapping datasources and provides a mechanism for recording relationships between data objects. The schema is sufficiently generic to allow representation of any map type (for example genetic linkage maps, radiation hybrid maps, sequence maps and physical maps). It also provides mechanisms for recording data provenance and for cross referencing external datasources (including for example ENSEMBL, PubMed and Genbank.). The schema is extensible via the inclusion of additional datatypes, which can be achieved by importing further schemas, e.g. a schema defining relationship types. We have built demonstration web services that export data from our ArkDB database according to the GMD schema, facilitating the integration of data retrieval into Taverna workflows. Conclusion The data exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data. PMID:19682365

  8. Submitting Publications to, and Linking to EPA Publications in, the National Service Center for Environmental Publications (NSCEP)

    EPA Pesticide Factsheets

    Linking to a document at NSCEP rather than uploading your own copy meets EPA standards and best practices for web content. If you follow this procedure, you can link directly to the PDF document without NSCEP's viewing pane or navigation.

  9. Leveraging Metadata to Create Better Web Services

    ERIC Educational Resources Information Center

    Mitchell, Erik

    2012-01-01

    Libraries have been increasingly concerned with data creation, management, and publication. This increase is partly driven by shifting metadata standards in libraries and partly by the growth of data and metadata repositories being managed by libraries. In order to manage these data sets, libraries are looking for new preservation and discovery…

  10. INFOMAT: The international materials assessment and application centre's internet gateway

    NASA Astrophysics Data System (ADS)

    Branquinho, Carmen Lucia; Colodete, Leandro Tavares

    2004-08-01

    INFOMAT is an electronic directory structured to facilitate the search and retrieval of materials science and technology information sources. Linked to the homepage of the International Materials Assessment and Application Centre, INFOMAT presents descriptions of 392 proprietary databases with links to their host systems as well as direct links to over 180 public domain databases and over 2,400 web sites. Among the web sites are associations/unions, governmental and non-governmental institutions, industries, library holdings, market statistics, news services, on-line publications, standardization and intellectual property organizations, and universities/research groups.

  11. The influence of standards and clinical guidelines on prosthetic and orthotic service quality: a scoping review.

    PubMed

    Sadeghi-Demneh, Ebrahim; Forghany, Saeed; Onmanee, Pornsuree; Trinler, Ursula; Dillon, Michael P; Baker, Richard

    2017-06-20

    Standards and guidelines are an integral part of prosthetic and orthotic service delivery in the developed world underpinned by an assumption that they lead to improved services. Implementing them has a cost, however, and that cost needs to be justified, particularly in resource-limited environments. This scoping review thus asks the question, "What is the evidence of the impact of standards and guidelines on service delivery outcomes in prosthetics and orthotics?" A structured search of three electronic databases (Medline, Scopus and Web of Science) followed by manual searching of title, abstract and full text, yielded 29 articles. Four categories of papers were identified: Descriptions and Commentaries (17 papers), Guideline Development (7), Guideline Testing (2) and Standards implementation (3). No articles were explicitly designed to assess the impact of standards and guidelines on service delivery outcomes in prosthetics and orthotics. Studies tended to be commentaries on or descriptions of guideline development, testing or implementation of standards. The literature is not sufficiently well developed to warrant the cost and effort of a systematic review. Future primary research should seek to demonstrate whether and how guidelines and standards improve the outcomes for people that require prostheses, orthoses and other assistive devices. Implications for Rehabilitation International Standards and Clinical Guidelines are now an integral part of clinical service provision in prosthetics and orthotics in the developed world. Complying with standards and guidelines has a cost and, particularly in resource-limited environments, it should be possible to justify this in terms of the resulting benefits. This scoping review concludes that there have been no previous studies designed to directly quantify the effects of implementing standards and guidelines on service delivery.

  12. Public health, GIS, and the internet.

    PubMed

    Croner, Charles M

    2003-01-01

    Internet access and use of georeferenced public health information for GIS application will be an important and exciting development for the nation's Department of Health and Human Services and other health agencies in this new millennium. Technological progress toward public health geospatial data integration, analysis, and visualization of space-time events using the Web portends eventual robust use of GIS by public health and other sectors of the economy. Increasing Web resources from distributed spatial data portals and global geospatial libraries, and a growing suite of Web integration tools, will provide new opportunities to advance disease surveillance, control, and prevention, and insure public access and community empowerment in public health decision making. Emerging supercomputing, data mining, compression, and transmission technologies will play increasingly critical roles in national emergency, catastrophic planning and response, and risk management. Web-enabled public health GIS will be guided by Federal Geographic Data Committee spatial metadata, OpenGIS Web interoperability, and GML/XML geospatial Web content standards. Public health will become a responsive and integral part of the National Spatial Data Infrastructure.

  13. Globus Identity, Access, and Data Management: Platform Services for Collaborative Science

    NASA Astrophysics Data System (ADS)

    Ananthakrishnan, R.; Foster, I.; Wagner, R.

    2016-12-01

    Globus is software-as-a-service for research data management, developed at, and operated by, the University of Chicago. Globus, accessible at www.globus.org, provides high speed, secure file transfer; file sharing directly from existing storage systems; and data publication to institutional repositories. 40,000 registered users have used Globus to transfer tens of billions of files totaling hundreds of petabytes between more than 10,000 storage systems within campuses and national laboratories in the US and internationally. Web, command line, and REST interfaces support both interactive use and integration into applications and infrastructures. An important component of the Globus system is its foundational identity and access management (IAM) platform service, Globus Auth. Both Globus research data management and other applications use Globus Auth for brokering authentication and authorization interactions between end-users, identity providers, resource servers (services), and a range of clients, including web, mobile, and desktop applications, and other services. Compliant with important standards such as OAuth, OpenID, and SAML, Globus Auth provides mechanisms required for an extensible, integrated ecosystem of services and clients for the research and education community. It underpins projects such as the US National Science Foundation's XSEDE system, NCAR's Research Data Archive, and the DOE Systems Biology Knowledge Base. Current work is extending Globus services to be compliant with FEDRAMP standards for security assessment, authorization, and monitoring for cloud services. We will present Globus IAM solutions and give examples of Globus use in various projects for federated access to resources. We will also describe how Globus Auth and Globus research data management capabilities enable rapid development and low-cost operations of secure data sharing platforms that leverage Globus services and integrate them with local policy and security.

  14. A platform for exploration into chaining of web services for clinical data transformation and reasoning

    PubMed Central

    Maldonado, José Alberto; Marcos, Mar; Fernández-Breis, Jesualdo Tomás; Parcero, Estíbaliz; Boscá, Diego; Legaz-García, María del Carmen; Martínez-Salvador, Begoña; Robles, Montserrat

    2016-01-01

    The heterogeneity of clinical data is a key problem in the sharing and reuse of Electronic Health Record (EHR) data. We approach this problem through the combined use of EHR standards and semantic web technologies, concretely by means of clinical data transformation applications that convert EHR data in proprietary format, first into clinical information models based on archetypes, and then into RDF/OWL extracts which can be used for automated reasoning. In this paper we describe a proof-of-concept platform to facilitate the (re)configuration of such clinical data transformation applications. The platform is built upon a number of web services dealing with transformations at different levels (such as normalization or abstraction), and relies on a collection of reusable mappings designed to solve specific transformation steps in a particular clinical domain. The platform has been used in the development of two different data transformation applications in the area of colorectal cancer. PMID:28269882

  15. Footprint Database and web services for the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Verebélyi, Erika; Dobos, László; Kiss, Csaba

    2015-08-01

    Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.

  16. VISIBIOweb: visualization and layout services for BioPAX pathway models

    PubMed Central

    Dilek, Alptug; Belviranli, Mehmet E.; Dogrusoz, Ugur

    2010-01-01

    With recent advancements in techniques for cellular data acquisition, information on cellular processes has been increasing at a dramatic rate. Visualization is critical to analyzing and interpreting complex information; representing cellular processes or pathways is no exception. VISIBIOweb is a free, open-source, web-based pathway visualization and layout service for pathway models in BioPAX format. With VISIBIOweb, one can obtain well-laid-out views of pathway models using the standard notation of the Systems Biology Graphical Notation (SBGN), and can embed such views within one's web pages as desired. Pathway views may be navigated using zoom and scroll tools; pathway object properties, including any external database references available in the data, may be inspected interactively. The automatic layout component of VISIBIOweb may also be accessed programmatically from other tools using Hypertext Transfer Protocol (HTTP). The web site is free and open to all users and there is no login requirement. It is available at: http://visibioweb.patika.org. PMID:20460470

  17. Persistence and availability of Web services in computational biology.

    PubMed

    Schultheiss, Sebastian J; Münch, Marc-Christian; Andreeva, Gergana D; Rätsch, Gunnar

    2011-01-01

    We have conducted a study on the long-term availability of bioinformatics Web services: an observation of 927 Web services published in the annual Nucleic Acids Research Web Server Issues between 2003 and 2009. We found that 72% of Web sites are still available at the published addresses, only 9% of services are completely unavailable. Older addresses often redirect to new pages. We checked the functionality of all available services: for 33%, we could not test functionality because there was no example data or a related problem; 13% were truly no longer working as expected; we could positively confirm functionality only for 45% of all services. Additionally, we conducted a survey among 872 Web Server Issue corresponding authors; 274 replied. 78% of all respondents indicate their services have been developed solely by students and researchers without a permanent position. Consequently, these services are in danger of falling into disrepair after the original developers move to another institution, and indeed, for 24% of services, there is no plan for maintenance, according to the respondents. We introduce a Web service quality scoring system that correlates with the number of citations: services with a high score are cited 1.8 times more often than low-scoring services. We have identified key characteristics that are predictive of a service's survival, providing reviewers, editors, and Web service developers with the means to assess or improve Web services. A Web service conforming to these criteria receives more citations and provides more reliable service for its users. The most effective way of ensuring continued access to a service is a persistent Web address, offered either by the publishing journal, or created on the authors' own initiative, for example at http://bioweb.me. The community would benefit the most from a policy requiring any source code needed to reproduce results to be deposited in a public repository.

  18. Persistence and Availability of Web Services in Computational Biology

    PubMed Central

    Schultheiss, Sebastian J.; Münch, Marc-Christian; Andreeva, Gergana D.; Rätsch, Gunnar

    2011-01-01

    We have conducted a study on the long-term availability of bioinformatics Web services: an observation of 927 Web services published in the annual Nucleic Acids Research Web Server Issues between 2003 and 2009. We found that 72% of Web sites are still available at the published addresses, only 9% of services are completely unavailable. Older addresses often redirect to new pages. We checked the functionality of all available services: for 33%, we could not test functionality because there was no example data or a related problem; 13% were truly no longer working as expected; we could positively confirm functionality only for 45% of all services. Additionally, we conducted a survey among 872 Web Server Issue corresponding authors; 274 replied. 78% of all respondents indicate their services have been developed solely by students and researchers without a permanent position. Consequently, these services are in danger of falling into disrepair after the original developers move to another institution, and indeed, for 24% of services, there is no plan for maintenance, according to the respondents. We introduce a Web service quality scoring system that correlates with the number of citations: services with a high score are cited 1.8 times more often than low-scoring services. We have identified key characteristics that are predictive of a service's survival, providing reviewers, editors, and Web service developers with the means to assess or improve Web services. A Web service conforming to these criteria receives more citations and provides more reliable service for its users. The most effective way of ensuring continued access to a service is a persistent Web address, offered either by the publishing journal, or created on the authors' own initiative, for example at http://bioweb.me. The community would benefit the most from a policy requiring any source code needed to reproduce results to be deposited in a public repository. PMID:21966383

  19. The International Solid Earth Research Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these specifications with the powerful portlet architecture using WSRP and JSR168 supported by such portal containers as uPortal, WebSphere, and Apache JetSpeed2. The latter portal aggregates component user interfaces for each iSERVO service allowing flexible customization of the user interface. We exploit the portlets produced by the NSF NMI (Middleware initiative) OGCE activity. iSERVO also uses specifications from the Open Geographical Information Systems (GIS) Consortium (OGC) that defines a number of standards for modeling earth surface feature data and services for interacting with this data. The data models are expressed in the XML-based Geography Markup Language (GML), and the OGC service framework are being adapted to use the Web Service model. The SERVO prototype includes a GIS Grid that currently includes the core WMS and WFS (Map and Feature) services. We will follow the best practice in the Grid and Web Service field and will adapt our technology as appropriate. For example, we expect to support services built on WS-RF when is finalized and to make use of the database interfaces OGSA-DAI and its WS-I+ versions. Finally, we review advances in Web Service scripting (such as HPSearch) and workflow systems (such as GCF) and their applications to iSERVO.

  20. New IEEE 11073 Standards for interoperable, networked Point-of-Care Medical Devices.

    PubMed

    Kasparick, Martin; Schlichting, Stefan; Golatowski, Frank; Timmermann, Dirk

    2015-08-01

    Surgical procedures become more and more complex and the number of medical devices in an operating room (OR) increases continuously. Today's vendor-dependent solutions for integrated ORs are not able to handle this complexity. They can only form isolated solutions. Furthermore, high costs are a result of vendor-dependent approaches. Thus we present a service-oriented device communication for distributed medical systems that enables the integration and interconnection between medical devices among each other and to (medical) information systems, including plug-and-play functionality. This system will improve patient's safety by making technical complexity of a comprehensive integration manageable. It will be available as open standards that are part of the IEEE 11073 family of standards. The solution consists of a service-oriented communication technology, the so called Medical Devices Profile for Web Services (MDPWS), a Domain Information & Service Model, and a binding between the first two mechanisms. A proof of this concept has been done with demonstrators of real world OR devices.

  1. Space Physics Data Facility Web Services

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  2. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service (SAS) for sending alerts. An OpenSource web-platform bundles the data, provided by the SWE web services of the hydro-meteorological stations, and provides tools for data visualization and data access. The visualization tool was implemented by using OpenSource tools like GeoExt/ExtJS and OpenLayers. Using the application the user can query the relevant sensor data, select parameter and time period, visualize and finally download the data. [1] http://www.cawa-project.net

  3. EarthServer - 3D Visualization on the Web

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client and on top of HTML5, WebGL and JavaScript we have developed the X3DOM framework (www.x3dom.org), which makes possible to embed declarative X3D scenegraphs, an ISO standard XML-based file format for representing 3D computer graphics, directly within HTML, thus enabling developers to rapidly design 3D content that blends seamlessly into HTML interfaces using Javascript. This approach (commonly referred to as a polyfill layer) is used to mimic native web browser support for declarative 3D content and is an important component in our web client architecture.

  4. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  5. A Walk through TRIDEC's intermediate Tsunami Early Warning System

    NASA Astrophysics Data System (ADS)

    Hammitzsch, M.; Reißland, S.; Lendholt, M.

    2012-04-01

    The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools. In addition to conventional sensors also unconventional sensors and sensor networks play an important role in TRIDEC. The system version presented is based on service-oriented architecture (SOA) concepts and on relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system integrates OGC Sensor Web Enablement (SWE) compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements. Using OGC Web Map Service (WMS) and Web Feature Service (WFS) spatial data are utilized to depict the situation picture. The integration of a simulation system to identify affected areas is considered using the OGC Web Processing Service (WPS). Warning messages are compiled and transmitted in the OASIS Common Alerting Protocol (CAP) together with addressing information defined via the OASIS Emergency Data Exchange Language - Distribution Element (EDXL-DE). The first system demonstrator has been designed and implemented to support plausible scenarios demonstrating the treatment of simulated tsunami threats with an essential subset of a National Tsunami Warning Centre (NTWC). The feasibility and the potentials of the implemented approach are demonstrated covering standard operations as well as tsunami detection and alerting functions. The demonstrator presented addresses information management and decision-support processes in a hypothetical natural crisis situation caused by a tsunami in the Eastern Mediterranean. Developments of the system are based to the largest extent on free and open source software (FOSS) components and industry standards. Emphasis has been and will be made on leveraging open source technologies that support mature system architecture models wherever appropriate. All open source software produced is foreseen to be published on a publicly available software repository thus allowing others to reuse results achieved and enabling further development and collaboration with a wide community including scientists, developers, users and stakeholders. This live demonstration is linked with the talk "TRIDEC Natural Crisis Management Demonstrator for Tsunamis" (EGU2012-7275) given in the session "Architecture of Future Tsunami Warning Systems" (NH5.7/ESSI1.7).

  6. Hydrological models as web services: Experiences from the Environmental Virtual Observatory project

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Vitolo, C.; Reaney, S. M.; Beven, K.

    2012-12-01

    Data availability in environmental sciences is expanding at a rapid pace. From the constant stream of high-resolution satellite images to the local efforts of citizen scientists, there is an increasing need to process the growing stream of heterogeneous data and turn it into useful information for decision-making. Environmental models, ranging from simple rainfall - runoff relations to complex climate models, can be very useful tools to process data, identify patterns, and help predict the potential impact of management scenarios. Recent technological innovations in networking, computing and standardization may bring a new generation of interactive models plugged into virtual environments closer to the end-user. They are the driver of major funding initiatives such as the UK's Virtual Observatory program, and the U.S. National Science Foundation's Earth Cube. In this study we explore how hydrological models, being an important subset of environmental models, have to be adapted in order to function within a broader environment of web-services and user interactions. Historically, hydrological models have been developed for very different purposes. Typically they have a rigid model structure, requiring a very specific set of input data and parameters. As such, the process of implementing a model for a specific catchment requires careful collection and preparation of the input data, extensive calibration and subsequent validation. This procedure seems incompatible with a web-environment, where data availability is highly variable, heterogeneous and constantly changing in time, and where the requirements of end-users may be not necessarily align with the original intention of the model developer. We present prototypes of models that are web-enabled using the web standards of the Open Geospatial Consortium, and implemented in online decision-support systems. We identify issues related to (1) optimal use of available data; (2) the need for flexible and adaptive structures; (3) quantification and communication of uncertainties. Lastly, we present some road maps to address these issues and discuss them in the broader context of web-based data processing and "big data" science.

  7. Web-based medical facilitators in medical tourism: the third party in decision-making.

    PubMed

    Wagle, Suchitra

    2013-01-01

    The emergence of web-based medical tourism facilitators (MTFs) has added a new dimension to the phenomenon of cross-border travel. These facilitators are crucial connectors between foreign patients and host countries. They help patients navigate countries, doctors and specialties. However, little attention has been paid to the authenticity of information displayed on the facilitators' web portals, and whether they follow ethical guidelines and standards. This paper analyses the available information on MTF portals from an ethics perspective. It compares 208 facilitators across 47 countries for the services offered. Data were collected from the databases of the Medical Tourism Association and World Medical Resources. India was the most common destination country linked to 81 facilitators. The five countries with the maximum number of facilitators were the USA, the UK, India, Canada and Poland. This paper identifies concerns regarding the information displayed about patients' safety, and the maintenance of confidentiality. There is a need to develop ethical standards for this field.

  8. New implementation of OGC Web Processing Service in Python programming language. PyWPS-4 and issues we are facing with processing of large raster data using OGC WPS

    NASA Astrophysics Data System (ADS)

    Čepický, Jáchym; Moreira de Sousa, Luís

    2016-06-01

    The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates publishing of geospatial processes and client discovery of processes and and binding to those processes into workflows. Data required by a WPS can be delivered across a network or they can be available at a server. PyWPS was one of the first implementations of OGC WPS on the server side. It is written in the Python programming language and it tries to connect to all existing tools for geospatial data analysis, available on the Python platform. During the last two years, the PyWPS development team has written a new version (called PyWPS-4) completely from scratch. The analysis of large raster datasets poses several technical issues in implementing the WPS standard. The data format has to be defined and validated on the server side and binary data have to be encoded using some numeric representation. Pulling raster data from remote servers introduces security risks, in addition, running several processes in parallel has to be possible, so that system resources are used efficiently while preserving security. Here we discuss these topics and illustrate some of the solutions adopted within the PyWPS implementation.

  9. Enhancing UCSF Chimera through web services

    PubMed Central

    Huang, Conrad C.; Meng, Elaine C.; Morris, John H.; Pettersen, Eric F.; Ferrin, Thomas E.

    2014-01-01

    Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList. PMID:24861624

  10. EPEPT: A web service for enhanced P-value estimation in permutation tests

    PubMed Central

    2011-01-01

    Background In computational biology, permutation tests have become a widely used tool to assess the statistical significance of an event under investigation. However, the common way of computing the P-value, which expresses the statistical significance, requires a very large number of permutations when small (and thus interesting) P-values are to be accurately estimated. This is computationally expensive and often infeasible. Recently, we proposed an alternative estimator, which requires far fewer permutations compared to the standard empirical approach while still reliably estimating small P-values [1]. Results The proposed P-value estimator has been enriched with additional functionalities and is made available to the general community through a public website and web service, called EPEPT. This means that the EPEPT routines can be accessed not only via a website, but also programmatically using any programming language that can interact with the web. Examples of web service clients in multiple programming languages can be downloaded. Additionally, EPEPT accepts data of various common experiment types used in computational biology. For these experiment types EPEPT first computes the permutation values and then performs the P-value estimation. Finally, the source code of EPEPT can be downloaded. Conclusions Different types of users, such as biologists, bioinformaticians and software engineers, can use the method in an appropriate and simple way. Availability http://informatics.systemsbiology.net/EPEPT/ PMID:22024252

  11. Real-time GIS data model and sensor web service platform for environmental data management.

    PubMed

    Gong, Jianya; Geng, Jing; Chen, Zeqiang

    2015-01-09

    Effective environmental data management is meaningful for human health. In the past, environmental data management involved developing a specific environmental data management system, but this method often lacks real-time data retrieving and sharing/interoperating capability. With the development of information technology, a Geospatial Service Web method is proposed that can be employed for environmental data management. The purpose of this study is to determine a method to realize environmental data management under the Geospatial Service Web framework. A real-time GIS (Geographic Information System) data model and a Sensor Web service platform to realize environmental data management under the Geospatial Service Web framework are proposed in this study. The real-time GIS data model manages real-time data. The Sensor Web service platform is applied to support the realization of the real-time GIS data model based on the Sensor Web technologies. To support the realization of the proposed real-time GIS data model, a Sensor Web service platform is implemented. Real-time environmental data, such as meteorological data, air quality data, soil moisture data, soil temperature data, and landslide data, are managed in the Sensor Web service platform. In addition, two use cases of real-time air quality monitoring and real-time soil moisture monitoring based on the real-time GIS data model in the Sensor Web service platform are realized and demonstrated. The total time efficiency of the two experiments is 3.7 s and 9.2 s. The experimental results show that the method integrating real-time GIS data model and Sensor Web Service Platform is an effective way to manage environmental data under the Geospatial Service Web framework.

  12. A Service Oriented Infrastructure for Earth Science exchange

    NASA Astrophysics Data System (ADS)

    Burnett, M.; Mitchell, A.

    2008-12-01

    NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and a summary of how technologies where leveraged into a significant operational system for the Earth Observation community.

  13. Dynamic reusable workflows for ocean science

    USGS Publications Warehouse

    Signell, Richard; Fernandez, Filipe; Wilcox, Kyle

    2016-01-01

    Digital catalogs of ocean data have been available for decades, but advances in standardized services and software for catalog search and data access make it now possible to create catalog-driven workflows that automate — end-to-end — data search, analysis and visualization of data from multiple distributed sources. Further, these workflows may be shared, reused and adapted with ease. Here we describe a workflow developed within the US Integrated Ocean Observing System (IOOS) which automates the skill-assessment of water temperature forecasts from multiple ocean forecast models, allowing improved forecast products to be delivered for an open water swim event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow using a collection of Python tools that facilitate working with standardized catalog and data services. The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC) Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP services for remotely-sensed and model data. Skill metrics are computed and time series comparisons of forecast model and observed data are displayed interactively, leveraging the capabilities of modern web browsers. The resulting workflow not only solves a challenging specific problem, but highlights the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enters the data system, facilitate reproducible science, provide templates from which new scientific workflows can be developed, and encourage data providers to use standardized services. As applied to the ocean swim event, the workflow exposed problems with two of the ocean forecast products which led to improved regional forecasts once errors were corrected. While the example is specific, the approach is general, and we hope to see increased use of dynamic notebooks across the geoscience domains.

  14. Implementing a Data Quality Strategy to Simplify Access to Data

    NASA Astrophysics Data System (ADS)

    Druken, K. A.; Trenham, C. E.; Evans, B. J. K.; Richards, C. J.; Wang, J.; Wyborn, L. A.

    2016-12-01

    To ensure seamless programmatic access for data analysis (including machine learning), standardization of both data and services is vital. At the Australian National Computational Infrastructure (NCI) we have developed a Data Quality Strategy (DQS) that currently provides processes for: (1) the consistency of data structures in the underlying High Performance Data (HPD) platform; (2) quality control through compliance with recognized community standards; and (3) data quality assurance through demonstrated functionality across common platforms, tools and services. NCI hosts one of Australia's largest repositories (10+ PBytes) of research data collections spanning datasets from climate, coasts, oceans and geophysics through to astronomy, bioinformatics and the social sciences. A key challenge is the application of community-agreed data standards to the broad set of Earth systems and environmental data that are being used. Within these disciplines, data span a wide range of gridded, ungridded (i.e., line surveys, point clouds), and raster image types, as well as diverse coordinate reference projections and resolutions. By implementing our DQS we have seen progressive improvement in the quality of the datasets across the different subject domains, and through this, the ease by which the users can programmatically access the data, either in situ or via web services. As part of its quality control procedures, NCI has developed a compliance checker based upon existing domain standards. The DQS also includes extensive Functionality Testing which include readability by commonly used libraries (e.g., netCDF, HDF, GDAL, etc.); accessibility by data servers (e.g., THREDDS, Hyrax, GeoServer), validation against scientific analysis and programming platforms (e.g., Python, Matlab, QGIS); and visualization tools (e.g., ParaView, NASA Web World Wind). These tests ensure smooth interoperability between products and services as well as exposing unforeseen requirements and dependencies. The results provide an important component of quality control within the DQS as well as clarifying the requirement for any extensions to the relevant standards that help support the uptake of data by broader international communities.

  15. Similarity Based Semantic Web Service Match

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Niu, Wenjia; Huang, Ronghuai

    Semantic web service discovery aims at returning the most matching advertised services to the service requester by comparing the semantic of the request service with an advertised service. The semantic of a web service are described in terms of inputs, outputs, preconditions and results in Ontology Web Language for Service (OWL-S) which formalized by W3C. In this paper we proposed an algorithm to calculate the semantic similarity of two services by weighted averaging their inputs and outputs similarities. Case study and applications show the effectiveness of our algorithm in service match.

  16. A framework for semantic interoperability in healthcare: a service oriented architecture based on health informatics standards.

    PubMed

    Ryan, Amanda; Eklund, Peter

    2008-01-01

    Healthcare information is composed of many types of varying and heterogeneous data. Semantic interoperability in healthcare is especially important when all these different types of data need to interact. Presented in this paper is a solution to interoperability in healthcare based on a standards-based middleware software architecture used in enterprise solutions. This architecture has been translated into the healthcare domain using a messaging and modeling standard which upholds the ideals of the Semantic Web (HL7 V3) combined with a well-known standard terminology of clinical terms (SNOMED CT).

  17. Accessing near real-time Antarctic meteorological data through an OGC Sensor Observation Service (SOS)

    NASA Astrophysics Data System (ADS)

    Kirsch, Peter; Breen, Paul

    2013-04-01

    We wish to highlight outputs of a project conceived from a science requirement to improve discovery and access to Antarctic meteorological data in near real-time. Given that the data was distributed in both spatial and temporal domains and is to be accessed across several science disciplines, the creation of an interoperable, OGC compliant web service was deemed the most appropriate approach. We will demonstrate an implementation of the OGC SOS Interface Standard to discover, browse, and access Antarctic meteorological data-sets. A selection of programmatic (R, Perl) and web client interfaces utilizing open technologies ( e.g. jQuery, Flot, openLayers ) will be demonstrated. In addition we will show how high level abstractions can be constructed to allow the users flexible and straightforward access to SOS retrieved data.

  18. Web Based Rapid Mapping of Disaster Areas using Satellite Images, Web Processing Service, Web Mapping Service, Frequency Based Change Detection Algorithm and J-iView

    NASA Astrophysics Data System (ADS)

    Bandibas, J. C.; Takarada, S.

    2013-12-01

    Timely identification of areas affected by natural disasters is very important for a successful rescue and effective emergency relief efforts. This research focuses on the development of a cost effective and efficient system of identifying areas affected by natural disasters, and the efficient distribution of the information. The developed system is composed of 3 modules which are the Web Processing Service (WPS), Web Map Service (WMS) and the user interface provided by J-iView (fig. 1). WPS is an online system that provides computation, storage and data access services. In this study, the WPS module provides online access of the software implementing the developed frequency based change detection algorithm for the identification of areas affected by natural disasters. It also sends requests to WMS servers to get the remotely sensed data to be used in the computation. WMS is a standard protocol that provides a simple HTTP interface for requesting geo-registered map images from one or more geospatial databases. In this research, the WMS component provides remote access of the satellite images which are used as inputs for land cover change detection. The user interface in this system is provided by J-iView, which is an online mapping system developed at the Geological Survey of Japan (GSJ). The 3 modules are seamlessly integrated into a single package using J-iView, which could rapidly generate a map of disaster areas that is instantaneously viewable online. The developed system was tested using ASTER images covering the areas damaged by the March 11, 2011 tsunami in northeastern Japan. The developed system efficiently generated a map showing areas devastated by the tsunami. Based on the initial results of the study, the developed system proved to be a useful tool for emergency workers to quickly identify areas affected by natural disasters.

  19. Boverhof's App Earns Honorable Mention in Amazon's Web Services

    Science.gov Websites

    » Boverhof's App Earns Honorable Mention in Amazon's Web Services Competition News & Publications News Publications Facebook Google+ Twitter Boverhof's App Earns Honorable Mention in Amazon's Web Services by Amazon Web Services (AWS). Amazon officially announced the winners of its EC2 Spotathon on Monday

  20. Biological Web Service Repositories Review

    PubMed Central

    Urdidiales‐Nieto, David; Navas‐Delgado, Ismael

    2016-01-01

    Abstract Web services play a key role in bioinformatics enabling the integration of database access and analysis of algorithms. However, Web service repositories do not usually publish information on the changes made to their registered Web services. Dynamism is directly related to the changes in the repositories (services registered or unregistered) and at service level (annotation changes). Thus, users, software clients or workflow based approaches lack enough relevant information to decide when they should review or re‐execute a Web service or workflow to get updated or improved results. The dynamism of the repository could be a measure for workflow developers to re‐check service availability and annotation changes in the services of interest to them. This paper presents a review on the most well‐known Web service repositories in the life sciences including an analysis of their dynamism. Freshness is introduced in this paper, and has been used as the measure for the dynamism of these repositories. PMID:27783459

  1. The DICOM Standard: A Brief Overview

    NASA Astrophysics Data System (ADS)

    Gibaud, Bernard

    The DICOM standard has now become the uncontested standard for the exchange and management of biomedical images. Everyone acknowledges its prominent role in the emergence of multi-vendor Picture Archiving and Communication Systems (PACS), and their successful integration with Hospital Information Systems and Radiology Information Systems, thanks to the Integrating the Healthcare Enterprise (IHE) initiative. We introduce here the basic concepts retained for the definition of objects and services in DICOM, with the hope that it will help the reader to find his or her way in the vast DICOM documentation available on the web.

  2. Enhanced functionalities for annotating and indexing clinical text with the NCBO Annotator.

    PubMed

    Tchechmedjiev, Andon; Abdaoui, Amine; Emonet, Vincent; Melzi, Soumia; Jonnagaddala, Jitendra; Jonquet, Clement

    2018-06-01

    Second use of clinical data commonly involves annotating biomedical text with terminologies and ontologies. The National Center for Biomedical Ontology Annotator is a frequently used annotation service, originally designed for biomedical data, but not very suitable for clinical text annotation. In order to add new functionalities to the NCBO Annotator without hosting or modifying the original Web service, we have designed a proxy architecture that enables seamless extensions by pre-processing of the input text and parameters, and post processing of the annotations. We have then implemented enhanced functionalities for annotating and indexing free text such as: scoring, detection of context (negation, experiencer, temporality), new output formats and coarse-grained concept recognition (with UMLS Semantic Groups). In this paper, we present the NCBO Annotator+, a Web service which incorporates these new functionalities as well as a small set of evaluation results for concept recognition and clinical context detection on two standard evaluation tasks (Clef eHealth 2017, SemEval 2014). The Annotator+ has been successfully integrated into the SIFR BioPortal platform-an implementation of NCBO BioPortal for French biomedical terminologies and ontologies-to annotate English text. A Web user interface is available for testing and ontology selection (http://bioportal.lirmm.fr/ncbo_annotatorplus); however the Annotator+ is meant to be used through the Web service application programming interface (http://services.bioportal.lirmm.fr/ncbo_annotatorplus). The code is openly available, and we also provide a Docker packaging to enable easy local deployment to process sensitive (e.g. clinical) data in-house (https://github.com/sifrproject). andon.tchechmedjiev@lirmm.fr. Supplementary data are available at Bioinformatics online.

  3. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.

    2017-12-01

    Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  4. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long

    2017-01-01

    Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  5. Services, Perspective and Directions of the Space Physics Data Facility

    NASA Technical Reports Server (NTRS)

    McGuire, Robert E.; Bilitza, Dieter; Candey, Reine A.; Chimiak, Reine A.; Cooper, John F.; Fung, Shing F.; Harris, Bernard T.; Johnson, Rita C.; King, Joseph H.; Kovalick, Tamara; hide

    2008-01-01

    The multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer unique capabilities supporting science of the Heliophysics Great Observatory and that are highly complementary to other services now evolving in the international heliophysics data environment. The VSPO (Virtual Space Physics Observatory) service is an active portal to a wide rage of distributed data sources. CDAWeb (Coordinated Data Analysis Web) offers plots, listings and file downloads for current data from many missions across the boundaries of missions and instrument types. CDAWeb now includes extensive new data from STEREO and THEMIS, plus new ROCSAT IPEI data, the latest data from all four TIMED instruments and high-resolution data from all DE-2 experiments. SSCWeb, Helioweb and out 3D Animated Orbit Viewer (TIPSOD) provide position data and identification of spacecraft and ground conjunctions. OMNI Web, with its new extension to 1- and 5-minute resolution, provides interplanetary parameters at the Earth's bow shock. SPDF maintains NASA's CDF (Common Data Format) standard and a range of associated tools including format translation services. These capabilities are all now available through web services based APIs, one element in SPDF's ongoing work to enable heliophysics community development of Virtual discipline Observatories (e.g. VITMO). We will demonstrate out latest data and capabilities, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  6. Web service discovery among large service pools utilising semantic similarity and clustering

    NASA Astrophysics Data System (ADS)

    Chen, Fuzan; Li, Minqiang; Wu, Harris; Xie, Lingli

    2017-03-01

    With the rapid development of electronic business, Web services have attracted much attention in recent years. Enterprises can combine individual Web services to provide new value-added services. An emerging challenge is the timely discovery of close matches to service requests among large service pools. In this study, we first define a new semantic similarity measure combining functional similarity and process similarity. We then present a service discovery mechanism that utilises the new semantic similarity measure for service matching. All the published Web services are pre-grouped into functional clusters prior to the matching process. For a user's service request, the discovery mechanism first identifies matching services clusters and then identifies the best matching Web services within these matching clusters. Experimental results show that the proposed semantic discovery mechanism performs better than a conventional lexical similarity-based mechanism.

  7. Pragmatic Computing - A Semiotic Perspective to Web Services

    NASA Astrophysics Data System (ADS)

    Liu, Kecheng

    The web seems to have evolved from a syntactic web, a semantic web to a pragmatic web. This evolution conforms to the study of information and technology from the theory of semiotics. The pragmatics, concerning with the use of information in relation to the context and intended purposes, is extremely important in web service and applications. Much research in pragmatics has been carried out; but in the same time, attempts and solutions have led to some more questions. After reviewing the current work in pragmatic web, the paper presents a semiotic approach to website services, particularly on request decomposition and service aggregation.

  8. The SOOS Data Portal, providing access to Southern Oceans data

    NASA Astrophysics Data System (ADS)

    Proctor, Roger; Finney, Kim; Blain, Peter; Taylor, Fiona; Newman, Louise; Meredith, Mike; Schofield, Oscar

    2013-04-01

    The Southern Ocean Observing System (SOOS) is an international initiative to enhance, coordinate and expand the strategic observations of the Southern Oceans that are required to address key scientific and societal challenges. A key component of SOOS will be the creation and maintenance of a Southern Ocean Data Portal to provide improved access to historical and ongoing data (Schofield et al., 2012, Eos, Vol. 93, No. 26, pp 241-243). The scale of this effort will require strong leveraging of existing data centres, new cyberinfrastructure development efforts, and defined data collection, quality control, and archiving procedures across the international community. The task of assembling the SOOS data portal is assigned to the SOOS Data Management Sub-Committee. The information infrastructure chosen for the SOOS data portal is based on the Australian Ocean Data Network (AODN, http://portal.aodn.org.au). The AODN infrastructure is built on open-source tools and the use of international standards ensures efficiency of data exchange and interoperability between contributing systems. OGC standard web services protocols are used for serving of data via the internet. These include Web Map Service (WMS) for visualisation, Web Feature Service (WFS) for data download, and Catalogue Service for Web (CSW) for catalogue exchange. The portal offers a number of tools to access and visualize data: - a Search link to the metadata catalogue enables search and discovery by simple text search, by geographic area, temporal extent, keyword, parameter, organisation, or by any combination of these, allowing users to gain access to further information and/or the data for download. Also, searches can be restricted to items which have either data to download, or attached map layers, or both - a Map interface for discovery and display of data, with the ability to change the style and opacity of layers, add additional data layers via OGC Web Map Services, view animated timeseries datastreams - data can be easily accessed and downloaded including directly from OPeNDAP/THREDDS servers. The SOOS data portal (http://soos.aodn.org.au/soos) aims to make access to Southern Ocean data a simple process and the initial layout classifies data into six themes - Heat and Freshwater; Circulation; Ice-sheets and Sea level; Carbon; Sea-ice; and Ecosystems, with the ability to integrate layers between themes. The portal is in its infancy (pilot launched January 2013) with a limited number of datasets available; however, the number of datasets is expected to grow rapidly as the international community becomes fully engaged.

  9. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  10. Development of Web GIS for complex processing and visualization of climate geospatial datasets as an integral part of dedicated Virtual Research Environment

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander

    2017-04-01

    For comprehensive usage of large geospatial meteorological and climate datasets it is necessary to create a distributed software infrastructure based on the spatial data infrastructure (SDI) approach. Currently, it is generally accepted that the development of client applications as integrated elements of such infrastructure should be based on the usage of modern web and GIS technologies. The paper describes the Web GIS for complex processing and visualization of geospatial (mainly in NetCDF and PostGIS formats) datasets as an integral part of the dedicated Virtual Research Environment for comprehensive study of ongoing and possible future climate change, and analysis of their implications, providing full information and computing support for the study of economic, political and social consequences of global climate change at the global and regional levels. The Web GIS consists of two basic software parts: 1. Server-side part representing PHP applications of the SDI geoportal and realizing the functionality of interaction with computational core backend, WMS/WFS/WPS cartographical services, as well as implementing an open API for browser-based client software. Being the secondary one, this part provides a limited set of procedures accessible via standard HTTP interface. 2. Front-end part representing Web GIS client developed according to a "single page application" technology based on JavaScript libraries OpenLayers (http://openlayers.org/), ExtJS (https://www.sencha.com/products/extjs), GeoExt (http://geoext.org/). It implements application business logic and provides intuitive user interface similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Boundless/OpenGeo architecture was used as a basis for Web-GIS client development. According to general INSPIRE requirements to data visualization Web GIS provides such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. The specialized Web GIS client contains three basic tires: • Tier of NetCDF metadata in JSON format • Middleware tier of JavaScript objects implementing methods to work with: o NetCDF metadata o XML file of selected calculations configuration (XML task) o WMS/WFS/WPS cartographical services • Graphical user interface tier representing JavaScript objects realizing general application business logic Web-GIS developed provides computational processing services launching to support solving tasks in the area of environmental monitoring, as well as presenting calculation results in the form of WMS/WFS cartographical layers in raster (PNG, JPG, GeoTIFF), vector (KML, GML, Shape), and binary (NetCDF) formats. It has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical formats. The work is supported by the Russian Science Foundation grant No 16-19-10257.

  11. Collaborative Science Using Web Services and the SciFlo Grid Dataflow Engine

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Manipon, G.; Xing, Z.; Yunck, T.

    2006-12-01

    The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* &Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client &server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. Once an analysis has been specified for a chunk or day of data, it can be easily repeated with different control parameters or over months of data. Recently, the Earth Science Information Partners (ESIP) Federation sponsored a collaborative activity in which several ESIP members advertised their respective WMS/WCS and SOAP services, developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. For several scenarios, the same collaborative workflow was executed in three ways: using hand-coded scripts, by executing a SciFlo document, and by executing a BPEL workflow document. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, and further collaborations that are being pursued.

  12. ODI - Portal, Pipeline, and Archive (ODI-PPA): a web-based astronomical compute archive, visualization, and analysis service

    NASA Astrophysics Data System (ADS)

    Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin

    2014-07-01

    The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.

  13. 30 CFR 784.16 - Reclamation plan: Siltation structures, impoundments, and refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources Conservation Service's Web site athttp://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... State program approval process engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish compliance with the minimum static...

  14. 30 CFR 780.25 - Reclamation plan: Siltation structures, impoundments, and refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Resources Conservation Service's Web site at http://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... authority may establish through the State program approval process, engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish...

  15. ScotlandsPlaces XML: Bespoke XML or XML Mapping?

    ERIC Educational Resources Information Center

    Beamer, Ashley; Gillick, Mark

    2010-01-01

    Purpose: The purpose of this paper is to investigate web services (in the form of parameterised URLs), specifically in the context of the ScotlandsPlaces project. This involves cross-domain querying, data retrieval and display via the development of a bespoke XML standard rather than existing XML formats and mapping between them.…

  16. 77 FR 58767 - Definitions Relating to Electronic Orders and Prescriptions for Controlled Substances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... of Certified Public Accountants (AICPA) Statement of Auditing Standards (SAS) 70 criteria. Signing... professional service performed by a qualified certified public accountant to evaluate one or more aspects of... performed by a qualified certified public accountant to evaluate one or more aspects of Web sites. [75 FR...

  17. Building Multilevel Secure Web Services-Based Components for the Global Information Grid

    DTIC Science & Technology

    2006-05-01

    unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Transforming: Business , Security ,Warfighting 16 CROSSTALK The Journal of Defense...A Single Step of the BAC Table 1: A Single Step of the Block Access Controller Transforming: Business , Security ,Warfighting 18 CROSSTALK The Journal

  18. Web Service Distributed Management Framework for Autonomic Server Virtualization

    NASA Astrophysics Data System (ADS)

    Solomon, Bogdan; Ionescu, Dan; Litoiu, Marin; Mihaescu, Mircea

    Virtualization for the x86 platform has imposed itself recently as a new technology that can improve the usage of machines in data centers and decrease the cost and energy of running a high number of servers. Similar to virtualization, autonomic computing and more specifically self-optimization, aims to improve server farm usage through provisioning and deprovisioning of instances as needed by the system. Autonomic systems are able to determine the optimal number of server machines - real or virtual - to use at a given time, and add or remove servers from a cluster in order to achieve optimal usage. While provisioning and deprovisioning of servers is very important, the way the autonomic system is built is also very important, as a robust and open framework is needed. One such management framework is the Web Service Distributed Management (WSDM) system, which is an open standard of the Organization for the Advancement of Structured Information Standards (OASIS). This paper presents an open framework built on top of the WSDM specification, which aims to provide self-optimization for applications servers residing on virtual machines.

  19. Extracting scientific articles from a large digital archive: BioStor and the Biodiversity Heritage Library

    PubMed Central

    2011-01-01

    Background The Biodiversity Heritage Library (BHL) is a large digital archive of legacy biological literature, comprising over 31 million pages scanned from books, monographs, and journals. During the digitisation process basic metadata about the scanned items is recorded, but not article-level metadata. Given that the article is the standard unit of citation, this makes it difficult to locate cited literature in BHL. Adding the ability to easily find articles in BHL would greatly enhance the value of the archive. Description A service was developed to locate articles in BHL based on matching article metadata to BHL metadata using approximate string matching, regular expressions, and string alignment. This article locating service is exposed as a standard OpenURL resolver on the BioStor web site http://biostor.org/openurl/. This resolver can be used on the web, or called by bibliographic tools that support OpenURL. Conclusions BioStor provides tools for extracting, annotating, and visualising articles from the Biodiversity Heritage Library. BioStor is available from http://biostor.org/. PMID:21605356

  20. Design, implementation, use, and preliminary evaluation of SEBASTIAN, a standards-based Web service for clinical decision support.

    PubMed

    Kawamoto, Kensaku; Lobach, David F

    2005-01-01

    Despite their demonstrated ability to improve care quality, clinical decision support systems are not widely used. In part, this limited use is due to the difficulty of sharing medical knowledge in a machine-executable format. To address this problem, we developed a decision support Web service known as SEBASTIAN. In SEBASTIAN, individual knowledge modules define the data requirements for assessing a patient, the conclusions that can be drawn using that data, and instructions on how to generate those conclusions. Using standards-based XML messages transmitted over HTTP, client decision support applications provide patient data to SEBASTIAN and receive patient-specific assessments and recommendations. SEBASTIAN has been used to implement four distinct decision support systems; an architectural overview is provided for one of these systems. Preliminary assessments indicate that SEBASTIAN fulfills all original design objectives, including the re-use of executable medical knowledge across diverse applications and care settings, the straightforward authoring of knowledge modules, and use of the framework to implement decision support applications with significant clinical utility.

  1. CSW Best Practices

    NASA Technical Reports Server (NTRS)

    Newman, Doug; Mitchell, Andrew

    2016-01-01

    During the development of the CMR (Common Metadata Repository) (CMR) for the Earth Observing System Data and Information System (EOSDIS), CSW (Catalog Service for the Web) a number of best practices came to light. Given that the ESIP (Earth Science Information Partners) Discovery Cluster is committed to interoperability and standards in earth data discovery this seemed like a convenient moment to provide Best Practices to the organization in the same way we did for OpenSearch for this widely-used standard.

  2. Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo

    2010-05-01

    In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an integration on existing solutions. More specifically, the Open Geospatial Consortium (OGC) Web Services (OWS) specifications play a fundamental role in geospatial information sharing (e.g. in INSPIRE Implementing Rules, GEOSS architecture, GMES Services, etc.). On the Grid side, the gLite middleware, developed in the European EGEE (Enabling Grids for E-sciencE) Projects, is widely spread in Europe and beyond, proving its high scalability and it is one of the middleware chosen for the future European Grid Infrastructure (EGI) initiative. Therefore the convergence between OWS and gLite technologies would be desirable for a seamless access to the Grid capabilities through OWS-compliant systems. Anyway, to achieve this harmonization there are some obstacles to overcome. Firstly, a semantics mismatch must be addressed: gLite handle low-level (e.g. close to the machine) concepts like "file", "data", "instruments", "job", etc., while geo-information services handle higher-level (closer to the human) concepts like "coverage", "observation", "measurement", "model", etc. Secondly, an architectural mismatch must be addressed: OWS implements a Web Service-Oriented-Architecture which is stateless, synchronous and with no embedded security (which is demanded to other specs), while gLite implements the Grid paradigm in an architecture which is stateful, asynchronous (even not fully event-based) and with strong embedded security (based on the VO paradigm). In recent years many initiatives and projects have worked out possible approaches for implementing Grid-enabled OWSs. Just to mention some: (i) in 2007 the OGC has signed a Memorandum of Understanding with the Open Grid Forum, "a community of users, developers, and vendors leading the global standardization effort for grid computing."; (ii) the OGC identified "WPS Profiles - Conflation; and Grid processing" as one of the tasks in the Geo Processing Workflow theme of the OWS Phase 6 (OWS-6); (iii) several national, European and international projects investigated different aspects of this integration, developing demonstrators and Proof-of-Concepts; In this context, "gLite enablement of OpenGeospatial Web Services" (G-OWS) is an initiative started in 2008 by the European CYCLOPS, GENESI-DR, and DORII Projects Consortia in order to collect/coordinate experiences on the enablement of OWS on top of the gLite middleware [GOWS]. Currently G-OWS counts ten member organizations from Europe and beyond, and four European Projects involved. It broadened its scope to the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Its operational objectives are the following: i) to contribute to the OGC-OGF initiative; ii) to release a reference implementation as standard gLite APIs (under the gLite software license); iii) to release a reference model (including procedures and guidelines) for OWS Grid-ification, as far as gLite is concerned; iv) to foster and promote the formation of consortiums for participation to projects/initiatives aimed at building Grid-enabled SDIs To achieve this objectives G-OWS bases its activities on two main guiding principles: a) the adoption of a service-oriented architecture based on the information modelling approach, and b) standardization as a means of achieving interoperability (i.e. adoption of standards from ISO TC211, OGC OWS, OGF). In the first year of activity G-OWS has designed a general architectural framework stemming from the FP6 CYCLOPS studies and enriched by the outcomes of other projects and initiatives involved (i.e. FP7 GENESI-DR, FP7 DORII, AIST GeoGrid, etc.). Some proof-of-concepts have been developed to demonstrate the flexibility and scalability of such architectural framework. The G-OWS WG developed implementations of gLite-enabled Web Coverage Service (WCS) and Web Processing Service (WPS), and an implementation of a Shibboleth authentication for gLite-enabled OWS in order to evaluate the possible integration of Web and Grid security models. The presentation will aim to communicate the G-OWS organization, activities, future plans and means to involve the ESSI community. References [Berners-Lee 1996] T. Berners-Lee, "WWW: Past, present, and future". IEEE Computer, 29(10), Oct. 1996, pp. 69-77. [Foster 2001] I. Foster, C. Kesselman and S. Tuecke, "The Anatomy of the Grid. The International Journal ofHigh Performance Computing Applications", 15(3):200-222, Fall 2001 [GOWS] G-OWS WG, https://www.g-ows.org/, accessed: 15 January 2010

  3. Application of open source standards and technologies in the http://climate4impact.eu/ portal

    NASA Astrophysics Data System (ADS)

    Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia

    2015-04-01

    This presentation will demonstrate how to calculate and visualize the climate indice SU (number of summer days) on the climate4impact portal. The following topics will be covered during the demonstration: - Security: Login using OpenID for access to the Earth System Grid Fedeation (ESGF) data nodes. The ESGF works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESGF search services. A catalog browser allows for browsing through CMIP5 and any other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Processing using Web Processing Services (WPS): Transform data, subset, export into other formats, and perform climate indices calculations using Web Processing Services implemented by PyWPS, based on NCAR NCPP OpenClimateGIS and IS-ENES2 ICCLIM. - Visualization using Web Map Services (WMS): Visualize data from ESGF data nodes using ADAGUC Web Map Services. The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at http://climate4impact.eu/ The current main objectives for climate4impact can be summarized in two objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/ICCLIM on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close collaboration with users. The second one is to expose climate4impact services, so as to offer standardized services which can be used by other portals. This has the advantage to add interoperability between several portals, as well as to enable the design of specific portals aimed at different impact communities, either thematic or national, for example.

  4. QoS measurement of workflow-based web service compositions using Colored Petri net.

    PubMed

    Nematzadeh, Hossein; Motameni, Homayun; Mohamad, Radziah; Nematzadeh, Zahra

    2014-01-01

    Workflow-based web service compositions (WB-WSCs) is one of the main composition categories in service oriented architecture (SOA). Eflow, polymorphic process model (PPM), and business process execution language (BPEL) are the main techniques of the category of WB-WSCs. Due to maturity of web services, measuring the quality of composite web services being developed by different techniques becomes one of the most important challenges in today's web environments. Business should try to provide good quality regarding the customers' requirements to a composed web service. Thus, quality of service (QoS) which refers to nonfunctional parameters is important to be measured since the quality degree of a certain web service composition could be achieved. This paper tried to find a deterministic analytical method for dependability and performance measurement using Colored Petri net (CPN) with explicit routing constructs and application of theory of probability. A computer tool called WSET was also developed for modeling and supporting QoS measurement through simulation.

  5. Expanding Access and Usage of NASA Near Real-Time Imagery and Data

    NASA Astrophysics Data System (ADS)

    Cechini, M.; Murphy, K. J.; Boller, R. A.; Schmaltz, J. E.; Thompson, C. K.; Huang, T.; McGann, J. M.; Ilavajhala, S.; Alarcon, C.; Roberts, J. T.

    2013-12-01

    In late 2009, the Land Atmosphere Near-real-time Capability for EOS (LANCE) was created to greatly expand the range of near real-time data products from a variety of Earth Observing System (EOS) instruments. Since that time, NASA's Earth Observing System Data and Information System (EOSDIS) developed the Global Imagery Browse Services (GIBS) to provide highly responsive, scalable, and expandable imagery services that distribute near real-time imagery in an intuitive and geo-referenced format. The GIBS imagery services provide access through standards-based protocols such as the Open Geospatial Consortium (OGC) Web Map Tile Service (WMTS) and standard mapping file formats such as the Keyhole Markup Language (KML). Leveraging these standard mechanisms opens NASA near real-time imagery to a broad landscape of mapping libraries supporting mobile applications. By easily integrating with mobile application development libraries, GIBS makes it possible for NASA imagery to become a reliable and valuable source for end-user applications. Recently, EOSDIS has taken steps to integrate near real-time metadata products into the EOS ClearingHOuse (ECHO) metadata repository. Registration of near real-time metadata allows for near real-time data discovery through ECHO clients. In kind with the near real-time data processing requirements, the ECHO ingest model allows for low-latency metadata insertion and updates. Combining with the ECHO repository, the fast visual access of GIBS imagery can now be linked directly back to the source data file(s). Through the use of discovery standards such as OpenSearch, desktop and mobile applications can connect users to more than just an image. As data services, such as OGC Web Coverage Service, become more prevalent within the EOSDIS system, applications may even be able to connect users from imagery to data values. In addition, the full resolution GIBS imagery provides visual context to other GIS data and tools. The NASA near real-time imagery covers a broad set of Earth science disciplines. By leveraging the ECHO and GIBS services, these data can become a visual context within which other GIS activities are performed. The focus of this presentation is to discuss the GIBS imagery and ECHO metadata services facilitating near real-time discovery and usage. Existing synergies and future possibilities will also be discussed. The NASA Worldview demonstration client will be used to show an existing application combining the ECHO and GIBS services.

  6. Enhancing UCSF Chimera through web services.

    PubMed

    Huang, Conrad C; Meng, Elaine C; Morris, John H; Pettersen, Eric F; Ferrin, Thomas E

    2014-07-01

    Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Federating Metadata Catalogs

    NASA Astrophysics Data System (ADS)

    Baru, C.; Lin, K.

    2009-04-01

    The Geosciences Network project (www.geongrid.org) has been developing cyberinfrastructure for data sharing in the Earth Science community based on a service-oriented architecture. The project defines a standard "software stack", which includes a standardized set of software modules and corresponding service interfaces. The system employs Grid certificates for distributed user authentication. The GEON Portal provides online access to these services via a set of portlets. This service-oriented approach has enabled the GEON network to easily expand to new sites and deploy the same infrastructure in new projects. To facilitate interoperation with other distributed geoinformatics environments, service standards are being defined and implemented for catalog services and federated search across distributed catalogs. The need arises because there may be multiple metadata catalogs in a distributed system, for example, for each institution, agency, geographic region, and/or country. Ideally, a geoinformatics user should be able to search across all such catalogs by making a single search request. In this paper, we describe our implementation for such a search capability across federated metadata catalogs in the GEON service-oriented architecture. The GEON catalog can be searched using spatial, temporal, and other metadata-based search criteria. The search can be invoked as a Web service and, thus, can be imbedded in any software application. The need for federated catalogs in GEON arises because, (i) GEON collaborators at the University of Hyderabad, India have deployed their own catalog, as part of the iGEON-India effort, to register information about local resources for broader access across the network, (ii) GEON collaborators in the GEO Grid (Global Earth Observations Grid) project at AIST, Japan have implemented a catalog for their ASTER data products, and (iii) we have recently deployed a search service to access all data products from the EarthScope project in the US (http://es-portal.geongrid.org), which are distributed across data archives at IRIS in Seattle, Washington, UNAVCO in Boulder, Colorado, and at the ICDP archives in GFZ, Potsdam, Germany. This service implements a "virtual" catalog--the actual/"physical" catalogs and data are stored at each of the remote locations. A federated search across all these catalogs would enable GEON users to discover data across all of these environments with a single search request. Our objective is to implement this search service via the OGC Catalog Services for the Web (CS-W) standard by providing appropriate CSW "wrappers" for each metadata catalog, as necessary. This paper will discuss technical issues in designing and deploying such a multi-catalog search service in GEON and describe an initial prototype of the federated search capability.

  8. User-driven Cloud Implementation of environmental models and data for all

    NASA Astrophysics Data System (ADS)

    Gurney, R. J.; Percy, B. J.; Elkhatib, Y.; Blair, G. S.

    2014-12-01

    Environmental data and models come from disparate sources over a variety of geographical and temporal scales with different resolutions and data standards, often including terabytes of data and model simulations. Unfortunately, these data and models tend to remain solely within the custody of the private and public organisations which create the data, and the scientists who build models and generate results. Although many models and datasets are theoretically available to others, the lack of ease of access tends to keep them out of reach of many. We have developed an intuitive web-based tool that utilises environmental models and datasets located in a cloud to produce results that are appropriate to the user. Storyboards showing the interfaces and visualisations have been created for each of several exemplars. A library of virtual machine images has been prepared to serve these exemplars. Each virtual machine image has been tailored to run computer models appropriate to the end user. Two approaches have been used; first as RESTful web services conforming to the Open Geospatial Consortium (OGC) Web Processing Service (WPS) interface standard using the Python-based PyWPS; second, a MySQL database interrogated using PHP code. In all cases, the web client sends the server an HTTP GET request to execute the process with a number of parameter values and, once execution terminates, an XML or JSON response is sent back and parsed at the client side to extract the results. All web services are stateless, i.e. application state is not maintained by the server, reducing its operational overheads and simplifying infrastructure management tasks such as load balancing and failure recovery. A hybrid cloud solution has been used with models and data sited on both private and public clouds. The storyboards have been transformed into intuitive web interfaces at the client side using HTML, CSS and JavaScript, utilising plug-ins such as jQuery and Flot (for graphics), and Google Maps APIs. We have demonstrated that a cloud infrastructure can be used to assemble a virtual research environment that, coupled with a user-driven development approach, is able to cater to the needs of a wide range of user groups, from domain experts to concerned members of the general public.

  9. A Virtual Science Data Environment for Carbon Dioxide Observations

    NASA Astrophysics Data System (ADS)

    Verma, R.; Goodale, C. E.; Hart, A. F.; Law, E.; Crichton, D. J.; Mattmann, C. A.; Gunson, M. R.; Braverman, A. J.; Nguyen, H. M.; Eldering, A.; Castano, R.; Osterman, G. B.

    2011-12-01

    Climate science data are often distributed cross-institutionally and made available using heterogeneous interfaces. With respect to observational carbon-dioxide (CO2) records, these data span across national as well as international institutions and are typically distributed using a variety of data standards. Such an arrangement can yield challenges from a research perspective, as users often need to independently aggregate datasets as well as address the issue of data quality. To tackle this dispersion and heterogeneity of data, we have developed the CO2 Virtual Science Data Environment - a comprehensive approach to virtually integrating CO2 data and metadata from multiple missions and providing a suite of computational services that facilitate analysis, comparison, and transformation of that data. The Virtual Science Environment provides climate scientists with a unified web-based destination for discovering relevant observational data in context, and supports a growing range of online tools and services for analyzing and transforming the available data to suit individual research needs. It includes web-based tools to geographically and interactively search for CO2 observations collected from multiple airborne, space, as well as terrestrial platforms. Moreover, the data analysis services it provides over the Internet, including offering techniques such as bias estimation and spatial re-gridding, move computation closer to the data and reduce the complexity of performing these operations repeatedly and at scale. The key to enabling these services, as well as consolidating the disparate data into a unified resource, has been to focus on leveraging metadata descriptors as the foundation of our data environment. This metadata-centric architecture, which leverages the Dublin Core standard, forgoes the need to replicate remote datasets locally. Instead, the system relies upon an extensive, metadata-rich virtual data catalog allowing on-demand browsing and retrieval of CO2 records from multiple missions. In other words, key metadata information about remote CO2 records is stored locally while the data itself is preserved at its respective archive of origin. This strategy has been made possible by our method of encapsulating the heterogeneous sources of data using a common set of web-based services, including services provided by Jet Propulsion Laboratory's Climate Data Exchange (CDX). Furthermore, this strategy has enabled us to scale across missions, and to provide access to a broad array of CO2 observational data. Coupled with on-demand computational services and an intuitive web-portal interface, the CO2 Virtual Science Data Environment effectively transforms heterogeneous CO2 records from multiple sources into a unified resource for scientific discovery.

  10. caCORE: a common infrastructure for cancer informatics.

    PubMed

    Covitz, Peter A; Hartel, Frank; Schaefer, Carl; De Coronado, Sherri; Fragoso, Gilberto; Sahni, Himanso; Gustafson, Scott; Buetow, Kenneth H

    2003-12-12

    Sites with substantive bioinformatics operations are challenged to build data processing and delivery infrastructure that provides reliable access and enables data integration. Locally generated data must be processed and stored such that relationships to external data sources can be presented. Consistency and comparability across data sets requires annotation with controlled vocabularies and, further, metadata standards for data representation. Programmatic access to the processed data should be supported to ensure the maximum possible value is extracted. Confronted with these challenges at the National Cancer Institute Center for Bioinformatics, we decided to develop a robust infrastructure for data management and integration that supports advanced biomedical applications. We have developed an interconnected set of software and services called caCORE. Enterprise Vocabulary Services (EVS) provide controlled vocabulary, dictionary and thesaurus services. The Cancer Data Standards Repository (caDSR) provides a metadata registry for common data elements. Cancer Bioinformatics Infrastructure Objects (caBIO) implements an object-oriented model of the biomedical domain and provides Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. caCORE has been used to develop scientific applications that bring together data from distinct genomic and clinical science sources. caCORE downloads and web interfaces can be accessed from links on the caCORE web site (http://ncicb.nci.nih.gov/core). caBIO software is distributed under an open source license that permits unrestricted academic and commercial use. Vocabulary and metadata content in the EVS and caDSR, respectively, is similarly unrestricted, and is available through web applications and FTP downloads. http://ncicb.nci.nih.gov/core/publications contains links to the caBIO 1.0 class diagram and the caCORE 1.0 Technical Guide, which provide detailed information on the present caCORE architecture, data sources and APIs. Updated information appears on a regular basis on the caCORE web site (http://ncicb.nci.nih.gov/core).

  11. Importance of the spatial data and the sensor web in the ubiquitous computing area

    NASA Astrophysics Data System (ADS)

    Akçit, Nuhcan; Tomur, Emrah; Karslıoǧlu, Mahmut O.

    2014-08-01

    Spatial data has become a critical issue in recent years. In the past years, nearly more than three quarters of databases, were related directly or indirectly to locations referring to physical features, which constitute the relevant aspects. Spatial data is necessary to identify or calculate the relationships between spatial objects when using spatial operators in programs or portals. Originally, calculations were conducted using Geographic Information System (GIS) programs on local computers. Subsequently, through the Internet, they formed a geospatial web, which is integrated into a discoverable collection of geographically related web standards and key features, and constitutes a global network of geospatial data that employs the World Wide Web to process textual data. In addition, the geospatial web is used to gather spatial data producers, resources, and users. Standards also constitute a critical dimension in further globalizing the idea of the geospatial web. The sensor web is an example of the real time service that the geospatial web can provide. Sensors around the world collect numerous types of data. The sensor web is a type of sensor network that is used for visualizing, calculating, and analyzing collected sensor data. Today, people use smart devices and systems more frequently because of the evolution of technology and have more than one mobile device. The considerable number of sensors and different types of data that are positioned around the world have driven the production of interoperable and platform-independent sensor web portals. The focus of such production has been on further developing the idea of an interoperable and interdependent sensor web of all devices that share and collect information. The other pivotal idea consists of encouraging people to use and send data voluntarily for numerous purposes with the some level of credibility. The principal goal is to connect mobile and non-mobile device in the sensor web platform together to operate for serving and collecting information from people.

  12. User Needs of Digital Service Web Portals: A Case Study

    ERIC Educational Resources Information Center

    Heo, Misook; Song, Jung-Sook; Seol, Moon-Won

    2013-01-01

    The authors examined the needs of digital information service web portal users. More specifically, the needs of Korean cultural portal users were examined as a case study. The conceptual framework of a web-based portal is that it is a complex, web-based service application with characteristics of information systems and service agents. In…

  13. Compression-based aggregation model for medical web services.

    PubMed

    Al-Shammary, Dhiah; Khalil, Ibrahim

    2010-01-01

    Many organizations such as hospitals have adopted Cloud Web services in applying their network services to avoid investing heavily computing infrastructure. SOAP (Simple Object Access Protocol) is the basic communication protocol of Cloud Web services that is XML based protocol. Generally,Web services often suffer congestions and bottlenecks as a result of the high network traffic that is caused by the large XML overhead size. At the same time, the massive load on Cloud Web services in terms of the large demand of client requests has resulted in the same problem. In this paper, two XML-aware aggregation techniques that are based on exploiting the compression concepts are proposed in order to aggregate the medical Web messages and achieve higher message size reduction.

  14. A snapshot of 3649 Web-based services published between 1994 and 2017 shows a decrease in availability after 2 years.

    PubMed

    Osz, Ágnes; Pongor, Lorinc Sándor; Szirmai, Danuta; Gyorffy, Balázs

    2017-12-08

    The long-term availability of online Web services is of utmost importance to ensure reproducibility of analytical results. However, because of lack of maintenance following acceptance, many servers become unavailable after a short period of time. Our aim was to monitor the accessibility and the decay rate of published Web services as well as to determine the factors underlying trends changes. We searched PubMed to identify publications containing Web server-related terms published between 1994 and 2017. Automatic and manual screening was used to check the status of each Web service. Kruskall-Wallis, Mann-Whitney and Chi-square tests were used to evaluate various parameters, including availability, accessibility, platform, origin of authors, citation, journal impact factor and publication year. We identified 3649 publications in 375 journals of which 2522 (69%) were currently active. Over 95% of sites were running in the first 2 years, but this rate dropped to 84% in the third year and gradually sank afterwards (P < 1e-16). The mean half-life of Web services is 10.39 years. Working Web services were published in journals with higher impact factors (P = 4.8e-04). Services published before the year 2000 received minimal attention. The citation of offline services was less than for those online (P = 0.022). The majority of Web services provide analytical tools, and the proportion of databases is slowly decreasing. Conclusions. Almost one-third of Web services published to date went out of service. We recommend continued support of Web-based services to increase the reproducibility of published results. © The Author 2017. Published by Oxford University Press.

  15. Distributed data discovery, access and visualization services to Improve Data Interoperability across different data holdings

    NASA Astrophysics Data System (ADS)

    Palanisamy, G.; Krassovski, M.; Devarakonda, R.; Santhana Vannan, S.

    2012-12-01

    The current climate debate is highlighting the importance of free, open, and authoritative sources of high quality climate data that are available for peer review and for collaborative purposes. It is increasingly important to allow various organizations around the world to share climate data in an open manner, and to enable them to perform dynamic processing of climate data. This advanced access to data can be enabled via Web-based services, using common "community agreed" standards without having to change their internal structure used to describe the data. The modern scientific community has become diverse and increasingly complex in nature. To meet the demands of such diverse user community, the modern data supplier has to provide data and other related information through searchable, data and process oriented tool. This can be accomplished by setting up on-line, Web-based system with a relational database as a back end. The following common features of the web data access/search systems will be outlined in the proposed presentation: - A flexible data discovery - Data in commonly used format (e.g., CSV, NetCDF) - Preparing metadata in standard formats (FGDC, ISO19115, EML, DIF etc.) - Data subseting capabilities and ability to narrow down to individual data elements - Standards based data access protocols and mechanisms (SOAP, REST, OpenDAP, OGC etc.) - Integration of services across different data systems (discovery to access, visualizations and subseting) This presentation will also include specific examples of integration of various data systems that are developed by Oak Ridge National Laboratory's - Climate Change Science Institute, their ability to communicate between each other to enable better data interoperability and data integration. References: [1] Devarakonda, Ranjeet, and Harold Shanafield. "Drupal: Collaborative framework for science research." Collaboration Technologies and Systems (CTS), 2011 International Conference on. IEEE, 2011. [2]Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L. A., Killeffer, T. S., Boden, T. A., ... & Lazer, K. (2014). THE NEW ONLINE METADATA EDITOR FOR GENERATING STRUCTURED METADATA. Oak Ridge National Laboratory (ORNL).

  16. The tsunami service bus, an integration platform for heterogeneous sensor systems

    NASA Astrophysics Data System (ADS)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and arranged to high level processes like a decision support process: One of the outstanding features of service-oriented architectures is the possibility to compose new services from existing ones, which can be done programmatically or via declaration (workflow or process design). This allows e. g. the definition of new warning processes which could be adapted easily to new requirements. • An access layer which may contain graphical user interfaces for decision support, monitoring- or visualization-systems: To for example visualize time series graphical user interfaces request sensor data simply via the SOS. 4.BENEFIT The integration platform is realized on top of well known and widely used open source software implementing industrial standards. New sensors could be added easily to the infrastructure. Client components don't need to be adjusted if new sensor-types or -individuals are added to the system, because they access the sensors via standardized services. With implementing SWE fully compatible to the OGC specification it is possible to establish the "detection" and integration of sensors via the Web. Thus realizing a system of systems that combines early warning system functionality at different levels of detail (distant early warning systems, monitoring systems and any sensor system) is feasible.

  17. Analysis Tool Web Services from the EMBL-EBI.

    PubMed

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-07-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

  18. Analysis Tool Web Services from the EMBL-EBI

    PubMed Central

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-01-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338

  19. Biological Web Service Repositories Review.

    PubMed

    Urdidiales-Nieto, David; Navas-Delgado, Ismael; Aldana-Montes, José F

    2017-05-01

    Web services play a key role in bioinformatics enabling the integration of database access and analysis of algorithms. However, Web service repositories do not usually publish information on the changes made to their registered Web services. Dynamism is directly related to the changes in the repositories (services registered or unregistered) and at service level (annotation changes). Thus, users, software clients or workflow based approaches lack enough relevant information to decide when they should review or re-execute a Web service or workflow to get updated or improved results. The dynamism of the repository could be a measure for workflow developers to re-check service availability and annotation changes in the services of interest to them. This paper presents a review on the most well-known Web service repositories in the life sciences including an analysis of their dynamism. Freshness is introduced in this paper, and has been used as the measure for the dynamism of these repositories. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. The value of Web-based library services at Cedars-Sinai Health System.

    PubMed

    Halub, L P

    1999-07-01

    Cedars-Sinai Medical Library/Information Center has maintained Web-based services since 1995 on the Cedars-Sinai Health System network. In that time, the librarians have found the provision of Web-based services to be a very worthwhile endeavor. Library users value the services that they access from their desktops because the services save time. They also appreciate being able to access services at their convenience, without restriction by the library's hours of operation. The library values its Web site because it brings increased visibility within the health system, and it enables library staff to expand services when budget restrictions have forced reduced hours of operation. In creating and maintaining the information center Web site, the librarians have learned the following lessons: consider the design carefully; offer what services you can, but weigh the advantages of providing the services against the time required to maintain them; make the content as accessible as possible; promote your Web site; and make friends in other departments, especially information services.

  1. The value of Web-based library services at Cedars-Sinai Health System.

    PubMed Central

    Halub, L P

    1999-01-01

    Cedars-Sinai Medical Library/Information Center has maintained Web-based services since 1995 on the Cedars-Sinai Health System network. In that time, the librarians have found the provision of Web-based services to be a very worthwhile endeavor. Library users value the services that they access from their desktops because the services save time. They also appreciate being able to access services at their convenience, without restriction by the library's hours of operation. The library values its Web site because it brings increased visibility within the health system, and it enables library staff to expand services when budget restrictions have forced reduced hours of operation. In creating and maintaining the information center Web site, the librarians have learned the following lessons: consider the design carefully; offer what services you can, but weigh the advantages of providing the services against the time required to maintain them; make the content as accessible as possible; promote your Web site; and make friends in other departments, especially information services. PMID:10427423

  2. MedlinePlus Connect: How it Works

    MedlinePlus

    ... it looks depends on how it is implemented. Web Application The Web application returns a formatted response ... for more examples of Web Application response pages. Web Service The MedlinePlus Connect REST-based Web service ...

  3. search GenBank: interactive orchestration and ad-hoc choreography of Web services in the exploration of the biomedical resources of the National Center For Biotechnology Information

    PubMed Central

    2013-01-01

    Background Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. Results We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user’s query, advanced data searching based on the specified user’s query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. Conclusions search GenBank extends standard capabilities of the NCBI Entrez search engine in querying biomedical databases. The possibility of creating and saving macros in the search GenBank is a unique feature and has a great potential. The potential will further grow in the future with the increasing density of networks of relationships between data stored in particular databases. search GenBank is available for public use at http://sgb.biotools.pl/. PMID:23452691

  4. search GenBank: interactive orchestration and ad-hoc choreography of Web services in the exploration of the biomedical resources of the National Center For Biotechnology Information.

    PubMed

    Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Siążnik, Artur

    2013-03-01

    Due to the growing number of biomedical entries in data repositories of the National Center for Biotechnology Information (NCBI), it is difficult to collect, manage and process all of these entries in one place by third-party software developers without significant investment in hardware and software infrastructure, its maintenance and administration. Web services allow development of software applications that integrate in one place the functionality and processing logic of distributed software components, without integrating the components themselves and without integrating the resources to which they have access. This is achieved by appropriate orchestration or choreography of available Web services and their shared functions. After the successful application of Web services in the business sector, this technology can now be used to build composite software tools that are oriented towards biomedical data processing. We have developed a new tool for efficient and dynamic data exploration in GenBank and other NCBI databases. A dedicated search GenBank system makes use of NCBI Web services and a package of Entrez Programming Utilities (eUtils) in order to provide extended searching capabilities in NCBI data repositories. In search GenBank users can use one of the three exploration paths: simple data searching based on the specified user's query, advanced data searching based on the specified user's query, and advanced data exploration with the use of macros. search GenBank orchestrates calls of particular tools available through the NCBI Web service providing requested functionality, while users interactively browse selected records in search GenBank and traverse between NCBI databases using available links. On the other hand, by building macros in the advanced data exploration mode, users create choreographies of eUtils calls, which can lead to the automatic discovery of related data in the specified databases. search GenBank extends standard capabilities of the NCBI Entrez search engine in querying biomedical databases. The possibility of creating and saving macros in the search GenBank is a unique feature and has a great potential. The potential will further grow in the future with the increasing density of networks of relationships between data stored in particular databases. search GenBank is available for public use at http://sgb.biotools.pl/.

  5. WMS and WFS Standards Implementation of Weather Data

    NASA Astrophysics Data System (ADS)

    Armstrong, M.

    2005-12-01

    CustomWeather is private weather company that delivers global weather data products. CustomWeather has built a mapping platform according to OGC standards. Currently, both a Web Mapping Service (WMS) and Web Feature Service (WFS) are supported by CustomWeather. Supporting open geospatial standards has lead to number of positive changes internally to the processes of CustomWeather, along with those of the clients accessing the data. Quite a number of challenges surfaced during this process, particularly with respect to combining a wide variety of raw modeling and sensor data into a single delivery platform. Open standards have, however, made the delivery of very different data products rather seamless. The discussion will address the issues faced in building an OGC-based mapping platform along with the limitations encountered. While the availability of these data products through open standards is still very young, there have already been many adopters in the utility and navigation industries. The discussion will take a closer look at the different approach taken by these two industries as they utilize interoperability standards with existing data. Insight will be given in regards to applications already taking advantage of this new technology and how this is affecting decision-making processes. CustomWeather has observed considerable interest and potential benefit in this technology from developing countries. Weather data is a key element in disaster management. Interoperability is literally opening up a world of data and has the potential to quickly enable functionality that would otherwise take considerable time to implement. The discussion will briefly touch on our experience.

  6. A Privacy Access Control Framework for Web Services Collaboration with Role Mechanisms

    NASA Astrophysics Data System (ADS)

    Liu, Linyuan; Huang, Zhiqiu; Zhu, Haibin

    With the popularity of Internet technology, web services are becoming the most promising paradigm for distributed computing. This increased use of web services has meant that more and more personal information of consumers is being shared with web service providers, leading to the need to guarantee the privacy of consumers. This paper proposes a role-based privacy access control framework for Web services collaboration, it utilizes roles to specify the privacy privileges of services, and considers the impact on the reputation degree of the historic experience of services in playing roles. Comparing to the traditional privacy access control approaches, this framework can make the fine-grained authorization decision, thus efficiently protecting consumers' privacy.

  7. Incorporating Web 2.0 Technologies from an Organizational Perspective

    NASA Astrophysics Data System (ADS)

    Owens, R.

    2009-12-01

    The Arctic Research Consortium of the United States (ARCUS) provides support for the organization, facilitation, and dissemination of online educational and scientific materials and information to a wide range of stakeholders. ARCUS is currently weaving the fabric of Web 2.0 technologies—web development featuring interactive information sharing and user-centered design—into its structure, both as a tool for information management and for educational outreach. The importance of planning, developing, and maintaining a cohesive online platform in order to integrate data storage and dissemination will be discussed in this presentation, as well as some specific open source technologies and tools currently available, including: ○ Content Management: Any system set up to manage the content of web sites and services. Drupal is a content management system, built in a modular fashion allowing for a powerful set of features including, but not limited to weblogs, forums, event calendars, polling, and more. ○ Faceted Search: Combined with full text indexing, faceted searching allows site visitors to locate information quickly and then provides a set of 'filters' with which to narrow the search results. Apache Solr is a search server with a web-services like API (Application programming interface) that has built in support for faceted searching. ○ Semantic Web: The semantic web refers to the ongoing evolution of the World Wide Web as it begins to incorporate semantic components, which aid in processing requests. OpenCalais is a web service that uses natural language processing, along with other methods, in order to extract meaningful 'tags' from your content. This metadata can then be used to connect people, places, and things throughout your website, enriching the surfing experience for the end user. ○ Web Widgets: A web widget is a portable 'piece of code' that can be embedded easily into web pages by an end user. Timeline is a widget developed as part of the SIMILE project at MIT (Massachusetts Institute of Technology) for displaying time-based events in a clean, horizontal timeline display. Numerous standards, applications, and 3rd party integration services are also available for use in today's Web 2.0 environment. In addition to a cohesive online platform, the following tools can improve networking, information sharing, and increased scientific and educational collaboration: ○ Facebook (Fan pages, social networking, etc) ○ Twitter/Twitterfeed (Automatic updates in 3 steps) ○ Mobify.me (Mobile web) ○ Wimba, Adobe Connect, etc (real time conferencing) Increasingly, the scientific community is being asked to share data and information within and outside disciplines, with K-12 students, and with members of the public and policy-makers. Web 2.0 technologies can easily be set up and utilized to share data and other information to specific audiences in real time, and their simplicity ensures their increasing use by the science community in years to come.

  8. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and the OGC Web service protocols, the advantages offered by the Grid technology - such as providing a secure interoperability between the distributed geospatial resource -and the issues introduced by the integration of distributed geospatial data in a secure environment: data and service discovery, management, access and computation. enviroGRIDS project proposes a new architecture which allows a flexible and scalable approach for integrating the geospatial domain represented by the OGC Web services with the Grid domain represented by the gLite middleware. The parallelism offered by the Grid technology is discussed and explored at the data level, management level and computation level. The analysis is carried out for OGC Web service interoperability in general but specific details are emphasized for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web Processing Service (WPS) and Catalog Service for Web (CSW). Issues regarding the mapping and the interoperability between the OGC and the Grid standards and protocols are analyzed as they are the base in solving the communication problems between the two environments: grid and geospatial. The presetation mainly highlights how the Grid environment and Grid applications capabilities can be extended and utilized in geospatial interoperability. Interoperability between geospatial and Grid infrastructures provides features such as the specific geospatial complex functionality and the high power computation and security of the Grid, high spatial model resolution and geographical area covering, flexible combination and interoperability of the geographical models. According with the Service Oriented Architecture concepts and requirements of interoperability between geospatial and Grid infrastructures each of the main functionality is visible from enviroGRIDS Portal and consequently, by the end user applications such as Decision Maker/Citizen oriented Applications. The enviroGRIDS portal is the single way of the user to get into the system and the portal faces a unique style of the graphical user interface. Main reference for further information: [1] enviroGRIDS Project, http://www.envirogrids.net/

  9. SIDECACHE: Information access, management and dissemination framework for web services.

    PubMed

    Doderer, Mark S; Burkhardt, Cory; Robbins, Kay A

    2011-06-14

    Many bioinformatics algorithms and data sets are deployed using web services so that the results can be explored via the Internet and easily integrated into other tools and services. These services often include data from other sites that is accessed either dynamically or through file downloads. Developers of these services face several problems because of the dynamic nature of the information from the upstream services. Many publicly available repositories of bioinformatics data frequently update their information. When such an update occurs, the developers of the downstream service may also need to update. For file downloads, this process is typically performed manually followed by web service restart. Requests for information obtained by dynamic access of upstream sources is sometimes subject to rate restrictions. SideCache provides a framework for deploying web services that integrate information extracted from other databases and from web sources that are periodically updated. This situation occurs frequently in biotechnology where new information is being continuously generated and the latest information is important. SideCache provides several types of services including proxy access and rate control, local caching, and automatic web service updating. We have used the SideCache framework to automate the deployment and updating of a number of bioinformatics web services and tools that extract information from remote primary sources such as NCBI, NCIBI, and Ensembl. The SideCache framework also has been used to share research results through the use of a SideCache derived web service.

  10. Design for Connecting Spatial Data Infrastructures with Sensor Web (sensdi)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; M., M.

    2016-06-01

    Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. It is about research to harness the sensed environment by utilizing domain specific sensor data to create a generalized sensor webframework. The challenges being semantic enablement for Spatial Data Infrastructures, and connecting the interfaces of SDI with interfaces of Sensor Web. The proposed research plan is to Identify sensor data sources, Setup an open source SDI, Match the APIs and functions between Sensor Web and SDI, and Case studies like hazard applications, urban applications etc. We take up co-operative development of SDI best practices to enable a new realm of a location enabled and semantically enriched World Wide Web - the "Geospatial Web" or "Geosemantic Web" by setting up one to one correspondence between WMS, WFS, WCS, Metadata and 'Sensor Observation Service' (SOS); 'Sensor Planning Service' (SPS); 'Sensor Alert Service' (SAS); a service that facilitates asynchronous message interchange between users and services, and between two OGC-SWE services, called the 'Web Notification Service' (WNS). Hence in conclusion, it is of importance to geospatial studies to integrate SDI with Sensor Web. The integration can be done through merging the common OGC interfaces of SDI and Sensor Web. Multi-usability studies to validate integration has to be undertaken as future research.

  11. The EarthServer Federation: State, Role, and Contribution to GEOSS

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Baumann, Peter

    2016-04-01

    The intercontinental EarthServer initiative has established a European datacube platform with proven scalability: known databases exceed 100 TB, and single queries have been split across more than 1,000 cloud nodes. Its service interface being rigorously based on the OGC "Big Geo Data" standards, Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS), a series of clients can dock into the services, ranging from open-source OpenLayers and QGIS over open-source NASA WorldWind to proprietary ESRI ArcGIS. Datacube fusion in a "mix and match" style is supported by the platform technolgy, the rasdaman Array Database System, which transparently federates queries so that users simply approach any node of the federation to access any data item, internally optimized for minimal data transfer. Notably, rasdaman is part of GEOSS GCI. NASA is contributing its Web WorldWind virtual globe for user-friendly data extraction, navigation, and analysis. Integrated datacube / metadata queries are contributed by CITE. Current federation members include ESA (managed by MEEO sr.l.), Plymouth Marine Laboratory (PML), the European Centre for Medium-Range Weather Forecast (ECMWF), Australia's National Computational Infrastructure, and Jacobs University (adding in Planetary Science). Further data centers have expressed interest in joining. We present the EarthServer approach, discuss its underlying technology, and illustrate the contribution this datacube platform can make to GEOSS.

  12. Dynamic Generation of Reduced Ontologies to Support Resource Constraints of Mobile Devices

    ERIC Educational Resources Information Center

    Schrimpsher, Dan

    2011-01-01

    As Web Services and the Semantic Web become more important, enabling technologies such as web service ontologies will grow larger. At the same time, use of mobile devices to access web services has doubled in the last year. The ability of these resource constrained devices to download and reason across these ontologies to support service discovery…

  13. Managing the Web-Enhanced Geographic Information Service.

    ERIC Educational Resources Information Center

    Stephens, Denise

    1997-01-01

    Examines key management issues involved in delivering geographic information services on the World Wide Web, using the Geographic Information Center (GIC) program at the University of Virginia Library as a reference. Highlights include integrating the Web into services; building collections for Web delivery; and evaluating spatial information…

  14. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  15. BioCatalogue: a universal catalogue of web services for the life sciences

    PubMed Central

    Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A.

    2010-01-01

    The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable ‘Web 2.0’-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community. PMID:20484378

  16. BioCatalogue: a universal catalogue of web services for the life sciences.

    PubMed

    Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A

    2010-07-01

    The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable 'Web 2.0'-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community.

  17. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged using the OGC Sensor Observation Service (SOS) standard. Ground Water Markup Language (GWML) encodes well log, lithology and construction information and is exchanged using the OGC Web Feature Service (WFS) standard. Within the NGWMN Data Portal, data exchange between distributed data provider repositories is achieved through the use of these web services and a central mediation hub, which performs both format (syntactic) and nomenclature (semantic) mediation, conforming heterogeneous inputs into common standards-based outputs. Through these common standards, interoperability between the U.S. NGWMN and Canada's Groundwater Information Network (GIN) is achieved, advancing a ground water virtual observatory across North America.

  18. Metadata Sets for e-Government Resources: The Extended e-Government Metadata Schema (eGMS+)

    NASA Astrophysics Data System (ADS)

    Charalabidis, Yannis; Lampathaki, Fenareti; Askounis, Dimitris

    In the dawn of the Semantic Web era, metadata appear as a key enabler that assists management of the e-Government resources related to the provision of personalized, efficient and proactive services oriented towards the real citizens’ needs. As different authorities typically use different terms to describe their resources and publish them in various e-Government Registries that may enhance the access to and delivery of governmental knowledge, but also need to communicate seamlessly at a national and pan-European level, the need for a unified e-Government metadata standard emerges. This paper presents the creation of an ontology-based extended metadata set for e-Government Resources that embraces services, documents, XML Schemas, code lists, public bodies and information systems. Such a metadata set formalizes the exchange of information between portals and registries and assists the service transformation and simplification efforts, while it can be further taken into consideration when applying Web 2.0 techniques in e-Government.

  19. Web Coverage Service Challenges for NASA's Earth Science Data

    NASA Technical Reports Server (NTRS)

    Cantrell, Simon; Khan, Abdul; Lynnes, Christopher

    2017-01-01

    In an effort to ensure that data in NASA's Earth Observing System Data and Information System (EOSDIS) is available to a wide variety of users through the tools of their choice, NASA continues to focus on exposing data and services using standards based protocols. Specifically, this work has focused recently on the Web Coverage Service (WCS). Experience has been gained in data delivery via GetCoverage requests, starting out with WCS v1.1.1. The pros and cons of both the version itself and different implementation approaches will be shared during this session. Additionally, due to limitations with WCS v1.1.1 ability to work with NASA's Earth science data, this session will also discuss the benefit of migrating to WCS 2.0.1 with EO-x to enrich this capability to meet a wide range of anticipated user's needs This will enable subsetting and various types of data transformations to be performed on a variety of EOS data sets.

  20. Customer Decision Making in Web Services with an Integrated P6 Model

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohao; Sun, Junqing; Meredith, Grant

    Customer decision making (CDM) is an indispensable factor for web services. This article examines CDM in web services with a novel P6 model, which consists of the 6 Ps: privacy, perception, propensity, preference, personalization and promised experience. This model integrates the existing 6 P elements of marketing mix as the system environment of CDM in web services. The new integrated P6 model deals with the inner world of the customer and incorporates what the customer think during the DM process. The proposed approach will facilitate the research and development of web services and decision support systems.

Top