Sample records for standard-reference water samples

  1. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in October 1993 : T-127 (trace constituents), M-128 (major constituents), N-40 (nutrients), N-41 (nutrients), P-21 (low ionic strength), Hg-17 (mercury), AMW-3 (acid mine water), and WW-1 (whole water)

    USGS Publications Warehouse

    Long, H.K.; Farrar, J.W.

    1994-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for eight standard reference samples--T-127 (trace constituents), M-128 (major constituents), N-40 (nutrients), N-41 (nutrients), P-21 (low ionic strength), Hg-17 (mercury), AMW-3 (acid mine water), and WW-1 (whole water)--that were distributed in October 1993 to 158 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 145 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the eight reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the eight standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  2. Results of the U.S. Geological Survey's Analytical Evaluation Program for standard reference samples distributed in March 1999

    USGS Publications Warehouse

    Farrar, Jerry W.; Chleboun, Kimberly M.

    1999-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for 8 standard reference samples -- T-157 (trace constituents), M-150 (major constituents), N-61 (nutrient constituents), N-62 (nutrient constituents), P-32 (low ionic strength constituents), GWT-5 (ground-water trace constituents), GWM- 4 (ground-water major constituents),and Hg-28 (mercury) -- that were distributed in March 1999 to 120 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 111 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the 8 standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  3. Reference samples for the earth sciences

    USGS Publications Warehouse

    Flanagan, F.J.

    1974-01-01

    A revised list of reference samples of interest to geoscientists has been extended to include samples for the agronomist, the archaeologist and the environmentalist. In addition to the source from which standard samples may be obtained, references or pertinent notes for some samples are included. The number of rock reference samples is now almost adequate, and the variety of ore samples will soon be sufficient. There are very few samples for microprobe work. Oil shales will become more important because of the outlook for world petroleum resources. The dryland equivalent of a submarine basalt might be useful in studies of sea-floor spreading and of the geochemistry of basalts. The Na- and K-feldspars of BCS (British Chemical Standards-Bureau of Analysed Samples), NBS (National Bureau of Standards), and ANRT (Association Kationale de la Recherche Technique) could serve as trace-element standards if such data were available. Similarly, the present NBS flint and plastic clays, as well as their predecessors, might be useful for archaeological pottery studies. The International Decade for Ocean Exploration may stimulate the preparation of ocean-water standards for trace elements or pollutants and a standard for manganese nodules. ?? 1974.

  4. Re-evaluation and extension of the scope of elements in US Geological Survey Standard Reference Water Samples

    USGS Publications Warehouse

    Peart, D.B.; Antweiler, Ronald C.; Taylor, Howard E.; Roth, D.A.; Brinton, T.I.

    1998-01-01

    More than 100 US Geological Survey (USGS) Standard Reference Water Samples (SRWSs) were analyzed for numerous trace constituents, including Al, As, B, Ba, Be, Bi, Br, Cd, Cr, Co, Cu, I, Fe, Pb, Li, Mn, Mo, Ni, Rb, Sb, Se, Sr, Te, Tl, U, V, Zn and major elements (Ca, Mg, Na, SiO2, SO4, Cl) by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. In addition, 15 USGS SRWSs and National Institute of Standards and Technology (NIST) standard reference material (SRM) 1641b were analyzed for mercury using cold vapor atomic fluorescence spectrometry. Also USGS SRWS Hg-7 was analyzed using isotope dilution-inductively coupled plasma mass spectrometry. The results were compared with the reported certified values of the following standard reference materials: NIST SRM 1643a, 1643b, 1643c and 1643d and National Research Council of Canada Riverine Water Reference Materials for Trace Metals SLRS-1, SLRS-2 and SLRS-3. New concentration values for trace and major elements in the SRWSs, traceable to the certified standards, are reported. Additional concentration values are reported for elements that were neither previously published for the SRWSs nor traceable to the certified reference materials. Robust statistical procedures were used that were insensitive to outliers. These data can be used for quality assurance/quality control purposes in analytical laboratories.

  5. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Elements in Whole-Water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Struzeski, Tedmund M.

    1998-01-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.

  6. Results of the U.S. Geological Survey's Analytical Evaluation Program for standard reference samples: T-155 (trace constituents), M-148 (major constituents), N-59 (nutrient constituents), N-60 (nutrient constituents), P-31 (low ionic strength constituents), GWT-4 (ground-water trace constituents) and Hg-27 (Mercury) distributed in September 1998

    USGS Publications Warehouse

    Farrar, Jerry W.

    1999-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for seven standard reference samples -- T-155 (trace constituents), M-148 (major constituents), N-59 (nutrient constituents), N-60 (nutrient constituents), P-31 (low ionic strength constituents), GWT-4 (ground-water trace constituents), and Hg- 27 (mercury) -- which were distributed in September 1998 to 162 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 136 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  7. Evaluation of the methods for enumerating coliform bacteria from water samples using precise reference standards.

    PubMed

    Wohlsen, T; Bates, J; Vesey, G; Robinson, W A; Katouli, M

    2006-04-01

    To use BioBall cultures as a precise reference standard to evaluate methods for enumeration of Escherichia coli and other coliform bacteria in water samples. Eight methods were evaluated including membrane filtration, standard plate count (pour and spread plate methods), defined substrate technology methods (Colilert and Colisure), the most probable number method and the Petrifilm disposable plate method. Escherichia coli and Enterobacter aerogenes BioBall cultures containing 30 organisms each were used. All tests were performed using 10 replicates. The mean recovery of both bacteria varied with the different methods employed. The best and most consistent results were obtained with Petrifilm and the pour plate method. Other methods either yielded a low recovery or showed significantly high variability between replicates. The BioBall is a very suitable quality control tool for evaluating the efficiency of methods for bacterial enumeration in water samples.

  8. US Fish and Wildlife Service biomonitoring operations manual, Appendices A--K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianotto, D.F.; Rope, R.C.; Mondecar, M.

    1993-04-01

    Volume 2 contains Appendices and Summary Sheets for the following areas: A-Legislative Background and Key to Relevant Legislation, B- Biomonitoring Operations Workbook, C-Air Monitoring, D-Introduction to the Flora and Fauna for Biomonitoring, E-Decontamination Guidance Reference Field Methods, F-Documentation Guidance, Sample Handling, and Quality Assurance/Quality Control Standard Operating Procedures, G-Field Instrument Measurements Reference Field Methods, H-Ground Water Sampling Reference Field Methods, I-Sediment Sampling Reference Field Methods, J-Soil Sampling Reference Field Methods, K-Surface Water Reference Field Methods. Appendix B explains how to set up strategy to enter information on the ``disk workbook``. Appendix B is enhanced by DE97006389, an on-line workbook formore » users to be able to make revisions to their own biomonitoring data.« less

  9. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, Ronald C.; Nordstrom, D. Kirk; Taylor, Howard E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  10. Standardization for oxygen isotope ratio measurement - still an unsolved problem.

    PubMed

    Kornexl; Werner; Gehre

    1999-07-01

    Numerous organic and inorganic laboratory standards were gathered from nine European and North American laboratories and were analyzed for their delta(18)O values with a new on-line high temperature pyrolysis system that was calibrated using Vienna standard mean ocean water (VSMOW) and standard light Antartic precipitation (SLAP) internationally distributed reference water samples. Especially for organic materials, discrepancies between reported and measured values were high, ranging up to 2 per thousand. The reasons for these discrepancies are discussed and the need for an exact and reliable calibration of existing reference materials, as well as for the establishment of additional organic and inorganic reference materials is stressed. Copyright 1999 John Wiley & Sons, Ltd.

  11. A rapid and high-precision method for sulfur isotope δ(34)S determination with a multiple-collector inductively coupled plasma mass spectrometer: matrix effect correction and applications for water samples without chemical purification.

    PubMed

    Lin, An-Jun; Yang, Tao; Jiang, Shao-Yong

    2014-04-15

    Previous studies have indicated that prior chemical purification of samples, although complex and time-consuming, is essential in obtaining precise and accurate results for sulfur isotope ratios using multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this study, we introduce a new, rapid and precise MC-ICP-MS method for sulfur isotope determination from water samples without chemical purification. The analytical work was performed on an MC-ICP-MS instrument with medium mass resolution (m/Δm ~ 3000). Standard-sample bracketing (SSB) was used to correct samples throughout the analytical sessions. Reference materials included an Alfa-S (ammonium sulfate) standard solution, ammonium sulfate provided by the lab of the authors and fresh seawater from the South China Sea. A range of matrix-matched Alfa-S standard solutions and ammonium sulfate solutions was used to investigate the matrix (salinity) effect (matrix was added in the form of NaCl). A seawater sample was used to confirm the reliability of the method. Using matrix-matched (salinity-matched) Alfa-S as the working standard, the measured δ(34)S value of AS (-6.73 ± 0.09‰) was consistent with the reference value (-6.78 ± 0.07‰) within the uncertainty, suggesting that this method could be recommended for the measurement of water samples without prior chemical purification. The δ(34)S value determination for the unpurified seawater also yielded excellent results (21.03 ± 0.18‰) that are consistent with the reference value (20.99‰), thus confirming the feasibility of the technique. The data and the results indicate that it is feasible to use MC-ICP-MS and matrix-matched working standards to measure the sulfur isotopic compositions of water samples directly without chemical purification. In comparison with the existing MC-ICP-MS techniques, the new method is better for directly measuring δ(34)S values in water samples with complex matrices; therefore, it can significantly accelerate analytical turnover. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    USGS Publications Warehouse

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  13. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes.

    PubMed

    Bernalte, E; Marín Sánchez, C; Pinilla Gil, E

    2011-03-09

    The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL(-1) range (detection limit 1.1 ng mL(-1)), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0-110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5-90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of low-level silver by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    Damrau, D.L.

    1993-01-01

    Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    1999-01-01

    The inductively coupled plasma?mass spectrometric (ICP?MS) methods have been expanded to include the determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium in filtered, acidified natural water. Method detection limits for these elements are now 10 to 200 times lower than by former U.S. Geological Survey (USGS) methods, thus providing lower variability at ambient concentrations. The bias and variability of the method was determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries at 5 to 10 times the method detection limit and 75 micrograms per liter in reagent-water, surface-water, and groundwater matrices averaged 93 percent for seven replicates, although selected elemental recoveries in a ground-water matrix with an extremely high iron sulfate concentration were negatively biased by 30 percent. Results for standard reference materials were within 1 standard deviation of the most probable value. Statistical analysis of the results from about 60 filtered, acidified natural-water samples indicated that there was no significant difference between ICP?MS and former USGS official methods of analysis.

  16. Laser based water equilibration method for d18O determination of water samples

    NASA Astrophysics Data System (ADS)

    Mandic, Magda; Smajgl, Danijela; Stoebener, Nils

    2017-04-01

    Determination of d18O with water equilibration method using mass spectrometers equipped with equilibration unit or Gas Bench is known already for many years. Now, with development of laser spectrometers this extends methods and possibilities to apply different technologies in laboratory but also in the field. The Thermo Scientific™ Delta Ray™ Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect and Teledyne Cetac ASX-7100 offers high precision and throughput of samples. It employs optical spectroscopy for continuous measurement of isotope ratio values and concentration of carbon dioxide in ambient air, and also for analysis of discrete samples from vials, syringes, bags, or other user-provided sample containers. Test measurements and conformation of precision and accuracy of method determination d18O in water samples were done in Thermo Fisher application laboratory with three lab standards, namely ANST, Ocean II and HBW. All laboratory standards were previously calibrated with international reference material VSMOW2 and SLAP2 to assure accuracy of the isotopic values of the water. With method that we present in this work achieved repeatability and accuracy are 0.16‰ and 0.71‰, respectively, which fulfill requirements of regulatory method for wine and must after equilibration with CO2.

  17. Results of the Level-1 Water-Quality Inventory at the Pinnacles National Monument, June 2006

    USGS Publications Warehouse

    Borchers, James W.; Lyttge, Michael S.

    2007-01-01

    To help define baseline water quality of key water resources at Pinnacles National Monument, California, the U.S. Geological Survey collected and analyzed ground water from seven springs sampled during June 2006. During the dry season, seeps and springs are the primary source of water for wildlife in the monument and provide habitat for plants, amphibians, and aquatic life. Water samples were analyzed for dissolved concentrations of major ions, trace elements, nutrients, stable isotopes of hydrogen and oxygen, and tritium. In most cases, the concentrations of measured water-quality constituents in spring samples were lower than California threshold standards for drinking water and Federal threshold standards for drinking water and aquatic life. The concentrations of dissolved arsenic in three springs were above the Federal Maximum Contaminant Level for drinking water (10 g/L). Water-quality information for samples collected from the springs will provide a reference point for comparison of samples collected from future monitoring networks and hydrologic studies in the Pinnacles National Monument, and will help National Park Service managers assess relations between water chemistry, geology, and land use.

  18. Characterization of water quality in selected tributaries of the Alamosa River, southwestern Colorado, including comparisons to instream water-quality standards and toxicological reference values, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Ferguson, Sheryl A.

    2001-01-01

    A comprehensive water-quality sampling network was implemented by the U.S. Geological Survey from 1995 through 1997 at 12 tributary sites to the Alamosa River. The network was designed to address data gaps identified in the initial ecological risk assessment of the Summitville Superfund site. Tributaries draining hydrothermally altered areas had higher median values for nearly all measured properties and constituents than tributaries draining unaltered areas. Colorado instream standards for pH, copper, iron, and zinc were in attainment at most tributary sites. Instream standards for pH and chronic aquatic-life standards for iron were not attained in Jasper Creek. Toxicological reference values were most often exceeded at Iron Creek, Alum Creek, Bitter Creek, Wightman Fork, and Burnt Creek. These tributaries all drain hydrothermally altered areas.

  19. Determination of selected anions in water by ion chromatography

    USGS Publications Warehouse

    Fishman, Marvin J.; Pyen, Grace

    1979-01-01

    Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rain water and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram.Minimum detection limits range from 0.01 milligrams per liter for fluoride to 0.20 milligrams per liter for chloride and sulfate. Percent relative standard deviations were less than nine percent for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 milligrams per liter in rainfall samples. Precision for fluoride ranged from 12 to 22 percent, but is attributed to the low concentrations in these samples. The other anions were not detected.To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103 percent. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104 percent. No recovery data were obtained for nitrite.Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography.

  20. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE--HANDLING QUALITY CONTROL SAMPLES IN THE FIELD (RTI/ACS-AP-209-090)

    EPA Science Inventory

    This protocol describes how quality control samples should be handled in the field, and was designed as a quick reference source for the field staff. The protocol describes quality control samples for air-VOCs, air-particles, water samples, house dust, soil, urine, blood, hair, a...

  1. New tool for getting data on the field for paleoclimate and paleoceanography data based on isotope 13C and 18O measurements

    NASA Astrophysics Data System (ADS)

    Mandic, M.; Stöbener, N.; Smajgl, D.

    2017-12-01

    For many decades different instrumental methods involving generations of the isotope ratio mass spectrometers with different periphery units for sample preparation, have provided scientifically required high precision, and high throughput of samples for varies application - from geological and hydrological to food and forensic. With this work we introduce automated measurement of δ13C and δ18O from solid carbonate samples, DIC and δ18O of water. We have demonstrated usage of a Thermo Scientific™ Delta Ray™ IRIS with URI Connect on certified reference materials and confirmed the high achievable accuracy and a precision better then <0.1‰ for both δ13C and δ18O, in the laboratory or the field with same precision and throughput of samples. With equilibration method for determination of δ18O in water samples, which we present in this work, achieved repeatability and accuracy are 0.12‰ and 0.68‰ respectively, which fulfill requirements of regulatory methods. The preparation of the samples for carbonate and DIC analysis on the Delta Ray IRIS with URI Connect is similar to the previously mentioned Gas Bench II methods. Samples are put into vials and phosphoric acid is added. The resulting sample-acid chemical reaction releases CO2 gas, which is then introduced into the Delta Ray IRIS via the Variable Volume. Three international standards of carbonate materials (NBS-18, NBS-19 and IAEA-CO-1) were analyzed. NBS-18 and NBS-19 were used as standards for calibration, and IAEA-CO-1 was treated as unknown. For water sample analysis equilibration method with 1% of CO2 in dry air was used. Test measurements and conformation of precision and accuracy of method determination δ18O in water samples were done with three lab standards, namely ANST, OCEAN 2 and HBW. All laboratory standards were previously calibrated with international reference material VSMOW2 and SLAP2 to assure accuracy of the isotopic values. The Principle of Identical Treatment was applied in sample and standard preparation, in measurement procedure, as well as in the evaluation of the results.

  2. Equivalency testing of TTC Tergitol 7 agar (ISO 9308-1:2000) with five culture media for the detection of E. coli in water samples in Greece.

    PubMed

    Mavridou, A; Smeti, E; Mandilara, G; Mandilara, G; Boufa, P; Vagiona-Arvanitidou, M; Vantarakis, A; Vassilandonopoulou, G; Pappa, O; Roussia, V; Tzouanopoulos, A; Livadara, M; Aisopou, I; Maraka, V; Nikolaou, E; Mandilara, G

    2010-01-01

    In this study ten laboratories in Greece compared the performance of reference method TTC Tergitol 7 Agar (with the additional test of beta-glucuronidase production) with five alternative methods, to detect E. coli in water, in line with European Water Directive recommendations. The samples were prepared by spiking drinking water with sewage effluent following a standard protocol. Chlorinated and non-chlorinated samples were used. The statistical analysis was based on the mean relative difference of confirmed counts and was performed in line with ISO 17994. The results showed that in total, three of the alternative methods (Chromocult Coliform agar, Membrane Lauryl Sulfate agar and Trypton Bilex-glucuronidase medium) were not different from TTC Tergitol 7 agar (TTC Tergitol 7 agar vs Chromocult Coliform agar, 294 samples, mean RD% 5.55; vs MLSA, 302 samples, mean RD% 1; vs TBX, 297 samples, mean RD% -2.78). The other two alternative methods (Membrane Faecal coliform medium and Colilert 18/ Quantitray) gave significantly higher counts than TTC Tergitol 7 agar (TTC Tergitol 7 agar vs MFc, 303 samples, mean RD% 8.81; vs Colilert-18/Quantitray, 76 samples, mean RD% 18.91). In other words, the alternative methods generated performance that was as reliable as, or even better than, the reference method. This study will help laboratories in Greece overcome culture and counting problems deriving from the EU reference method for E. coli counts in water samples.

  3. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Taylor, Howard E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  4. Water, moisture and ash content of mechanically cleaned greige cotton, naturally colored brown cotton, flax and rayon

    USDA-ARS?s Scientific Manuscript database

    This exploratory research evaluated the Karl Fischer Titration reference method (KFT, ASTM D7785) to accurately measure water content of mechanically cleaned greige cotton, a naturally colored brown cotton, flax and rayon at moisture equilibrium. Each sample was analyzed by KFT, standard oven dryin...

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of whole-water recoverable arsenic, boron, and vanadium using inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Garbarino, John R.

    2000-01-01

    Analysis of in-bottle digestate by using the inductively coupled plasma?mass spectrometric (ICP?MS) method has been expanded to include arsenic, boron, and vanadium. Whole-water samples are digested by using either the hydrochloric acid in-bottle digestion procedure or the nitric acid in-bottle digestion procedure. When the hydrochloric acid in-bottle digestion procedure is used, chloride must be removed from the digestate by subboiling evaporation before arsenic and vanadium can be accurately determined. Method detection limits for these elements are now 10 to 100 times lower than U.S. Geological Survey (USGS) methods using hydride generation? atomic absorption spectrophotometry (HG? AAS) and inductively coupled plasma? atomic emission spectrometry (ICP?AES), thus providing lower variability at ambient concentrations. The bias and variability of the methods were determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries in reagent-water, surface-water, ground-water, and whole-water recoverable matrices averaged 90 percent for seven replicates; spike recoveries were biased from 25 to 35 percent low for the ground-water matrix because of the abnormally high iron concentration. Results for reference material were within one standard deviation of the most probable value. There was no significant difference between the results from ICP?MS and HG?AAS or ICP?AES methods for the natural whole-water samples that were analyzed.

  6. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples.This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for each method and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental investigations.

  7. Determination of As, Sb, Bi and Hg in water samples by flow-injection inductively coupled plasma mass spectrometry with an in-situ nebulizer/hydride generator

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Shyue; Jiang, Shiuh-Jen

    1996-12-01

    A simple and very inexpensive in-situ nebulizer/hydride generator was used with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of As, Sb, Bi and Hg in water samples. The application of hydride generation ICP-MS alleviated the sensitivity problem of As, Sb, Bi and Hg determinations encountered when the conventional pneumatic nebulizer was used for sample introduction. The sample was introduced by flow injection to minimize the deposition of solids on the sampling orifice. The elements in the sample were reduced to the lower oxidation states with L-cysteine before being injected into the hydride generation system. This method has a detection limit of 0.003, 0.003, 0.017 and 0.17 ng ml -1 for As, Bi, Sb and Hg, respectively. This method was applied to determine As, Sb, Bi and Hg in a CASS-3 nearshore seawater reference sample, a SLRS-2 riverine water reference sample and a tap water collected from National Sun Yat-Sen University. The concentrations of the elements were determined by standard addition method. The precision was better than 20% for most of the determinations.

  8. Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry.

    PubMed

    Moschet, Christoph; Piazzoli, Alessandro; Singer, Heinz; Hollender, Juliane

    2013-11-05

    In this study, the efficiency of a suspect screening strategy using liquid chromatography-high resolution mass spectrometry (LC-HRMS) without the prior purchase of reference standards was systematically optimized and evaluated for assessing the exposure of rarely investigated pesticides and their transformation products (TPs) in 76 surface water samples. Water-soluble and readily ionizable (electrospray ionization) substances, 185 in total, were selected from a list of all insecticides and fungicides registered in Switzerland and their major TPs. Initially, a solid phase extraction-LC-HRMS method was established using 45 known, persistent, and high sales volume pesticides. Seventy percent of these target substances had limit of quantitation (LOQ) < 5 ng L(-1). This compound set was then used to develop and optimize a HRMS suspect screening method using only the exact mass as a priori information. Thresholds for blank subtraction, peak area, peak shape, signal-to-noise, and isotopic pattern were applied to automatically filter the initially picked peaks. The success rate was 70%; false negatives mainly resulted from low intense peaks. The optimized approach was applied to the remaining 140 substances. Nineteen additional substances were detected in environmental samples, two TPs for the first time in the environment. Sixteen substances were confirmed with reference standards purchased subsequently, while three TP standards could be obtained from industry or other laboratories. Overall, this screening approach was fast and very successful and can easily be expanded to other micropollutant classes for which reference standards are not readily accessible such as TPs of household chemicals.

  9. Probing bias reduction to improve comparability of lint cotton water and moisture contents at moisture equilibrium

    USDA-ARS?s Scientific Manuscript database

    The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...

  10. Determination of tributyltin in whole water matrices under the European Water Framework Directive.

    PubMed

    Richter, Janine; Fettig, Ina; Philipp, Rosemarie; Jakubowski, Norbert; Panne, Ulrich; Fisicaro, Paola; Alasonati, Enrica

    2016-08-12

    Monitoring of water quality is important to control water pollution. Contamination of the aquatic system has a large effect on human health and the environment. Under the European Water Framework Directive (WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of water policy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) is one of the WFD listed priority substances a method was developed which is capable to qualify and quantify the pollutant at the required low WFD EQS of 0.2ngL(-1) in whole water bodies, i.e. in non-filtered water samples with dissolved organic carbon and suspended particulate matter. Therefore special attention was paid on the interaction of TBT with the suspended particulate matter and humic substances to obtain a complete representation of the pollution in surface waters. Different water samples were investigated varying the content of organic dissolved and suspended matter. Quantification was performed using species-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma mass spectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. The process of internal standard addition was investigated and optimized, hence the equilibrium between internal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQS level were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples were investigated and the TBT concentration for the whole water body was determined and compared with conventional routine analysis method. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quality of surface-water runoff in selected streams in the San Antonio segment of the Edwards aquifer recharge zone, Bexar County, Texas, 1997-2012

    USGS Publications Warehouse

    Opsahl, Stephen P.

    2012-01-01

    During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.

  12. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX).

    PubMed

    Herkovits, Jorge; Perez-Coll, Cristina; Herkovits, Francisco D

    2002-01-01

    The toxicity of 34 environmental samples from potentially polluted and reference stations were evaluated by means of the AMPHITOX test from acute to chronic exposure according to the toxicity found in each sample. The samples were obtained from surface and ground water, leaches, industrial effluents and soils. The data, expressed in acute, short-term chronic and chronic Toxicity Units (TUa, TUstc and TUc) resulted in a maximal value of 1000 TUc, found in a leach, while the lower toxicity value was 1.4 TUa corresponding to two surface water samples. In five samples (four providing from reference places) no toxicity was detected. The results point out the possibility of evaluating the toxicity of a wide diversity of samples by means of AMPHITOX as a customized toxicity test. The fact that almost all samples with suspected toxicity in rivers and streams from the Metropolitan area of Buenos Aires city resulted toxic, indicates the need of enhanced stewardship of chemical substances for environmental and human health protection purposes.

  13. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  14. Determination of uranium in tap water by ICP-MS.

    PubMed

    El Himri, M; Pastor, A; de la Guardia, M

    2000-05-01

    A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.

  15. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere

    PubMed Central

    Lin, Ying; Clayton, Robert N.; Huang, Lin; Nakamura, Noboru; Lyons, James R.

    2013-01-01

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003−2005 at Alert station, Canada (82°30′N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ17O and δ18O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003−2005. An oxygen isotopic anomaly of Δ17O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ17O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930−1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ17O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had 17Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  16. Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2015-02-01

    The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Inductively coupled plasma-mass spectrometric method for the determination of dissolved trace elements in natural water

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, Howard E.

    1996-01-01

    An inductively coupled plasma-mass spectrometry method was developed for the determination of dissolved Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sr, Tl, U, V, and Zn in natural waters. Detection limits are generally in the 50-100 picogram per milliliter (pg/mL) range, with the exception of As which is in the 1 microgram per liter (ug/L) range. Interferences associated with spectral overlap from concomitant isotopes or molecular ions and sample matrix composition have been identified. Procedures for interference correction and reduction related to isotope selection, instrumental operating conditions, and mathematical data processing techniques are described. Internal standards are used to minimize instrumental drift. The average analytical precision attainable for 5 times the detection limit is about 16 percent. The accuracy of the method was tested using a series of U.S. Geological Survey Standard Reference Water Standards (SWRS), National Research Council Canada Riverine Water Standard, and National Institute of Standards and Technology (NIST) Trace Elements in Water Standards. Average accuracies range from 90 to 110 percent of the published mean values.

  18. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of chromium in water by graphite furnace atomic absorption spectrophotometry

    USGS Publications Warehouse

    McLain, B.J.

    1993-01-01

    Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.

  19. EC comparison on the determination of 226Ra, 228Ra, 234U and 238U in water among European monitoring laboratories.

    PubMed

    Wätjen, U; Benedik, L; Spasova, Y; Vasile, M; Altzitzoglou, T; Beyermann, M

    2010-01-01

    In anticipation of new European requirements for monitoring radioactivity concentration in drinking water, IRMM organized an interlaboratory comparison on the determination of low levels of activity concentrations (about 10-100 mBq L(-1)) of the naturally occurring radionuclides (226)Ra, (228)Ra, (234)U and (238)U in three commercially available mineral waters. Using two or three different methods with traceability to the International System of Reference (SIR), the reference values of the water samples were determined prior to the proficiency test within combined standard uncertainties of the order of 3%-10%. An overview of radiochemical separation and measurement methods used by the 45 participating laboratories are given. The results of the participants are evaluated versus the reference values. Several of the participants' results deviate by more than a factor of two from the reference values, in particular for the radium isotopes. Such erroneous analysis results may lead to a crucial omission of remedial actions on drinking water supplies or to economic loss by an unjustified action. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Comparative evaluation of chromogenic agar CM1046 and mFC agar for detection of E. coli and thermotolerant coliform bacteria from water samples.

    PubMed

    Wohlsen, T D

    2011-08-01

    The equivalence of Oxoid (CM 1046) Brilliance((TM)) E. coli/coliform selective agar to mFC agar, as used in the Australian/New Zealand Standard Method to detect thermotolerant coliforms and Escherichia coli in water samples, was assessed. A total of 244 water samples were analysed in parallel over a 5-month period. Sewage effluent samples (n = 131, sites = 43), freshwater (n = 62, sites = 18) and marine/brackish water samples (n = 51, sites = 23) were analysed. The Wilcoxon matched-pairs signed-ranks test showed a varying degree of statistical difference between the two methods. All matrices had a higher recovery in the trial method. Enterococci faecalis, Aeromonas spp. and Vibrio spp. did not grow on the CM1046 agar, and Pseudomonas aeruginosa and Enterobacter aerogenes were inhibited. The use of CM 1046 for the detection and enumeration of E. coli and thermotolerant coliforms in water samples is a suitable alternative to the AS/NZS Standard Method. The use of CM1046 agar was less labour intensive and time consuming, as no secondary confirmation steps were required. Confirmed results could be reported within 24 h of sample analysis, as compared to 48 h with the reference method. Public health concerns can be addressed in a more efficient manner. © 2011 Unitywater. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    PubMed

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Guidelines for the processing and quality assurance of benthic invertebrate samples collected as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Cuffney, T.F.; Gurtz, M.E.; Meador, M.R.

    1993-01-01

    Benthic invertebrate samples are collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This is a perennial, multidisciplinary program that integrates biological, physical, and chemical indicators of water quality to evaluate status and trends and to develop an understanding of the factors controlling observed water quality. The Program examines water quality in 60 study units (coupled ground- and surface-water systems) that encompass most of the conterminous United States and parts of Alaska and Hawaii. Study-unit teams collect and process qualitative and semi-quantitative invertebrate samples according to standardized procedures. These samples are processed (elutriated and subsampled) in the field to produce as many as four sample components: large-rare, main-body, elutriate, and split. Each sample component is preserved in 10-percent formalin, and two components, large-rare and main-body, are sent to contract laboratories for further processing. The large-rare component is composed of large invertebrates that are removed from the sample matrix during field processing and placed in one or more containers. The main-body sample component consists of the remaining sample materials (sediment, detritus, and invertebrates) and is subsampled in the field to achieve a volume of 750 milliliters or less. The remaining two sample components, elutriate and split, are used for quality-assurance and quality-control purposes. Contract laboratories are used to identify and quantify invertebrates from the large-rare and main-body sample components according to the procedures and guidelines specified within this document. These guidelines allow the use of subsampling techniques to reduce the volume of sample material processed and to facilitate identifications. These processing procedures and techniques may be modified if the modifications provide equal or greater levels of accuracy and precision. The intent of sample processing is to determine the quantity of each taxon present in the semi-quantitative samples or to list the taxa present in qualitative samples. The processing guidelines provide standardized laboratory forms, sample labels, detailed sample processing flow charts, standardized format for electronic data, quality-assurance procedures and checks, sample tracking standards, and target levels for taxonomic determinations. The contract laboratory (1) is responsible for identifications and quantifications, (2) constructs reference collections, (3) provides data in hard copy and electronic forms, (4) follows specified quality-assurance and quality-control procedures, and (5) returns all processed and unprocessed portions of the samples. The U.S. Geological Survey's Quality Management Group maintains a Biological Quality-Assurance Unit, located at the National Water-Quality Laboratory, Arvada, Colorado, to oversee the use of contract laboratories and ensure the quality of data obtained from these laboratories according to the guidelines established in this document. This unit establishes contract specifications, reviews contractor performance (timeliness, accuracy, and consistency), enters data into the National Water Information System-II data base, maintains in-house reference collections, deposits voucher specimens in outside museums, and interacts with taxonomic experts within and outside the U.S. Geological Survey. This unit also modifies the existing sample processing and quality-assurance guidelines, establishes criteria and testing procedures for qualifying potential contract laboratories, identifies qualified taxonomic experts, and establishes voucher collections.

  3. Per- and Polyfluoroalkyl Substances in Swedish Groundwater and Surface Water: Implications for Environmental Quality Standards and Drinking Water Guidelines.

    PubMed

    Gobelius, Laura; Hedlund, Johanna; Dürig, Wiebke; Tröger, Rikard; Lilja, Karl; Wiberg, Karin; Ahrens, Lutz

    2018-04-03

    The aim of this study was to assess per- and polyfluoroalkyl substances (PFASs) in the Swedish aquatic environment, identify emission sources, and compare measured concentrations with environmental quality standards (EQS) and (drinking) water guideline values. In total, 493 samples were analyzed in 2015 for 26 PFASs (∑ 26 PFASs) in surface water, groundwater, landfill leachate, sewage treatment plant effluents and reference lakes, focusing on hot spots and drinking water sources. Highest ∑ 26 PFAS concentrations were detected in surface water (13 000 ng L -1 ) and groundwater (6400 ng L -1 ). The dominating fraction of PFASs in surface water were perfluoroalkyl carboxylates (PFCAs; 64% of ∑ 26 PFASs), with high contributions from C 4 -C 8 PFCAs (94% of ∑PFCAs), indicating high mobility of shorter chain PFCAs. In inland surface water, the annual average (AA)-EQS of the EU Water Framework Directive of 0.65 ng L -1 for ∑PFOS (linear and branched isomers) was exceeded in 46% of the samples. The drinking water guideline value of 90 ng L -1 for ∑ 11 PFASs recommended by the Swedish EPA was exceeded in 3% of the water samples from drinking water sources ( n = 169). The branched isomers had a noticeable fraction in surface- and groundwater for perfluorooctanesulfonamide, perfluorohexanesulfonate, and perfluorooctanesulfonate, highlighting the need to include branched isomers in future guidelines.

  4. An internal reference model-based PRF temperature mapping method with Cramer-Rao lower bound noise performance analysis.

    PubMed

    Li, Cheng; Pan, Xinyi; Ying, Kui; Zhang, Qiang; An, Jing; Weng, Dehe; Qin, Wen; Li, Kuncheng

    2009-11-01

    The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion-induced error, and field drift. A signal model is presented with multi-echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg-Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer-Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614 degrees C, with a standard deviation of 0.06 degrees C, confirming the feasibility of this model-based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water-fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. (c) 2009 Wiley-Liss, Inc.

  5. On-line hydrogen-isotope measurements of organic samples using elemental chromium: An extension for high temperature elemental-analyzer techniques

    USGS Publications Warehouse

    Gehre, Matthias; Renpenning, Julian; Gilevska, Tetyana; Qi, Haiping; Coplen, Tyler B.; Meijer, Harro A.J.; Brand, Willi A.; Schimmelmann, Arndt

    2015-01-01

    The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ2H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ2H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while handling water as a bulk sample. The calibration of organic samples, commonly having high δ2H values, will benefit from the availability of suitably 2H-enriched reference waters, extending the VSMOW-SLAP scale above zero.

  6. Designing image segmentation studies: Statistical power, sample size and reference standard quality.

    PubMed

    Gibson, Eli; Hu, Yipeng; Huisman, Henkjan J; Barratt, Dean C

    2017-12-01

    Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Determination of Wastewater Compounds in Whole Water by Continuous Liquid-Liquid Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.

    2006-01-01

    A method for the determination of 69 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals on aquatic organisms in wastewater. This method also is useful for evaluating the effects of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are indicators of wastewater or have endocrine-disrupting potential. These compounds include the alkylphenol ethoxylate nonionic surfactants, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Wastewater compounds in whole-water samples were extracted using continuous liquid-liquid extractors and methylene chloride solvent, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 0.5 microgram per liter averaged 72 percent ? 8 percent relative standard deviation. The concentration of 21 compounds is always reported as estimated because method recovery was less than 60 percent, variability was greater than 25 percent relative standard deviation, or standard reference compounds were prepared from technical mixtures. Initial method detection limits averaged 0.18 microgram per liter. Samples were preserved by adding 60 grams of sodium chloride and stored at 4 degrees Celsius. The laboratory established a sample holding-time limit prior to sample extraction of 14 days from the date of collection.

  8. New Primary Standards for Establishing SI Traceability for Moisture Measurements in Solid Materials

    NASA Astrophysics Data System (ADS)

    Heinonen, M.; Bell, S.; Choi, B. Il; Cortellessa, G.; Fernicola, V.; Georgin, E.; Hudoklin, D.; Ionescu, G. V.; Ismail, N.; Keawprasert, T.; Krasheninina, M.; Aro, R.; Nielsen, J.; Oğuz Aytekin, S.; Österberg, P.; Skabar, J.; Strnad, R.

    2018-01-01

    A European research project METefnet addresses a fundamental obstacle to improving energy-intensive drying process control: due to ambiguous reference analysis methods and insufficient methods for estimating uncertainty in moisture measurements, the achievable accuracy in the past was limited and measurement uncertainties were largely unknown. This paper reports the developments in METefnet that provide a sound basis for the SI traceability: four new primary standards for realizing the water mass fraction were set up, analyzed and compared to each other. The operation of these standards is based on combining sample weighing with different water vapor detection techniques: cold trap, chilled mirror, electrolytic and coulometric Karl Fischer titration. The results show that an equivalence of 0.2 % has been achieved between the water mass fraction realizations and that the developed methods are applicable to a wide range of materials.

  9. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent for arsenic and from 82 to 93 percent for selenium, depending on the flow conditions used. Statistical analysis of dissolved and whole-water recoverable analytical results for the same set of water samples indicated that there is no significant difference between the GF-AAS and HG-AAS methods. Interferences related to various chemical constituents were also identified. Although sulfate and chloride in association with various cations might interfere with the determination of arsenic and selenium by GF-AAS, the use of a magnesium nitrate/palladium matrix modifier and low-flow argon during atomization helped to minimize such interferences. When using stabilized temperature platform furnace conditions where stop flow is used during atomization, the addition of hydrogen (5 percent volume/volume) to the argon minimized chemical interferences. Nevertheless, stop flow during atomization was found to be less effective than low flow in reducing interference effects.

  10. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, P.T.; Flanagan, S.M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.

  11. Water quality indicators obtainable from aircraft and Landsat images and their use in classifying lakes

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.; Van Domelen, J. F.

    1975-01-01

    Equations describing the interaction of sunlight and skylight with the surface of a lake, particles in the water to the depth where light is extinguished, and lake bottom are presented, and the use of aircraft and Landsat images to derive water quality indicators on the basis of these interactions is discussed. A very clear, deep lake with a backscatter signal similar to that of distilled water is used as a reference standard. The degree of turbidity of other target lakes is determined by comparing their residual radiance with the clear lake standard and with the residual radiance of a lake whose turbidity has been determined from water samples. The relative and absolute strengths of residual radiance are used to determine the type and concentration of suspended material, respectively. Oil slicks are characterized by an increased specular reflectance component, decreased signal from the underlying water, and added backscatter signal from the oil volume.

  12. Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04

    USGS Publications Warehouse

    Stanton, Jennifer S.; Qi, Sharon L.

    2007-01-01

    An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard, 22 percent exceeded the manganese standard, 19 percent exceeded the sulfate standard, 26 percent exceeded the uranium standard, and 38 percent exceeded the dissolved-solids standard. In addition, 78 percent of samples had at least one detectable pesticide and 22 percent of samples had at least one detectable VOC. In the Eastern Nebraska unit, 30 percent of the samples collected had dissolved-solids concentrations larger than the standard, 23 percent exceeded the iron standard, 13 percent exceeded the manganese standard, 10 percent exceeded the arsenic standard, 7 percent exceeded the sulfate standard, 7 percent exceeded the uranium standard, and 7 percent exceeded the selenium standard. No samples exceeded the nitrate standard. Thirty percent of samples had at least one detectable pesticide compound and 10 percent of samples had at least one detectable VOC. In contrast, the Sand Hills and Ogallala Formation units had fewer detections of anthropogenic compounds and drinking-water exceedances. In the Sand Hills unit, 15 percent of the samples exceeded the arsenic standard, 4 percent exceeded the nitrate standard, 4 percent exceeded the uranium standard, 4 percent exceeded the iron standard, and 4 percent exceeded the dissolved-solids standard. Fifteen percent of samples had at least one pesticide compound detected and 4 percent had at least one VOC detected. In the Ogallala Formation unit, 6 percent of water samples exceeded the arsenic standard, 4 percent exceeded the dissolved-solids standard, 3 percent exceeded the nitrate standard, 2 percent exceeded the manganese standard, 1 percent exceeded the iron standard, 1 percent exceeded the sulfate standard, and 1 percent exceeded the uranium standard. Eight percent of samples collected in the Ogallala Formation unit had at least one pesticide detected and 6 percent had at least one VOC detected. Differences in ground-water chemistry among the hydrogeologic units were attributed to variable depth to water, depth of the well screen below the water table, reduction-oxidation conditions, ground-water residence time, interactions with surface water, composition of aquifer sediments, extent of cropland, extent of irrigated land, and fertilizer application rates.

  13. USE OF NATURAL WATERS AS U. S. GEOLOGICAL SURVEY REFERENCE SAMPLES.

    USGS Publications Warehouse

    Janzer, Victor J.

    1985-01-01

    The U. S. Geological Survey conducts research and collects hydrologic data relating to the Nation's water resources. Seven types of natural matrix reference water samples are prepared for use in the Survey's quality assurance program. These include samples containing major constituents, trace metals, nutrients, herbicides, insecticides, trace metals in a water and suspended-sediment mixture, and precipitation (snowmelt). To prepare these reference samples, natural water is collected in plastic drums and the sediment is allowed to settle. The water is then filtered, selected constituents are added, and if necessary the water is acidified and sterilized by ultraviolet irradiation before bottling in plastic or glass. These reference samples are distributed twice yearly to more than 100 laboratories for chemical analysis. The most probable values for each constituent are determined by evaluating the data submitted by the laboratories using statistical techniques recommended by ASTM.

  14. An on-line pre-concentration system for determination of cadmium in drinking water using FAAS.

    PubMed

    dos Santos, Walter N L; Costa, Jorge L O; Araujo, Rennan G O; de Jesus, Djane S; Costa, Antônio C S

    2006-10-11

    In the present paper, a minicolumn of polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol (PAR) is proposed as pre-concentration system for cadmium determination in drinking water samples by flame atomic absorption spectrometry. The optimization step was performed using two-level full factorial design and Doehlert matrix, involving the variables: sampling flow rate, elution concentration, buffer concentration and pH. Using the established experimental conditions in the optimization step of: pH 8.2, sampling flow rate 8.5 mL min(-1), buffer concentration 0.05 mol L(-1) and elution concentration of 1.0 mol L(-1), this system allows the determination of cadmium with detection limit (LD) (3sigma/S) of 20.0 ng L(-1) and quantification limit (LQ) (10sigma/S) of 64 ng L(-1), precision expressed as relative standard deviation (R.S.D.) of 5.0 and 4.7% for cadmium concentration of 5.0 and 40.0 microg L(-1), respectively, and a pre-concentration factor of 158 for a sample volume of 20.0 mL. The accuracy was confirmed by cadmium determination in the standard reference material, NIST SRM 1643d trace elements in natural water. This procedure was applied for cadmium determination in drinking water samples collected from Salvador City, Bahia, Brazil. For five samples analyzed, the achieved concentrations varied from 0.31 to 0.86 microg L(-1).

  15. Hydrologic and water-quality data related to the occurrence of arsenic for areas along the Madison and Upper Missouri Rivers, southwestern and west-central Montana

    USGS Publications Warehouse

    Tuck, L.K.; Dutton, D.M.; Nimick, D.A.

    1997-01-01

    Geothermal waters in Yellowstone National Park contribute large quantities of arsenic to the headwaters of the Madison River. Water in some Quaternary and Tertiary valley-fill deposits along the Madison and upper Missouri Rivers also is locally enriched in arsenic. Arsenic in surface and ground water in these valleys is an important public- health concern because arsenic concentrations frequently exceed the State of Montana water- quality human health standard of 18 micrograms per liter as well as the U.S. Environmental Protection Agency Maximum Contaminant Level of 50 micrograms per liter. This report presents hydrologic and water-quality data for the Madison and upper Missouri Rivers and selected tributaries, irrigation supply canals or ditches, drains, springs and seeps, for Lake Helena, and for ground water in adjacent areas. Hydrologic and water-quality data were collected and compiled to provide information to more fully understand the extent, magnitude, and source of arsenic in surface and ground water along the Madison and upper Missouri Rivers; to assess, to the extent possible, the mechanisms that control arsenic concentrations; and to assess the effect of irrigation on arsenic concentrations. Hydrologic and arsenic- concentration data were collected by the U.S. Geological Survey and other agencies for 104 surface-water sites and 273 ground-water sites during this and previous studies. The quality of analytical results for arsenic concentrations was evaluated by quality-control samples that were submitted from the field and analyzed in the laboratory with routing samples. Quality-control samples consisted of replicates, standard reference samples, interlaboratory comparison samples, and field blanks.

  16. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  17. Hydrochemical and isotopic characteristics of estuarial seawater and river water of Bailanghe in Laizhou Bay, China

    NASA Astrophysics Data System (ADS)

    Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei

    2016-04-01

    In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3-, as well as the SO42- - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to the mixing of river water and seawater, one means the solvents of these two end-members mix. This will cause the ratios of some hydrochemical components (i.e. Na, Mg, SO4 and Br) vs. Cl, close to the marine ratios, because the main component of the mixture comes from seawater. By contrast, the ratios of Ca, HCO3- and NO3- vs. Cl, which are mostly derived from continental clasts, are higher than the marine ratios. This mixing mechanism also applies to the groundwater.

  18. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NASA Astrophysics Data System (ADS)

    van Loon, W. M. G. M.; Boon, A. R.; Gittenberger, A.; Walvoort, D. J. J.; Lavaleye, M.; Duineveld, G. C. A.; Verschoor, A. J.

    2015-09-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01-0.025 m2) into larger standardized data pools of 0.1 m2 in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991-2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body-ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the state variables oxygen and suspended matter respectively, was demonstrated.

  19. Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography: collaborative study.

    PubMed

    Klump, S P; Allred, M C; MacDonald, J L; Ballam, J M

    2001-01-01

    Isoflavones are biologically active compounds occurring naturally in a variety of plants, with relatively high levels found in soybeans. Twelve laboratories participated in a collaborative study to determine the aglycon isoflavone content of 8 test samples of soy and foods containing soy. The analytical method for the determination of isoflavones incorporates a mild saponification step that reduces the number of analytes measured and permits quantitation versus commercially available, stable reference standards. Test samples were extracted at 65 degrees C with methanol-water (80 + 20), saponified with dilute sodium hydroxide solution, and analyzed by reversed-phase liquid chromatography with UV detection at 260 nm. Isoflavone results were reported as microg/aglycon/g or microg aglycon equivalents/g. The 8 test samples included 2 blind duplicates and 4 single test samples with total isoflavone concentrations ranging from approximately 50 to 3000 microg/g. Test samples of soy ingredients and products made with soy were distributed to collaborators with appropriate reference standards. Collaborators were asked to analyze test samples in duplicate on 2 separate days. The data were analyzed for individual isoflavone components, subtotals of daidzin-daidzein, glycitin-glycitein, and genistin-genistein, and total isoflavones. The relative standard deviation (RSD) for repeatability was 1.8-7.1%, and the RSD for reproducibility was 3.2-16.1% for total isoflavone values of 47-3099 microg/g.

  20. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China.

    PubMed

    Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  1. Eddy-Current Reference Standard

    NASA Technical Reports Server (NTRS)

    Ambrose, H. H., Jr.

    1985-01-01

    Magnetic properties of metallic reference standards duplicated and stabilized for eddy-current coil measurements over long times. Concept uses precisely machined notched samples of known annealed materials as reference standards.

  2. Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction.

    PubMed

    Krawczyk-Coda, Magdalena; Stanisz, Ewa

    2017-11-01

    This work presents ultrasound-assisted dispersive micro solid phase extraction (USA DMSPE) for preconcentration of fluorine (F) in water and herb samples. TiO 2 nanoparticles (NPs) were used as an adsorbent. The determination with slurry sampling was performed via molecular absorption of calcium monofluoride (CaF) at 606.440 nm using a high-resolution continuum source electrothermal absorption spectrometry (HR-CS ET MAS). Several factors influencing the efficiency of the preconcentration technique, such as the amount of TiO 2 , pH of sample solution, ultrasonication and centrifugation time and TiO 2 slurry solution preparation before injection to HR-CS ET MAS, were investigated in detail. The conditions of detection step (wavelength, calcium amount, pyrolysis and molecule-forming temperatures) were also studied. After extraction, adsorbent with the analyte was mixed with 200 μL of H 2 O to prepare a slurry solution. The concentration limit of detection was 0.13 ng mL -1 . The achieved preconcentration factor was 7. The relative standard deviations (RSDs, %) for F in real samples were 3-15%. The accuracy of this method was evaluated by analyses of certified reference materials after spiking: INCT-MPH-2 (Mixed Polish Herbs), INCT-SBF-4 (Soya Bean Flour), ERM-CAO11b (Hard Drinking Water) and TMDA-54.5 (Lake Ontario Water). The measured F contents in reference materials were in satisfactory agreement with the added amounts, and the recoveries were found to be 97-109%. Under the developed extraction conditions, the proposed method has been successfully applied for the determination of F in real water samples (lake, sea, tap water) and herbs.

  3. Preimpoundment Water Quality Study

    DTIC Science & Technology

    1981-12-01

    standard taxonomic references were used for identification : Schmidt, et al., 1874-1879; Heurck, 1896; Hustedt, 1927-1930, 1930, 1931-1959, 1949, 1961-1966...critical identifications can only be performed if the diatoms are cleaned (all organic matter removed); thereby leaving only the silica cell walls...Diatom identification was facilitated by cleaning apprcximately 30 ml of some of the initial samples using the hydrogen peroxide method (Werff, 1953

  4. Organic compounds in White River water used for public supply near Indianapolis, Indiana, 2002-05

    USGS Publications Warehouse

    Lathrop, Tim; Moran, Dan

    2011-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterized the occurrence of 277 organic compounds in source water (stream water collected before treatment) and finished water (treated water before distribution) from the White River North treatment plant, one of several community water systems that use the White River as its primary water supply (fig. 1). Samples were collected at least monthly during 2002-05 and included 30 source- and 13 finished-water samples. The samples were analyzed for pesticides and selected pesticide degradates (or 'breakdown products'), solvents, gasoline hydrocarbons, disinfection by-products, personal-care and domestic-use products, and other organic compounds. Community water systems are required to monitor for compounds regulated under the Safe Drinking Water Act. Most of the compounds tested in this study are not regulated under U.S. Environmental Protection Agency (USEPA) federal drinking-water standards (U.S. Environmental Protection Agency, 2007a). The White River study is part of the ongoing Source Water-Quality Assessment (SWQA) investigation of community water systems that withdraw from rivers across the United States. More detailed information and references on the sampling-design methodology, specific compounds monitored, and the national study are described by Carter and others (2007).

  5. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography.

    PubMed

    Wei, Z; Sandron, S; Townsend, A T; Nesterenko, P N; Paull, B

    2015-04-01

    Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu(2+)) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu(2+) ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1 ng ml(-1), based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2 ng ml(-1) Cu(2+)), analytical linear range from 20 to 5000 ng mL(-1), and relative standard deviations=4.9% (c=1000 ng ml(-1), n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu(2+) to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated. Copyright © 2015. Published by Elsevier B.V.

  6. Evaluation of the SD Bioline Cholera Rapid Diagnostic Test During the 2016 Cholera Outbreak in Lusaka, Zambia.

    PubMed

    Mwaba, John; Ferreras, Eva; Chizema-Kawesa, Elizabeth; Mwimbe, Daniel; Tafirenyika, Francis; Rauzier, Jean; Blake, Alexandre; Rakesh, Ankur; Poncin, Marc; Stoitsova, Savina; Kwenda, Geoffrey; Azman, Andrew S; Chewe, Orbrie; Serafini, Micaela; Lukwesa-Musyani, Chileshe; Cohuet, Sandra; Quilici, Marie-Laure; Luquero, Francisco J; Page, Anne-Laure

    2018-05-31

    To assess the performance of the SD Bioline Cholera Ag O1/O139 rapid diagnostic test (RDT) compared to a reference standard combining culture and PCR for the diagnosis of cholera cases during an outbreak. RDT and bacterial culture were performed on site using fresh stools collected from cholera suspected cases, and from stools enriched in alkaline peptone water. Dried stool samples on filter paper were tested for V. cholerae by PCR in Lusaka (as part of a laboratory technology transfer project) and at a reference laboratory in Paris, France. A sample was considered positive for cholera by the reference standard if any of the culture or PCR tests was positive for V. cholerae O1 or O139. Among the 170 samples tested with SD Bioline and compared to the reference standard, the RDT showed a sensitivity of 90.9% (95% CI: 81.3-96.6) and specificity of 95.0% (95% CI: 89.1-98.4). After enrichment, the sensitivity was 95.5% (95% CI: 87.3-99.1) and specificity 100% (5% CI: 96.5-100). The observed sensitivity and specificity were within recommendations set by the Global Task Force for Cholera Control on the use of cholera RDT (sensitivity=90% : specificity=85%). Although the sample size was small, our findings suggest that the SD Bioline RDT could be used in the field to rapidly alert public health officials to the likely presence of cholera cases when an outbreak is suspected. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Quality-assurance results for routine water analyses in U.S. Geological Survey laboratories, water year 1998

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.; Marsh, Philip S.

    2000-01-01

    The U.S. Geological Survey operates a quality-assurance program based on the analyses of reference samples for two laboratories: the National Water Quality Laboratory and the Quality of Water Service Unit. Reference samples that contain selected inorganic, nutrient, and low-level constituents are prepared and submitted to the laboratory as disguised routine samples. The program goal is to estimate precision and bias for as many analytical methods offered by the participating laboratories as possible. Blind reference samples typically are submitted at a rate of 2 to 5 percent of the annual environmental-sample load for each constituent. The samples are distributed to the laboratories throughout the year. The reference samples are subject to the identical laboratory handling, processing, and analytical procedures as those applied to environmental samples and, therefore, have been used as an independent source to verify bias and precision of laboratory analytical methods and ambient water-quality measurements. The results are stored permanently in the National Water Information System and the Blind Sample Project's data base. During water year 1998, 95 analytical procedures were evaluated at the National Water Quality Laboratory and 63 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic and low-level constituent data for water year 1998 indicated 77 of 78 analytical procedures at the National Water Quality Laboratory met the criteria for precision. Silver (dissolved, inductively coupled plasma-mass spectrometry) was determined to be imprecise. Five of 78 analytical procedures showed bias throughout the range of reference samples: chromium (dissolved, inductively coupled plasma-atomic emission spectrometry), dissolved solids (dissolved, gravimetric), lithium (dissolved, inductively coupled plasma-atomic emission spectrometry), silver (dissolved, inductively coupled plasma-mass spectrometry), and zinc (dissolved, inductively coupled plasma-mass spectrometry). At the National Water Quality Laboratory during water year 1998, lack of precision was indicated for 2 of 17 nutrient procedures: ammonia as nitrogen (dissolved, colorimetric) and orthophosphate as phosphorus (dissolved, colorimetric). Bias was indicated throughout the reference sample range for ammonia as nitrogen (dissolved, colorimetric, low level) and nitrate plus nitrite as nitrogen (dissolved, colorimetric, low level). All analytical procedures tested at the Quality of Water Service Unit during water year 1998 met the criteria for precision. One of the 63 analytical procedures indicated a bias throughout the range of reference samples: aluminum (whole-water recoverable, inductively coupled plasma-atomic emission spectrometry, trace).

  8. Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam.

    PubMed

    Hanh, Pham Thi Minh; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Ba, Dang The; Hung, Nguyen Quang

    2010-06-01

    In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann-Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.

  9. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water... can purchase a copy of the standard incorporated by reference from Global Engineering Documents, 15...

  10. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  11. Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA

    USGS Publications Warehouse

    Peters, N.E.

    2009-01-01

    A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ???12 times annually at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/ discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces.

  12. Fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers and selected tributaries, Allegheny County, Pennsylvania, 2001-2005

    USGS Publications Warehouse

    Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.

    2006-01-01

    Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal-indicator bacteria concentrations and turbidity were correlated to the location of sample collection in the cross section. Most differences were between bank and composite samples; differences between right-bank and left-bank samples were rarely observed. The Allegheny River sites had more significant correlations than the Monongahela or Ohio River sites. Comparisons were made between fecal-indicator bacteria in composite samples collected during dry-weather, wet-weather day-one, wet-weather day-two (tributary sites only), and wet-weather day-three (Three Rivers sites only) events in the Three Rivers and selected tributary sites. The lowest median bacteria concentrations generally were observed in the dry-weather composite samples. All median bacteria concentrations in dry-weather composite samples in the five Three Rivers sites were below water-quality standards and criteria; bacteria concentrations in the upstream tributary sites rarely met all standards or criteria. Only Turtle Creek, Thompson Run, and Chartiers Creek had at least one median bacteria concentration below water-quality standards or criteria. Median bacteria concentrations in the composite samples generally were higher the day after a wet-weather event compared to dry-weather composite samples and other wet-weather composite samples collected. In the five Three Rivers sites, median bacteria concentrations 3 days after a wet-weather event in composite samples tended to fall below the water-quality standards and criteria; in the eight tributary sites, median bacteria concentrations in the dry-weather and wet-weather composite samples generally were above the water-quality standards or criteria. Composite samples collected at the upstream sites on the Three Rivers and selected tributaries generally had lower median bacteria concentrations than composite samples collected at the downstream sites during dry- and wet-weather events. Higher concentrations downstream may be because o

  13. Evaluation of Streamflow, Water Quality, and Permitted and Nonpermitted Loads and Yields in the Raritan River Basin, New Jersey, Water Years 1991-98

    USGS Publications Warehouse

    Reiser, Robert G.

    2003-01-01

    Seventeen water-quality constituents were analyzed in samples collected from 21 surface-water sampling sites in the Raritan River Basin during water years 1991-97. Loads were computed for seven constituents. Thirteen constituents have associated instream water-quality standards that are used as reference levels when evaluating the data. Nine of the 13 constituents did not meet water-quality reference levels in all samples at all sites. The constituents that most commonly failed to meet the water-quality reference levels in the 801 samples analyzed were total phosphorus (greater than 0.1 mg/L (milligrams per liter) in 32 percent of samples), fecal coliform bacteria (greater than 400 counts/100 milliliters in 29 percent), hardness (less than 50 mg/L in 21 percent), pH (greater than 8.5 or less than 6.5 in 17 percent), and water temperature in designated trout waters (greater than 20 degrees Celsius in 12 percent of samples). Concentrations of chloride, total dissolved solids, nitrate plus nitrite, and sulfate did not exceed water-quality reference levels in any sample. Results from previous studies on pesticides and volatile organic compounds in streamwater during 1996-98, and organic compounds and trace elements in sediments during 1976-93, were summarized for this study. Concentrations of pesticides in some samples exceeded the relevant standards. Water-quality data varied significantly as season and streamflow changed. Concentrations or values of 12 constituents were significantly higher in the growing season than in the nongrowing season at 1 to 21 sites, and concentrations of 6 constituents were significantly higher in the nongrowing season at 1 to 21 sites. Concentrations or values of seven constituents decreased significantly with increased streamflow, indicating a more significant contribution from base flow or permitted sources than from runoff. Concentrations or values of four constituents increased with increased flow, indicating a more significant contribution from runoff than from base flow or permitted sources. Phosphorus concentrations increased with flow at two sites with no point sources and decreased with flow at five sites with four or more permitted point sources. Concentrations of five constituents did not vary significantly with changes in streamflow at any of the sites. Concentrations of constituents differed significantly between sites. The sites with the most desirable values for the most constituents were Mulhockaway Creek, Spruce Run, Millstone River at Manalapan, Manalapan Brook, and Lamington River at Pottersville. The sites with the least desirable values for the most constituents were Millstone River at Blackwells Mills, Matchaponix Brook, Raritan River at Bound Brook, Neshanic River, and Millstone River at Grovers Mill. The total instream loads of seven constituents - total ammonia plus organic nitrogen (TKN), biochemical oxygen demand (BOD), total dissolved solids (TDS), nitrate plus nitrite (NO3+NO2), total organic carbon (TOC), total phosphorus, and total suspended solids (TSS) - were analyzed at low, median, and high flows. The quantities of total instream load that originated from facilities with permits issued by the New Jersey Department of Environmental Protection to discharge effluent to streams (permitted sources) and from other sources (nonpermitted sources) were estimated for each sampling site. TOC and TSS loads primarily were contributed by nonpermitted sources at all flows. BOD and TDS loads primarily were contributed by nonpermitted sources at median and high flows. At low flow, permitted sources contributed more than one-third of the TDS load at 10 sites and more than one-third of the BOD load at 3 sites. Permitted sources contributed more than one-third of the total phosphorus load at 15 and 14 sites at low and median flows, respectively. Permitted sources accounted for more than one-third of total instream load of NO3+NO2 at low- and median-flow conditions at nearly

  14. Paleogene stratigraphy of the Solomons Island, Maryland corehole

    USGS Publications Warehouse

    Gibson, Thomas G.; Bybell, Laurel M.

    1994-01-01

    Purge and trap capillary gas chromatography/mass spectrometry is a rapid, precise, accurate method for determining volatile organic compounds in samples of surface water and ground water. The method can be used to determine 59 selected compounds, including chlorofluorohydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons. The volatile organic compounds are removed from the sample matrix by actively purging the sample with helium. The volatile organic compounds are collected onto a sorbant trap, thermally desorbed, separated by a Megabore gas chromatographic capillary column, ionized by electron impact, and determined by a full-scan quadrupole mass spectrometer. Compound identification is confirmed by the gas chromatographic retention time and by the resultant mass spectrum. Unknown compounds detected in a sample can be tentatively identified by comparing the unknown mass spectrum to reference spectra in the mass-spectra computer-data system library compiled by the National Institute of Standards and Technology. Method detection limits for the selected compounds range from 0.05 to 0.2 microgram per liter. Recoveries for the majority of the selected compounds ranged from 80 to 120 percent, with relative standard deviations of less than 10 percent.

  15. USGS48 Puerto Rico precipitation - A new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Tarbox, Lauren V.; Lorenz, Jennifer M.; Scholl, Martha A.

    2014-01-01

    A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ2H and δ18O values of this reference water are−2.0±0.4 and−2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ2H and δ18O values of Standard Light Antarctic Precipitation reference water are−428 and−55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.

  16. Determination of molybdenum in sea and estuarine water with BETA-naphthoin oxime and neutron activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuathilake, A.I.; Chatt, A.

    1980-05-01

    An analytical method has been developed for the determination of submicrogram quantities of molybdenum in sea and esturaine water. The method consists of preconcentration of molybdenum with BETA-naphthoin oxime followed by the determination of the element employing neutron activation analysis. Various factors that can influence yield and selectivity of the preconcentration process have been investigated in detail. A comparison study between ..cap alpha..-benzoin oxime and BETA-naphthoin oxime in preconcentrating molybdenum has been carried out using a standard steel sample. The method has been applied to determine molybdenum content of sea and estuarine water. A detection limit of 0.32 ..mu..g Momore » L/sup -1/ seawater has been acheived. The precision and accuracy of the method have been evaluated using an intercomparison fresh water and a biological standard reference material. 1 figure, 9 tables.« less

  17. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2009-01-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory information management system, (9) making at regular intervals a complete backup of laboratory analytical data (both of samples logged into the laboratory and of mass spectrometric analyses), being sure to store one copy of this backup offsite, and (10) participating in interlaboratory comparison exercises sponsored by the IAEA and other agencies at regular intervals. ?? Taylor & Francis.

  18. Determination of dissolved bromate in drinking water by ion chromatography and post column reaction: interlaboratory study.

    PubMed

    Cordeiro, Fernando; Robouch, Piotr; de la Calle, Maria Beatriz; Emteborg, Håkan; Charoud-Got, Jean; Schmitz, Franz

    2011-01-01

    A collaborative study, International Evaluation Measurement Programme-25a, was conducted in accordance with international protocols to determine the performance characteristics of an analytical method for the determination of dissolved bromate in drinking water. The method should fulfill the analytical requirements of Council Directive 98/83/EC (referred to in this work as the Drinking Water Directive; DWD). The new draft standard method under investigation is based on ion chromatography followed by post-column reaction and UV detection. The collaborating laboratories used the Draft International Organization for Standardization (ISO)/Draft International Standard (DIS) 11206 document. The existing standard method (ISO 15061:2001) is based on ion chromatography using suppressed conductivity detection, in which a preconcentration step may be required for the determination of bromate concentrations as low as 3 to 5 microg/L. The new method includes a dilution step that reduces the matrix effects, thus allowing the determination of bromate concentrations down to 0.5 microg/L. Furthermore, the method aims to minimize any potential interference of chlorite ions. The collaborative study investigated different types of drinking water, such as soft, hard, and mineral water. Other types of water, such as raw water (untreated), swimming pool water, a blank (named river water), and a bromate standard solution, were included as test samples. All test matrixes except the swimming pool water were spiked with high-purity potassium bromate to obtain bromate concentrations ranging from 1.67 to 10.0 microg/L. Swimming pool water was not spiked, as this water was incurred with bromate. Test samples were dispatched to 17 laboratories from nine different countries. Sixteen participants reported results. The repeatability RSD (RSD(r)) ranged from 1.2 to 4.1%, while the reproducibility RSD (RSDR) ranged from 2.3 to 5.9%. These precision characteristics compare favorably with those of ISO 15601. A thorough comparison of the performance characteristics is presented in this report. All method performance characteristics obtained in the frame of this collaborative study indicate that the draft ISO/DIS 11206 standard method meets the requirements set down by the DWD. It can, therefore, be considered to fit its intended analytical purpose.

  19. Chapter 3. Determination of semivolatile organic compounds and polycyclic aromatic hydrocarbons in solids by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Burkhardt, Mark R.; Burbank, Teresa L.; Olson, Mary C.; Iverson, Jana L.; Schroeder, Michael P.

    2006-01-01

    A method for the determination of 38 polycyclic aromatic hydrocarbons (PAHs) and semivolatile organic compounds in solid samples is described. Samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from the solid sample twice at 13,800 kilopascals; first at 120 degrees Celsius using a water/isopropyl alcohol mixture (50:50, volume-to-volume ratio), and then the sample is extracted at 200 degrees Celsius using a water/isopropyl alcohol mixture (80:20, volume-to-volume ratio). The compounds are isolated using disposable solid-phase extraction (SPE) cartridges containing divinylbenzene-vinylpyrrolidone copolymer resin. The cartridges are dried with nitrogen gas, and then sorbed compounds are eluted from the SPE material using a dichloromethane/diethyl ether mixture (80:20, volume-to-volume ratio) and passed through a sodium sulfate/Florisil SPE cartridge to remove residual water and to further clean up the extract. The concentrated extract is solvent exchanged into ethyl acetate and the solvent volume reduced to 0.5 milliliter. Internal standard compounds are added prior to analysis by capillary-column gas chromatography/mass spectrometry. Comparisons of PAH data for 28 sediment samples extracted by Soxhlet and the accelerated solvent extraction (ASE) method described in this report produced similar results. Extraction of PAH compounds from standard reference material using this method also compared favorably with Soxhlet extraction. The recoveries of PAHs less than molecular weight 202 (pyrene or fluoranthene) are higher by up to 20 percent using this ASE method, whereas the recoveries of PAHs greater than or equal to molecular weight 202 are equivalent. This ASE method of sample extraction of solids has advantages over conventional Soxhlet extraction by increasing automation of the extraction process, reducing extraction time, and using less solvent. Extract cleanup also is greatly simplified because SPE replaces commonly used gel permeation chromatography. The performance of the method (as expressed by mean recoveries and mean precision) was determined using Ottawa sand, a commercially available topsoil, and an environmental stream sediment, fortified at 1.5 and 15 micrograms per compound. Recoveries of PAH and semivolatile compounds in Ottawa sand samples fortified at 1.5 micrograms averaged 88 percent ? 9.4 percent relative standard deviation, and calculated initial method detection limits per compound averaged 14 micrograms per kilogram, assuming a 25-gram sample size. The recovery for 1,2,4-trichlorobenzene is less than 60 percent; thus, the concentration of this compound will always be reported as estimated with the E remark code. The analysis of 25 alkylated PAH homolog groups also can be determined with this method with extra data analysis and review, but because of the lack of authentic reference standard compounds, these results are considered to be semiquantitative. The PAH homolog groups are quantitated using the response factor of a parent PAH method compound, if available. Precision data for the alkylated PAH homologs detected in a marine sediment standard reference material (SRM 1944) also are presented to document and demonstrate method capability.

  20. Determination of alkylphenols and alkylphenol mono- and diethoxylates in environmental samples by high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahel, M.; Giger, W.

    1985-07-01

    A routine method is described for the quantitative determination of 4-nonylphenol (NP) and 4-nonylphenol mono-(NP1EO) and diethoxylate (NP2EO) in samples from wastewater and sludge treatment and from the aquatic environment. An exhaustive steam-distillation/solvent-extraction procedure was employed to enrich the analytes from aqueous and solid samples. Quantitative determinations were performed by normal-phase high-performance liquid chromatography (HP-LC) using aminosilica columns. Relative standard deviations were 3.0-4.4% in a river water containing 3.9 ..mu..g/L NP, 23.4 ..mu..g/L NP1EO, and 9.4 ..mu..g/L NP2EO. A digested sewage sludge with 1.6 g of NP/kg of dry matter was analyzed with a relative standard deviation of 3.7%. Recoveriesmore » were higher than 80%, and the estimated detection limit in water samples was 0.5 ..mu..g/L. Reversed-phase HPLC on octylsilica provided complementary qualitative data, particularly on homologous alkylphenolic compounds. Good agreement was found between quantitative determinations by HPLC and by high-resolution gas chromatography with flame ionization detection and directly coupled mass spectrometry. Municipal wastewater effluents, sewage sludges, and natural waters were analyzed to demonstrate the method's broad applicability. 19 references, 4 tables, 4 figures.« less

  1. Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.

    PubMed

    Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

    2014-12-01

    A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [UV-Vis spectrum characteristics of phycocyanin in water from Taihu lake].

    PubMed

    Zhang, Jing; Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Xia, Xiao-Rui

    2014-05-01

    The present paper analyzed the UV-Vis spectrum characteristics of phycocyanin extracted from 75 water samples around Meiliang Bay of Taihu Lake, China in spring, summer and autumn, 2011, taking standard sample of phycocyanin, Micro-cystic aeruginosa and Anabaena cultured indoor as the reference, and discussed the difference and relation of spectrum among water samples, standard sample and single algae samples. According to the number of absorption peak in the wavelength range from 500 to 700 nm, phycocyanin spectrum of water sampling in Taihu Lake can be divided into three patterns: no peak, single peak and two peaks. In the first pattern, the absorbance changed smoothly and no absorption peak was observed around 620 nm. Depending on the absorption difference in the wavelength range from 300 to 450 nm, this pattern can be divided into type I and type II. Type I only had a absorption peak near 260 nm, with the similar spectrum of chromophoric dissolved organic matter (CDOM) in the wavelength range from 250 to 800 nm. Type II had absorption peak respectively near 260 and 330 nm. In single peak pattern and two peaks pattern, significant absorption peak of phycocyanin appeared around 620 nm. Compared to the other patterns, single peak pattern was more similar to that of standard sample and single algae samples, but different in their maximum absorption peaks position and relative absorption intensity in the wavelength range of 250 approximately 300, 300 approximately 450 and 500 approximately 700 nm, because of different algae species and purity after extraction. In the two peaks pattern, another absorption peak appeared at 670nm, with the absorption shoulder from 350 to 450 nm, and shared the absorption characteristics of phycocyanin and chlorophyll complex protein. The research can provide a basic support for the phycocyanin quantitation and blooms monitoring in Taihu Lake.

  3. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS Satellite Data Record.

    PubMed

    Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P

    2012-01-17

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.

  4. An Approach to Developing Numeric Water Quality Criteria for Coastal Waters Using the SeaWiFS Satellite Data Record

    PubMed Central

    2011-01-01

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062

  5. Highly selective micro-sequential injection lab-on-valve (muSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry.

    PubMed

    Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald

    2006-10-01

    A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.

  6. Analysis of the Comparison of TPW Realizations in Europe in Light of CCT Recommendation 2 (CI-2005)

    NASA Astrophysics Data System (ADS)

    Renaot, E.; Valin, M. H.; Elgourdou, M.

    2008-06-01

    Three comparisons of different triple-point-of-water (TPW) realizations in Europe have been organized under the auspices of EUROMET (EUROMET Projects 278, 549, and 714). Thirty European national metrology institutes were involved in these three comparisons that took place from 1994 to 2005. The aim of these successive projects was to assess the uncertainties associated with the practical realization of the triple point of water in Europe. Fifty-four TPW local cells were compared to a traveling standard cell (ref 679) circulated with an isothermal enclosure. The same equipment was used for the three projects, and LNE-INM regularly checked the stability of the TPW standard cell. Recently, LNE-INM has devoted efforts to bring the French standard at the triple point of water into close agreement with CIPM Recommendation 2 (CI-2005). The isotopic fractionation between water and ice when the cell is in use was experimentally studied. Several new TPW cells delivered by the manufacturer with water samples were added to our batch of reference cells. A French laboratory analyzed the isotopic compositions of these samples. These actions allow the French national definition of temperature at the triple point of water to be changed. A new temperature was associated with TPW cell 679 in agreement with the CIPM recommendation. In this presentation, the latest TPW cell measurements carried out by LNE-INM are presented. The results from EUROMET Projects 278, 549, and 714 are investigated in light of these changes.

  7. Determination of eight nitrosamines in water at the ng L(-1) levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry.

    PubMed

    Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix

    2011-09-19

    In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD<20%). Limits of detection were found to be in the range of 1-8 ng L(-1). The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Evaluation of minerals content of drinking water in Malaysia.

    PubMed

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  9. Evaluation of Minerals Content of Drinking Water in Malaysia

    PubMed Central

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  10. Comparison of electrical conductivity calculation methods for natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.

    2012-01-01

    The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.

  11. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1989-01-01

    Chapter Al of the laboratory manual contains methods used by the U.S. Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, the total recoverable and total of constituents in water-suspended sediment samples, and the recoverable and total concentrations of constituents in samples of bottom material. The introduction to the manual includes essential definitions and a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including the accuracy and precision of analyses, the use of standard-reference water samples, and the operation of an effective quality-assurance program. Methods for sample preparation and pretreatment are given also. A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods of these techniques are arranged alphabetically by constituent. For each method, the general topics covered are the application, the principle of the method, the interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 126 methods are given for the determination of 70 inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  12. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1985-01-01

    Chapter Al of the laboratory manual contains methods used by the Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, total recoverable and total of constituents in water-suspended sediment samples, and recoverable and total concentrations of constituents in samples of bottom material. Essential definitions are included in the introduction to the manual, along with a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including accuracy and precision of analyses, the use of standard reference water samples, and the operation of an effective quality assurance program. Methods for sample preparation and pretreatment are given also.A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods involving these techniques are arranged alphabetically according to constituent. For each method given, the general topics covered are application, principle of the method, interferences, apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 125 methods are given for the determination of 70 different inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  13. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    PubMed

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis.

    PubMed

    Bade, Richard; Bijlsma, Lubertus; Miller, Thomas H; Barron, Leon P; Sancho, Juan Vicente; Hernández, Felix

    2015-12-15

    The recent development of broad-scope high resolution mass spectrometry (HRMS) screening methods has resulted in a much improved capability for new compound identification in environmental samples. However, positive identifications at the ng/L concentration level rely on analytical reference standards for chromatographic retention time (tR) and mass spectral comparisons. Chromatographic tR prediction can play a role in increasing confidence in suspect screening efforts for new compounds in the environment, especially when standards are not available, but reliable methods are lacking. The current work focuses on the development of artificial neural networks (ANNs) for tR prediction in gradient reversed-phase liquid chromatography and applied along with HRMS data to suspect screening of wastewater and environmental surface water samples. Based on a compound tR dataset of >500 compounds, an optimized 4-layer back-propagation multi-layer perceptron model enabled predictions for 85% of all compounds to within 2min of their measured tR for training (n=344) and verification (n=100) datasets. To evaluate the ANN ability for generalization to new data, the model was further tested using 100 randomly selected compounds and revealed 95% prediction accuracy within the 2-minute elution interval. Given the increasing concern on the presence of drug metabolites and other transformation products (TPs) in the aquatic environment, the model was applied along with HRMS data for preliminary identification of pharmaceutically-related compounds in real samples. Examples of compounds where reference standards were subsequently acquired and later confirmed are also presented. To our knowledge, this work presents for the first time, the successful application of an accurate retention time predictor and HRMS data-mining using the largest number of compounds to preliminarily identify new or emerging contaminants in wastewater and surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yio, M.H.N., E-mail: marcus.yio11@imperial.ac.uk; Phelan, J.C.; Wong, H.S.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3more » days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.« less

  16. The determination of water in crude oil and transformer oil reference materials.

    PubMed

    Margolis, Sam A; Hagwood, Charles

    2003-05-01

    The measurement of the amount of water in oils is of significant economic importance to the industrial community, particularly to the electric power and crude oil industries. The amount of water in transformer oils is critical to their normal function and the amount of water in crude oils affects the cost of the crude oil at the well head, the pipeline, and the refinery. Water in oil Certified Reference Materials (CRM) are essential for the accurate calibration of instruments that are used by these industries. Three NIST Standard Reference Materials (SRMs) have been prepared for this purpose. The water in these oils has been measured by both coulometric and volumetric Karl Fischer methods. The compounds (such as sulfur compounds) that interfere with the Karl Fischer reaction (interfering substances) and inflate the values for water by also reacting with iodine have been measured coulometrically. The measured water content of Reference Material (RM) 8506a Transformer Oil is 12.1+/-1.9 mg kg(-1) (plus an additional 6.2+/-0.9 mg kg(-1) of interfering substances). The measured water content of SRM 2722 Sweet Crude Oil, is 99+/-6 mg kg(-1) (plus an additional 5+/-2 mg kg(-1) of interfering substances). The measured water content of SRM 2721 Sour Crude Oil, is 134+/-18 mg kg(-1) plus an additional 807+/-43 mg kg(-1) of interfering substances. Interlaboratory studies conducted with these oil samples (using SRM 2890, water saturated 1-octanol, as a calibrant) are reported. Some of the possible sources of bias in these measurements were identified, These include: improperly calibrated instruments, inability to measure the calibrant accurately, Karl Fischer reagent selection, and volatilization of the interfering substances in SRM 2721.

  17. Factorial design optimization of experimental variables in the on-line separation/preconcentration of copper in water samples using solid phase extraction and ICP-OES determination.

    PubMed

    Escudero, Luis A; Cerutti, S; Olsina, R A; Salonia, J A; Gasquez, J A

    2010-11-15

    An on-line preconcentration procedure using solid phase extraction (SPE) for the determination of copper in different water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The copper was retained on a minicolumn filled with ethyl vinyl acetate (EVA) at pH 8.0 without using any complexing reagent. The experimental optimization step was performed using a two-level full factorial design. The results showed that pH, sample loading flow rate, and their interaction (at the tested levels) were statistically significant. In order to determine the best conditions for preconcentration and determination of copper, a final optimization of the significant factors was carried out using a central composite design (CCD). The calibration graph was linear with a regression coefficient of 0.995 at levels near the detection limit up to at least 300 μg L(-1). An enrichment factor (EF) of 54 with a preconcentration time of 187.5 s was obtained. The limit of detection (3σ) was 0.26 μg L(-1). The sampling frequency for the developed methodology was about 15 samples/h. The relative standard deviation (RSD) for six replicates containing 50 μg L(-1) of copper was 3.76%. The methodology was successfully applied to the determination of Cu in tap, mineral, river water samples, and in a certified VKI standard reference material. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Degradation of partially immersed glass: A new perspective

    NASA Astrophysics Data System (ADS)

    Chinnam, R. K.; Fossati, P. C. M.; Lee, W. E.

    2018-05-01

    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90 °C. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests.

  19. Standard procedures and quality-control practices for the U.S. Geological Survey National Field Quality Assurance Program from 1982 through 1993

    USGS Publications Warehouse

    Stanley, D.L.

    1995-01-01

    The U.S. Geological Survey operates the National Field Quality Assurance Program to provide quality- assurance reference samples to field personnel who make water-quality field measurements. The program monitors the accuracy and precision of pH, specific conductance, and alkalinity field measurements. This report documents the operational procedures and quality-control techniques used in operating the quality-assurance program.

  20. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Standard method of test for grindability of coal by the Hardgrove-machine method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    A procedure is described for sampling coal, grinding in a Hardgrove grinding machine, and passing through standard sieves to determine the degree of pulverization of coals. The grindability index of the coal tested is calculated from a calibration chart prepared by plotting weight of material passing a No. 200 sieve versus the Hardgrove Grindability Index for the standard reference samples. The Hardgrove machine is shown schematically. The method for preparing and determining grindability indexes of standard reference samples is given in the appendix. (BLM)

  2. Field Demonstration and Validation of a New Device for Measuring Water and Solute Fluxes at CFB Borden

    DTIC Science & Technology

    2006-11-01

    All Quality Control Reference Materials are acquired only from authorized vendors or sources commonly used by U.S. EPA Regional Laboratories...Institue of Standards and Testing (NITS) Standard Reference Materials (SRM) or to the U.S. EPA Reference Standards. Working Standards The commercial...contaminants from clothing or equipment by blowing, shaking or any other means that may disperse material into the air is prohibited. 7.1.3. All disposable

  3. Simultaneous determination of theobromine, (+)-catechin, caffeine, and (-)-epicatechin in standard reference material baking chocolate 2384, cocoa, cocoa beans, and cocoa butter.

    PubMed

    Risner, Charles H

    2008-01-01

    A reverse-phase liquid chromatography analysis is used to access the quantity of theobromine, (+)-catechin, caffeine, and (-)-epicatechin in Standard Reference Material 2384 Baking Chocolate, cocoa, cocoa beans, and cocoa butter using water or a portion of the mobile phase as the extract. The procedure requires minimal sample preparation. Theobromine, (+)-catechin, caffeine, and (-)-epicatechin are detected by UV absorption at 273 nm after separation using a 0.3% acetic acid-methanol gradient (volume fractions) and quantified using external standards. The limit of detection for theobromine, (+)-catechin, caffeine, and (-)-epicatechin averages 0.08, 0.06, 0.06, and 0.06 microg/mL, respectively. The method when applied to Standard Reference Material 2384 Baking Chocolate; baking chocolate reference material yields results that compare to two different, separate procedures. Theobromine ranges from 26000 mg/kg in cocoa to 140 mg/kg in cocoa butter; (+)-catechin from 1800 mg/kg in cocoa to below detection limits of < 32 mg/kg in cocoa butter; caffeine from 2400 mg/kg in cocoa to 400 mg/kg in cocoa butter, and (-)-epicatechin from 3200 mg/kg in cocoa to BDL, < 27 mg/kg, in cocoa butter. The mean recoveries from cocoa are 102.4 +/- 0.6% for theobromine, 100.0 +/- 0.6 for (+)-catechin, 96.2 +/- 2.1 for caffeine, and 106.2 +/- 1.7 for (-)-epicatechin.

  4. Microbiological evaluation of drinking water sold by roadside vendors of Delhi, India

    NASA Astrophysics Data System (ADS)

    Chauhan, Abhishek; Goyal, Pankaj; Varma, Ajit; Jindal, Tanu

    2017-07-01

    Delhi has emerged as one of the greenest capital city of the world. Microbiological assessment of drinking water emphasizes estimation of the hygienic quality of the water sold with reference to community health significance. This study was conducted to evaluate the quality of drinking water sold by roadside vendors in east, west, north and south zones of capital of India. A total number of 36 samples (nine from each zone) were collected as per national guidelines and studied for microbiological assessment. All the drinking water samples were collected in gamma-sterilized bottles and were kept in an ice pack to prevent any significant change in the microbial flora of the samples during the transportation. The water samples were transported to the laboratory in vertical position maintaining the temperature 1-4 °C with ice pack enveloped conditions. Samples were analyzed for total MPN coliform per 100 ml and for the presence and absence of common human pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus and Pseudomonas aeruginosa. All the samples were found to be contaminated with coliform organisms in the range of 14 to >1600 per 100 ml of sample. Out of 36 water samples, the occurrence of E. coli was 61 %, Salmonella 25 % S. aureus 14 % and P. aeruginosa 53 % as 22, 9, 5 and 19 samples were found contaminated, respectively. The numbers of coliform bacteria and presence of some common pathogenic bacteria suggested that the quality of drinking water sold by roadside vendors is not within the Indian standard and WHO guidelines laid down for drinking water quality. Hence, there is a vital need to study the root cause in terms of hygiene, sanitation of vendors and source of contamination to prevent waterborne diseases.

  5. Groundwater conditions in Utah, spring of 2011

    USGS Publications Warehouse

    Burden, Carole B.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah Maximum Contaminant Levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary drinking-water standards can be accessed online at http://www.rules.utah.gov/publicat/code/r309/r309-200. htm#T5. The U.S. Environmental Protection Agency (EPA) drinking-water standards can be accessed at http://www.epa. gov/safewater/mcl.html#mcls. Maximum Contaminant Levels and secondary drinking-water standards were developed for public water systems and do not apply to the majority of wells sampled during this study.

  6. [Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].

    PubMed

    Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko

    2004-01-01

    The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.

  7. Atmospheric Carbon Dioxide Record from Mauna Loa (1958-2008)

    DOE Data Explorer

    Keeling, R. F. [Scripps Institution of Oceanography, University of California, La Jolla, California; Piper, S. C. [Scripps Institution of Oceanography, University of California, La Jolla, California; Bollenbacher, A. F. [Scripps Institution of Oceanography, University of California, La Jolla, California; Walker, J. S. [Scripps Institution of Oceanography, University of California, La Jolla, California

    2009-02-01

    Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5 L/min. Every 30 minutes, the flow is replaced by a stream of calibrating gas or "working reference gas". In December 1983, CO2-in-N2 calibration gases were replaced with the currently used CO2-in-air calibration gases. These calibration gases and other reference gases are compared periodically to determine the instrument sensitivity and to check for possible contamination in the air-handling system. These reference gases are themselves calibrated against specific standard gases whose CO2 concentrations are determined manometrically. Greater details about the sampling methods at Mauna Loa are given in Keeling et al. (1982) and Keeling et al. (2002).

  8. [Simultaneous determination of 6 pesticides in drinking water by high performance liquid chromatography-tandem mass spectrometry with solid phase extraction].

    PubMed

    Liu, Hua-liang; Wang, Lian-hong

    2013-05-01

    To develop an analytical method for simultaneous determination of 6 pesticides, namely bentazone, 2,4-dichlorophenoxyacetic acid,carbofuran, carbaryl, atrazine and pentachlorophenol, in drinking water by high performance liquid chromatography-tandem mass spectrometry, and thereby to provide a reference to revise the Health Standards for Drinking Water (GB/T 5750-2006). Meanwhile, to evaluate the content of the above 6 pesticides in the drinking water samples supplied by 12 centralized water plants in Jiangsu province. The 10 ml water sample was acidized by hydrochloric acid to pH ≤ 2, and then concentrated by solid phase extraction cartridge and eluted with acetone. The solvent was changed into methanol after drying by nitrogen blow. The target compounds were separated by C18 column using methanol/water as mobile phase, and detected by mass spectrometry with multi-reaction-monitoring(MRM) mode. The repeatability and sensitivity of the assay were evaluated. The drinking water samples from the 12 water plants were then detected. In this experimental method, the minimum detectable concentration were around 0.02-0.41 µg/L, with the recovery rate at 75%-115%, and the RSD between 2% and 10%. Under the experimental condition, there were no pesticides detected in the drinking water samples from the 12 centralized water plants. The method is efficient and environment-friendly, with little discharge of effluent, which could meet the requirement of the drinking water monitor.

  9. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999

    USGS Publications Warehouse

    Leeth, David C.

    2002-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two samples from Site 16. Hypothesis testing, using the Wilcoxon rank-sum test (also known as the Mann-Whitney test), indicates no statistical difference between ground-water constituent concentrations from Sites 5 and 16, and background concentrations. Hypothesis testing, however, indicates the concentration of barium in background ground-water samples is greater than in ground-water samples collected at Site 16.

  10. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    PubMed

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  11. Drinking water quality assessment.

    PubMed

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  12. Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India.

    PubMed

    Jain, C K; Bandyopadhyay, A; Bhadra, A

    2010-07-01

    The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca-Mg-HCO(3) hydrochemical facies.

  13. The International Standard for Oxytetracycline

    PubMed Central

    Humphrey, J. H.; Lightbown, J. W.; Mussett, M. V.; Perry, W. L. M.

    1955-01-01

    The first attempt to set up an international standard for oxytetracycline, using oxytetracycline hydrochloride, failed because of difficulties in obtaining a preparation whose moisture content was uniform after distribution into ampoules. A preparation of dihydrate of oxytetracycline base was obtained instead, and was compared in an international collaborative assay with a sample of oxytetracycline hydrochloride, which was the current working standard of Chas. Pfizer & Co., Inc., USA. The results of the collaborative assay showed that the potency of the dihydrate was uniform, and that it was a suitable preparation for use as the International Standard. Evidence was obtained, however, that the reference preparation at the time of examination was less potent than had been originally supposed, and that it was hydrated. The potency of the proposed international standard was recalculated after allowance for water in the reference preparation, and the resulting biological potency agreed well with that to be expected on the basis of the physicochemical properties of the preparation. It was agreed, therefore, that the recalculated values should be used, and the preparation of oxytetracycline base dihydrate used in the collaborative assay is established as the International Standard for Oxytetracycline with a potency of 900 International Units per mg. PMID:13284563

  14. Characterization of Three Berry Standard Reference Materials for Nutrients

    PubMed Central

    Wood, Laura J.; Sharpless, Katherine E.; Pichon, Monique; Porter, Barbara J.; Yen, James H.; Ehling, Stefan

    2011-01-01

    The National Institute of Standards and Technology (NIST) has been working with the National Institutes of Health Office of Dietary Supplements to produce Standard Reference Materials (SRMs) of interest to analysts of dietary supplements. Some of these SRMs are traditional foods including SRM 3281 Cranberry (Fruit), SRM 3282 Low-Calorie Cranberry Juice Cocktail, and SRM 3287 Blueberry (Fruit), which have been characterized for nine nutritional elements and sugars. The blueberries have also been characterized for proximates, two water-soluble vitamins, and amino acids. These new materials are intended for use in method development and validation as well as for quality assurance and traceability when assigning values to in-house control materials. Foods can be difficult to analyze because of matrix effects. With the addition of these three new SRMs, it is now possible to more closely match controls to matrices and analyte levels for fruit and vegetable test samples. Several nutritional elements in these three SRMs are present at lower levels than those in other food-matrix SRMs. PMID:21688777

  15. Results of the U. S. Geological Survey's analytical evaluation program for standard reference samples distributed in April 2001

    USGS Publications Warehouse

    Woodworth, M.T.; Connor, B.F.

    2001-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-165 (trace constituents), M-158 (major constituents), N-69 (nutrient constituents), N-70 (nutrient constituents), P-36 (low ionic-strength constituents), and Hg-32 (mercury) -- that were distributed in April 2001 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 73 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  16. Results of the U. S. Geological Survey's Analytical Evaluation Program for Standard Reference Samples Distributed in March 2002

    USGS Publications Warehouse

    Woodworth, M.T.; Conner, B.F.

    2002-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T- 169 (trace constituents), M- 162 (major constituents), N-73 (nutrient constituents), N-74 (nutrient constituents), P-38 (low ionic-strength constituents), and Hg-34 (mercury) -- that were distributed in March 2002 to laboratories enrolled in the U.S. Geological Survey sponsored intedaboratory testing program. Analytical data received from 93 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  17. Results of the U.S. Geological Survey's analytical evaluation program for standard reference samples distributed in September 2002

    USGS Publications Warehouse

    Woodworth, Mark T.; Connor, Brooke F.

    2003-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-171 (trace constituents), M-164 (major constituents), N-75 (nutrient constituents), N-76 (nutrient constituents), P-39 (low ionic-strength constituents), and Hg-35 (mercury) -- that were distributed in September 2002 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 102 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  18. Results of the U.S. Geological Survey's analytical evaluation program for standard reference samples distributed in September 2001

    USGS Publications Warehouse

    Woodworth, Mark T.; Connor, Brooke F.

    2002-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-167 (trace constituents), M-160 (major constituents), N-71 (nutrient constituents), N-72 (nutrient constituents), P-37 (low ionic-strength constituents), and Hg-33 (mercury) -- that were distributed in September 2001 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 98 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  19. Results of the U.S. Geological Survey's Analytical Evaluation Program for Standard Reference Samples Distributed in March 2000

    USGS Publications Warehouse

    Farrar, Jerry W.; Copen, Ashley M.

    2000-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-161 (trace constituents), M-154 (major constituents), N-65 (nutrient constituents), N-66 nutrient constituents), P-34 (low ionic strength constituents), and Hg-30 (mercury) -- that were distributed in March 2000 to 144 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 132 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  20. Results of the U.S. Geological Survey's analytical evaluation program for standard reference samples distributed in October 1999

    USGS Publications Warehouse

    Farrar, T.W.

    2000-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-159 (trace constituents), M-152 (major constituents), N-63 (nutrient constituents), N-64 (nutrient constituents), P-33 (low ionic strength constituents), and Hg-29 (mercury) -- that were distributed in October 1999 to 149 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 131 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  1. Results of the U.S. Geological Survey's analytical evaluation program for standard reference samples distributed in March 2003

    USGS Publications Warehouse

    Woodworth, Mark T.; Connor, Brooke F.

    2003-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-173 (trace constituents), M-166 (major constituents), N-77 (nutrient constituents), N-78 (nutrient constituents), P-40 (low ionic-strength constituents), and Hg-36 (mercury) -- that were distributed in March 2003 to laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 110 laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  2. Results of the U. S. Geological Survey's analytical evaluation program for standard reference samples distributed in October 2000

    USGS Publications Warehouse

    Connor, B.F.; Currier, J.P.; Woodworth, M.T.

    2001-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-163 (trace constituents), M-156 (major constituents), N-67 (nutrient constituents), N-68 (nutrient constituents), P-35 (low ionic strength constituents), and Hg-31 (mercury) -- that were distributed in October 2000 to 126 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 122 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  3. A high-throughput headspace gas chromatographic technique for the determination of nitrite content in water samples.

    PubMed

    Zhang, Shu-Xin; Peng, Rong; Jiang, Ran; Chai, Xin-Sheng; Barnes, Donald G

    2018-02-23

    This paper reports on a high-throughput headspace gas chromatographic method (HS-GC) for the determination of nitrite content in water sample, based on GC measurement of cyclohexene produced from the reaction between nitrite and cyclamate in a closed vial. The method has a relative standard deviation of <3.5%; The differences between the results of the nitrite measurements obtained by this method and those of a reference method were less than 5.8% and the recoveries of the method were in the range of 94.8-102% (for a spiked nitrite content range from 0.002 to 0.03 mg/L). The limit of detection of the method was 0.46 μg L -1 . Due to an overlapping mode in the headspace auto-sampler system, the method can provide an automated and high-throughput nitrite analysis for the surface water samples. In short, the present HS-GC method is simple, accurate, and sensitive, and it is very suitable to be used in the batch sample testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Rapid sequential determination of arsenic and selenium in waters and plant digests by hydride generation inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Giné, Maria Fernanda

    2000-04-01

    A synchronised flow system with hydride generation coupled to ICP-MS is proposed for the sequential determination of As and Se in natural waters and plant digests. The alternated mixing of the sample solution with thiourea or HCl for the determination of As or Se under optimized conditions was achieved using a flow commutator before the reaction with NaBH 4. The on-line addition of thiourea promoted the quantitative reduction of As(V) to As(III), thus enhancing sensitivity and precision. The selenium pre-reduction from Se(VI) to Se(IV) was produced by heating the sample with HCl, and the hydride generation was performed in 4 mol l -1 HCl, thus avoiding interference from thiourea. The system allowed the analysis of 20 samples h -1 with LOD values of 0.02 μg l -1 As and 0.03 μg l -1 Se. Results were in agreement with the certified values at the 95% confidence level for reference waters from the Canadian National Water Research Institute and plant samples from the National Institute of Standards and Technology (NIST).

  5. Surface properties of thermally treated composite wood panels

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  6. Development of a Certified Reference Material (NMIJ CRM 7203-a) for Elemental Analysis of Tap Water.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shin-Ichi; Kuroiwa, Takayoshi; Ariga, Tomoko; Kudo, Izumi; Koguchi, Masae; Heo, Sung Woo; Suh, Jung Ki; Lee, Kyoung-Seok; Yim, Yong-Hyeon; Lim, Youngran

    2017-01-01

    A certified reference material (CRM), NMIJ CRM 7203-a, was developed for the elemental analysis of tap water. At least two independent analytical methods were applied to characterize the certified value of each element. The elements certified in the present CRM were as follows: Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, and Zn. The certified value for each element was given as the (property value ± expanded uncertainty), with a coverage factor of 2 for the expanded uncertainty. The expanded uncertainties were estimated while considering the contribution of the analytical methods, the method-to-method variance, the sample homogeneity, the long-term stability, and the concentrations of the standard solutions for calibration. The concentration of Hg (0.39 μg kg -1 ) was given as the information value, since loss of Hg was observed when the sample was stored at room temperature and exposed to light. The certified values of selected elements were confirmed by a co-analysis carried out independently by the NMIJ (Japan) and the KRISS (Korea).

  7. Dispersive liquid-liquid microextraction of lead(II) as 5-(4-dimethylaminobenzylidene) rhodanine chelates from food and water samples.

    PubMed

    Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa

    2015-02-01

    A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples.

  8. Chemical equilibria of thermal waters for the application of geothermometers from the Guanzhong basin, China

    NASA Astrophysics Data System (ADS)

    Xilai, Zheng; Armannsson, Halldor; Yongle, Li; Hanxue, Qiu

    2002-03-01

    In this study, representative samples from thermal wells and springs were chemically analyzed and geothermometers were used to calculate the deep temperatures of geothermal reservoirs on the basis of water-mineral equilibrium. In some cases, however, the chemical components are not in equilibrium with the minerals in the reservoir. Therefore, log( Q/ K) diagrams are used to study the chemical equilibrium for the minerals that are likely to participate. The Na-K-Mg triangular diagram is also applied to evaluate the equilibrium of water with reservoir rocks. Standard curves at the reference temperatures are prepared to reveal which type of silica geothermometer is appropriate for the specified condition. This study shows that water samples from geothermal wells W9 and W12 are in equilibrium with the selective minerals, and chalcedony may control the fluid-silica equilibrium. It is estimated that there is an exploitable low-temperature reservoir with possible temperatures of 80-90°C in the Guanzhong basin.

  9. Effects of Urbanization on Stream Water Quality in the City of Atlanta, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Peters, N. E.

    2009-05-01

    A long-term stream water-quality monitoring network was established in the City of Atlanta (COA) during 2003 to assess baseline water-quality conditions and the effects of urbanization on stream water quality. Routine hydrologically-based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted approximately 12 times per year at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) water-quality stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature, and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water-quality and sediment-related constituents. This paper summarizes an evaluation of field parameters and concentrations of major ions, minor and trace metals, nutrient species (nitrogen and phosphorus), and coliform bacteria among stations and with respect to watershed characteristics and plausible sources from 2003 through September 2007. The concentrations of most constituents in the COA streams are statistically higher than those of two nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. The combination of routine manual sampling, automatic sampling during stormflows, and real-time water-quality monitoring provided sufficient information about the variability of urban stream water quality to develop hypotheses for causes of water-quality differences among COA streams. Fecal coliform bacteria concentrations of most individual samples at each station exceeded Georgia's water-quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s), and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. Water quality of one stream was highly affected by the dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum manufacturing plant in the watershed; streamwater has low pH (<5), low alkalinity and high concentrations of minor and trace metals. Several trace metals (Cu, Pb and Zn) exceed acute and chronic water-quality standards and the high concentrations are attributed to washoff from impervious surfaces.

  10. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples.

    PubMed

    Yilmaz, Erkan; Soylak, Mustafa

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO2 (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L(-1) (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    NASA Astrophysics Data System (ADS)

    Aubert, Cédric; Osmond, Mélanie

    2008-08-01

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it [1]. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as "Interlaboratory Comparisons" for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance. Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements and to rectify old mistakes. The PT exercises organized by STEME are becoming essential for French and some European laboratories working in radioactive measurements. The STEME organization, in respect of accreditation references, is presented.

  12. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, Cedric; Osmond, Melanie

    2008-08-14

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as 'Interlaboratorymore » Comparisons' for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance.Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements and to rectify old mistakes. The PT exercises organized by STEME are becoming essential for French and some European laboratories working in radioactive measurements.The STEME organization, in respect of accreditation references, is presented.« less

  13. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  14. Speciation of strontium-90 in NIST natural matrix standard reference materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J.W.L.; Inn, K.G.W.; Garcia, M.E.

    1995-12-31

    A sequential leaching, radiochemical separating, and low-level beta-particle counting procedure was designed to study the speciation of radionuclides in natural matrix standard reference materials, SRMs 4350B (Columbia River Sediment) and 4353 (Rocky Flats Soil-1). Strontium-90 is the first radionuclide studied because of the difficulty experienced with this nuclide in natural-matrix SRMs. The nine-step procedure extracted {sup 90}Sr from the following fractions: water solubles, exchangeables, carbonates, reducibles, organics, iron and manganese oxides, acid leachables, micas, and silicates. The majority of {sup 90}Sr in the soil samples was found in the exchangeable fraction. By contrast, the {sup 90}Sr in the sediment ismore » more evenly distributed among the various leached fractions. Information on the leach distribution of radionuclides in environmental SRMs, based on the procedure described, should lead to more cost-effective restoration strategies and more confidence in risk assessments of human health hazards.« less

  15. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, Philip T.; Flanagan, Sarah M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.

  16. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  17. Eco-friendly sonoluminescent determination of free glycerol in biodiesel samples.

    PubMed

    Diniz, Paulo Henrique Gonçalves Dias; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino; Band, Beatriz Susana Fernández

    2013-09-30

    This paper proposes a flow-batch methodology for the determination of free glycerol in biodiesel that is notably eco-friendly, since non-chemical reagents are used. Deionized water (the solvent) was used alone for glycerol (sample) extractions from the biodiesel. The same water was used to generate water-cavitation sonoluminescence signals, which were modulated by the quenching effect associated with the amount of extracted glycerol. The necessarily reproducible signal generation was achieved by using a simple and inexpensive piezoelectric device. A linear response was observed for glycerol within the 0.001-100 mg/L range, equivalent to 0.004-400 mg/kg free glycerol in biodiesel. The lowest measurable concentration of free glycerol was estimated at 1.0 µg/L. The selectivity of the proposed method was confirmed by comparing the shape and retention of both real and calibration samples to standard solution chromatograms, presenting no peaks other than glycerol. All samples (after extraction) are greatly diluted; this minimizes (toward non-detectability) potential interference effects. The methodology was successfully applied to biodiesel analysis at a high sampling rate, with neither reagent nor solvent (other than water), and with minimum waste generation. The results agreed with the reference method (ASTM D6584-07), at a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Rapid detection of proteins in transgenic crops without protein reference standards by targeted proteomic mass spectrometry.

    PubMed

    Schacherer, Lindsey J; Xie, Weiping; Owens, Michaela A; Alarcon, Clara; Hu, Tiger X

    2016-09-01

    Liquid chromatography coupled with tandem mass spectrometry is increasingly used for protein detection for transgenic crops research. Currently this is achieved with protein reference standards which may take a significant time or efforts to obtain and there is a need for rapid protein detection without protein reference standards. A sensitive and specific method was developed to detect target proteins in transgenic maize leaf crude extract at concentrations as low as ∼30 ng mg(-1) dry leaf without the need of reference standards or any sample enrichment. A hybrid Q-TRAP mass spectrometer was used to monitor all potential tryptic peptides of the target proteins in both transgenic and non-transgenic samples. The multiple reaction monitoring-initiated detection and sequencing (MIDAS) approach was used for initial peptide/protein identification via Mascot database search. Further confirmation was achieved by direct comparison between transgenic and non-transgenic samples. Definitive confirmation was provided by running the same experiments of synthetic peptides or protein standards, if available. A targeted proteomic mass spectrometry method using MIDAS approach is an ideal methodology for detection of new proteins in early stages of transgenic crop research and development when neither protein reference standards nor antibodies are available. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.

    PubMed

    Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying

    2010-09-15

    An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Local-order metric for condensed-phase environments

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Ko, Hsin-Yu; Oǧuz, Erdal C.; Car, Roberto

    2018-02-01

    We introduce a local order metric (LOM) that measures the degree of order in the neighborhood of an atomic or molecular site in a condensed medium. The LOM maximizes the overlap between the spatial distribution of sites belonging to that neighborhood and the corresponding distribution in a suitable reference system. The LOM takes a value tending to zero for completely disordered environments and tending to one for environments that perfectly match the reference. The site-averaged LOM and its standard deviation define two scalar order parameters, S and δ S , that characterize with excellent resolution crystals, liquids, and amorphous materials. We show with molecular dynamics simulations that S , δ S , and the LOM provide very insightful information in the study of structural transformations, such as those occurring when ice spontaneously nucleates from supercooled water or when a supercooled water sample becomes amorphous upon progressive cooling.

  1. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry.

    PubMed

    Wassenaar, L I; Terzer-Wassmuth, S; Douence, C; Araguas-Araguas, L; Aggarwal, P K; Coplen, T B

    2018-03-15

    Water stable isotope ratios (δ 2 H and δ 18 O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test. Eight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies. For the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ 18 O and δ 2 H, respectively; ~27 % produced unacceptable results. Top performance for δ 18 O values was dominated by dual-inlet IRMS laboratories; top performance for δ 2 H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected. Analysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1-2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry

    USGS Publications Warehouse

    Wassenaar, L. I.; Terzer-Wassmuth, S.; Douence, C.; Araguas-Araguas, L.; Aggarwal, P. K.; Coplen, Tyler B.

    2018-01-01

    RationaleWater stable isotope ratios (δ2H and δ18O values) are widely used tracers in environmental studies; hence, accurate and precise assays are required for providing sound scientific information. We tested the analytical performance of 235 international laboratories conducting water isotope analyses using dual-inlet and continuous-flow isotope ratio mass spectrometers and laser spectrometers through a water isotope inter-comparison test.MethodsEight test water samples were distributed by the IAEA to international stable isotope laboratories. These consisted of a core set of five samples spanning the common δ-range of natural waters, and three optional samples (highly depleted, enriched, and saline). The fifth core sample contained unrevealed trace methanol to assess analyst vigilance to the impact of organic contamination on water isotopic measurements made by all instrument technologies.ResultsFor the core and optional samples ~73 % of laboratories gave acceptable results within 0.2 ‰ and 1.5 ‰ of the reference values for δ18O and δ2H, respectively; ~27 % produced unacceptable results. Top performance for δ18O values was dominated by dual-inlet IRMS laboratories; top performance for δ2H values was led by laser spectrometer laboratories. Continuous-flow instruments yielded comparatively intermediate results. Trace methanol contamination of water resulted in extreme outlier δ-values for laser instruments, but also affected reactor-based continuous-flow IRMS systems; however, dual-inlet IRMS δ-values were unaffected.ConclusionsAnalysis of the laboratory results and their metadata suggested inaccurate or imprecise performance stemmed mainly from skill- and knowledge-based errors including: calculation mistakes, inappropriate or compromised laboratory calibration standards, poorly performing instrumentation, lack of vigilance to contamination, or inattention to unreasonable isotopic outcomes. To counteract common errors, we recommend that laboratories include 1–2 'known' control standards in all autoruns; laser laboratories should screen each autorun for spectral contamination; and all laboratories should evaluate whether derived d-excess values are realistic when both isotope ratios are measured. Combined, these data evaluation strategies should immediately inform the laboratory about fundamental mistakes or compromised samples.

  3. Direct determination of neonicotinoid insecticides in an analytically challenging crop such as Chinese chives using selective ELISAs.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2018-06-05

    Easy-to-use commercial kit-based enzyme-linked immunosorbent assays (ELISAs) have been used to detect neonicotinoid dinotefuran, clothianidin and imidacloprid in Chinese chives, which are considered a troublesome matrix for chromatographic techniques. Based on their high water solubility, water was used as an extractant. Matrix interference could be avoided substantially just diluting sample extracts. Average recoveries of insecticides from spiked samples were 85-113%, with relative standard deviation of <15%. The concentrations of insecticides detected from the spiked samples with the proposed ELISA methods correlated well with those by the reference high-performance liquid chromatography (HPLC) method. The residues analyzed by the ELISA methods were consistently 1.24 times that found by the HPLC method, attributable to loss of analyte during sample clean-up for HPLC analyses. It was revealed that the ELISA methods can be applied easily to pesticide residue analysis in troublesome matrix such as Chinese chives.

  4. Environmental 90Sr measurements

    USGS Publications Warehouse

    Paul, M.; Berkovits, D.; Cecil, L.D.; Feldstein, H.; Hershkowitz, A.; Kashiv, Y.; Vogt, S.

    1997-01-01

    90Sr (T1/2 = 28.5 years) is a long-lived radionuclide produced in nuclear fission. Fast radiochemical detection of 90Sr in environmental samples is not feasible using current analytical methods. Accelerator Mass Spectrometry (AMS) measurements of 90Sr were made with the Rehovot 14UD Pelletron accelerator at a terminal voltage of 11 or 12 MV using our standard detection system. Injection of hydride ions (SrH3-) was chosen owing to high beam intensity and low Coulomb explosion effects. 90Sr ions were identified and discriminated from isobaric 90Zr by measuring time of flight, total energy and three independent energy-loss signals in an ionization chamber. A reference sample and a ground-water sample were successfully measured. The detection limit determined for a laboratory blank by the residual counts in the 90Sr region is 90Sr/Sr = 3 ?? 10-13, corresponding in practice to (2-4) ?? 10790Sr atoms or about 0.5-1 pCi/L in environmental water samples.

  5. Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.

    2010-01-01

    The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking-water standards. Groundwater in some agricultural areas had concentrations of nitrate and some pesticides that exceeded drinking-water standards. Elevated concentrations of chloride were measured near salt storage areas and highways. Formaldehyde was detected in groundwater near cemeteries. In residential areas with on-site wastewater disposal, effects on groundwater quality included elevated nitrate concentrations and low concentrations of volatile organic compounds and wastewater compounds, such as antibiotics and detergents. Base-flow samples indicated that groundwater discharge to streams carried contaminants such as nitrate, pesticides, wastewater compounds, and other contaminants. Radionuclides, including radium-226, radium-228, radium-224, and radon-222, and gross alpha-particle activity were measured in groundwater at levels above established and proposed drinking-water standards in some geologic units, particularly in quartzite and quartzite schists. Arsenic concentrations above drinking-water standards were measured in a few samples and were most likely to occur in groundwater in the shales and sandstones in the northern part of the county. Other potential natural hazards, such as lead from aquifer materials or leached from plumbing because of pH, were present in concentrations above drinking-water standards infrequently (less than 10 percent of samples). Limited temporal sampling suggested that chloride concentrations in groundwater increased in the county since the program began in 1980 through 2008, reflecting increasing population and urbanization in that period.

  6. U.S. Geological Survey Standard Reference Sample Project: Performance Evaluation of Analytical Laboratories

    USGS Publications Warehouse

    Long, H. Keith; Daddow, Richard L.; Farrar, Jerry W.

    1998-01-01

    Since 1962, the U.S. Geological Survey (USGS) has operated the Standard Reference Sample Project to evaluate the performance of USGS, cooperator, and contractor analytical laboratories that analyze chemical constituents of environmental samples. The laboratories are evaluated by using performance evaluation samples, called Standard Reference Samples (SRSs). SRSs are submitted to laboratories semi-annually for round-robin laboratory performance comparison purposes. Currently, approximately 100 laboratories are evaluated for their analytical performance on six SRSs for inorganic and nutrient constituents. As part of the SRS Project, a surplus of homogeneous, stable SRSs is maintained for purchase by USGS offices and participating laboratories for use in continuing quality-assurance and quality-control activities. Statistical evaluation of the laboratories results provides information to compare the analytical performance of the laboratories and to determine possible analytical deficiences and problems. SRS results also provide information on the bias and variability of different analytical methods used in the SRS analyses.

  7. Determination of six microcystins and nodularin in surface and drinking waters by on-line solid phase extraction-ultra high pressure liquid chromatography tandem mass spectrometry.

    PubMed

    Beltrán, Eduardo; Ibáñez, María; Sancho, Juan Vicente; Hernández, Félix

    2012-11-30

    Microcystins and nodularin are cyclic peptides hepatotoxins produced by cyanobacterial genera (blue-green algae). Toxic cyanobacterial blooms are a worldwide problem, as reported in several countries, like China, Australia, or the United States. Therefore, it is necessary to develop sensitive and reliable analytical methodology to determine this type of toxins in water at parts per billion levels, or even lower. In this work, the potential of solid-phase extraction coupled on-line to ultra-high-pressure liquid chromatography/electrospray tandem mass spectrometry (SPE-UHPLC-MS/MS) has been investigated for the efficient quantification and confirmation of microcystins LR, RR, YR, LY, LW, LF and nodularin in surface and drinking water samples, at sub-ppb levels. The method developed involves the injection of only 1 mL of water sample into the on-line SPE-UHPLC-MS/MS system and allows the rapid determination of the compounds selected (8 min of chromatographic run), avoiding laborious sample treatment. The method was validated in surface and drinking water by means of recovery experiments at 0.25 and 1 μg L(-1). Average recoveries (n=5) ranged from 71 to 116%, with relative standard deviations (RSDs) lower than 15%. For microcystins LR, RR, YR and nodularin, a third level was also assayed (0.1 μg L(-1)) obtaining satisfactory data too. Limits of detection between 0.002 and 0.0405 μg L(-1) were estimated (0.0005 μg L(-1) for nodularin). The developed method was applied to the analysis of water samples collected in the province of Castellón (Spain). The acquisition of three MS/MS transitions for each compound allowed the unequivocal confirmation of positive samples, which was supported by the accomplishment of ion intensity ratios and retention time when compared with reference standards. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harriman, D.A.; Sargent, B.P.

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Iron (Fe) and manganese (Mn) concentrations exceed US EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may alsomore » exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. 76 refs., 36 figs., 12 tabs.« less

  9. Validation of Ion Chromatographic Method for Determination of Standard Inorganic Anions in Treated and Untreated Drinking Water

    NASA Astrophysics Data System (ADS)

    Ivanova, V.; Surleva, A.; Koleva, B.

    2018-06-01

    An ion chromatographic method for determination of fluoride, chloride, nitrate and sulphate in untreated and treated drinking waters was described. An automated 850 IC Professional, Metrohm system equipped with conductivity detector and Metrosep A Supp 7-250 (250 x 4 mm) column was used. The validation of the method was performed for simultaneous determination of all studied analytes and the results have showed that the validated method fits the requirements of the current water legislation. The main analytical characteristics were estimated for each of studied analytes: limits of detection, limits of quantification, working and linear ranges, repeatability and intermediate precision, recovery. The trueness of the method was estimated by analysis of certified reference material for soft drinking water. Recovery test was performed on spiked drinking water samples. An uncertainty was estimated. The method was applied for analysis of drinking waters before and after chlorination.

  10. A field study of selected U.S. Geological Survey analytical methods for measuring pesticides in filtered stream water, June - September 2012

    USGS Publications Warehouse

    Martin, Jeffrey D.; Norman, Julia E.; Sandstrom, Mark W.; Rose, Claire E.

    2017-09-06

    U.S. Geological Survey monitoring programs extensively used two analytical methods, gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, to measure pesticides in filtered water samples during 1992–2012. In October 2012, the monitoring programs began using direct aqueous-injection liquid chromatography tandem mass spectrometry as a new analytical method for pesticides. The change in analytical methods, however, has the potential to inadvertently introduce bias in analysis of datasets that span the change.A field study was designed to document performance of the new method in a variety of stream-water matrices and to quantify any potential changes in measurement bias or variability that could be attributed to changes in analytical methods. The goals of the field study were to (1) summarize performance (bias and variability of pesticide recovery) of the new method in a variety of stream-water matrices; (2) compare performance of the new method in laboratory blank water (laboratory reagent spikes) to that in a variety of stream-water matrices; (3) compare performance (analytical recovery) of the new method to that of the old methods in a variety of stream-water matrices; (4) compare pesticide detections and concentrations measured by the new method to those of the old methods in a variety of stream-water matrices; (5) compare contamination measured by field blank water samples in old and new methods; (6) summarize the variability of pesticide detections and concentrations measured by the new method in field duplicate water samples; and (7) identify matrix characteristics of environmental water samples that adversely influence the performance of the new method. Stream-water samples and a variety of field quality-control samples were collected at 48 sites in the U.S. Geological Survey monitoring networks during June–September 2012. Stream sites were located across the United States and included sites in agricultural and urban land-use settings, as well as sites on major rivers.The results of the field study identified several challenges for the analysis and interpretation of data analyzed by both old and new methods, particularly when data span the change in methods and are combined for analysis of temporal trends in water quality. The main challenges identified are large (greater than 30 percent), statistically significant differences in analytical recovery, detection capability, and (or) measured concentrations for selected pesticides. These challenges are documented and discussed, but specific guidance or statistical methods to resolve these differences in methods are beyond the scope of the report. The results of the field study indicate that the implications of the change in analytical methods must be assessed individually for each pesticide and method.Understanding the possible causes of the systematic differences in concentrations between methods that remain after recovery adjustment might be necessary to determine how to account for the differences in data analysis. Because recoveries for each method are independently determined from separate reference standards and spiking solutions, the differences might be due to an error in one of the reference standards or solutions or some other basic aspect of standard procedure in the analytical process. Further investigation of the possible causes is needed, which will lead to specific decisions on how to compensate for these differences in concentrations in data analysis. In the event that further investigations do not provide insight into the causes of systematic differences in concentrations between methods, the authors recommend continuing to collect and analyze paired environmental water samples by both old and new methods. This effort should be targeted to seasons, sites, and expected concentrations to supplement those concentrations already assessed and to compare the ongoing analytical recovery of old and new methods to those observed in the summer and fall of 2012.

  11. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  12. Quality of ground water in the Biscayne Aquifer in Miami-Dade, Broward, and Palm Beach counties, Florida, 1996-1998, with emphasis on contaminants

    USGS Publications Warehouse

    Bradner, Anne; McPherson, Benjamin F.; Miller, Ronald L.; Kish, George; Bernard, Bruce

    2005-01-01

    The high permeability of the sand and limestone sediments and shallow water table of the Biscayne aquifer make ground water vulnerable to contamination by human activities. To assess potential contamination in the aquifer, untreated ground water was sampled from 30 public-supply wells (40-165 feet deep) in Broward, Miami-Dade, and Palm Beach Counties, 32 shallow wells (10-50 feet deep) in a recently urbanized (residential and light commercial) part of Broward County, and 3 shallow reference wells in Broward County. Results from sample analyses indicate that major ions, pH, dissolved oxygen, nutrients, and trace element concentrations were generally within the range indicative of background concentrations, except for: (1) substantially higher bromide concentrations in water from public-supply wells in southern Miami-Dade County; (2) a few relatively high (greater than 2 milligrams per liter) concentrations of nitrate in water from public-supply wells near agricultural lands in Miami-Dade and southern Broward Counties; and (3) a few relatively high concentrations of arsenic (greater than 10 micrograms per liter) in water from some shallow urban wells near golf courses. Pesticides were detected in every public-supply well, in most of the shallow, urban monitoring wells (78 percent), and in one reference well; however, no pesticide concentration exceeded any drinking-water standard. Fifteen different pesticides or their degradation products were detected. The most frequently detected pesticides were atrazine and tebuthiuron; less frequently detected were the herbicides diuron, fenuron, prometon, metolachlor, simazine, and 2,6-diethylaniline. Volatile organic compounds (VOCs) were detected in most of the public-supply wells (77 percent) and shallow, urban wells (91 percent) and in two of the three reference wells. Thirty-two different VOCs were detected in ground water in the Biscayne aquifer, with cis-1,2-dichloroethene the most frequently detected VOC in the public-supply wells, followed by methyl tert-butyl ether (MTBE), 1,4-dichlorobenzene, and chloroform. Toluene, p-isopropyltoluene, and 1,2,4-trimethylbenzene were the most frequently detected VOCs in the shallow, urban wells. Concentrations of all VOCs were less than the maximum contaminant level (MCL) for public drinking water, except in two samples from public-supply wells near industrialized areas that had vinyl chloride concentrations (3 and 5 micrograms per liter) above the MCL of 1 microgram per liter.

  13. Potential sources of analytical bias and error in selected trace element data-quality analyses

    USGS Publications Warehouse

    Paul, Angela P.; Garbarino, John R.; Olsen, Lisa D.; Rosen, Michael R.; Mebane, Christopher A.; Struzeski, Tedmund M.

    2016-09-28

    Potential sources of analytical bias and error associated with laboratory analyses for selected trace elements where concentrations were greater in filtered samples than in paired unfiltered samples were evaluated by U.S. Geological Survey (USGS) Water Quality Specialists in collaboration with the USGS National Water Quality Laboratory (NWQL) and the Branch of Quality Systems (BQS).Causes for trace-element concentrations in filtered samples to exceed those in associated unfiltered samples have been attributed to variability in analytical measurements, analytical bias, sample contamination either in the field or laboratory, and (or) sample-matrix chemistry. These issues have not only been attributed to data generated by the USGS NWQL but have been observed in data generated by other laboratories. This study continues the evaluation of potential analytical bias and error resulting from matrix chemistry and instrument variability by evaluating the performance of seven selected trace elements in paired filtered and unfiltered surface-water and groundwater samples collected from 23 sampling sites of varying chemistries from six States, matrix spike recoveries, and standard reference materials.Filtered and unfiltered samples have been routinely analyzed on separate inductively coupled plasma-mass spectrometry instruments. Unfiltered samples are treated with hydrochloric acid (HCl) during an in-bottle digestion procedure; filtered samples are not routinely treated with HCl as part of the laboratory analytical procedure. To evaluate the influence of HCl on different sample matrices, an aliquot of the filtered samples was treated with HCl. The addition of HCl did little to differentiate the analytical results between filtered samples treated with HCl from those samples left untreated; however, there was a small, but noticeable, decrease in the number of instances where a particular trace-element concentration was greater in a filtered sample than in the associated unfiltered sample for all trace elements except selenium. Accounting for the small dilution effect (2 percent) from the addition of HCl, as required for the in-bottle digestion procedure for unfiltered samples, may be one step toward decreasing the number of instances where trace-element concentrations are greater in filtered samples than in paired unfiltered samples.The laboratory analyses of arsenic, cadmium, lead, and zinc did not appear to be influenced by instrument biases. These trace elements showed similar results on both instruments used to analyze filtered and unfiltered samples. The results for aluminum and molybdenum tended to be higher on the instrument designated to analyze unfiltered samples; the results for selenium tended to be lower. The matrices used to prepare calibration standards were different for the two instruments. The instrument designated for the analysis of unfiltered samples was calibrated using standards prepared in a nitric:hydrochloric acid (HNO3:HCl) matrix. The instrument designated for the analysis of filtered samples was calibrated using standards prepared in a matrix acidified only with HNO3. Matrix chemistry may have influenced the responses of aluminum, molybdenum, and selenium on the two instruments. The best analytical practice is to calibrate instruments using calibration standards prepared in matrices that reasonably match those of the samples being analyzed.Filtered and unfiltered samples were spiked over a range of trace-element concentrations from less than 1 to 58 times ambient concentrations. The greater the magnitude of the trace-element spike concentration relative to the ambient concentration, the greater the likelihood spike recoveries will be within data control guidelines (80–120 percent). Greater variability in spike recoveries occurred when trace elements were spiked at concentrations less than 10 times the ambient concentration. Spike recoveries that were considerably lower than 90 percent often were associated with spiked concentrations substantially lower than what was present in the ambient sample. Because the main purpose of spiking natural water samples with known quantities of a particular analyte is to assess possible matrix effects on analytical results, the results of this study stress the importance of spiking samples at concentrations that are reasonably close to what is expected but sufficiently high to exceed analytical variability. Generally, differences in spike recovery results between paired filtered and unfiltered samples were minimal when samples were analyzed on the same instrument.Analytical results for trace-element concentrations in ambient filtered and unfiltered samples greater than 10 and 40 μg/L, respectively, were within the data-quality objective for precision of ±25 percent. Ambient trace-element concentrations in filtered samples greater than the long-term method detection limits but less than 10 μg/L failed to meet the data-quality objective for precision for at least one trace element in about 54 percent of the samples. Similarly, trace-element concentrations in unfiltered samples greater than the long-term method detection limits but less than 40 μg/L failed to meet this data-quality objective for at least one trace-element analysis in about 58 percent of the samples. Although, aluminum and zinc were particularly problematic, limited re-analyses of filtered and unfiltered samples appeared to improve otherwise failed analytical precision.The evaluation of analytical bias using standard reference materials indicate a slight low bias for results for arsenic, cadmium, selenium, and zinc. Aluminum and molybdenum show signs of high bias. There was no observed bias, as determined using the standard reference materials, during the analysis of lead.

  14. A regional assessment of chemicals of concern in surface waters of four Midwestern United States national parks

    USGS Publications Warehouse

    Elliott, Sarah M.; VanderMeulen, David

    2017-01-01

    Anthropogenic chemicals and their potential for adverse biological effects raise concern for aquatic ecosystem health in protected areas. During 2013–15, surface waters of four Midwestern United States national parks were sampled and analyzed for wastewater indicators, pharmaceuticals, personal care products, and pesticides. More chemicals and higher concentrations were detected at the two parks with greater urban influences (Mississippi National River and Recreation Area and Indiana Dunes National Lakeshore) than at the two more remote parks (Apostle Islands National Lakeshore and Isle Royale National Park). Atrazine (10–15 ng/L) and N,N-diethyl-meta-toluamide (16–120 ng/L) were the only chemicals detected in inland lakes of a remote island national park (Isle Royale National Park). Bisphenol A and organophosphate flame retardants were commonly detected at the other sampled parks. Gabapentin and simazine had the highest observed concentrations (> 1000 ng/L) in three and two samples, respectively. At the two parks with urban influences, metolachlor and simazine concentrations were similar to those reported for other major urban rivers in the United States. Environmental concentrations of detected chemicals were often orders of magnitude less than standards or reference values with three exceptions: (1) hydrochlorothiazide exceeded a human health-based screening value in seven samples, (2) estrone exceeded a predicted critical environmental concentration for fish pharmacological effects in one sample, and (3) simazine was approaching the 4000 ng/L Maximum Contaminant Level in one sample even though this concentration is not expected to reflect peak pesticide use. Although few environmental concentrations were approaching or exceeded standards or reference values, concentrations were often in ranges reported to elicit effects in aquatic biota. Data from this study will assist in establishing a baseline for chemicals of concern in Midwestern national parks and highlight the need to better understand the sources, pathways, and potential adverse effects to aquatic systems in national parks.

  15. A regional assessment of chemicals of concern in surface waters of four Midwestern United States national parks.

    PubMed

    Elliott, Sarah M; VanderMeulen, David D

    2017-02-01

    Anthropogenic chemicals and their potential for adverse biological effects raise concern for aquatic ecosystem health in protected areas. During 2013-15, surface waters of four Midwestern United States national parks were sampled and analyzed for wastewater indicators, pharmaceuticals, personal care products, and pesticides. More chemicals and higher concentrations were detected at the two parks with greater urban influences (Mississippi National River and Recreation Area and Indiana Dunes National Lakeshore) than at the two more remote parks (Apostle Islands National Lakeshore and Isle Royale National Park). Atrazine (10-15ng/L) and N,N-diethyl-meta-toluamide (16-120ng/L) were the only chemicals detected in inland lakes of a remote island national park (Isle Royale National Park). Bisphenol A and organophosphate flame retardants were commonly detected at the other sampled parks. Gabapentin and simazine had the highest observed concentrations (>1000ng/L) in three and two samples, respectively. At the two parks with urban influences, metolachlor and simazine concentrations were similar to those reported for other major urban rivers in the United States. Environmental concentrations of detected chemicals were often orders of magnitude less than standards or reference values with three exceptions: (1) hydrochlorothiazide exceeded a human health-based screening value in seven samples, (2) estrone exceeded a predicted critical environmental concentration for fish pharmacological effects in one sample, and (3) simazine was approaching the 4000ng/L Maximum Contaminant Level in one sample even though this concentration is not expected to reflect peak pesticide use. Although few environmental concentrations were approaching or exceeded standards or reference values, concentrations were often in ranges reported to elicit effects in aquatic biota. Data from this study will assist in establishing a baseline for chemicals of concern in Midwestern national parks and highlight the need to better understand the sources, pathways, and potential adverse effects to aquatic systems in national parks. Copyright © 2016. Published by Elsevier B.V.

  16. Report on the U.S. Geological Survey's Evaluation Program Standard Reference Samples Distributed in October 1995: T-137 (Trace Constituents), M-136 (Major Constituents), N-47 (Nutrient Constituents), N-48 (Nutrient Constituents), P-25 (Low Ionic Strength Constituents), and Hg-21 (Mercury)

    USGS Publications Warehouse

    Farrar, Jerry W.; Long, H. Keith

    1996-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for 6 standard reference samples--T-137 (trace constituents), M-136 (major constituents), N-47 (nutrient constituents), N-48 (nutrient constituents), P-25 (low ionic strength constituents), and Hg-21 (mercury)--that were distributed in October 1995 to 149 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 136 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  17. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in April 1994; T-129 (trace constituents), M-130 (major constituents), N-42 (nutrients), P-22 (low ionic strength), and Hg-18 (mercury)

    USGS Publications Warehouse

    Long, H. Keith; Farrar, Jerry W.

    1994-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for five standard reference samples--T-129 (trace constituents), M-130 (major constituents), N-42 (nutrients), P-22 (low ionic strength), Hg-18(mercury),--that were distributed in April 1994 to 157 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 133 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the five reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the five standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  18. Report of the U.S. Geological Survey's evaluation program for standard reference samples distributed in April 1993; T-123 (trace constituents), T-125 (trace constituents), M-126 (major constituents, N-38 (nutrients), N-39 (nutrients), P-20 (low ionic strength, and Hg-16 (mercury)

    USGS Publications Warehouse

    Long, H.K.; Farrar, J.W.

    1993-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for seven standard reference samples--T-123 (trace constituents), T-125 (trace constituents), M-126 (major constituents), N-38 (nutrients), N-39 (Nutrients), P-20 (precipitation-low ionic strength), and Hg-16 (mercury)--that were distributed in April 1993 to 175 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 131 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the 7 reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  19. Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples.

    PubMed

    Gouda, Ayman A; Al Ghannam, Sheikha M

    2016-07-01

    A new, sensitive and simple solid phase extraction (SPE), separation and preconcentration method of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) at trace levels using multiwalled carbon nanotubes (MWCNTs) impregnated with 2-(2-benzothiazolylazo)orcinol (BTAO) from food and water samples were investigated. The effect of analytical parameters was examined. The metals retained on the nanotubes at pH 7.0 were eluted by 5.0mL HNO3 (2.0molL(-1)). The influence of matrix ions on the proposed method was evaluated. The preconcentration factor was calculated and found to be 100. The detection limits (LODs) for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) were found at 0.70, 1.2, 0.80, 2.6 and 2.2μgL(-1), respectively. The relative standard deviation (RSD) and the recoveries of the standard addition method were lower than 5.0% and 95-102%, respectively. The new procedure was successfully applied to the determination of trace amounts of the studied metal ions in various food and water samples and validated using certified reference materials SRM 1570A (spinach leaves) with satisfactory and compatible results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analysis of Ag(I) Biocide in Water Samples Using Anodic Stripping Voltammetry with a Boron-Doped Diamond Disk Electrode.

    PubMed

    Maldonado, Vanessa Y; Espinoza-Montero, Patricio J; Rusinek, Cory A; Swain, Greg M

    2018-06-05

    The electroanalytical performance of a new commercial boron-doped diamond disk and a traditional nanocrystalline thin-film electrode were compared for the anodic stripping voltammetric determination of Ag(I). The diamond disk electrode is more flexible than the planar film as the former is compatible with most electrochemical cell designs including those incorporating magnetic stirring. Additionally, mechanical polishing and surface cleaning are simpler to execute. Differential pulse anodic stripping voltammetry (DPASV) was used to detect Ag(I) in standard solutions after optimization of the deposition potential, deposition time and scan rate. The optimized conditions were used to determine the concentration of Ag(I) in a NASA simulated potable water sample and a NIST standard reference solution. The electrochemical results were validated by ICP-OES measurements of the same solutions. The detection figures of merit for the disk electrode were as good or superior to those for the thin-film electrode. Detection limits were ≤5 μg L -1 (S/N = 3) for a 120 s deposition period, and response variabilities were <5% RSD. The polished disk electrode presented a more limited linear dynamic range presumably because of the reduced surface area available for metal phase formation. The concentrations of Ag(I) in the two water samples, as determined by DPASV, were in good agreement with the concentrations determined by ICP-OES.

  1. Medicare program; standards for quality of water used in dialysis and revised guidelines on reuse of hemodialysis filters for end-stage renal disease (ESRD) patients--HCFA. Final rule.

    PubMed

    1995-09-18

    This final rule revises the Medicare conditions for coverage of suppliers of end-stage renal disease services. The revisions remove general language in the regulations regarding water quality; incorporate by reference standards for monitoring the quality of water used in dialysis as published by the Association for the Advancement of Medical Instrumentation (AAMI) in its document, "Hemodialysis Systems" (second edition); and update existing regulations to incorporate by reference the second edition of AAMI's voluntary guidelines on "Reuse of Hemodialyzers."

  2. Vortex-assisted switchable liquid-liquid microextraction for the preconcentration of cadmium in environmental samples prior to its determination with flame atomic absorption spectrometry.

    PubMed

    Fırat, Merve; Bodur, Süleyman; Tışlı, Büşra; Özlü, Cansu; Chormey, Dotse Selali; Turak, Fatma; Bakırdere, Sezgin

    2018-06-12

    In this study, a switchable solvent was used to preconcentrate trace amounts of Cd from aqueous solution for its determination by flame atomic absorption spectrometry (FAAS). Protonation of N,N-dimethylbenzylamine by dry ice (solid CO 2 ) made it water soluble, and addition of sodium hydroxide converted it back to its original nonionic state for phase separation and subsequent extraction of Cd. A slotted quartz tube (SQT) was attached to the flame burner head to increase the residence time of Cd atoms in the light path. Under the optimum conditions, limits of detection and quantification were determined as 0.7 and 2.6 μg L -1 , respectively. Low relative standard deviations calculated from seven replicate measurements of the lowest concentration indicated high precision. Accuracy of the developed method was checked by using a standard reference material (SRM 1633c). Spiked recovery tests were also performed on lake water and wastewater samples at different concentrations to check the applicability of the developed method, and the results obtained (90-103%) established high recovery.

  3. Determination of trace arsenic on hanging copper amalgam drop electrode.

    PubMed

    Piech, Robert; Baś, Bogusław; Niewiara, Ewa; Kubiak, Władysław W

    2007-04-30

    Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33nM (0.02mug/L) at deposition time (240s) could be obtained. For seven successive determinations of As(III) at concentration of 5nM relative standard deviation was 2.5% (n=7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.

  4. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    NASA Astrophysics Data System (ADS)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  5. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of selected carbamate pesticides in water by high-performance liquid chromatography

    USGS Publications Warehouse

    Werner, S.L.; Johnson, S.M.

    1994-01-01

    As part of its primary responsibility concerning water as a national resource, the U.S. Geological Survey collects and analyzes samples of ground water and surface water to determine water quality. This report describes the method used since June 1987 to determine selected total-recoverable carbamate pesticides present in water samples. High- performance liquid chromatography is used to separate N-methyl carbamates, N-methyl carbamoyloximes, and an N-phenyl carbamate which have been extracted from water and concentrated in dichloromethane. Analytes, surrogate compounds, and reference compounds are eluted from the analytical column within 25 minutes. Two modes of analyte detection are used: (1) a photodiode-array detector measures and records ultraviolet-absorbance profiles, and (2) a fluorescence detector measures and records fluorescence from an analyte derivative produced when analyte hydrolysis is combined with chemical derivatization. Analytes are identified and confirmed in a three-stage process by use of chromatographic retention time, ultraviolet (UV) spectral comparison, and derivatization/fluorescence detection. Quantitative results are based on the integration of single-wavelength UV-absorbance chromatograms and on comparison with calibration curves derived from external analyte standards that are run with samples as part of an instrumental analytical sequence. Estimated method detection limits vary for each analyte, depending on the sample matrix conditions, and range from 0.5 microgram per liter to as low as 0.01 microgram per liter. Reporting levels for all analytes have been set at 0.5 microgram per liter for this method. Corrections on the basis of percentage recoveries of analytes spiked into distilled water are not applied to values calculated for analyte concentration in samples. These values for analyte concentrations instead indicate the quantities recovered by the method from a particular sample matrix.

  6. Dispersed particle extraction--a new procedure for trace element enrichment from natural aqueous samples with subsequent ICP-OES analysis.

    PubMed

    Bauer, Gerald; Neouze, Marie-Alexandra; Limbeck, Andreas

    2013-01-15

    A novel sample pre-treatment method for multi trace element enrichment from environmental waters prior to optical emission spectrometry analysis with inductively coupled plasma (ICP-OES) is proposed, based on dispersed particle extraction (DPE). This method is based on the use of silica nanoparticles functionalized with strong cation exchange ligands. After separation from the investigated sample solution, the nanoparticles used for the extraction are directly introduced in the ICP for measurement of the adsorbed target analytes. A prerequisite for the successful application of the developed slurry approach is the use of sorbent particles with a mean size of 500 nm instead of commercially available μm sized beads. The proposed method offers the known advantages of common bead-injection (BI) techniques, and further circumvents the elution step required in conventional solid phase extraction procedures. With the use of 14.4 mL sample and addition of ammonium acetate buffer and particle slurry limits of detection (LODs) from 0.03 μg L(-1) for Be to 0.48 μg L(-1) for Fe, with relative standard deviations ranging from 1.7% for Fe and 5.5% for Cr and an average enrichment factor of 10.4 could be achieved. By implementing this method the possibility to access sorbent materials with irreversible bonding mechanisms for sample pre-treatment is established, thus improvements in the selectivity of sample pre-treatment procedures can be achieved. The presented procedure was tested for accuracy with NIST standard reference material 1643e (fresh water) and was applied to drinking water samples from the vicinity of Vienna. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. [Study on quality standard of Sophora flavescens root extract].

    PubMed

    Zhao, Feng-chun; Li, Hao; Chen, Liang-mian; Gao, Hui-min; Zhang, Qi-wei; Wang, Zhi-min; Wu, Pi-e

    2015-01-01

    As a part of the project for the Chinese Pharmacopoeia (2015 edition), the quality standard of Sophora flavescens root extract was investigated and established. According to the methods described in the Appendix of Chinese Pharmacopoeia (2010 edition), the water and ash inspections were carried out. The marker components trifolirhizin, sophoraflavanone G, oxymatrine and oxysophocarpine in the samples were identified by qualitative TLC. The determination of oxymatrine, matrine, oxysophocarpine and sophocarpine was conducted by HPLC and the total flavonoids were measured by ultraviolet spectrophotometry, using sophoraflavanone G as reference substance. The results indicated the spots on the plate were clear with good resolution and the contents of oxymatrine, matrine, oxysophocarpine and sophocarpine in the 13 batches of the samples were 3.87% - 11.1%, 0.970% - 4.33%, 1.30% - 2.59% and 0.260% - 1.14%, respectively. The total flavoids in the 13 batches of the samples were 3.88% - 7.93%. In the study, the validated methods were reproducible and the established quality standard was feasible, which could be used for the quality control of S. flavescens root extract and related preparations.

  8. Highly Sensitive Detection of Urinary Cadmium to Assess Personal Exposure

    PubMed Central

    Argun, Avni A.; Banks, Ashley; Merlen, Gwendolynne; Tempelman, Linda A.; Becker, Michael F.; Schuelke, Thomas; Dweik, Badawi

    2013-01-01

    A series of Boron-Doped Diamond (BDD) ultramicroelectrode arrays were fabricated and investigated for their performance as electrochemical sensors to detect trace level metals such as cadmium. The steady-state diffusion behavior of these sensors was validated using cyclic voltammetry followed by electrochemical detection of cadmium in water and in human urine to demonstrate high sensitivity (>200 μA/ppb/cm2) and low background current (<4 nA). When an array of ultramicroelectrodes was positioned with optimal spacing, these BDD sensors showed a sigmoidal diffusion behavior. They also demonstrated high accuracy with linear dose dependence for quantification of cadmium in a certified reference river water sample from the National Institute of Standards and Technology (NIST) as well as in a human urine sample spiked with 0.25–1 ppb cadmium. PMID:23561905

  9. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Using Isotope Ratio Infrared Spectrometer to determine δ13C of CaCO3 carbonate and DIC samples and δ18O of water

    NASA Astrophysics Data System (ADS)

    Mandic, M.; Stöbener, N.; Mandic, L.; Smajgl, D.; Jost, H. J. H.

    2016-12-01

    Precise and accurate determination of isotopic composition of carbon (13C) and oxygen (18O) from carbonate or DIC sample with proper referencing and data evaluation algorithm presents a challenge for scientists. Mass spectrometry was the only widely used technique for this kind of analysis, but recent advances make laser based isotope ratio infrared spectroscopy (IRIS) a viable alternative. To analyze discrete samples, the Universal Reference Interface (URI) Connect was developed. CO2 free syntethic air is used to flush out the contents of a sample container into a variable volume. If necessary, the sample is further diluted before entering the analysis chamber. Reference gas measurements are automatically performed at the same concentration as sample measurements to compensate for instrument drifts and non linearity. The URI Connect can handle about 100 samples per day from an autosampler, or samples can be injected one at a time through a septum on the front of the instrument. Gas samples collected in flasks, bags, syringes, or vials can be analyzed. The system only needs the equivalent of about 80µg - or 40µL - of pure CO2 gas to complete an analysis. Due to it's small weight and robustness, sample analysis can be performed in the field, e.g. aboard a research vessel. To demonstrate the performance, a test experiment with 1% CO2 in 12 ml vials was performed. We achieved an internal precision of better than 0.07‰ and 0.1‰ for δ13C and δ18O, respectively. Analyses with sample amounts as low as 200 μg of carbonate can also be performed reliably with IRIS. We present measurements of three international reference materials, and one of them treated as an unknown. Five samples each of approximately 1mg each were acidified using a few droplets of 43% H3PO4 and left for equilibration overnight at 25°C. The standard deviation was less than 0.1‰ δ13C and the accuracy <0.01‰ As another example of head space analysis in 12 ml vials, we determined δ18O of aliquots of 500 µl of water using equilibration with 1% CO2 in the volume above the water. The agreement with traditional IRMS methods was <0.06‰ was found.

  11. Ground-water quality of the southern High Plains aquifer, Texas and New Mexico, 2001

    USGS Publications Warehouse

    Fahlquist, Lynne

    2003-01-01

    In 2001, the U.S. Geological Survey National Water-Quality Assessment Program collected water samples from 48 wells in the southern High Plains as part of a larger scientific effort to broadly characterize and understand factors affecting water quality of the High Plains aquifer across the entire High Plains. Water samples were collected primarily from domestic wells in Texas and eastern New Mexico. Depths of wells sampled ranged from 100 to 500 feet, with a median depth of 201 feet. Depths to water ranged from 34 to 445 feet below land surface, with a median depth of 134 feet. Of 240 properties or constituents measured or analyzed, 10 exceeded U.S. Environmental Protection Agency public drinking-water standards or guidelines in one or more samples - arsenic, boron, chloride, dissolved solids, fluoride, manganese, nitrate, radon, strontium, and sulfate. Measured dissolved solids concentrations in 29 samples were larger than the public drinking-water guideline of 500 milligrams per liter. Fluoride concentrations in 16 samples, mostly in the southern part of the study area, were larger than the public drinking-water standard of 4 milligrams per liter. Nitrate was detected in all samples, and concentrations in six samples were larger than the public drinking-water standard of 10 milligrams per liter. Arsenic concentrations in 14 samples in the southern part of the study area were larger than the new (2002) public drinking-water standard of 10 micrograms per liter. Radon concentrations in 36 samples were larger than a proposed public drinking-water standard of 300 picocuries per liter. Pesticides were detected at very small concentrations, less than 1 microgram per liter, in less than 20 percent of the samples. The most frequently detected compounds were atrazine and breakdown products of atrazine, a finding similar to those of National Water-Quality Assessment aquifer studies across the Nation. Four volatile organic compounds were detected at small concentrations in six water samples. About 70 percent of the 48 primarily domestic wells sampled contained some fraction of recently (less than about 50 years ago) recharged ground water, as indicated by the presence of one or more pesticides, or tritium or nitrate concentrations greater than threshold levels.

  12. Chapter 5: Surface water quality sampling in streams and canals

    USDA-ARS?s Scientific Manuscript database

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  13. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in October 1994 : T-131 (trace constituents), T-133 (trace constituents), M-132 (major constituents), N-43 (nutrients), N-44 (nutrients), P-23 (low ionic strength) and Hg-19 (mercury)

    USGS Publications Warehouse

    Long, H. Keith; Farrar, Jerry W.

    1995-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for 7 standard reference samples--T-131 (trace constituents), T-133 (trace constituents), M-132 (major constituents), N-43 (nutrients), N-44 (nutrients), P-23 (low ionic strength), and Hg-19 (mercury). The samples were distributed in October 1994 to 131 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 121 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  14. Ground-water quality in east-central New Jersey, and a plan for sampling networks

    USGS Publications Warehouse

    Harriman, D.A.; Sargent, B.P.

    1985-01-01

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Generally, water in the confined aquifers is of satisfactory quality for human consumption and most other uses. Iron (Fe) and manganese (Mn) concentrations exceed U.S. EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system (the water table aquifer) was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. The results of chi-square tests of constituent distributions based on analyses from 158 wells in the water table aquifer indicate that calcium is higher in industrial and commercial areas; and Mg, chloride, and nitrate-plus-nitrite is higher in residential areas. (Author 's abstract)

  15. Analysis of acrylamide in coffee and cocoa by isotope dilution liquid chromatography-tandem mass spectrometry.

    PubMed

    Aguas, Patricia C; Fitzhenry, Matthew J; Giannikopoulos, Georgina; Varelis, Peter

    2006-08-01

    An accurate and precise method for the quantification of acrylamide using stable isotope dilution liquid chromatography-tandem mass spectrometry was developed and used to measure acrylamide in coffee and cocoa samples. The sample preparation involved extraction of the analyte and its internal standard, 13C3-acrylamide, into water and subsequent defatting of the aqueous extract with dichloromethane. An aliquot of the resulting aqueous extract was then azeotropically dried under reduced pressure and subsequently purified using an aminopropyl-bonded silica cartridge. The purified extracts were then chromatographed on a 5-microm 2.1 x 150 mm Hypercarb column, the effluent of which was monitored for the analyte and its internal standard using positive-ion APCI-selected reaction monitoring. The intra-laboratory reproducibility of the method, expressed as a relative coefficient of variation (%, n=5), was determined at four levels of concentration (12.3, 42.3, 139.3 and 464.8 microg kg(-1)) and was found to vary between 0.6-2.5%. The accuracy of the method was assessed using a reference sample of coffee. The average result obtained using our method differed from the assigned value of the reference material by less than 1%. An analysis of a cocoa sample revealed that the method is capable of precisely estimating acrylamide in challenging matrices down to a level of at least 12.3 microg kg(-1).

  16. Field Demonstration and Validation of a New Device for Measuring Water and Solute Fluxes at Naval Base Ventura County (NBVC), Port Hueneme, CA

    DTIC Science & Technology

    2006-07-01

    All Quality Control Reference Materials are acquired only from authorized vendors or sources commonly used by U.S. EPA Regional Laboratories...are traceable to the National Institue of Standards and Testing (NITS) Standard Reference Materials (SRM) or to the U.S. EPA Reference Standards... clothing or equipment by blowing, shaking or any other means that may disperse material into the air is prohibited. 7.1.3. All disposable personal

  17. Mid-infrared reflectlance spectra (2.3-22 micions) of sulfur, gold, KBr, MgO, and halon

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1986-01-01

    Biconical diffuse reflectance spectra in the mid-infrared are presented for powder and other solid forms of sulfur, gold, potassium bromide, magnesium oxide, and halon. Comparisons are made with previously published results of other investigators, and recommendations are made regarding the relative usefulnees of these materials as reflectance standards in the mid-IR. Sulfur has strong intrinsic bands at wavelengths greater than 7 microns that must be taken into account for its use as a reflectance standard. Some sulfur samples have hydrocarbon contaminants and in powder form may have adsorbed water, both of which produce bands in the 3-4-micron region. Potassium bromide has several weak intrinsic bands and is very sensitive to adsorbed water contamination; otherwise it is a good IR reference material. Magnesium oxide and halon have major bands structure and low reflectivity at wavelengths greater than 2.6 microns and thus are unsuitable as reference materials in the mid-IR. Vapor-deposited gold on fine sandpaper (600 grit) is very bright, spectrally flat, and fairly diffuse, so it is the superior material (of those examined) for reflectance reference material throughout the IR. Fine gold powder, on the other hand, is much less bright than evaporated gold, and its reflectivity at wavelengths greater than its particle size is highly sensitive to particle packing density.

  18. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were alsomore » analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.« less

  19. Performance of passive sampling with low-density polyethylene membranes for the estimation of freely dissolved DDx concentrations in lake environments.

    PubMed

    Borrelli, Raffaella; Tcaciuc, A Patricia; Verginelli, Iason; Baciocchi, Renato; Guzzella, Licia; Cesti, Pietro; Zaninetta, Luciano; Gschwend, Philip M

    2018-06-01

    Laboratory and field studies were used to evaluate the performance of low-density polyethylene (PE) passive samplers for assessing the freely dissolved concentrations of DDT and its degradates (DDD and DDE, together referred to as DDx) in an Italian lake environment. We tested commercially available 25 μm thick PE sheets as well as specially synthesized, 10 μm thick PE films which equilibrated with their surroundings more quickly. We measured PE-water partitioning coefficients (K pew ) of the 10 μm thick PE films, finding good correspondence with previously reported values for thicker PE. Use of the 10 μm PE for ex situ sampling of a lake sediment containing DDx in laboratory tumbling experiments showed repeatability of ±15% (= standard deviation/mean). Next, we deployed replicate 10 μm and 25 μm PE samplers (N = 4 for 10 d and for 30 d) in the water and sediment of a lake located in northern Italy; the results showed dissolved DDx concentrations in the picogram/L range in porewater and the bottom water. Values deduced from 10 μm thick PE films compared well (95% of all comparison pairs matched within a factor of 5) with those obtained using PE films of 25 μm thickness when dissolved DDx concentrations were estimated using performance reference compound (PRC) corrections, whether left at the bed-water interface for 10 or 30 days. These results demonstrated the potential of this sampling method to provide estimation of the truly dissolved DDx concentrations, and thereby the mobile and bio-available fractions in both surface waters and sediment beds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  1. Method modification of the Legipid® Legionella fast detection test kit.

    PubMed

    Albalat, Guillermo Rodríguez; Broch, Begoña Bedrina; Bono, Marisa Jiménez

    2014-01-01

    Legipid(®) Legionella Fast Detection is a test based on combined magnetic immunocapture and enzyme-immunoassay (CEIA) for the detection of Legionella in water. The test is based on the use of anti-Legionella antibodies immobilized on magnetic microspheres. Target microorganism is preconcentrated by filtration. Immunomagnetic analysis is applied on these preconcentrated water samples in a final test portion of 9 mL. The test kit was certified by the AOAC Research Institute as Performance Tested Method(SM) (PTM) No. 111101 in a PTM validation which certifies the performance claims of the test method in comparison to the ISO reference method 11731-1998 and the revision 11731-2004 "Water Quality: Detection and Enumeration of Legionella pneumophila" in potable water, industrial water, and waste water. The modification of this test kit has been approved. The modification includes increasing the target analyte from L. pneumophila to Legionella species and adding an optical reader to the test method. In this study, 71 strains of Legionella spp. other than L. pneumophila were tested to determine its reactivity with the kit based on CEIA. All the strains of Legionella spp. tested by the CEIA test were confirmed positive by reference standard method ISO 11731. This test (PTM 111101) has been modified to include a final optical reading. A methods comparison study was conducted to demonstrate the equivalence of this modification to the reference culture method. Two water matrixes were analyzed. Results show no statistically detectable difference between the test method and the reference culture method for the enumeration of Legionella spp. The relative level of detection was 93 CFU/volume examined (LOD50). For optical reading, the LOD was 40 CFU/volume examined and the LOQ was 60 CFU/volume examined. Results showed that the test Legipid Legionella Fast Detection is equivalent to the reference culture method for the enumeration of Legionella spp.

  2. Chemical and biological quality of surface water at the U.S. Army Atterbury Reserve Forces Training Area near Edinburgh, Indiana, September 2000 through July 2001

    USGS Publications Warehouse

    Risch, Martin R.

    2004-01-01

    A base-wide assessment of surface-water quality at the U.S. Army Atterbury Reserve Forces Training Area near Edinburgh, Indiana, examined short-term and long-term quality of surface water flowing into, across, and out of a 33,760-acre study area. The 30-day geometric-mean concentrations of fecal-indicator bacteria (Escherichia coli) in water samples from all 16 monitoring sites on streams in the study area were greater than the Indiana recreational water-quality standard. None of the bacteria concentrations in samples from four lakes exceeded the standard. Half the samples with bacteria concentrations greater than the single-sample standard contained chemical tracers potentially associated with human sewage. Increased turbidity of water samples was related statistically to increased bacteria concentration. Lead concentrations ranging from 0.5 to 2.0 micrograms per liter were detected in water samples at seven monitoring sites. Lead in one sample collected during high-streamflow conditions was greater than the calculated Indiana water-quality standard. With the exception of Escherichia coli and lead, 211 of 213 chemical constituents analyzed in water samples did not exceed Indiana water-quality standards. Out of 131 constituents analyzed in streambed-sediment and fish-tissue samples from three sites in the Common Impact Area for weapons training, the largest concentrations overall were detected for copper, lead, manganese, strontium, and zinc. Fish-community integrity, based on diversity and pollution tolerance, was rated poor at one of those three sites. Compared with State criteria, the fish-community data indicated 8 of 10 stream reaches in the study area could be categorized as "fully supporting" aquatic-life uses.

  3. Real-time PCR assay for the detection and quantification of Legionella pneumophila in environmental water samples: utility for daily practice.

    PubMed

    Morio, Florent; Corvec, Stéphane; Caroff, Nathalie; Le Gallou, Florence; Drugeon, Henri; Reynaud, Alain

    2008-07-01

    We developed a quantitative real-time PCR assay targeting the mip gene of Legionella pneumophila for a prospective study from September 2004 to April 2005. It was compared with a standard culture method (French guideline AFNOR T90-431), analysing 120 water samples collected to monitor the risk related to Legionellae at Nantes hospital and to investigate a case of legionellosis acquired from hospital environment. Samples from six distinct water distribution systems were analysed by DNA extraction, amplification and detection with specific primers and FRET probes. The detection limit was 100 genomic units of L. pneumophila per liter (GU/l), the positivity threshold about 600 GU/l and the quantification limit 800 GU/l. PCR results were divided into three groups: negative (n=63), positive but non-quantifiable (n=22) or positive (n=35). PCR showed higher sensitivity than culture, whereas four culture-positive samples appeared negative by PCR (PCR inhibitor detected for two of them). Although no correlation was observed between both methods and real-time PCR cannot substitute for the reference method, it represents an interesting complement. Its sensitivity, reproducibility and rapidity appear particularly interesting in epidemic contexts in order to identify the source of contamination or to evaluate critical points of contamination in water distribution systems.

  4. Ultra-trace levels analysis of microcystins and nodularin in surface water by on-line solid-phase extraction with high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Balest, Lydia; Murgolo, Sapia; Sciancalepore, Lucia; Montemurro, Patrizia; Abis, Pier Paolo; Pastore, Carlo; Mascolo, Giuseppe

    2016-06-01

    An on-line solid phase extraction coupled with high-performance liquid chromatography in tandem with mass spectrometry (on-line SPE/HPLC/MS-MS) method for the determination of five microcystins and nodularin in surface waters at submicrogram per liter concentrations has been optimized. Maximum recoveries were achieved by carefully optimizing the extraction sample volume, loading solvent, wash solvent, and pH of the sample. The developed method was also validated according to both UNI EN ISO IEC 17025 and UNICHIM guidelines. Specifically, ten analytical runs were performed at three different concentration levels using a reference mix solution containing the six analytes. The method was applied for monitoring the concentrations of microcystins and nodularin in real surface water during a sampling campaign of 9 months in which the ELISA method was used as standard official method. The results of the two methods were compared showing good agreement when the highest concentration values of MCs were found. Graphical abstract An on-line SPE/HPLC/MS-MS method for the determination of five microcystins and nodularin in surface waters at sub μg L(-1) was optimized and compared with ELISA assay method for real samples.

  5. Contribution to the certification of B, Cd, Cu, Mg and Pb in a synthetic water sample, by use of isotope-dilution ICP-MS, for Comparison 12 of the International Measurement Evaluation Programme.

    PubMed

    Diemer, J; Quétel, C R; Taylor, P D P

    2002-09-01

    The contribution of the Institute for Reference Materials and Measurements to the certification of the B, Cd, Cu, Mg, and Pb content of a synthetic water sample used in Comparison 12 of the International Measurement Evaluation Programme (IMEP-12) is described. The aim of the IMEP programme is to demonstrate objectively the degree of equivalence and quality of chemical measurements of individual laboratories on the international scene by comparing them with reference ranges traceable to the SI (Système International d'Unités). IMEP is organized in support of European Union policies and helps to improve the traceability of values produced by field chemical measurement laboratories. The analytical procedure used to establish the reference values for the B, Cd, Cu, Mg, and Pb content of the IMEP-12 sample is based on inductively coupled plasma-isotope-dilution mass spectrometry (ICP-IDMS) applied as a primary method of measurement. The measurements performed for the IMEP-12 study are described in detail. Focus is on the element boron, which is particularly difficult to analyze by ICP-MS because of potential problems of low sensitivity, high mass discrimination, memory effects, and abundance sensitivity. For each of the certified amount contents presented here a total uncertainty budget was calculated using the method of propagation of uncertainties according to ISO (International Organization for Standardization) and Eurachem guidelines. For all investigated elements with concentrations in the low micro g kg(-1) and mg kg(-1) range (corresponding to pmol kg(-1) to the high micro mol kg(-1) level), SI-traceable reference values with relative expanded uncertainties ( k=2) of less than 2 % were obtained.

  6. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  7. Monitoring of toxic elements present in sludge of industrial waste using CF-LIBS.

    PubMed

    Kumar, Rohit; Rai, Awadhesh K; Alamelu, Devanathan; Aggarwal, Suresh K

    2013-01-01

    Industrial waste is one of the main causes of environmental pollution. Laser-induced breakdown spectroscopy (LIBS) was applied to detect the toxic metals in the sludge of industrial waste water. Sludge on filter paper was obtained after filtering the collected waste water samples from different sections of a water treatment plant situated in an industrial area of Kanpur City. The LIBS spectra of the sludge samples were recorded in the spectral range of 200 to 500 nm by focusing the laser light on sludge. Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique was used for the quantitative measurement of toxic elements such as Cr and Pb present in the sample. We also used the traditional calibration curve approach to quantify these elements. The results obtained from CF-LIBS are in good agreement with the results from the calibration curve approach. Thus, our results demonstrate that CF-LIBS is an appropriate technique for quantitative analysis where reference/standard samples are not available to make the calibration curve. The results of the present experiment are alarming to the people living nearby areas of industrial activities, as the concentrations of toxic elements are quite high compared to the admissible limits of these substances.

  8. Comparison of Membrane Filtration and Multiple-Tube Fermentation by the Colilert and Enterolert Methods for Detection of Waterborne Coliform Bacteria, Escherichia coli, and Enterococci Used in Drinking and Bathing Water Quality Monitoring in Southern Sweden

    PubMed Central

    Eckner, Karl F.

    1998-01-01

    A total of 338 water samples, 261 drinking water samples and 77 bathing water samples, obtained for routine testing were analyzed in duplicate by Swedish standard methods using multiple-tube fermentation or membrane filtration and by the Colilert and/or Enterolert methods. Water samples came from a wide variety of sources in southern Sweden (Skåne). The Colilert method was found to be more sensitive than Swedish standard methods for detecting coliform bacteria and of equal sensitivity for detecting Escherichia coli when all drinking water samples were grouped together. Based on these results, Swedac, the Swedish laboratory accreditation body, approved for the first time in Sweden use of the Colilert method at this laboratory for the analysis of all water sources not falling under public water regulations (A-krav). The coliform detection study of bathing water yielded anomalous results due to confirmation difficulties. E. coli detection in bathing water was similar by both the Colilert and Swedish standard methods as was fecal streptococcus and enterococcus detection by both the Enterolert and Swedish standard methods. PMID:9687478

  9. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    NASA Astrophysics Data System (ADS)

    Delaunay, F.; Kapsch, R.-P.; Gouriou, J.; Illemann, J.; Krauss, A.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.

    2012-10-01

    During the Euramet project JRP7 ‘External Beam Cancer Therapy’, PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm × 10 cm and 3 cm × 3 cm while LNE-LNHB used graphite calorimeters in 6 MV and 12 MV beams for field sizes of 10 cm × 10 cm, 4 cm × 4 cm and 2 cm × 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% (60Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm × 10 cm down to 2 cm × 2 cm and for beams of 6 MV to 10 MV.

  10. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    USGS Publications Warehouse

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.

  11. Analysis of Dissolved Selenium Loading for Selected Sites in the Lower Gunnison River Basin, Colorado, 1978-2005

    USGS Publications Warehouse

    Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.

    2008-01-01

    Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water-quality standard. The Uncompahgre River, Gunnison River at Delta, and Gunnison River near Grand Junction would require 69, 34 and 53 percent, respectively, of the mean annual load to be reduced for water years 2001 through 2005 to meet the water-quality standard. Mean annual load reductions can be further reduced by targeting the periods of time when selenium would be removed from streams by remediation. During a previous study of selenium loads in the Lower Gunnison River Basin, mean annual load reductions were estimated at the Gunnison River near Grand Junction for the 1997?2001 study period. Mean annual load reductions estimated for this study period were less than those estimated for the 2001?05 study period, emphasizing the importance of understanding that different study periods can result in different load reduction estimates.

  12. Development of a low-cost method of analysis for the qualitative and quantitative analysis of butyltins in environmental samples.

    PubMed

    Bangkedphol, Sornnarin; Keenan, Helen E; Davidson, Christine; Sakultantimetha, Arthit; Songsasen, Apisit

    2008-12-01

    Most analytical methods for butyltins are based on high resolution techniques with complicated sample preparation. For this study, a simple application of an analytical method was developed using High Performance Liquid Chromatography (HPLC) with UV detection. The developed method was studied to determine tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) in sediment and water samples. The separation was performed in isocratic mode on an ultra cyanopropyl column with a mobile phase of hexane containing 5% THF and 0.03% acetic acid. This method was confirmed using standard GC/MS techniques and verified by statistical paired t-test method. Under the experimental conditions used, the limit of detection (LOD) of TBT and DBT were 0.70 and 0.50 microg/mL, respectively. The optimised extraction method for butyltins in water and sediment samples involved using hexane containing 0.05-0.5% tropolone and 0.2% sodium chloride in water at pH 1.7. The quantitative extraction of butyltin compounds in a certified reference material (BCR-646) and naturally contaminated samples was achieved with recoveries ranging from 95 to 108% and at %RSD 0.02-1.00%. This HPLC method and optimum extraction conditions were used to determine the contamination level of butyltins in environmental samples collected from the Forth and Clyde canal, Scotland, UK. The values obtained severely exceeded the Environmental Quality Standard (EQS) values. Although high resolution methods are utilised extensively for this type of research, the developed method is cheaper in both terms of equipment and running costs, faster in analysis time and has comparable detection limits to the alternative methods. This is advantageous not just as a confirmatory technique but also to enable further research in this field.

  13. Grafting 3-mercaptopropyl trimethoxysilane on multi-walled carbon nanotubes surface for improving on-line cadmium(II) preconcentration from water samples.

    PubMed

    Corazza, Marcela Zanetti; Somera, Bruna Fabrin; Segatelli, Mariana Gava; Tarley, Cesar Ricardo Teixeira

    2012-12-01

    In the present study, the performance of multi-walled carbon nanotubes (MWCNTs) grafted with 3-mercaptopropyltrimethoxysilane (3-MPTMS), used as a solid phase extractor for Cd(2+) preconcentration in a flow injection system coupled to flame atomic absorption spectrometry (FAAS), was evaluated. The procedure involved the preconcentration of 20.0 mL of Cd(2+) solution at pH 7.5 (0.1 mol L(-1) buffer phosphate) through 70 mg of 3-MPTMS-grafted MWCNTs packed into a minicolumn at 6.0 mL min(-1). The elution step was carried out with 1.0 mol L(-1) HCl. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to estimate the extent of the MWCNT chemical modification. The 3-MPTMS-grafted MWCNTs provided a 1.68 times improvement in the sensitivity of the Cd(2+) FAAS determination compared to the unsilanized oxidized MWCNTs. The following parameters were obtained: preconcentration factor of 31.5, consumptive index of 0.635 mL, sample throughput of 14 h(-1), and concentration efficiency of 9.46 min(-1). The analytical curve was constructed in the range of 1.0-60.0 μg L(-1) (r=0.9988), and the detection and quantification limits were found to be 0.15 μg L(-1) and 0.62 μg L(-1), respectively. Different types of water samples and cigarette sample were successfully analyzed, and the results were compared using electrothermal atomic absorption spectrometry (ETAAS) as reference technique. In addition, the accuracy of proposed method was also checked by analysis of certified reference material NIST SRM 1573a (tomato leaves) and standard reference material NIST SRM 1643e (trace elements in natural waters). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Baseline models of trace elements in major aquifers of the United States

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2005-01-01

    Trace-element concentrations in baseline samples from a survey of aquifers used as potable-water supplies in the United States are summarized using methods appropriate for data with multiple detection limits. The resulting statistical distribution models are used to develop summary statistics and estimate probabilities of exceeding water-quality standards. The models are based on data from the major aquifer studies of the USGS National Water Quality Assessment (NAWQA) Program. These data were produced with a nationally-consistent sampling and analytical framework specifically designed to determine the quality of the most important potable groundwater resources during the years 1991-2001. The analytical data for all elements surveyed contain values that were below several detection limits. Such datasets are referred to as multiply-censored data. To address this issue, a robust semi-parametric statistical method called regression on order statistics (ROS) is employed. Utilizing the 90th-95th percentile as an arbitrary range for the upper limits of expected baseline concentrations, the models show that baseline concentrations of dissolved Ba and Zn are below 500 ??g/L. For the same percentile range, dissolved As, Cu and Mo concentrations are below 10 ??g/L, and dissolved Ag, Be, Cd, Co, Cr, Ni, Pb, Sb and Se are below 1-5 ??g/L. These models are also used to determine the probabilities that potable ground waters exceed drinking water standards. For dissolved Ba, Cr, Cu, Pb, Ni, Mo and Se, the likelihood of exceeding the US Environmental Protection Agency standards at the well-head is less than 1-1.5%. A notable exception is As, which has approximately a 7% chance of exceeding the maximum contaminant level (10 ??g/L) at the well head.

  15. Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Mast, M. Alisa; Wanty, Richard B.; McCleskey, R. Blaine; Todorov, Todor I.; Adams, Monique

    2007-01-01

    Mine drainage and underground water samples were collected for analysis of inorganic solutes as part of a 1-year, hydrogeologic investigation of the Standard Mine and vicinity. The U.S. Environmental Protection Agency has listed the Standard Mine in the Elk Creek drainage near Crested Butte, Colorado, as a Superfund Site because discharge from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to Coal Creek, which is the primary drinking-water supply for the town of Crested Butte. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 3 and 5 of the Standard Mine, mine effluent from an adit located on the Elk Lode, and two spring samples that emerged from waste-rock material below Level 5 of the Standard Mine and the adit located on the Elk Lode. Reported analyses include field parameters (pH, specific conductance, water temperature, dissolved oxygen, and redox potential) and major constituents and trace elements.

  16. Rapid and high-precision measurement of sulfur isotope and sulfur concentration in sediment pore water by multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2015-01-01

    We have developed a technique for the rapid, precise and accurate determination of sulfur isotopes (δ(34)S) by MC-ICP-MS applicable to a range of sulfur-bearing solutions of different sulfur content. The 10 ppm Alfa-S solution (ammonium sulfate solution, working standard of the lab of the authors) was used to bracket other Alfa-S solutions of different concentrations and the measured δ(34)SV-CDT values of Alfa-S solutions deviate from the reference value to varying degrees (concentration effect). The stability of concentration effect has been verified and a correction curve has been constructed based on Alfa-S solutions to correct measured δ(34)SV-CDT values. The curve has been applied to AS solutions (dissolved ammonium sulfate from the lab of the authors) and pore water samples successfully, validating the reliability of our analytical method. This method also enables us to measure the sulfur concentration simultaneously when analyzing the sulfur isotope composition. There is a strong linear correlation (R(2)>0.999) between the sulfur concentrations and the intensity ratios of samples and the standard. We have constructed a regression curve based on Alfa-S solutions and this curve has been successfully used to determine sulfur concentrations of AS solutions and pore water samples. The analytical technique presented here enable rapid, precise and accurate S isotope measurement for a wide range of sulfur-bearing solutions - in particular for pore water samples with complex matrix and varying sulfur concentrations. Also, simultaneous measurement of sulfur concentrations is available. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Determination of inorganic arsenic species in natural waters--benefits of separation and preconcentration on ion exchange and hybrid resins.

    PubMed

    Ben Issa, Nureddin; Rajaković-Ognjanović, Vladana N; Jovanović, Branislava M; Rajaković, Ljubinka V

    2010-07-19

    A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 microg g(-1) of As(V) while the HY resin bound more than 4150 microg g(-1) of As(III) and more than 3500 microg g(-1) of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation technique. The analytical properties of both procedures were similar: the limit of detection was 0.24 microg L(-1), the limit of quantification was 0.80 microg L(-1) and the relative standard deviations for samples with a content of arsenic from 10.00 to 300.0 microg L(-1) ranged from 1.1 to 5.8%. The interference effects of anions commonly found in water and some organic species which can be present in water were found to be negligible. Verification with certified reference materials proved that the experimental concentrations found for model solutions and real samples were in agreement with the certified values. 2010 Elsevier B.V. All rights reserved.

  18. Use of an ultra-clean sampling technique with inductively coupled plasma-mass spectrometry to determine trace-element concentrations in water from the Kirkwood-Cohansey Aquifer system, coastal plain, New Jersey

    USGS Publications Warehouse

    Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.

    1996-01-01

    Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower than the minimum reporting limit. Turbidity was low (less than 1 nephelometric turbidity unit (NTU)), indicating that the trace-element concentrations were present in the dissolved phase and ideally would be reproducible in the absence of highly variable concentrations of particulates. The concentration of lead in one sample exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 mg/L; concentrations ranged from <1 to 16 mg/L. Mercury was frequently detected; concentrations ranged from <0.1 to 1.1 mg/L but did not exceed the USEPA maximum contaminant level. Results of analyses of the equipment blanks indicated that samples collected by using the new ultra-clean sampling protocols were free of low-level (< 1mg/L) trace-element contamination. The analysis of the split sample sent to the NWQL had a difference of 5 percent or less for all constituents except aluminum, for which the analysis had a difference of 10 percent. Results of ICP-MS analyses of split water samples sent to the Rutgers University Chemistry Department laboratory were, in general, in good agreement (within 10 percent) with those of the NWQL. Results of the analysis of the commercial standard agreed (within 5 percent) with the known concentrations of the trace elements. The quality-assurance data (three blanks, one split sample, and one standard), although not statistically evaluated because of the small data set, indicate that the measured trace-element concentrations are precise and accurate and that the samples were free of contamination at the microgram-per-liter level of contamination.

  19. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  20. 46 CFR 53.01-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Society of Mechanical Engineers (ASME) International, Three Park Avenue, New York, NY 10016-5990: (1) 2001... Road, Northbrook, IL 60062-2096: (1) UL 174, Standard for Household Electric Storage Tank Water Heaters...) UL 1453, Standard for Electric Booster and Commercial Storage Tank Water Heaters, Fourth Edition, Sep...

  1. 46 CFR 53.01-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Society of Mechanical Engineers (ASME) International, Three Park Avenue, New York, NY 10016-5990: (1) 2001... Road, Northbrook, IL 60062-2096: (1) UL 174, Standard for Household Electric Storage Tank Water Heaters...) UL 1453, Standard for Electric Booster and Commercial Storage Tank Water Heaters, Fourth Edition, Sep...

  2. 22 CFR 1100.1 - Cross-references to employee ethical conduct standards, financial disclosure and financial...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Cross-references to employee ethical conduct standards, financial disclosure and financial interests regulations and other conduct rules. 1100.1 Section 1100.1 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED...

  3. 22 CFR 1100.1 - Cross-references to employee ethical conduct standards, financial disclosure and financial...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Cross-references to employee ethical conduct standards, financial disclosure and financial interests regulations and other conduct rules. 1100.1 Section 1100.1 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED...

  4. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...

  5. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...

  6. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...

  7. 47 CFR 80.767 - Propagation curve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... data for field strengths in dBu for an effective radiated power of 1 kW, over sea water, fresh water or... referred to 1 kW (dBk), as follows: EC02AP91.005 where, Pt=Transmitter output power in dB referred to 1 kW... Graph 1 for a conversion graph. G=Antenna gain in dB referred to a standard half-wave dipole, in the...

  8. Single point aerosol sampling: evaluation of mixing and probe performance in a nuclear stack.

    PubMed

    Rodgers, J C; Fairchild, C I; Wood, G O; Ortiz, C A; Muyshondt, A; McFarland, A R

    1996-01-01

    Alternative reference methodologies have been developed for sampling of radionuclides from stacks and ducts, which differ from the methods previously required by the United States Environmental Protection Agency. These alternative reference methodologies have recently been approved by the U.S. EPA for use in lieu of the current standard techniques. The standard EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative reference methodologies are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of some aspects of the alternative reference methodologies. Coefficients of variation of velocity, tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed that numerical criteria placed upon the coefficients of variation by the alternative reference methodologies were met at sampling stations located 9 and 14 stack diameters from the flow entrance, but not at a location that was 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 microns aerodynamic diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L min-1 (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the existing EPA standard requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the alternative reference methodologies criteria; however, the isokinetic probes would not.

  9. Rural drinking water at supply and household levels: quality and management.

    PubMed

    Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad

    2006-09-01

    Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational programs in order to ensure the safety of drinking water supplies.

  10. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    Although laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits. METHODS: A Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ(17) O, δ(18) O, and δ(2) H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales. RESULTS: Cost-free LIMS for Lasers 2015 enables users to obtain improved δ(17) O, δ(18) O, and δ(2) H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ(2) HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale. CONCLUSIONS: LIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ(2) H, δ(17) O, and δ(18) O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits easily.

  11. Perturbation theory for water with an associating reference fluid

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-11-01

    The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.

  12. Cadmium determination in natural waters at the limit imposed by European legislation by isotope dilution and TiO2 solid-phase extraction.

    PubMed

    García-Ruiz, Silvia; Petrov, Ivan; Vassileva, Emilia; Quétel, Christophe R

    2011-11-01

    The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 μg L(-1) depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below μg L(-1) level in natural water. It is based on solid-phase extraction using TiO(2) nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 ± 2.8 ng kg(-1) (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg(-1)). We applied the developed method to the groundwater and wastewater samples ERM-CA615 and BCR-713, respectively, and results agreed with certificate values within uncertainty statements.

  13. Solidified Floating Organic Drop Microextraction for the Detection of Trace Amount of Lead in Various Samples by Electrothermal Atomic Absorption Spectrometry.

    PubMed

    Aydın Urucu, Oya; Dönmez, Şeyda; Kök Yetimoğlu, Ece

    2017-01-01

    A novel method was developed for determination of trace amounts of lead in water and food samples. Solidified floating organic drop microextraction was used to preconcentrate the lead ion. After the analyte was complexed with 1-(2-pyridylazo)-2-naphthol, undecanol and acetonitrile were added as extraction and dispersive solvent, respectively. Variables such as pH, volumes of extraction and dispersive solvents, and concentration of chelating agent were optimized. Under the optimum conditions, the detection limit of Pb (II) was determined as 0.042  µ g L -1 with an enrichment factor of 300. The relative standard deviation is <10%. Accuracy of the developed procedure was evaluated by the analysis of certified reference material of human hair (NCS DC 73347) and wastewater (SPS-WW2) with satisfactory results. The developed procedure was then successfully applied to biscuit and water samples for detection of Pb (II) ions.

  14. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Kazi, Tasneem Gul; Soylak, Mustafa; Hazer, Baki

    2014-01-01

    A new adsorbent, polyhydroxybutyrate-b-polyethyleneglycol, was used for the separation and preconcentration of copper(II) and lead(II) ions prior to their flame atomic absorption spectrometric detections. The influences of parameters such as pH, amount of adsorbent, flow rates and sample volumes were investigated. The polymer does not interact with alkaline, alkaline-earth metals and transition metals. The enrichment factor was 50. The detection limits were 0.32 μg L(-1) and 1.82 μg L(-1) for copper and lead, respectively. The recovery values were found >95%. The relative standard deviations were found to be less than 6%. The validation of the procedure was performed by analysing certified reference materials; NIST SRM 1515 Apple leaves, IAEA-336 Lichen and GBW-07605 Tea. The method was successfully applied for the analysis of analytes in water and food samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An algal model for predicting attainment of tiered biological criteria of Maine's streams and rivers

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cyndy; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth; Courtemanch, David L.; Drummond, Francis; Davies, Susan

    2012-01-01

    State water-quality professionals developing new biological assessment methods often have difficulty relating assessment results to narrative criteria in water-quality standards. An alternative to selecting index thresholds arbitrarily is to include the Biological Condition Gradient (BCG) in the development of the assessment method. The BCG describes tiers of biological community condition to help identify and communicate the position of a water body along a gradient of water quality ranging from natural to degraded. Although originally developed for fish and macroinvertebrate communities of streams and rivers, the BCG is easily adapted to other habitats and taxonomic groups. We developed a discriminant analysis model with stream algal data to predict attainment of tiered aquatic-life uses in Maine's water-quality standards. We modified the BCG framework for Maine stream algae, related the BCG tiers to Maine's tiered aquatic-life uses, and identified appropriate algal metrics for describing BCG tiers. Using a modified Delphi method, 5 aquatic biologists independently evaluated algal community metrics for 230 samples from streams and rivers across the state and assigned a BCG tier (1–6) and Maine water quality class (AA/A, B, C, nonattainment of any class) to each sample. We used minimally disturbed reference sites to approximate natural conditions (Tier 1). Biologist class assignments were unanimous for 53% of samples, and 42% of samples differed by 1 class. The biologists debated and developed consensus class assignments. A linear discriminant model built to replicate a priori class assignments correctly classified 95% of 150 samples in the model training set and 91% of 80 samples in the model validation set. Locally derived metrics based on BCG taxon tolerance groupings (e.g., sensitive, intermediate, tolerant) were more effective than were metrics developed in other regions. Adding the algal discriminant model to Maine's existing macroinvertebrate discriminant model will broaden detection of biological impairment and further diagnose sources of impairment. The algal discriminant model is specific to Maine, but our approach of explicitly tying an assessment tool to tiered aquatic-life goals is widely transferrable to other regions, taxonomic groups, and waterbody types.

  16. Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Barth, Johannes A. C.

    2013-04-01

    Light stable isotope analyses of hydrogen and oxygen of water are used in numerous aquatic studies from various scientific fields. The advantage of using stable isotope ratios is that water molecules serve as ubiquitous and already present natural tracers. Traditionally, the samples were analyzed in the laboratory by isotope ratio mass spectrometry (IRMS). Within recent years these analyses have been revolutionized by the development of new isotope ratio laser spectroscopy (IRIS) systems that are said to be cheaper, more robust and mobile compared to IRMS. Although easier to operate, laser systems also need thorough calibration with international reference materials and raw data need correction for analytical effects. A major issue in systems that use liquid injection via a vaporizer module is the memory effect, i.e. the carry-over from the previous analyzed sample in a sequence. This study presents an optimized and simple post-run correction procedure for liquid water injection developed for a Picarro water analyzer. The Excel(TM) template will rely exclusively on standard features implemented in MS Office without the need to run macros, additional code written in Visual Basic for Applications (VBA) or to use a database-related software such as MS Access or SQL Server. These protocols will maximize precision, accuracy and sample throughput via an efficient memory correction. The number of injections per unknown sample can be reduced to 4 or less. This procedure meets the demands of faster throughput with reduced costs per analysis. Procedures were verified by an international proficiency test and traditional IRMS techniques. The template is available free for scientific use from the corresponding author or the journals web site (van Geldern and Barth, 2012). References van Geldern, R. and Barth, J.A.C. (2012) Limnol. Oceanogr. Methods 10:1024-1036 [doi: 10.4319/lom.2012.10.1024

  17. [Heavy metals distribution characteristics and risk assessment of water below an electroplating factory].

    PubMed

    Hang, Xiao-Shuai; Wang, Huo-Yan; Zhou, Jian-Min

    2008-10-01

    Surface water and shallow groundwater within the flow of an electroplating factory was analyzed in order to study the resulting impact. The analysis method of ICP-AES was used to analyze content of zinc, manganese, chromium, copper and nickel in surface water and groundwater samples. The results indicate acidic pollutants of zinc, manganese, chromium, copper and nickel were discharged from the factory with concentrations of 1.34, 3.77, 28.1, 6.40 and 9.37 mg x L(-1), respectively; and pH was 2.32. They all exceeded permissible levels according to Integrated Wastewater Discharge Standard except zinc. Factory discharge is responsible for the longitudinal distribution characteristics of heavy metals in the stream water downstream from the factory. Heavy metals variations in the well water do not suggest they were affected by heavy metals in the stream, indicating that the migration rates of heavy metals in soils were relatively low. Risk assessment shows surface water quality significantly deteriorated. Nickel and manganese in the stream water exceeded the standard levels seriously, and chromium and copper in some samples were also above Grade III standard levels according to Environmental Quality Standard for Surface Water. Moreover, all studied heavy metals in 14 groundwater samples measured within drinking water standard, except manganese in 4 groundwater samples, which were Grade IV according to Quality Standard for Ground water.

  18. Groundwater quality in the Genesee River Basin, New York, 2010

    USGS Publications Warehouse

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  19. Groundwater quality in western New York, 2011

    USGS Publications Warehouse

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  20. A REFORMULATED, RECONSTITUTED WATER FOR TESTING THE FRESHWATER AMPHIPOD, HYALELLA AZTECA

    EPA Science Inventory

    Toxicity testing with the freshwater amphipod, Hyalella azteca, has routinely been conducted using nonstandard waters. Four waters tested for acceptability for aqueous reference toxicant testing with H. azteca. These included three formulated (standardized) waters: moderately har...

  1. A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water—USGS50 Lake Kyoga Water

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I; Mukwaya, Christine; Qi, Haiping; Lorenz, Jennifer M.

    2015-01-01

    This isotopic reference material, designated as USGS50, is intended as one of two reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer, of use especially for isotope-hydrology laboratories analyzing freshwater samples from equatorial and tropical regions.

  2. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    USGS Publications Warehouse

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to leach trace elements and release asbestos fibers from plumbing materials. Reported concentrations of nitrate, volatile organic compounds, trace elements, and pesticides in samples from the monitored mainstem and tributary streams within the study area generally are below maximum contaminant levels for drinking water or below detection limits. Results of studies in other areas indicate that pesticide concentrations in surface water could be considerably higher during high flows soon after the application of pesticides to crops than during low flows. Fecal coliform bacteria counts in streams vary considerably. Concentrations or counts of these classes of surface-water-quality constituents likely are functions of the intensity and type of upstream development. Results of limited monitoring for radionuclide concentrations reported by the Brick Township Municipal Utilities Authority of the Metedeconk River indicate that radionuclide concentrations or activities do not exceed maximum contaminant levels for drinking water. As a consequence of organic matter in surface water, the formati ultraviolet absorbance in samples from the Metedeconk River and the Toms River exceeded the alternative compliance criteria for source water (2.0 milligrams per liter for total organic carbon and 0.02 absorbance units-liters per milligram-centimeter for specific ultraviolet absorbance) with respect to treatment requirements for preventing elevated concentrations of disinfection by-products in treated water. Water-quality and treatment issues associated with use of ground and surface water for potable supply in the study area are related to human activities and naturally occurring factors. Additional monitoring and analysis of ground and surface water would be needed to determine conclusively the occurrence and distribution of some contaminants and the relative importance of various potential contaminant sources, transport and attenuation mechanisms, and transport pathways.

  3. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.

    2006-09-01

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.

  4. Hydrogeochemical Investigation of the Standard Mine Vicinity, Upper Elk Creek Basin, Colorado

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Wanty, Richard B.

    2008-01-01

    Ground- and surface-water samples were collected in the vicinity of the Standard Mine in west-central Colorado in order to characterize the local ground-water flow system, determine metal concentrations in local ground water, and better understand factors controlling the discharge of metal-rich waters from the mine. The sampling program included a one-time sampling of springs, mine adits, and exploration pits in Elk Basin and Redwell Basin; repeated sampling throughout one year of Standard Mine Level 1 discharge and Elk Creek near its confluence with Coal Creek; and a one-time sampling of underground sites in Levels 3 and 5 of the Standard Mine. Samples were analyzed for major ions and trace elements, stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O), strontium isotopes, and tritium and dissolved noble gases (including helium isotopes) for tritium/helium-3 age dating. No clear correlations were observed between natural ground-water discharge locations and map-scale faults and lithology. Surface observations and the location of ground-water discharge suggest that simple topography, rather than large-scale geologic features, primarily controls the occurrence and flow of shallow ground water in Elk Basin. Discrete inflows from cross faults or other features were not observed in Levels 3 and 5 of the Standard Mine. Instead, water entered the mine as relatively persistent dripping from gouge and breccia within the Standard fault, which both tunnels follow. Therefore, the Standard fault itself is probably the main pathway of ground-water flow from the shallow subsurface to the mine workings. Low pH (as low as 3.2) and elevated concentrations of zinc, lead, cadmium, copper, and manganese (commonly exceeding water-quality standards for Elk Creek) were measured in samples located within or immediately downgradient of areas where sulfides are abundant, including the Standard fault, the Elk Lode portal, and the breccia pipe in Redwell Basin. Concentrations of these metals were typically low and pH values were circumneutral at surrounding locations. Metal concentrations in samples collected from underground workings in the Standard Mine were also generally higher than in samples collected at aboveground sites located outside of sulfide-rich areas. Metal concentrations in discharge from the Level 1 tunnel were among the highest measured in Elk Basin. All of these observations suggest that sulfide-rich mineralized rock is the primary control on dissolved metal concentrations and pH in ground water in the Standard Mine vicinity. Waste-rock piles apparently exert another major control on metal concentrations and pH; the lowest pH and highest metal concentrations typically are found in discharge from waste-rock piles. Concentrations of several chemical constituents along with strontium isotope data indicate that none of the sampled waters could have been the primary source of metals in discharge from Level 1. Therefore, this study did not identify the primary source location for metals in Level 1 discharge. Possible sources must be located below Levels 3 and 5 or farther back into the mountainside than the ends of Levels 3 and 5. Apparent tritium/helium-3 ground-water ages ranged from 0 to 9 yr, and a considerable majority were <1 yr. Tritium data and computed initial tritium values (measured tritium plus measured tritiogenic helium-3) suggest that much of the ground water in the Standard Mine vicinity was weeks to months old rather than years old. Tritium, d2H, and d18O data from water entering into and discharging from the Standard Mine displayed spatial and temporal patterns indicating that these tracers were influenced by seasonal variations in their concentration in precipitation. The tracer data therefore suggest that ground water entering into and discharging from the Standard Mine was largely composed of water <1 yr old. Pronounced seasonal variations in geochemistry in Level 1 discharge also are consistent with short r

  5. [The water content reference material of water saturated octanol].

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  6. Guidelines for quality assurance and quality control of fish taxonomic data collected as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Walsh, Stephen Joseph; Meador, Michael R.

    1998-01-01

    Fish community structure is characterized by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of a perennial, multidisciplinary approach to evaluating the physical, chemical, and biological conditions of the Nation's water resources. The objective of quality assurance and quality control of fish taxonomic data that are collected as part of the NAWQA Program is to establish uniform guidelines and protocols for the identification, processing, and archiving of fish specimens to ensure that accurate and reliable data are collected. Study unit biologists, collaborating with regional biologists and fish taxonomic specialists, prepare a pre-sampling study plan that includes a preliminary faunal list and identification of an ichthyological curation center for receiving preserved fish specimens. Problematic taxonomic issues and protected taxa also are identified in the study plan, and collecting permits are obtained in advance of sampling activities. Taxonomic specialists are selected to identify fish specimens in the field and to assist in determining what fish specimens should be sacrificed, fixed, and preserved for laboratory identification, independent taxonomic verification, and long-term storage in reference or voucher collections. Quantitative and qualitative sampling of fishes follows standard methods previously established for the NAWQA Program. Common ichthyological techniques are used to process samples in the field and prepare fish specimens to be returned to the laboratory or sent to an institutional repository. Taxonomic identifications are reported by using a standardized list of scientific names that provides nomenclatural consistency and uniformity across study units.

  7. Evaluation of the Dark-Medium Objective Lens in Counting Asbestos Fibers by Phase-Contrast Microscopy

    PubMed Central

    Lee, Eun Gyung; Nelson, John H.; Kashon, Michael L.; Harper, Martin

    2015-01-01

    A Japanese round-robin study revealed that analysts who used a dark-medium (DM) objective lens reported higher fiber counts from American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) chrysotile samples than those using a standard objective lens, but the cause of this difference was not investigated at that time. The purpose of this study is to determine any major source of this difference by performing two sets of round-robin studies. For the first round-robin study, 15 AIHA PAT samples (five each of chrysotile and amosite generated by water-suspended method, and five chrysotile generated by aerosolization method) were prepared with relocatable cover slips and examined by nine laboratories. A second round-robin study was then performed with six chrysotile field sample slides by six out of nine laboratories who participated in the first round-robin study. In addition, two phase-shift test slides to check analysts’ visibility and an eight-form diatom test plate to compare resolution between the two objectives were examined. For the AIHA PAT chrysotile reference slides, use of the DM objective resulted in consistently higher fiber counts (1.45 times for all data) than the standard objective (P-value < 0.05), regardless of the filter generation (water-suspension or aerosol) method. For the AIHA PAT amosite reference and chrysotile field sample slides, the fiber counts between the two objectives were not significantly different. No statistically significant differences were observed in the visibility of blocks of the test slides between the two objectives. Also, the DM and standard objectives showed no pattern of differences in viewing the fine lines and/or dots of each species images on the eight-form diatom test plate. Among various potential factors that might affect the analysts’ performance of fiber counts, this study supports the greater contrast caused by the different phase plate absorptions as the main cause of high counts for the AIHA PAT chrysotile slides using the DM objective. The comparison of fiber count ratios (DM/standard) between the AIHA PAT chrysotile samples and chrysotile field samples indicates that there is a fraction of fibers in the PAT samples approaching the theoretical limit of visibility of the phase-contrast microscope with 3-degree phase-shift. These fibers become more clearly visible through the greater contrast from the phase plate absorption of the DM objective. However, as such fibers are not present in field samples, no difference in counts between the two objectives was observed in this study. The DM objective, therefore, could be allowed for routine fiber counting as it will maintain continuity with risk assessments based on earlier phase-contrast microscopy fiber counts from field samples. Published standard methods would need to be modified to allow a higher aperture specification for the objective. PMID:25737333

  8. A literature survey of information on well installation and sample collection procedures used in investigations of ground-water contamination by organic compounds

    USGS Publications Warehouse

    Dumouchelle, D.H.; Lynch, E.A.; Cummings, T.R.

    1990-01-01

    A survey of literature on well installation and water-quality sampling, particularly as they relate to investigations of ground-water contamination by organic compounds, has been conducted. Library card files and computerized data bases were searched to identify journal articles, conference proceedings, technical reports, books, and other publications. Pertinent information has been extracted from 105 references; each reference is listed in a bibliography. Material contained in the report is organized by topical categories that include drilling methods and equipment, well construction, well development, sampling materials and equipment, decontamination of equipment, and sampling techniques and procedures. Unpublished data of the U.S. Geological Survey on sample collection are briefly cited also.

  9. Exploring the functional side of the Ocean Sampling Day metagenomes

    NASA Astrophysics Data System (ADS)

    Antonio, F. G.; Kottmann, R.; Wallom, D.; Glöckner, F. O.

    2016-02-01

    The Ocean Sampling Day (OSD) is a simultaneous, collaborative, standardized, and global mega-sequencing campaign to analyze marine microbial community composition and functional traits. 150 metagenomes were sequenced from the first OSD in June 2014 including a rich set of environmental and oceanographic measurements. Unlike other ocean mega-surveys such as Global Ocean Sampling (GOS) or the TARA expedition that mostly sampled open ocean waters most of the OSD samples are from coastal sampling sites, an area not previously well studied in this regard. The result is that OSD adds more than three million new genes to the recently published Ocean Microbial-Reference Gene Catalog (Sunawaga et al., 2015). This allows us to significantly increase our knowledge of the ocean microbiome, identify hot-spots of novelty in terms of function and investigate the impact of human activities on oceans coastal areas where there is the largest interaction between dense human populations and the marine world. Additionally, these cumulative samples, related in time, space and environmental parameters, are providing insights into fundamental rules describing microbial diversity and function and contribute to the blue economy through the identification of novel ocean-derived biotechnologies. References: Sunagawa, Coelho, Chaffron, et al. (2015, May). Structure and function of the global ocean microbiome. Science, 348(6237), 126135.

  10. The Comparison of Iranian Normative Reference Data with Five Countries ‎Across Variables in Eight Rorschach Comprehensive System (CS) Clusters

    PubMed Central

    Hosseininasab, Abufazel; Mohammadi, Mohammadreza; Jouzi, Samira; Esmaeilinasab, Maryam; Delavar, Ali

    2016-01-01

    Objective: This study aimed to provide a normative study documenting how 114 five-seven year-old non-‎patient Iranian children respond to the Rorschach test. We compared this especial sample to ‎international normative reference values for the Comprehensive System (CS).‎ Method: One hundred fourteen 5- 7- year-old non-patient Iranian children were recruited from public ‎schools. Using five child and adolescent samples from five countries, we compared Iranian ‎Normative Reference Data- based on reference means and standard deviations for each sample.‎ Results: Findings revealed that how the scores in each sample were distributed and how the samples were ‎compared across variables in eight Rorschach Comprehensive System (CS) clusters. We reported ‎all descriptive statistics such as reference mean and standard deviation for all variables.‎ Conclusion: Iranian clinicians could rely on country specific or “local norms” when assessing children. We ‎discourage Iranian clinicians to use many CS scores to make nomothetic, score-based inferences ‎about psychopathology in children and adolescents.‎ PMID:27928247

  11. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring.

    PubMed

    Martín-Betancor, Keila; Durand, Marie-José; Thouand, Gérald; Leganés, Francisco; Fernández-Piñas, Francisca; Rodea-Palomares, Ismael

    2017-12-01

    Microorganisms have been very useful in environmental monitoring due to their constant sensing of the surrounding environment, their easy maintenance and low cost. Some freeze-dried toxicity kits based on naturally bioluminescent bacteria are commercially available and commonly used to assess the toxicity of environmental samples such as Microtox (Aliivibrio fischeri) or ToxScreen (Photobacterium leiognathi), however, due to the marine origin of these bacteria, they could not be the most appropriate for fresh-waters monitoring. Cyanobacteria are one of the most representative microorganisms of aquatic environments, and are well suited for detecting contaminants in aqueous samples. This study presents the development and application of the first freeze-dried cyanobacterial bioassay for fresh-water contaminants detection. The effects of different cell growth phases, cryoprotectant solutions, freezing protocols, rehydration solutions and incubation conditions methods were evaluated and the best combination of these parameters for freeze-drying was selected. The study includes detailed characterization of sensitivity towards reference pollutants, as well as, comparison with the standard assays. Moreover, long-term viability and sensitivity were evaluated after 3 years of storage. Freeze-dried cyanobacteria showed, in general, higher sensitivity than the standard assays and viability of the cells remained after 3 years of storage. Finally, the validation of the bioassay using a wastewater sample was also evaluated. Freeze-drying of cyanobacteria in 96-well plates presents a simple, fast and multi-assay method for environmental monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multianalyte imaging in one-shot format sensors for natural waters.

    PubMed

    Lapresta-Fernández, A; Huertas, Rafael; Melgosa, Manuel; Capitán-Vallvey, L F

    2009-03-23

    A one-shot multisensor based on ionophore-chromoionophore chemistry for optical monitoring of potassium, magnesium and hardness in water is presented. The analytical procedure uses a black and white non-cooled CCD camera for image acquisition of the one-shot multisensor after reaction, followed by data treatment for quantitation using the grey value pixel average from a defined region of interest from each sensing area to build the analytical parameter 1-alpha. In optimised experimental conditions, the procedure shows a large linear range, up to 6 orders using the linearised model and good detection limits: 9.92 x 10(-5)mM, 1.86 x 10(-3)mM and 1.30 x 10(-2)mgL(-1) of CaCO(3) for potassium, magnesium and hardness, respectively. This analysis system exhibits good precision in terms of relative standard deviation (RSD%) from 2.3 to 3.8 for potassium, from 5.0 to 6.8 for magnesium and from 5.4 to 5.9 for hardness. The trueness of this multisensor procedure was demonstrated comparing it with results obtained by a DAD spectrophotometer used as a reference. Finally, it was satisfactorily applied to the analysis of these analytes in miscellaneous samples, such as water and beverage samples from different origins, validating the results against atomic absorption spectrometry (AAS) as the reference procedure.

  13. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    USGS Publications Warehouse

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.

  14. Analysis of standard reference materials by absolute INAA

    NASA Astrophysics Data System (ADS)

    Heft, R. E.; Koszykowski, R. F.

    1981-07-01

    Three standard reference materials: flyash, soil, and ASI 4340 steel, are analyzed by a method of absolute instrumental neutron activation analysis. Two different light water pool-type reactors were used to produce equivalent analytical results even though the epithermal to thermal flux ratio in one reactor was higher than that in the other by a factor of two.

  15. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R W; Gaffney, A M; Kristo, M J

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumptionmore » of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.« less

  16. Height in healthy children in low- and middle-income countries: an assessment.

    PubMed

    Karra, Mahesh; Subramanian, S V; Fink, Günther

    2017-01-01

    Despite rapid economic development and reductions in child mortality worldwide, continued high rates of early childhood stunting have put the global applicability of international child-height standards into question. We used population-based survey data to identify children growing up in healthy environments in low- and middle-income countries and compared the height distribution of these children to the height distribution of the reference sample established by the WHO. Height data were extracted from 169 Demographic and Health Surveys (DHSs) that were collected across 63 countries between 1990 and 2014. Children were classified as having grown up in ideal environments if they 1) had access to safe water and sanitation; 2) lived in households with finished floors, a television, and a car; 3) were born to highly educated mothers; 4) were single births; and 5) were delivered in hospitals. We compared the heights of children in ideal environments with those in the WHO reference sample. A total of 878,249 height records were extracted, and 1006 children (0.1%) were classified as having been raised in an ideal home environment. The mean height-for-age z score (HAZ) in this sample was not statistically different from zero (95% CI: -0.039, 0.125). The HAZ SD for the sample was estimated to be 1.3, and 5.3% of children in the sample were classified as being stunted (HAZ <-2). Similar means, SDs, and stunting rates were found when less restrictive definitions of ideal environments were used. The large current gaps in children's heights relative to those of the reference sample likely are not due to innate or genetic differences between children but, rather, reflect children's continued exposure to poverty, a lack of maternal education, and a lack of access to safe water and sanitation across populations. © 2017 American Society for Nutrition.

  17. U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates

    USGS Publications Warehouse

    Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.

    1995-01-01

    Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).

  18. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2015-11-20

    During 2007–10, groundwater samples were collected from 13 wells including 7 wells that are completed in the confined sand and gravel aquifers, 1 well that is completed in the unconfined aquifer, and 5 wells that are completed in the bedrock aquifers. Calcium dominates the cation composition and bicarbonate dominates the anion composition in most groundwater. Water quality in the study area generally meets state and Federal drinking-water standards but concentrations of some constituents exceeded the standards. The standards that were exceeded include sodium (3 samples), dissolved solids (1 sample), iron (3 samples), manganese (8 samples), and arsenic (1 sample).

  19. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    USGS Publications Warehouse

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate water with a major ion composition of calcium and sulfate. There is no significant vertical distribution of ion concentrations in the samples collected from the upper and lower portion of the water column within the two wells. The samples collected at MSW-3 are higher in sodium and lower in calcium than the samples collected from MSW-1 and MSW-2, and contain a similar sulfate-ion percentage. There is a vertical distribution of ion concentrations in the samples collected from the upper and lower portion of the water column in MSW-3. Groundwater samples from the three water-supply wells analyzed for oxygen-18 and deuterium stable isotopes plot on a local water line that is approximately parallel to the global meteoric water line. Tritium concentrations in samples from MSW-1 and MSW-3 were equal to or less than laboratory detection limits and were interpreted to contain no modern (post-1952) water. Tritium concentration in a sample from the top of the water column at MSW-2 was 0.41 tritium units, indicating that the composition is primarily pre-bomb (pre-1952) water, but may contain a small fraction of post-bomb modern water. The calculated carbon-14 ages of groundwater in MSW-1 and MSW-2, both completed about 140 feet into the Navajo Sandstone, are about 3,000 years before present. The calculated carbon-14 age of groundwater in MSW-3, completed about 240 feet into the Kayenta Formation-Navajo Sandstone transition zone is about 5,000 years before present in the upper portion of the water column and about 8,500 years before present in the lower portion of the water column. The gross alpha radioactivity of samples collected from the three water-supply wells ranged from 5.1 to 9.8 picocuries per liter-less than the U.S. Environmental Protection Agency primary drinking water standard of 15 picocuries per liter. The gross beta radioactivity of samples collected from the wells ranged from 0.9 to 2.8 picocuries per liter and are not considered elevated relative to the U.S. Environmental Protection Agency primary drinking water standard.

  20. Comparison of two filtration-elution procedures to improve the standard methods ISO 10705-1 & 2 for bacteriophage detection in groundwater, surface water and finished water samples.

    PubMed

    Helmi, K; Jacob, P; Charni-Ben-Tabassi, N; Delabre, K; Arnal, C

    2011-09-01

    To select a reliable method for bacteriophage concentration prior detection by culture from surface water, groundwater and drinking water to enhance the sensitivity of the standard methods ISO 10705-1 & 2. Artificially contaminated (groundwater and drinking water) and naturally contaminated (surface water) 1-litre samples were processed for bacteriophages detection. The spiked samples were inoculated with about 150 PFU of F-specific RNA bacteriophages and somatic coliphages using wastewater. Bacteriophage detection in the water samples was achieved using the standard method without and with a concentration step (electropositive Anodisc membrane or a pretreated electronegative Micro Filtration membrane, MF). For artificially contaminated matrices (drinking and ground waters), recovery rates using the concentration step were superior to 70% whilst analyses without concentration step mainly led to false negative results. Besides, the MF membrane presented higher performances compared with the Anodisc membrane. The concentration of a large volume of water (up to one litre) on a filter membrane avoids false negative results obtained by direct analysis as it allows detecting low number of bacteriophages in water samples. The addition of concentration step before applying the standard method could be useful to enhance the reliability of bacteriophages monitoring in water samples as bio-indicators to highlight faecal pollution. © No claim to French Government works. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Drinking water treatment response following a Colorado wildfire.

    PubMed

    Hohner, Amanda K; Cawley, Kaelin; Oropeza, Jill; Summers, R Scott; Rosario-Ortiz, Fernando L

    2016-11-15

    Wildfires can greatly alter the vegetation, soils, and hydrologic processes of watersheds serving as drinking water supplies, which may negatively influence source water quality and treatment. To address wildfire impacts on treatment, a drinking water intake below a burned watershed and an upstream, unburned reference site were monitored following the High Park wildfire (2012) in the Cache la Poudre watershed of northern Colorado, USA. Turbidity, nutrients, dissolved organic matter (DOM) character, coagulation treatability, and disinfection byproduct formation were evaluated and compared to pre-fire data. Post-fire paired spatial differences between the treatment plant intake and reference site for turbidity, nitrogen, and phosphorus increased by an order of magnitude compared to pre-fire differences. Fluorescence index (FI) values were significantly higher at the intake compared to the reference site (Δ = 0.04), and higher than pre-fire years, suggesting the wildfire altered the DOM character of the river. Total trihalomethane (TTHM) and haloacetonitrile (HAN4) formation at the intake were 10.1 μg L -1 and 0.91 μg L -1 higher than the reference site. Post-fire water was amenable to conventional treatment at a 10 mg L -1 higher average alum dose than reference samples. The intake was also monitored following rainstorms. Post-rainstorm samples showed the maximum observed FI values (1.52), HAN4 (3.4 μg mg C -1 ) and chloropicrin formation yields (3.6 μg mg C -1 ), whereas TTHM and haloacetic acid yields were not elevated. Several post-rainstorm samples presented treatment challenges, and even at high alum doses (65 mg L -1 ), showed minimal dissolved organic carbon removal (<10%). The degraded water quality of the post-rainstorm samples is likely attributed to the combined effects of runoff from precipitation and greater erosion following wildfire. Wildfire impacts cannot be separated from rainfall effects due to the lack of post-rainstorm samples from the reference site. Results suggest for this study region, wildfire may have consequences for influent water quality, coagulant dosing, and DBP speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Optimization of Cryptosporidium and Giardia detection in water environment using automatic elution station Filta-Max xpress].

    PubMed

    Matuszewska, Renata; Szczotko, Maciej; Krogulska, Bozena

    2012-01-01

    The presence of parasitic protozoa in drinking water is mostly a result of improperly maintened the water treatment process. Currently, in Poland the testing of Cryptosporidium and Giardia in water as a part of routine monitoring of water is not perform. The aim of this study was the optimization of the method of Cryptosporidium and Giardia detection in water according to the main principles of standard ISO 15553:2006 and using Filta-Max xpress automatic elution station. Preliminary tests were performed on the samples contaminated with oocysts and cysts of reference strains of both parasitic protozoa. Further studies were carried out on environmental samples of surface water sampled directly from the intakes of water (21 samples from Vistula River and 8 samples from Zegrzynski Lake). Filtration process and samples volume reducing were performed using an automatic elution system Filta-Max xpress. Next, samples were purified during immunomagnetic separation process (IMS). Isolated cysts and oocysts were stained with FITC and DAPI and than the microscopic observation using an epifluorescence microscope was carried out. Recovery of parasite protozoa in all contaminated water samples after 9-cycles elution process applied was mean 60.6% for Cryptosporidium oocysts and 36.1% for Giardia cysts. Studies on the environmental surface water samples showed the presence of both parasitic protozoa. Number of detected Giardia cysts ranged from 1.0/10 L up to 4.5/10 L in samples from Zegrzynski Lake and from 1.0/10 L up to 38.9/10 L in samples from Vistula River. Cryptosporidium oocysts were present in 50% of samples from the Zegrzynski Lake and in 47.6% of samples from the Vistula River, and their number in both cases was similar and ranged from 0.5 up to 2.5 oocyst/10 L. The results show that applied procedure is appropriate for detection the presence of parasitic protosoan in water, but when water contains much amount of inorganic matter and suspended solids test method have to be modified like subsamples preparation and filtration process speed reduction. The applied method with the modification using Filta-Max xpress system can be useful for the routine monitoring of water. Detection of Cryptosporidium and Giardia in all samples of water taken from the intakes of surface water shows the possibility oftransfering of the protozoan cysts into the water intended for the consumption, therefore the testing of Cryptosporidium and Giardia should be included into the monitoring of water.

  3. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males.

    PubMed

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  4. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    PubMed Central

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans. PMID:25210461

  5. Quantification of drugs in plasma without primary reference standards by liquid chromatography-chemiluminescence nitrogen detection: application to tramadol metabolite ratios.

    PubMed

    Ojanperä, Suvi; Rasanen, Ilpo; Sistonen, Johanna; Pelander, Anna; Vuori, Erkki; Ojanperä, Ilkka

    2007-08-01

    Lack of availability of reference standards for drug metabolites, newly released drugs, and illicit drugs hinders the analysis of these substances in biologic samples. To counter this problem, an approach is presented here for quantitative drug analysis in plasma without primary reference standards by liquid chromatography-chemiluminescence nitrogen detection (LC-CLND). To demonstrate the feasibility of the method, metabolic ratios of the opioid drug tramadol were determined in the setting of a pharmacogenetic study. Four volunteers were given a single 100-mg oral dose of tramadol, and a blood sample was collected from each subject 1 hour later. Tramadol, O-desmethyltramadol, and nortramadol were determined in plasma by LC-CLND without reference standards and by a gas chromatography-mass spectrometry reference method. In contrast to previous CLND studies lacking an extraction step, a liquid-liquid extraction system was created for 5-mL plasma samples using n-butyl chloride-isopropyl alcohol (98 + 2) at pH 10. Extraction recovery estimation was based on model compounds chosen according to their similar physicochemical characteristics (retention time, pKa, logD). Instrument calibration was performed with a single secondary standard (caffeine) using the equimolar response of the detector to nitrogen. The mean differences between the results of the LC-CLND and gas chromatography-mass spectrometry methods for tramadol, O-desmethyltramadol, and nortramadol were 8%, 32%, and 19%, respectively. The sensitivity of LC-CLND was sufficient for therapeutic concentrations of tramadol and metabolites. A good correlation was obtained between genotype, expressed by the number of functional genes, and the plasma metabolite ratios. This experiment suggests that a recovery-corrected LC-CLND analysis produces sufficiently accurate results to be useful in a clinical context, particularly in instances in which reference standards are not readily accessible.

  6. Carrier Mediated Distribution System (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients.

    PubMed

    Wagner, Bjoern; Fischer, Holger; Kansy, Manfred; Seelig, Anna; Assmus, Frauke

    2015-02-20

    Here we present a miniaturized assay, referred to as Carrier-Mediated Distribution System (CAMDIS) for fast and reliable measurement of octanol/water distribution coefficients, log D(oct). By introducing a filter support for octanol, phase separation from water is facilitated and the tendency of emulsion formation (emulsification) at the interface is reduced. A guideline for the best practice of CAMDIS is given, describing a strategy to manage drug adsorption at the filter-supported octanol/buffer interface. We validated the assay on a set of 52 structurally diverse drugs with known shake flask log D(oct) values. Excellent agreement with literature data (r(2) = 0.996, standard error of estimate, SEE = 0.111), high reproducibility (standard deviation, SD < 0.1 log D(oct) units), minimal sample consumption (10 μL of 100 μM DMSO stock solution) and a broad analytical range (log D(oct) range = -0.5 to 4.2) make CAMDIS a valuable tool for the high-throughput assessment of log D(oc)t. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Groundwater, surface-water, and water-chemistry data from C-aquifer monitoring program, northeastern Arizona, 2005-11

    USGS Publications Warehouse

    Brown, Christopher R.; Macy, Jamie P.

    2012-01-01

    Water-chemistry data for selected wells and baseflow investigations sites are presented. No well samples analyzed exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level standards for drinking water, but several samples exceeded Secondary Maximum Contaminant Level standards for chloride, fluoride, sulfate, iron, and total dissolved solids.

  8. Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream

    USGS Publications Warehouse

    Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.

    2005-01-01

    Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.

  9. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a large suite of metals is simultaneously determined with acceptable analytical accuracy and precision. The proposed analytical technique can provide direct evidence of mineralization and is useful in the exploration for unknown ore deposits. ?? 1991.

  10. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Measurement of water absorption capacity in wheat flour by a headspace gas chromatographic technique.

    PubMed

    Xie, Wei-Qi; Yu, Kong-Xian; Gong, Yi-Xian

    2018-04-17

    The purpose of this work is to introduce a new method for quantitatively analyzing water absorption capacity in wheat flour by a headspace gas chromatographic technique. This headspace gas chromatographic technique was based on measuring the water vapor released from a series of wheat flour samples with different contents of water addition. According to the different trends between the vapor and wheat flour phase before and after the water absorption capacity in wheat flour, a turning point (corresponding to water absorption capacity in wheat flour) can be obtained by fitting the data of the water gas chromatography peak area from different wheat flour samples. The data showed that the phase equilibrium in the vial can be achieved in 25 min at desired temperature (35°C). The relative standard deviation of the reaction headspace gas chromatographic technique in water absorption capacity determination was within 3.48%, the relative differences has been determined by comparing the water absorption capacity obtained from this new analytical technique with the data from the reference technique (i.e., the filtration method), which are less than 8.92%. The new headspace gas chromatographic method is automated, accurate and be a reliable tool for quantifying water absorption capacity in wheat flour in both laboratory research and mill applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Impact of a product-specific reference standard for the measurement of a PEGylated rFVIII activity: the Swiss Multicentre Field Study.

    PubMed

    Bulla, O; Poncet, A; Alberio, L; Asmis, L M; Gähler, A; Graf, L; Nagler, M; Studt, J-D; Tsakiris, D A; Fontana, P

    2017-07-01

    Measuring factor VIII (FVIII) activity can be challenging when it has been modified, such as when FVIII is pegylated to increase its circulating half-life. Use of a product-specific reference standard may help avoid this issue. Evaluate the impact of using a product-specific reference standard for measuring the FVIII activity of BAX 855 - a pegylated FVIII - in eight of Switzerland's main laboratories. Factor VIII-deficient plasma, spiked with five different concentrations of BAX 855, plus a control FVIII sample, was sent to the participating laboratories. They measured FVIII activity by using either with a one-stage (OSA) or the chromogenic assay (CA) against their local or a product-specific reference standard. When using a local reference standard, there was an overestimation of BAX 855 activity compared to the target concentrations, both with the OSA and CA. The use of a product-specific reference standard reduced this effect: mean recovery ranged from 127.7% to 213.5% using the OSA with local reference standards, compared to 110% to 183.8% with a product-specific reference standard, and from 146.3% to 182.4% using the CA with local reference standards compared to 72.7% to 103.7% with a product-specific reference standard. In this in vitro study, the type of reference standard had a major impact on the measurement of BAX 855 activity. Evaluation was more accurate and precise when using a product-specific reference standard. © 2017 John Wiley & Sons Ltd.

  13. Performance of Mercury Triple-Point Cells Made in Brazil

    NASA Astrophysics Data System (ADS)

    Petkovic, S. G.; Santiago, J. F. N.; Filho, R. R.; Teixeira, R. N.; Santos, P. R. F.

    2003-09-01

    Fixed-points cells are primary standards in ITS-90. They contain reference material with a purity of 99.999 % or more. The gallium in a melting-point cell, for example, can reach a purity of 99.99999 %. This level of purity is not easy to obtain. However, substances like water and mercury can be purified by means of distillation and chemical procedures. This paper presents the results of mercury triple-point cells made in Brazil that were directly compared to a mercury triple-point cell of 99.999% purity. This reference cell, made by Isotech (England), was previously compared to cells from CENAM (Mexico) and NRC (Canada) and the maximum deviation found was approximately 0.4 mK. The purification stage started with a sample of mercury 99.3 % pure, and the repeated use of both mechanical and chemical processes led to a purification grade considered good enough for calibration of standard platinum resistance thermometers. The purification procedures, the method of construction of the cell, the laboratory facilities, the comparison results and the budget of uncertainties are described in this paper. All of the cells tested have a triple-point temperature within 0.25 mK of the triple-point temperature of the Inmetro reference cell.

  14. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbes...

  15. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbest...

  16. Sequential determination of multi-nutrient elements in natural water samples with a reverse flow injection system.

    PubMed

    Lin, Kunning; Ma, Jian; Yuan, Dongxing; Feng, Sichao; Su, Haitao; Huang, Yongming; Shangguan, Qipei

    2017-05-15

    An integrated system was developed for automatic and sequential determination of NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ in natural waters based on reverse flow injection analysis combined with spectrophotometric detection. The system operation was controlled by a single chip microcomputer and laboratory-programmed software written in LabVIEW. The experimental parameters for each nutrient element analysis were optimized based on a univariate experimental design, and interferences from common ions were evaluated. The upper limits of the linear range (along with detection limit, µmolL -1 ) of the proposed method was 20 (0.03), 200 (0.7), 12 (0.3), 5 (0.03), 5 (0.03), 9 (0.2) µmolL -1 , for NO 2 - , NO 3 - , PO 4 3- , Fe 2+ , Fe 3+ and Mn 2+ , respectively. The relative standard deviations were below 5% (n=9-13) and the recoveries varied from 88.0±1.0% to 104.5±1.0% for spiked water samples. The sample throughput was about 20h -1 . This system has been successfully applied for the determination of multi-nutrient elements in different kinds of water samples and showed good agreement with reference methods (slope 1.0260±0.0043, R 2 =0.9991, n=50). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Environmental Assessment of the Muscatatuck Urban Training Center near Butlerville, Indiana, October and November 2005

    USGS Publications Warehouse

    Risch, Martin R.; Ulberg, Amanda L.; Robinson, Bret A.

    2007-01-01

    Concentrations of constituents detected in these samples were compared with regulatory standards (the Indiana Surface-Water-Quality Standards and Indiana Ground-Water-Quality Standards) and guidance criteria from the Indiana Department of Environmental Management's Risk Integrated System of Closures for contaminated soil and ground water. Standards or criteria were exceeded by 17 constituent concentrations in 11 environmental samples from 5 of the 7 geographic study areas. Standards or criteria were exceeded for 10 constituents: ammonia, arsenic, benzo(a)pyrene, beryllium, chloride, chloroform, copper, lead, sulfate, and zinc.

  18. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.

  19. Preconcentration determination of arsenic species by sorption of As(V) on Amberlite IRA-410 coupled with fluorescence quenching of L-cysteine capped CdS nanoparticles.

    PubMed

    Hosseini, Mohammad Saeid; Nazemi, Sahar

    2013-10-07

    A simple and accurate method for arsenic speciation analysis in natural and drinking water samples is described in which preconcentration of arsenic as As(V) was coupled with spectrofluorometric determination. The extracted As(V) species with a column containing Amberlite IRA-410 were subjected to L-cysteine capped CdS quantum dots (QDs) and the fluorescence quenching of the QDs due to reduction of As(V) by L-cysteine was considered as a signal relevant to As(V) concentration. The As(III) species were also determined after oxidation of As(III) ions to As(V) with H2O2 and measurement of the total arsenic content. In treatment with 400 mL portions of water samples containing 30 μg L(-1) As(V), the relative standard deviation was 2.8%. The detection limit of arsenic was also found to be 0.75 μg L(-1) (1 × 10(-8) M). The reliability of proposed method was confirmed using certified reference materials. The trace amounts of arsenic species were then determined in different water samples, satisfactorily.

  20. Gas chromatography--inductively coupled plasma--time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental water samples.

    PubMed

    Heisterkamp, M; Adams, F C

    2001-07-01

    The application of inductively coupled plasma--time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental waters is described. Construction of the transfer line was achieved by means of a relatively simple and rapid coupling procedure. Derivatization of the ionic lead species was achieved by in-situ propylation with sodium tetrapropylborate; simultaneous extraction of the derivatized compounds in hexane was followed by separation and detection by capillary gas chromatography hyphenated to inductively coupled plasma-time-of-flight mass spectrometry. Detection limits for the different organolead species ranged from 10 to 15 fg (as Pb), corresponding to procedural detection limits between 50 and 75 ng L(-1), on the basis of a 50 mL snow sample, extraction with 200 microL hexane, and subsequent injection of 1 microL of the organic extract on to the column. The accuracy of the system was confirmed by additional analysis of the water samples by capillary gas chromatography coupled with microwave-induced plasma-atomic-emission spectrometry and the analysis of a standard reference material CRM 605 (road dust) with a certified content of trimethyllead.

  1. WATERSHED CENTRAL: AN INTEGRATED WATERSHED ASSESSMENT AND MANAGEMENT WEBSITE

    EPA Science Inventory

    The Clean Water Act (CWA) requires that States develop pollution reduction targets for impaired or threatened waters often referred to as total maximum daily loads (TMDLs). These are waters that do not meet state water quality standards or will have impending problems meeting th...

  2. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  3. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic Escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum-β-lactamase (ESBL)- producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was detected in bacteria from multiple sites in Oakland County but not detected in bacteria from the reference sites. Integrons capable of transferring resistance were detected in isolates from the River Rouge and Clinton River. E. faecium and E. faecalis identified in samples collected from Kearsley Creek and Evans Ditch were resistant to high levels of vancomycin and carried transferable genes responsible for resistance. Several sites in Oakland County had indicators of pathogenic E. coli in August and (or) September 2003. Two samples from the Clinton River in August tested positive for all three E. coli O157 tests. Both the August and September samples from one River Rouge site were positive for the immunological and molecular assay for E. coli O157. A combination of virulence genes commonly associated with human illness was detected at five sites in August and seven sites in September. Antibiotic-resistance profiles of clinical concern along with genes capable of transferring the resistance were found at several sites throughout Oakland County; samples from many of these sites also contained potentially pathogenic E. coli.

  4. A dynamic gravimetric standard for trace water.

    PubMed

    Brewer, P J; Goody, B A; Woods, P T; Milton, M J T

    2011-10-01

    A system for generating traceable reference standards of water vapor at trace levels between 5 and 2000 nmol/mol has been developed. It can provide different amount fractions of trace water vapor by using continuous accurate measurements of mass loss from a permeation device coupled with a dilution system based on an array of critical flow orifices. An estimated relative expanded uncertainty of ±2% has been achieved for most amount fractions generated. The system has been used in an international comparison and demonstrates excellent comparability with National Metrology Institutes maintaining standards of water vapor in this range using other methods.

  5. Potential bias in TEOS10 density of sea water samples

    NASA Astrophysics Data System (ADS)

    Budéus, G. Th.

    2018-04-01

    Direct density measurements of ocean water samples are compared to TEOS10 derived densities. The water sample set includes waters from remote areas as Antarctic waters and the central Arctic, but also waters of regions that resemble closely the reference composition of TEOS10. With few exceptions, the measured densities are smaller than those derived according to TEOS10. The result suggests a potential systematic overestimation of density by TEOS10. For the majority of waters the deviations are about 10 g/m3.

  6. A comparison of the BAX system method to the U.S. Food and Drug Administration's Bacteriological Analytical Manual and International Organization for Standardization reference methods for the detection of Salmonella in a variety of soy ingredients.

    PubMed

    Belete, Tamrat; Crowley, Erin; Bird, Patrick; Gensic, Joseph; Wallace, F Morgan

    2014-10-01

    The performances of two DuPont BAX System PCR assays for detecting Salmonella on a variety of low-moisture soy ingredients were evaluated against the U. S. Food and Drug Administration's Bacteriological Analytical Manual (FDA BAM) method or the International Organization for Standardization (ISO) 6579 reference method. These evaluations were conducted as a single laboratory validation at an ISO 17025 accredited third-party laboratory. Validations were conducted on five soy ingredients: isolated soy protein (ISP), soy fiber, fluid soy lecithin, deoiled soy lecithin, and soy nuggets, using a paired-study design. The ISP was analyzed as both 25- and 375-g composite test portions, whereas all other sample matrices were analyzed as 375-g composite test portions. To evaluate 25-g test portions of ISP, the test material was inoculated using Salmonella enterica subsp. enterica serovar Mbandaka (Q Laboratories isolate 11031.1). Salmonella enterica subsp. enterica serovar Tennessee (Q Laboratories isolate 11031.3) was used for all other trials. For each trial of the method comparison, 25 samples were analyzed for each matrix: 5 uninoculated controls and 20 samples inoculated at low levels (0.2 to 2 CFU per test portion) that were targeted to achieve fractionally positive results (25 to 75%). Using McNemar's chi-square analysis, no significant difference at P ≥ 0.05 (χ(2) ≤ 3.84) was observed between the number of positives obtained by the BAX System and the reference methods for all five test matrices evaluated. These studies indicate that the BAX System PCR assays, in combination with the single buffered peptone water primary enrichment and subsequent brain heart infusion regrowth step, demonstrate equivalent sensitivity and robustness compared with the FDA BAM and ISO reference methods for both 25- and 375-g composite samples. Moreover, there was no observed reduction of sensitivity in the larger 375-g composite samples for all five matrices.

  7. Regional soil geochemistry in the Ojailen Valley: a realm dominated by the industrial and mining city of Puertollano (South Central Spain)

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel; Fernandez-Calderón, Sergio; Higueras, Pablo; María Esbrí, Jose; Gonzalez-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; García-Noguero, Carolina

    2013-04-01

    Regional soil geochemistry in the Ojailén Valley: a realm dominated by the industrial and mining city of Puertollano (South Central Spain). Authors: Miguel A. López-Berdonces¹; Sergio Fernández Calderón¹; Pablo Higueras¹; José María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García-Noguero¹; Alba Martínez-Coronado¹; Carolina García Noguero¹ ¹Instituto de Geología Aplicada, Universidad de Castilla La Mancha, Almadén 13400 (Spain). Ojailén Valley is situated in South Central of Spain, an area where livestock, agriculture, mining and industry coexist. This work tries to assess the relationships between these activities and local environmental compartments: water, soils and heavy metal contents, and establish the most appropriate methodology of sample treatment and analytical techniques that can be employed on this kind of studies. For soil geochemistry, 152 samples were taken at two different depths, one at surface layer and another at 20 cm depth, and establish relationships between them and the possible sources. For this purpose, we determine soil parameters (pH, conductivity and organic matter) and total metal contents by Energy Dispersion of X Ray Fluorescence (EDXRF). Samples with higher nickel contents were analyzed with Inductive Coupled Plasma Spectroscopy (ICP-OES) after acid digestion. The study of surface waters includes 18 samples along the river and tributaries near mining and industrial areas. Water analysis was performed by ICP-OES. Soil samples shows pH between 6 and 8.5, highest located near on the east part of the valley, in the vicinity of petrochemical complex. Conductivity values show higher levels (1600 µS cm¯¹) in the vicinity of Puertollano and the industrial sites. Local reference value (LRV) for contaminated soils were determined according to the methodology proposed by Jimenez-Ballesta et al. (2010), using the equation: LRV=GM + 2SD, where LRV: Local Reference Value, GM: Geometric Mean, SD: Standard Deviation. Trace metals values are significantly higher than calculated LRV, especially for Zn, Pb, (Average content: 230 mg kg¯¹ and 249.9 mg kg¯¹ respectively), probable due to Pb-Zn mining in the nearest Alcudia valley. Other elements seem to be influenced by petrochemical industry (Ni, V, and Cu) with LRV: 199.9 mg kg¯¹, 39.2 mg kg¯¹ and 184.2 mg kg¯¹ respectively. Most water samples have metal contents higher than levels for drinking water (WHO, 2006), especially Fe and Pb with 20 µg l¯¹ and 10 µg l¯¹ respectively. Higher metal contents were located on three different sites: downstream an open-pit coal mine, in stagnant water where we can find an old sewage treatment plant, and downstream a photovoltaic plant built in 2008. We can consider that Ojailén Valley is not an area with high contents in heavy metals in the environment, but Puertollano and its petrochemical complex have contents in Pb, Zn, Cu, As, Ni above the LRV. A comparison of results obtained by ICP-MS and XRF related to Pb, Zn, Cr, Ni in thirty-four selected samples, we can conclude that both techniques are qualitatively agree, although XRF cannot be considered suitable for establishing reference legal limits. References Jiménez-Ballesta, R; Conde-Bueno,P; Martin-Rubí,J.A.; García-Jímenez,R. 2010. Geochemical baseline contents levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla-La Mancha, Spain). Central European Journal of Geosciences 2, 441-454. WHO2006. Guidelines for drinking- water quality, Vol.1, 3rd edition incorporating 1st and 2nd addenda. (http//www.who.int/entity/water_sanitation_health/dwq/fulltext.pdf) Geneve, Suiza.

  8. Cruise Summary of WHP P6, A10, I3 and I4 Revisits in 2003

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Uchida, H.; Schneider, W.; Kumamoto, Y.; Nishina, A.; Aoyama, M.; Murata, A.; Sasaki, K.; Yoshikawa, Y.; Watanabe, S.; Fukasawa, M.

    2004-12-01

    Japan Agency for Marin-Earth Science and Technology (JAMSTEC) conducted a research cruise to round in the southern hemisphere by R/V Mirai. In this presentation, we introduce an outline of the cruise and data quality obtained during the cruise. The cruise started on Aug. 3, 2003 in Brisbane, Australia and sailed eastward until it reached Fremantle, Australia on Feb. 19, 2004. It contained six legs and legs 1, 2, 4 and 5 were revisits of WOCE Hydrographic Program (WHP) sections P6W, P6E, A10 and I3/I4, respectively. The sections consisted of about 500 hydrographic stations in total. On each station, CTD profiles and up to 36 water samples by 12L Niskin-X bottles were taken from the surface to within 10 m of the bottom. Water samples were analyzed at every station for salinity, dissolved oxygen (DO), and nutrients and at alternate stations for concentration of freons, dissolved inorganic carbon (CT), total alkalinity (AT), pH, and so on. Approximately 17,000 samples were obtained for salinity. The standard seawater was measured repeatedly to estimate the uncertainty caused by the setting and stability of the salinometer. The standard deviation of 699 repeated runs of standard seawater was 0.0002 in salinity. Replicate samples, which are a pair of samples drawn from the same Niskin bottle to different sample bottles, were taken to evaluate the overall uncertainty. The standard deviation of absolute differences of 2,769 replicates was also 0.0002 in salinity. For DO, about 13,400 samples were obtained. The analysis was made by a photometric titration technique. The reproducibility estimated from the absolute standard deviation of 1,625 replicates was about 0.09 umol/kg. CTD temperature was calibrated against a deep ocean standards thermometer (SBE35) which was attached to the CTD using a polynomial expression Tcal = T - (a +b*P + c*t), where Tcal is calibrated temperature, T is CTD temperature, P is CTD pressure and t is time. Calibration coefficients, a, b and c, were determined for each station by minimizing the sum of absolute deviation from SBE35 temperature below 2,000dbar. CTD salinity and DO were fitted to values obtained by sampled water analysis using similar polynomials. These corrections yielded deviations of about 0.0002 K in temperature, 0.0003 in salinity and 0.6 umol/kg in DO. Nutrients analyses were accomplished on 16,000 samples using the reference material of nutrients in seawater (RMNS). To establish the traceability and to get higher quality data, 500 bottles of RMNS from the same lot and 150 sets of RMNSs were used. The precisions of phosphate, nitrate and silicate measurements were 0.18 %, 0.17 % and 0.16 % in terms of median of those at 493 stations, respectively. The nutrients concentrations could be expressed with uncertainties explicitly because of the repeated runs of RMNSs. All the analyses for the CO{2}-system parameters in water columns were finished onboard. Analytical precisions of CT, AT and pH were estimated to be \\sim1.0 umol/kg, \\sim2.0 umol/kg, and \\sim7*10-4 pH unit, respectively. Approximately 6,300 samples were obtained for CFC-11 and CFC-12. The concentrations were determined with an electron capture detector - gas chromatograph (ECD-GC) attached the purge and trapping system. The reproducibility estimated from the absolute standard deviation of 365 replicates was less than 1% with respect to the surface concentrations.

  9. Ground-water quality and geochemistry in Carson and Eagle Valleys, western Nevada and eastern California

    USGS Publications Warehouse

    Welch, Alan H.

    1994-01-01

    Aquifers in Carson and Eagle Valleys are an important source of water for human consumption and agriculture. Concentrations of major constituents in water from the principal aquifers on the west sides of Carson and Eagle Valleys appear to be a result of natural geochemical reactions with minerals derived primarily from plutonic rocks. In general, water from principal aquifers is acceptable for drinking when compared with current (1993) Nevada State drinking-water maximum contaminant level standards. Water was collected and analyzed for all inorganic constituents for which primary or secondary drinking-water standards have been established. About 3 percent of these sites had con- stituents that exceeded one or more primary or secondary drinking-water standards have been established. About 3 percent of these sites had con- stituents that exceeded one or more primary standards and water at about 10 percent of the sites had at least one constituent that surpassed a secondary standard. Arsenic exceeded the standard in water at less than 1 percent of the principal aquifer sites; nitrate surpassed its standard in water at 3 percent of 93 sites. Water from wells in the principal aquifer with high concentrations of nitrate was in areas where septic systems are used; these concentrations indicate that contamination may be entering the wells. Concentrations of naturally occurring radionuclides in water from the principal aquifers, exceed the proposed Federal standards for some constituents, but were not found t be above current (1993) State standards. The uranium concen- trations exceeded the proposed 20 micrograms per liter Federal standard at 10 percent of the sites. Of the sites analyzed for all of the inorganic constituents with primary standards plus uranium, 15 percent exceed one or more established standards. If the proposed 20 micrograms per liter standard for uranium is applied to the sampled sites, then 23 percent would exceed the standard for uranium or some other constituent with a primary drinking water standard. This represents a 50-percent increase in the frequency of exceedance. Almost all water sampled from the principal aquifers exceeds the 300 picocuries per liter proposed standard for radon. Ground-water sampling sites with the highest radon activities in water are most commonly located in the upland aquifers in the Sierra Nevada and in the principal aquifers beneath the west sides of Carson and Eagle Valleys.

  10. Groundwater quality in central New York, 2012

    USGS Publications Warehouse

    Reddy, James E.

    2014-01-01

    Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and Escherichia coliwere not exceeded in any of the samples collected. None of the pesticides or volatile organic compounds analyzed exceeded drinking-water standards. Methane was detected in 11 sand-and-gravel wells and 9 bedrock wells. Five of the 14 bedrock wells had water with methane concentrations approaching 10 mg/L; water in one bedrock well had 37 mg/L of methane.

  11. Agreement between diagnoses reached by clinical examination and available reference standards: a prospective study of 216 patients with lumbopelvic pain

    PubMed Central

    Laslett, Mark; McDonald, Barry; Tropp, Hans; Aprill, Charles N; Öberg, Birgitta

    2005-01-01

    Background The tissue origin of low back pain (LBP) or referred lower extremity symptoms (LES) may be identified in about 70% of cases using advanced imaging, discography and facet or sacroiliac joint blocks. These techniques are invasive and availability varies. A clinical examination is non-invasive and widely available but its validity is questioned. Diagnostic studies usually examine single tests in relation to single reference standards, yet in clinical practice, clinicians use multiple tests and select from a range of possible diagnoses. There is a need for studies that evaluate the diagnostic performance of clinical diagnoses against available reference standards. Methods We compared blinded clinical diagnoses with diagnoses based on available reference standards for known causes of LBP or LES such as discography, facet, sacroiliac or hip joint blocks, epidurals injections, advanced imaging studies or any combination of these tests. A prospective, blinded validity design was employed. Physiotherapists examined consecutive patients with chronic lumbopelvic pain and/or referred LES scheduled to receive the reference standard examinations. When diagnoses were in complete agreement regardless of complexity, "exact" agreement was recorded. When the clinical diagnosis was included within the reference standard diagnoses, "clinical agreement" was recorded. The proportional chance criterion (PCC) statistic was used to estimate agreement on multiple diagnostic possibilities because it accounts for the prevalence of individual categories in the sample. The kappa statistic was used to estimate agreement on six pathoanatomic diagnoses. Results In a sample of chronic LBP patients (n = 216) with high levels of disability and distress, 67% received a patho-anatomic diagnosis based on available reference standards, and 10% had more than one tissue origin of pain identified. For 27 diagnostic categories and combinations, chance clinical agreement (PCC) was estimated at 13%. "Exact" agreement between clinical and reference standard diagnoses was 32% and "clinical agreement" 51%. For six pathoanatomic categories (disc, facet joint, sacroiliac joint, hip joint, nerve root and spinal stenosis), PCC was 33% with actual agreement 56%. There was no overlap of 95% confidence intervals on any comparison. Diagnostic agreement on the six most common patho-anatomic categories produced a kappa of 0.31. Conclusion Clinical diagnoses agree with reference standards diagnoses more often than chance. Using available reference standards, most patients can have a tissue source of pain identified. PMID:15943873

  12. SAMPLE CHARACTERIZATION OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES AND COMPARATIVE PULMONARY TOXICITY IN MICE

    EPA Science Inventory


    Abstract

    Two samples of diesel exhaust particles (DEP) predominate in DEP health effects research: an automobile-source DEP (A-DEP) sample and the National Institute of Standards Technology (NIST) standard reference material (SRM 2975) generated from a forklift engine...

  13. Selection of reference standard during method development using the analytical hierarchy process.

    PubMed

    Sun, Wan-yang; Tong, Ling; Li, Dong-xiang; Huang, Jing-yi; Zhou, Shui-ping; Sun, Henry; Bi, Kai-shun

    2015-03-25

    Reference standard is critical for ensuring reliable and accurate method performance. One important issue is how to select the ideal one from the alternatives. Unlike the optimization of parameters, the criteria of the reference standard are always immeasurable. The aim of this paper is to recommend a quantitative approach for the selection of reference standard during method development based on the analytical hierarchy process (AHP) as a decision-making tool. Six alternative single reference standards were assessed in quantitative analysis of six phenolic acids from Salvia Miltiorrhiza and its preparations by using ultra-performance liquid chromatography. The AHP model simultaneously considered six criteria related to reference standard characteristics and method performance, containing feasibility to obtain, abundance in samples, chemical stability, accuracy, precision and robustness. The priority of each alternative was calculated using standard AHP analysis method. The results showed that protocatechuic aldehyde is the ideal reference standard, and rosmarinic acid is about 79.8% ability as the second choice. The determination results successfully verified the evaluation ability of this model. The AHP allowed us comprehensive considering the benefits and risks of the alternatives. It was an effective and practical tool for optimization of reference standards during method development. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 44 CFR 59.4 - References.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Water Conservation Fund Act (Pub. L. 89-578), and subsequent amendments thereto. (8) Water Resources Council, Principals and Standards for Planning, Water and Related Land Resources (38 FR 24778...), as amended Public Law 94-370. (5) Water Resources Planning Act (Pub. L. 89-90), as amended Public Law...

  15. 44 CFR 59.4 - References.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Water Conservation Fund Act (Pub. L. 89-578), and subsequent amendments thereto. (8) Water Resources Council, Principals and Standards for Planning, Water and Related Land Resources (38 FR 24778...), as amended Public Law 94-370. (5) Water Resources Planning Act (Pub. L. 89-90), as amended Public Law...

  16. Watershed Central: An Integrated Watershed Assessment and Management Website - St. Louis

    EPA Science Inventory

    The Clean Water Act (CWA) requires that States develop pollution reduction targets for impaired or threatened waters often referred to as total maximum daily loads (TMDLs). These are waters that do not meet state water quality standards or will have impending problems meeting th...

  17. WATERSHED CENTRAL: AN INTEGRATED WATERSHED ASSESSMENT AND MANAGEMENT WEBSITE (PRESENTATION)

    EPA Science Inventory

    The Clean Water Act (CWA) requires that States develop pollution reduction targets for impaired or threatened waters often referred to as total maximum daily loads (TMDLs). These are waters that do not meet state water quality standards or will have impending problems meeting th...

  18. WATERSHED CENTRAL: AN INTEGRATED WATERSHED ASSESSMENT AND MANAGEMENT WEBSITE (2)

    EPA Science Inventory

    The Clean Water Act (CWA) requires that States develop pollution reduction targets for impaired or threatened waters often referred to as total maximum daily loads (TMDLs). These are waters that do not meet state water quality standards or will have impending problems meeting th...

  19. A Framework for Establishing Standard Reference Scale of Texture by Multivariate Statistical Analysis Based on Instrumental Measurement and Sensory Evaluation.

    PubMed

    Zhi, Ruicong; Zhao, Lei; Xie, Nan; Wang, Houyin; Shi, Bolin; Shi, Jingye

    2016-01-13

    A framework of establishing standard reference scale (texture) is proposed by multivariate statistical analysis according to instrumental measurement and sensory evaluation. Multivariate statistical analysis is conducted to rapidly select typical reference samples with characteristics of universality, representativeness, stability, substitutability, and traceability. The reasonableness of the framework method is verified by establishing standard reference scale of texture attribute (hardness) with Chinese well-known food. More than 100 food products in 16 categories were tested using instrumental measurement (TPA test), and the result was analyzed with clustering analysis, principal component analysis, relative standard deviation, and analysis of variance. As a result, nine kinds of foods were determined to construct the hardness standard reference scale. The results indicate that the regression coefficient between the estimated sensory value and the instrumentally measured value is significant (R(2) = 0.9765), which fits well with Stevens's theory. The research provides reliable a theoretical basis and practical guide for quantitative standard reference scale establishment on food texture characteristics.

  20. High resolution ID-ICP-MS certification of an estuary water reference material (LGC 6016) and analysis of matrix induced polyatomic interferences.

    PubMed

    Evans, P; Fairman, B

    2001-10-01

    Reliable trace metal analysis of environmental samples is dependent upon the availability of high accuracy, matrix reference standards. Here, we present Cd, Cu, Ni, Pb and Zn isotope dilution determination for an estuary water certified reference material (LGC 6016). This work highlights the need for high-accuracy techniques in the development of trace element CRMs rather than conventional inter-laboratory trials. Certification of the estuary water LGC6016 was initially determined from a consensus mean from 14 laboratories but this was found to be unsatisfactory due to the large discrepancies in the reported concentrations. The material was re-analysed using isotope dilution ICP-MS techniques. Pb and Cd were determined using a conventional quadrupole ICP-MS (Elan 5000). Cu, Zn and Ni were determined using a magnetic sector ICP-MS (Finnigan Element), which allowed significant polyatomic interferences to be overcome. Using the magnetic sector instrument, precise mass calibration to within 0.02 amu permitted identification of the interferences. Most interferences derived from the sample matrix. For example, the high Na content causes interferences on 63Cu, due to the formation of 40Ar23Na and 23Na2 16O1H, which in a conventional quadrupole instrument would relate to an erroneous increase in signal intensity by up to 20%. For each analyte a combined uncertainty calculation was performed following the Eurachem/GTAC and ISO guideline. For each element a combined uncertainty of 2-3% was found, which represents a 10-fold improvement compared to certification by inter-laboratory comparison. Analysis of the combined uncertainty budget indicates that the majority of systematic uncertainty derives from the instrumental isotope ratio measurements.

  1. Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.

    2009-01-01

    In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent suggesting that water-rock interaction between Levels 3 and 1 can account for the elevated concentration of metals and other constituents in Level 1 portal effluent. Ore minerals (sphalerite, argentiferous galena, and chalcopyrite) are the likely sources of zinc, cadmium, lead, and copper and are present within the mine in unmined portions of the vein system, within plugged ore chutes, and in muck piles.

  2. Sampling and Analysis for Lead in Water and Soil Samples on a University Campus: A Student Research Project.

    ERIC Educational Resources Information Center

    Butala, Steven J.; Zarrabi, Kaveh

    1995-01-01

    Describes a student research project that determined concentrations of lead in water drawn from selected drinking fountains and in selected soil samples on the campus of the University of Nevada, Las Vegas. (18 references) (DDR)

  3. Reference genes for normalization of qPCR assays in sugarcane plants under water deficit.

    PubMed

    de Andrade, Larissa Mara; Dos Santos Brito, Michael; Fávero Peixoto Junior, Rafael; Marchiori, Paulo Eduardo Ribeiro; Nóbile, Paula Macedo; Martins, Alexandre Palma Boer; Ribeiro, Rafael Vasconcelos; Creste, Silvana

    2017-01-01

    Sugarcane ( Saccharum spp.) is the main raw material for sugar and ethanol production. Among the abiotic stress, drought is the main one that negatively impact sugarcane yield. Although gene expression analysis through quantitative PCR (qPCR) has increased our knowledge about biological processes related to drought, gene network that mediates sugarcane responses to water deficit remains elusive. In such scenario, validation of reference gene is a major requirement for successful analyzes involving qPCR. In this study, candidate genes were tested for their suitable as reference genes for qPCR analyses in two sugarcane cultivars with varying drought tolerance. Eight candidate reference genes were evaluated in leaves sampled in plants subjected to water deficit in both field and greenhouse conditions. In addition, five genes were evaluated in shoot roots of plants subjected to water deficit by adding PEG8000 to the nutrient solution. NormFinder and RefFinder algorithms were used to identify the most stable gene(s) among genotypes and under different experimental conditions. Both algorithms revealed that in leaf samples, UBQ1 and GAPDH genes were more suitable as reference genes, whereas GAPDH was the best reference one in shoot roots. Reference genes suitable for sugarcane under water deficit were identified, which would lead to a more accurate and reliable analysis of qPCR. Thus, results obtained in this study may guide future research on gene expression in sugarcane under varying water conditions.

  4. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.

  5. Novel silver tubing method for quantitative introduction of water into high temperature conversion systems for stable hydrogen and oxygen isotopic measurements

    USGS Publications Warehouse

    Qi, Haiping; Groning, Manfred; Coplen, Tyler B.; Buck, Bryan; Mroczkowski, Stanley J.; Brand, Willi A.; Geilmann, Heike; Gehre, Matthias

    2010-01-01

    A new method to seal water in silver tubes for use in a TC/EA reduction unit using a semi-automated sealing apparatus can yield reproducibilities (1 standard deviation) of δ2H and &delta18O measurements of 1.0 ‰ and 0.06 ‰, respectively. These silver tubes containing reference waters may be preferred for calibration of H- and O-bearing materials analyzed with a TC/EA reduction unit. The new sealing apparatus employs a computer controlled stepping motor to produce silver tubes identical in length. The reproducibility of mass of water sealed in tubes (in a range of 200 to 400 µg) can be as good as 1 percent. Although silver tubes sealed with reference waters are robust and can be shaken or heated to 110 °C with no loss of integrity, they should not be frozen because the expansion during the phase transition of water to ice will break the cold seals and all water will be lost. They should be shipped in insulated containers. This new method eliminates air inclusions and isotopic fractionation of water associated with the loading of water into capsules using a syringe. The method is also more than an order of magnitude faster than preparing water samples in ordinary Ag capsules. Nevertheless, some laboratories may prefer loading water into silver capsules because expensive equipment is not needed, but they are cautioned to apply the necessary corrections for evaporation, back exchange with laboratory atmospheric moisture, and blank.

  6. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  8. On-Line Analyzer For Monitoring Trace Amounts Of Oil In Turbid Waters

    NASA Astrophysics Data System (ADS)

    Niemela, P.; Jaatinen, J.

    1986-05-01

    This report presents an automated analyzer which continuously monitors oil content of a sample water stream that flows through the analyzer. The measuring principle is based on the absorption of infrared radiation by oil molecules contained in the sample water. The wavelength band that is used in the measurement is at 3.4 μm, where different types of oils show nearly equal absorption. Another wavelength band of 3.6 μm, where oil has no absorption, is used to compensate the effect of turbidity, which is due to solid particles and oil droplets contained in the sample water. Before entering the analyzer the sample water flow is properly homogenized. To compensate the strong absorption by water molecules in these wavelength bands the sample water is compared with reference water. This is done by directing them alternately through the same measuring cell. The reference water is obtained from the sample water by ultrafiltration and it determines the base line for the contaminated sample water. To ensure the stability of the base line, temperature and pressure differences of the two waters are kept within adequate ranges. Areas of application of the analyzer are wide ranging i.a. from ships' discharge waters to waste waters of industrial processes. The first application of the analyzer is on board oil tankers to control the discharge process of bilge and ballast waters. The analyzer is the first that fully corresponds to the stringent regulations for oil content monitors by the International Maritime Organization (IMO). Pilot installations of the analyzer are made on industrial plants.

  9. Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

    2006-01-01

    A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be reported as estimated with the 'E' remark code for one of three reasons: (1) unacceptably low-biased recovery (less than 60 percent) or highly variable method performance (greater than 25 percent relative standard deviation), (2) reference standards prepared from technical mixtures, or (3) potential blank contamination. Samples were preserved by freezing to -20 degrees Celsius. The U.S. Geological Survey National Water Quality Laboratory has established a 1-year sample-holding time limit (prior to sample extraction) from the date of sample collection (if the sample is kept at -20?C) until a statistically accepted method can be used to determine the effectiveness of the sample-freezing procedure.

  10. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - CSIA Protocol for Vapor Intrusion Investigations

    DTIC Science & Technology

    2014-07-01

    Analyzer TCE Trichloroethene USEPA U.S. Environmental Protection Agency V- PDB Vienna - Pee Dee Belemnite V-SMOW Vienna – Standard Mean Ocean Water ... PDB ) for carbon, Standard Mean Ocean Chloride (SMOC) for chlorine, and Vienna-Standard Mean Ocean Water (V-SMOW) for hydrogen. CSIA Protocol for...7 3.3 INDOOR AIR SAMPLING LOCATIONS ............................................................ 8 3.4 COLLECTION OF WATER SAMPLES

  11. Evaluation of karst water quality as an early reference of land suitability mapping for vaname shrimp (Litopenaeusvannamei) culture media

    NASA Astrophysics Data System (ADS)

    Wildan, D. M.; Affandi, R.; Pratiwi, N. T. M.; Krisanti, M.; Ayu, I. P.; Iswantari, A.

    2017-01-01

    Vaname shrimp (Litopenaeusvannamei) is one of the excellent fishery commodities in Indonesia. Vaname shrimp farming can be conducted in low salinity water. Low salinity water sources which could be used as culture media is karst water because it has a high mineral. The research was aimedto evaluate land suitability mapping for pond as the vaname shrimpculture mediaseen from the water quality. Research was conducted in May and August 2016. Water sampling was conducted in several locations; Ancol-Jakarta (seawater), Ciseeng-Bogor (karst water salinity), Ciampea-Bogor (karst freshwater), and Situ Gede Bogor (freshwater). Evaluating the suitability of karst water quality for vaname shrimp culture media, done by the results of karst water quality analysis compared with seawater and SNI 01-7246-2006 on shrimp vaname culture media. The results showed that Karst water of Ciseeng and Ciampea could not directly use as vaname shrimp culture media. It is needed water quality treatment of ozonation and aeration of karst water to improve water quality. Ozonation and aeration treatments were able to improve the quality of karst water up to approach the living quality standard of vaname shrimp media.

  12. Groundwater conditions in Utah, spring of 2010

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah maximum contaminant levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary drinking-water standards can be accessed online at http://www.rules.utah.gov/publicat/code/r309/r309-200. htm#T5. The U.S. Environmental Protection Agency (EPA) drinking-water standards can be accessed at http://www.epa. gov/safewater/mcl.html#mcls. Maximum contaminant levels and secondary drinking-water standards were developed for public water systems and do not apply to the majority of wells sampled during this study.Every 5 years, this report series includes maps depicting comparisons of 30-year changes in water levels for each of the major areas of groundwater development. The water-level change maps in this report show the difference between water levels measured in 1980 and in 2010. Water-level rises or declines occurring on shorter time scales are shown in plots of annual water-level measurements for several wells in each of the major areas of groundwater development.

  13. Graphite furnace atomic absorption spectrometric detection of vanadium in water and food samples after solid phase extraction on multiwalled carbon nanotubes.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Gul Kazi, Tasneem; Soylak, Mustafa

    2013-11-15

    Vanadium(V) ions as 8-hydroxyquinoline chelates were loaded on multiwalled carbon nanotubes (MWNTs) in a mini chromatographic column. Vanadium was determined by graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters including pH of the working solutions, amounts of 8-hydroxyquinoline, eluent type, sample volume, and flow rates were investigated. The effects of matrix ions and some transition metals were also studied. The column can be reused 250 times without any loss in its sorption properties. The preconcentration factor was found as 100. Detection limit (3 s) and limit of quantification (10 s) for the vanadium in the optimal conditions were observed to be 0.012 µg L(-1) and 0.040 μg L(-1), respectively. The capacity of adsorption was 9.6 mg g(-1). Relative standard deviation (RSD) was found to be 5%. The validation of the method was confirmed by using NIST SRM 1515 Apple leaves, NIST SRM 1570a Spinach leaves and GBW 07605 Tea certified reference materials. The procedure was applied to the determination of vanadium in tap water and bottled drinking water samples. The procedure was also successfully applied to microwave digested food samples including black tea, coffee, tomato, cabbage, zucchini, apple and chicken samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Water quality in the Little Sac River basin near Springfield, Missouri, 1999-2001

    USGS Publications Warehouse

    Smith, Brenda J.

    2002-01-01

    The Little Sac River, north of Springfield, Missouri, flows through mainly agricultural and forest land. However, the quality of the river water is a concern because the river flows into Stockton Lake, which is a supplemental drinking water source for Springfield. Large bacterial densities and nutrient concentrations are primary concerns to the water quality of the river.A 29-river mile reach of the Little Sac River is on the 1998 list of waters of Missouri designated under section 303(d) of the Federal Clean Water Act because of fecal coliform densities larger than the Missouri Department of Natural Resources standard (hereinafter referred to as Missouri standard) of 200 colonies per 100 milliliters for whole-body contact recreation. During an investigation of the water quality in the Little Sac River by the U.S. Geological Survey, in cooperation with the Watershed Committee of the Ozarks, fecal coliform bacteria densities exceeded the Missouri standard (the standard applies from April 1 through October 31) in one sample from a site near Walnut Grove. At other sites on the Little Sac River, the Missouri standard was exceeded in two samples and equalled in one sample upstream from the Northwest Wastewater Treatment Plant (NW WTP) and in one sample immediately downstream from the NW WTP.Effluent from the NW WTP flows into the Little Sac River. Annually from April 1 through October 31, the effluent is disinfected to meet the Missouri standard for whole-body contact recreation. Fecal coliform bacteria densities in samples collected during this period generally were less than 100 colonies per 100 milliliters. For the rest of the year when the effluent was not disinfected, the bacteria densities in samples ranged from 50 (sample collected on November 1, 2000) to 10,100 colonies per 100 milliliters (both counts were non-ideal). When the effluent was disinfected and the fecal coliform bacteria density was small, samples from sites upstream and downstream from the NW WTP had a bacteria density larger than the density in the effluent. Other sources of bacteria are likely to be present in the study area in addition to the NW WTP. These potential sources include effluent from domestic septic systems and animal wastes.Nutrient concentrations in the Little Sac River immediately downstream from the NW WTP were affected by effluent from the NW WTP and possibly other sources. At two sites upstream from the NW WTP, median nitrite plus nitrate concentrations were 1.1 and 1.4 milligrams per liter. The median nitrite plus nitrate concentration for the effluent from the NW WTP was 6.4 milligrams per liter, and the median concentration decreased downstream in the Little Sac River to 2.2, 1.2, and 0.56 milligrams per liter.The effects of the effluent from the NW WTP on the water quality of the Little Sac River downstream from the NW WTP were reflected in an increase in discharge (effluent from the NW WTP can be as much as 50 percent of the flow at the site about 1.5 river miles downstream from the NW WTP), an increase in specific conductance values, an increase in several inorganic constituent concentrations, including calcium, magnesium, and sulfate, and a large increase in sodium and chloride concentrations. The effluent from the NW WTP seemed to have no effect on the pH value, temperature, and dissolved oxygen concentrations in the Little Sac River.Results of repetitive element polymerase chain reaction (rep-PCR) pattern analysis indicated that most Escherichia coli (E. coli) bacteria in water samples probably were from nonhuman sources, such as horses and cattle. The rep-PCR pattern analysis indicated that horses were an important source of E. coli downstream from the NW WTP, which was consistent with horses pastured adjacent to the sampling site. Fecal coliform bacteria loads increased upstream from the NW WTP from the most upstream site to the site immediately upstream from the NW WTP. Loads in the effluent from the NW WTP and also tho

  15. A critical review on iodine presence in drinking water access at the Saharawi refugee camps (Tindouf, Algeria).

    PubMed

    Pichel, N; Vivar, M

    2017-07-01

    Iodine content in drinking water at the Saharawi refugee camps was analysed to assess the controversy in the origin of the prevalence of goitre among this population. A review on the iodine presence in drinking water reported in the literature was conducted, along with international standards and guidelines for iodine intake and iodine concentration in drinking water were also consulted. Chinese legislation was taken as the reference standard to evaluate the iodine concentration in water as adequate (10-150μg/L) or not (high iodine >150μg/L and iodine excess goitre >300μg/L). Water sampling was conducted in 2015 and 2016 at the Saharawi camps (El Aiun, Awserd, Smara, Boujador and Dakhla) and at the institutional capital of Rabouni. The water supply in the camps is organized in three zones: El Aiun and Awserd where each 'wilaya' receives treated water 20days and raw water another 20days; Smara, Rabouni and Boujador receiving treated water continuously and Dakhla receiving raw water continuously. Results show that Smara, Rabouni and Boujador have access to drinking water with adequate iodine levels, as it occurs in Dakhla where raw water meets the Chinese standard, however in El Aiun and Awserd all population should have access to treated water given the current quality of the raw water supply. External supplies of water and animal milk could be also contributing to the high iodine intake. In conclusion, the contribution of drinking water as the main source of iodine to the urinary iodine concentration (UIC) and goitre prevalence among the Saharawi refugee population is not clear. Further studies should be conducted to assess the iodine content among all the nutritional sources of the population with a detailed study on the daily intake of these foods and drinks, including UIC and goitre prevalence studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Does the bathing water classification depend on sampling strategy? A bootstrap approach for bathing water quality assessment, according to Directive 2006/7/EC requirements.

    PubMed

    López, Iago; Alvarez, César; Gil, José L; Revilla, José A

    2012-11-30

    Data on the 95th and 90th percentiles of bacteriological quality indicators are used to classify bathing waters in Europe, according to the requirements of Directive 2006/7/EC. However, percentile values and consequently, classification of bathing waters depend both on sampling effort and sample-size, which may undermine an appropriate assessment of bathing water classification. To analyse the influence of sampling effort and sample size on water classification, a bootstrap approach was applied to 55 bacteriological quality datasets of several beaches in the Balearic Islands (Spain). Our results show that the probability of failing the regulatory standards of the Directive is high when sample size is low, due to a higher variability in percentile values. In this way, 49% of the bathing waters reaching an "Excellent" classification (95th percentile of Escherichia coli under 250 cfu/100 ml) can fail the "Excellent" regulatory standard due to sampling strategy, when 23 samples per season are considered. This percentage increases to 81% when 4 samples per season are considered. "Good" regulatory standards can also be failed in bathing waters with an "Excellent" classification as a result of these sampling strategies. The variability in percentile values may affect bathing water classification and is critical for the appropriate design and implementation of bathing water Quality Monitoring and Assessment Programs. Hence, variability of percentile values should be taken into account by authorities if an adequate management of these areas is to be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Specificity of coliphages in evaluating marker efficacy: a new insight for water quality indicators.

    PubMed

    Mookerjee, Subham; Batabyal, Prasenjit; Halder, Madhumanti; Palit, Anup

    2014-11-01

    Conventional procedures for qualitative assessment of coliphage are time consuming multiple step approach for achieving results. A modified and rapid technique has been introduced for determination of coliphage contamination among potable water sources during water borne outbreaks. During December 2013, 40 water samples from different potable water sources, were received for water quality analyses, from a jaundice affected Municipality of West Bengal, India. Altogether, 30% water samples were contaminated with coliform (1-20 cfu/ml) and 5% with E. coli (2-5 cfu/ml). Among post-outbreak samples, preponderance of coliform has decreased (1-4 cfu/ml) with total absence of E. coli. While standard technique has detected 55% outbreak samples with coliphage contamination, modified technique revealed that 80%, double than that of bacteriological identification rate, were contaminated with coliphages (4-20 pfu/10 ml). However, post-outbreak samples were detected with 1-5 pfu/10 ml coliphages among 20% samples. Coliphage detection rate through modified technique was nearly double (50%) than that of standard technique (27.5%). In few samples (with coliform load of 10-100 cfu/ml), while modified technique could detect coliphages among six samples (10-20 pfu/10 ml), standard protocol failed to detect coliphage in any of them. An easy, rapid and accurate modified technique has thereby been implemented for coliphage assessment from water samples. Coliform free water does not always signify pathogen free potable water and it is demonstrated that coliphage is a more reliable 'biomarker' to ascertain contamination level in potable water. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ultratrace determination of arsenic in water samples by electrothermal atomic absorption spectrometry after pre-concentration with Mg-Al-Fe ternary layered double hydroxide nano-sorbent.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh

    2013-11-15

    A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of polycyclic aromatic hydrocarbon compounds in sediment by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Olson, Mary C.; Iverson, Jana L.; Furlong, Edward T.; Schroeder, Michael P.

    2004-01-01

    A method for the determination of 28 polycyclic aromatic hydrocarbons (PAHs) and 25 alkylated PAH homolog groups in sediment samples is described. The compounds are extracted from sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography. The compounds are identified and uantitated using capillary-column gas chromatography/mass spectrometry. The report presents performance data for full-scan ion monitoring. Method detection limits in laboratory reagent matrix samples range from 1.3 to 5.1 micrograms per kilogram for the 28 PAHs. The 25 groups of alkylated PAHs are homologs of five groups of isomeric parent PAHs. Because of the lack of authentic standards, these homologs are reported semiquantitatively using a response factor from a parent PAH or a specific alkylated PAH. Precision data for the alkylated PAH homologs are presented using two different standard reference manuals produced by the National Institute of Standards and Technology: SRM 1941b and SRM 1944. The percent relative standard deviations for identified alkylated PAH homolog groups ranged from 1.55 to 6.98 for SRM 1941b and from 6.11 to 12.0 for SRM 1944. Homolog group concentrations reported under this method include the concentrations of individually identified compounds that are members of the group. Organochlorine (OC) pesticides--including toxaphene, polychlorinated biphenyls (PCBs), and organophosphate (OP) pesticides--can be isolated simultaneously using this method. In brief, sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethan (95 percent) and methanol (5 percent). The extract is concentrated and then filtered through a 0.2-micrometer polytetrafluoroethylene syringe filter. The PAH fraction is isolated by quantitatively injecting an aliquot of sample onto two polystyrene-divinylbenzene gel-permeation chromatographic columns connected in series. The compounds are eluted with dichloromethane, a PAH fraction is collected, and a portion of the coextracted interferences, including elemental sulfur, is separated and discarded. The extract is solvent exchanged, the volume is reduced, and internal standard is added. Sample analysis is completed using a gas chromatograph/mass spectrometer and full-scan acquisition.

  20. National Survey of Adult and Pediatric Reference Intervals in Clinical Laboratories across Canada: A Report of the CSCC Working Group on Reference Interval Harmonization.

    PubMed

    Adeli, Khosrow; Higgins, Victoria; Seccombe, David; Collier, Christine P; Balion, Cynthia M; Cembrowski, George; Venner, Allison A; Shaw, Julie

    2017-11-01

    Reference intervals are widely used decision-making tools in laboratory medicine, serving as health-associated standards to interpret laboratory test results. Numerous studies have shown wide variation in reference intervals, even between laboratories using assays from the same manufacturer. Lack of consistency in either sample measurement or reference intervals across laboratories challenges the expectation of standardized patient care regardless of testing location. Here, we present data from a national survey conducted by the Canadian Society of Clinical Chemists (CSCC) Reference Interval Harmonization (hRI) Working Group that examines variation in laboratory reference sample measurements, as well as pediatric and adult reference intervals currently used in clinical practice across Canada. Data on reference intervals currently used by 37 laboratories were collected through a national survey to examine the variation in reference intervals for seven common laboratory tests. Additionally, 40 clinical laboratories participated in a baseline assessment by measuring six analytes in a reference sample. Of the seven analytes examined, alanine aminotransferase (ALT), alkaline phosphatase (ALP), and creatinine reference intervals were most variable. As expected, reference interval variation was more substantial in the pediatric population and varied between laboratories using the same instrumentation. Reference sample results differed between laboratories, particularly for ALT and free thyroxine (FT4). Reference interval variation was greater than test result variation for the majority of analytes. It is evident that there is a critical lack of harmonization in laboratory reference intervals, particularly for the pediatric population. Furthermore, the observed variation in reference intervals across instruments cannot be explained by the bias between the results obtained on instruments by different manufacturers. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. LIMS for Lasers 2015 for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Wassenaar, Leonard I

    2015-01-01

    RationaleAlthough laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits.MethodsA Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ17O, δ18O, and δ2H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales.ResultsCost-free LIMS for Lasers 2015 enables users to obtain improved δ17O, δ18O, and δ2H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ2HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale.ConclusionsLIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ2H, δ17O, and δ18O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits easily. Published in 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Investigation of electrolyte measurement in diluted whole blood using spectroscopic and chemometric methods

    NASA Technical Reports Server (NTRS)

    Soller, Babs R.; Favreau, Janice; Idwasi, Patrick O.

    2003-01-01

    The feasibility of using near-infrared (NIR) spectroscopy in combination with partial least-squares (PLS) regression was explored to measure electrolyte concentration in whole blood samples. Spectra were collected from diluted blood samples containing randomized, clinically relevant concentrations of Na+, K+, and Ca2+. Sodium was also studied in lysed blood. Reference measurements were made from the same samples using a standard clinical chemistry instrument. Partial least squares (PLS) was used to develop calibration models for each ion with acceptable results (Na+, R2 = 0.86, CVSEP = 9.5 mmol/L; K+, R2 = 0.54, CVSEP = 1.4 mmol/L; Ca2+, R2 = 0.56, CVSEP = 0.18 mmol/L). Slightly improved results were obtained using a narrower wavelength region (470-925 nm) where hemoglobin, but not water, absorbed indicating that ionic interaction with hemoglobin is as effective as water in causing measurable spectral variation. Good models were also achieved for sodium in lysed blood, illustrating that cell swelling, which is correlated with sodium concentration, is not required for calibration model development.

  3. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination.

    PubMed

    Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa

    2010-01-15

    A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n=21) was 0.75 microg L(-1) for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.

  4. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  5. Evaluation of nutrient quality-assurance data for Alexanders and Mount Rock Spring basins, Cumberland County, Pennsylvania

    USGS Publications Warehouse

    Witt, E. C.; Hippe, D.J.; Giovannitti, R.M.

    1992-01-01

    A total of 304 nutrient samples were collected from May 1990 through September 1991 to determine concentrations and loads of nutrients in water discharged from two spring basins in Cumberland County, Pa. Fifty-four percent of these nutrient samples were for the evaluation of (1) laboratory consistency, (2) container and preservative cleanliness, (3) maintenance of analyte representativeness as affected by three different preservation methods, and (4) comparison of analyte results with the "Most Probable Value" for Standard Reference Water Samples. Results of 37 duplicate analyses indicate that the Pennsylvania Department of Environmental Resources, Bureau of Laboratories (principal laboratory) remained within its ±10 percent goal for all but one analyte. Results of the blank analysis show that the sampling containers did not compromise the water quality. However, mercuric-chloride-preservation blanks apparently contained measurable ammonium in four of five samples and ammonium plus organic nitrogen in two of five samples. Interlaboratory results indicate substantial differences in the determination of nitrate and ammonium plus organic nitrogen between the principal laboratory and the U.S. Geological Survey National Water-Quality Laboratory. In comparison with the U.S. Environmental Protection Agency Quality-Control Samples, the principal laboratory was sufficiently accurate in its determination of nutrient anafytes. Analysis of replicate samples indicated that sulfuric-acid preservative best maintained the representativeness of the anafytes nitrate and ammonium plus organic nitrogen, whereas, mercuric chloride best maintained the representativeness of orthophosphate. Comparison of nutrient analyte determinations with the Most Probable Value for each preservation method shows that two of five analytes with no chemical preservative compare well, three of five with mercuric-chloride preservative compare well, and three of five with sulfuricacid preservative compare well.

  6. Nano sponge Mn₂O ₃ as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Serife; Sahan, Halil; Patat, Saban

    2014-10-01

    In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were significantly overestimated (40 to 82 %) by the chemical tracers. These observations, coupled with the storm-to-storm patterns in precipitation isotope inputs and the associated stream water isotope response, led to a conceptual hypothesis for runoff generation in the catchment. Under this hypothesis, the pre-event water that is mobilized by precipitation events may, depending on antecedent moisture conditions, be significantly shallower, younger, and less mineralized than the deeper, older water that feeds baseflow and thus defines the pre-event endmember used in hydrograph separation. This proof-of-concept study illustrates the potential advantages of capturing isotopic and hydrochemical behavior at a high frequency over extended periods that span multiple hydrologic events.

  8. SI-Traceable Water Content Measurements in Solids, Bulks, and Powders

    NASA Astrophysics Data System (ADS)

    Østergaard, Peter; Nielsen, Jan

    2018-01-01

    Methods such as Karl Fischer titration and Loss-on-Drying, commonly used for estimating moisture content in samples, have been in existence for many years, but have difficulties obtaining a direct calibration chain toward water content. In recognition of this challenge, the joint research project, METefnet, was funded by the European Metrology Research Programme in 2012. The goal of METefnet is to establish a European metrology infrastructure for water content measurement and to develop primary standards for unambiguous determination of water mass fraction in materials. Here, we describe the primary standard developed by Danish Technological Institute in METefnet. This standard establishes traceability of the water content of a sample to dewpoint temperature. The standard only measures water, and the measurement result is not affected by other components.

  9. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  10. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    USGS Publications Warehouse

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and Salmonella, indicating that there are still risks even when the E. coli standard is not exceeded. River samples in which the secondary-contact recreational standard for E. coli was exceeded showed a higher percentage of the co-occurrence of pathogenic organisms than samples that met the standard. This indicates that in this study area, E. coli is a useful indicator of human health risk. Detections of hepatitis A virus tended to be associated with higher median concentrations of somatic coliphage, F-specific coliphage, and infectious enterovirus. In addition, geometric mean C. perfringens concentrations tended to be higher in samples where hepatitis A virus was present than in samples where hepatitis A virus was absent. Hepatitis A virus was not detected in samples collected upstream from the Akron WPCS; all downstream detections had coincident detections in the Akron WPCS effluent, suggesting that Akron WPCS was a principal source of hepatitis A virus at the downstream sites. Geometric mean concentrations of E. coli were calculated on the basis of analytical results from at least five samples collected at each river site during May, July, and September of 2000. In each case, the Ohio geometric-mean primary-contact recreational standard of 126 col/100 mL was exceeded. E. coli concentrations were significantly correlated with streamflow and increased with streamflow at sites upstream and downstream from the Akron WPCS. This indicates that E. coli loads from sources upstream from the Akron WPCS have the potential to appreciably influence the frequency of attainment of recreational water-quality standards at downstream locations.

  11. 40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...

  12. 40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...

  13. 40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...

  14. 40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...

  15. 40 CFR 63.705 - Performance test methods and procedures to determine initial compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per gram-mole. Pi = Barometric pressure at the time of sample analysis, millimeters mercury absolute. 760 = Reference or standard pressure, millimeters mercury absolute. 293 = Reference or standard...: ER15DE94.005 (i) The value of RSi is zero unless the owner or operator submits the following information to...

  16. Assessment of nonpoint source chemical loading potential to watersheds containing uranium waste dumps associated with uranium exploration and mining, San Rafael Swell, Utah

    USGS Publications Warehouse

    Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg

    2008-01-01

    During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.

  17. UV disinfection in drinking water supplies.

    PubMed

    Hoyer, O

    2000-01-01

    UV disinfection has become a practical and safely validatable disinfection procedure by specifying the requirements for testing and monitoring in DVGW standard W 294. A standardized biodosimetric testing procedure and monitoring with standardized UV sensors is introduced and successfully applied. On-line monitoring of irradiance can be counterchecked with handheld reference sensors and makes it possible that UV systems can be used for drinking water disinfection with the same level of confidence and safety as is conventional chemical disinfection.

  18. Standard methods for sampling North American freshwater fishes

    USGS Publications Warehouse

    Bonar, Scott A.; Hubert, Wayne A.; Willis, David W.

    2009-01-01

    This important reference book provides standard sampling methods recommended by the American Fisheries Society for assessing and monitoring freshwater fish populations in North America. Methods apply to ponds, reservoirs, natural lakes, and streams and rivers containing cold and warmwater fishes. Range-wide and eco-regional averages for indices of abundance, population structure, and condition for individual species are supplied to facilitate comparisons of standard data among populations. Provides information on converting nonstandard to standard data, statistical and database procedures for analyzing and storing standard data, and methods to prevent transfer of invasive species while sampling.

  19. Metrologically Traceable Determination of the Water Content in Biopolymers: INRiM Activity

    NASA Astrophysics Data System (ADS)

    Rolle, F.; Beltramino, G.; Fernicola, V.; Sega, M.; Verdoja, A.

    2017-03-01

    Water content in materials is a key factor affecting many chemical and physical properties. In polymers of biological origin, it influences their stability and mechanical properties as well as their biodegradability. The present work describes the activity carried out at INRiM on the determination of water content in samples of a commercial starch-derived biopolymer widely used in shopping bags (Mater-Bi^{circledR }). Its water content, together with temperature, is the most influencing parameter affecting its biodegradability, because of the considerable impact on the microbial activity which is responsible for the biopolymer degradation in the environment. The main scope of the work was the establishment of a metrologically traceable procedure for the determination of water content by using two electrochemical methods, namely coulometric Karl Fischer (cKF) titration and evolved water vapour (EWV) analysis. The obtained results are presented. The most significant operational parameters were considered, and a particular attention was devoted to the establishment of metrological traceability of the measurement results by using appropriate calibration procedures, calibrated standards and suitable certified reference materials. Sample homogeneity and oven-drying temperature were found to be the most important influence quantities in the whole water content measurement process. The results of the two methods were in agreement within the stated uncertainties. Further development is foreseen for the application of cKF and EWV to other polymers.

  20. Sulfate and sulfide sulfur isotopes (δ34S and δ33S) measured by solution and laser ablation MC-ICP-MS: An enhanced approach using external correction

    USGS Publications Warehouse

    Pribil, Michael; Ridley, William I.; Emsbo, Poul

    2015-01-01

    Isotope ratio measurements using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) commonly use standard-sample bracketing with a single isotope standard for mass bias correction for elements with narrow-range isotope systems measured by MC-ICP-MS, e.g. Cu, Fe, Zn, and Hg. However, sulfur (S) isotopic composition (δ34S) in nature can range from at least − 40 to + 40‰, potentially exceeding the ability of standard-sample bracketing using a single sulfur isotope standard to accurately correct for mass bias. Isotopic fractionation via solution and laser ablation introduction was determined during sulfate sulfur (Ssulfate) isotope measurements. An external isotope calibration curve was constructed using in-house and National Institute of Standards and Technology (NIST) Ssulfate isotope reference materials (RM) in an attempt to correct for the difference. The ability of external isotope correction for Ssulfate isotope measurements was evaluated by analyzing NIST and United States Geological Survey (USGS) Ssulfate isotope reference materials as unknowns. Differences in δ34Ssulfate between standard-sample bracketing and standard-sample bracketing with external isotope correction for sulfate samples ranged from 0.72‰ to 2.35‰ over a δ34S range of 1.40‰ to 21.17‰. No isotopic differences were observed when analyzing Ssulfide reference materials over a δ34Ssulfide range of − 32.1‰ to 17.3‰ and a δ33S range of − 16.5‰ to 8.9‰ via laser ablation (LA)-MC-ICP-MS. Here, we identify a possible plasma induced fractionation for Ssulfate and describe a new method using external isotope calibration corrections using solution and LA-MC-ICP-MS.

  1. Measuring the sea: the first oceanographic cruise (1679-1680) and the roots of oceanography

    NASA Astrophysics Data System (ADS)

    Pinardi, Nadia; Özsoy, Emin; Latif, Mohammed Abdul; Moroni, Franca; Grandi, Alessandro; Manzella, Giuseppe; De Strobel, Federico; Lyubartsev, Vladyslav

    2017-04-01

    The first quantitative measurements of seawater properties were carried out by Count Luigi Ferdinando Marsili in a cruise between 1679 and 1680 in the Aegean Sea, Marmara Sea and the Bosphorus Strait. The data reported in the historical oceanographic treatise "Osservazioni intorno al Bosforo Tracio" (Marsili, 1681) allowed us to reconstruct the seawater density at different geographic locations in 1679-1680. The Marsili experimental methodology included the collection of surface and deep water samples from the ship, the analysis of the samples with a hydrostatic ampoule and the choice of a reference water to standardize the measurements. Reconstructed densities comparison with present day values show agreement within a 10-20% uncertainty owing to some aspects of the measurement methodology which are difficult to reconstruct from the documentary evidence. The experimental data collected in the Bosphorus allowed Marsili to enunciate a theory on the cause of the two-layer flow at the Strait, thereafter confirmed by many laboratory and numerical studies.

  2. UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from themore » US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.« less

  3. Development and Deployment of a Portable Water Isotope Analyzer for Accurate, Continuous and High-Frequency Oxygen and Hydrogen Isotope Measurements in Water Vapor and Liquid Water

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Stable isotopes of water in liquid and vapor samples are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of del_18O and del_2H are critical to advance the understanding of water cycle dynamics around the globe. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent laboratory development and field deployment of a novel Water Vapor Isotope Analyzer (WVIA), based on cavity enhanced laser absorption spectroscopy, capable of simultaneous in-situ measurements of del_18O and del_2H and water mixing ratio with high precision and high frequency (up to 10 Hz measurement rate). In addition, to ensure the accuracy of the water vapor isotope measurements, a novel Water Vapor Isotope Standard Source (WVISS), based on the instantaneous evaporation of micro-droplets of liquid water (with known isotope composition), has been developed to provide the reference water vapor with widely adjustable mixing ratio (500-30,000 ppmv) for real-time calibration of the WVIA. The comprehensive system that includes the WVIA and WVISS has been validated in extensive laboratory and field studies to be insensitive to ambient temperature changes (5-40 C) and to changes in water mixing ratio over a wide range of mixing ratios. In addition, by operating in the dual inlet mode, measurement drift has essentially been eliminated. The system (WVIA+WVISS) has also been deployed for long-term unattended continuous measurements in the field. In addition to water vapor isotope measurements, the new Water Vapor Isotopic Standard Source (WVISS) may be combined with the WVIA to provide continuous isotopic measurements of liquid water samples at rapid data rate. The availability of these new field instruments provides new opportunities for detailed continuous measurements of the hydrological cycle and ecological systems.

  4. One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.

    PubMed

    Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz

    2009-07-15

    The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.

  5. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1986-92

    USGS Publications Warehouse

    Tadayon, Saeid; Smith, C.F.

    1994-01-01

    Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.

  6. Stable isotope quality assurance using the 'calibrated IRMS' strategy.

    PubMed

    Meijer, Harro A J

    2009-06-01

    Procedures in our laboratory have always been directed towards complete understanding of all processes involved and corrections needed etc., instead of relying fully on laboratory reference materials. This rather principal strategy (or attitude) is probably not optimal in the economic sense, and is not necessarily more accurate either. Still, it has proven to be very rewarding in its capability to detect caveats that go undiscovered in the standard way of measurement, but that do influence the accuracy or reliability of the measurement procedure. An additional benefit of our laboratory procedures is that it makes us capable of assisting the International Atomic Energy Agency (IAEA) with primary questions like mutual scale assignments and comparison of isotope ratios of the same isotope in different matrices (like delta(18)O in water, carbonates and atmospheric CO(2)), establishment of the (17)O-(18)O relation, and the replenishment of the calibration standards. Finally, for manual preparation systems with a low sample throughput (and thus only few reference materials analysed) it may well be the only way to produce reliable results.

  7. Density matters: Review of approaches to setting organism-based ballast water discharge standards

    USGS Publications Warehouse

    Lee II,; Frazier,; Ruiz,

    2010-01-01

    As part of their effort to develop national ballast water discharge standards under NPDES permitting, the Office of Water requested that WED scientists identify and review existing approaches to generating organism-based discharge standards for ballast water. Six potential approaches were identified and the utility and uncertainties of each approach was evaluated. During the process of reviewing the existing approaches, the WED scientists, in conjunction with scientists at the USGS and Smithsonian Institution, developed a new approach (per capita invasion probability or "PCIP") that addresses many of the limitations of the previous methodologies. THE PCIP approach allows risk managers to generate quantitative discharge standards using historical invasion rates, ballast water discharge volumes, and ballast water organism concentrations. The statistical power of sampling ballast water for both the validation of ballast water treatment systems and ship-board compliance monitoring with the existing methods, though it should be possible to obtain sufficient samples during treatment validation. The report will go to a National Academy of Sciences expert panel that will use it in their evaluation of approaches to developing ballast water discharge standards for the Office of Water.

  8. Application of the BMWP-Costa Rica biotic index in aquatic biomonitoring: sensitivity to collection method and sampling intensity.

    PubMed

    Gutiérrez-Fonseca, Pablo E; Lorion, Christopher M

    2014-04-01

    The use of aquatic macroinvertebrates as bio-indicators in water quality studies has increased considerably over the last decade in Costa Rica, and standard biomonitoring methods have now been formulated at the national level. Nevertheless, questions remain about the effectiveness of different methods of sampling freshwater benthic assemblages, and how sampling intensity may influence biomonitoring results. In this study, we compared the results of qualitative sampling using commonly applied methods with a more intensive quantitative approach at 12 sites in small, lowland streams on the southern Caribbean slope of Costa Rica. Qualitative samples were collected following the official protocol using a strainer during a set time period and macroinvertebrates were field-picked. Quantitative sampling involved collecting ten replicate Surber samples and picking out macroinvertebrates in the laboratory with a stereomicroscope. The strainer sampling method consistently yielded fewer individuals and families than quantitative samples. As a result, site scores calculated using the Biological Monitoring Working Party-Costa Rica (BMWP-CR) biotic index often differed greatly depending on the sampling method. Site water quality classifications using the BMWP-CR index differed between the two sampling methods for 11 of the 12 sites in 2005, and for 9 of the 12 sites in 2006. Sampling intensity clearly had a strong influence on BMWP-CR index scores, as well as perceived differences between reference and impacted sites. Achieving reliable and consistent biomonitoring results for lowland Costa Rican streams may demand intensive sampling and requires careful consideration of sampling methods.

  9. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines. Data were collected during water year 2002 following USGS protocols (U.S. Geological Survey, variously dated).

  10. Analysis of hydrazine in drinking water by isotope dilution gas chromatography/tandem mass spectrometry with derivatization and liquid-liquid extraction.

    PubMed

    Davis, William E; Li, Yongtao

    2008-07-15

    A new isotope dilution gas chromatography/chemical ionization/tandem mass spectrometric method was developed for the analysis of carcinogenic hydrazine in drinking water. The sample preparation was performed by using the optimized derivatization and multiple liquid-liquid extraction techniques. Using the direct aqueous-phase derivatization with acetone, hydrazine and isotopically labeled hydrazine-(15)N2 used as the surrogate standard formed acetone azine and acetone azine-(15)N2, respectively. These derivatives were then extracted with dichloromethane. Prior to analysis using methanol as the chemical ionization reagent gas, the extract was dried with anhydrous sodium sulfate, concentrated through evaporation, and then fortified with isotopically labeled N-nitrosodimethylamine-d6 used as the internal standard to quantify the extracted acetone azine-(15)N2. The extracted acetone azine was quantified against the extracted acetone azine-(15)N2. The isotope dilution standard calibration curve resulted in a linear regression correlation coefficient (R) of 0.999. The obtained method detection limit was 0.70 ng/L for hydrazine in reagent water samples, fortified at a concentration of 1.0 ng/L. For reagent water samples fortified at a concentration of 20.0 ng/L, the mean recoveries were 102% with a relative standard deviation of 13.7% for hydrazine and 106% with a relative standard deviation of 12.5% for hydrazine-(15)N2. Hydrazine at 0.5-2.6 ng/L was detected in 7 out of 13 chloraminated drinking water samples but was not detected in the rest of the chloraminated drinking water samples and the studied chlorinated drinking water sample.

  11. Carrier phase altimetry using Zeppelin based GNSS-R observations and water gauge reference data

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Schön, Steffen; Beckheinrich, Jamila; Beyerle, Georg; Ge, Maorong; Wickert, Jens

    2014-05-01

    The increasing number of transmitters in global navigation satellite systems (GNSS), like GPS, Galileo, Glonass or Compass, provide observations with an increasing coverage for positioning but also for remote sensing. A space based GNSS remote sensing application is radio occultation, a limb sounding method. Globally distributed vertical profiles of temperature, water vapour and electron density are provided operationally for weather forecast and ionospheric monitoring. Another application is GNSS reflectometry (GNSS-R) that is currently developed especially for ocean remote sensing. The high reflection coefficient of water is crucial for GNSS-R. This study presents a method that uses GNSS phase observations for lake altimetry with the potential for ocean application. Phase observations are deduced from a GORS (GNSS Occultaction Reflectometry Scatterometry) receiver in Master-Slave-Configuration. The Master sampling dedicated for direct signal acquisition is connected to an up-looking antenna with right hand circular polarization (RHCP). Two Slave samplings dedicated for acquisition of the reflected signals are connected to down-looking antennas with right- and left-hand circular polarization (RHCP and LHCP). Based on in-phase and quad-phase (I, Q) sample components, an altimetric phase residual is retrieved. This residual can be related to the height of the reflecting surface. An altimetric challenge arises from the unknown ambiguity of phase residuals that introduces a height bias. The presented study uses ancillary data deduced from water gauges to mitigate the ambiguity bias. Reference tracks are formed by linear surface height interpolation between the water gauge stations. At crossover points of reflection tracks with reference tracks a phase ambiguity estimate is determined for bias mitigation. For this study airborne GNSS measurements were conducted aboard a Zeppelin NT (New Technology) airship with a geodetic receiver for navigation and a GORS receiver for reflectometry. The corresponding Zeppelin campaign was conducted in Sep 2012. It comprised three days with in total 13 flight hours over lake Constance (9.0°-9.8°E; 47.5°-47.8°N). Compared to a similar Zeppelin campaign in Oct 2010, Slave tracking problems could be solved providing reflection events with continuous tracks of up to 30min. The airship's trajectory is determined from navigation data with a precision better than 10cm in Precise Point Positioning mode supported by additional GNSS ground station data. Water gauge reference data around the lake is provided by stations at Friedrichshafen, Konstanz, Lindau and Romanshorn. Situated in vicinity of the Upper Rhine Plain the lake surface is affected by gravity anomalies in this region. As a consequence geoid undulations with up to 1m amplitude occur along the lake. Predictions of surface height undulation (including GCG-05 model) agree with phase altimetric retrievals. An example event shows a standard deviation of only 2cm (4cm) for RHCP (LHCP) data. The corresponding mean difference with 53cm (51cm) for RHCP (LHCP), respectively, is related to the residual ambiguity bias persisting after mitigation with reference data.

  12. Evaluation of the possibility of using the water of the Bystrytsya-Nadvirnyans'ka River in Cherniiv (Ukraine) to supply the population with drinking water

    NASA Astrophysics Data System (ADS)

    Pietrzak, D.; Mandryk, O.; Wątor, K.; Kmiecik, E.; Zelmanowych, A.

    2018-02-01

    The article presents the results of the research carried out in order to assess the possibility of using surface water of the Bystrytsya-Nadvirnyans'ka River in Cherniiv (western Ukraine), for the public supply of water intended for human consumption. For this purpose an existing database that contains the results of analyses of surface water samples collected in 1999, 2002, 2005, 2008, 2011 and 2014 was used. Each year, from 8 to 13 samples were collected from the Bystrytsya-Nadvirnyans'ka River in Cherniiv. Physicochemical analyses of the samples taken included the determination of pH value, temperature, TDS, alkalinity, hardness, dissolved oxygen, BOD5, COD, suspended solids and ions: Ca2+, Mg2+, Na+, K+, Fe2+, NH4+, Cu2+, Cl-, SO42-, PO43-, HCO3-, NO2-, NO3-. These chemical analyses were verified by calculation of errors based on the ionic balance. The results of the analyses were referred to the polish applicable requirements for surface water used for public supply of water intended for human consumption and to the regulation regarding the classification of the surface water status and environmental quality standards for priority substances. The results indicate that water of the Bystrytsya-Nadvirnyans'ka River in the area of Cherniiv was out of the class in the years 1999 and 2002 due to exceeding the limit values for category A3 for Cu2+. On the basis of incomplete assessment of the status of the Bystrytsya-Nadvirnyans'ka River water (due to the tests limitation to the physical and chemical components) determined that the water has a bad status because it exceeded the limits for class II for Cl-, SO42-, NO3- and TDS. In the samples collected in 1999 and 2002 it is also observed exceeding the maximum limit concentrations for Cu2+.

  13. Presence of Mycobacterium leprae genotype 4 in environmental waters in Northeast Brazil.

    PubMed

    Holanda, Maísa Viana de; Marques, Livia Erika Carlos; Macedo, Maria Luisa Bezerra de; Pontes, Maria Araci de Andrade; Sabadia, José Antonio Beltrão; Kerr, Ligia Regina Franco Sansigolo; Almeida, Rosa Lívia Freitas; Frota, Cristiane Cunha

    2017-01-01

    This study quantified Mycobacterium leprae bacilli in environmental water samples from five municipalities in the State of Ceará by quantitative polymerase chain reaction (qPCR) and compared the identified genotypes with those obtained from leprosy patient biopsies. We collected five replicas from each of the 30 selected reservoirs and skin lesion biopsies from 25 new leprosy cases treated at a reference center in Fortaleza, Ceará from 2010 to 2013. The 16S rRNA gene region of M. leprae was amplified by qPCR and a standard curve was created with the pIDTBlue 16SrRNAMlep plasmid. The Juazeiro do Norte water samples and the biopsies were genotyped (single nucleotide polymorphism [SNP] 1 to 4) and the SNP 4 genotypes were subtyped. Of the 149 water samples analyzed, 54.4% were positive for the M. leprae DNA. The M. leprae bacilli copy number ranged from 1.42 × 10 -1 to 1.44 × 10 + 2 . Most biopsies showed SNP type 4 (64%), while all samples from Juazeiro do Norte were SNP type 4, with subtype 4-N appearing at the highest frequency. We suggest that environmental waters containing M. leprae bacilli play an important role in disease transmission, justifying PGL-1 seropositivity in individuals living in areas where there is no reported case, and in leprosy cases individuals who report no previous contact with other case. Therefore, further investigation is needed to clarify disease transmission in this region and to explore the role of the environment. We also suggest that in this area surveillance for leprosy cases should be intensified.

  14. Coliform species recovered from untreated surface water and drinking water by the membrane filter, standard, and modified most-probable-number techniques.

    PubMed Central

    Evans, T M; LeChevallier, M W; Waarvick, C E; Seidler, R J

    1981-01-01

    The species of total coliform bacteria isolated from drinking water and untreated surface water by the membrane filter (MF), the standard most-probable-number (S-MPN), and modified most-probable-number (M-MPN) techniques were compared. Each coliform detection technique selected for a different profile of coliform species from both types of water samples. The MF technique indicated that Citrobacter freundii was the most common coliform species in water samples. However, the fermentation tube techniques displayed selectivity towards the isolation of Escherichia coli and Klebsiella. The M-MPN technique selected for more C. freundii and Enterobacter spp. from untreated surface water samples and for more Enterobacter and Klebsiella spp. from drinking water samples than did the S-MPN technique. The lack of agreement between the number of coliforms detected in a water sample by the S-MPN, M-MPN, and MF techniques was a result of the selection for different coliform species by the various techniques. PMID:7013706

  15. Plasma creatinine in dogs: intra- and inter-laboratory variation in 10 European veterinary laboratories

    PubMed Central

    2011-01-01

    Background There is substantial variation in reported reference intervals for canine plasma creatinine among veterinary laboratories, thereby influencing the clinical assessment of analytical results. The aims of the study was to determine the inter- and intra-laboratory variation in plasma creatinine among 10 veterinary laboratories, and to compare results from each laboratory with the upper limit of its reference interval. Methods Samples were collected from 10 healthy dogs, 10 dogs with expected intermediate plasma creatinine concentrations, and 10 dogs with azotemia. Overlap was observed for the first two groups. The 30 samples were divided into 3 batches and shipped in random order by postal delivery for plasma creatinine determination. Statistical testing was performed in accordance with ISO standard methodology. Results Inter- and intra-laboratory variation was clinically acceptable as plasma creatinine values for most samples were usually of the same magnitude. A few extreme outliers caused three laboratories to fail statistical testing for consistency. Laboratory sample means above or below the overall sample mean, did not unequivocally reflect high or low reference intervals in that laboratory. Conclusions In spite of close analytical results, further standardization among laboratories is warranted. The discrepant reference intervals seem to largely reflect different populations used in establishing the reference intervals, rather than analytical variation due to different laboratory methods. PMID:21477356

  16. Developing Water Sampling Standards

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Participants in the D-19 symposium on aquatic sampling and measurement for water pollution assessment were informed that determining the extent of waste water stream pollution is not a cut and dry procedure. Topics discussed include field sampling, representative sampling from storm sewers, suggested sampler features and application of improved…

  17. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-12-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species.

  18. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed Central

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-01-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9831545

  19. Water quality of potential reference lakes in the Arkansas Valley and Ouachita Mountain ecoregions, Arkansas

    USGS Publications Warehouse

    Justus, B.G.; Meredith, Bradley J.

    2014-01-01

    This report describes a study to identify reference lakes in two lake classifications common to parts of two level III ecoregions in western Arkansas—the Arkansas Valley and Ouachita Mountains. Fifty-two lakes were considered. A screening process that relied on land-use data was followed by reconnaissance water-quality sampling, and two lakes from each ecoregion were selected for intensive water-quality sampling. Our data suggest that Spring Lake is a suitable reference lake for the Arkansas Valley and that Hot Springs Lake is a suitable reference lake for the Ouachita Mountains. Concentrations for five nutrient constituents—orthophosphorus, total phosphorus, total kjeldahl nitrogen, total nitrogen, and total organic carbon—were lower at Spring Lake on all nine sampling occasions and transparency measurements at Spring Lake were significantly deeper than measurements at Cove Lake. For the Ouachita Mountains ecoregion, water quality at Hot Springs Lake slightly exceeded that of Lake Winona. The most apparent water-quality differences for the two lakes were related to transparency and total organic carbon concentrations, which were deeper and lower at Hot Springs Lake, respectively. Our results indicate that when nutrient concentrations are low, transparency may be more valuable for differentiating between lake water quality than chemical constituents that have been useful for distinguishing between water-quality conditions in mesotrophic and eutrophic settings. For example, in this oligotrophic setting, concentrations for chlorophyll a can be less than 5 μg/L and diurnal variability that is typically associated with dissolved oxygen in more productive settings was not evident.

  20. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine.

    PubMed

    Chromý, Vratislav; Vinklárková, Bára; Šprongl, Luděk; Bittová, Miroslava

    2015-01-01

    We found previously that albumin-calibrated total protein in certified reference materials causes unacceptable positive bias in analysis of human sera. The simplest way to cure this defect is the use of human-based serum/plasma standards calibrated by the Kjeldahl method. Such standards, commutative with serum samples, will compensate for bias caused by lipids and bilirubin in most human sera. To find a suitable primary reference procedure for total protein in reference materials, we reviewed Kjeldahl methods adopted by laboratory medicine. We found two methods recommended for total protein in human samples: an indirect analysis based on total Kjeldahl nitrogen corrected for its nonprotein nitrogen and a direct analysis made on isolated protein precipitates. The methods found will be assessed in a subsequent article.

  1. Selective speciation and determination of inorganic arsenic in water, food and biological samples.

    PubMed

    Tuzen, Mustafa; Saygi, Kadriye Ozlem; Karaman, Isa; Soylak, Mustafa

    2010-01-01

    A procedure for the speciation of arsenic(III) and arsenic(V) in natural water samples has been established in the presented work. Arsenic(III) ions were quantitatively recovered on Alternaria solani coated Diaion HP-2MG resin at pH 7, while the recoveries of arsenic(V) was below 10%. Arsenic(V) in the mixing solution containing As(III) and As(V) was reduced by using KI and L(+) ascorbic acid solution, then the procedure was applied to determination of total arsenic. Arsenic(V) was calculated as the difference between the total arsenic content and As(III) content. The determination of arsenic was performed by using hydride generation atomic absorption spectrometry. The influences of some alkali, earth alkali and transition metals on the biosorption of arsenic(III) were investigated. The preconcentration factor was 35. The detection limits for As(III) (N=20, k=3) was found as 11 ng L(-1). The relative standard deviation and relative error of the determinations were found to be lower than 7% and 4%, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successively applied for the determination and speciation of inorganic arsenic in water, food and biological samples. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Method development and optimization for the determination of benzene, toluene, ethylbenzene and xylenes in water at trace levels by static headspace extraction coupled to gas chromatography-barrier ionization discharge detection.

    PubMed

    Pascale, Raffaella; Bianco, Giuliana; Calace, Stefania; Masi, Salvatore; Mancini, Ignazio M; Mazzone, Giuseppina; Caniani, Donatella

    2018-05-04

    Benzene, toluene, ethylbenzene, and xylenes, more commonly named BTEX, represent one of the most ubiquitous and hazardous groups of atmospheric pollutants. The goal of our research was the trace quantification of BTEX in water by using a new simple, low-cost, and accurate method, based on headspace (HS) extraction and gas chromatography (GC) coupled to barrier ionization discharge detector (BID). This water application dealt with simple matrices without protein, fat, or humic material that adsorb target analytes, thus the external standard calibration was suitable to quantify each compound. The validation steps included the study of linearity, detection and quantification limits, and accuracy. LODs and LOQs varied from 0.159 to 1.845 μg/L and from 0.202 to 2.452 μg/L, respectively. The recovery was between 0.74 ± 0.13 and 1.15 ± 0.09; relative standard deviations (% RDSs) were less than 12.81% (n = 5) and 14.84% (n = 10). Also, GC performance was evaluated in term of efficiency, peak tailing and resolution. Preliminary results from practical applications to analyses of real samples are presented. The results indicate that static HS coupled to GC-BID is a successful method for BTEX analysis in water samples at the μg/L levels, provided that hydrocarbons interference occur at similar concentration levels. GC-BID may become a routine reference method alongside the official analytical techniques for quality control purposes of contaminated waters. Moreover, the new method is amenable to automation by using commercial HS units. Copyright © 2018. Published by Elsevier B.V.

  3. Water-quality characteristics and ground water quantity of the Fraser River Watershed, Grand County, Colorado, 1998-2001

    USGS Publications Warehouse

    Bauch, Nancy J.; Bails, Jeffrey B.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Grand County Board of County Commissioners, conducted a 4-year study to assess ground- and surface-water-quality conditions and ground-water quantity in the 302-square-mile Fraser River watershed in north-central Colorado. The Fraser River flows north about 28 miles from the headwaters near the Continental Divide, through the towns of Winter Park, Fraser, Tabernash, and Granby, and is one of the major tributaries to the Upper Colorado River. Increasing urban development, as well as the seasonal influx of tourists, is placing more demands on the water resources in the Fraser River watershed. A ground-water sampling network of 11 wells was established to represent different aquifer systems (alluvial, Troublesome Formation, Precambrian granite), land uses (urban, nonurban), and areas with or without individual septic disposal system use. The well network was sampled for ground-water quality on a semiannual basis from August 1998 through September 2001. The sampling included field properties and the collection of water samples for analysis of major ions, trace elements, nutrients, dissolved organic carbon, bacteria, methylene blue active substances, and radon-222. One surface-water site, on the Fraser River just downstream from the town of Tabernash, Colorado, was sampled bimonthly from August 1998 through September 2001 to assess the cumulative effects of natural and human processes on water quality in the upper part of the Fraser River watershed. Surface-water-quality sampling included field properties and the collection of water-quality samples for analysis of major ions, trace elements, nutrients, organic carbon, and bacteria. Ground water was a calcium-bicarbonate type water and is suitable as a drinking-water, domestic, municipal, industrial, and irrigation source. In general, no widespread ground-water-quality problems were indicated. All pH values and concentrations of dissolved solids, chloride, fluoride, sulfate, nitrite, and nitrate in the ground-water samples met or were substantially less than U.S. Environmental Protection Agency drinking-water standards and health advisories or State of Colorado water-quality standards. Federal standards for turbidity and concentrations of iron, manganese, methylene blue active substances, and radon-222 were not met in water samples from at least one well. The only ground-water-quality concern assessed by this study is radon-222, which was detected in all radon- analyzed samples from 10 wells at levels exceeding the proposed U.S. Environmental Protection Agency drinking-water standard of 300 picocuries per liter. Concentrations of chloride, magnesium, and sulfate were statistically different (higher) in ground-water samples from wells completed in the alluvial aquifer, urbanized areas, and areas with individual septic disposal system use than those from wells completed in the Troublesome Formation, nonurban areas, and areas without individual septic disposal system use. Dissolved organic carbon concentrations were statistically higher in ground-water samples from wells completed in the alluvial aquifer and areas without individual septic disposal system use than those from wells completed in the Troublesome Formation and areas with individual septic disposal system use. Differences in dissolved organic-carbon concentrations between the latter category and areas without septic systems likely had no environmental significance. Surface water at the site Fraser River below Crooked Creek at Tabernash was a calcium-bicarbonate type water and is suitable as a drinking-water, residential, commercial, and irrigation resource. All pH values and concentrations of dissolved oxygen were within the State of Colorado instream water-quality standards, and all concentrations of chloride, sulfate, iron, manganese, un-ionized ammonia, nitrite, nitrate, and fecal coliform bacteria met State standards. Seasonal changes in the values or conc

  4. Determination of calcium, magnesium and zinc in lubricating oils by flame atomic absorption spectrometry using a three-component solution.

    PubMed

    Zmozinski, Ariane V; de Jesus, Alexandre; Vale, Maria G R; Silva, Márcia M

    2010-12-15

    Lubricating oils are used to decrease wear and friction of movable parts of engines and turbines, being in that way essential for the performance and the increase of that equipment lifespan. The presence of some metals shows the addition of specific additives such as detergents, dispersals and antioxidants that improve the performance of these lubricants. In this work, a method for determination of calcium, magnesium and zinc in lubricating oil by flame atomic absorption spectrometry (F AAS) was developed. The samples were diluted with a small quantity of aviation kerosene (AVK), n-propanol and water to form a three-component solution before its introduction in the F AAS. Aqueous inorganic standards diluted in the same way have been used for calibration. To assess the accuracy of the new method, it was compared with ABNT NBR 14066 standard method, which consists in diluting the sample with AVK and in quantification by F AAS. Two other validating methods have also been used: the acid digestion and the certified reference material NIST (SRM 1084a). The proposed method provides the following advantages in relation to the standard method: significant reduction of the use of AVK, higher stability of the analytes in the medium and application of aqueous inorganic standards for calibration. The limits of detection for calcium, magnesium and zinc were 1.3 μg g(-1), 0.052 μg g(-1) and 0.41 μg g(-1), respectively. Concentrations of calcium, magnesium and zinc in six different samples obtained by the developed method did not differ significantly from the results obtained by the reference methods at the 95% confidence level (Student's t-test and ANOVA). Therefore, the proposed method becomes an efficient alternative for determination of metals in lubricating oil. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system.

    PubMed

    de Gois, Jefferson S; Vallelonga, Paul; Spolaor, Andrea; Devulder, Veerle; Borges, Daniel L G; Vanhaecke, Frank

    2016-01-01

    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br(+) signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L(-1) of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The δ(81)Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the (81)Br/(79)Br ratio (0.97291) was determined with a precision ≤0.08‰ relative standard deviation (RSD).

  6. Membrane solid phase microextraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples.

    PubMed

    Cui, Chao; He, Man; Hu, Bin

    2011-03-15

    A novel alumina hollow fiber was synthesized by sol-gel template method and was characterized by scanning electron microscopy, N(2) adsorption technique and X-ray diffraction. With the use of prepared alumina hollow fiber as extraction membrane, a new method of flow injection (FI)-membrane solid phase microextraction (MSPME) on-line coupled to inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for simultaneous determination of trace metals (Cu, Mn and Ni) in environmental water samples. The adsorption capacities of the alumina hollow fiber for Cu, Mn and Ni were found to be 6.6, 8.7 and 13.3 mg g(-1), respectively. With a preconcentration factor of 10, the limits of detection (LODs) for Cu, Mn and Ni were found to be 0.88, 0.61 and 0.38 ng mL(-1), respectively, and the relative standard deviations (RSDs) were ranging from 6.2 to 7.9% (n = 7, c = 10 ng mL(-1)). To validate the accuracy, the proposed method was applied to the analysis of certified reference material GSBZ50009-88 environmental water and the determined values are in good agreement with the certified values. The developed method was also employed for the analysis of Yangtze River water and East Lake water, and the recoveries for the spiked samples were in the range of 87.4-110.2%. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Four reference soil and rock samples for measuring element availability in the Western Energy Regions

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.

    1980-01-01

    Attaining acceptable precision in extractable element determinations is more difficult than in total element determinations. In total element determinations, dissolution of the sample is qualitatively checked by the clarity of the solution and the absence of residues. These criteria cannot be used for extracts. Possibilities for error are introduced in virtually every step in soil extractions. Therefore, the use of reference materials whose homogeneity and element content are reasonably well known is essential for determination of extractable elements. In this report, estimates of homogeneity and element content are presented for four reference samples. Bulk samples of about 100 kilograms of each sample were ground to pass an 80-mesh sieve. The samples were homogenized and split using a Jones-type splitter. Fourteen splits of each reference sample were analyzed for total content of Ca, Co, Cu, Fe, K, Mg, Mn, Na, and Zn; DTPA-extractable Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn; exchangeable Ca, Mg, K, and Na; cation exchange capacity water-saturation-extractable Ca, Mg, K, Na, C1, and SO4; soil pH; and hot-water-extractable boron. Error measured between splits was small, indicating that the samples were homogenized adequately and that the laboratory procedure provided reproducible results.

  8. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2003-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for six standard reference samples -- T-163 (trace constituents), M-156 (major constituents), N-67 (nutrient constituents), N-68 (nutrient constituents), P-35 (low ionic strength constituents), and Hg-31 (mercury) -- that were distributed in October 2000 to 126 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 122 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  9. Development of an automated method for determining oil in water by direct aqueous supercritical fluid extraction coupled on-line with infrared spectroscopy.

    PubMed

    Minty, B; Ramsey, E D; Davies, I

    2000-12-01

    A direct aqueous supercritical fluid extraction (SFE) system was developed which can be directly interfaced to an infrared spectrometer for the determination of oil in water. The technique is designed to provide an environmentally clean, automated alternative to established IR methods for oil in water analysis which require the use of restricted organic solvents. The SFE-FTIR method involves minimum sample handling stages, with on-line analysis of a 500 ml water sample being complete within 15 min. Method accuracy for determining water samples spiked with gasoline, white spirit, kerosene, diesel or engine oil was 81-100% with precision (RSD) ranging from 3 to 17%. An independent evaluation determined a 2 ppm limit of quantification for diesel in industrial effluents. The results of a comparative study involving an established IR method and the SFE-FTIR method indicate that oil levels calculated using an accepted equation which includes coefficients derived from reference hydrocarbon standards may result in significant errors. A new approach permitted the derivation of quantification coefficients for the SFE-FTIR analyses which provided improved results. In situations where the identity of the oil to be analysed is known, a rapid off-line SFE-FTIR system calibration procedure was developed and successfully applied to various oils. An optional in-line silica gel clean-up procedure incorporated within the SFE-FTIR system enables the same water sample to be analysed for total oil content including vegetable oils and selectively for petroleum oil content within a total of 20 min. At the end of an analysis the SFE system is cleaned using an in situ 3 min clean cycle.

  10. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  11. Solid-phase extraction of some heavy metal ions on a double-walled carbon nanotube disk and determination by flame atomic absorption spectrometry.

    PubMed

    Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif

    2011-01-01

    A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.

  12. Direct Measurement of Perchlorate Exposure Biomarkers in a Highly Exposed Population: A Pilot Study

    PubMed Central

    Wong, Michelle; Copan, Lori; Olmedo, Luis; Patton, Sharyle; Haas, Robert; Atencio, Ryan; Xu, Juhua; Valentin-Blasini, Liza

    2011-01-01

    Exposure to perchlorate is ubiquitous in the United States and has been found to be widespread in food and drinking water. People living in the lower Colorado River region may have perchlorate exposure because of perchlorate in ground water and locally-grown produce. Relatively high doses of perchlorate can inhibit iodine uptake and impair thyroid function, and thus could impair neurological development in utero. We examined human exposures to perchlorate in the Imperial Valley among individuals consuming locally grown produce and compared perchlorate exposure doses to state and federal reference doses. We collected 24-hour urine specimen from a convenience sample of 31 individuals and measured urinary excretion rates of perchlorate, thiocyanate, nitrate, and iodide. In addition, drinking water and local produce were also sampled for perchlorate. All but two of the water samples tested negative for perchlorate. Perchlorate levels in 79 produce samples ranged from non-detect to 1816 ppb. Estimated perchlorate doses ranged from 0.02 to 0.51 µg/kg of body weight/day. Perchlorate dose increased with the number of servings of dairy products consumed and with estimated perchlorate levels in produce consumed. The geometric mean perchlorate dose was 70% higher than for the NHANES reference population. Our sample of 31 Imperial Valley residents had higher perchlorate dose levels compared with national reference ranges. Although none of our exposure estimates exceeded the U. S. EPA reference dose, three participants exceeded the acceptable daily dose as defined by bench mark dose methods used by the California Office of Environmental Health Hazard Assessment. PMID:21394205

  13. Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research.

    PubMed

    Go, Young-Mi; Walker, Douglas I; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A; Tran, ViLinh; Strobel, Frederick; Quyyumi, Arshed A; Ziegler, Thomas R; Pennell, Kurt D; Miller, Gary W; Jones, Dean P

    2015-12-01

    The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of exposures and associated biologic impacts occurring over a lifetime. Biomonitoring is an established approach to evaluate internal body burden of environmental exposures, but use of biomonitoring for exposome research is often limited by the high costs associated with quantification of individual chemicals. High-resolution metabolomics (HRM) uses ultra-high resolution mass spectrometry with minimal sample preparation to support high-throughput relative quantification of thousands of environmental, dietary, and microbial chemicals. HRM also measures metabolites in most endogenous metabolic pathways, thereby providing simultaneous measurement of biologic responses to environmental exposures. The present research examined quantification strategies to enhance the usefulness of HRM data for cumulative exposome research. The results provide a simple reference standardization protocol in which individual chemical concentrations in unknown samples are estimated by comparison to a concurrently analyzed, pooled reference sample with known chemical concentrations. The approach was tested using blinded analyses of amino acids in human samples and was found to be comparable to independent laboratory results based on surrogate standardization or internal standardization. Quantification was reproducible over a 13-month period and extrapolated to thousands of chemicals. The results show that reference standardization protocol provides an effective strategy that will enhance data collection for cumulative exposome research. In principle, the approach can be extended to other types of mass spectrometry and other analytical methods. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research

    PubMed Central

    Go, Young-Mi; Walker, Douglas I.; Liang, Yongliang; Uppal, Karan; Soltow, Quinlyn A.; Tran, ViLinh; Strobel, Frederick; Quyyumi, Arshed A.; Ziegler, Thomas R.; Pennell, Kurt D.; Miller, Gary W.; Jones, Dean P.

    2015-01-01

    The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including exposures from the environment, diet, behavior, and endogenous processes. A major challenge for exposome research lies in the development of robust and affordable analytic procedures to measure the broad range of exposures and associated biologic impacts occurring over a lifetime. Biomonitoring is an established approach to evaluate internal body burden of environmental exposures, but use of biomonitoring for exposome research is often limited by the high costs associated with quantification of individual chemicals. High-resolution metabolomics (HRM) uses ultra-high resolution mass spectrometry with minimal sample preparation to support high-throughput relative quantification of thousands of environmental, dietary, and microbial chemicals. HRM also measures metabolites in most endogenous metabolic pathways, thereby providing simultaneous measurement of biologic responses to environmental exposures. The present research examined quantification strategies to enhance the usefulness of HRM data for cumulative exposome research. The results provide a simple reference standardization protocol in which individual chemical concentrations in unknown samples are estimated by comparison to a concurrently analyzed, pooled reference sample with known chemical concentrations. The approach was tested using blinded analyses of amino acids in human samples and was found to be comparable to independent laboratory results based on surrogate standardization or internal standardization. Quantification was reproducible over a 13-month period and extrapolated to thousands of chemicals. The results show that reference standardization protocol provides an effective strategy that will enhance data collection for cumulative exposome research. In principle, the approach can be extended to other types of mass spectrometry and other analytical methods. PMID:26358001

  15. Enantiomer fractions of polychlorinated biphenyls in three selected Standard Reference Materials.

    PubMed

    Morrissey, Joshua A; Bleackley, Derek S; Warner, Nicholas A; Wong, Charles S

    2007-01-01

    The enantiomer composition of six chiral polychlorinated biphenyls (PCBs) were measured in three different certified Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST): SRM 1946 (Lake Superior fish tissue), SRM 1939a (PCB Congeners in Hudson River Sediment), and SRM 2978 (organic contaminants in mussel tissue--Raritan Bay, New Jersey) to aid in quality assurance/quality control methodologies in the study of chiral pollutants in sediments and biota. Enantiomer fractions (EFs) of PCBs 91, 95, 136, 149, 174, and 183 were measured using a suite of chiral columns by gas chromatography/mass spectrometry. Concentrations of target analytes were in agreement with certified values. Target analyte EFs in reference materials were measured precisely (<2% relative standard deviation), indicating the utility of SRM in quality assurance/control methodologies for analyses of chiral compounds in environmental samples. Measured EFs were also in agreement with previously published analyses of similar samples, indicating that similar enantioselective processes were taking place in these environmental matrices.

  16. Counting at low concentrations: the statistical challenges of verifying ballast water discharge standards

    USGS Publications Warehouse

    Frazier, Melanie; Miller, A. Whitman; Lee, Henry; Reusser, Deborah A.

    2013-01-01

    Discharge from the ballast tanks of ships is one of the primary vectors of nonindigenous species in marine environments. To mitigate this environmental and economic threat, international, national, and state entities are establishing regulations to limit the concentration of living organisms that may be discharged from the ballast tanks of ships. The proposed discharge standards have ranged from zero detectable organisms to 3. If standard sampling methods are used, verifying whether ballast discharge complies with these stringent standards will be challenging due to the inherent stochasticity of sampling. Furthermore, at low concentrations, very large volumes of water must be sampled to find enough organisms to accurately estimate concentration. Despite these challenges, adequate sampling protocols comprise a critical aspect of establishing standards because they help define the actual risk level associated with a standard. A standard that appears very stringent may be effectively lax if it is paired with an inadequate sampling protocol. We describe some of the statistical issues associated with sampling at low concentrations to help regulators understand the uncertainties of sampling as well as to inform the development of sampling protocols that ensure discharge standards are adequately implemented.

  17. Solid phase extraction of metal ions in environmental samples on 1-(2-pyridylazo)-2-naphthol impregnated activated carbon cloth.

    PubMed

    Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa

    2015-02-01

    1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxide composite.

    PubMed

    Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei

    2014-02-01

    A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. © 2013 Elsevier B.V. All rights reserved.

  19. Bias and precision of selected analytes reported by the National Atmospheric Deposition Program and National Trends Network, 1984

    USGS Publications Warehouse

    Brooks, M.H.; Schroder, L.J.; Willoughby, T.C.

    1987-01-01

    The U.S. Geological Survey operated a blind audit sample program during 1974 to test the effects of the sample handling and shipping procedures used by the National Atmospheric Deposition Program and National Trends Network on the quality of wet deposition data produced by the combined networks. Blind audit samples, which were dilutions of standard reference water samples, were submitted by network site operators to the central analytical laboratory disguised as actual wet deposition samples. Results from the analyses of blind audit samples were used to calculate estimates of analyte bias associated with all network wet deposition samples analyzed in 1984 and to estimate analyte precision. Concentration differences between double blind samples that were submitted to the central analytical laboratory and separate analyses of aliquots of those blind audit samples that had not undergone network sample handling and shipping were used to calculate analyte masses that apparently were added to each blind audit sample by routine network handling and shipping procedures. These calculated masses indicated statistically significant biases for magnesium, sodium , potassium, chloride, and sulfate. Median calculated masses were 41.4 micrograms (ug) for calcium, 14.9 ug for magnesium, 23.3 ug for sodium, 0.7 ug for potassium, 16.5 ug for chloride and 55.3 ug for sulfate. Analyte precision was estimated using two different sets of replicate measures performed by the central analytical laboratory. Estimated standard deviations were similar to those previously reported. (Author 's abstract)

  20. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue: Identifying Reference MicroRNAs and Variability.

    PubMed

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte; Schultz, Nicolai Aagaard; Jensen, Benny Vittrup; Høgdall, Estrid Vilma Solyom; Johansen, Julia Sidenius

    2015-12-29

    Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50% reduction over 20 years) but not in CRC. Formalin fixation for 2-6 days decreased miRNA expression 30-65%. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE tissue samples. Formalin fixation decreased miRNA expression considerably, while the effect of increasing sample age was estimated to be negligible in a clinical setting.

  1. 10 CFR 429.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... well as any other water conservation standards and design requirements found in this part or parts 430... ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... Policy Conservation Act, as amended, hereinafter referred to as “the Act.” Energy conservation standard...

  2. 10 CFR 429.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... well as any other water conservation standards and design requirements found in this part or parts 430... Policy Conservation Act, as amended, hereinafter referred to as “the Act.” Energy conservation standard...

  3. 10 CFR 429.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... well as any other water conservation standards and design requirements found in this part or parts 430... Policy Conservation Act, as amended, hereinafter referred to as “the Act.” Energy conservation standard...

  4. Micron-Scale Differential Scanning Calorimeter on a Chip

    DOEpatents

    Cavicchi, Richard E; Poirier, Gregory Ernest; Suehle, John S; Gaitan, Michael; Tea, Nim H

    1998-06-30

    A differential scanning microcalorimeter produced on a silicon chip enables microscopic scanning calorimetry measurements of small samples and thin films. The chip may be fabricated using standard CMOS processes. The microcalorimeter includes a reference zone and a sample zone. The reference and sample zones may be at opposite ends of a suspended platform or may reside on separate platforms. An integrated polysilicon heater provides heat to each zone. A thermopile consisting of a succession of thermocouple junctions generates a voltage representing the temperature difference between the reference and sample zones. Temperature differences between the zones provide information about the chemical reactions and phase transitions that occur in a sample placed in the sample zone.

  5. Evaluation of timing of re-appearance of VBNC Legionella for risk assessment in hospital water distribution systems.

    PubMed

    Marinelli, L; Cottarelli, A; Solimini, A G; Del Cimmuto, A; De Giusti, M

    2017-01-01

    In this study we estimated the presence of Legionella species, viable but non-culturable (VBNC), in hospital water networks. We also evaluated the time and load of Legionella appearance in samples found negative using the standard culture method. A total of 42 samples was obtained from the tap water of five hospital buildings. The samples were tested for Legionella by the standard culture method and were monitored for up to 12 months for the appearance of VBNC Legionella. All the 42 samples were negative at the time of collection. Seven of the 42 samples (17.0%) became positive for Legionella at different times of monitoring. The time to the appearance of VBNC Legionella was extremely variable, from 15 days to 9 months from sampling. The most frequent Legionella species observed were Legionella spp and L. anisa and only in one sample L. pneumophila srg.1. Our study confirms the presence of VBNC Legionella in samples resulting negative using the standard culture method and highlights the different time to its appearance that can occur several months after sampling. The results are important for risk assessment and risk management of engineered water systems.

  6. Application of Fourier transform infrared spectroscopy for monitoring short-chain free fatty acids in Swiss cheese.

    PubMed

    Koca, N; Rodriguez-Saona, L E; Harper, W J; Alvarez, V B

    2007-08-01

    Short-chain free fatty acids (FFA) are important sources of cheese flavor and have been reported to be indicators for assessing quality. The objective of this research was to develop a simple and rapid screening tool for monitoring the short-chain FFA contents in Swiss cheese by using Fourier transform infrared spectroscopy (FTIR). Forty-four Swiss cheese samples were evaluated by using a MIRacle three-reflection diamond attenuated total reflectance (ATR) accessory. Two different sampling techniques were used for FTIR/ATR measurement: direct measurement of Swiss cheese slices (approximately 0.5 g) and measurement of a water-soluble fraction of cheese. The amounts of FFA (propionic, acetic, and butyric acids) in the water-soluble fraction of samples were analyzed by gas chromatography-flame ion-ization detection as a reference method. Calibration models for both direct measurement and the water-soluble fraction of cheese were developed based on a cross-validated (leave-one-out approach) partial least squares regression by using the regions of 3,000 to 2,800, 1,775 to 1,680, and 1,500 to 900 cm(-1) for short-chain FFA in cheese. Promising performance statistics were obtained for the calibration models of both direct measurement and the water-soluble fraction, with improved performance statistics obtained from the water-soluble extract, particularly for propionic acid. Partial least squares models generated from FTIR/ATR spectra by direct measurement of cheeses gave standard errors of cross-validation of 9.7 mg/100 g of cheese for propionic acid, 9.3 mg/100 g of cheese for acetic acid, and 5.5 mg/100 g of cheese for butyric acid, and correlation coefficients >0.9. Standard error of cross-validation values for the water-soluble fraction were 4.4 mg/100 g of cheese for propionic acid, 9.2 mg/100 g of cheese for acetic acid, and 5.2 mg/100 g of cheese for butyric acid with correlation coefficients of 0.98, 0.95, and 0.92, respectively. Infrared spectroscopy and chemometrics accurately and precisely predicted the short-chain FFA content in Swiss cheeses and in the water-soluble fraction of the cheese.

  7. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    PubMed

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints. Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively. Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results suggest a common degradative pathway of collagen in articular cartilage of different joints. Furthermore, the study suggests that biochemical changes precede more overt OA changes and that chondrocytes may have a capability to compensate molecular loss in the early phase of OA.

  8. Determination of free and total sulfur(IV) compounds in coconut water using high-resolution continuum source molecular absorption spectrometry in gas phase.

    PubMed

    Oliveira, Michael L; Brandao, Geovani C; de Andrade, Jailson B; Ferreira, Sergio L C

    2018-03-01

    This work proposes a method for the determination of free and total sulfur(IV) compounds in coconut water samples, using the high-resolution continuum source molecular absorption spectrometry. It is based on the measurement of the absorbance signal of the SO 2 gas generate, which is resultant of the addition of hydrochloric acid solution on the sample containing the sulfating agent. The sulfite bound to the organic compounds is released by the addition of sodium hydroxide solution, before the generation of the SO 2 gas. The optimization step was performed using multivariate methodology involving volume, concentration and flow rate of hydrochloric acid. This method was established by the sum of the absorbances obtained in the three lines of molecular absorption of the SO 2 gas. This strategy allowed a procedure for the determination of sulfite with limits of detection and quantification of 0.36 and 1.21mgL -1 (for a sample volume of 10mL) and precision expressed as relative standard deviation of 5.4% and 6.4% for a coconut water sample containing 38.13 and 54.58mgL -1 of free and total sulfite, respectively. The method was applied for analyzing five coconut water samples from Salvador city, Brazil. The average contents varied from 13.0 to 55.4mgL -1 for free sulfite and from 24.7 to 66.9mgL -1 for total sulfur(IV) compounds. The samples were also analyzed employing the Ripper´s procedure, which is a reference method for the quantification of this additive. A statistical test at 95% confidence level demonstrated that there is no significant difference between the results obtained by the two methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Final report on CCQM-K70: Determination of Hg in natural water at a concentration level required by the European environmental quality standard (EQS)

    NASA Astrophysics Data System (ADS)

    Schiel, Detlef; Rienitz, Olaf

    2011-01-01

    This comparison 'Hg in natural water' was a follow-up to the pilot studies CCQM-P100.1 and CCQM-P100.2. The aim of this comparison was to demonstrate the capability of national metrology institutes to measure the Hg mass concentration in a natural water sample at the very low concentration level of γ(Hg) ≈ 70 ng/L as required by the EQS. In this way it served to help implement the European Water Framework Directive (WFD). This comparison was an activity of the Inorganic Analysis Working Group (IAWG) of CCQM and was piloted by Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) with the help of the co-organizers Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin, Germany), Laboratoire National de Métrologie et d'Essais (LNE, Paris, France), and the Joint Research Centre-Institute for Reference Materials and Measurements (EC-JRC-IRMM, Geel, Belgium). The following laboratories participated in this key comparison (in alphabetical order): BAM (Germany) EC-JRC-IRMM (European Union) KRISS (Republic of Korea) LGC (United Kingdom) LNE (France) NIST (United States of America) NMIA (Australia) NRC (Canada) PTB (Germany) SP (Sweden) The majority of participants applied isotope dilution mass spectrometry (IDMS) using sector field or quadrupole inductively coupled plasma MS (ICP-MS) in combination with cold vapour (CV) generation as the analytical technique. NRC reported a combined result of ID-CV-ICP-MS and CV atomic absorption spectrometry (CV-AAS). SP applied a standard addition method on a sector field ICP-MS, while BAM made use of an external 5-point calibration on a CV atomic fluorescence spectrometer (AFS). The key comparison reference value (KCRV) was agreed upon during the IAWG meeting in April 2010 at BIPM as the sum of the added Hg content calculated from the gravimetric sample preparation and the Hg matrix content of the water used for sample preparation (determined and validated on two independent pathways). Accordingly the degrees of equivalence were calculated. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  10. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    PubMed

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  11. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  12. Drinking water test methods in crisis-afflicted areas: comparison of methods under field conditions.

    PubMed

    Merle, Roswitha; Bleul, Ingo; Schulenburg, Jörg; Kreienbrock, Lothar; Klein, Günter

    2011-11-01

    To simplify the testing of drinking water in crisis-afflicted areas (as in Kosovo in 2007), rapid test methods were compared with the standard test. For Escherichia coli and coliform pathogens, rapid tests were made available: Colilert(®)-18, P/A test with 4-methylumbelliferyl-β-D-glucoronid, and m-Endo Broth. Biochemical differentiation was carried out by Enterotube™ II. Enterococci were determined following the standard ISO test and by means of Enterolert™. Four hundred ninety-nine water samples were tested for E. coli and coliforms using four methods. Following the standard method, 20.8% (n=104) of the samples contained E. coli, whereas the rapid tests detected between 19.6% (m-Endo Broth, 92.0% concordance) and 20.0% (concordance: 93.6% Colilert-18 and 94.8% P/A-test) positive samples. Regarding coliforms, the percentage of concordant results ranged from 98.4% (P/A-test) to 99.0% (Colilert-18). Colilert-18 and m-Endo Broth detected even more positive samples than the standard method did. Enterococci were detected in 93 of 573 samples by the standard method, but in 92 samples by Enterolert (concordance: 99.5%). Considering the high-quality equipment and time requirements of the standard method, the use of rapid tests in crisis-afflicted areas is sufficiently reliable.

  13. [Study on seed quality test and quality standard of Lonicera macranthoides].

    PubMed

    Zhang, Ying; Xu, Jin; Li, Long-Yun; Cui, Guang-Lin; She, Yue-Hui

    2016-04-01

    Referring to the rules for agricultural seed testing (GB/T 3543-1995) issued by China, the test of sampling, purity, thousand seed weight, moisture, viability, relative conductivity and germination rate had been studied for seed quality test methods of Lonicera macranthoides. The seed quality from 38 different collection areas was measured to establish quality classification standard by K-means clustering. The results showed that at least 7.5 g seeds should be sampled, and passed 20-mesh sieve for purity analysis.The 500-seed method used to measure thousand seed weight. The moisture was determined by crushed seeds dried in high temperature (130±2) ℃ for 3 h.The viability determined by 25 ℃ 0.1% TTC stained 5h in dark. 1.0 g seeds soaked in 50 ml ultra pure water in 25 ℃ for 12 hours to determine the relative conductivity. The seed by 4 ℃stratification for 80 days were cultured on paper at 15 ℃. Quality of the seeds from different areas was divided into three grades. The primary seed quality classification standard was established.The I grade and II grade were recommend use in production. Copyright© by the Chinese Pharmaceutical Association.

  14. [Preparation of flavonoid reference standards from Scutellariae Radix under the guidance of high performance liquid chromatography-mass spectrometry analysis].

    PubMed

    Guo, Henan; Yang, Xuedong; Liu, Jun; Zheng, Wenfeng

    2012-07-01

    Flavonoid reference standards were targeted-prepared from Scutellariae Radix under the guidance of high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. With HPLC-MS analysis of Scutellariae Radix, 19 flavonoid components were identified by analyzing and comparing their retention times, ultraviolet spectra, and mass spectrometry data with literature. The separation and purification protocols of all targeted flavonoid reference standards were optimally designed according to the results of HPLC-MS analysis and related literature. The ethanol extract of Scutellariae Radix was suspended in water and extracted with petroleum ether, ethyl acetate, and n-butanol successively. The ethyl acetate extract and n-butanol extract were separately subjected to primary separation by low pressure reverse phase preparative chromatography. Then the fractions containing targeted compounds were further purified by low pressure reverse and normal phases preparative chromatography. Finally, baicalin and wogonoside reference standards were obtained from n-butanol extract; baicaelin, wogonin, and oroxylin A reference standards were obtained from ethyl acetate extract. The structures of the 5 reference standards were identified by mass spectrometry (MS) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The HPLC analytical results showed that the purities of the 5 reference standards were all above 98%. It is demonstrated that the rapid targeted-preparation method under the guidance of the HPLC-MS analysis is applicable for the isolation and preparation of chemical components in traditional Chinese medicines.

  15. Impact of sampling techniques on measured stormwater quality data for small streams

    USDA-ARS?s Scientific Manuscript database

    Science-based sampling methodologies are needed to enhance water quality characterization for developing Total Maximum Daily Loads (TMDLs), setting appropriate water quality standards, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water qual...

  16. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  17. Household Microbial Water Quality Testing in a Peruvian Demographic and Health Survey: Evaluation of the Compartment Bag Test for Escherichia coli.

    PubMed

    Wang, Alice; McMahan, Lanakila; Rutstein, Shea; Stauber, Christine; Reyes, Jorge; Sobsey, Mark D

    2017-04-01

    AbstractThe Joint Monitoring Program relies on household surveys to classify access to improved water sources instead of measuring microbiological quality. The aim of this research was to pilot a novel test for Escherichia coli quantification of household drinking water in the 2011 Demographic and Health Survey (DHS) in Peru. In the Compartment Bag Test (CBT), a 100-mL water sample is supplemented with chromogenic medium to support the growth of E. coli , poured into a bag with compartments, and incubated. A color change indicates E. coli growth, and the concentration of E. coli /100 mL is estimated as a most probable number. Triplicate water samples from 704 households were collected; one sample was analyzed in the field using the CBT, another replicate sample using the CBT was analyzed by reference laboratories, and one sample using membrane filtration (MF) was analyzed by reference laboratories. There were no statistically significant differences in E. coli concentrations between the field and laboratory CBT results, or when compared with MF results. These results suggest that the CBT for E. coli is an effective method to quantify fecal bacteria in household drinking water. The CBT can be incorporated into DHS and other national household surveys as a direct measure of drinking water safety based on microbial quality to better document access to safe drinking water.

  18. Household Microbial Water Quality Testing in a Peruvian Demographic and Health Survey: Evaluation of the Compartment Bag Test for Escherichia coli

    PubMed Central

    Wang, Alice; McMahan, Lanakila; Rutstein, Shea; Stauber, Christine; Reyes, Jorge; Sobsey, Mark D.

    2017-01-01

    The Joint Monitoring Program relies on household surveys to classify access to improved water sources instead of measuring microbiological quality. The aim of this research was to pilot a novel test for Escherichia coli quantification of household drinking water in the 2011 Demographic and Health Survey (DHS) in Peru. In the Compartment Bag Test (CBT), a 100-mL water sample is supplemented with chromogenic medium to support the growth of E. coli, poured into a bag with compartments, and incubated. A color change indicates E. coli growth, and the concentration of E. coli/100 mL is estimated as a most probable number. Triplicate water samples from 704 households were collected; one sample was analyzed in the field using the CBT, another replicate sample using the CBT was analyzed by reference laboratories, and one sample using membrane filtration (MF) was analyzed by reference laboratories. There were no statistically significant differences in E. coli concentrations between the field and laboratory CBT results, or when compared with MF results. These results suggest that the CBT for E. coli is an effective method to quantify fecal bacteria in household drinking water. The CBT can be incorporated into DHS and other national household surveys as a direct measure of drinking water safety based on microbial quality to better document access to safe drinking water. PMID:28500818

  19. Mg/Ca ratios of two Globigerinoides ruber (white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions

    NASA Astrophysics Data System (ADS)

    Steinke, Stephan; Chiu, Han-Yi; Yu, Pai-Sen; Shen, Chuan-Chou; LöWemark, Ludvig; Mii, Horng-Sheng; Chen, Min-Te

    2005-11-01

    Tests of the planktonic foraminifer Globigerinoides ruber (white; d'Orbigny) have become a standard tool for reconstructing past oceanic environments. Paleoceanographers often utilize the Mg/Ca ratios of the foraminiferal tests for reconstructing low-latitude ocean glacial-interglacial changes in sea surface temperatures (SST). We report herein a comparison of Mg/Ca measurements on sample pairs (n = 20) of two G. ruber (white) morphotypes (G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.)) from surface and downcore samples of the western Pacific and Indian Oceans. G. ruber s.s. refers to specimens with spherical chambers sitting symmetrically over previous sutures with a wide, high arched aperture, whereas G. ruber s.l. refers to a more compact test with a diminutive final chamber and small aperture. The G. ruber s.s. specimens generally show significantly higher Mg/Ca ratios compared to G. ruber s.l. Our results from the Mg/Ca ratio analysis suggest that G. ruber s.l. specimens precipitated their shells in slightly colder surface waters than G. ruber s.s. specimens. This conclusion is supported by the differences in δ18O and δ13C values between the two morphotypes. Although it is still unclear if these two morphotypes represent phenotypic variants or sibling species, our findings seem to support the hypothesis of depth and/or seasonal allopatry within a single morphospecies.

  20. Measuring and mitigating inhibition during real-time, quantitative PCR analysis of viral nucleic acid extracts from large-volume environmental water samples

    USDA-ARS?s Scientific Manuscript database

    Naturally-occurring inhibitory compounds are a major concern during qPCR and RT-qPCR analysis of environmental samples, particularly large volume water samples. Here, a standardized method for measuring and mitigating sample inhibition in environmental water concentrates is described. Specifically, ...

  1. Organochlorine pesticides residues in bottled drinking water from Mexico City.

    PubMed

    Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey

    2009-06-01

    This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.

  2. Predictive Accuracy of Sweep Frequency Impedance Technology in Identifying Conductive Conditions in Newborns.

    PubMed

    Aithal, Venkatesh; Kei, Joseph; Driscoll, Carlie; Murakoshi, Michio; Wada, Hiroshi

    2018-02-01

    Diagnosing conductive conditions in newborns is challenging for both audiologists and otolaryngologists. Although high-frequency tympanometry (HFT), acoustic stapedial reflex tests, and wideband absorbance measures are useful diagnostic tools, there is performance measure variability in their detection of middle ear conditions. Additional diagnostic sensitivity and specificity measures gained through new technology such as sweep frequency impedance (SFI) measures may assist in the diagnosis of middle ear dysfunction in newborns. The purpose of this study was to determine the test performance of SFI to predict the status of the outer and middle ear in newborns against commonly used reference standards. Automated auditory brainstem response (AABR), HFT (1000 Hz), transient evoked otoacoustic emission (TEOAE), distortion product otoacoustic emission (DPOAE), and SFI tests were administered to the study sample. A total of 188 neonates (98 males and 90 females) with a mean gestational age of 39.4 weeks were included in the sample. Mean age at the time of testing was 44.4 hr. Diagnostic accuracy of SFI was assessed in terms of its ability to identify conductive conditions in neonates when compared with nine different reference standards (including four single tests [AABR, HFT, TEOAE, and DPOAE] and five test batteries [HFT + DPOAE, HFT + TEOAE, DPOAE + TEOAE, DPOAE + AABR, and TEOAE + AABR]), using receiver operating characteristic (ROC) analysis and traditional test performance measures such as sensitivity and specificity. The test performance of SFI against the test battery reference standard of HFT + DPOAE and single reference standard of HFT was high with an area under the ROC curve (AROC) of 0.87 and 0.82, respectively. Although the HFT + DPOAE test battery reference standard performed better than the HFT reference standard in predicting middle ear conductive conditions in neonates, the difference in AROC was not significant. Further analysis revealed that the highest sensitivity and specificity for SFI (86% and 88%, respectively) was obtained when compared with the reference standard of HFT + DPOAE. Among the four single reference standards, SFI had the highest sensitivity and specificity (76% and 88%, respectively) when compared against the HFT reference standard. The high test performance of SFI against the HFT and HFT + DPOAE reference standards indicates that the SFI measure has appropriate diagnostic accuracy in detection of conductive conditions in newborns. Hence, the SFI test could be used as adjunct tool to identify conductive conditions in universal newborn hearing screening programs, and can also be used in diagnostic follow-up assessments. American Academy of Audiology

  3. New Ca-Tims and La-Icp Analyses of GJ-1, Plesovice, and FC1 Reference Materials

    NASA Astrophysics Data System (ADS)

    Feldman, J. D.; Möller, A.; Walker, J. D.

    2014-12-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology relies on external reference standards to monitor and correct for different mass fractionation effects and instrument drift. Common zircon reference materials used within the community, including the KU Isotope Geochemistry Laboratory, are GJ-1 (207Pb/206Pb age: 608.53 +/- 0.37Ma; Jackson et al., 2004), Plesovice (337.13 +/- 0.37 Ma; Slama et al., 2008), and FC-1 (1099.0 +/-0.6 Ma; Paces and Miller, 1993). The age distribution of zircon reference material varies slightly from sample fraction to sample fraction, and the published results for GJ-1 are slightly discordant. As a result, using the published data for the distributed standard splits can lead to small systematic variations when comparing datasets from different labs, and more high precision data are needed to evaluate potential inhomogeneity of sample splits used in different laboratories. Here we characterize these reference materials with cathodoluminescence, LA-ICP-MS traverses across grains, and high precision CA-TIMS to better constrain the ages and assess zoning of these standards, and present the data for comparison with other laboratories. Reducing systematic error by dating our own reference material lends confidence to our analyses and allows for inter-laboratory age reproducibility of unknowns. Additionally, the reduction in propagated uncertainties (especially in GJ-1, for which both the red and yellow variety will be analyzed) will be used to improve long-term reproducibility, comparisons between samples of similar age, detrital populations and composite pluton zircons. Jackson, S.E., et al., 2004, Chemical Geology, v. 211, p. 47-69. Paces, J.B. & Miller, J.D., 1993, Journal of Geophysical Research, v. 80, p. 13997-14013. Slama, J., et al., 2008, Chemical Geology, v. 249. p. 1-35.

  4. Simultaneous determination of water-soluble vitamins in beverages and dietary supplements by LC-MS/MS.

    PubMed

    Kakitani, Ayano; Inoue, Tomonori; Matsumoto, Keiko; Watanabe, Jun; Nagatomi, Yasushi; Mochizuki, Naoki

    2014-01-01

    An LC-MS/MS method was developed for the simultaneous determination of 15 water-soluble vitamins that are widely used as additives in beverages and dietary supplements. This combined method involves the following simple pre-treatment procedures: dietary supplement samples were prepared by centrifugation and filtration after an extraction step, whereas beverage samples were diluted prior to injection. Chromatographic analysis in this method utilised a multi-mode ODS column, which provided reverse-phase, anion- and cation-exchange capacities, and therefore improved the retention of highly polar analytes such as water-soluble vitamins. Additionally, the multi-mode ODS column did not require adding ion pair reagents to the mobile phase. We optimised the chromatographic separation of 15 water-soluble vitamins by adjusting the mobile phase pH and the organic solvent. We also conducted an analysis of a NIST Standard Reference Material (SRM 3280 Multi-vitamin/Multi-element tablets) using this method to verify its accuracy. In addition, the method was applied to identify the vitamins in commercial beverages and dietary supplements. By comparing results with the label values and results obtained by official methods, it was concluded that the method could be used for quality control and to compose nutrition labels for vitamin-enriched products.

  5. Water quality and management of private drinking water wells in Pennsylvania.

    PubMed

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  6. Impacts of sampling design and estimation methods on nutrient leaching of intensively monitored forest plots in the Netherlands.

    PubMed

    de Vries, W; Wieggers, H J J; Brus, D J

    2010-08-05

    Element fluxes through forest ecosystems are generally based on measurements of concentrations in soil solution at regular time intervals at plot locations sampled in a regular grid. Here we present spatially averaged annual element leaching fluxes in three Dutch forest monitoring plots using a new sampling strategy in which both sampling locations and sampling times are selected by probability sampling. Locations were selected by stratified random sampling with compact geographical blocks of equal surface area as strata. In each sampling round, six composite soil solution samples were collected, consisting of five aliquots, one per stratum. The plot-mean concentration was estimated by linear regression, so that the bias due to one or more strata being not represented in the composite samples is eliminated. The sampling times were selected in such a way that the cumulative precipitation surplus of the time interval between two consecutive sampling times was constant, using an estimated precipitation surplus averaged over the past 30 years. The spatially averaged annual leaching flux was estimated by using the modeled daily water flux as an ancillary variable. An important advantage of the new method is that the uncertainty in the estimated annual leaching fluxes due to spatial and temporal variation and resulting sampling errors can be quantified. Results of this new method were compared with the reference approach in which daily leaching fluxes were calculated by multiplying daily interpolated element concentrations with daily water fluxes and then aggregated to a year. Results show that the annual fluxes calculated with the reference method for the period 2003-2005, including all plots, elements and depths, lies only in 53% of the cases within the range of the average +/-2 times the standard error of the new method. Despite the differences in results, both methods indicate comparable N retention and strong Al mobilization in all plots, with Al leaching being nearly equal to the leaching of SO(4) and NO(3) with fluxes expressed in mol(c) ha(-1) yr(-1). This illustrates that Al release, which is the clearest signal of soil acidification, is mainly due to the external input of SO(4) and NO(3).

  7. Statistical considerations in estimating organism concentrations in ballast water discharges

    EPA Science Inventory

    Sampling probabilities may affect the practical use of different ballast water performance standards which establish the acceptable concentration of organisms in ballast discharges. The International Maritime Organization (IMO) has initiated a ballast water standard of <10 viabl...

  8. Analysis of street drugs in seized material without primary reference standards.

    PubMed

    Laks, Suvi; Pelander, Anna; Vuori, Erkki; Ali-Tolppa, Elisa; Sippola, Erkki; Ojanperä, Ilkka

    2004-12-15

    A novel approach was used to analyze street drugs in seized material without primary reference standards. Identification was performed by liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS), essentially based on accurate mass determination using a target library of 735 exact monoisotopic masses. Quantification was carried out by liquid chromatography/chemiluminescence nitrogen detection (LC/CLND) with a single secondary standard (caffeine), utilizing the detector's equimolar response to nitrogen. Sample preparation comprised dilution, first with methanol and further with the LC mobile phase. Altogether 21 seized drug samples were analyzed blind by the present method, and results were compared to accredited reference methods utilizing identification by gas chromatography/mass spectrometry and quantification by gas chromatography or liquid chromatography. The 31 drug findings by LC/TOFMS comprised 19 different drugs-of-abuse, byproducts, and adulterants, including amphetamine and tryptamine designer drugs, with one unresolved pair of compounds having an identical mass. By the reference methods, 27 findings could be confirmed, and among the four unconfirmed findings, only 1 apparent false positive was found. In the quantitative analysis of 11 amphetamine, heroin, and cocaine findings, mean relative difference between the results of LC/CLND and the reference methods was 11% (range 4.2-21%), without any observable bias. Mean relative standard deviation for three parallel LC/CLND results was 6%. Results suggest that the present combination of LC/TOFMS and LC/CLND offers a simple solution for the analysis of scheduled and designer drugs in seized material, independent of the availability of primary reference standards.

  9. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    PubMed

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation requirements and the simplicity of the bioassay open the possibility of in-situ water toxicity assessment with a fast and low-cost protocol. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Measurement of water-soluble B vitamins in infant formula by liquid chromatography/tandem mass spectrometry.

    PubMed

    Huang, Min; Winters, Doug; Crowley, Richard; Sullivan, Darryl

    2009-01-01

    A method has been developed for the simultaneous measurement of multiple B vitamins (i.e., B1, B2, B3, B5, and B6) in infant formulas by LC-MSIMS. The vitamins were extracted with acidic solvent, followed by protein precipitation at a pH range of 4.5 to 5.5, and filtered. This simplified procedure eliminates many of the potential sources of laboratory error and facilitates rapid and efficient analysis. As is common in most cases, isotope internal standards were added to account for variations in sample preparation, as well as changes in MS measurement. In this method, isotope-labeled internal standards of B1, B3, B5, and B6 were used. The factors affecting analytical performance were investigated and optimized. In addition, the stability of these vitamins in the extraction solution was investigated. An acidic condition (5 mM HCl) was applied to successfully stabilize B1, which had shown a decrease in signal when other solvents were used. The quantitative extraction and good stability allowed isotope standards to be added to the filtered sample solution, instead of to the extraction solvent. The addition of the isotope to the small portion of the filtered sample solution significantly reduces cost. A comprehensive evaluation of the analysis of the standard reference material and good spike recovery of the vitamins (100 +/- 6%) demonstrates the accuracy of the method. The results for commercially available infant formula samples were also compared with those obtained using the current microbiological method.

  11. Favorable Geochemistry from Springs and Wells in Colorado

    DOE Data Explorer

    Richard E. Zehner

    2012-02-01

    This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included.

  12. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in themore » samples.« less

  13. Turbidimetric Analysis of Water and Wastewater Samples Using a Spectrofluorimeter

    NASA Astrophysics Data System (ADS)

    Evans, Jason J.

    2000-12-01

    As student interest in environmental science grows, many colleges and universities are developing new courses in environmental chemistry. Environmental analysis in the "real world" has become increasingly instrumental, and it is important to introduce students to the instruments and procedures that are commonly used in environmental laboratories. Turbidimetric analysis of water and wastewater is ordinarily performed in environmental laboratories using a nephelometer. This experiment illustrates that a spectrofluorimeter can be successfully employed for these types of analysis. Samples from various stages of the water and wastewater treatment processes were collected from the Carlisle Water and Wastewater Treatment Plants. The students in our Environmental Chemistry laboratory used the spectrofluorimeter to measure the scattering intensity from the samples and from a series of formazine standards. The standard curve produced from their data gave a correlation coefficient of .999, and the detection limit was 0.03 Standard Turbidity Units, which is sufficient to obtain meaningful data on most water samples. This experiment was an excellent supplement to lecture material covering water and wastewater treatment because the students were able to monitor the level of suspended particulates in the water as it makes its way through the treatment plants.

  14. 40 CFR 63.404 - Compliance demonstrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants for Industrial Process Cooling Towers § 63.404 Compliance... Act, the Administrator or delegated authority can require cooling water sample analysis of an IPCT if... accordance with paragraph (c) of this section in lieu of a water sample analysis. If cooling water sample...

  15. 10 CFR Appendix A to Subpart C of... - Sampling Plan for Enforcement Testing of Covered Consumer Products and Certain High-Volume...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...

  16. 10 CFR Appendix A to Subpart C of... - Sampling Plan for Enforcement Testing of Covered Consumer Products and Certain High-Volume...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...

  17. 10 CFR Appendix A to Subpart C of... - Sampling Plan for Enforcement Testing of Covered Consumer Products and Certain High-Volume...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...

  18. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples.

    PubMed

    Hughes, Sarah A; Huang, Rongfu; Mahaffey, Ashley; Chelme-Ayala, Pamela; Klamerth, Nikolaus; Meshref, Mohamed N A; Ibrahim, Mohamed D; Brown, Christine; Peru, Kerry M; Headley, John V; Gamal El-Din, Mohamed

    2017-11-01

    There are several established methods for the determination of naphthenic acids (NAs) in waters associated with oil sands mining operations. Due to their highly complex nature, measured concentration and composition of NAs vary depending on the method used. This study compared different common sample preparation techniques, analytical instrument methods, and analytical standards to measure NAs in groundwater and process water samples collected from an active oil sands operation. In general, the high- and ultrahigh-resolution methods, namely high performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and Orbitrap mass spectrometry (Orbitrap-MS), were within an order of magnitude of the Fourier transform infrared spectroscopy (FTIR) methods. The gas chromatography mass spectrometry (GC-MS) methods consistently had the highest NA concentrations and greatest standard error. Total NAs concentration was not statistically different between sample preparation of solid phase extraction and liquid-liquid extraction. Calibration standards influenced quantitation results. This work provided a comprehensive understanding of the inherent differences in the various techniques available to measure NAs and hence the potential differences in measured amounts of NAs in samples. Results from this study will contribute to the analytical method standardization for NA analysis in oil sands related water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemistry of water collected from an unventilated drift, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Oliver, T.A.; Peterman, Z.E.

    2007-01-01

    Water samples (referred to as puddle water samples) were collected from the surfaces of a conveyor belt and plastic sheeting in the unventilated portion of the Enhanced Characterization of the Repository Block (ECRB) Cross Drift in 2003 and 2005 at Yucca Mountain, Nevada. The chemistry of these puddle water samples is very different than that of pore water samples from borehole cores in the same region of the Cross Drift or than seepage water samples collected from the Exploratory Studies Facility tunnel in 2005. The origin of the puddle water is condensation on surfaces of introduced materials and its chemistry is dominated by components of the introduced materials. Large CO2 concentrations may be indicative of localized chemical conditions induced by biologic activity. ?? 2007 Materials Research Society.

  20. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule.

    PubMed

    Adamson, David T; Piña, Elizabeth A; Cartwright, Abigail E; Rauch, Sharon R; Hunter Anderson, R; Mohr, Thomas; Connor, John A

    2017-10-15

    This study examined data collected from U.S. public drinking water supplies in support of the recently-completed third round of the Unregulated Contaminant Monitoring Rule (UCMR3) to better understand the nature and occurrence of 1,4-dioxane and the basis for establishing drinking water standards. The purpose was to evaluate whether the occurrence data for this emerging but federally-unregulated contaminant fit with common conceptual models, including its persistence and the importance of groundwater contamination for potential exposure. 1,4-Dioxane was detected in samples from 21% of 4864 PWSs, and was in exceedance of the health-based reference concentration (0.35μg/L) at 6.9% of these systems. In both measures, it ranked second among the 28 UCMR3 contaminants. Although much of the focus on 1,4-dioxane has been its role as a groundwater contaminant, the detection frequency for 1,4-dioxane in surface water was only marginally lower than in groundwater (by a factor of 1.25; p<0.0001). However, groundwater concentrations were higher than those in surface water (p<0.0001) and contributed to a higher frequency of exceeding the reference concentration (by a factor of 1.8, p<0.0001), indicating that surface water sources tend to be more dilute. Sampling from large systems increased the likelihood that 1,4-dioxane was detected by a factor of 2.18 times relative to small systems (p<0.0001). 1,4-Dioxane detections in drinking water were highly associated with detections of other chlorinated compounds particularly 1,1-dichlorethane (odds ratio=47; p<0.0001), which is associated with the release of 1,4-dioxane as a chlorinated solvent stabilizer. Based on aggregated nationwide data, 1,4-dioxane showed evidence of a decreasing trend in concentration and detection frequency over time. These data suggest that the loading to drinking water supplies may be decreasing. However, in the interim, some water supply systems may need to consider improving their treatment capabilities in response to further regulatory review of this compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 30 CFR 784.14 - Hydrologic information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) flooding or streamflow alteration; (D) ground water and surface water availability; and (E) other... Hydrologic information. (a) Sampling and analysis. All water quality analyses performed to meet the... Methods for the Examination of Water and Wastewater,” which is incorporated by reference, or the...

  2. 40 CFR 63.14 - Incorporations by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Testing and Materials (ASTM), 100 Barr Harbor Drive, Post Office Box C700, West Conshohocken, PA 19428... (Reapproved 2010), Standard Test Method for Water in Petroleum Products and Bituminous Materials by...-09 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter...

  3. Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn.

    PubMed

    Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-09-06

    A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%.

  4. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Akman, Suleyman

    The presence of fluorine (F) was detected via the rotational molecular absorption line of diatomic strontium-monofluoride (SrF) generated in the gas phase at 651.187 nm using high-resolution continuum source electrothermal atomic absorption spectrometry. Upon the addition of excess strontium (Sr) as the nitrate, the fluorine in the sample was converted to SrF in the gas phase of a graphite furnace. The effects on the accuracy, precision and sensitivity of variables such as the SrF wavelength, graphite furnace program, amount of Sr, coating of the graphite tube and platform with Zr and Ir and the use of a modifier were investigated and optimized. It was determined that there was no need to use a modifier or to cover the platform/tubes with Zr or Ir. Fluorine concentrations in various water samples (certified waste water, tap water, drinking water and mineral water) were determined using 20 μg of Sr as the molecule-forming reagent and applying a maximum pyrolysis temperature of 800 °C and a molecule-forming temperature of 2200 °C with a heating rate of 2000 °C s- 1. Good linearity was maintained up to 0.1 μg of F. The accuracy and precision of the method were tested by analyzing certified reference wastewater. The results were in good agreement with certified values, and the precision was satisfactory (RSD < 10%). The limit of detection and the characteristic mass for the method were 0.36 ng and 0.55 ng, respectively. Finally, the fluorine concentrations in several drinking water and mineral water samples taken from the market were determined. The results were in good agreement with the values supplied by the producers. No significant differences were found between the results from the linear calibration and standard addition techniques. The method was determined to be simple, fast, accurate and sensitive.

  5. Determination of lead and nickel in environmental samples by flame atomic absorption spectrometry after column solid-phase extraction on Ambersorb-572 with EDTA.

    PubMed

    Baytak, Sitki; Türker, A Rehber

    2006-02-28

    Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.

  6. Performance evaluation of no-reference image quality metrics for face biometric images

    NASA Astrophysics Data System (ADS)

    Liu, Xinwei; Pedersen, Marius; Charrier, Christophe; Bours, Patrick

    2018-03-01

    The accuracy of face recognition systems is significantly affected by the quality of face sample images. The recent established standardization proposed several important aspects for the assessment of face sample quality. There are many existing no-reference image quality metrics (IQMs) that are able to assess natural image quality by taking into account similar image-based quality attributes as introduced in the standardization. However, whether such metrics can assess face sample quality is rarely considered. We evaluate the performance of 13 selected no-reference IQMs on face biometrics. The experimental results show that several of them can assess face sample quality according to the system performance. We also analyze the strengths and weaknesses of different IQMs as well as why some of them failed to assess face sample quality. Retraining an original IQM by using face database can improve the performance of such a metric. In addition, the contribution of this paper can be used for the evaluation of IQMs on other biometric modalities; furthermore, it can be used for the development of multimodality biometric IQMs.

  7. Monitoring design for assessing compliance with numeric nutrient standards for rivers and streams using geospatial variables.

    PubMed

    Williams, Rachel E; Arabi, Mazdak; Loftis, Jim; Elmund, G Keith

    2014-09-01

    Implementation of numeric nutrient standards in Colorado has prompted a need for greater understanding of human impacts on ambient nutrient levels. This study explored the variability of annual nutrient concentrations due to upstream anthropogenic influences and developed a mathematical expression for the number of samples required to estimate median concentrations for standard compliance. A procedure grounded in statistical hypothesis testing was developed to estimate the number of annual samples required at monitoring locations while taking into account the difference between the median concentrations and the water quality standard for a lognormal population. For the Cache La Poudre River in northern Colorado, the relationship between the median and standard deviation of total N (TN) and total P (TP) concentrations and the upstream point and nonpoint concentrations and general hydrologic descriptors was explored using multiple linear regression models. Very strong relationships were evident between the upstream anthropogenic influences and annual medians for TN and TP ( > 0.85, < 0.001) and corresponding standard deviations ( > 0.7, < 0.001). Sample sizes required to demonstrate (non)compliance with the standard depend on the measured water quality conditions. When the median concentration differs from the standard by >20%, few samples are needed to reach a 95% confidence level. When the median is within 20% of the corresponding water quality standard, however, the required sample size increases rapidly, and hundreds of samples may be required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Environmental Chemical Analysis (by B. B. Kebbekus and S. Mitra)

    NASA Astrophysics Data System (ADS)

    Bower, Reviewed By Nathan W.

    1999-11-01

    This text helps to fill a void in the market, as there are relatively few undergraduate instrumental analysis texts designed specifically for the expanding population of environmental science students. R. N. Reeve's introductory, open-learning Environmental Analysis (Wiley, 1994) is one of the few, and it is aimed at a lower level and is less appropriate for traditional classroom study. Kebbekus and Mitra's book appears to be an update of I. Marr and M. Cresser's excellent 1983 text by the same name (and also published under the Chapman and Hall imprint). It assumes no background in instrumental methods of analysis but it does depend upon a good general chemistry background in kinetic and equilibrium calculations and the standard laboratory techniques found in a classical introduction to analytical chemistry. The slant taken by the authors is aimed more toward engineers, not only in the choice of topics, but also in how they are presented. For example, the statistical significance tests presented follow an engineering format rather than the standard used in analytical chemistry. This approach does not detract from the book's clarity. The writing style is concise and the book is generally well written. The earlier text, which has become somewhat of a classic, took the unusual step of teaching the instruments in the context of their environmental application. It was divided into sections on the "atmosphere", the "hydrosphere", the "lithosphere", and the "biosphere". This text takes a similar approach in the second half, with chapters on methods for air, water, and solid samples. Users who intend to use the book as a text instead of a reference will appreciate the addition of chapters in the first half of the book on spectroscopic, chromatographic, and mass spectrometric methods. The six chapters in these two parts of the book along with four chapters scattered throughout on environmental measurements, sampling, sample preparation, and quality assurance make a nice package overall, although I might personally prefer a chapter on environmental chemometrics as well. Most of the major instrumental methods actively employed in environmental analysis are treated either in the theoretical chapters or in the later application chapters. These include introductions to UV­vis, FTIR, SFC, HPLC, IC (but not CE), GC, GC­MS, ISEs, anodic stripping, FAA, GFAA, XRF, ICP, ICP­MS, and even two pages on the basics of immunoassays. Although this text provides an update of the earlier book, its greatest failing is a particular strength of the first text: it fails to provide any detailed references within the text, relying on an average of five generic "suggested readings" at the end of each chapter. Even tables such as "Some US drinking water quality standards" give no references, setting a bad example for students who have to write research papers of their own. As it also does not provide the detailed procedures or fine-quality figures that were available in the earlier text, it is not worth as much as a reference book or for library acquisitions. In the first book the detailed procedures served as a "lab manual within the text" and this increased its pedagogic value tremendously. Still, this text does make use of generalized procedures to step through many of the standard methods encountered by practicing environmental scientists, and the tables are in most cases superior to those in similar texts, lacking only the references to make them as useful as they might be. A second weakness of note comes from the organization. Having two different parts of the book covering material that relates to each of the instrumental methods means that it is not always clear where the reader should go to find information that relates to a particular method. For example, specifics on sampling equipment for water and soils appear in the chapter on sampling, but for air they appear in the applications section. Similarly, the sample preparation chapter would make more logical sense if it appeared before the instrumental methods that make use of it, and the F-test should be discussed before it is called upon to tell whether two populations have the same variance. The various discussions rarely refer the reader to related material located in other parts of the text, so occasionally one is left wondering about the lack of coverage. However, in the end the authors do introduce all the topics fairly well, and the text seems to have a good index. In summary, this text provides a very readable introduction to instrumental environmental analysis that is appropriate for a one-semester course designed for advanced undergraduate environmental engineering and environmental science students. If the instructor is careful to read the text beforehand so as to guide the students appropriately, supplying additional references when experimental work is to be undertaken, it should also work satisfactorily in courses that have a laboratory component.

  9. Free-breathing Sparse Sampling Cine MR Imaging with Iterative Reconstruction for the Assessment of Left Ventricular Function and Mass at 3.0 T.

    PubMed

    Sudarski, Sonja; Henzler, Thomas; Haubenreisser, Holger; Dösch, Christina; Zenge, Michael O; Schmidt, Michaela; Nadar, Mariappan S; Borggrefe, Martin; Schoenberg, Stefan O; Papavassiliu, Theano

    2017-01-01

    Purpose To prospectively evaluate the accuracy of left ventricle (LV) analysis with a two-dimensional real-time cine true fast imaging with steady-state precession (trueFISP) magnetic resonance (MR) imaging sequence featuring sparse data sampling with iterative reconstruction (SSIR) performed with and without breath-hold (BH) commands at 3.0 T. Materials and Methods Ten control subjects (mean age, 35 years; range, 25-56 years) and 60 patients scheduled to undergo a routine cardiac examination that included LV analysis (mean age, 58 years; range, 20-86 years) underwent a fully sampled segmented multiple BH cine sequence (standard of reference) and a prototype undersampled SSIR sequence performed during a single BH and during free breathing (non-BH imaging). Quantitative analysis of LV function and mass was performed. Linear regression, Bland-Altman analysis, and paired t testing were performed. Results Similar to the results in control subjects, analysis of the 60 patients showed excellent correlation with the standard of reference for single-BH SSIR (r = 0.93-0.99) and non-BH SSIR (r = 0.92-0.98) for LV ejection fraction (EF), volume, and mass (P < .0001 for all). Irrespective of breath holding, LV end-diastolic mass was overestimated with SSIR (standard of reference: 163.9 g ± 58.9, single-BH SSIR: 178.5 g ± 62.0 [P < .0001], non-BH SSIR: 175.3 g ± 63.7 [P < .0001]); the other parameters were not significantly different (EF: 49.3% ± 11.9 with standard of reference, 48.8% ± 11.8 with single-BH SSIR, 48.8% ± 11 with non-BH SSIR; P = .03 and P = .12, respectively). Bland-Altman analysis showed similar measurement errors for single-BH SSIR and non-BH SSIR when compared with standard of reference measurements for EF, volume, and mass. Conclusion Assessment of LV function with SSIR at 3.0 T is noninferior to the standard of reference irrespective of BH commands. LV mass, however, is overestimated with SSIR. © RSNA, 2016 Online supplemental material is available for this article.

  10. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  11. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  12. Development of a 100 nmol mol(-1) propane-in-air SRM for automobile-exhaust testing for new low-emission requirements.

    PubMed

    Rhoderick, George C

    2007-04-01

    New US federal low-level automobile emission requirements, for example zero-level-emission vehicle (ZLEV), for hydrocarbons and other species, have resulted in the need by manufacturers for new certified reference materials. The new emission requirement for hydrocarbons requires the use, by automobile manufacturing testing facilities, of a 100 nmol mol(-1) propane in air gas standard. Emission-measurement instruments are required, by federal law, to be calibrated with National Institute of Standards and Technology (NIST) traceable reference materials. Because a NIST standard reference material (SRM) containing 100 nmol mol(-1) propane was not available, the US Environmental Protection Agency (EPA) and the Automobile Industry/Government Emissions Research Consortium (AIGER) requested that NIST develop such an SRM. A cylinder lot of 30 gas mixtures containing 100 nmol mol(-1) propane in air was prepared in 6-L aluminium gas cylinders by a specialty gas company and delivered to the Gas Metrology Group at NIST. Another mixture, contained in a 30-L aluminium cylinder and included in the lot, was used as a lot standard (LS). Using gas chromatography with flame-ionization detection all 30 samples were compared to the LS to obtain the average of six peak-area ratios to the LS for each sample with standard deviations of <0.31%. The average sample-to-LS ratio determinations resulted in a range of 0.9828 to 0.9888, a spread of 0.0060, which corresponds to a relative standard deviation of 0.15% of the average for all 30 samples. NIST developed its first set of five propane in air primary gravimetric standards covering a concentration range 91 to 103 nmol mol(-1) with relative uncertainties of 0.15%. This new suite of propane gravimetric standards was used to analyze and assign a concentration value to the SRM LS. On the basis of these data each SRM sample was individually certified, furnishing the desired relative expanded uncertainty of +/-0.5%. Because automobile companies use total hydrocarbons to make their measurements, it was also vital to assign a methane concentration to the SRM samples. Some of the SRM samples were analyzed and found to contain 1.2 nmol mol(-1) methane. Twenty-five of the samples were certified and released as SRM 2765.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoenig, M.; Elsen, Y.V.; Cauter, R.V.

    The progressive degradation of the pyrolytic graphite surface of atomizers provides variable and misleading results of molybdenum peak-height measurements. The changes in the peak shapes produce no analytical problems during the lifetime of the atomizer (approx.300 firings) when integrated absorbance (A.s signals) is considered and the possible base-line drifts are controlled. This was demonstrated on plant samples mineralized by simple digestion with a mixture of HNO/sub 3/ and H/sub 2/O/sub 2/. The value of this method was assessed by comparison with a standard dry oxidation method and by molybdenum determination in National Bureau of Standards reference plant samples. The relativemore » standard deviations (n = 5) of the full analytical procedure do not exceed 7%. 13 references, 3 figures, 3 tables.« less

  14. Estuarine water-quality and sediment data, and surface-water and ground-water-quality data, Naval Submarine Base Kings Bay, Camden County, Georgia, January 1999

    USGS Publications Warehouse

    Leeth, David C.; Holloway, Owen G.

    2000-01-01

    In January 1999, the U.S. Geological Survey collected estuarine-water, estuarine-sediment, surface-water, and ground-water quality samples in the vicinity of Naval Submarine Base Kings Bay, Camden County, Georgia. Data from these samples are used by the U.S. Navy to monitor the impact of submarine base activities on local water resources. Estuarine water and sediment data were collected from five sites on the Crooked River, Kings Bay, and Cumberland Sound. Surface-water data were collected from seven streams that discharge from Naval Submarine Base, Kings Bay. Ground-water data were collected from six ground-water monitoring wells completed in the water-table zone of the surficial aquifer at Naval Submarine Base Kings Bay. Samples were analyzed for nutrients, total and dissolved trace metals, total and dissolved organic carbon, oil and grease, total organic halogens, biological and chemical oxygen demand, and total and fecal coliform. Trace metals in ground and surface waters did not exceed U.S. Environmental Protection Agency Drinking Water Standards; and trace metals in surface water also did not exceed U.S. Environmental Protection Agency Surface Water Standards. These trace metals included arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, tin, and zinc. Barium was detected in relatively high concentrations in ground water (concentrations ranged from 18 to 264 micrograms per liter). Two estuarine water samples exceeded the Georgia Department of Natural Resources, Environmental Protection Division standards for copper (concentrations of 6.2 and 3.0 micrograms per liter).

  15. Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd(2+) as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS.

    PubMed

    Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul

    2013-12-01

    The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples.

  16. Comparison of two confocal micro-XRF spectrometers with different design aspects

    PubMed Central

    Smolek, S; Nakazawa, T; Tabe, A; Nakano, K; Tsuji, K; Streli, C; Wobrauschek, P

    2014-01-01

    Two different confocal micro X-ray fluorescence spectrometers have been developed and installed at Osaka City University and the Vienna University of Technology Atominstitut. The Osaka City University system is a high resolution spectrometer operating in air. The Vienna University of Technology Atominstitut spectrometer has a lower spatial resolution but is optimized for light element detection and operates under vacuum condition. The performance of both spectrometers was compared. In order to characterize the spatial resolution, a set of nine specially prepared single element thin film reference samples (500 nm in thickness, Al, Ti, Cr, Fe Ni, Cu, Zr, Mo, and Au) was used. Lower limits of detection were determined using the National Institute of Standards and Technology standard reference material glass standard 1412. A paint layer sample (cultural heritage application) and paint on automotive steel samples were analyzed with both instruments. The depth profile information was acquired by scanning the sample perpendicular to the surface. © 2013 The Authors. X-Ray Spectrometry published by John Wiley & Sons, Ltd. PMID:26430286

  17. Comparison of two confocal micro-XRF spectrometers with different design aspects.

    PubMed

    Smolek, S; Nakazawa, T; Tabe, A; Nakano, K; Tsuji, K; Streli, C; Wobrauschek, P

    2014-03-01

    Two different confocal micro X-ray fluorescence spectrometers have been developed and installed at Osaka City University and the Vienna University of Technology Atominstitut. The Osaka City University system is a high resolution spectrometer operating in air. The Vienna University of Technology Atominstitut spectrometer has a lower spatial resolution but is optimized for light element detection and operates under vacuum condition. The performance of both spectrometers was compared. In order to characterize the spatial resolution, a set of nine specially prepared single element thin film reference samples (500 nm in thickness, Al, Ti, Cr, Fe Ni, Cu, Zr, Mo, and Au) was used. Lower limits of detection were determined using the National Institute of Standards and Technology standard reference material glass standard 1412. A paint layer sample (cultural heritage application) and paint on automotive steel samples were analyzed with both instruments. The depth profile information was acquired by scanning the sample perpendicular to the surface. © 2013 The Authors. X-Ray Spectrometry published by John Wiley & Sons, Ltd.

  18. Doubly labelled water assessment of energy expenditure: principle, practice, and promise.

    PubMed

    Westerterp, Klaas R

    2017-07-01

    The doubly labelled water method for the assessment of energy expenditure was first published in 1955, application in humans started in 1982, and it has become the gold standard for human energy requirement under daily living conditions. The method involves enriching the body water of a subject with heavy hydrogen ( 2 H) and heavy oxygen ( 18 O), and then determining the difference in washout kinetics between both isotopes, being a function of carbon dioxide production. In practice, subjects get a measured amount of doubly labelled water ( 2 H 2 18 O) to increase background enrichment of body water for 18 O of 2000 ppm with at least 180 ppm and background enrichment of body water for 2 H of 150 ppm with 120 ppm. Subsequently, the difference between the apparent turnover rates of the hydrogen and oxygen of body water is assessed from blood-, saliva-, or urine samples, collected at the start and end of the observation interval of 1-3 weeks. Samples are analyzed for 18 O and 2 H with isotope ratio mass spectrometry. The doubly labelled water method is the indicated method to measure energy expenditure in any environment, especially with regard to activity energy expenditure, without interference with the behavior of the subjects. Applications include the assessment of energy requirement from total energy expenditure, validation of dietary assessment methods and validation of physical activity assessment methods with doubly labelled water measured energy expenditure as reference, and studies on body mass regulation with energy expenditure as a determinant of energy balance.

  19. Comparison between the triglycerides standardization of routine methods used in Japan and the chromotropic acid reference measurement procedure used by the CDC Lipid Standardization Programme.

    PubMed

    Nakamura, Masakazu; Iso, Hiroyasu; Kitamura, Akihiko; Imano, Hironori; Noda, Hiroyuki; Kiyama, Masahiko; Sato, Shinichi; Yamagishi, Kazumasa; Nishimura, Kunihiro; Nakai, Michikazu; Vesper, Hubert W; Teramoto, Tamio; Miyamoto, Yoshihiro

    2016-11-01

    Background The US Centers for Disease Control and Prevention ensured adequate performance of the routine triglycerides methods used in Japan by a chromotropic acid reference measurement procedure used by the Centers for Disease Control and Prevention lipid standardization programme as a reference point. We examined standardized data to clarify the performance of routine triglycerides methods. Methods The two routine triglycerides methods were the fluorometric method of Kessler and Lederer and the enzymatic method. The methods were standardized using 495 Centers for Disease Control and Prevention reference pools with 98 different concentrations ranging between 0.37 and 5.15 mmol/L in 141 survey runs. The triglycerides criteria for laboratories which perform triglycerides analyses are used: accuracy, as bias ≤5% from the Centers for Disease Control and Prevention reference value and precision, as measured by CV, ≤5%. Results The correlation of the bias of both methods to the Centers for Disease Control and Prevention reference method was: y (%bias) = 0.516 × (Centers for Disease Control and Prevention reference value) -1.292 ( n = 495, R 2  = 0.018). Triglycerides bias at medical decision points of 1.13, 1.69 and 2.26 mmol/L was -0.71%, -0.42% and -0.13%, respectively. For the combined precision, the equation y (CV) = -0.398 × (triglycerides value) + 1.797 ( n = 495, R 2  = 0.081) was used. Precision was 1.35%, 1.12% and 0.90%, respectively. It was shown that triglycerides measurements at Osaka were stable for 36 years. Conclusions The epidemiologic laboratory in Japan met acceptable accuracy goals for 88.7% of all samples, and met acceptable precision goals for 97.8% of all samples measured through the Centers for Disease Control and Prevention lipid standardization programme and demonstrated stable results for an extended period of time.

  20. Comparison between the triglycerides standardization of routine methods used in Japan and the chromotropic acid reference measurement procedure used by the CDC Lipid Standardization Programme

    PubMed Central

    Nakamura, Masakazu; Iso, Hiroyasu; Kitamura, Akihiko; Imano, Hironori; Noda, Hiroyuki; Kiyama, Masahiko; Sato, Shinichi; Yamagishi, Kazumasa; Nishimura, Kunihiro; Nakai, Michikazu; Vesper, Hubert W; Teramoto, Tamio; Miyamoto, Yoshihiro

    2017-01-01

    Background The US Centers for Disease Control and Prevention ensured adequate performance of the routine triglycerides methods used in Japan by a chromotropic acid reference measurement procedure used by the Centers for Disease Control and Prevention lipid standardization programme as a reference point. We examined standardized data to clarify the performance of routine triglycerides methods. Methods The two routine triglycerides methods were the fluorometric method of Kessler and Lederer and the enzymatic method. The methods were standardized using 495 Centers for Disease Control and Prevention reference pools with 98 different concentrations ranging between 0.37 and 5.15 mmol/L in 141 survey runs. The triglycerides criteria for laboratories which perform triglycerides analyses are used: accuracy, as bias ≤5% from the Centers for Disease Control and Prevention reference value and precision, as measured by CV, ≤5%. Results The correlation of the bias of both methods to the Centers for Disease Control and Prevention reference method was: y (%bias) = 0.516 × (Centers for Disease Control and Prevention reference value) −1.292 (n = 495, R2 = 0.018). Triglycerides bias at medical decision points of 1.13, 1.69 and 2.26 mmol/L was −0.71%, −0.42% and −0.13%, respectively. For the combined precision, the equation y (CV) = −0.398 × (triglycerides value) + 1.797 (n = 495, R2 = 0.081) was used. Precision was 1.35%, 1.12% and 0.90%, respectively. It was shown that triglycerides measurements at Osaka were stable for 36 years. Conclusions The epidemiologic laboratory in Japan met acceptable accuracy goals for 88.7% of all samples, and met acceptable precision goals for 97.8% of all samples measured through the Centers for Disease Control and Prevention lipid standardization programme and demonstrated stable results for an extended period of time. PMID:26680645

  1. Water Quality Data from Two Agricultural Drainage Basins in Northwestern Indiana and Northeastern Illinois: I. Lagrangian and Synoptic Data, 1999-2002

    DTIC Science & Technology

    2004-01-01

    of 370 °C with sulfuric acid , potassium sulfate and mercury (II). Therefore, in this report, Kjeldahl nitrogen refers to ammonium ions plus organic... sulfuric acid to a fixed point endpoint according to the techniques of Kramer (1982) using a Gran’s titration calculation. Standard reference water...Name Al Aluminum H Hydrogen Rb Rubidium As Arsenic HCO 3 Bicarbonate Re Rhenium B Boron Hg Mercury S Sulfur Ba Barium Ho Holmium SO 4

  2. 40 CFR Table 1a to Subpart Ce of... - Emissions Limits for Small, Medium, and Large HMIWI at Designated Facilities as Defined in § 60...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) (grains per dry standard cubic foot (gr/dscf)) 115 (0.05) 69 (0.03) 34 (0.015) 3-run average (1-hour minimum sample time per run) EPA Reference Method 5 of appendix A-3 of part 60, or EPA Reference Method...-run average (1-hour minimum sample time per run) EPA Reference Method 10 or 10B of appendix A-4 of...

  3. 40 CFR Table 1a to Subpart Ce of... - Emissions Limits for Small, Medium, and Large HMIWI at Designated Facilities as Defined in § 60...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) (grains per dry standard cubic foot (gr/dscf)) 115 (0.05) 69 (0.03) 34 (0.015) 3-run average (1-hour minimum sample time per run) EPA Reference Method 5 of appendix A-3 of part 60, or EPA Reference Method...-run average (1-hour minimum sample time per run) EPA Reference Method 10 or 10B of appendix A-4 of...

  4. Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2007-01-01

    The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The trace elements detected with the highest median concentrations were strontium and iron in unfiltered water and strontium and barium in filtered water. Concentrations of trace elements in several samples exceeded U.S. Environmental Protection Agency secondary drinking-water standards, including aluminum (50-200 micrograms per liter, three wells), arsenic (10 micrograms per liter, one well), iron (300 micrograms per liter, three wells), and manganese (50 micrograms per liter, four wells). The median concentration of radon-222 was 1,580 picoCuries per liter. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a maximum contaminant level of 300 picoCuries per liter along with an alternative maximum contaminant level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed maximum contaminant level in all 19 of the samples and exceeded the proposed alternative maximum contaminant level in 1 sample. Eleven pesticides and pesticide degradates were detected in samples from ten wells; all were herbicides or herbicide degradates. Three volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria were detected in samples from five wells, four of which were finished in sand and gravel; Escherichia coli was not detected in any sample.

  5. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  6. 46 CFR 53.01-1 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) American Society of Mechanical Engineers (ASME) International, Three Park Avenue, New York, NY...., 333 Pfingston Road, Northbrook, IL 60062-2096: (1) UL 174, Standard for Household Electric Storage... 174”), 53.01-10. (2) UL 1453, Standard for Electric Booster and Commercial Storage Tank Water Heaters...

  7. 46 CFR 53.01-1 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (b) American Society of Mechanical Engineers (ASME) International, Three Park Avenue, New York, NY...., 333 Pfingston Road, Northbrook, IL 60062-2096: (1) UL 174, Standard for Household Electric Storage... 174”), 53.01-10. (2) UL 1453, Standard for Electric Booster and Commercial Storage Tank Water Heaters...

  8. Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation

    PubMed Central

    2015-01-01

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L–1 for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry). PMID:25300934

  9. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation.

    PubMed

    Musil, Stanislav; Matoušek, Tomáš; Currier, Jenna M; Stýblo, Miroslav; Dědina, Jiří

    2014-10-21

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).

  10. A new separation and preconcentration method for selenium in some foods using modified silica gel with 2,6-diamino-4-phenil-1,3,5-triazine.

    PubMed

    Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa

    2017-04-15

    A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. MCX based solid phase extraction combined with liquid chromatography tandem mass spectrometry for the simultaneous determination of 31 endocrine-disrupting compounds in surface water of Shanghai.

    PubMed

    Zhang, Hong-Chang; Yu, Xue-jun; Yang, Wen-chao; Peng, Jin-feng; Xu, Ting; Yin, Da-Qiang; Hu, Xia-lin

    2011-10-15

    A novel analytical method employing MCX (mixed-mode cationic exchange) based solid phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to detect 31 endocrine-disrupting compounds (EDCs) in surface water samples simultaneously. The target EDCs belong to five classes, including seven estrogens, eight androgens, six progesterones, five adrenocortical hormones and five industrial compounds. In order to simultaneously concentrate the target EDCs and eliminate matrix interferences in the water samples, MCX SPE cartridges were employed for SPE, and then followed by a simple and highly efficient three-step sequential elution procedure. Two electrospray ionization (ESI) detection modes, positive (ESI+) and (ESI-), were optimized for HPLC-MS/MS analysis to obtain the highest sensitivity for all the EDCs. The limits of detection (LODs) were 0.02-1.9 ng L(-1), which are lower than or comparable to these reported in references. Wide linear ranges (LOD-100 ng L(-1) for ESI+ mode, and LOD-200 ng L(-1) for ESI- mode) were obtained with determination coefficients (R(2)) higher than 0.99 for all the compounds. With five internal standards, good recoveries (84.4-103.0%) of all the target compounds were obtained in selected surface water samples. The developed method was successfully applied to investigate the EDCs occurrence in the surface water of Shanghai by analyzing surface water samples from 11 sites. The results showed that nearly all the target compounds (30 in 31) were present in the surface water samples of Shanghai, of which three industrial compounds (4-t-OP, BPA, and BPF) showed the highest concentrations (median concentrations were 11.88-23.50 ng L(-1)), suggesting that industrial compounds were the dominating EDCs in the surface water of Shanghai, and much more attention should be paid on these compounds. Our present research demonstrated that SPE with MCX cartridges combined with HPLC-MS/MS was convenient, efficient and reliable for multiclass analysis of EDCs in surface water. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. An assessment of stream water quality of the Rio San Juan, Nuevo Leon, Mexico, 1995-1996.

    PubMed

    Flores Laureano, José Santos; Návar, José

    2002-01-01

    Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.

  13. Methods for quantitative infrared directional-hemispherical and diffuse reflectance measurements using an FTIR and a commercial integrating sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.

    Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and themore » solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also discussed.« less

  14. Practical wavelength calibration considerations for UV-visible Fourier-transform spectroscopy.

    PubMed

    Salit, M L; Travis, J C; Winchester, M R

    1996-06-01

    The intrinsic wavelength scale in a modern reference laser-controlled Michelson interferometer-sometimes referred to as the Connes advantage-offers excellent wavelength accuracy with relative ease. Truly superb wavelength accuracy, with total relative uncertainty in line position of the order of several parts in 10(8), should be within reach with single-point, multiplicative calibration. The need for correction of the wavelength scale arises from two practical effects: the use of a finite aperture, from which off-axis rays propagate through the interferometer, and imperfect geometric alignment of the sample beam with the reference beam and the optical axis of the moving mirror. Although an analytical correction can be made for the finite-aperture effect, calibration with a trusted wavelength standard is typically used to accomplish both corrections. Practical aspects of accurate calibration of an interferometer in the UV-visible region are discussed. Critical issues regarding accurate use of a standard external to the sample source and the evaluation and selection of an appropriate standard are addressed. Anomalous results for two different potential wavelength standards measured by Fabry-Perot interferometry (Ar II and (198)Hg I) are observed.

  15. Quality of water in the alluvial aquifer, American Bottoms, East St Louis, Illinois

    USGS Publications Warehouse

    Voelker, David C.

    1984-01-01

    Ground-water levels in the American Bottoms regions around East St. Louis, Illinois, have risen several feet since the early 1970's. Artificial dewatering of the aquifer by increased pumping is being investigated by the U.S. Army Corps of Engineers to alleviate economic and health concerns resulting from elevated ground-water levels. A ground-water quality evaluation is necessary for selecting a feasible dewatering scheme. Analyses of water samples from 63 wells show that except for iron, manganese, and dissolved solids, constituent concentrations do not exceed Illinois water-quality standards. The waters are primarily of the calcium-magnesium-bicarbonate type with some calcium-sulfate type water. Iron concentrations ranged from less than 3 to 82,000 micrograms per liter, manganese from 5 to 5,300 micrograms per liter, and dissolved solids from 140 to 3,000 milligrams per liter. These constituent concentrations exceed Illinois ' public water supply, effluent, and general water-quality standards in most samples and analysis indicates the concentrations are representative of the ambient water quality. Concentrations of nitrite + nitrate nitrogen fluoride, zinc, lead, and sulfate also exceeded Illinois water-quality standards in a few samples. Concentrations of organic pesticides, polychlorinated biphenyls, and polychlorinated naphthalenes were below analytical detection limits. (USGS)

  16. KEY COMPARISON: Final Report on CCT-K7: Key comparison of water triple point cells

    NASA Astrophysics Data System (ADS)

    Stock, M.; Solve, S.; del Campo, D.; Chimenti, V.; Méndez-Lango, E.; Liedberg, H.; Steur, P. P. M.; Marcarino, P.; Dematteis, R.; Filipe, E.; Lobo, I.; Kang, K. H.; Gam, K. S.; Kim, Y.-G.; Renaot, E.; Bonnier, G.; Valin, M.; White, R.; Dransfield, T. D.; Duan, Y.; Xiaoke, Y.; Strouse, G.; Ballico, M.; Sukkar, D.; Arai, M.; Mans, A.; de Groot, M.; Kerkhof, O.; Rusby, R.; Gray, J.; Head, D.; Hill, K.; Tegeler, E.; Noatsch, U.; Duris, S.; Kho, H. Y.; Ugur, S.; Pokhodun, A.; Gerasimov, S. F.

    2006-01-01

    The triple point of water serves to define the kelvin, the unit of thermodynamic temperature, in the International System of Units (SI). Furthermore, it is the most important fixed point of the International Temperature Scale of 1990 (ITS-90). Any uncertainty in the realization of the triple point of water contributes directly to the measurement uncertainty over the wide temperature range from 13.8033 K to 1234.93 K. The Consultative Committee for Thermometry (CCT) decided at its 21st meeting in 2001 to carry out a comparison of water triple point cells and charged the BIPM with its organization. Water triple point cells from 20 national metrology institutes were carried to the BIPM and were compared with highest accuracy with two reference cells. The small day-to-day changes of the reference cells were determined by a least-squares technique. Prior to the measurements at the BIPM, the transfer cells were compared with the corresponding national references and therefore also allow comparison of the national references of the water triple point. This report presents the results of this comparison and gives detailed information about the measurements made at the BIPM and in the participating laboratories. It was found that the transfer cells show a standard deviation of 50 µK the difference between the extremes is 160 µK. The same spread is observed between the national references. The most important result of this work is that a correlation between the isotopic composition of the cell water and the triple point temperature was observed. To reduce the spread between different realizations, it is therefore proposed that the definition of the kelvin should refer to water of a specified isotopic composition. The CCT recommended to the International Committee of Weights and Measures (CIPM) to clarify the definition of the kelvin in the SI brochure by explicitly referring to water with the isotopic composition of Vienna Standard Mean Ocean Water (VSMOW). The CIPM accepted this recommendation and the next edition of the SI brochure will include this specification. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. Drinking Water Quality Assessment Studies for an Urbanized Part of the Nagpur District, Central India.

    PubMed

    Varade, Abhay M; Yenkie, Rajshree; Shende, Rahul; Kodate, Jaya

    2014-01-01

    The water quality of Hingna area of Nagpur district, Central India was assessed for its suitability as drinking water. 22 water samples, representing both the surface and groundwater sources, were collected and analysed for different inorganic constituents by using the standard procedures. The result depicted abundance of major ions; Ca2+ > Mg2+ > Na+ > K+ = HCO3- > Cl- > SO4(2-) > NO3-. The concentrations of different elements in water were compared with the drinking water standards defined by World Health Organization (WHO). The hydro-chemical results reveal that most of the samples were within the desirable limits of the drinking water quality. However, few samples of the area, showed higher values of total dissolved solids (TDS), total hardness (TH), and magnesium (Mg) indicating their 'hard water type' nature and found to be unfit for the drinking purpose. Such poor water quality of these samples is found due to the combined effect of urbanization and industrial activities. The potential health risks associated with various water parameters have also been documented in this paper.

  18. Collection of Pyrethroids in Water and Sediment Matrices: Development and Validation of a Standard Operating Procedure

    USGS Publications Warehouse

    Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn

    2009-01-01

    Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.

  19. A new turn-on fluorimetric method for the rapid speciation of Cr(III)/Cr(VI) species in tea samples with rhodamine-based fluorescent reagent

    NASA Astrophysics Data System (ADS)

    Özyol, Esra; Saçmacı, Şerife; Saçmacı, Mustafa; Ülgen, Ahmet

    2018-02-01

    A new fluorimetric method with rhodamine-based fluorescent agent was developed for the rapid speciation of Cr(III)/Cr(VI) in tea, soil and water samples. The system, which utilizes a fluorescent reagent, was used for the first time after synthesis/characterization of 3‧,6‧-bis(diethylamino)-2-{[(1E)-(2,4-dimethoxyphenyl)methylene] amino}spiro[isoindole-1,9‧-xanthen]-3(2H)-one (BDAS). The reagent responds instantaneously at room temperature in a 1:1 stoichiometric manner to the amount of Cr(III). The selectivity of this system for Cr(III) over other metal ions is remarkably high, and its sensitivity is below 0.01 mg L- 1 in aqueous solutions which enables a simplification without any pretreatment of the real sample. The method has a wide linear range of 0.1-10 mg L- 1 and a detection limit of 0.15 μg L- 1 for Cr(III) while the relative standard deviation was 0.1% for 0.1 mg L- 1 Cr(III) concentration. The results of detection and recovery experiments for Cr(III) in tea, soil and water were satisfactory, indicating that the method has better feasibility and application potential in the routine determination and speciation of Cr(III)/Cr(VI). The results of analysis of the certified reference material (INCT-TL-1 tea sample and CWW-TM-D waste water) are in good agreement with the certified value.

  20. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    USGS Publications Warehouse

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    Little existing information was available describing pesticide occurrence in ground water of Wyoming, so the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture and the Wyoming Department of Environmental Quality on behalf of the Wyoming Ground-water and Pesticides Strategy Committee, collected ground-water samples twice (during late summer/early fall and spring) from 296 wells during 1995-2006 to characterize pesticide occurrence. Sampling focused on the State's ground water that was mapped as the most vulnerable to pesticide contamination because of either inherent hydrogeologic sensitivity (for example, shallow water table or highly permeable aquifer materials) or a combination of sensitivity and associated land use. Because of variations in reporting limits among different compounds and for the same compound during this study, pesticide detections were recensored to two different assessment levels to facilitate qualitative and quantitative examination of pesticide detection frequencies - a common assessment level (CAL) of 0.07 microgram per liter and an assessment level that differed by compound, referred to herein as a compound-specific assessment level (CSAL). Because of severe data censoring (fewer than 50 percent of the data are greater than laboratory reporting limits), categorical statistical methods were used exclusively for quantitative comparisons of pesticide detection frequencies between seasons and among various natural and anthropogenic (human-related) characteristics. One or more pesticides were detected at concentrations greater than the CAL in water from about 23 percent of wells sampled in the fall and from about 22 percent of wells sampled in the spring. Mixtures of two or more pesticides occurred at concentrations greater than the CAL in about 9 percent of wells sampled in the fall and in about 10 percent of wells sampled in the spring. At least 74 percent of pesticides detected were classified as herbicides. Considering only detections using the CAL, triazine pesticides were detected much more frequently than all other pesticide classes, and the number of different pesticides classified as triazines was the largest of all classes. More pesticides were detected at concentrations greater than the CSALs in water from wells sampled in the fall (28 different pesticides) than in the spring (21 different pesticides). Many pesticides were detected infrequently as nearly one-half of pesticides detected in the fall and spring at concentrations greater than the CSALs were detected only in one well. Using the CSALs for pesticides analyzed for in 11 or more wells, only five pesticides (atrazine, prometon, tebuthiuron, picloram, and 3,4-dichloroaniline, listed in order of decreasing detection frequency) were each detected in water from more than 5 percent of sampled wells. Atrazine was the pesticide detected most frequently at concentrations greater than the CSAL. Concentrations of detected pesticides generally were small (less than 1 microgram per liter), although many infrequent detections at larger concentrations were noted. All detected pesticide concentrations were smaller than U.S. Environmental Protection Agency (USEPA) drinking-water standards or applicable health advisories. Most concentrations were at least an order of magnitude smaller; however, many pesticides did not have standards or advisories. The largest percentage of pesticide detections and the largest number of different pesticides detected were in samples from wells located in the Bighorn Basin and High Plains/ Casper Arch geographic areas of north-central and southeastern Wyoming. Prometon was the only pesticide detected in all eight geographic areas of the State. Pesticides were detected much more frequently in samples from wells located in predominantly urban areas than in samples from wells located in predominantly agricultural or mixed areas. Pesticides were detected distinctly less often in sa

  1. Ground-Water Quality in the Upper Hudson River Basin, New York, 2007

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2009-01-01

    Water samples were collected from 25 production and domestic wells in the Upper Hudson River Basin (north of the Federal Dam at Troy, N.Y.) from August through November 2007 to characterize the ground-water quality. The Upper Hudson River Basin covers 4,600 square miles in upstate New York, Vermont, and Massachusetts; the study area encompasses the 4,000 square miles that lie within New York. The basin is underlain by crystalline and sedimentary bedrock, including gneiss, shale, and slate; some sandstone and carbonate rocks are present locally. The bedrock in some areas is overlain by surficial deposits of saturated sand and gravel. Of the 25 wells sampled, 13 were finished in sand and gravel deposits, and 12 were finished in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 225 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (1 sample), pH (2 samples), sodium (5 samples), nitrate plus nitrite (2 samples), aluminum (3 samples), iron (1 sample), manganese (7 samples), radon-222 (11 samples), and bacteria (1 sample). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 5.4 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median 0.4 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.6); the median water temperature was 9.7 deg C. The ions with the highest concentrations were bicarbonate (median 123 mg/L) and calcium (median 33.9 mg/L). Ground water in the basin is generally soft to moderately hard (less than or equal to 120 mg/L as CaCO3) (median hardness 110 mg/L as CaCO3). Concentrations of nitrate plus nitrite in samples from sand and gravel wells (median concentration 0.47 mg/L as nitrogen) were generally higher than those in samples from bedrock wells (median estimated 0.05 mg/L as nitrogen), and concentrations in two samples exceeded established drinking-water standards for nitrate (10 mg/L as nitrogen). The trace elements with the highest concentrations were strontium [median 217 micrograms per liter (ug/L)] and iron (median 39 ug/L). The highest radon-222 activities were in samples from bedrock wells [maximum 2,930 picocuries per liter (pCi/L)] and 44 percent of all samples exceeded a proposed U.S. Environmental Protection Agency (USEPA) drinking-water standard of 300 pCi/L. Ten pesticides and pesticide degradates were detected among 11 samples at concentrations of 1.47 ug/L or less; most were herbicides or their degradates. Six VOCs were detected among 10 samples at concentrations of 4.2 ug/L or less; these included three trihalomethanes and methyl tert-butyl ether, tetrachloroethene, and toluene. Most detections were in samples from sand and gravel wells and none exceeded drinking-water standards. Total coliform bacteria were detected in only one sample, and fecal coliform bacteria, including Escherichia coli, were not detected in any sample.

  2. Groundwater quality in the Lower Hudson River Basin, New York, 2008

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2010-01-01

    Water samples were collected from 32 production and domestic wells in the study area from August through November 2008 to characterize the groundwater quality. The study area, which covers 5,607 square miles, encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. The study area is underlain by mainly clastic bedrock, predominantly shale, with carbonate and crystalline rock present locally. The bedrock is generally overlain by till, but surficial deposits of saturated sand and gravel are present in some areas. Of the 32 wells sampled, 16 were finished in sand and gravel deposits and 16 were finished in bedrock. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 225 physiochemical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, and volatile organic compounds (VOCs); indicator bacteria were collected and analyzed by New York State Department of Health procedures. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State primary or secondary drinking-water standards; the standards exceeded were color (2 samples), pH (6 samples), sodium (8 samples), fluoride (1 sample), aluminum (3 samples), arsenic (1 sample), iron (7 samples), manganese (14 samples), radon-222 (17 samples), tetrachloroethene (1 sample), and bacteria (7 samples). The pH of all samples was typically neutral or slightly basic (median 7.2); the median water temperature was 11.8 degrees C. The ions with the highest concentrations were bicarbonate [median 167 milligrams per liter (mg/L)] and calcium (median 38.2 mg/L). Groundwater in the study area ranged from very soft to very hard, but more samples were classified as very hard (181 mg/L as CaCO3 or more) than soft (60 mg/L as CaCO3 or less); the median hardness was 140 mg/L as CaCO3. The maximum concentration of nitrate plus nitrite was 2.38 mg/L as nitrogen, which did not exceed established drinking-water standards for nitrate plus nitrite (10 mg/L as nitrogen). The trace elements with the highest concentrations were strontium [median 189 micrograms per liter ((u or mu)g/L)] and barium (median 50.6 (u or mu)g/L). The highest radon-222 activities were in samples from crystalline bedrock wells [maximum 13,800 picocuries per liter (pCi/L)]. Seventeen samples had radon-222 activities that exceeded a proposed U.S. Environmental Protection Agency (USEPA) drinking-water standard of 300 pCi/L; activities in two samples exceeded a proposed alternative drinking-water standard of 4,000 pCi/L. Ten pesticides and pesticide degradates were detected among 14 samples at concentrations of 0.183 (u or mu)g/L or less; most were herbicides or their degradates. Eight VOCs were detected among six samples; these included solvents, gasoline components, and a trihalomethane. Total coliform bacteria were detected in seven samples; fecal coliform bacteria, including Escherichia coli, were detected in one sample.

  3. Thermophilic Geobacillus galactosidasius sp. nov. loaded γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd.

    PubMed

    Özdemir, Sadin; Kilinç, Ersin; Okumuş, Veysi; Poli, Annarita; Nicolaus, Barbara; Romano, Ida

    2016-02-01

    Thermophilic bacteria, Geobacillus galactosidasius sp nov. was loaded on γ-Fe2O3 magnetic nanoparticle for the preconcentrations of Pb and Cd by solid phase extraction before ICP-OES. pH and flow rate of the solution, amounts of biosorbent and magnetic nanoparticle, volume of sample solution, effects of the possible interferic ions were investigated in details. Linear calibration curves were constructed in the concentration ranges of 1.0-60ngmL(-1) for Pb and Cd. The RSDs of the method were lower than 2.8% for Pb and 3.8% for Cd. Certified and standard reference samples of fortified water, wastewater, poplar leaves, and simulated fresh water were used to accurate the method. LOD values were found as 0.07 and 0.06ngmL(-1) respectively for Pb and Cd. The biosorption capacities were found as 34.3mgg(-1) for Pb and 37.1mgg(-1) for Cd. Pb and Cd concentrations in foods were determined. Surface microstructure was investigated by SEM-EDX. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

    PubMed Central

    Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo

    2011-01-01

    Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986

  5. Standardization of the capillary electrophoresis procedures Capillarys® CDT and Minicap® CDT in comparison to the IFCC reference measurement procedure.

    PubMed

    Schellenberg, François; Humeau, Camille

    2017-06-01

    CDT is at present the most relevant routinely available biological marker of alcohol use and is widely used for screening and monitoring of patients. The lack of standardization leads to specific reference intervals for each procedure. The IFCC working group devoted to CDT demonstrated that the standardization is possible using calibrators assigned to the reference measurement procedure. In this study, we compare the capillary electrophoresis (CE) techniques Capillarys® CDT and Minicap® CDT (Sebia, Lisses, France) to the reference procedure before and after standardization in 126 samples covering the range of CDT measurement. Both capillary electrophoresis procedures show a high correlation (r=0,997) with the reference procedure and the concordance correlation coefficient evaluated according to Mc Bride is "almost perfect" (>0.997 for both CE procedures). The number of results with a relative difference higher than the acceptable difference limit is only 1 for Capillarys® CDT and 5 for Minicap® CDT. These results demonstrate the efficiency of the standardization of CDT measurements for both CE techniques from Sebia, achieved using calibrators assigned to the reference measurement procedure.

  6. [The requirements of standard and conditions of interchangeability of medical articles].

    PubMed

    Men'shikov, V V; Lukicheva, T I

    2013-11-01

    The article deals with possibility to apply specific approaches under evaluation of interchangeability of medical articles for laboratory analysis. The development of standardized analytical technologies of laboratory medicine and formulation of requirements of standards addressed to manufacturers of medical articles the clinically validated requirements are to be followed. These requirements include sensitivity and specificity of techniques, accuracy and precision of research results, stability of reagents' quality in particular conditions of their transportation and storage. The validity of requirements formulated in standards and addressed to manufacturers of medical articles can be proved using reference system, which includes master forms and standard samples, reference techniques and reference laboratories. This approach is supported by data of evaluation of testing systems for measurement of level of thyrotrophic hormone, thyroid hormones and glycated hemoglobin HB A1c. The versions of testing systems can be considered as interchangeable only in case of results corresponding to the results of reference technique and comparable with them. In case of absence of functioning reference system the possibilities of the Joined committee of traceability in laboratory medicine make it possible for manufacturers of reagent sets to apply the certified reference materials under development of manufacturing of sets for large listing of analytes.

  7. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Salma Aslam; Arain, Mariam Shahzadi; Brahaman, Kapil Dev; Naeemullah; Arain, Sadaf Sadia

    2016-02-01

    The combined exposure to aluminum (Al) and cadmium (Cd) causes more pronounced adverse health effects on humans. The kidneys are the main organs affected by internal exposure to Cd and Al via food and non-food items. The objective of present study was to measure the Al and Cd concentrations in cigarettes tobacco (branded and non-branded) and drinking water (domestic treated, ground and lake water) samples in southern part of Pakistan, to assess the risk due to ingestion of water and inhalation of cigarettes smoke containing high concentrations of both elements. The study population (kidney disorder and healthy) divided into two group based on consuming lake and ground water, while smoking non-branded cigarette as exposed, while drinking domestic treated water and smoking branded cigarette as non-exposed. Electrothermal atomic absorption spectrometry was used to determined Cd and Al concentrations in tobacco, drinking water and blood samples. The resulted data indicated that the levels of Al and Cd in lake and underground water were higher than the permissible limit in drinking water recommended by the World Health Organization. The biochemical parameters of exposed and referent patients, especially urinary N-acetyl-h-glucosaminidase, were used as a biomarkers of kidney disorder. Exposed kidney disorder patients have higher levels of Cd and Al than the exposed referents subjects, while difference was significant when compared to resulted data of non-exposed patients and referents (p = 0.01-0.001). The pearson correlation showed positive correlation between both toxic element concentrations in water, cigarettes versus blood samples of exposed subjects (r = 0.20-0.67 and 0.71-0.82), while lower values were observed for non-exposed subjects (r = 0.123-0.423 and 0.331-0.425), respectively.

  8. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2012-01-01

    Water quality in both study areas is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (one sample in the St. Lawrence study area), pH (three samples in the Delaware study area), sodium (one sample in the St. Lawrence study area), total dissolved solids (one sample in the St. Lawrence study area), aluminum (one sample in the Delaware study area and one sample in the St. Lawrence study area), iron (seven samples in the St. Lawrence study area), manganese (one sample in the Delaware study area and five samples in the St. Lawrence study area), gross alpha radioactivity (one sample in the St. Lawrence study area), radon-222 (10 samples in the Delaware study area and 14 samples in the St. Lawrence study area), and bacteria (5 samples in the Delaware study area and 10 samples in the St. Lawrence study area). E. coli bacteria were detected in samples from two wells in the St. Lawrence study area. Concentrations of chloride, fluoride, sulfate, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium did not exceed existing drinking-water standards in any of the samples collected.

  9. Determination of arsenic in traditional Chinese medicine by microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS).

    PubMed

    Ong, E S; Yong, Y L; Woo, S O

    1999-01-01

    A simple, rapid, and sensitive method with high sample throughput was developed for determining arsenic in traditional Chinese medicine (TCM) in the form of uncoated tablets, sugar-coated tablets, black pills, capsules, powders, and syrups. The method involves microwave digestion with flow injection-inductively coupled plasma mass spectrometry (FI-ICP-MS). Method precision was 2.7-10.1% (relative standard deviation, n = 6) for different concentrations of arsenic in different TCM samples analyzed by different analysts on different days. Method accuracy was checked with a certified reference material (sea lettuce, Ulva lactuca, BCR CRM 279) for external calibration and by spiking arsenic standard into different TCMs. Recoveries of 89-92% were obtained for the certified reference material and higher than 95% for spiked TCMs. Matrix interference was insignificant for samples analyzed by the method of standard addition. Hence, no correction equation was used in the analysis of arsenic in the samples studied. Sample preparation using microwave digestion gave results that were very similar to those obtained by conventional wet acid digestion using nitric acid.

  10. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  11. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  12. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8.35 (n = 206), and glufosinate 9.3 plus or minus 9.16 (n = 16). The analytical variation of the method, comparison of quantitation by isotope dilution and multipoint linear regressed standard curves, and method detection levels were evaluated by analyzing six sets of distilled-water, groundwater, and surface-water samples spiked in duplicate at 0.0, 0.05, 0.10 and 0.50 microgram per liter and analyzed on 6 different days during 1 month. The grand means of the normalized concentration percentage recovery for glyphosate, AMPA, and glufosinate among all three matrices and spiked concentrations ranged from 99 to 114 plus or minus 2 to 7 percent of the expected spiked concentration. The grand mean of the percentage difference between concentrations calculated by standard addition and linear regressed multipoint standard curves ranged from 8 to 15 plus or minus 2 to 9 percent for the three compounds. The method reporting levels calculated from all the 0.05- microgram per liter spiked samples were 0.02 microgram per liter for all three compounds. Compound stability experiments were conducted on 10 samples derivatized four times for periods between 136 to 269 days. The glyphosate and AMPA concentrations remained relatively constant in samples held up to 136 days before derivatization. The half life of glyphosate varied from 169 to 223 days in the underivatized samples. Derivatized samples were analyzed the day after derivitization, and again 54 and 64 days after derivatization. The derivatized samples analyzed at days 52 and 64 were within 20 percent of the concentrations of the derivatized samples analyzed the day after derivatization.

  13. Detection of microcystin and other cyanotoxins in lakes at Isle Royale National Park, Pictured Rocks National Lakeshore, and Sleeping Bear Dunes National Lakeshore, northern Michigan, 2012–13

    USGS Publications Warehouse

    Fuller, Lori M.; Brennan, Angela K.; Fogarty, Lisa R.; Loftin, Keith A.; Johnson, Heather E.; VanderMeulen, David D.; Lafrancois, Brenda Moraska

    2017-12-05

    Although cyanotoxins released during algal blooms have become an increasing concern in surface waters across the United States, the presence of cyanotoxins in northern Michigan lakes had not been evaluated in detail. The U.S. Geological Survey and National Park Service (NPS) led a 2-year study (2012 and 2013) to determine the presence of microcystin and other algal toxins in several inland lakes at Isle Royale National Park (hereafter referred to as ISRO, Pictured Rocks National Lakeshore (hereafter referred to as PIRO), and Sleeping Bear Dunes National Lakeshore (hereafter referred to as SLBE). Samples also were collected at four sites in Lake Michigan within the SLBE. The two analytical techniques used in the study were enzyme-linked immunosorbent assays (ELISA) for microcystin, cylindrospermopsin, and saxitoxin; and liquid chromatography/tandem mass spectrometry (LC/MS/MS) for a larger suite of algal toxins. Neither cylindrospermopsin nor saxitoxin were detected in the 211 samples. Microcystin was detected in 31 percent of samples (65 of 211 samples) analyzed by the ELISA method, but no sample results exceeded the World Health Organization recreational health advisory standard for microcystin (10 micrograms per liter [µg/L]). However, about 10 percent of the samples (21 of 211 samples) that were collected from PIRO and SLBE and were analyzed by ELISA for microcystin had concentrations greater than the U.S. Environmental Protection Agency (EPA) drinking water 10-day health advisory of 0.3 µg/L for children preschool age and younger (less than 6-years old). One sample collected in 2012 from SLBE exceeded the EPA drinking water 10-day health advisory of 1.6 µg/L for school-age children through adults (6-years old and older). In 2012, the highest concentration of 2.7 µg/L was detected in Florence Lake within SLBE. Many visitors enjoy recreation in or on the water and camp in the backcountry at these national parks where the most common source of drinking water is filtered surface water.Approximately 18 percent of the samples (39 of 211 samples) were analyzed by LC/MS/MS to confirm the ELISA results and to evaluate the samples for a larger suite of algal toxins. In general, the microcystin results between the ELISA and LC/MS/MS methods were similar; although, the ELISA results tended to be slightly higher than the summation of LC/MS/MS microcystin congeners. The slightly higher ELISA results might be because the ELISA microcystin method is reactive with the ADDA functional group common to all microcystins, and because not all microcystin congeners are included in the LC/MS/MS method. The LC/MS/MS method indicated that the congener microcystin-LR was the most frequently detected, followed by microcystin-WR and microcystin-YR.Sixteen of the lakes included in this study also were monitored by the NPS for nutrients. Total phosphorus (TP) concentrations were, on average, highest at the ISRO lakes, whereas total nitrogen (TN) concentrations were highest at SLBE. The average annual TN:TP ratios for the 16 lakes within the national park and national lakeshores ranged from ratios of 20 to 89. Overall, results indicated a slight increase in percentage of microcystin detections with an increase in the TN:TP ratio (R-squared 0.269 and 0.340, respectively [2012 and 2013 combined dataset] derived from linear regression).This study also indicated that even in the absence of visible algal blooms, microcystin may be present. Most microcystin concentrations did not exceed the EPA’s 10-day health advisory drinking-water benchmark. In general, these results provide a useful baseline with which to evaluate potential future changes in algal toxin concentrations.

  14. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization

    NASA Astrophysics Data System (ADS)

    Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.

    2015-11-01

    Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.

  15. Evaluation of Skin Surface as an Alternative Source of Reference DNA Samples: A Pilot Study.

    PubMed

    Albujja, Mohammed H; Bin Dukhyil, Abdul Aziz; Chaudhary, Abdul Rauf; Kassab, Ahmed Ch; Refaat, Ahmed M; Babu, Saranya Ramesh; Okla, Mohammad K; Kumar, Sachil

    2018-01-01

    An acceptable area for collecting DNA reference sample is a part of the forensic DNA analysis development. The aim of this study was to evaluate skin surface cells (SSC) as an alternate source of reference DNA sample. From each volunteer (n = 10), six samples from skin surface areas (forearm and fingertips) and two traditional samples (blood and buccal cells) were collected. Genomic DNA was extracted and quantified then genotyped using standard techniques. The highest DNA concentration of SSC samples was collected using the tape/forearm method of collection (2.1 ng/μL). Cotton swabs moistened with ethanol yielded higher quantities of DNA than swabs moistened with salicylic acid, and it gave the highest percentage of full STR profiles (97%). This study supports the use of SSC as a noninvasive sampling technique and as a extremely useful source of DNA reference samples among certain cultures where the use of buccal swabs can be considered socially unacceptable. © 2017 American Academy of Forensic Sciences.

  16. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action.

    PubMed

    Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi

    2016-11-01

    With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore, to identify causative pollutants with harmful biological effects, chemical analyses for the pollutants listed in water quality standards is not sufficient, and single-endpoint bioassays may underestimate adverse effects. Thus, a battery of bioassays based on different MOAs is required for the comprehensive detection of harmful biological effects. In conclusion, for genotoxicity screening of surface waters, the SOS/umu test system by using different strains combined with the CBMN assay was a useful approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of bolus fluid intake on energy expenditure values as determined by the doubly labeled water method

    NASA Technical Reports Server (NTRS)

    Drews, D.; Stein, T. P.

    1992-01-01

    The doubly labeled water (DLW, 2H(2)18O) method is a highly accurate method for measuring energy expenditure (EE). A possible source of error is bolus fluid intake before body water sampling. If there is bolus fluid intake immediately before body water sampling, the saliva may reflect the ingested water disproportionately, because the ingested water may not have had time to mix fully with the body water pool. To ascertain the magnitude of this problem, EE was measured over a 5-day period by the DLW method. Six subjects were dosed with 2H2(18)O. After the reference salivas for the two-point determination were obtained, subjects drank water (700-1,000 ml), and serial saliva samples were collected for the next 3 h. Expressing the postbolus saliva enrichments as a percentage of the prebolus value, we found 1) a minimum in the saliva isotopic enrichments were reached at approximately 30 min with the minimum for 2H (95.48 +/- 0.43%) being significantly lower than the minimum for 18O (97.55 +/- 0.44, P less than 0.05) and 2) EE values calculated using the postbolus isotopic enrichments are appreciably higher (19.9 +/- 7.5%) than the prebolus reference values. In conclusion, it is not advisable to collect saliva samples for DLW measurements within approximately 1 h of bolus fluid intake.

  18. Interpreting and Reporting Radiological Water-Quality Data

    USGS Publications Warehouse

    McCurdy, David E.; Garbarino, John R.; Mullin, Ann H.

    2008-01-01

    This document provides information to U.S. Geological Survey (USGS) Water Science Centers on interpreting and reporting radiological results for samples of environmental matrices, most notably water. The information provided is intended to be broadly useful throughout the United States, but it is recommended that scientists who work at sites containing radioactive hazardous wastes need to consult additional sources for more detailed information. The document is largely based on recognized national standards and guidance documents for radioanalytical sample processing, most notably the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP), and on documents published by the U.S. Environmental Protection Agency and the American National Standards Institute. It does not include discussion of standard USGS practices including field quality-control sample analysis, interpretive report policies, and related issues, all of which shall always be included in any effort by the Water Science Centers. The use of 'shall' in this report signifies a policy requirement of the USGS Office of Water Quality.

  19. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. I. Collection of Virus Samples

    PubMed Central

    Fout, G. Shay; Cashdollar, Jennifer L.; Varughese, Eunice A.; Parshionikar, Sandhya U.; Grimm, Ann C.

    2015-01-01

    EPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ground water are 300 L and 1,500 L, respectively. A major method limitation is the tendency for the filters to clog before meeting the sample volume requirement. Studies using two different, but equivalent, cartridge filter options showed that filter clogging was a problem with 10% of the samples with one of the filter types compared to 6% with the other filter type. Clogging tends to increase with turbidity, but cannot be predicted based on turbidity measurements only. From a cost standpoint one of the filter options is preferable over the other, but the water quality and experience with the water system to be sampled should be taken into consideration in making filter selections. PMID:25867928

  20. Hydrochemical evaluation of river water quality—a case study

    NASA Astrophysics Data System (ADS)

    Qishlaqi, Afishin; Kordian, Sediqeh; Parsaie, Abbas

    2017-09-01

    Rivers are one of the most environmentally vulnerable sources for contamination. Since the rivers pass through the cities, industrial and agricultural centers, these have been considered as place to dispose the sewages. This issue is more important when the river is one of the main sources of water supplying for drinking, agricultural and industrial utilizations. The goal of the present study was assessing the physicochemical characteristics of the Tireh River water. The Tireh River is the main river in the Karkheh catchment in the Iran. To this end, 14 sampling stations for measuring the physicochemical properties of Tireh River along the two main cities (Borujerd and Dorud) were measured. The results showed that (except SO4) Mg, Ca and other anions and cations have concentrations under WHO standard limitation. Almost all samples have suitable conditions for drinking with regard to the WHO standard and in comparison with agricultural standard (FAO Standard), and the potential of water is suitable for irrigation purposes. According to Wilcox diagram, 78 % of samples were at the C3-S1 and 21.5 % were at C2-S1 classes. The piper diagram shows that most of samples are bicarbonate and calcic facies.

  1. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  2. Application of quantitative 1H NMR for the calibration of protoberberine alkaloid reference standards.

    PubMed

    Wu, Yan; He, Yi; He, Wenyi; Zhang, Yumei; Lu, Jing; Dai, Zhong; Ma, Shuangcheng; Lin, Ruichao

    2014-03-01

    Quantitative nuclear magnetic resonance spectroscopy (qNMR) has been developed into an important tool in the drug analysis, biomacromolecule detection, and metabolism study. Compared with mass balance method, qNMR method bears some advantages in the calibration of reference standard (RS): it determines the absolute amount of a sample; other chemical compound and its certified reference material (CRM) can be used as internal standard (IS) to obtain the purity of the sample. Protoberberine alkaloids have many biological activities and have been used as reference standards for the control of many herbal drugs. In present study, the qNMR methods were developed for the calibration of berberine hydrochloride, palmatine hydrochloride, tetrahydropalmatine, and phellodendrine hydrochloride with potassium hydrogen phthalate as IS. Method validation was carried out according to the guidelines for the method validation of Chinese Pharmacopoeia. The results of qNMR were compared with those of mass balance method and the differences between the results of two methods were acceptable based on the analysis of estimated measurement uncertainties. Therefore, qNMR is an effective and reliable analysis method for the calibration of RS and can be used as a good complementarity to the mass balance method. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Increasing the accuracy and scalability of the Immunofluorescence Assay for Epstein Barr Virus by inferring continuous titers from a single sample dilution.

    PubMed

    Goh, Sherry Meow Peng; Swaminathan, Muthukaruppan; Lai, Julian U-Ming; Anwar, Azlinda; Chan, Soh Ha; Cheong, Ian

    2017-01-01

    High Epstein Barr Virus (EBV) titers detected by the indirect Immunofluorescence Assay (IFA) are a reliable predictor of Nasopharyngeal Carcinoma (NPC). Despite being the gold standard for serological detection of NPC, the IFA is limited by scaling bottlenecks. Specifically, 5 serial dilutions of each patient sample must be prepared and visually matched by an evaluator to one of 5 discrete titers. Here, we describe a simple method for inferring continuous EBV titers from IFA images acquired from NPC-positive patient sera using only a single sample dilution. In the first part of our study, 2 blinded evaluators used a set of reference titer standards to perform independent re-evaluations of historical samples with known titers. Besides exhibiting high inter-evaluator agreement, both evaluators were also in high concordance with historical titers, thus validating the accuracy of the reference titer standards. In the second part of the study, the reference titer standards were IFA-processed and assigned an 'EBV Score' using image analysis. A log-linear relationship between titers and EBV Score was observed. This relationship was preserved even when images were acquired and analyzed 3days post-IFA. We conclude that image analysis of IFA-processed samples can be used to infer a continuous EBV titer with just a single dilution of NPC-positive patient sera. This work opens new possibilities for improving the accuracy and scalability of IFA in the context of clinical screening. Copyright © 2016. Published by Elsevier B.V.

  4. Ground-Water Quality in the Mohawk River Basin, New York, 2006

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2008-01-01

    Water samples were collected from 27 wells from August through November 2006 to characterize ground-water quality in the Mohawk River Basin. The Mohawk River Basin covers 3,500 square miles in central New York; most of the basin is underlain by sedimentary bedrock, including shale, sandstone, and carbonates. Sand and gravel form the most productive aquifers in the basin. Samples were collected from 13 sand and gravel wells and 14 bedrock wells, including production and domestic wells. The samples were collected and processed through standard U.S. Geological Survey procedures and were analyzed for 226 physical properties and constituents, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds, and bacteria. Many constituents were not detected in any sample, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water quality standards, including color (1 sample), pH (2 samples), sodium (11 samples), chloride (2 samples), fluoride (1 sample), sulfate (1 sample), aluminum (2 samples), arsenic (2 samples), iron (10 samples), manganese (10 samples), radon-222 (12 samples), and bacteria (6 samples). Dissolved oxygen concentrations were greater in samples from sand and gravel wells (median 5.6 milligrams per liter [mg/L]) than from bedrock wells (median 0.2 mg/L). The pH was typically neutral or slightly basic (median 7.3); the median water temperature was 11?C. The ions with the highest concentrations were bicarbonate (median 276 mg/L), calcium (median 58.9 mg/L), and sodium (median 41.9 mg/L). Ground water in the basin is generally very hard (180 mg/L as CaCO3 or greater), especially in the Mohawk Valley and areas with carbonate bedrock. Nitrate-plus-nitrite concentrations were generally higher samples from sand and gravel wells (median concentration 0.28 mg/L as N) than in samples from bedrock wells (median < 0.06 mg/L as N), although no concentrations exceeded established State or Federal drinking-water standards of 10 mg/L as N for nitrate and 1 mg/L as N for nitrite. Ammonia concentrations were higher in samples from bedrock wells (median 0.349 mg/L as N) than in those from samples from sand and gravel wells (median 0.006 mg/L as N). The trace elements with the highest concentrations were strontium (median 549 micrograms per liter [?g/L]), iron (median 143 ?g/L), boron (median 35 ?g/L), and manganese (median 31.1 ?g/L). Concentrations of several trace elements, including boron, copper, iron, manganese, and strontium, were higher in samples from bedrock wells than those from sand and gravel wells. The highest radon-222 activities were in samples from bedrock wells (maximum 1,360 pCi/L); 44 percent of all samples exceeded a proposed U.S. Environmental Protection Agency drinking water standard of 300 pCi/L. Nine pesticides and pesticide degradates were detected in six samples at concentrations of 0.42 ?g/L or less; all were herbicides or their degradates, and most were degradates of alachlor, atrazine, and metolachlor. Six volatile organic compounds were detected in four samples at concentrations of 0.8 ?g/L or less, including four trihalomethanes, tetrachloroethene, and toluene; most detections were in sand and gravel wells and none of the concentrations exceeded drinking water standards. Coliform bacteria were detected in six samples but fecal coliform bacteria, including Escherichia coli, were not detected in any sample.

  5. Uses and biases of volunteer water quality data

    USGS Publications Warehouse

    Loperfido, J.V.; Beyer, P.; Just, C.L.; Schnoor, J.L.

    2010-01-01

    State water quality monitoring has been augmented by volunteer monitoring programs throughout the United States. Although a significant effort has been put forth by volunteers, questions remain as to whether volunteer data are accurate and can be used by regulators. In this study, typical volunteer water quality measurements from laboratory and environmental samples in Iowa were analyzed for error and bias. Volunteer measurements of nitrate+nitrite were significantly lower (about 2-fold) than concentrations determined via standard methods in both laboratory-prepared and environmental samples. Total reactive phosphorus concentrations analyzed by volunteers were similar to measurements determined via standard methods in laboratory-prepared samples and environmental samples, but were statistically lower than the actual concentration in four of the five laboratory-prepared samples. Volunteer water quality measurements were successful in identifying and classifying most of the waters which violate United States Environmental Protection Agency recommended water quality criteria for total nitrogen (66%) and for total phosphorus (52%) with the accuracy improving when accounting for error and biases in the volunteer data. An understanding of the error and bias in volunteer water quality measurements can allow regulators to incorporate volunteer water quality data into total maximum daily load planning or state water quality reporting. ?? 2010 American Chemical Society.

  6. 46 CFR 53.01-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) American Society of Mechanical Engineers (ASME) International, Three Park Avenue, New York, NY 10016-5990...., 333 Pfingston Road, Northbrook, IL 60062-2096: (1) UL 174, Standard for Household Electric Storage... 174”), 53.01-10. (2) UL 1453, Standard for Electric Booster and Commercial Storage Tank Water Heaters...

  7. Simplified Laboratory Procedures for Wastewater Examination. Second Edition.

    ERIC Educational Resources Information Center

    Water Pollution Control Federation, Washington, DC.

    This booklet is for wastewater treatment plant operators who find it difficult to follow the detailed discussions and procedures found in "Standard Methods for the Examination of Water and Wastewater." It is intended to be used with "Standard Methods" available for reference. Included in this publication are chapters on…

  8. Determination of diphacinone in sea water, vertebrates, invertebrates, and bait pellet formulations following aerial broadcast on Mokapu Island, Molokai, Hawai'i

    USGS Publications Warehouse

    Gale, Robert W.; Tanner, Michael; Orazio, Carl E.

    2008-01-01

    This report presents the results of a study to determine diphacinone concentrations in samples of sea water and in fillet samples of fish and in limpets from the ocean adjacent to Mokapu Island and from reference samples from Molokai, Hawai'i; concentrations of the active ingredient (diphacinone) were also determined in samples of the Ramik Green bait pellets used for the broadcast study. After preparation, diphacinone concentrations were determined with high-performance liquid chromatography with photodiode array detection. No detectable concentrations of diphacinone were found in the fish, limpets, or sea-water samples from Mokapu Island or from the reference sites. The limit of detection for diphacinone in sea water was 18 nanograms per milliliter (parts per billion); the limit of detection in fish fillets was 10 nanograms per gram (parts per billion); and the limit of detection in limpets was 17 nanograms per gram. The average concentration of diphacinone in the Ramik Green bait pellets was 45 micrograms per gram (parts per million), which represents 90 percent of the nominal concentration stated for the product by the manufacturer.

  9. Calibration of equipment for analysis of drinking water fluoride: a comparison study.

    PubMed

    Quock, Ryan L; Chan, Jarvis T

    2012-03-01

    Current American Dental Association evidence-based recommendations for prescription of dietary fluoride supplements are based in part on the fluoride concentration of a pediatric patient's drinking water. With these recommendations in mind, this study compared the relative accuracy of fluoride concentration analysis when a common apparatus is calibrated with different combinations of standard values. Fluoride solutions in increments of 0.1 ppm, from a range of 0.1 to 1.0 ppm fluoride, as well as 2.0 and 4.0 ppm, were gravimetrically prepared and fluoride concentration measured in pentad, using a fluoride ion-specific electrode and millivolt meter. Fluoride concentrations of these solutions were recorded after calibration with the following 3 different combinations of standard fluoride solutions: 0.1 ppm and 0.5 ppm, 0.1 ppm and 1.0 ppm, 0.5 ppm and 1.0 ppm. Statistical analysis showed significant differences in the fluoride content of water samples obtained with different two-standard fluoride solutions. Among the two-standard fluoride solutions tested, using 0.5 ppm and 1.0 ppm as two-standard fluoride solutions provided the most accurate fluoride measurement of water samples containing fluoride in the range of 0.1 ppm to 4.0 ppm. This information should be valuable to dental clinics or laboratories in fluoride analysis of drinking water samples.

  10. Growth References of Preschool Children Based on the Taiwan Birth Cohort Study and Compared to World Health Organization Growth Standards.

    PubMed

    Li, Yi-Fan; Lin, Shio-Jean; Lin, Kuan-Chia; Chiang, Tung-Liang

    2016-02-01

    To develop new growth references for height, weight, and body mass index (BMI) for children aged 0-5 years in the Taiwan Birth Cohort Study (TBCS) and to compare these references with both 1997 Taiwan references and World Health Organization (WHO) standards. Data were obtained from the TBCS of a nationally representative sample of 24,200 children. A total of 18,466 children completed the baseline survey at 6 months of age and three follow-up surveys at 18 months, 3 years, and 5.5 years of age. The modified LMS method was used to construct percentile curves by sex, including length/height for age, weight for age, and BMI for age. TBCS children of both sexes were shorter and lighter at birth compared with 1997 Taiwan references and WHO standards. The growth patterns of TBCS children were close to those of the 1997 Taiwan references after 6 months of age. Compared with WHO standards, however, TBCS children were heavier after 6 months of age. This study has developed TBCS references to monitor the growth of children in Taiwan, whose weight growth patterns differed from those "prescribed" by WHO standards. Copyright © 2016. Published by Elsevier B.V.

  11. Quantitative Detection of the Free-Living Amoeba Hartmannella vermiformis in Surface Water by Using Real-Time PCR†

    PubMed Central

    Kuiper, Melanie W.; Valster, Rinske M.; Wullings, Bart A.; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick

    2006-01-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 × 10−1 and 1.14 × 104 cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 ± 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (≥98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water. PMID:16957190

  12. Validity of the WISC-IV Spanish for a clinically referred sample of Hispanic children.

    PubMed

    San Miguel Montes, Liza E; Allen, Daniel N; Puente, Antonio E; Neblina, Cris

    2010-06-01

    The Wechsler Intelligence Scale for Children (WISC) is the most commonly used intelligence test for children. Five years ago, a Spanish version of the WISC-IV was published (WISC-IV Spanish; Wechsler, 2005), but a limited amount of published information is available regarding its utility when assessing clinical samples. The current study included 107 children who were Spanish speaking and of Puerto Rican descent that had been administered the WISC-IV Spanish. They were subdivided into a clinical sample of 35 children with diagnoses of various forms of brain dysfunction (primarily learning disability, attention-deficit/hyperactivity disorder, and epilepsy) and a comparison group made up of 72 normal children who were part of the WISC-IV Spanish version standardization sample. Comparisons between these groups and the standardization sample were performed for the WISC-IV Spanish index and subtest scores. Results indicated that the clinical sample performed worse than the comparison samples on the Working Memory and Processing Speed Indexes, although findings varied to some extent depending on whether the clinical group was compared with the normal comparison group or the standardization sample. These findings provide support for the criterion validity of the WISC-IV Spanish when it is used to assess a clinically referred sample with brain dysfunction.

  13. Silicone sensing phase for detection of aromatic hydrocarbons in water employing near-infrared spectroscopy.

    PubMed

    Albuquerque, Jackson S; Pimentel, M Fernanda; Silva, Valdinete L; Raimundo, Ivo M; Rohwedder, Jarbas J R; Pasquini, Celio

    2005-01-01

    The use of silicone for detection of aromatic hydrocarbons in water using near-infrared spectroscopy is proposed. A sensing phase of poly(dimethylsiloxane) (PDMS) was prepared, and a rod of this material was adapted to a transflectance probe for measurements from 850 to 1800 nm. Deionized water samples contaminated separately with known amounts of benzene, toluene, ethylbenzene, and m-xylene were used for evaluation of the PDMS sensing phase, and measurements were made in a closed reactor with constant stirring. Equilibrium states were obtained after 90, 180, 360, and 405 min for benzene, toluene, ethylbenzene, and m-xylene, respectively. The PDMS sensing phase showed a reversible response, presenting linear response ranges up to 360, 290, 100, and 80 mg L(-1), with detection limits of 8.0, 7.0, 2.6, and 3.0 mg L(-1) for benzene, toluene, ethylbenzene, and m-xylene, respectively. Reference spectra obtained with different rods showed a relative standard deviation of 0.5%, indicating repeatability in the sensing phase preparation. A relative standard deviation of 6.7% was obtained for measurements performed with six different rods, using a 52 mg L(-1) toluene aqueous solution. The sensing phase was evaluated for identification of sources of contamination of water in simulated studies, employing Brazilian gasoline type A (without ethanol), gasoline type C (with 25% of anhydrous ethanol), and diesel fuel. Principal component analysis was able to classify the water in distinct groups, contaminated by gasoline A, gasoline C, or diesel fuel.

  14. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy.

    PubMed

    Rousis, Nikolaos I; Bade, Richard; Bijlsma, Lubertus; Zuccato, Ettore; Sancho, Juan V; Hernandez, Felix; Castiglioni, Sara

    2017-07-01

    Assessing the presence of pesticides in environmental waters is particularly challenging because of the huge number of substances used which may end up in the environment. Furthermore, the occurrence of pesticide transformation products (TPs) and/or metabolites makes this task even harder. Most studies dealing with the determination of pesticides in water include only a small number of analytes and in many cases no TPs. The present study applied a screening method for the determination of a large number of pesticides and TPs in wastewater (WW) and surface water (SW) from Spain and Italy. Liquid chromatography coupled to high-resolution mass spectrometry (HRMS) was used to screen a database of 450 pesticides and TPs. Detection and identification were based on specific criteria, i.e. mass accuracy, fragmentation, and comparison of retention times when reference standards were available, or a retention time prediction model when standards were not available. Seventeen pesticides and TPs from different classes (fungicides, herbicides and insecticides) were found in WW in Italy and Spain, and twelve in SW. Generally, in both countries more compounds were detected in effluent WW than in influent WW, and in SW than WW. This might be due to the analytical sensitivity in the different matrices, but also to the presence of multiple sources of pollution. HRMS proved a good screening tool to determine a large number of substances in water and identify some priority compounds for further quantitative analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Quality characteristics and safety of smoke-flavoured water.

    PubMed

    Tano-Debrah, Kwaku; Amamoo-Otchere, Joanne; Karikari, A Y; Diako, Charles

    2007-06-01

    Smoke-flavoured water is produced in Ghana by filling a previously smoked container with potable water and allowing the water to condition with the smoke to attain a characteristic rain water flavour. Owing to the current knowledge on the toxicity, carcinogenicity and other safety issues of some smoke-constituents, the commercial production of the product is becoming a public health concern. This study sought to determine the effects of the smoke-flavouring process on the quality characteristics of smoke-flavoured water to predict the safety of the product. A traditional and a commercial protocol for the production of smoke-flavoured water were simulated in the laboratory and at the site of a company which used to produce the product, respectively. Samples of the flavoured water produced were analyzed for pH, colour, turbidity, conductivity, total hardness, dissolved oxygen content (DO), biochemical oxygen demand (BOD), the polycyclic aromatic hydrocarbon constituents (PAHs), coliform count, and flavour acceptability. Data obtained were evaluated in reference to data on control samples prepared during the investigations. The results obtained suggested that the smoke-flavouring process may not significantly change most of the physico-chemical and microbiological characteristics of the water processed, and thus not affect the drinking quality characteristics of the water. The process however has the potential of adding some organic compounds, which could include polycyclic aromatic hydrocarbons (PAHs), the group that may have the toxicity and carcinogenic effects. The types of PAHs and their concentrations are expected to vary with the process characteristics, but could be insignificantly low to affect the safety of the water. The results suggest a need for some standardization of the process.

  16. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  17. Evaluation of the Biolog automated microbial identification system

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Stowe, R. P.; Obenhuber, D. C.; Groves, T. O.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    Biolog's identification system was used to identify 39 American Type Culture Collection reference taxa and 45 gram-negative isolates from water samples. Of the reference strains, 98% were identified to genus level and 76% to species level within 4 to 24 h. Identification of some authentic strains of Enterobacter, Klebsiella, and Serratia was unreliable. A total of 93% of the water isolates were identified.

  18. [Characterization and comparison of interferon reference standards using UPLC-MS].

    PubMed

    Tao, Lei; Pei, De-ning; Han, Chun-mei; Chen, Wei; Rao, Chun-ming; Wang, Jun-zhi

    2015-01-01

    The study aims to characterize and compare interferon reference standards from 5 manufacturers. By testing molecular mass and trypsin-digested peptide mass mapping, the amino acid sequence was verified and post-translational modifications such as disulfide bond were identified. Results show that the molecular mass and amino acid sequence were consistent with theory; the disulfide bonds of 4 lots of interferon were Cys1-Cys98/Cys29-Cys138, 1 lot was Cys29-Cys139/Cys86-Cys99; N-terminal "+Met", acetyl N-terminal and Met oxidation were identified in part of the sample. UPLC-MS can be used to characterize and compare interferon reference standards from different manufacturers.

  19. High-Temperature Adiabatic Calorimeter for Constant-Volume Heat Capacity Measurements of Compressed Gases and Liquids

    PubMed Central

    Magee, Joseph W.; Deal, Renee J.; Blanco, John C.

    1998-01-01

    A high-temperature adiabatic calorimeter has been developed to measure the constant-volume specific heat capacities (cV) of both gases and liquids, especially fluids of interest to emerging energy technologies. The chief design feature is its nearly identical twin bomb arrangement, which allows accurate measurement of energy differences without large corrections for energy losses due to thermal radiation fluxes. Operating conditions for the calorimeter cover a range of temperatures from 250 K to 700 K and at pressures up to 20 MPa. Performance tests were made with a sample of twice-distilled water. Heat capacities for water were measured from 300 K to 420 K at pressures to 20 MPa. The measured heat capacities differed from those calculated with an independently developed standard reference formulation with a root-mean-square fractional deviation of 0.48 %. PMID:28009375

  20. [Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira

    2014-01-01

    To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.

  1. Successful isolation and PCR amplification of DNA from National Institute of Standards and Technology herbal dietary supplement standard reference material powders and extracts.

    PubMed

    Cimino, Matthew T

    2010-03-01

    Twenty-four herbal dietary supplement powder and extract reference standards provided by the National Institute of Standards and Technology (NIST) were investigated using three different commercially available DNA extraction kits to evaluate DNA availability for downstream nucleotide-based applications. The material included samples of Camellia, Citrus, Ephedra, Ginkgo, Hypericum, Serenoa, And Vaccinium. Protocols from Qiagen, MoBio, and Phytopure were used to isolate and purify DNA from the NIST standards. The resulting DNA concentration was quantified using SYBR Green fluorometry. Each of the 24 samples yielded DNA, though the concentration of DNA from each approach was notably different. The Phytopure method consistently yielded more DNA. The average yield ratio was 22 : 3 : 1 (ng/microL; Phytopure : Qiagen : MoBio). Amplification of the internal transcribed spacer II region using PCR was ultimately successful in 22 of the 24 samples. Direct sequencing chromatograms of the amplified material suggested that most of the samples were comprised of mixtures. However, the sequencing chromatograms of 12 of the 24 samples were sufficient to confirm the identity of the target material. The successful extraction, amplification, and sequencing of DNA from these herbal dietary supplement extracts and powders supports a continued effort to explore nucleotide sequence-based tools for the authentication and identification of plants in dietary supplements. (c) Georg Thieme Verlag KG Stuttgart . New York.

  2. Comparing efficiency of American Fisheries Society standard snorkeling techniques to environmental DNA sampling techniques

    USGS Publications Warehouse

    Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig

    2017-01-01

    Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.

  3. Standardization in laboratory medicine: Adoption of common reference intervals to the Croatian population.

    PubMed

    Flegar-Meštrić, Zlata; Perkov, Sonja; Radeljak, Andrea

    2016-03-26

    Considering the fact that the results of laboratory tests provide useful information about the state of health of patients, determination of reference value is considered an intrinsic part in the development of laboratory medicine. There are still huge differences in the analytical methods used as well as in the associated reference intervals which could consequently significantly affect the proper assessment of patient health. In a constant effort to increase the quality of patients' care, there are numerous international initiatives for standardization and/or harmonization of laboratory diagnostics in order to achieve maximum comparability of laboratory test results and improve patient safety. Through the standardization and harmonization processes of analytical methods the ability to create unique reference intervals is achieved. Such reference intervals could be applied globally in all laboratories using methods traceable to the same reference measuring system and analysing the biological samples from the populations with similar socio-demographic and ethnic characteristics. In this review we outlined the results of the harmonization processes in Croatia in the field of population based reference intervals for clinically relevant blood and serum constituents which are in accordance with ongoing activity for worldwide standardization and harmonization based on traceability in laboratory medicine.

  4. Standardization in laboratory medicine: Adoption of common reference intervals to the Croatian population

    PubMed Central

    Flegar-Meštrić, Zlata; Perkov, Sonja; Radeljak, Andrea

    2016-01-01

    Considering the fact that the results of laboratory tests provide useful information about the state of health of patients, determination of reference value is considered an intrinsic part in the development of laboratory medicine. There are still huge differences in the analytical methods used as well as in the associated reference intervals which could consequently significantly affect the proper assessment of patient health. In a constant effort to increase the quality of patients’ care, there are numerous international initiatives for standardization and/or harmonization of laboratory diagnostics in order to achieve maximum comparability of laboratory test results and improve patient safety. Through the standardization and harmonization processes of analytical methods the ability to create unique reference intervals is achieved. Such reference intervals could be applied globally in all laboratories using methods traceable to the same reference measuring system and analysing the biological samples from the populations with similar socio-demographic and ethnic characteristics. In this review we outlined the results of the harmonization processes in Croatia in the field of population based reference intervals for clinically relevant blood and serum constituents which are in accordance with ongoing activity for worldwide standardization and harmonization based on traceability in laboratory medicine. PMID:27019800

  5. [Bacteriological quality of drinking water in the City of Merida, Mexico].

    PubMed

    Flores-Abuxapqui, J J; Suárez-Hoil, G J; Puc-Franco, M A; Heredia-Navarrete, M R; Vivas-Rosel, M D; Franco-Monsreal, J

    1995-01-01

    With the aim of knowing the microbiological quality of drinking water in Merida, Yucatan, 383 paired samples of drinking water (two per house) were studied. Three hundred sixty four (95%) city water system samples and 283 (73.89%) tap water samples met the microbiological standards for drinking water. It was concluded that microbiological quality of drinking water from the city water system is satisfactory, except for the water system district Merida III, which has a significant aerobic plate count contamination level (21.7% of the samples). Domestic storage systems preserve water quality, with the exception of district Merida I, which has the highest level of contamination (4.8% of the samples) possibly from sewage water and fecal sources.

  6. A method for the analysis of perfluorinated compounds in environmental and drinking waters and the determination of their lowest concentration minimal reporting levels.

    PubMed

    Boone, J Scott; Guan, Bing; Vigo, Craig; Boone, Tripp; Byrne, Christian; Ferrario, Joseph

    2014-06-06

    A trace analytical method was developed for the determination of seventeen specific perfluorinated chemicals (PFCs) in environmental and drinking waters. The objectives were to optimize an isotope-dilution method to increase the precision and accuracy of the analysis of the PFCs and to eliminate the need for matrix-matched standards. A 250 mL sample of environmental or drinking water was buffered to a pH of 4, spiked with labeled surrogate standards, extracted through solid phase extraction cartridges, and eluted with ammonium hydroxide in methyl tert-butyl ether: methanol solution. The sample eluents were concentrated to volume and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The lowest concentration minimal reporting levels (LCMRLs) for the seventeen PFCs were calculated and ranged from 0.034 to 0.600 ng/L for surface water and from 0.033 to 0.640 ng/L for drinking water. The relative standard deviations (RSDs) for all compounds were <20% for all concentrations above the LCMRL. The method proved effective and cost efficient and addressed the problems with the recovery of perfluorobutanoic acid (PFBA) and other short chain PFCs. Various surface water and drinking water samples were used during method development to optimize this method. The method was used to evaluate samples from the Mississippi River at New Orleans and drinking water samples from a private residence in that same city. The method was also used to determine PFC contamination in well water samples from a fire training area where perfluorinated foams were used in training to extinguish fires. Published by Elsevier B.V.

  7. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar magnitude as existing TG 51 recommended correction factors.

  8. Malaysian growth centiles for children under six years old.

    PubMed

    Bong, Yiibonn; Shariff, Asma Ahmad; Mohamed, Abdul Majid; Merican, Amir Feisal

    2015-03-01

    Growth references are useful for the screening, assessment and monitoring of individual children as well as for evaluating various growth promoting interventions that could possibly affect a child in early life. To determine the growth centiles of Malaysian children and to establish contemporary cross-sectional growth reference charts for height and weight from birth to 6 years of age based on a representative sample of children from Malaysia. Gender- and age-specific centile curves for height and weight were derived using the Cole's LMS method. Data for this study were retrieved from Malaysian government health clinics using a two-stage stratified random sampling technique. Assessment of nutritional status was done with the SD scores (Z-scores) of WHO 2006 standards. Boys were found to be taller and heavier than girls in this study. The median length of Malaysian children was higher than the WHO 2006 standards and CDC 2000 reference. The overall prevalence of stunting and underweight were 8.3% and 9.3%, respectively. This study presents the first large-scale initiative for local reference charts. The growth reference would enable the growth assessment of a Malaysian child compared to the average growth of children in the country. It is suggested that the use of WHO 2006 Child Growth Standards should be complemented with local reference charts for a more wholesome growth assessment.

  9. Occurrence of nontuberculous mycobacteria in environmental samples.

    PubMed

    Covert, T C; Rodgers, M R; Reyes, A L; Stelma, G N

    1999-06-01

    Nontuberculous mycobacteria (NTM) are a major cause of opportunistic infection in immunocompromised hosts. Because there is no evidence of person-to-person transmission and NTM have been found in drinking water, the environment is considered a likely source of infection. In this study the widespread occurrence of NTM was examined in drinking water, bottled water, and ice samples. A total of 139 samples were examined for NTM by a membrane filtration culture technique followed by PCR amplification and 16S rRNA sequence determination to identify the isolates. NTM were not detected in bottled water or cisterns but were detected in 54% of the ice samples and 35% of the public drinking-water samples from 21 states. The most frequently occurring isolate was M. mucogenicum (formerly referred to as an M. chelonae-like organism).

  10. Lectin-Magnetic Separation (LMS) for isolation of Toxoplasma gondii oocysts from concentrated water samples prior to detection by microscopy or qPCR

    USDA-ARS?s Scientific Manuscript database

    Although standard methods for analyzing water samples for the protozoan parasites Cryptosporidium spp. and Giardia duodenalis are available and widely used, equivalent methods for analyzing water samples for Toxoplasma oocysts are lacking. This is partly due to the lack of a readily available, relia...

  11. A Collaborative Study: Determination of Mycotoxins in Corn, Peanut Butter, and Wheat Flour Using Stable Isotope Dilution Assay (SIDA) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS).

    PubMed

    Zhang, Kai; Schaab, Matthew R; Southwood, Gavin; Tor, Elizabeth R; Aston, Linda S; Song, Wenlu; Eitzer, Brian; Majumdar, Sanghamitra; Lapainis, Theodore; Mai, Huy; Tran, Kevin; El-Demerdash, Aref; Vega, Victor; Cai, Yanxuan; Wong, Jon W; Krynitsky, Alexandra J; Begley, Timothy H

    2017-08-23

    A collaborative study was conducted to evaluate stable isotope dilution assay (SIDA) and LC-MS/MS for the simultaneous determination of aflatoxins B 1 , B 2 , G 1 , and G 2 ; deoxynivalenol; fumonisins B 1 , B 2 , and B 3 ; ochratoxin A; HT-2 toxin; T-2 toxin; and zearalenone in foods. Samples were fortified with 12 13 C uniformly labeled mycotoxins ( 13 C-IS) corresponding to the native mycotoxins and extracted with acetonitrile/water (50:50 v/v), followed by centrifugation, filtration, and LC-MS/MS analysis. In addition to certified reference materials, the six participating laboratories analyzed corn, peanut butter, and wheat flour fortified with the 12 mycotoxins at concentrations ranging from 1.0 to 1000 ng/g. Using their available LC-MS/MS platform, each laboratory developed in-house instrumental conditions for analysis. The majority of recoveries ranged from 80 to 120% with relative standard derivations (RSDs) <20%. Greater than 90% of the average recoveries of the participating laboratories were in the range of 90-110%, with repeatability RSD r (within laboratory) < 10% and reproducibility RSD R (among laboratory) < 15%. All Z scores of the results of certified reference materials were between -2 and 2. Using 13 C-IS eliminated the need for matrix-matched calibration standards for quantitation, simplified sample preparation, and achieved simultaneous identification and quantitation of multiple mycotoxins in a simple LC-MS/MS procedure.

  12. Presence of Aeromonas spp in water from drinking-water- and wastewater-treatment plants in Mexico City.

    PubMed

    Villarruel-López, Angélica; Fernández-Rendón, Elizabeth; Mota-de-la-Garza, Lydia; Ortigoza-Ferado, Jorge

    2005-01-01

    The frequency of Aeromonas spp in three wastewater-treatment plants (WWTPs) and two drinking-water plants (DWPs) in México City was determined. Samples were taken throughout a year by the Moore's swab technique. A total of 144 samples were obtained from WWTPs and 96 from DWPs of both incoming and outflowing water. Aeromonas spp was isolated in 31% of the samples, from both kinds of sources. The technique used for the isolation of the pathogen was suitable for samples with high associate microbiota content and for those with a scarce microbial content. The presence of mesophilic-aerobic, coliform, and fecal-coliform organisms was investigated to determine whether there was any correlation with the presence of Aeromonas spp. Most samples from WWTP, which did not comply with the Mexican standards, had the pathogen, and some of the samples from the outflow of the DWP, which were within the limits set by the Mexican standards, also had Aeromonas spp. Most samples containing Aeromonas spp. had concentrations below 0.1 ppm residual chlorine, and the strains were resistant to 0.3 ppm, which supports the recommendation to increase the residual chlorine concentration to 0.5 to 1.0 ppm, as recommended by the Mexican standards.

  13. Activities and summary statistics of radon-222 in stream- and ground-water samples, Owl Creek basin, north-central Wyoming, September 1991 through March 1992

    USGS Publications Warehouse

    Ogle, K.M.; Lee, R.W.

    1994-01-01

    Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)

  14. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards. Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-

  15. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of Environmental Research and Public Health 7 (10): 3657-3703. Ryzinska-Paier, G., T. Lendenfeld, K. Correa, P. Stadler, A.P. Blaschke, R. L. Mach, H. Stadler, AKT Kirschner und A.H. Farnleitner (2014) A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci. Technol. in press

  16. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  17. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages.

    PubMed

    Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting

    2016-07-01

    A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%).

  18. Sampling and analytical methods of stable isotopes and dissolved inorganic carbon from CO2 injection sites

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Myrttinen, Anssi; Becker, Veith; Barth, Johannes A. C.

    2010-05-01

    The isotopic composition (δ13C) of dissolved inorganic carbon (DIC), in combination with DIC concentration measurements, can be used to quantify geochemical trapping of CO2 in water. This is of great importance in monitoring the fate of CO2 in the subsurface in CO2 injection projects. When CO2 mixes with water, a shift in the δ13C values, as well as an increase in DIC concentrations is observed in the CO2-H2O system. However, when using standard on-site titration methods, it is often challenging to determining accurate in-situ DIC concentrations. This may be due to CO2 degassing and CO2-exchange between the sample and the atmosphere during titration, causing a change in the pH value or due to other unfavourable conditions such as turbid water samples or limited availability of fluid samples. A way to resolve this problem is by simultaneously determining the DIC concentration and carbon isotopic composition using a standard continuous flow Isotope Ratio Mass Spectrometry (CF-IRMS) setup with a Gasbench II coupled to Delta plusXP mass spectrometer. During sampling, in order to avoid atmospheric contact, water samples taken from the borehole-fluid-sampler should be directly transferred into a suitable container, such as a gasbag. Also, to avoid isotope fractionation due to biological activity in the sample, it is recommended to stabilize the gasbags prior to sampling with HgCl2 for the subsequent stable isotope analysis. The DIC concentration of the samples can be determined from the area of the sample peaks in a chromatogram from a CF-IRMS analysis, since it is directly proportional to the CO2 generated by the reaction of the water with H3PO4. A set of standards with known DIC concentrations should be prepared by mixing NaHCO3 with DIC free water. Since the DIC concentrations of samples taken from CO2 injection sites are expected to be exceptionally high due to the additional high amounts of added CO2, the DIC concentration range of the standards should be set high enough to cover the sample concentrations. In order to assure methodological reproducibility, this 'calibration set' should be included in every sequence analysed with the Gasbench CF-IRMS system. The standards, therefore, should also be treated in the same way as the samples. For accurate determination, it is essential to know the exact amount of water in the vial and the density of the sample. This requires weighing of each vial before and after injection of the water sample. For stable isotope analysis, the required signal height can be adjusted by the sample amount. Therefore this method is suitable for analysing samples with highly differing DIC concentrations. Reproducibility and accuracy of the quantitative analysis of the dissolved inorganic carbon need to be verified by independent control standards, treated as samples. This study was conducted as a part of the R&D programme CLEAN, which is funded by the German Federal Ministry of Education in the framework of the programme GEOTECHNOLOGIEN. We would like to thank GDF SUEZ for permitting us to conduct sampling campaigns at their site.

  19. Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing.

    PubMed

    Noble, R T; Moore, D F; Leecaster, M K; McGee, C D; Weisberg, S B

    2003-04-01

    In July 1999, California's ocean recreational bacterial water quality standards were changed from a total coliform (TC) test to a standard requiring testing for all three bacterial indicators: TC, fecal coliforms (FC), and enterococci (EC). To compare the relationship between the bacterial indicators, and the effect that changing the standards would have on recreational water regulatory actions, three regional studies were conducted along the southern California shoreline from Santa Barbara to San Diego, California. Two studies were conducted during dry weather and one following a large storm event. In each study, samples were collected at over 200 sites which were selected using a stratified random design, with strata consisting of open beach areas and rocky shoreline, and areas near freshwater outlets that drain land-based runoff. During the dry weather studies, samples were collected once per week for 5 weeks. For the storm event study, sampling occurred on a single day about 24 h following the storm. The three indicator bacteria were measured at each site and the results were compared to the single sample standards (TC > 10,000; FC > 400 and EC > 104 MPN or cfu/100 ml). EC was the indicator that failed the single sample standards most often. During the wet weather study, 99% of all standard failures were detected using EC, compared with only 56% for FC, and 40% for TC. During the Summer Study, EC was again the indicator that failed the single sample standards most often, with 60% of the failures for EC alone. The increased failure of the EC standard occurred consistently regardless of whether the sample was collected at a beach or rocky shoreline site, or at a site near a freshwater outlet. Agreement among indicators was better during wet weather than during dry weather. During dry weather, agreement among indicators was better near freshwater outlets than along open shoreline. Cumulatively, our results suggest that replacement of a TC standard with an EC standard will lead to a five-fold increase in failures during dry weather and a doubling of failures during wet weather. Replacing a TC standard with one based on all three indicators will lead to an eight-fold increase in failures. Changes in the requirements for water quality testing have strong implications for increases in beach closures and restrictions. Copyright 2002 Elsevier Science Ltd.

  20. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

Top