Science.gov

Sample records for standardized low-resolution brain

  1. Investigating phobic specificity with standardized low resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Scharmüller, Wilfried; Leutgeb, Verena; Schäfer, Axel; Schienle, Anne

    2012-10-05

    The current study investigated differential sources of late event-related potentials (ERPs) in two subtypes of specific phobia using sLORETA (standardized low resolution brain electromagnetic tomography). In two experiments, 14 spider-phobic patients (and controls), and 14 dentophobic patients (and controls) were confronted with disorder-relevant and affectively neutral pictures while an electroencephalogram was recorded. Mean ERP amplitudes were extracted in the time windows of 300-450ms (P300) and 450-800ms (late positive potential, LPP). Analyses revealed that both spider phobics and dental phobics showed enhanced current density in parietal regions (i.e., cuneus, precuneus) for the P300 time frame when exposed to disorder-specific contents. This result can be interpreted to reflect automatic attention allocation. Spider phobics additionally displayed greater current density in the insula and the anterior/posterior cingulate cortex in the LPP time window relative to controls. Most likely, the phylogentically based spider phobia is characterized by a deeper and more prolonged attention engagement than dental phobia. Our findings are in good accordance with existing brain imaging studies and underline that source localization is a useful alternative for identifying relevant cortical regions in subtypes of specific phobia.

  2. Phasic brain activity related to the onset of rapid eye movements during rapid eye movement sleep: study of event-related potentials and standardized low-resolution brain electromagnetic tomography.

    PubMed

    Ogawa, Keiko; Abe, Takashi; Nittono, Hiroshi; Yamazaki, Katuo; Hori, Tadao

    2010-09-01

    The function of rapid eye movements (REMs) during REM sleep is still a matter that is open to debate. In a previous study, we found positive brain potential (P200r) time-locked to the onset of REMs. This potential was not observed during saccades of wakefulness. In this study, we estimated the electrical generation of this potential to investigate the phasic brain activity related to REMs. Data were collected in a sleep laboratory from nine healthy university students. REMs during REM sleep were recorded during natural nocturnal sleep. Event-related potential time-locked to the onset of REMs were averaged. Standardized low-resolution brain electromagnetic tomography (sLORETA) was used to identify the current sources of P200r. The results showed that P200r have neuronal generators in the left premotor area, left primary motor and sensory cortices, left inferior parietal lobule and bilateral occipital areas (precuneus, cuneus and lingual gyrus). All these areas are known to contribute to visuomotor processing. These phasic brain activities might play a key role in explaining the function of REMs during REM sleep.

  3. Source localization of intermittent rhythmic delta activity in a patient with acute confusional migraine: cross-spectral analysis using standardized low-resolution brain electromagnetic tomography (sLORETA).

    PubMed

    Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min

    2016-01-01

    Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.

  4. On high-resolution image estimation using low-resolution brain MRI.

    PubMed

    Rousseau, François; Gounot, Daniel; Studholme, Colin

    2013-01-01

    In the context of medical imaging, super-resolution (SR) is currently a promising post-processing technique to increase the image resolution. However, although many SR methods have been proposed in the literature, the gain of this type of approach in a real situation has not been precisely quantified. In this work, we evaluate image acquisition protocols and SR algorithms using in-vivo brain MR data as gold standard. The results show that using orthogonal image acquisition protocols lead to better reconstructed images than overlapping parallel low-resolution image stacks. Moreover, if the preprocessing steps (such as image denoising and intensity correction) are carefully performed, there is no significant differences between the evaluated SR algorithms.

  5. Low resolution brain electromagnetic tomography in a realistic geometry head model: a simulation study

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Lai, Yuan; He, Bin

    2005-01-01

    It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multi-source localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.

  6. Three-Dimensional Electroencephalographic Changes on Low-Resolution Brain Electromagnetic Tomography (LORETA) During the Sleep Onset Period.

    PubMed

    Park, Doo-Heum; Ha, Jee Hyun; Ryu, Seung-Ho; Yu, Jaehak; Shin, Chul-Jin

    2015-10-01

    Electroencephalographic (EEG) patterns during sleep are markedly different from those measured during the waking state, but the process of falling asleep is not fully understood in terms of biochemical and neurophysiological aspects. We sought to investigate EEG changes that occur during the transitional period from wakefulness to sleep in a 3-dimensional manner to gain a better understanding of the physiological meaning of sleep for the brain. We examined EEG 3-dimensionally using LORETA (low-resolution electromagnetic tomography), to localize the brain region associated with changes that occur during the sleep onset period (SOP). Thirty-channel EEG was recorded in 61 healthy subjects. EEG power spectra and intracortical standardized LORETA were compared between 4 types of 30-second states, including the wakeful stage, transition stage, early sleep stage 1, and late sleep stage 1. Sleep onset began with increased delta and theta power and decreased alpha-1 power in the occipital lobe, and increased theta power in the parietal lobe. Thereafter, global reductions of alpha-1 and alpha-2 powers and greater increases of theta power in the occipito-parietal lobe occurred. As sleep became deeper in sleep stage 1, beta-2 and beta-3, powers decreased mainly in the frontal lobe and some regions of the parieto-temporo-limbic area. These findings suggest that sleep onset includes at least 3 steps in a sequential manner, which include an increase in theta waves in the posterior region of the brain, a global decrease in alpha waves, and a decrease in beta waves in the fronto-central area.

  7. Low-resolution brain electromagnetic tomography (LORETA) identifies brain regions linked to psychometric performance under modafinil in narcolepsy.

    PubMed

    Saletu, Michael; Anderer, Peter; Semlitsch, Heribert V; Saletu-Zyhlarz, Gerda Maria; Mandl, Magdalena; Zeitlhofer, Josef; Saletu, Bernd

    2007-01-15

    Low-resolution brain electromagnetic tomography (LORETA) showed a functional deterioration of the fronto-temporo-parietal network of the right hemispheric vigilance system in narcolepsy and a therapeutic effect of modafinil. The aim of this study was to determine the effects of modafinil on cognitive and thymopsychic variables in patients with narcolepsy and investigate whether neurophysiological vigilance changes correlate with cognitive and subjective vigilance alterations at the behavioral level. In a double-blind, placebo-controlled crossover design, EEG-LORETA and psychometric data were obtained during midmorning hours in 15 narcoleptics before and after 3 weeks of placebo or 400 mg modafinil. Cognitive investigations included the Pauli Test and complex reaction time. Thymopsychic/psychophysiological evaluation comprised drive, mood, affectivity, wakefulness, depression, anxiety, the Symptom Checklist 90 and critical flicker frequency. The Multiple Sleep Latency Test (MSLT) and the Epworth Sleepiness Scale (ESS) were performed too. Cognitive performance (Pauli Test) was significantly better after modafinil than after placebo. Concerning reaction time and thymopsychic variables, no significant differences were observed. Correlation analyses revealed that a decrease in prefrontal delta, theta and alpha-1 power correlated with an improvement in cognitive performance. Moreover, drowsiness was positively correlated with theta power in parietal and medial prefrontal regions and beta-1 and beta-2 power in occipital regions. A less significant correlation was observed between midmorning EEG LORETA and the MSLT; between EEG LORETA and the ESS, the correlation was even weaker. In conclusion, modafinil did not influence thymopsychic variables in narcolepsy, but it significantly improved cognitive performance, which may be related to medial prefrontal activity processes identified by LORETA.

  8. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA).

    PubMed

    Frei, E; Gamma, A; Pascual-Marqui, R; Lehmann, D; Hell, D; Vollenweider, F X

    2001-11-01

    3,4-Methylenedioxymethamphetamine (MDMA; 'Ecstasy') is a psychostimulant drug producing heightened mood and facilitated social communication. In animal studies, MDMA effects are primarily mediated by serotonin (5-HT), but also by dopamine (DA) and possibly noradrenaline (NA). In humans, however, the neurochemical and neurophysiological basis of acute MDMA effects remains unknown. The distribution of active neuronal populations after administration of a single dose of MDMA (1.7 mg/kg) or placebo was studied in 16 healthy, MDMA-naïve volunteers. Thirty-one-channel scalp EEGs during resting with open and closed eyes was analyzed in the different EEG frequency bands. Scalp maps of power showed significant, global differences between MDMA and placebo in both eye conditions and all frequency bands. Low resolution brain electromagnetic tomography (LORETA) was used to compute 3D, functional images of electric neuronal activity from the scalp EEG data. MDMA produced a widespread decrease of slow and medium frequency activity and an increase of fast frequency activity in the anterior temporal and posterior orbital cortex, concomitant with a marked enhancement of mood, emotional arousal and increased extraversion. This activation of frontotemporal areas indicates that the observed enhancement of mood and possibly the increased extroversion rely on modulation of limbic orbitofrontal and anterotemporal structures known to be involved in emotional processes. Comparison of the MDMA-specific EEG pattern with that of various 5-HT, DA, and NA agonists indicates that serotonin, noradrenaline, and, to a lesser degree, dopamine, contribute to the effects of MDMA on EEG, and possibly also on mood and behavior.

  9. Towards a method to differentiate chronic disorder of consciousness patients' awareness: The Low-Resolution Brain Electromagnetic Tomography Analysis.

    PubMed

    Naro, Antonino; Bramanti, Placido; Leo, Antonino; Cacciola, Alberto; Bramanti, Alessia; Manuli, Alfredo; Calabrò, Rocco Salvatore

    2016-09-15

    Assessing residual signs of awareness in patients suffering from chronic disorders of consciousness (DOC) is a challenging issue. DOC patient behavioral assessment is often doubtful since some individuals may retain covert traces of awareness; thus, some Unresponsive Wakefulness Syndrome (UWS) patients may be misdiagnosed. The aim of our study was to explore possible differences between the source powers within poly-modal cortices to differentiate Minimally Conscious State (MCS) from UWS. To this end, we recorded an electroencephalogram (EEG) during awake resting state and performed a Low-Resolution Brain Electromagnetic Tomography (LORETA), which is a 3D source localization method allowing the visualization of the most probable neuroanatomical generators of EEG differences. MCS and UWS patients showed significant variations concerning the frontal source power of delta-band, frontal and parietal of theta, parietal and occipital of alpha, central of beta, and parietal of gamma, in correlation with the Coma Recovery Scale-Revised (CRS-R) score. The alpha-band was the most significant LORETA data correlating with the consciousness level. In addition, we observed a significant correlation between central beta-peaks and the motor abilities and a dissociation between theta and gamma bands within parietal regions. Our findings suggest that LORETA analysis may be useful in DOC differential diagnosis since distinct neurophysiological correlates in some UWS patients could be used to assess deeper the residual cerebral activity of brain areas responsible for covert awareness.

  10. Emotion Regulation of Neuroticism: Emotional Information Processing Related to Psychosomatic State Evaluated by Electroencephalography and Exact Low-Resolution Brain Electromagnetic Tomography.

    PubMed

    Ikeda, Shunichiro; Mizuno-Matsumoto, Yuko; Canuet, Leonides; Ishii, Ryouhei; Aoki, Yasunori; Hata, Masahiro; Katsimichas, Themistoklis; Pascual-Marqui, Roberto D; Hayashi, Takuto; Okamoto, Eika; Asakawa, Tetsuya; Iwase, Masao; Takeda, Masatoshi

    2015-02-27

    Emotion regulation is the process that adjusts the type or amount of emotion when we experience an emotional situation. The aim of this study was to reveal quantitative changes in brain activity during emotional information processing related to psychosomatic states and to determine electrophysiological features of neuroticism. Twenty-two healthy subjects (mean age 25 years, 14 males and 8 females) were registered. Electroencephalography (EEG) was measured during an emotional audiovisual memory task under three conditions (neutral, pleasant and unpleasant sessions). We divided the subjects into two groups using the Cornell Medical Index (CMI): (CMI-I: control group, n = 10: CMI-II, III or IV: neuroticism group, n = 12). We analyzed the digital EEG data using exact low-resolution brain electromagnetic tomography (eLORETA) current source density (CSD) and functional connectivity analysis in several frequency bands (δ, θ, α, β, γ and whole band). In all subjects, bilateral frontal α CSD in the unpleasant session increased compared to the pleasant session, especially in the control group (p < 0.05). CSD of the neuroticism group was significantly higher than that of the control group in the full band at the amygdala and inferior temporal gyrus, and in the α band at the right temporal lobe (p < 0.05). Additionally, we found an increase in functional connectivity between the left insular cortex and right superior temporal gyrus in all subjects during the unpleasant session compared to the pleasant session (p < 0.05). In this study, using EEG analysis, we could find a novel cortical network related to brain mechanisms underlying emotion regulation. Overall findings indicate that it is possible to characterize neuroticism electrophysiologically, which may serve as a neurophysiological marker of this personality trait. © 2015 S. Karger AG, Basel.

  11. Low-Resolution Electromagnetic Tomography (LORETA) of changed Brain Function Provoked by Pro-Dopamine Regulator (KB220z) in one Adult ADHD case

    PubMed Central

    Steinberg, Bruce; Blum, Kenneth; McLaughlin, Thomas; Lubar, Joel; Febo, Marcelo; Braverman, Eric R.; Badgaiyan, Rajendra D

    2016-01-01

    Attention Deficit-Hyperactivity Disorder (ADHD) often continues into adulthood. Recent neuroimaging studies found lowered baseline dopamine tone in the brains of affected individuals that may place them at risk for Substance Use Disorder (SUD). This is an observational case study of the potential for novel management of Adult ADHD with a non-addictive glutaminergic-dopaminergic optimization complex KB200z. Low-resolution electromagnetic tomography (LORETA) was used to evaluate the effects of KB220z on a 72-year-old male with ADHD, at baseline and one hour following administration. The resultant z-scores, averaged across Eyes Closed, Eyes Open and Working Memory conditions, increased for each frequency band, in the anterior, dorsal and posterior cingulate regions, as well as the right dorsolateral prefrontal cortex during Working Memory, with KB220z. These scores are consistent with other human and animal neuroimaging studies that demonstrated increased connectivity volumes in reward circuitry and may offer a new approach to ADHD treatment. However, larger randomized trials to confirm these results are required. PMID:27610420

  12. Effects of the South American psychoactive beverage ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography.

    PubMed

    Riba, Jordi; Anderer, Peter; Jané, Francesc; Saletu, Bernd; Barbanoj, Manel J

    2004-01-01

    Ayahuasca, a South American psychotropic plant tea obtained from Banisteriopsis caapi and Psychotria viridis, combines monoamine oxidase-inhibiting beta-carboline alkaloids with N,N-dimethyltryptamine (DMT), a psychedelic agent showing 5-HT(2A) agonist activity. In a clinical research setting, ayahuasca has demonstrated a combined stimulatory and psychedelic effect profile, as measured by subjective effect self-assessment instruments and dose-dependent changes in spontaneous brain electrical activity, which parallel the time course of subjective effects. In the present study, the spatial distribution of ayahuasca-induced changes in brain electrical activity was investigated by means of low-resolution electromagnetic tomography (LORETA). Electroencephalography recordings were obtained from 18 volunteers after the administration of a dose of encapsulated freeze-dried ayahuasca containing 0.85 mg DMT/kg body weight and placebo. The intracerebral power density distribution was computed with LORETA from spectrally analyzed data, and subjective effects were measured by means of the Hallucinogen Rating Scale (HRS). Statistically significant differences compared to placebo were observed for LORETA power 60 and 90 min after dosing, together with increases in all six scales of the HRS. Ayahuasca decreased power density in the alpha-2, delta, theta and beta-1 frequency bands. Power decreases in the delta, alpha-2 and beta-1 bands were found predominantly over the temporo-parieto-occipital junction, whereas theta power was reduced in the temporomedial cortex and in frontomedial regions. The present results suggest the involvement of unimodal and heteromodal association cortex and limbic structures in the psychological effects elicited by ayahuasca.

  13. IRAS Low Resolution Spectra of Asteroids

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell G.

    2002-01-01

    Optical/near-infrared studies of asteroids are based on reflected sunlight and surface albedo variations create broad spectral features, suggestive of families of materials. There is a significant literature on these features, but there is very little work in the thermal infrared that directly probes the materials emitting on the surfaces of asteroids. We have searched for and extracted 534 thermal spectra of 245 asteroids from the original Dutch (Groningen) archive of spectra observed by the IRAS Low Resolution Spectrometer (LRS). We find that, in general, the observed shapes of the spectral continua are inconsistent with that predicted by the standard thermal model used by IRAS. Thermal models such as proposed by Harris (1998) and Harris et al.(1998) for the near-earth asteroids with the "beaming parameter" in the range of 1.0 to 1.2 best represent the observed spectral shapes. This implies that the IRAS Minor Planet Survey (IMPS, Tedesco, 1992) and the Supplementary IMPS (SIMPS, Tedesco, et al., 2002) derived asteroid diameters are systematically underestimated, and the albedos are overestimated. We have tentatively identified several spectral features that appear to be diagnostic of at least families of materials. The variation of spectral features with taxonomic class hints that thermal infrared spectra can be a valuable tool for taxonomic classification of asteroids.

  14. Low Resolution Picture Transmission (LRPT) Demonstration System

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Yeh, Pen-Shu; Sank, Victor; Nyugen, Xuan; Xia, Wei; Duran, Steve; Day, John H. (Technical Monitor)

    2002-01-01

    Low-Resolution Picture Transmission (LRPT) is a proposed standard for direct broadcast transmission of satellite weather images. This standard is a joint effort by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and the National Oceanic Atmospheric Administration (NOAA). As a digital transmission scheme, its purpose is to replace the current analog Automatic Picture Transmission (APT) system for use in the Meteorological Operational (METOP) satellites. Goddard Space Flight Center has been tasked to build an LRPT Demonstration System (LDS). It's main objective is to develop or demonstrate the feasibility of a low-cost receiver utilizing a Personal Computer (PC) as the primary processing component and determine the performance of the protocol in the simulated Radio Frequency (RF) environment. The approach would consist of two phases. In the phase 1, a Commercial-off-the-Shelf (COTS) Modulator-Demodulator (MODEM) board that would perform RF demodulation would be purchased allowing the Central Processing Unit (CPU) to perform the Consultative Committee for Space Data Systems (CCSDS) protocol processing. Also since the weather images are compressed the PC would perform the decompression. Phase 1 was successfully demonstrated on December 1997. Phase 2 consists of developing a high-fidelity receiver, transmitter and environment simulator. Its goal is to find out how the METOP Specification performs in a simulated noise environment in a cost-effective receiver. The approach would be to produce a receiver using as much software as possible to perform front-end processing to take advantage of the latest high-speed PCs. Thus the COTS MODEM used in Phase 1 is performing RF demodulation along with data acquisition providing data to the receiving software. Also, environment simulator is produced using the noise patterns generated by Institute for Telecommunications Sciences (ITS) from their noise environment study.

  15. 4MOST low-resolution spectrograph: design and performances

    NASA Astrophysics Data System (ADS)

    Laurent, F.; Kosmalski, Johan; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Migniau, Jean-Emmanuel; Pécontal, Arlette; Richard, Johan; Barden, Samuel C.; Bellido-Tirado, Olga; Frey, Steffen; Saviauk, Allar

    2016-08-01

    4MOST, the 4m Multi Object Spectroscopic Telescope, is an upcoming optical, fibre-fed, MOS facility for the VISTA telescope at ESO's Paranal Observatory in Chile. Its main science drivers are in the fields of galactic archeology, highenergy physics, galaxy evolution and cosmology. The preliminary design of 4MOST features 2436 fibres split into lowresolution (1624 fibres, 370-950 nm, R > 4000) and high-resolution spectrographs (812 fibres, three arms, 44-69 nm coverage each, R >18000) with a fibre positioner and covering an hexagonal field of view of 4.1 deg2. The 4MOST consortium consists of several institutes in Europe and Australia under leadership of the Leibniz-Institut für Astrophysik, Potsdam (AIP). 4MOST is currently in its Preliminary Design Phase with an expected start of science operations in 2021. Two third of fibres go to two Low Resolution Spectrographs with three channels per spectrograph. Each low resolution spectrograph is composed of 812 scientific and 10 calibration fibres using 85μm core fibres at f/3, a 200mm beam for an off-axis collimator associated to its Schmidt corrector, 3 arms with f/1.73 cameras and standard 6k x 6k 15μm pixel detectors. CRAL has the responsibility of the Low Resolution Spectrographs. In this paper, the optical design and performances of 4MOST Low Resolution Spectrograph designed for 4MOST PDR in June, 2016 will be presented. Special emphasis will be put on the Low Resolution Spectrograph system budget and performance analysis.

  16. Standardizing Data Collection in Traumatic Brain Injury

    PubMed Central

    Harrison-Felix, Cynthia L.; Menon, David; Adelson, P. David; Balkin, Tom; Bullock, Ross; Engel, Doortje C.; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L.; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; Verfaellie, Mieke; Wainwright, Mark; Wright, David W.; Schwab, Karen

    2011-01-01

    Abstract Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we “speak the same language.” Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from different clinical studies and high-quality observational studies combined with comparative effectiveness research may provide excellent alternatives in a cost-efficient way. Standardization of data collection and coding is essential to this end. Common data elements (CDEs) are presented for demographics and clinical variables applicable across the broad spectrum of TBI. Most recommendations represent a consensus derived from clinical practice. Some recommendations concern novel approaches, for example assessment of the intensity of therapy in severely injured patients. Up to three levels of detail for coding data elements were developed: basic, intermediate, and advanced, with the greatest level of detail attained in the advanced version. More detailed codings can be collapsed into the basic version. Templates were produced to summarize coding formats, explanation of choices, and recommendations for procedures. Endorsement of the recommendations has been obtained from many authoritative organizations. The development of CDEs for TBI should be viewed as a continuing process; as more experience is gained, refinement and amendments will be required. This proposed process of standardization will facilitate comparative effectiveness research and encourage high-quality meta-analysis of individual patient data. PMID:21162610

  17. Brain-Based Learning and Standards-Based Elementary Science.

    ERIC Educational Resources Information Center

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  18. Atlas-based segmentation for globus pallidus internus targeting on low-resolution MRI.

    PubMed

    Iacono, Maria I; Makris, Nikos; Mainardi, Luca; Gale, John; van der Kouwe, Andre; Mareyam, Azma; Polimeni, Jonathan R; Wald, Lawrence L; Fischl, Bruce; Eskandar, Emad N; Bonmassar, Giorgio

    2011-01-01

    In this paper we report a method to automatically segment the internal part of globus pallidus (GPi) on the pre-operative low-resolution magnetic resonance images (MRIs) of patients affected by Parkinson's disease. Herein we used an ultra-high resolution human brain dataset as electronic atlas of reference on which we segmented the GPi. First, we registered the ultra-high resolution dataset on the low-resolution dataset using a landmarks-based rigid registration. Then an affine and a non-rigid surface-based registration guided by the structures that surround the target was applied in order to propagate the labels of the GPi on the low-resolution un-segmented dataset and to accurately outline the target. The mapping of the atlas on the low-resolution MRI provided a highly accurate anatomical detail that can be useful for localizing the target.

  19. Evaluating low-resolution tomography neurofeedback by single dissociation of mental grotation task from stop signal task performance.

    PubMed

    Getter, Nir; Kaplan, Zeev; Todder, Doron

    2015-10-01

    Electroencephalography source localization neurofeedback, i.e Standardized low-resolution tomography (sLORETA) neurofeedback are non-invasive method for altering region specific brain activity. This is an improvement over traditional neurofeedback which were based on recordings from a single scalp-electrode. We proposed three criteria clusters as a methodological framework to evaluate electroencephalography source localization neurofeedback and present relevant data. Our objective was to evaluate standardized low resolution EEG tomography neurofeedback by examining how training one neuroanatomical area effects the mental rotation task (which is related to the activity of bilateral Parietal regions) and the stop-signal test (which is related to frontal structures). Twelve healthy participants were enrolled in a single session sLORETA neurofeedback protocol. The participants completed both the mental rotation task and the stop-signal test before and after one sLORETA neurofeedback session. During sLORETA neurofeedback sessions participants watched one sitcom episode while the picture quality co-varied with activity in the superior parietal lobule. Participants were rewarded for increasing activity in this region only. Results showed a significant reaction time decrease and an increase in accuracy after sLORETA neurofeedback on the mental rotation task but not after stop signal task. Together with behavioral changes a significant activity increase was found at the left parietal brain after sLORETA neurofeedback compared with baseline. We concluded that activity increase in the parietal region had a specific effect on the mental rotation task. Tasks unrelated to parietal brain activity were unaffected. Therefore, sLORETA neurofeedback could be used as a research, or clinical tool for cognitive disorders.

  20. The quantitative electroencephalogram and the low-resolution electrical tomographic analysis in posttraumatic stress disorder.

    PubMed

    Todder, Doran; Levine, Joseph; Abujumah, Ahmad; Mater, Michael; Cohen, Hagit; Kaplan, Zeev

    2012-01-01

    The electroencephalogram (EEG) is the recording of the brain electrical activity as measured on the scalp. Using mathematical algorithms, the 3-dimensional (3D) distribution of the electrical potential inside the brain can be calculated. One of the methods to calculate it is the low-resolution electrical tomographic analysis (LORETA). In this research, we seek to find the brain structures that differentiate patients with posttraumatic stress disorder (PTSD) from controls. Ten right-handed consenting adult male patients were recruited from a PTSD clinic. All patients fulfilled Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision [DSM-IV-TR]) criteria for chronic PTSD (duration >2 years.) and were on drug treatment regimens that had been stable for at least 2 months (involving only serotonin reuptake inhibitors [SSRIs] and benzodiazepines).The control group consisted of 10 healthy hospital staff members. All study participants underwent 19 channel EEG measurements according to current standards of practice. All artifact-free EEG strips were examined for spectral as well as LORETA analysis focusing on the theta (4-7 Hz) band which is suggested to reflect the activity of the limbic system. The theta band showed a statistically significant difference (P < .05) between the 2 groups in the right temporal lobe and in both the right and left frontal lobes. Our findings support existing research data obtained via other imaging technologies, which demonstrated structural alterations in the right temporal and frontal areas in PTSD. These results indicate that combining quantitative EEG (QEEG) and the LORETA method, among other methods, may improve the neuroanatomical resolution of EEG data analysis.

  1. Maintaining standardization: an update of the HUPO Brain Proteome Project.

    PubMed

    Hamacher, Michael; Stephan, Christian; Eisenacher, Martin; Hardt, Tanja; Marcus, Katrin; Meyer, Helmut E

    2008-04-01

    The Human Proteome Organisation was launched in February 2001 as a result of the need of an international proteomic forum to improve the understanding of human diseases. The initiative dealing with the brain is the Human Proteome Organisation Brain Proteome Project chaired in Germany and Korea. In order to estimate the existing approaches in brain proteomics, as well as to establish a standardized data reprocessing pipeline, pilot studies were initiated including both mouse and human samples. Data had to be submitted to a Data Collection Center for central re-processing and are now publicly accessible at the PRIDE database serving as reference data for future analysis. It became clear that heterogeneity, for example, different analysis strategies and data formats, are a real challenge when comparing results and when working in a consortium. Therefore, standardization, the organisation of data management and the synergistic effects of a consortium of collaborators are of outstanding importance to any big proteome analysis. The following manuscript will highlight these activities and aims of the Human Proteome Organisation Brain Proteome Project, summarizing its historical timeline and its two pilot studies.

  2. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  3. IRAS low resolution spectra of 26 symbiotic stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Brugel, Edward W.; Goodwill, Michael E.

    1990-01-01

    Data related to the spectral scans for 26 symbiotic stars are described which were extracted from the IRAS low resolution database. Data from the 8-15- and 15-23-micron bands are merged in a program that scales the longer wavelength and produces a weighted average of the spectral scans for each source. The survey shows that active dust producers can probably be isolated and some theories related to the presence of dust emission features are discussed in terms of source variability for measurements made with low resolution spectra.

  4. Human mobility monitoring in very low resolution visual sensor network.

    PubMed

    Bo, Nyan Bo; Deboeverie, Francis; Eldib, Mohamed; Guan, Junzhi; Xie, Xingzhe; Niño, Jorge; Van Haerenborgh, Dirk; Slembrouck, Maarten; Van de Velde, Samuel; Steendam, Heidi; Veelaert, Peter; Kleihorst, Richard; Aghajan, Hamid; Philips, Wilfried

    2014-11-04

    This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network. The distributed processing architecture of our tracking system allows all image processing tasks to be done on the digital signal controller in each visual sensor. In this paper, we experimentally show that reliable tracking of people is possible using very low resolution imagery. We also compare the performance of our tracker against a state-of-the-art tracking method and show that our method outperforms. Moreover, the mobility statistics of tracks such as total distance traveled and average speed derived from trajectories are compared with those derived from ground truth given by Ultra-Wide Band sensors. The results of this comparison show that the trajectories from our system are accurate enough to obtain useful mobility statistics.

  5. Globbic approximation in low-resolution direct-methods phasing.

    PubMed

    Guo, D Y; Blessing, R H; Langs, D A

    2000-09-01

    Probabilistic direct-methods phasing theory, originally based on a uniform atomic distribution hypothesis, is shown to be adaptable to a non-uniform bulk-solvent-compensated globbic approximation for protein crystals at low resolution. The effective number n(g) of non-H protein atoms per polyatomic glob increases with decreasing resolution; low-resolution phases depend on the positions of only N(g) = N(a)/n(g) globs rather than N(a) atoms. Test calculations were performed with measured structure-factor data and the refined structural parameters from a protein crystal with approximately 10 000 non-H protein atoms per molecule and approximately 60% solvent volume. Low-resolution data sets with d(min) ranging from 15 to 5 A gave n(g) = ad(min) + b, with a = 1.0 A(-1) and b = -1.9 for the test case. Results of tangent-formula phase-estimation trials emphasize that completeness of the low-resolution data is critically important for probabilistic phasing.

  6. Automatic corpus callosum segmentation for standardized MR brain scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Chen, Hong; Zhang, Li; Novak, Carol L.

    2007-03-01

    Magnetic Resonance (MR) brain scanning is often planned manually with the goal of aligning the imaging plane with key anatomic landmarks. The planning is time-consuming and subject to inter- and intra- operator variability. An automatic and standardized planning of brain scans is highly useful for clinical applications, and for maximum utility should work on patients of all ages. In this study, we propose a method for fully automatic planning that utilizes the landmarks from two orthogonal images to define the geometry of the third scanning plane. The corpus callosum (CC) is segmented in sagittal images by an active shape model (ASM), and the result is further improved by weighting the boundary movement with confidence scores and incorporating region based refinement. Based on the extracted contour of the CC, several important landmarks are located and then combined with landmarks from the coronal or transverse plane to define the geometry of the third plane. Our automatic method is tested on 54 MR images from 24 patients and 3 healthy volunteers, with ages ranging from 4 months to 70 years old. The average accuracy with respect to two manually labeled points on the CC is 3.54 mm and 4.19 mm, and differed by an average of 2.48 degrees from the orientation of the line connecting them, demonstrating that our method is sufficiently accurate for clinical use.

  7. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    PubMed Central

    Zaslavsky, Ilya; Baldock, Richard A.; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project. PMID

  8. New low-resolution spectrometer spectra for IRAS sources

    NASA Technical Reports Server (NTRS)

    Volk, Kevin; Kwok, Sun; Stencel, R. E.; Brugel, E.

    1991-01-01

    Low-resolution spectra of 486 IRAS point sources with F sub nu(12 microns) in the range 20-40 Jy are presented. This is part of an effort to extract and classify spectra that were not included in the Atlas of Low-Resolution Spectra and represents an extension of the earlier work by Volk and Cohen which covers sources with F sub nu(12 microns) greater than 40 Jy. The spectra have been examined by eye and classified into nine groups based on the spectral morphology. This new classification scheme is compared with the mechanical classification of the Atlas, and the differences are noted. Oxygen-rich stars of the asymptotic giant branch make up 33 percent of the sample. Solid state features dominate the spectra of most sources. It is found that the nature of the sources as implied by the present spectral classification is consistent with the classifications based on broad-band colors of the sources.

  9. Low-resolution face tracker robust to illumination variations.

    PubMed

    Zou, Wilman W; Yuen, Pong C; Chellappa, Rama

    2013-05-01

    In many practical video surveillance applications, the faces acquired by outdoor cameras are of low resolution and are affected by uncontrolled illumination. Although significant efforts have been made to facilitate face tracking or illumination normalization in unconstrained videos, the approaches developed may not be effective in video surveillance applications. This is because: 1) a low-resolution face contains limited information, and 2) major changes in illumination on a small region of the face make the tracking ineffective. To overcome this problem, this paper proposes to perform tracking in an illumination-insensitive feature space, called the gradient logarithm field (GLF) feature space. The GLF feature mainly depends on the intrinsic characteristics of a face and is only marginally affected by the lighting source. In addition, the GLF feature is a global feature and does not depend on a specific face model, and thus is effective in tracking low-resolution faces. Experimental results show that the proposed GLF-based tracker works well under significant illumination changes and outperforms many state-of-the-art tracking algorithms.

  10. Improving standards in brain-behavior correlation analyses.

    PubMed

    Rousselet, Guillaume A; Pernet, Cyril R

    2012-01-01

    Associations between two variables, for instance between brain and behavioral measurements, are often studied using correlations, and in particular Pearson correlation. However, Pearson correlation is not robust: outliers can introduce false correlations or mask existing ones. These problems are exacerbated in brain imaging by a widespread lack of control for multiple comparisons, and several issues with data interpretations. We illustrate these important problems associated with brain-behavior correlations, drawing examples from published articles. We make several propositions to alleviate these problems.

  11. Low resolution ultraviolet and optical spectrophotometry of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Slovak, M. H.

    1982-01-01

    Low resolution International Ultraviolet Explorer spectra combined with optical spectrophotometry provide absolute flux distributions for seven symbiotic variables from 1200 to 6450 A. For five stars (EG And, BF Cyg, CI Cyg, AG Peg, and Z And) the data are representative of the quiescent/out-of-eclipse energy distributions; for CH Cyg and AX Per, the observations were obtained following their atest outburst in 1977 and 1978, respectively. The de-reddened distributions reveal a remarkable diversity of both line spectra and continua. While the optical and near infrared regions lambda = 5500 A) are well represented by single component stellar models, multicomponent flux distributions are required to reproduce the ultraviolet continua.

  12. Low-Resolution Raman-Spectroscopy Combustion Thermometry

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2008-01-01

    A method of optical thermometry, now undergoing development, involves low-resolution measurement of the spectrum of spontaneous Raman scattering (SRS) from N2 and O2 molecules. The method is especially suitable for measuring temperatures in high pressure combustion environments that contain N2, O2, or N2/O2 mixtures (including air). Methods based on SRS (in which scattered light is shifted in wavelength by amounts that depend on vibrational and rotational energy levels of laser-illuminated molecules) have been popular means of probing flames because they are almost the only methods that provide spatially and temporally resolved concentrations and temperatures of multiple molecular species in turbulent combustion. The present SRS-based method differs from prior SRS-based methods that have various drawbacks, a description of which would exceed the scope of this article. Two main differences between this and prior SRS-based methods are that it involves analysis in the frequency (equivalently, wavelength) domain, in contradistinction to analysis in the intensity domain in prior methods; and it involves low-resolution measurement of what amounts to predominantly the rotational Raman spectra of N2 and O2, in contradistinction to higher-resolution measurement of the vibrational Raman spectrum of N2 only in prior methods.

  13. Automated lung segmentation of low resolution CT scans of rats

    NASA Astrophysics Data System (ADS)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  14. Digital tomosynthesis aided by low-resolution exact computed tomography.

    PubMed

    Zeng, Kai; Yu, Hengyong; Zhao, Shiying; Fajardo, Laurie Lee; Ruth, Christopher; Jing, Zhenxue; Wang, Ge

    2007-01-01

    Tomosynthesis reconstructs 3-dimensional images of an object from a significantly fewer number of projections as compared with that required by computed tomography (CT). A major problem with tomosynthesis is image artifacts associated with the data incompleteness. In this article, we propose a hybrid tomosynthesis approach to achieve higher image quality as compared with competing methods. In this approach, a low-resolution CT scan is followed by a high-resolution tomosynthesis scan. Then, both scans are combined to reconstruct images. To evaluate the image quality of the proposed method, we design a new breast phantom for numerical simulation and physical experiments. The results show that images obtained by our approach are clearly better than those obtained without such a CT scan.

  15. Low Resolution Picture Transmission (LRPT) Demonstration System. Phase II; 1.0

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Yeh, Pen-Shu; Duran, Steve; Sank, Victor; Nyugen, Xuan; Xia, Wei; Day, John H. (Technical Monitor)

    2002-01-01

    Low-Resolution Picture Transmission (LRPT) is a proposed standard for direct broadcast transmission of satellite weather images. This standard is a joint effort by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and NOAA. As a digital transmission scheme, its purpose is to replace the current analog Automatic Picture Transmission (APT) system for use in the Meteorological Operational (METOP) satellites. GSFC has been tasked to build an LRPT Demonstration System (LDS). Its main objective is to develop or demonstrate the feasibility of a low-cost receiver utilizing a PC as the primary processing component and determine the performance of the protocol in the simulated Radio Frequency (RF) environment. The approach would consist of two phases.

  16. Coupled kernel embedding for low resolution face image recognition.

    PubMed

    Ren, Chuan-Xian; Dai, Dao-Qing; Yan, Hong

    2012-08-01

    Practical video scene and face recognition systems are sometimes confronted with low-resolution (LR) images. The faces may be very small even if the video is clear, thus it is difficult to directly measure the similarity between the faces and the high-resolution (HR) training samples. Traditional super-resolution (SR) methods based face recognition usually have limited performance because the target of SR may not be consistent with that of classification, and time-consuming SR algorithms are not suitable for real-time applications. In this paper, a new feature extraction method called Coupled Kernel Embedding (CKE) is proposed for LR face recognition without any SR preprocessing. In this method, the final kernel matrix is constructed by concatenating two individual kernel matrices in the diagonal direction, and the (semi-)positively definite properties are preserved for optimization. CKE addresses the problem of comparing multi-modal data that are difficult for conventional methods in practice due to the lack of an efficient similarity measure. Particularly, different kernel types (e.g., linear, Gaussian, polynomial) can be integrated into an uniformed optimization objective, which cannot be achieved by simple linear methods. CKE solves this problem by minimizing the dissimilarities captured by their kernel Gram matrices in the low- and high-resolution spaces. In the implementation, the nonlinear objective function is minimized by a generalized eigenvalue decomposition. Experiments on benchmark and real databases show that our CKE method indeed improves the recognition performance.

  17. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER

    SciTech Connect

    Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K.; Battle, J.; Bock, J.; Brown, S.; Lykke, K.; Smith, A.; Cooray, A.; Hristov, V.; Levenson, L. R.; Mason, P.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Sullivan, I.; and others

    2013-08-15

    Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  18. Cartography of asteroids and comet nuclei from low resolution data

    NASA Technical Reports Server (NTRS)

    Stooke, Philip J.

    1992-01-01

    High resolution images of non-spherical objects, such as Viking images of Phobos and the anticipated Galileo images of Gaspra, lend themselves to conventional planetary cartographic procedures: control network analysis, stereophotogrammetry, image mosaicking in 2D or 3D, and airbrush mapping. There remains the problem of a suitable map projection for bodies which are extremely elongated or irregular in shape. Many bodies will soon be seen at lower resolution (5-30 pixels across the disk) in images from speckle interferometry, the Hubble Space Telescope, ground-based radar, distinct spacecraft encounters, and closer images degraded by smear. Different data with similar effective resolutions are available from stellar occultations, radar or lightcurve convex hulls, lightcurve modeling of albedo variations, and cometary jet modeling. With such low resolution, conventional methods of shape determination will be less useful or will fail altogether, leaving limb and terminator topography as the principal sources of topographic information. A method for shape determination based on limb and terminator topography was developed. It has been applied to the nucleus of Comet Halley and the jovian satellite Amalthea. The Amalthea results are described to give an example of the cartographic possibilities and problems of anticipated data sets.

  19. The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Tsumura, K.; Arai, T.; Battle, J.; Bock, J.; Brown, S.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Lykke, K.; Mason, P.; Matsumoto, T.; Matsuura, S.; Murata, K.; Nam, U. W.; Renbarger, T.; Smith, A.; Sullivan, I.; Suzuki, K.; Wada, T.; Zemcov, M.

    2013-08-01

    Absolute spectrophotometric measurements of diffuse radiation at 1 μm to 2 μm are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a λ/Δλ ~ 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 μm <λ < 2.1 μm. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

  20. On 'globbicity' of low-resolution protein structures.

    PubMed

    Guo, D Y; Blessing, R H; Langs, D A; Smith, G D

    1999-01-01

    Using Harker's [Harker (1953). Acta Cryst. 6, 731-736] idea of spherically averaged polyatomic groups or 'globs' as the units of structure suitable for analyzing low-resolution diffraction data from protein crystals, 'globbic' scattering factors have been calculated for main-chain peptide units and amino-acid side-chain groups to 3 A resolution via Debye's [Debye (1915). Ann. Phys. (Leipzig), 46, 809-823] scattering formula. It is shown that the scattering factors are insensitive to intra-globbic conformational variation and can be approximated fairly well by a single-Gaussian formula, i.e. fg(s) = Zg exp(-1.7Zgs2), where s = (sin theta)/lambda and Zg is the total electron count for the atoms of the glob. Phase errors due to the globbic approximation and their effect on electron-density maps at 3.5 A resolution have been assessed via calculations for the crambin structure; this analysis indicates that the globbic scattering factors will be useful in efforts to develop procedures for direct-methods phasing of diffraction data to approximately 3.5 A resolution from protein crystals.

  1. Investigating short wavelength correlated errors on low resolution mode altimetry

    NASA Astrophysics Data System (ADS)

    Poisson, Jean-Christophe; Thibaut, Pierre; Dibarboure, Gérald; Labroue, Sylvie; Lasne, Yannick; Boy, François; Picot, Nicolas

    2013-04-01

    Although conventional radar altimetry products (Jason1, Jason2, LRM CRYOSAT2, etc) have a spatial resolution as high as 300 m, the observation of ocean scales smaller than 100 km is limited by the existence of a "spectral hump", i.e. a geographically coherent error. In the frame of the future altimetry missions (SAR for Cryosat -2 and Sentinel-3 missions and interferometry for the SWOT mission) it becomes crucial to investigate again and to better understand the signals obtained at small scales by conventional altimeter missions. Through an analysis of simulations, we show that heterogeneous backscattering scenes can result in the corruption of the altimeter waveforms and retracked parameters. The retrackers used in current ground processors cannot well fit the Brown model during backscattering events because this model has been designed for a homogeneous scene. The error is also propagated along-track because of the size and shape of the low resolution mode (LRM) disc-shaped footprint. The hump phenomenon is shown to be almost ubiquitous in the ocean, yet more intense at low latitudes and in the Indian Ocean and Western Pacific Ocean, where backscattering events are more frequent. Its overall signature could be a Gaussian-like random signal smooth for wavelengths smaller than 15 km, i.e. white noise on 1 Hz products. The analysis of current data from 5 altimetry missions highlights the influence of the instrument design and altitude, and the influence of the retracker used. The spectral hump is a systematic response to random events and it is possible to mitigate it with new processing. Simulations and geographically limited datasets from the synthetic aperture radar mode (SARM) of Cryosat-2 show that the thin stripe-shaped synthetic footprint of SARM might be less sensitive to the artifact.

  2. Trabecular bone volume fraction mapping by low-resolution MRI.

    PubMed

    Fernández-Seara, M A; Song, H K; Wehrli, F W

    2001-07-01

    Trabecular bone volume fraction (TBVF) is highly associated with the mechanical competence of trabecular bone. TBVF is ordinarily measured by histomorphometry from bone biopsies or, noninvasively, by means of high-resolution microcomputed tomography and, more recently, by micro-MRI. The latter methods require spatial resolution sufficient to resolve trabeculae, along with segmentation techniques that allow unambiguous assignment of the signal to bone or bone marrow. In this article it is shown that TBVF can be measured under low-resolution conditions by exploiting the attenuation of the MR signal resulting from fractional occupancy of the imaging voxel by bone and bone marrow, provided that a reference signal is available from a marrow volume devoid of trabeculation. The method requires accurate measurement of apparent proton density, which entails correction for various sources of error. Key among these are the spatial nonuniformity in the RF field amplitude and effects of the slice profile, which are determined by B(1) field mapping and numerical integration of the Bloch equations, respectively. By contrast, errors from variations in bone marrow composition (hematopoietic vs. fatty) between trabecular and reference site are predicted to be small and usually negligible. The method was evaluated in phantoms and in vivo in the distal radius and found to be accurate to 1% in marrow volume fraction. Finally, in a group of 12 patients of varying skeletal status, TBVF in the calcaneus was found to strongly correlate with integral bone mineral density of the lumbar vertebrae (r(2) = 0.83, p < 0.0001). The method may fail in large imaging objects such as the human trunk at high magnetic field where standing wave and RF penetration effects cause intensity variations that cannot be corrected. Magn Reson Med 46:103-113, 2001.

  3. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  4. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    PubMed

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed.

  5. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    SciTech Connect

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-09-15

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET

  6. A Standardized Protocol for the Initial Evaluation and Documentation of Mild Brain Injury

    PubMed Central

    Cameron, Kenneth L.; Yunker, Craig A.; Austin, Marchell C.

    1999-01-01

    Objective: To present a protocol for the initial assessment and documentation of mild brain injury, a protocol that is used within the Department of Physical Education at the United States Military Academy. Background: Recently, much attention has been given to the assessment and management of mild brain injury by the sports medicine community. Although the classification of and management strategies for mild brain injury have been well disputed, most experts agree on the essentials of the sideline or initial evaluation. According to leading experts, if an athlete has experienced an episode of mild brain injury, the initial signs and symptoms, as well as the course of those signs and symptoms, should be documented. Description: Although many athletic training texts formerly discussed techniques for evaluating an episode of mild brain injury, few present an objective protocol to follow. Our protocol includes 3 components. The first component is the initial evaluation, which incorporates serial observations during the first 20 minutes after injury, with neurologic checks every 5 minutes. The second component includes a take-home sheet for athletes not referred to a physician for further evaluation. The third part of the protocol is a 24-hour postinjury follow-up examination for any signs or symptoms of postconcussion syndrome. Finally, we present the indications for referral to a physician for further evaluation. Clinical Advantages/Recommendations: Using a standard protocol to guide evaluation and to document the initial course of signs and symptoms after mild brain injury allows the sports medicine staff to make better management decisions. In addition, patient instructions and the course of follow-up evaluations can be improved if a standard protocol is employed. Our protocol has been developed to meet the needs both of athletes who are exposed to mild brain injury on a daily basis and of the certified athletic trainers who initially evaluate them; the protocol

  7. Low-Resolution Spectroscopy of Primitive Asteroids: Progress Report for SARA/VSU Survey

    NASA Technical Reports Server (NTRS)

    Leake, M. A.; Nogues, J. P.; Gaines, J. K.; Looper, J. K.; Freitas, K. A.

    2001-01-01

    Progress on a low-resolution survey of primitive C-class asteroids continues using new equipment (and its associated problems) to understand aqueous alteration in the solar system. Additional information is contained in the original extended abstract.

  8. Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies.

    PubMed

    Walter, U; Školoudík, D

    2014-08-01

    Transcranial B-mode sonography (TCS) of brain parenchyma is being increasingly used as a diagnostic tool in movement disorders. Compared to other neuroimaging modalities such as magnetic resonance imaging (MRI) and computed tomography, TCS can be performed today with portable machines and has the advantages of noninvasiveness and high resistance to movement artifacts. In distinct brain disorders TCS detects abnormalities that cannot be visualized or can only be visualized with significant effort with other imaging methods. In the field of movement disorders, TCS has been established mainly as a tool for the early and differential diagnosis of Parkinson's disease. The postoperative position control of deep brain stimulation electrodes, especially in the subthalamic nucleus, can reliably and safely be performed with TCS.  The present update review summarizes the current methodological standards and defines quality criteria of adequate TCS imaging and assessment of diagnostically relevant deep brain structures such as substantia nigra, brainstem raphe, basal ganglia and ventricles. Finally, an overview is given on recent technological advances including TCS-MRI fusion imaging and upcoming technologies of digitized image analysis aiming at a more investigator-independent assessment of deep brain structures on TCS.

  9. Population-averaged standard template brain atlas for the common marmoset (Callithrix jacchus).

    PubMed

    Hikishima, K; Quallo, M M; Komaki, Y; Yamada, M; Kawai, K; Momoshima, S; Okano, H J; Sasaki, E; Tamaoki, N; Lemon, R N; Iriki, A; Okano, H

    2011-02-14

    Advanced magnetic resonance (MR) neuroimaging analysis techniques based on voxel-wise statistics, such as voxel-based morphometry (VBM) and functional MRI, are widely applied to cognitive brain research in both human subjects and in non-human primates. Recent developments in imaging have enabled the evaluation of smaller animal models with sufficient spatial resolution. The common marmoset (Callithrix jacchus), a small New World primate species, has been widely used in neuroscience research, to which voxel-wise statistics could be extended with a species-specific brain template. Here, we report, for the first time, a tissue-segmented, population-averaged standard template of the common marmoset brain. This template was created by using anatomical T(1)-weighted images from 22 adult marmosets with a high-resolution isotropic voxel size of (0.2 mm)(3) at 7-Tesla and DARTEL algorithm in SPM8. Whole brain templates are available at International Neuroinformatics Japan Node website, http://brainatlas.brain.riken.jp/marmoset/.

  10. High-resolution iris image reconstruction from low-resolution imagery

    NASA Astrophysics Data System (ADS)

    Barnard, R.; Pauca, V. P.; Torgersen, T. C.; Plemmons, R. J.; Prasad, S.; van der Gracht, J.; Nagy, J.; Chung, J.; Behrmann, G.; Mathews, S.; Mirotznik, M.

    2006-08-01

    We investigate the use of a novel multi-lens imaging system in the context of biometric identification, and more specifically, for iris recognition. Multi-lenslet cameras offer a number of significant advantages over standard single-lens camera systems, including thin form-factor and wide angle of view. By using appropriate lenslet spacing relative to the detector pixel pitch, the resulting ensemble of images implicitly contains subject information at higher spatial frequencies than those present in a single image. Additionally, a multi-lenslet approach enables the use of observational diversity, including phase, polarization, neutral density, and wavelength diversities. For example, post-processing multiple observations taken with differing neutral density filters yields an image having an extended dynamic range. Our research group has developed several multi-lens camera prototypes for the investigation of such diversities. In this paper, we present techniques for computing a high-resolution reconstructed image from an ensemble of low-resolution images containing sub-pixel level displacements. The quality of a reconstructed image is measured by computing the Hamming distance between the Daugman 4 iris code of a conventional reference iris image, and the iris code of a corresponding reconstructed image. We present numerical results concerning the effect of noise and defocus blur in the reconstruction process using simulated data and report preliminary work on the reconstruction of actual iris data obtained with our camera prototypes.

  11. CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Morales, J. C.; Caballero, J. A.; Montes, D.; Klutsch, A.; Mundt, R.; Cortés-Contreras, M.; Ribas, I.; Reiners, A.; Amado, P. J.; Quirrenbach, A.; Jeffers, S. V.

    2015-05-01

    Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims: We prepare a list of the brightest, single M dwarfs in each spectral subtype observable from the northern hemisphere, from which we will select the best planet-hunting targets for CARMENES. Methods: In this first paper on the preparation of our input catalogue, we compiled a large amount of public data and collected low-resolution optical spectroscopy with CAFOS at the 2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types using a dense grid of standard stars, a double least-squares minimisation technique, and 31 spectral indices previously defined by other authors. Additionally, we quantified surface gravity, metallicity, and chromospheric activity for all the stars in our sample. Results: We calculated spectral types for all 753 stars, of which 305 are new and 448 are revised. We measured pseudo-equivalent widths of Hα for all the stars in our sample, concluded that chromospheric activity does not affect spectral typing from our indices, and tabulated 49 stars that had been reported to be young stars in open clusters, moving groups, and stellar associations. Of the 753 stars, two are new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range M4.0-8.0 V are among the brightest stars known in their spectral subtype. Conclusions: This collection of low-resolution spectroscopic data serves as a candidate target list for the CARMENES survey and can be highly valuable for other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the solar neighbourhood. Full Tables A.1, A.2, and A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  12. Real-time person detection in low-resolution thermal infrared imagery with MSER and CNNs

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Müller, Thomas; Willersinn, Dieter; Beyerer, Jürgen

    2016-10-01

    In many camera-based systems, person detection and localization is an important step for safety and security applications such as search and rescue, reconnaissance, surveillance, or driver assistance. Long-wave infrared (LWIR) imagery promises to simplify this task because it is less affected by background clutter or illumination changes. In contrast to a lot of related work, we make no assumptions about any movement of persons or the camera, i.e. persons may stand still and the camera may move or any combination thereof. Furthermore, persons may appear arbitrarily in near or far distances to the camera leading to low-resolution persons in far distances. To address this task, we propose a two-stage system, including a proposal generation method and a classifier to verify, if the detected proposals really are persons. In contradiction to use all possible proposals as with sliding window approaches, we apply Maximally Stable Extremal Regions (MSER) and classify the detected proposals afterwards with a Convolutional Neural Network (CNN). The MSER algorithm acts as a hot spot detector when applied to LWIR imagery. Because the body temperature of persons is usually higher than the background, they appear as hot spots in the image. However, the MSER algorithm is unable to distinguish between different kinds of hot spots. Thus, all further LWIR sources such as windows, animals or vehicles will be detected, too. Still by applying MSER, the number of proposals is reduced significantly in comparison to a sliding window approach which allows employing the high discriminative capabilities of deep neural networks classifiers that were recently shown in several applications such as face recognition or image content classification. We suggest using a CNN as classifier for the detected hot spots and train it to discriminate between person hot spots and all further hot spots. We specifically design a CNN that is suitable for the low-resolution person hot spots that are common with

  13. Development of image and information management system for Korean standard brain

    NASA Astrophysics Data System (ADS)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  14. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  15. Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model.

    PubMed

    Lew, Seok; Wolters, Carsten H; Anwander, Alfred; Makeig, Scott; MacLeod, Rob S

    2009-09-01

    Bioelectric source analysis in the human brain from scalp electroencephalography (EEG) signals is sensitive to geometry and conductivity properties of the different head tissues. We propose a low-resolution conductivity estimation (LRCE) method using simulated annealing optimization on high-resolution finite element models that individually optimizes a realistically shaped four-layer volume conductor with regard to the brain and skull compartment conductivities. As input data, the method needs T1- and PD-weighted magnetic resonance images for an improved modeling of the skull and the cerebrospinal fluid compartment and evoked potential data with high signal-to-noise ratio (SNR). Our simulation studies showed that for EEG data with realistic SNR, the LRCE method was able to simultaneously reconstruct both the brain and the skull conductivity together with the underlying dipole source and provided an improved source analysis result. We have also demonstrated the feasibility and applicability of the new method to simultaneously estimate brain and skull conductivity and a somatosensory source from measured tactile somatosensory-evoked potentials of a human subject. Our results show the viability of an approach that computes its own conductivity values and thus reduces the dependence on assigning values from the literature and likely produces a more robust estimate of current sources. Using the LRCE method, the individually optimized four-compartment volume conductor model can, in a second step, be used for the analysis of clinical or cognitive data acquired from the same subject.

  16. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    SciTech Connect

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  17. MEASURING ORGANIC MOLECULAR EMISSION IN DISKS WITH LOW-RESOLUTION SPITZER SPECTROSCOPY

    SciTech Connect

    Teske, Johanna K.; Najita, Joan R.; Carr, John S.; Pascucci, Ilaria; Apai, Daniel; Henning, Thomas E-mail: najita@noao.edu E-mail: pascucci@stsci.edu E-mail: henning@mpia.de

    2011-06-10

    We explore the extent to which Spitzer Infrared Spectrograph (IRS) spectra taken at low spectral resolution can be used in quantitative studies of organic molecular emission from disks surrounding low-mass young stars. We use Spitzer IRS spectra taken in both the high- and low-resolution modules for the same sources to investigate whether it is possible to define line indices that can measure trends in the strength of the molecular features in low-resolution data. We find that trends in the HCN emission strength seen in the high-resolution data can be recovered in low-resolution data. In examining the factors that influence the HCN emission strength, we find that the low-resolution HCN flux is modestly correlated with stellar accretion rate and X-ray luminosity. Correlations of this kind are perhaps expected based on recent observational and theoretical studies of inner disk atmospheres. Our results demonstrate the potential of using the large number of low-resolution disk spectra that reside in the Spitzer archive to study the factors that influence the strength of molecular emission from disks. Such studies would complement results for the much smaller number of circumstellar disks that have been observed at high resolution with IRS.

  18. Combining Efficient Conformational Sampling with a Deformable Elastic Network Model Facilitates Structure Refinement at Low Resolution

    PubMed Central

    Schröder, Gunnar F.; Brunger, Axel T.; Levitt, Michael

    2008-01-01

    Summary Structural studies of large proteins and protein assemblies are a difficult and pressing challenge in molecular biology. Experiments often yield only low-resolution or sparse data which are not sufficient to fully determine atomistic structures. We have developed a general geometry-based algorithm that efficiently samples conformational space under constraints imposed by low-resolution density maps obtained from electron microscopy or X-ray crystallography experiments. A deformable elastic network (DEN) is used to restrain the sampling to prior knowledge of an approximate structure. The DEN restraints dramatically reduce over-fitting, especially at low resolution. Cross-validation is used to optimally weight the structural information and experimental data. Our algorithm is robust even for noise-added density maps and has a large radius of convergence for our test case. The DEN restraints can also be used to enhance reciprocal space simulated annealing refinement. PMID:18073112

  19. Deformable complex network for refining low-resolution X-ray structures

    SciTech Connect

    Zhang, Chong; Wang, Qinghua; Ma, Jianpeng

    2015-10-27

    A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint with the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.

  20. Brain slice stimulation using a microfluidic network and standard perfusion chamber.

    PubMed

    Shaikh Mohammed, Javeed; Caicedo, Hugo; Fall, Christopher P; Eddington, David T

    2007-01-01

    We have demonstrated the fabrication of a two-level microfluidic device that can be easily integrated with existing electrophysiology setups. The two-level microfluidic device is fabricated using a two-step standard negative resist lithography process. The first level contains microchannels with inlet and outlet ports at each end. The second level contains microscale circular holes located midway of the channel length and centered along with channel width. Passive pumping method is used to pump fluids from the inlet port to the outlet port. The microfluidic device is integrated with off-the-shelf perfusion chambers and allows seamless integration with the electrophysiology setup. The fluids introduced at the inlet ports flow through the microchannels towards the outlet ports and also escape through the circular openings located on top of the microchannels into the bath of the perfusion. Thus the bottom surface of the brain slice placed in the perfusion chamber bath and above the microfluidic device can be exposed with different neurotransmitters. The microscale thickness of the microfluidic device and the transparent nature of the materials [glass coverslip and PDMS (polydimethylsiloxane)] used to make the microfluidic device allow microscopy of the brain slice. The microfluidic device allows modulation (both spatial and temporal) of the chemical stimuli introduced to the brain slice microenvironments.

  1. The standard-based open workflow system in GeoBrain (Invited)

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhao, P.; Deng, M.

    2013-12-01

    GeoBrain is an Earth science Web-service system developed and operated by the Center for Spatial Information Science and Systems, George Mason University. In GeoBrain, a standard-based open workflow system has been implemented to accommodate the automated processing of geospatial data through a set of complex geo-processing functions for advanced production generation. The GeoBrain models the complex geoprocessing at two levels, the conceptual and concrete. At the conceptual level, the workflows exist in the form of data and service types defined by ontologies. The workflows at conceptual level are called geo-processing models and cataloged in GeoBrain as virtual product types. A conceptual workflow is instantiated into a concrete, executable workflow when a user requests a product that matches a virtual product type. Both conceptual and concrete workflows are encoded in Business Process Execution Language (BPEL). A BPEL workflow engine, called BPELPower, has been implemented to execute the workflow for the product generation. A provenance capturing service has been implemented to generate the ISO 19115-compliant complete product provenance metadata before and after the workflow execution. The generation of provenance metadata before the workflow execution allows users to examine the usability of the final product before the lengthy and expensive execution takes place. The three modes of workflow executions defined in the ISO 19119, transparent, translucent, and opaque, are available in GeoBrain. A geoprocessing modeling portal has been developed to allow domain experts to develop geoprocessing models at the type level with the support of both data and service/processing ontologies. The geoprocessing models capture the knowledge of the domain experts and are become the operational offering of the products after a proper peer review of models is conducted. An automated workflow composition has been experimented successfully based on ontologies and artificial

  2. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Martin, Alex

    2014-01-01

    Objectives Autism spectrum disorders (ASD) are diagnosed based on early-manifesting clinical symptoms, including markedly impaired social communication. We assessed the viability of resting-state functional MRI (rs-fMRI) connectivity measures as diagnostic biomarkers for ASD and investigated which connectivity features are predictive of a diagnosis. Methods Rs-fMRI scans from 59 high functioning males with ASD and 59 age- and IQ-matched typically developing (TD) males were used to build a series of machine learning classifiers. Classification features were obtained using 3 sets of brain regions. Another set of classifiers was built from participants' scores on behavioral metrics. An additional age and IQ-matched cohort of 178 individuals (89 ASD; 89 TD) from the Autism Brain Imaging Data Exchange (ABIDE) open-access dataset (http://fcon_1000.projects.nitrc.org/indi/abide/) were included for replication. Results High classification accuracy was achieved through several rs-fMRI methods (peak accuracy 76.67%). However, classification via behavioral measures consistently surpassed rs-fMRI classifiers (peak accuracy 95.19%). The class probability estimates, P(ASD|fMRI data), from brain-based classifiers significantly correlated with scores on a measure of social functioning, the Social Responsiveness Scale (SRS), as did the most informative features from 2 of the 3 sets of brain-based features. The most informative connections predominantly originated from regions strongly associated with social functioning. Conclusions While individuals can be classified as having ASD with statistically significant accuracy from their rs-fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evidence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, particularly those involved in social information processing. PMID:25685703

  3. Low-resolution mid-infrared reflection analysis for discernment of contaminants in seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants often decrease cotton quality, which subsequently decrease cotton profitability. In this research, a low-resolution mid-infrared reflection instrument was designed and constructed by using only four different wavelengths to accomplish good separation of cotton samples from 14 contaminan...

  4. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-01-01

    This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate

  5. Efficient simultaneous image deconvolution and upsampling algorithm for low-resolution microwave sounder data

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yanovsky, Igor; Yin, Wotao

    2015-01-01

    Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multipliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the outstanding performance of the proposed method.

  6. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

    PubMed Central

    Ellingson, Benjamin M.; Bendszus, Martin; Boxerman, Jerrold; Barboriak, Daniel; Erickson, Bradley J.; Smits, Marion; Nelson, Sarah J.; Gerstner, Elizabeth; Alexander, Brian; Goldmacher, Gregory; Wick, Wolfgang; Vogelbaum, Michael; Weller, Michael; Galanis, Evanthia; Kalpathy-Cramer, Jayashree; Shankar, Lalitha; Jacobs, Paula; Pope, Whitney B.; Yang, Dewen; Chung, Caroline; Knopp, Michael V.; Cha, Soonme; van den Bent, Martin J.; Chang, Susan; Al Yung, W.K.; Cloughesy, Timothy F.; Wen, Patrick Y.; Gilbert, Mark R.

    2015-01-01

    A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR systems. PMID:26250565

  7. Quantitative analysis of the detergent-insoluble brain proteome in frontotemporal lobar degeneration using SILAC internal standards

    PubMed Central

    Seyfried, Nicholas T.; Gozal, Yair M.; Donovan, Laura E.; Herskowitz, Jeremy H.; Dammer, Eric B.; Xia, Qiangwei; Ku, Li; Chang, Jianjun; Duong, Duc M.; Rees, Howard D.; Cooper, Deborah S.; Glass, Jonathan D.; Gearing, Marla; Tansey, Malú G.; Lah, James J.; Feng, Yue; Levey, Allan I.; Peng, Junmin

    2012-01-01

    Summary A hallmark of neurodegeneration is the aggregation of disease related proteins that are resistant to detergent extraction. In the major pathological subtype of frontotemporal lobar degeneration (FTLD), modified TAR-DNA binding protein 43 (TDP-43), including phosphorylated, ubiquitinated and proteolytically cleaved forms, is enriched in detergent-insoluble fractions from post-mortem brain tissue. Additional proteins that accumulate in the detergent-insoluble FTLD brain proteome remain largely unknown. In this study, we used proteins from stable isotope-labeled (SILAC) human embryonic kidney 293 cells (HEK293) as internal standards for peptide quantitation across control and FTLD insoluble brain proteomes. Proteins were identified and quantified by liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS) and twenty-one proteins were determined to be enriched in FTLD using SILAC internal standards. In parallel, label free quantification of only the unlabeled brain derived peptides by spectral counts (SC) and G-test analysis identified additional brain-specific proteins significantly enriched in disease. Several proteins determined to be enriched in FTLD using SILAC internal standards were not considered significant by G-test due to their low total number of SC. However immunoblotting of FTLD and control samples confirmed enrichment of these proteins, highlighting the utility of SILAC internal standard to quantify low abundance proteins in brain. Of these, the RNA binding protein PTB-associated splicing factor (PSF) was further characterized because of structural and functional similarities to TDP-43. Full-length PSF and shorter molecular weight fragments, likely resulting from proteolytic cleavage, were enriched in FTLD cases. Immunohistochemical analysis of PSF revealed predominately nuclear localization in control and FTLD brain tissue and was not associated with phosphorylated pathologic TDP-43 neuronal inclusions. However, in a subset of FTLD

  8. Stable low-resolution simulations of two-dimensional vesicle suspensions

    NASA Astrophysics Data System (ADS)

    Kabacaoglu, Gokberk; Quaife, Bryan; Biros, George

    2016-11-01

    Vesicles, which resist bending and are locally inextensible, serve as experimental and numerical proxies for red blood cells. Vesicle flows, which are governed by hydrodynamic and elastic forces, refer to flow of vesicles that are filled with and suspended in a Stokesian fluid. In this work we present algorithms for stable and accurate low-resolution simulations of the vesicle flows in two-dimensions. We use an integral equation formulation of the Stokes equation coupled to the interface mass continuity and force balance. The problem poses numerical difficulties such as long-range hydrodynamic interactions, strong nonlinearities and stiff governing equations. These difficulties make simulations with long time horizons challenging, especially at low resolutions. We develop algorithms to control aliasing errors, correct errors in vesicle's area and arc-length, and avoid collision of vesicles. Additionally, we discuss several error measures to study the accuracy of the simulations. Then we closely look at how accurate the low-resolution simulations can capture true physics of the vesicle flows.

  9. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    SciTech Connect

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  10. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  11. Facial identification in very low-resolution images simulating prosthetic vision

    NASA Astrophysics Data System (ADS)

    Chang, M. H.; Kim, H. S.; Shin, J. H.; Park, K. S.

    2012-08-01

    Familiar facial identification is important to blind or visually impaired patients and can be achieved using a retinal prosthesis. Nevertheless, there are limitations in delivering the facial images with a resolution sufficient to distinguish facial features, such as eyes and nose, through multichannel electrode arrays used in current visual prostheses. This study verifies the feasibility of familiar facial identification under low-resolution prosthetic vision and proposes an edge-enhancement method to deliver more visual information that is of higher quality. We first generated a contrast-enhanced image and an edge image by applying the Sobel edge detector and blocked each of them by averaging. Then, we subtracted the blocked edge image from the blocked contrast-enhanced image and produced a pixelized image imitating an array of phosphenes. Before subtraction, every gray value of the edge images was weighted as 50% (mode 2), 75% (mode 3) and 100% (mode 4). In mode 1, the facial image was blocked and pixelized with no further processing. The most successful identification was achieved with mode 3 at every resolution in terms of identification index, which covers both accuracy and correct response time. We also found that the subjects recognized a distinctive face especially more accurately and faster than the other given facial images even under low-resolution prosthetic vision. Every subject could identify familiar faces even in very low-resolution images. And the proposed edge-enhancement method seemed to contribute to intermediate-stage visual prostheses.

  12. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study

    NASA Astrophysics Data System (ADS)

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    Objective. While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users’ motor imagery based BCI (MI-BCI) control performance. Approach. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users’ spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Main results. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. Significance. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced

  13. Event-related brain potentials during the standard autonomic-based concealed information test.

    PubMed

    Matsuda, Izumi; Nittono, Hiroshi; Hirota, Akihisa; Ogawa, Tokihiro; Takasawa, Noriyoshi

    2009-10-01

    The concealed information test (CIT) has been used to detect information that examinees possess by means of their autonomic responses. However, the central activities related to these autonomic responses remain unclear. In this study, we simultaneously recorded 128-ch event-related potentials (ERPs) and various autonomic responses (heart rate, respiratory rate, respiratory amplitude, cutaneous blood flow, and skin conductance response) to a critical item (i.e., the item that participants memorized) and to non-critical items (i.e., items other than the critical item) using the standard protocol of the autonomic-based CIT. A topographic analysis of variance and a temporal-spatial principal component analysis revealed that the critical item elicited a larger negative potential (N2b, 205-298 ms) at central regions and a larger positive potential (positive slow wave, 502-744 ms) at parieto-occipital regions, compared to the non-critical items. Correlation analysis across 21 participants showed a significant correlation between N2b increase and heart rate deceleration in response to critical items compared to non-critical items, but there were no autonomic correlates of the positive slow wave. The results suggest that at least two brain processes are involved in the autonomic-based CIT: The first is an attentional-orienting process that facilitates the processing of critical items, to which heart rate deceleration was linked, and the second is an additional process after the identification of critical items.

  14. Standardized assessment instruments for minimally-responsive, brain-injured patients.

    PubMed

    O'Dell, M W; Jasin, P; Lyons, N; Stivers, M; Meszaros, F

    1996-01-01

    Among the most significant advances in the care and rehabilitation of severely brain injured, minimally-responsive patients (MRP) has been the development of standardized assessment scales. Currently available instruments include the Coma/Near Coma Scale (CNC), Coma Recovery Scale (CRS), Sensory Stimulation Assessment Measure (SSAM), and the Western Neuro Sensory Stimulation Profile (WNSSP). Each scale is reviewed in terms of content, psychometric properties, and clinical attributes. Data is then presented comparing converted, percentile admission scores for the CRS, WNSSP, and CNC in a group of ten MRP at Rancho Levels II-IV, with a mean age of 31 years and mean time from injury of 37.5 days. Admission CNC and CRS scores tended to group in the middle range, while WNSSP scores tended to group in the lower quartile. This suggests the potential concern for 'floor effect' with the WNSSP. At admission, none of the three scales was able to effectively distinguish between dichotomized outcome variables: disposition (home vs. nursing home), advancement to active rehabilitation, or discharge Functional Independence Measure score (> 80 vs. < 80). The data indicate the CRS demonstrates moderately strong relationships with both the CNC and WNSSP. Full delineation of how these scales relate to one another awaits both cross-sectional and longitudinal analyses in larger samples and should include the SSAM.

  15. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    PubMed

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  16. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  17. Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach

    NASA Astrophysics Data System (ADS)

    Botha, Pieter W. S. K.; Sheppard, Adrian P.

    2016-06-01

    We investigate the possibility of predicting permeability in low-resolution X-ray microcomputed tomography (µCT). Lower-resolution whole core images give greater sample coverage and are therefore more representative of heterogeneous systems; however, the lower resolution causes connecting pore throats to be represented by intermediate gray scale values and limits information on pore system geometry, rendering such images inadequate for direct permeability simulation. We present an imaging and computation workflow aimed at predicting absolute permeability for sample volumes that are too large to allow direct computation. The workflow involves computing permeability from high-resolution µCT images, along with a series of rock characteristics (notably open pore fraction, pore size, and formation factor) from spatially registered low-resolution images. Multiple linear regression models correlating permeability to rock characteristics provide a means of predicting and mapping permeability variations in larger scale low-resolution images. Results show excellent agreement between permeability predictions made from 16 and 64 µm/voxel images of 25 mm diameter 80 mm tall core samples of heterogeneous sandstone for which 5 µm/voxel resolution is required to compute permeability directly. The statistical model used at the lowest resolution of 64 µm/voxel (similar to typical whole core image resolutions) includes open pore fraction and formation factor as predictor characteristics. Although binarized images at this resolution do not completely capture the pore system, we infer that these characteristics implicitly contain information about the critical fluid flow pathways. Three-dimensional permeability mapping in larger-scale lower resolution images by means of statistical predictions provides input data for subsequent permeability upscaling and the computation of effective permeability at the core scale.

  18. Solution structural studies and low-resolution model of the Schizosaccharomyces pombe sap1 protein.

    PubMed

    Bada, M; Walther, D; Arcangioli, B; Doniach, S; Delarue, M

    2000-07-14

    Sap1 is a DNA-binding protein involved in controlling the mating type switch in fission yeast Schizosaccharomyces pombe. In the absence of any significant sequence similarity with any structurally known protein, a variety of biophysical techniques has been used to probe the solution low-resolution structure of the sap1 protein. First, sap1 is demonstrated to be an unusually elongated dimer in solution by measuring the translational diffusion coefficient with two independent techniques: dynamic light-scattering and ultracentrifugation. Second, sequence analysis revealed the existence of a long coiled-coil region, which is responsible for dimerization. The length of the predicted coiled-coil matches estimates drawn from the hydrodynamic experimental behaviour of the molecule. In addition, the same measurements done on a shorter construct with a coiled-coil region shortened by roughly one-half confirmed the localization of the long coiled-coil region. A crude T-shape model incorporating all these information was built. Third, small-angle X-ray scattering (SAXS) of the free molecule provided additional evidence for the model. In particular, the P(r) curve strikingly demonstrates the existence of long intramolecular distances. Using a novel 3D reconstruction algorithm, a low resolution 3D model of the protein has been independently constructed that matches the SAXS experimental data. It also fits the translation diffusion coefficients measurements and agrees with the first T-shaped model. This low-resolution model has clearly biologically relevant new functional implications, suggesting that sap1 is a bifunctional protein, with the two active sites being separated by as much as 120 A; a tetrapeptide repeated four times at the C terminus of the molecule is postulated to be of utmost functional importance.

  19. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing.

    PubMed Central

    Svergun, D I

    1999-01-01

    A method is proposed to restore ab initio low resolution shape and internal structure of chaotically oriented particles (e.g., biological macromolecules in solution) from isotropic scattering. A multiphase model of a particle built from densely packed dummy atoms is characterized by a configuration vector assigning the atom to a specific phase or to the solvent. Simulated annealing is employed to find a configuration that fits the data while minimizing the interfacial area. Application of the method is illustrated by the restoration of a ribosome-like model structure and more realistically by the determination of the shape of several proteins from experimental x-ray scattering data. PMID:10354416

  20. Autonomous Motion Segmentation of Multiple Objects in Low Resolution Video Using Variational Level Sets

    SciTech Connect

    Moelich, M

    2003-11-18

    This report documents research that was done during a ten week internship in the Sapphire research group at the Lawrence Livermore National Laboratory during the Summer of 2003. The goal of the study was to develop an algorithm that is capable of isolating (segmenting) moving objects in low resolution video sequences. This capability is currently being developed by the Sapphire research group as the first stage in a longer term video data mining project. This report gives a chronological account of what ideas were tried in developing the algorithm and what was learned from each attempt. The final version of the algorithm, which is described in detail, gives good results and is fast.

  1. Rapid whole brain myelin water content mapping without an external water standard at 1.5T.

    PubMed

    Nguyen, Thanh D; Spincemaille, Pascal; Gauthier, Susan A; Wang, Yi

    2017-01-07

    The objective of this study is to develop rapid whole brain mapping of myelin water content (MWC) at 1.5T. The Fast Acquisition with Spiral Trajectory and T2prep (FAST-T2) pulse sequence originally developed for myelin water fraction (MWF) mapping was modified to obtain fast mapping of T1 and receiver coil sensitivity needed for MWC computation. The accuracy of the proposed T1 mapping was evaluated by comparing with the standard IR-FSE method. Numerical simulations were performed to assess the accuracy and reliability of the proposed MWC mapping. We also compared MWC values obtained with either cerebrospinal fluid (CSF) or an external water tube attached to the subject's head as the water reference. Our results from healthy volunteers show that whole brain MWC mapping is feasible in 7min and provides accurate brain T1 values. Regional brain WC and MWC measurements obtained with the internal CSF-based water standard showed excellent correlation (R>0.99) and negligible bias within narrow limits of agreement compared to those obtained with an external water standard.

  2. Progress in low-resolution ab initio phasing with CrowdPhase

    PubMed Central

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2016-01-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data. PMID:26960132

  3. Progress in low-resolution ab initio phasing with CrowdPhase.

    PubMed

    Jorda, Julien; Sawaya, Michael R; Yeates, Todd O

    2016-03-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.

  4. Automatic Extraction of DTM from Low Resolution Dsm by Twosteps Semi-Global Filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Yanfeng; Zhang, Yongjun; Zhang, Yi; Li, Xin

    2016-06-01

    Automatically extracting DTM from DSM or LiDAR data by distinguishing non-ground points from ground points is an important issue. Many algorithms for this issue are developed, however, most of them are targeted at processing dense LiDAR data, and lack the ability of getting DTM from low resolution DSM. This is caused by the decrease of distinction on elevation variation between steep terrains and surface objects. In this paper, a method called two-steps semi-global filtering (TSGF) is proposed to extract DTM from low resolution DSM. Firstly, the DSM slope map is calculated and smoothed by SGF (semi-global filtering), which is then binarized and used as the mask of flat terrains. Secondly, the DSM is segmented with the restriction of the flat terrains mask. Lastly, each segment is filtered with semi-global algorithm in order to remove non-ground points, which will produce the final DTM. The first SGF is based on global distribution characteristic of large slope, which distinguishes steep terrains and flat terrains. The second SGF is used to filter non-ground points on DSM within flat terrain segments. Therefore, by two steps SGF non-ground points are removed robustly, while shape of steep terrains is kept. Experiments on DSM generated by ZY3 imagery with resolution of 10-30m demonstrate the effectiveness of the proposed method.

  5. Progress in low-resolution ab initio phasing with CrowdPhase

    DOE PAGES

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2016-03-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented.more » Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Lastly, performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.« less

  6. Modeling shape and topology of low-resolution density maps of biological macromolecules.

    PubMed Central

    De-Alarcón, Pedro A; Pascual-Montano, Alberto; Gupta, Amarnath; Carazo, Jose M

    2002-01-01

    In the present work we develop an efficient way of representing the geometry and topology of volumetric datasets of biological structures from medium to low resolution, aiming at storing and querying them in a database framework. We make use of a new vector quantization algorithm to select the points within the macromolecule that best approximate the probability density function of the original volume data. Connectivity among points is obtained with the use of the alpha shapes theory. This novel data representation has a number of interesting characteristics, such as 1) it allows us to automatically segment and quantify a number of important structural features from low-resolution maps, such as cavities and channels, opening the possibility of querying large collections of maps on the basis of these quantitative structural features; 2) it provides a compact representation in terms of size; 3) it contains a subset of three-dimensional points that optimally quantify the densities of medium resolution data; and 4) a general model of the geometry and topology of the macromolecule (as opposite to a spatially unrelated bunch of voxels) is easily obtained by the use of the alpha shapes theory. PMID:12124252

  7. New method of cross-range scaling of low-resolution radar

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenglin; Bao, Zheng

    2000-08-01

    Due to the ordinary low resolution radar can not distinguish the radar target in both range and azimuth. If we apply the technology of inverse synthetic aperture radar (ISAR) to resolve the difference among Doppler frequency of the scatters on the target, we can obtain a fine resolution cross-range image. The cross-range scale depends on both radar wavelength and rotating angle of target relative to radar-line-of-sight (RLOS) during the coherent accumulation. The former is known while the latter is difficult to determine especially in the case of ISAR. But we must investigate the method of cross- range scaling of low-resolution radar, as it is very important to radar target classification and recognition. In this paper, a new approach is proposed which is based on the principle of interferometric inverse synthetic aperture. We can calculate the phase difference of some scatters between two instant cross-range images by two antenna which are placed on one level, adding the range between the two radar and the range of the target, and then absolute cross ranges of some dominant scatters are obtained. We apply the proposed algorithm to the emulational data of two antennae. The processing results show that the proposed method is correct and effective.

  8. Structure Refinement of Protein Low Resolution Models Using the GNEIMO Constrained Dynamics Method

    PubMed Central

    Park, In-Hee; Gangupomu, Vamshi; Wagner, Jeffrey; Jain, Abhinandan; Vaidehi, Nagara-jan

    2012-01-01

    The challenge in protein structure prediction using homology modeling is the lack of reliable methods to refine the low resolution homology models. Unconstrained all-atom molecular dynamics (MD) does not serve well for structure refinement due to its limited conformational search. We have developed and tested the constrained MD method, based on the Generalized Newton-Euler Inverse Mass Operator (GNEIMO) algorithm for protein structure refinement. In this method, the high-frequency degrees of freedom are replaced with hard holonomic constraints and a protein is modeled as a collection of rigid body clusters connected by flexible torsional hinges. This allows larger integration time steps and enhances the conformational search space. In this work, we have demonstrated the use of a constraint free GNEIMO method for protein structure refinement that starts from low-resolution decoy sets derived from homology methods. In the eight proteins with three decoys for each, we observed an improvement of ~2 Å in the RMSD to the known experimental structures of these proteins. The GNEIMO method also showed enrichment in the population density of native-like conformations. In addition, we demonstrated structural refinement using a “Freeze and Thaw” clustering scheme with the GNEIMO framework as a viable tool for enhancing localized conformational search. We have derived a robust protocol based on the GNEIMO replica exchange method for protein structure refinement that can be readily extended to other proteins and possibly applicable for high throughput protein structure refinement. PMID:22260550

  9. Fast fitting to low resolution density maps: elucidating large-scale motions of the ribosome.

    PubMed

    Flores, Samuel Coulbourn

    2014-01-01

    Determining the conformational rearrangements of large macromolecules is challenging experimentally and computationally. Case in point is the ribosome; it has been observed by high-resolution crystallography in several states, but many others are known only from low-resolution methods including cryo-electron microscopy. Combining these data into dynamical trajectories that may aid understanding of its largest-scale conformational changes has so far remained out of reach of computational methods. Most existing methods either model all atoms explicitly, resulting in often prohibitive cost, or use approximations that lose interesting structural and dynamical detail. In this work, I introduce Internal Coordinate Flexible Fitting, which uses full atomic forces and flexibility in limited regions of a model, capturing extensive conformational rearrangements at low cost. I use it to turn multiple low-resolution density maps, crystallographic structures and biochemical information into unified all-atoms trajectories of ribosomal translocation. Internal Coordinate Flexible Fitting is three orders of magnitude faster than the most comparable existing method.

  10. An Adaptive Control Method for Ros-Drill Cellular Microinjector with Low-Resolution Encoder

    PubMed Central

    Zhang, Zhenyu; Olgac, Nejat

    2013-01-01

    A novel control methodology which uses a low-resolution encoder is presented for a cellular microinjection technology called the Ros-Drill (rotationally oscillating drill). It is developed primarily for ICSI (intracytoplasmic sperm injection) operations, with the objective of generating a desired oscillatory motion at the tip of a micro glass pipette. It is an inexpensive setup, which creates high-frequency (higher than 500 Hz) and small-amplitude (around 0.2 deg) rotational oscillations at the tip of an injection pipette. These rotational oscillations enable the pipette to drill into cell membranes with minimum biological damage. Such a motion control procedure presents no particular difficulty when it uses sufficiently precise motion sensors. However, size, costs, and accessibility of technology to the hardware components severely constrain the sensory capabilities. Consequently, the control mission and the trajectory tracking are adversely affected. This paper presents two contributions: (a) a dedicated novel adaptive feedback control method to achieve a satisfactory trajectory tracking capability. We demonstrate via experiments that the tracking of the harmonic rotational motion is achieved with desirable fidelity; (b) some important analytical features and related observations associated with the controlled harmonic motion which is created by the low-resolution feedback control structure. PMID:27006914

  11. Single-Shot Rotational Raman Thermometry for Turbulent Flames Using a Low-Resolution Bandwidth Technique

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2007-01-01

    An alternative optical thermometry technique that utilizes the low-resolution (order 10(exp 1)/cm) pure-rotational spontaneous Raman scattering of air is developed to aid single-shot multiscalar measurements in turbulent combustion studies. Temperature measurements are realized by correlating the measured envelope bandwidth of the pure-rotational manifold of the N2/O2 spectrum with a theoretical prediction of a species-weighted bandwidth. By coupling this thermometry technique with conventional vibrational Raman scattering for species determination, we demonstrate quantitative spatially resolved, single-shot measurements of the temperature and fuel/oxidizer concentrations in a high-pressure turbulent Cf4-air flame. Our technique provides not only an effective means of validating other temperature measurement methods, but also serves as a secondary thermometry technique in cases where the anti-Stokes vibrational N2 Raman signals are too low for a conventional vibrational temperature analysis.

  12. A model-based approach for detection of objects in low resolution passive millimeter wave images

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Tang, Yuan-Liang; Devadiga, Sadashiva

    1993-01-01

    A model-based vision system to assist the pilots in landing maneuvers under restricted visibility conditions is described. The system was designed to analyze image sequences obtained from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good response in a foggy atmosphere, but their spatial resolution is very low. However, additional data such as airport model and approximate position and orientation of aircraft are available. These data are exploited to guide our model-based system to locate objects in the low resolution image and generate warning signals to alert the pilots. Also analytical expressions were derived from the accuracy of the camera position estimate obtained by detecting the position of known objects in the image.

  13. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes.

    PubMed

    Rabaza, O; Jelinek, M; Castro-Tirado, A J; Cunniffe, R; Zeman, J; Hudec, R; Sabau-Graziati, L; Ruedas-Sánchez, J

    2013-11-01

    The COmpact LOw REsolution Spectrograph (COLORES) is a compact and lightweight (13 kg) f/8 imaging spectrograph designed for robotic telescopes, now installed and operating on the TELMA, a rapid-slewing 60 cm telescope of the BOOTES-2 observatory in Málaga (Spain). COLORES is a multi-mode instrument that enables the observer to seamlessly switch between low-dispersion spectroscopy and direct imaging modes during an observation. In this paper, we describe the instrument and its development, from the initial scientific requirements through the optical design process to final configuration with theoretical performance calculations. The mechanical and electronic design is described, methods of calibration are discussed and early laboratory and scientific results are shown.

  14. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes

    SciTech Connect

    Rabaza, O.; Zeman, J.; Hudec, R.; Sabau-Graziati, L.

    2013-11-15

    The COmpact LOw REsolution Spectrograph (COLORES) is a compact and lightweight (13 kg) f/8 imaging spectrograph designed for robotic telescopes, now installed and operating on the TELMA, a rapid-slewing 60 cm telescope of the BOOTES-2 observatory in Málaga (Spain). COLORES is a multi-mode instrument that enables the observer to seamlessly switch between low-dispersion spectroscopy and direct imaging modes during an observation. In this paper, we describe the instrument and its development, from the initial scientific requirements through the optical design process to final configuration with theoretical performance calculations. The mechanical and electronic design is described, methods of calibration are discussed and early laboratory and scientific results are shown.

  15. Model-building strategies for low-resolution X-ray crystallographic data.

    PubMed

    Karmali, Anjum M; Blundell, Tom L; Furnham, Nicholas

    2009-02-01

    The interpretation of low-resolution X-ray crystallographic data proves to be challenging even for the most experienced crystallographer. Ambiguity in the electron-density map makes main-chain tracing and side-chain assignment difficult. However, the number of structures solved at resolutions poorer than 3.5 A is growing rapidly and the structures are often of high biological interest and importance. Here, the challenges faced in electron-density interpretation, the strategies that have been employed to overcome them and developments to automate the process are reviewed. The methods employed in model generation from electron microscopy, which share many of the same challenges in providing high-confidence models of macromolecular structures and assemblies, are also considered.

  16. Distinguishing fissions of ^239Pu and ^235U with low-resolution detectors

    NASA Astrophysics Data System (ADS)

    Swanberg, E.; Norman, E. B.; Prussin, S. G.; Shugart, H.; Browne, E.

    2008-10-01

    When ^239Pu and ^235U undergo thermal neutron-induced fission, both produce significant numbers of β-delayed gamma rays with energies in the several MeV range. Experiments using high energy-resolution germanium detectorsootnotetextR. E. Marrs et al., Nucl. Instr. & Meth. A (in press). have shown that it is possible to distinguish the fission of ^239Pu from that of ^235U. Using differences in the temporal behavior and in the shapes of the gamma-ray energy spectra, we show that these two isotopes can also be differentiated using low-resolution plastic or liquid scintillators. It is likely this method could be extended to homeland security applications, such as screening of cargo containers for ^235U and ^239Pu, using a neutron source and such scintillators.

  17. UBVJHKLM photometry and low-resolution spectroscopy of Nova Delphini 2013 (V339 Del)

    NASA Astrophysics Data System (ADS)

    Burlak, M. A.; Esipov, V. F.; Komissarova, G. V.; Shenavrin, V. I.; Taranova, O. G.; Tatarnikov, A. M.; Tatarnikova, A. A.

    We present UBVJHKLM photometric observations of Nova Delphini 2013 that started several hours before maximum light and lasted for 130 nights. Using the obtained data, we derived several photometric parameters of the Nova: the time of maximum light, brightness at maximum, rate of decline, t2=11 d. This places Nova Del 2013 among fast novae according to the classification introduced by Payne-Gaposchkin. We estimated the interstellar reddening E(B-V) = 0.18 using maps of Galactic extinction and the absolute brightness in maximum light via the MMRD relation that allowed us to determine the distance D≈ 2.7 kpc and height above the Galactic plane z≈ 440 pc. Low-resolution spectroscopy shows that Nova Del 2013 belongs to the Fe II spectral type of novae. The broad emission feature near 6825 Å observed during 2013 August and September may be the Raman-scattered O VI 1032 Å line.

  18. Low-Resolution Near-infrared Stellar Spectra Observed by the Cosmic Infrared Background Experiment (CIBER)

    NASA Astrophysics Data System (ADS)

    Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael

    2017-02-01

    We present near-infrared (0.8–1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.

  19. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  20. Crosswalk localization from low resolution satellite images to assist visually impaired people.

    PubMed

    Ghilardi, Marcelo; Junior, Julio; Manssour, Isabel

    2016-05-25

    In this paper we propose a model for crosswalk detection and localization by using satellite images captured from Google Maps, for the purpose of assisting visually impaired people. The detection is performed by a SVM classifier, which is combined with Google Road Map to speed up computation time and to eliminate some possible false alarms. We assume that a visually impaired person holds a smartphone with an embedded GPS, which is used to initialize the extraction of images from Google Maps, as well as to assist its user by providing audio feedback of the nearest detected crosswalk. This issue brings forward significant interest and it is also very challenging, mainly due to illumination changes, occlusion, image noise and resolution, besides the quality of crosswalks that sometimes are badly painted in many developing countries. Experimental results indicate that the proposed model works well in low resolution images, effectively detecting and localizing crosswalks in simulated scenarios.

  1. Characterizing the CARMENES input catalogue of M dwarfs with low-resolution spectroscopy: metallicity

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Montes, D.; Tabernero, H. M.; Caballero, J. A.; González-Peinado, R.; Cortés-Contreras, M.; Llamas, M.; González-Hernández, J. I.; Klutsch, A.; Morales, J. C.; Mundt, R.; Jeffers, S. V.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Seifert, W.; CARMENES Consortium

    2017-03-01

    In this contribution we summarise our science preparation activities to complete the CARMENES (http://carmenes.caha.es/) input catalogue of M dwarfs using low-resolution spectroscopy to derive spectral indices sensible to spectral type, gravity and metallicity as well as the level of chromospheric activity. We provide here all this information for 181 stars in addition to the 727 stars already published in Alonso-Floriano et al. (2015). We have developed a calibration of the M-dwarfs metallicity (Alonso-Floriano et al. 2016) using physical binaries composed of an F-, G- or K-dwarf primary and an M-dwarf secondary that allows us to provide the metallicity for all these M dwarfs.

  2. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  3. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    PubMed

    Fares, Raafat P; Belmeguenai, Amor; Sanchez, Pascal E; Kouchi, Hayet Y; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  4. Multi-region labeling and segmentation using a graph topology prior and atlas information in brain images.

    PubMed

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2014-12-01

    Medical image segmentation and anatomical structure labeling according to the types of the tissues are important for accurate diagnosis and therapy. In this paper, we propose a novel approach for multi-region labeling and segmentation, which is based on a topological graph prior and the topological information of an atlas, using a modified multi-level set energy minimization method in brain images. We consider a topological graph prior and atlas information to evolve the contour based on a topological relationship presented via a graph relation. This novel method is capable of segmenting adjacent objects with very close gray level in low resolution brain image that would be difficult to segment correctly using standard methods. The topological information of an atlas are transformed to the topological graph of a low resolution (noisy) brain image to obtain region labeling. We explain our algorithm and show the topological graph prior and label transformation techniques to explain how it gives precise multi-region segmentation and labeling. The proposed algorithm is capable of segmenting and labeling different regions in noisy or low resolution MRI brain images of different modalities. We compare our approaches with other state-of-the-art approaches for multi-region labeling and segmentation.

  5. Development and implementation of a standardized pathway in the Pediatric Intensive Care Unit for children with severe traumatic brain injuries.

    PubMed

    Rakes, Lauren; King, Mary; Johnston, Brian; Chesnut, Randall; Grant, Rosemary; Vavilala, Monica

    2016-01-01

    Severe traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children. In 2003 and 2012, the Brain Trauma Foundation established and refined evidence-based guidelines for management of severe TBI in children. A recent multicenter study demonstrated an association between TBI guideline adherence and improved discharge survival. However, this study also showed large variation in adherence to pediatric TBI management at our level 1 pediatric trauma center, where overall adherence to fourteen pediatric intensive care unit (PICU) TBI clinical indicators was 64%. The aim of this quality improvement project was to increase TBI guideline adherence by implementing a standard care pathway for PICU management of children with severe TBI. A multi-disciplinary approach was utilized to develop the Pediatric Guideline Adherence and Outcomes (PEGASUS) care pathway, and iterative PDCA cycles were performed. Over an 18 month period following pathway implementation, overall PICU clinical guideline adherence rate increased to 80%.

  6. Development and implementation of a standardized pathway in the Pediatric Intensive Care Unit for children with severe traumatic brain injuries

    PubMed Central

    Rakes, Lauren; King, Mary; Johnston, Brian; Chesnut, Randall; Grant, Rosemary; Vavilala, Monica

    2016-01-01

    Severe traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children. In 2003 and 2012, the Brain Trauma Foundation established and refined evidence-based guidelines for management of severe TBI in children. A recent multicenter study demonstrated an association between TBI guideline adherence and improved discharge survival. However, this study also showed large variation in adherence to pediatric TBI management at our level 1 pediatric trauma center, where overall adherence to fourteen pediatric intensive care unit (PICU) TBI clinical indicators was 64%. The aim of this quality improvement project was to increase TBI guideline adherence by implementing a standard care pathway for PICU management of children with severe TBI. A multi-disciplinary approach was utilized to develop the Pediatric Guideline Adherence and Outcomes (PEGASUS) care pathway, and iterative PDCA cycles were performed. Over an 18 month period following pathway implementation, overall PICU clinical guideline adherence rate increased to 80%. PMID:27933158

  7. Application of lanthanum halide scintillators and low-resolution dense plastics for modern MC&A needs.

    SciTech Connect

    Chung, K.; Belian, A. P.; McKigney E. A.; Russo, P. A.

    2004-01-01

    Recent developments in lanthanum halide scintillators and low-resolution dense plastics give breadth to gamma-ray methods of nuclear material detection suitable for modern MC and A needs. Demanding goals for modernization of MC and A cover both portable and continuous on-line measurement applications that are quantitative for inventory/verification, and that serve those quantitative measurement needs plant-wide. Improved performance (sensitivity and reoslution) is important for portable applications in which a single detector must measure many types of materials. Budget is a major issue for continuous inventory measurements with hundreds or even thousands of detectors placed throughout a facility. Experimentally proven resolution of under 4% for 662 keV {sup 137}Cs gamma rays measured with large cerium-doped LaCl{sub 3} (lanthanum chloride) crystals set a new performance standard for versatile, efficient portable applications comparable in price to NaI(Tl), which has been dominant for decades. While the relatively high cost of crystals remains an obstacle for the application of very large numbers of lanthanum halide scintillators as distributed networked detectors, scintillators made from high-density plastic offer a different type of solution for these gamma-ray measurements. Compared to lanthanum halide crystals they are inexpensive and can be larger in size. Despite lower resolution than NaI(Tl), a quantitative interpretation of the photopeak response of the low-cost dense plastic detectors can be tailored to the unique mechanical and spectral properties of different materials at each of hundreds of fixed on-line locations in a plant. This paper describes the properties and presents experimental results for the two new spectrometer types that, together, bracket NaI(Tl) detectors in both performance and cost, fulfilling modern demands for portable and continuous on-line accountability of uranium and plutonium.

  8. Novel Modeling of Task vs. Rest Brain State Predictability Using a Dynamic Time Warping Spectrum: Comparisons and Contrasts with Other Standard Measures of Brain Dynamics

    PubMed Central

    Dinov, Martin; Lorenz, Romy; Scott, Gregory; Sharp, David J.; Fagerholm, Erik D.; Leech, Robert

    2016-01-01

    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach. PMID:27242502

  9. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.

    PubMed

    Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A

    2013-08-15

    Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively.

  10. HUNTING THE PARENT OF THE ORPHAN STREAM: IDENTIFYING STREAM MEMBERS FROM LOW-RESOLUTION SPECTROSCOPY

    SciTech Connect

    Casey, Andrew R.; Da Costa, Gary; Keller, Stefan C.; Maunder, Elizabeth

    2013-02-10

    We present candidate K-giant members in the Orphan Stream that have been identified from low-resolution data taken with the AAOmega spectrograph on the Anglo-Australian Telescope. From modest signal-to-noise spectra and independent cuts in photometry, kinematics, gravity, and metallicity we yield self-consistent, highly probable stream members. We find a revised stream distance of 22.5 {+-} 2.0 kpc near the celestial equator and our kinematic signature peaks at V {sub GSR} = 82.1 {+-} 1.4 km s{sup -1}. The observed velocity dispersion of our most probable members is consistent with arising from the velocity uncertainties alone. This indicates that at least along this line of sight, the Orphan Stream is kinematically cold. Our data indicate an overall stream metallicity of [Fe/H] = -1.63 {+-} 0.19 dex which is more metal-rich than previously found and unbiased by spectral type. Furthermore, the significant metallicity dispersion displayed by our most probable members, {sigma}([Fe/H]) = 0.56 dex, suggests that the unidentified Orphan Stream parent is a dSph satellite. We highlight likely members for high-resolution spectroscopic follow-up.

  11. A distributed automatic target recognition system using multiple low resolution sensors

    NASA Astrophysics Data System (ADS)

    Yue, Zhanfeng; Lakshmi Narasimha, Pramod; Topiwala, Pankaj

    2008-04-01

    In this paper, we propose a multi-agent system which uses swarming techniques to perform high accuracy Automatic Target Recognition (ATR) in a distributed manner. The proposed system can co-operatively share the information from low-resolution images of different looks and use this information to perform high accuracy ATR. An advanced, multiple-agent Unmanned Aerial Vehicle (UAV) systems-based approach is proposed which integrates the processing capabilities, combines detection reporting with live video exchange, and swarm behavior modalities that dramatically surpass individual sensor system performance levels. We employ real-time block-based motion analysis and compensation scheme for efficient estimation and correction of camera jitter, global motion of the camera/scene and the effects of atmospheric turbulence. Our optimized Partition Weighted Sum (PWS) approach requires only bitshifts and additions, yet achieves a stunning 16X pixel resolution enhancement, which is moreover parallizable. We develop advanced, adaptive particle-filtering based algorithms to robustly track multiple mobile targets by adaptively changing the appearance model of the selected targets. The collaborative ATR system utilizes the homographies between the sensors induced by the ground plane to overlap the local observation with the received images from other UAVs. The motion of the UAVs distorts estimated homography frame to frame. A robust dynamic homography estimation algorithm is proposed to address this, by using the homography decomposition and the ground plane surface estimation.

  12. On-line content uniformity determination of tablets using low-resolution Raman spectroscopy.

    PubMed

    Wikström, Håkan; Romero-Torres, Saly; Wongweragiat, Sudaratana; Williams, Julie Ann Stuart; Grant, Edward R; Taylor, Lynne S

    2006-06-01

    Analytical techniques for rapid and nondestructive content uniformity determination of pharmaceutical solid dosage forms have been studied for several years in an effort to replace the traditional wet chemistry procedures, which are labor intensive and time consuming. Both Raman spectroscopy and near-infrared spectroscopy have been used for this purpose, and predictability errors are approaching those of the traditional techniques. In this study, a low-resolution Raman spectrometer was utilized to demonstrate the feasibility of both rapid at-line and on-line determination of tablet content uniformity. Additionally, sampling statistics were reviewed in an effort to determine how many tablets should be assayed for specific batch sizes. A good correlation was observed between assay values determined by high-performance liquid chromatography and Raman analysis. Due to rapid acquisition times for the Raman data, it was possible to analyze far more samples than with wet chemistry methods, leading to a better statistical description of variation within the batch. For at-line experiments, the sampling volume was increased by rotating the laser beam during the acquisition period. For the on-line experiments, the sampling volume was increased by sampling from a stream of tablets moving underneath the Raman probe on a conveyor system. Finally, an approach is proposed for monitoring content uniformity immediately following the compaction process. In conclusion, Raman spectroscopy has potential as a rapid, nondestructive technique for at- or on-line determination of tablet content uniformity.

  13. Gold nanoparticle fluorescent molecular beacon for low-resolution DQ2 gene HLA typing.

    PubMed

    Beni, Valerio; Zewdu, Taye; Joda, Hamdi; Katakis, Ioanis; O'Sullivan, Ciara K

    2012-01-01

    Coeliac disease is an inflammation of the small intestine triggered by gluten ingestion. We present a fluorescent genosensor, exploiting molecular-beacon-functionalized gold nanoparticles, for the identification of human leukocyte antigen (HLA) DQ2 gene, a key genetic factor in coeliac disease. Optimization of sensor performance was achieved by tuning the composition of the oligonucleotide monolayer immobilized on the gold nanoparticle and the molecular beacon design. Co-immobilization of the molecular beacon with a spacing oligonucleotide (thiolated ten-thymine oligonucleotide) in the presence of ten-adenine oligonucleotides resulted in a significant increase of the sensor response owing to improved spacing of the molecular beacons and extension of the distance from the nanoparticle surface, which renders them more available for recognition. Further increase in the response (approximately 40%) was shown to be achievable when the recognition sequence of the molecular beacon was incorporated in the stem. Improvement of the specificity of the molecular beacons was also achieved by the incorporation within their recognition sequence of a one-base mismatch. Finally, gold nanoparticles functionalized with two molecular beacons targeting the DQA1*05* and DQB1*02* alleles allowed the low-resolution typing of the DQ2 gene at the nanomolar level.

  14. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  15. LAMOST OBSERVATIONS IN THE KEPLER FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA

    SciTech Connect

    Cat, P. De; Ren, A. B.; Yang, X. H.; Fu, J. N.; Shi, J. R.; Luo, A. L.; Yang, M.; Wang, J. L.; Zhang, H. T.; Shi, H. M.; Zhang, W.; Dong, Subo; Catanzaro, G.; Frasca, A.; Corbally, C. J.; Gray, R. O.; Żakowicz, J. Molenda-; Uytterhoeven, K.; Briquet, M.; Bruntt, H.; and others

    2015-09-15

    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical community.

  16. An EXES Low-Resolution Search for Formaldehyde Gas in the Protoplanetary Disk of DL Tau

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin

    2015-10-01

    We propose to obtain medium resolution mid-infrared spectroscopy at 5.48-5.82 microns wavelength of the Class II Young Stellar Object (YSO) DL Tau using EXES on SOFIA to search for absorption from formaldehyde (H2CO) gas. Low spectral resolution (R~90) Spitzer-IRS spectra of this YSO and a number of T Tauri stars (TTSs) show an unresolved band of absorption of full width half maximum (FWHM) of ~0.6 microns centered around 5.7 microns wavelength. Modeling of the Spitzer- IRS spectra of DL Tau and the other TTSs indicates this band may be due to formaldehyde. Detection of the formaldehyde Q branch, in low resolution (R = 1150) mid-infrared spectra of YSOs would be a significant finding, as the relatively recent mid-infrared Spitzer-IRS spectral studies of TTSs that have found evidence for circumstellar gas in protoplanetary disks have found emission lines from gases such as H2O, OH, CO2, HCN, and C2H2 (e.g., Carr & Najita 2008; Salyk et al 2008; Salyk et al 2009; Carr & Najita 2011; Pontoppidan et al 2011), but they do not find absorption lines, and they do not find H2CO.

  17. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation

    PubMed Central

    Giehm, Lise; Svergun, Dmitri I.; Otzen, Daniel E.; Vestergaard, Bente

    2011-01-01

    One of the major hallmarks of Parkinson disease is aggregation of the protein α-synuclein (αSN). Aggregate cytotoxicity has been linked to an oligomeric species formed at early stages in the aggregation process. Here we follow the fibrillation process of αSN in solution over time using small angle X-ray scattering and resolve four major coexisting species in the fibrillation process, namely monomer, dimer, fibril and an oligomer. By ab initio modeling to fit the data, we obtain a low-resolution structure of a symmetrical and slender αSN fibril in solution, consisting of a repeating unit with a maximal distance of 900 Å and a diameter of ∼180 Å. The same approach shows the oligomer to be shaped like a wreath, with a central channel and with dimensions corresponding to the width of the fibril. The structure, accumulation and decay of this oligomer is consistent with an on-pathway role for the oligomer in the fibrillation process. We propose an oligomer-driven αSN fibril formation mechanism, where the fibril is built from the oligomers. The wreath-shaped structure of the oligomer highlights its potential cytotoxicity by simple membrane permeabilization. This is confirmed by the ability of the purified oligomer to disrupt liposomes. Our results provide the first structural description in solution of a potentially cytotoxic oligomer, which accumulates during the fibrillation of αSN. PMID:21300904

  18. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor.

    PubMed

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-10-24

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.

  19. Topographic Phase Recovery from Stacked ERS Interferometry and a Low-Resolution Digital Elevation Model

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)

    2000-01-01

    A hybrid approach to topographic recovery from ERS interferometry is developed and assessed. Tropospheric/ionospheric artifacts, imprecise orbital information, and layover are key issues in recovering topography and surface deformation from repeat-pass interferometry. Previously, we developed a phase gradient approach to stacking interferograms to reduce these errors and also to reduce the short-wavelength phase noise (see Sandwell arid Price [1998] and Appendix A). Here the method is extended to use a low-resolution digital elevation model to constrain long-wavelength phase errors and an iteration scheme to minimize errors in the computation of phase gradient. We demonstrate the topographic phase recovery on 16-m postings using 25 ERS synthetic aperture radar images from an area of southern California containing 2700 m of relief. On the basis of a comparison with 81 GPS monuments, the ERS derived topography has a typical absolute accuracy of better than 10 m except in areas of layover. The resulting topographic phase enables accurate two-pass, real-time interferometry even in mountainous areas where traditional phase unwrapping schemes fail. As an example, we form a topography-free (127-m perpendicular baseline) interferogram spanning 7.5 years; fringes from two major earthquakes and a seismic slip on the San Andreas Fault are clearly isolated.

  20. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor

    SciTech Connect

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-10-24

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90 A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.

  1. Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock

    PubMed Central

    Zhang, Zhe; Lange, Oliver F.

    2013-01-01

    Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670

  2. Low-resolution density maps from atomic models: how stepping "back" can be a step "forward".

    PubMed

    Belnap, D M; Kumar, A; Folk, J T; Smith, T J; Baker, T S

    1999-01-01

    Atomic-resolution structures have had a tremendous impact on modern biological science. Much useful information also has been gleaned by merging and correlating atomic-resolution structural details with lower-resolution (15-40 A), three-dimensional (3D) reconstructions computed from images recorded with cryo-transmission electron microscopy (cryoTEM) procedures. One way to merge these structures involves reducing the resolution of an atomic model to a level comparable to a cryoTEM reconstruction. A low-resolution density map can be derived from an atomic-resolution structure by retrieving a set of atomic coordinates editing the coordinate file, computing structure factors from the model coordinates, and computing the inverse Fourier transform of the structure factors. This method is a useful tool for structural studies primarily in combination with 3D cryoTEM reconstructions. It has been used to assess the quality of 3D reconstructions, to determine corrections for the phase-contrast transfer function of the transmission electron microscope, to calibrate the dimensions and handedness of 3D reconstructions, to produce difference maps, to model features in macromolecules or macromolecular complexes, and to generate models to initiate model-based determination of particle orientation and origin parameters for 3D reconstruction.

  3. Behavior analysis for elderly care using a network of low-resolution visual sensors

    NASA Astrophysics Data System (ADS)

    Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid

    2016-07-01

    Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.

  4. EEG based brain source localization comparison of sLORETA and eLORETA.

    PubMed

    Jatoi, Munsif Ali; Kamel, Nidal; Malik, Aamir Saeed; Faye, Ibrahima

    2014-12-01

    Human brain generates electromagnetic signals during certain activation inside the brain. The localization of the active sources which are responsible for such activation is termed as brain source localization. This process of source estimation with the help of EEG which is also known as EEG inverse problem is helpful to understand physiological, pathological, mental, functional abnormalities and cognitive behaviour of the brain. This understanding leads for the specification for diagnoses of various brain disorders such as epilepsy and tumour. Different approaches are devised to exactly localize the active sources with minimum localization error, less complexity and more validation which include minimum norm, low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, Multiple Signal classifier, focal under determined system solution etc. This paper discusses and compares the ability of localizing the sources for two low resolution methods i.e., sLORETA and eLORETA respectively. The ERP data with visual stimulus is used for comparison at four different time instants for both methods (sLORETA and eLORETA) and then corresponding activation in terms of scalp map, slice view and cortex map is discussed.

  5. Calibration And Validation Of CryoSat-2 Low Resolution Mode Data

    NASA Astrophysics Data System (ADS)

    Naeije, M.; Schrama, E.; Scharroo, R.

    2011-02-01

    Running ahead of the continuously growing need for operational use of sea level products, TUDelft started off the Radar Altimeter Database System RADS many years ago. This system attends to a global international sea- level service. It supports, on one hand, science, like studies on ocean circulation, El Nio, sea level change, and ice topography, and on the other hand (offshore) operations, like delivery of ocean current information, wind and wave statistics, ice detection and ice classification. At present, the database is used by a large scientific community throughout the world, and is daily maintained and developed by Altimetrics LLC, TUDelft and NOAA. It contains all historic altimeter data, and now has to be up- dated with the data from ESAs ice mission CryoSat-2, which was launched successfully in April 2010. These new data are important to augment the data set and by that to improve the estimates of sea level change and its contributors. For this the data have to be validated and calibrated, necessary corrections added and improved (including modelling of corrections that are not directly available from the CryoSat-2 platform), and the orbit ac- curacy verified and if possible the orbits brushed up. Subsequently, value-added ocean and ice products need to be developed in synergy with all the other satellite altimeter data. During the commissioning phase we primarily looked at the sanity of the available level-1b and level-2 Low Resolution Mode (LRM) data. Here, for the 2011 CryoSat Validation Workshop, we present the results of our calibration and validation of LRM L2 data by internal comparison of CryoSat-2 and external comparison with other satellites. We have established a range bias of 3.77 (measurement range too long) and a timing bias of 8.2ms (measurement range too late).

  6. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery.

    PubMed

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-03-26

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness.

  7. Pedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery

    PubMed Central

    Ma, Yalong; Wu, Xinkai; Yu, Guizhen; Xu, Yongzheng; Wang, Yunpeng

    2016-01-01

    Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-resolution of imagery, platform motion, image instability and the relatively small size of the objects. This research tackles these challenges by proposing a pedestrian detection and tracking system. A two-stage blob-based approach is first developed for pedestrian detection. This approach first extracts pedestrian blobs using the regional gradient feature and geometric constraints filtering and then classifies the detected blobs by using a linear Support Vector Machine (SVM) with a hybrid descriptor, which sophisticatedly combines Histogram of Oriented Gradient (HOG) and Discrete Cosine Transform (DCT) features in order to achieve accurate detection. This research further proposes an approach for pedestrian tracking. This approach employs the feature tracker with the update of detected pedestrian location to track pedestrian objects from the registered videos and extracts the motion trajectory data. The proposed detection and tracking approaches have been evaluated by multiple different datasets, and the results illustrate the effectiveness of the proposed methods. This research is expected to significantly benefit many transportation applications, such as the multimodal traffic performance measure, pedestrian behavior study and pedestrian-vehicle crash analysis. Future work will focus on using fused thermal and visual images to further improve the detection efficiency and effectiveness. PMID:27023564

  8. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  9. A Low-Resolution Spectroscopic Exploration of Puzzling OGLE Variable Stars

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Latour, M.; Angeloni, R.; di Mille, F.; Soszyński, I.; Udalski, A.; Germanà, C.

    2015-03-01

    We present the results of a spectroscopic follow-up of various puzzling variable objects detected in the OGLE-III Galactic disk and bulge fields. The sample includes mainly short-period multi-mode pulsating stars that could not have been unambiguously classified as either δ Sct or β Cep type stars based on photometric data only, also stars with irregular fluctuations mimicking cataclysmic variables and stars with dusty shells, and periodic variables displaying brightenings in their light curves that last for more than half of the period. The obtained low-resolution spectra show that all observed short-period pulsators are of δ Sct type, the stars with irregular fluctuations are young stellar objects, and the objects with regular brightenings are A type stars or very likely Ap stars with strong magnetic field responsible for the presence of bright caps around magnetic poles on their surface. We also took spectra of objects designated OGLE-GD-DSCT-0058 and OGLE-GD-CEP-0013. An estimated effective temperature of 33 000 K in OGLE-GD-DSCT-0058 indicates that it cannot be a δ Sct type variable. This very short-period (0.01962 d) high-amplitude (0.24 mag in the I-band) object remains a mystery. It may represent a new class of variable stars. The spectrum of OGLE-GD-CEP-0013 confirms that this is a classical Cepheid despite a peculiar shape of its light curve. The presented results will help in proper classification of variable objects in the OGLE Galaxy Variability Survey.

  10. RESEARCH PAPER: Automated estimation of stellar fundamental parameters from low resolution spectra: the PLS method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Nan; Luo, A.-Li; Zhao, Yong-Heng

    2009-06-01

    PLS (Partial Least Squares regression) is introduced into an automatic estimation of fundamental stellar spectral parameters. It extracts the most correlative spectral component to the parameters (Teff, log g and [Fe/H]), and sets up a linear regression function from spectra to the corresponding parameters. Considering the properties of stellar spectra and the PLS algorithm, we present a piecewise PLS regression method for estimation of stellar parameters, which is composed of one PLS model for Teff, and seven PLS models for log g and [Fe/H] estimation. Its performance is investigated by large experiments on flux calibrated spectra and continuum normalized spectra at different signal-to-noise ratios (SNRs) and resolutions. The results show that the piecewise PLS method is robust for spectra at the medium resolution of 0.23 nm. For low resolution 0.5 nm and 1 nm spectra, it achieves competitive results at higher SNR. Experiments using ELODIE spectra of 0.23 nm resolution illustrate that our piecewise PLS models trained with MILES spectra are efficient for O ~ G stars: for flux calibrated spectra, the systematic offsets are 3.8%, 0.14 dex, and -0.09 dex for Teff, log g and [Fe/H], with error scatters of 5.2%, 0.44 dex and 0.38 dex, respectively; for continuum normalized spectra, the systematic offsets are 3.8%, 0.12dex, and -0.13dex for Teff, log g and [Fe/H], with error scatters of 5.2%, 0.49 dex and 0.41 dex, respectively. The PLS method is rapid, easy to use and does not rely as strongly on the tightness of a parameter grid of templates to reach high precision as Artificial Neural Networks or minimum distance methods do.

  11. LRS2: the new facility low resolution integral field spectrograph for the Hobby-Eberly telescope

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Hill, Gary J.; Lee, Hanshin; Tuttle, Sarah E.; Vattiat, Brian L.

    2014-07-01

    The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET). Based on the design of the Visible Integral-field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy Experiment (HETDEX), LRS2 provides integral field spectroscopy for a seeing-limited field of 12" x 6". For LRS2, the replicable design of VIRUS has been leveraged to gain broad wavelength coverage from 370 nm to 1.0 μm, spread between two fiber-fed dual- channel spectrographs, each of which can operate as an independent instrument. The blue spectrograph, LRS2-B, covers 370 λ (nm) <= 470 and 460 <= λ (nm) <= 700 at fixed resolving powers of R = λ/δλ ≍ 1900 and 1100, respectively, while the red spectrograph, LRS2-R, covers 650 <= λ (nm) <= 842 and 818 <= λ (nm) <= 1050 with both of its channels having R ≍ 1800. In this paper, we present a detailed description of the instrument's design in which we focus on the departures from the basic VIRUS framework. The primary modifications include the fore-optics that are used to feed the fiber integral field units at unity fill-factor, the cameras' correcting optics and detectors, and the volume phase holographic grisms. We also present a model of the instrument's sensitivity and a description of specific science cases that have driven the design of LRS2, including systematically studying the spatially resolved properties of extended Lyα blobs at 2 < z < 3. LRS2 will provide a powerful spectroscopic follow-up platform for large surveys such as HETDEX.

  12. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D2 and Xe lamps within 200-400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3-5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  13. A concept to standardize raw biosignal transmission for brain-computer interfaces.

    PubMed

    Breitwieser, Christian; Neuper, Christa; Müller-Putz, Gernot R

    2011-01-01

    With this concept we introduced the attempt of a standardized interface called TiA to transmit raw biosignals. TiA is able to deal with multirate and block-oriented data transmission. Data is distinguished by different signal types (e.g., EEG, EOG, NIRS, …), whereby those signals can be acquired at the same time from different acquisition devices. TiA is built as a client-server model. Multiple clients can connect to one server. Information is exchanged via a control- and a separated data connection. Control commands and meta information are transmitted over the control connection. Raw biosignal data is delivered using the data connection in a unidirectional way. For this purpose a standardized handshaking protocol and raw data packet have been developed. Thus, an abstraction layer between hardware devices and data processing was evolved facilitating standardization.

  14. Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.

    PubMed

    Watanabe-Iida, Izumi; Konno, Kohtarou; Akashi, Kaori; Abe, Manabu; Natsume, Rie; Watanabe, Masahiko; Sakimura, Kenji

    2016-01-01

    Kainate-type glutamate receptors (KARs) are tetrameric channels assembled from GluK1-5. GluK1-3 are low-affinity subunits that form homomeric and heteromeric KARs, while GluK4 and GluK5 are high-affinity subunits that require co-assembly with GluK1-3 for functional expression. Although the subunit composition is thought to be highly heterogeneous in the brain, the distribution of KAR subunits at the protein level and their relative abundance in given regions of the brain remain largely unknown. In the present study, we titrated C-terminal antibodies to each KAR subunit using chimeric GluA2-GluK fusion proteins, and measured their relative abundance in the P2 and post-synaptic density (PSD) fractions of the adult mouse hippocampus and cerebellum. Analytical western blots showed that GluK2 and GluK3 were the major KAR subunits, with additional expression of GluK5 in the hippocampus and cerebellum. In both regions, GluK4 was very low and GluK1 was below the detection threshold. The relative amount of low-affinity subunits (GluK2 plus GluK3) was several times higher than that of high-affinity subunits (GluK4 plus GluK5) in both regions. Of note, the highest ratio of high-affinity subunits to low-affinity subunits was found in the hippocampal PSD fraction (0.32), suggesting that heteromeric receptors consisting of high- and low-affinity subunits highly accumulate at hippocampal synapses. In comparison, this ratio was decreased to 0.15 in the cerebellar PSD fraction, suggesting that KARs consisting of low-affinity subunits are more prevalent in the cerebellum. Therefore, low-affinity KAR subunits are predominant in the brain, with distinct subunit combinations between the hippocampus and cerebellum. Kainate receptors, an unconventional member of the iGluR receptor family, have a tetrameric structure assembled from low-affinity (GluK1-3) and high-affinity (GluK4 and GluK5) subunits. We used a simple but novel procedure to measure the relative abundance of both low- and

  15. Development and use of a kinetic FDG-PET dataset simulated from the MNI standard brain

    NASA Astrophysics Data System (ADS)

    Schottlander, David; Guimond, Alexandre; Pan, Xiao-Bo; Brady, Michael; Declerck, Jérôme; Collins, Louis; Evans, Alan C.; Reilhac, Anthonin

    2006-03-01

    Simulated data is an important tool for evaluation of reconstruction and image processing algorithms in the frequent absence of ground truth, in-vivo data from living subjects. This is especially true in the case of dynamic PET studies, in which counting statistics of the volume can vary widely over the time-course of the acquisition. Realistic simulated data-sets which model anatomy and physiology, and make explicit the spatial and temporal image acquisition characteristics, facilitate experimentation with a wide range of the conditions anticipated in practice, and which can severely challenge algorithm performance and reliability. As a first example, we have developed a realistic dynamic FDG-PET data-set using the PET-SORTEO Monte Carlo simulation code and the MNI digital brain phantom. The phantom is a three-dimensional data-set that defines the spatial distribution of different tissues. Time activity curves were calculated using an impulse response function specified by generally accepted rate constants, convolved with an input function obtained by blood sampling, and assigned to grey and white matter tissue regions. We created a dynamic PET study using PET-SORTEO configured to simulate an ECAT Exact HR+. The resulting sinograms were reconstructed with all corrections, using variations of FBP and OSEM. Having constructed the dynamic PET data-sets, we used them to evaluate the performance of intensity-based registration as part of a tool for quantifying hyper/hypo perfusion with particular application to analysis of brain dementia scans, and a study of the stability of kinetic parameter estimation.

  16. Performance of a reconfigured atmospheric general circulation model at low resolution

    NASA Astrophysics Data System (ADS)

    Wen, Xinyu; Zhou, Tianjun; Wang, Shaowu; Wang, Bin; Wan, Hui; Li, Jian

    2007-07-01

    Paleoclimate simulations usually require model runs over a very long time. The fast integration version of a state-of-the-art general circulation model (GCM), which shares the same physical and dynamical processes but with reduced horizontal resolution and increased time step, is usually developed. In this study, we configure a fast version of an atmospheric GCM (AGCM), the Grid Atmospheric Model of IAP/LASG (Institute of Atmospheric Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics), at low resolution (GAMIL-L, hereafter), and compare the simulation results with the NCEP/NCAR reanalysis and other data to examine its performance. GAMIL-L, which is derived from the original GAMIL, is a finite difference AGCM with 72×40 grids in longitude and latitude and 26 vertical levels. To validate the simulated climatology and variability, two runs were achieved. One was a 60-year control run with fixed climatological monthly sea surface temperature (SST) forcing, and the other was a 50-yr (1950 2000) integration with observational time-varying monthly SST forcing. Comparisons between these two cases and the reanalysis, including intra-seasonal and inter-annual variability are also presented. In addition, the differences between GAMIL-L and the original version of GAMIL are also investigated. The results show that GAMIL-L can capture most of the large-scale dynamical features of the atmosphere, especially in the tropics and mid latitudes, although a few deficiencies exist, such as the underestimated Hadley cell and thereby the weak strength of the Asia summer monsoon. However, the simulated mean states over high latitudes, especially over the polar regions, are not acceptable. Apart from dynamics, the thermodynamic features mainly depend upon the physical parameterization schemes. Since the physical package of GAMIL-L is exactly the same as the original high-resolution version of GAMIL, in which the NCAR Community

  17. Standard Guidelines for Publication of Deep Brain Stimulation Studies in Parkinson’s Disease (Guide4DBS-PD)

    PubMed Central

    Vitek, Jerrold L.; Lyons, Kelly E.; Bakay, Roy; Benabid, Alim-Louis; Deuschl, Guenther; Hallett, Mark; Kurlan, Roger; Pancrazio, Joseph J.; Rezai, Ali; Walter, Benjamin L.; Lang, Anthony E.

    2015-01-01

    While the use of deep brain stimulation (DBS) for the treatment of neurological disorders has risen substantially over the last decade, it is often difficult to compare the results from different studies due to the lack of consistent reporting of key study parameters. We present guidelines to standardize the reporting of clinical studies of DBS for Parkinson’s disease (PD). These guidelines provide a minimal set of required data elements to facilitate the interpretation and comparison of results across published clinical studies. The guidelines, summarized in the format of a checklist, may also have utility in the planning of clinical studies of DBS for PD as well as other neurological and psychiatric disorders. PMID:20544809

  18. On the utility of low resolution IUE spectroscopy of the 2800 A Mg II lines as a stellar chromosphere indicator

    SciTech Connect

    Smith, G.H.; Burstein, D.; Fanelli, M.N.; O'Connell, R.W.; Wu, C.C. Arizona State Univ., Tempe Virginia Univ., Charlottesville Computer Sciences Corp., Baltimore, MD )

    1991-02-01

    Low resolution IUE spectroscopy of the 2800-A Mg II h and k lines is shown to provide a useful means for documenting chromospheric activity among relatively young dwarf stars. An index I(Mg II) has been defined which measures the integrated flux in the region 2784-2814 A relative to the flux interpolated from nearby comparison regions. Values of this index have been derived from low resolution IUE spectra for a sample of field dwarfs for which Ca II H and K line indices have been published as part of the Mount Wilson HK program. The large range in chromospheric activity among field dwarfs that is exhibited by the Mount Wilson Ca II S index is found to also be reflected by the lower resolution I(Mg II) index. Using an age calibration of Ca II emission line strengths derived by Barry, it is found that the value of I(Mg II) can be used to distinguish between dwarfs younger and older than 3 Gyr. The low resolution nature of the I(Mg II) index means that it holds potential for use as an age diagnostic for stellar population studies. Among dwarfs of age greater than 3 Gyr there is some evidence that this Mg II index is affected by line blanketing. 27 refs.

  19. Low-resolution detergent tracing in protein crystals using xenon or krypton to enhance X-ray contrast.

    PubMed

    Sauer, Oliver; Roth, Michel; Schirmer, Tilman; Rummel, Gabriele; Kratky, Christoph

    2002-01-01

    Xenon and krypton show different solubilities in polar versus apolar solvents. Therefore, these noble gases should accumulate in apolar regions of protein crystals. Specifically, they should accumulate in lipid and detergent solvent regions within crystals of membrane proteins, which can be used as a basis for contrast-variation experiments to distinguish such apolar solvent regions from the aqueous phase by a low-resolution X-ray diffraction experiment. This possibility was explored with the OmpF porin, one of the general diffusion pores of the Escherichia coli outer membrane. Trigonal crystals were exposed to elevated pressures of the two noble gases (up to 10(7) Pa) for several minutes and subsequently flash-cooled to liquid-nitrogen temperatures. Both rare gases bind to a number of 'specific' sites, which can be classified as 'typical' noble-gas binding sites. Compared with a representative water-soluble protein, they are however much more abundant in OmpF. In addition, a very large number of weakly populated sites are observed which accumulate in the region of the 'detergent belt' for crystals exposed to xenon. After application of a Fourier-filtering protocol, low-resolution images of the detergent belt can be obtained. The resulting maps are similar to maps obtained from low-resolution neutron diffraction experiments on contrast-matched crystals.

  20. Automated Template-based Brain Localization and Extraction for Fetal Brain MRI Reconstruction.

    PubMed

    Tourbier, Sébastien; Velasco-Annis, Clemente; Taimouri, Vahid; Hagmann, Patric; Meuli, Reto; Warfield, Simon K; Cuadra, Meritxell Bach; Gholipour, Ali

    2017-04-10

    Most fetal brain MRI reconstruction algorithms rely only on brain tissue-relevant voxels of low-resolution (LR) images to enhance the quality of inter-slice motion correction and image reconstruction. Consequently the fetal brain needs to be localized and extracted as a first step, which is usually a laborious and time consuming manual or semi-automatic task. We have proposed in this work to use age-matched template images as prior knowledge to automatize brain localization and extraction. This has been achieved through a novel automatic brain localization and extraction method based on robust template-to-slice block matching and deformable slice-to-template registration. Our template-based approach has also enabled the reconstruction of fetal brain images in standard radiological anatomical planes in a common coordinate space. We have integrated this approach into our new reconstruction pipeline that involves intensity normalization, inter-slice motion correction, and super-resolution (SR) reconstruction. To this end we have adopted a novel approach based on projection of every slice of the LR brain masks into the template space using a fusion strategy. This has enabled the refinement of brain masks in the LR images at each motion correction iteration. The overall brain localization and extraction algorithm has shown to produce brain masks that are very close to manually drawn brain masks, showing an average Dice overlap measure of 94.5%. We have also demonstrated that adopting a slice-to-template registration and propagation of the brain mask slice-by-slice leads to a significant improvement in brain extraction performance compared to global rigid brain extraction and consequently in the quality of the final reconstructed images. Ratings performed by two expert observers show that the proposed pipeline can achieve similar reconstruction quality to reference reconstruction based on manual slice-by-slice brain extraction. The proposed brain mask refinement and

  1. Cerebral Blood Flow Estimation Using Classification Techniques On A Sequence Of Low Resolution Tomographic Evolutive Images

    NASA Astrophysics Data System (ADS)

    Chan, Marie; Aguilar-Martin, Joseph; Boulanouar, Kader; Celsis, Pierre; Marc-Vergnes, Jean P.

    1989-05-01

    In order to improve the performance of the instrumental variable method (IVM) in calculating regional cerebral blood flow (rCBF) using Single Photon Emission Computed Tomography (SPELT), and inert diffusible tracer such as 133Xe, we use Learning Algorithms for Multivariate Data Analysis (LAMDA) to classify the voxels of the images of local concentrations in the brain. The LAMDA method correctly distinguished between extra and intra-cerebral voxels. However the topography of the intra-cerebral classes did not match the Regions Of Interest (ROI) defined on an anatomical basis. Provided that all the intra-cerebral classes contaminated by bone and air passage artefact were rejected, the results given by the NM are in good agreement with those derived by the bolus distribution principle. We thus conclude that LAMDA methods can improve the reliability of images of CBF estimates.

  2. Standard Operating Procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing?

    PubMed

    Ravid, Rivka

    2008-06-01

    The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP's which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, "financial gain" and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.

  3. Standard Operating Procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing?

    PubMed

    Ravid, Rivka

    2008-09-01

    The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP's which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, "financial gain" and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.

  4. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    PubMed Central

    2010-01-01

    Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens. PMID:20550721

  5. Temperatures and metallicities of M giants in the Galactic bulge from low-resolution K-band spectra

    NASA Astrophysics Data System (ADS)

    Schultheis, M.; Ryde, N.; Nandakumar, G.

    2016-05-01

    Context. With the existing and upcoming large multifibre low-resolution spectrographs, the question arises of how precise stellar parameters such as Teff and [Fe/H] can be obtained from low-resolution K-band spectra with respect to traditional photometric temperature measurements. Until now, most of the effective temperatures in Galactic bulge studies come directly from photometric techniques. Uncertainties in interstellar reddening and in the assumed extinction law could lead to large systematic errors (>200 K). Aims: We obtain and calibrate the relation between Teff and the 12CO first overtone bands for M giants in the Galactic bulge covering a wide range in metallicity. Methods: We used low-resolution spectra for 20 M giants with well-studied parameters from photometric measurements covering the temperature range 3200 low-resolution spectra provide a powerful tool for obtaining effective temperatures of M giants. We show that this relation does not depend on the metallicity of the star within the investigated range and is also applicable to different spectral resolutions making this relation in general useful for deriving effective temperatures in high-extinction regions where photometric temperatures

  6. An innovative method for extracting isotopic information from low-resolution gamma spectra

    SciTech Connect

    Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.

    1998-12-01

    A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, {sup 137}Cs, and {sup 133}Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied.

  7. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans.

    PubMed

    Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu

    2016-12-01

    Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis.

  8. Progress in low-resolution ab initio phasing with CrowdPhase

    SciTech Connect

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2016-03-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Lastly, performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data.

  9. Potential radionuclide emissions from stacks on the Hanford site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscopy

    SciTech Connect

    Barnett, J.M.

    1995-02-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes}, stacks that have the potential to emit {ge} 1 {mu}Sv y{sup {minus}1} (0.1 mrem y{sup {minus}1}) to the maximally exposed individual are considered {open_quotes}major{close_quotes} and must meet the continuous monitoring requirements. After the method was tested and verified, the U.S. Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method, and 15 were assessed. (The method could not be applied at seven stacks because of excessive background radiation or because no gamma emitting particles appear in the emission stream.) The most significant result from this study was the redesignation of the T Plant main stack. The stack was assessed as being {open_quotes}minor{close_quotes}, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  10. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-12-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility™) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution

  11. The coelacanth rostral organ is a unique low-resolution electro-detector that facilitates the feeding strike

    PubMed Central

    Berquist, Rachel M.; Galinsky, Vitaly L.; Kajiura, Stephen M.; Frank, Lawrence R.

    2015-01-01

    The cartilaginous and non-neopterygian bony fishes have an electric sense typically comprised of hundreds or thousands of sensory canals distributed in broad clusters over the head. This morphology facilitates neural encoding of local electric field intensity, orientation, and polarity, used for determining the position of nearby prey. The coelacanth rostral organ electric sense, however, is unique in having only three paired sensory canals with distribution restricted to the dorsal snout, raising questions about its function. To address this, we employed magnetic resonance imaging methods to map electrosensory canal morphology in the extant coelacanth, Latimeria chalumnae, and a simple dipole ‘rabbit ears' antennae model with toroidal gain function to approximate their directional sensitivity. This identified a unique focal region of electrosensitivity directly in front of the mouth, and is the first evidence of a low-resolution electro-detector that solely facilitates prey ingestion. PMID:25758410

  12. A model-based approach for detection of objects in low resolution passive-millimeter wave images

    NASA Technical Reports Server (NTRS)

    Tang, Yuan-Liang; Devadiga, Sadashiva; Kasturi, Rangachar; Harris, Randall L., Sr.

    1993-01-01

    We describe a model-based vision system to assist pilots in landing maneuvers under restricted visibility conditions. The system was designed to analyze image sequences obtained from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good response in a foggy atmosphere; but, their spatial resolution is very low. However, additional data such as airport model and approximate position and orientation of aircraft are available. We exploit these data to guide our model-based system to locate objects in the low resolution image and generate warning signals to alert the pilots. We also derive analytical expressions for the accuracy of the camera position estimate obtained by detecting the position of known objects in the image.

  13. The coelacanth rostral organ is a unique low-resolution electro-detector that facilitates the feeding strike.

    PubMed

    Berquist, Rachel M; Galinsky, Vitaly L; Kajiura, Stephen M; Frank, Lawrence R

    2015-03-11

    The cartilaginous and non-neopterygian bony fishes have an electric sense typically comprised of hundreds or thousands of sensory canals distributed in broad clusters over the head. This morphology facilitates neural encoding of local electric field intensity, orientation, and polarity, used for determining the position of nearby prey. The coelacanth rostral organ electric sense, however, is unique in having only three paired sensory canals with distribution restricted to the dorsal snout, raising questions about its function. To address this, we employed magnetic resonance imaging methods to map electrosensory canal morphology in the extant coelacanth, Latimeria chalumnae, and a simple dipole 'rabbit ears' antennae model with toroidal gain function to approximate their directional sensitivity. This identified a unique focal region of electrosensitivity directly in front of the mouth, and is the first evidence of a low-resolution electro-detector that solely facilitates prey ingestion.

  14. Low-Resolution Spectroscopic Study of the Intriguing Globular Cluster NGC 2808: Chemical Abundance Patterns among Subpopulations

    NASA Astrophysics Data System (ADS)

    Hong, Seungsoo; Lim, Dongwook; Han, Sang-Il; Lee, Young-Wook

    2017-01-01

    The presence of multiple stellar populations is now well established in most globular clusters (GCs) in the Milky Way. The origin of this phenomenon, however, is yet to be understood. In this respect, the study of NGC 2808, an intriguing GC which hosts subpopulations with extreme helium and light-element abundances, would help to understand this phenomenon. In order to investigate chemical abundance patterns among different subpopulations, we have performed low-resolution spectroscopy for the red-giant-branch stars and measured CN & CH bands, and Ca line strength. We have identified at least three subpopulations from the CN band strength. The CN band strength appears to be more efficient than Na abundance in separating earlier populations. We also find that this GC shows the CN-CH anti-correlation following the general trend of most GCs which are less affected by supernovae enrichment.

  15. The mid-infrared instrument for the James Webb Space Telescope: performance and operation of the Low-Resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Scheithauer, Silvia; Bouchet, Patrice; Amiaux, Jerome; Azzollini, Ruymán.; Bouwman, Jeroen; Chen, Christine; Dubreuil, Didier; Fischer, Sebastian; Fox, Ori D.; Glasse, Alistair; Gordon, Karl; Greene, Tom; Hines, Dean C.; Lagage, Pierre-Olivier; Lahuis, Fred; Ronayette, Samuel; Wright, David; Wright, Gillian S.

    2016-07-01

    We describe here the performance and operational concept for the Low Resolution Spectrometer (LRS) of the mid-infrared instrument (MIRI) for the James Webb Space Telescope. The LRS will provide R˜100 slit and slitless spectroscopy from 5 to 12 micron, and its design is optimised for observations of compact sources, such as exoplanet host stars. We provide here an overview of the design of the LRS, and its performance as measured during extensive test campaigns, examining in particular the delivered image quality, dispersion, and resolving power, as well as spectrophotometric performance. The instrument also includes a slitless spectroscopy mode, which is optimally suited for transit spectroscopy of exoplanet atmospheres. We provide an overview of the operational procedures and the differences ahead of the JWST launch in 2018.

  16. The low-resolution imaging spectrograph red channel CCD upgrade: fully depleted, high-resistivity CCDs for Keck

    NASA Astrophysics Data System (ADS)

    Rockosi, C.; Stover, R.; Kibrick, R.; Lockwood, C.; Peck, M.; Cowley, D.; Bolte, M.; Adkins, S.; Alcott, B.; Allen, S. L.; Brown, B.; Cabak, G.; Deich, W.,; Hilyard, D.,; Kassis, M.,; Lanclos, K.,; Lewis, J.,; Pfister, T.,; Phillips, A.,; Robinson, L.,; Saylor, M.,; Thompson, M.,; Ward, J.,; Wei, M.,; Wright, C.,

    2010-07-01

    A mosaic of two 2k x 4k fully depleted, high resistivity CCD detectors was installed in the red channel of the Low Resolution Imaging Spectrograph for the Keck-I Telescope in June, 2009 replacing a monolithic Tektronix/SITe 2k x 2k CCD. These CCDs were fabricated at Lawrence Berkeley National Laboratory (LBNL) and packaged and characterized by UCO/Lick Observatory. Major goals of the detector upgrade were increased throughput and reduced interference fringing at wavelengths beyond 800 nm, as well as improvements in the maintainability and serviceability of the instrument. We report on the main features of the design, the results of optimizing detector performance during integration and testing, as well as the throughput, sensitivity and performance of the instrument as characterized during commissioning.

  17. LORES: Low resolution shape program for the calculation of small angle scattering profiles for biological macromolecules in solution

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.

    2005-08-01

    A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library

  18. Low resolution solution structure of HAMLET and the importance of its alpha-domains in tumoricidal activity.

    PubMed

    Ho, C S James; Rydstrom, Anna; Manimekalai, Malathy Sony Subramanian; Svanborg, Catharina; Grüber, Gerhard

    2012-01-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells.

  19. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro.

    PubMed

    Paolinelli, Roberta; Corada, Monica; Ferrarini, Luca; Devraj, Kavi; Artus, Cédric; Czupalla, Cathrin J; Rudini, Noemi; Maddaluno, Luigi; Papa, Eleanna; Engelhardt, Britta; Couraud, Pierre Olivier; Liebner, Stefan; Dejana, Elisabetta

    2013-01-01

    Reproducing the characteristics and the functional responses of the blood-brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.

  20. Wnt Activation of Immortalized Brain Endothelial Cells as a Tool for Generating a Standardized Model of the Blood Brain Barrier In Vitro

    PubMed Central

    Paolinelli, Roberta; Artus, Cédric; Czupalla, Cathrin J.; Rudini, Noemi; Maddaluno, Luigi; Papa, Eleanna; Engelhardt, Britta; Couraud, Pierre Olivier; Liebner, Stefan; Dejana, Elisabetta

    2013-01-01

    Reproducing the characteristics and the functional responses of the blood–brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation. PMID:23940549

  1. The scientifically substantiated art of teaching: A study in the development of standards in the new academic field of neuroeducation (mind, brain, and education science)

    NASA Astrophysics Data System (ADS)

    Tokuhama-Espinosa, Tracey Noel

    Concepts from neuroeducation, commonly referred in the popular press as "brain-based learning," have been applied indiscreetly and inconsistently to classroom teaching practices for many years. While standards exist in neurology, psychology and pedagogy, there are no agreed upon standards in their intersection, neuroeducation, and a formal bridge linking the fields is missing. This study used grounded theory development to determine the parameters of the emerging neuroeducational field based on a meta-analysis of the literature over the past 30 years, which included over 2,200 documents. This research results in a new model for neuroeducation. The design of the new model was followed by a Delphi survey of 20 international experts from six different countries that further refined the model contents over several months of reflection. Finally, the revised model was compared to existing information sources, including popular press, peer review journals, academic publications, teacher training textbooks and the Internet, to determine to what extent standards in neuroeducation are met in the current literature. This study determined that standards in the emerging field, now labeled Mind, Brain, and Education: The Science of Teaching and Learning after the Delphi rounds, are the union of standards in the parent fields of neuroscience, psychology, and education. Additionally, the Delphi expert panel agreed upon the goals of the new discipline, its history, the thought leaders, and a model for judging quality information. The study culminated in a new model of the academic discipline of Mind, Brain, and Education science, which explains the tenets, principles and instructional guidelines supported by the meta-analysis of the literature and the Delphi response.

  2. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations

    NASA Astrophysics Data System (ADS)

    Peng, Junhui; Zhang, Zhiyong

    2016-07-01

    Various low-resolution experimental techniques have gained more and more popularity in obtaining structural information of large biomolecules. In order to interpret the low-resolution structural data properly, one may need to construct an atomic model of the biomolecule by fitting the data using computer simulations. Here we develop, to our knowledge, a new computational tool for such integrative modeling by taking the advantage of an efficient sampling technique called parallel cascade selection (PaCS) simulation. For given low-resolution structural data, this PaCS-Fit method converts it into a scoring function. After an initial simulation starting from a known structure of the biomolecule, the scoring function is used to pick conformations for next cycle of multiple independent simulations. By this iterative screening-after-sampling strategy, the biomolecule may be driven towards a conformation that fits well with the low-resolution data. Our method has been validated using three proteins with small-angle X-ray scattering data and two proteins with electron microscopy data. In all benchmark tests, high-quality atomic models, with generally 1-3 Å from the target structures, are obtained. Since our tool does not need to add any biasing potential in the simulations to deform the structure, any type of low-resolution data can be implemented conveniently.

  3. FOLD-EM: automated fold recognition in medium- and low-resolution (4–15 Å) electron density maps

    PubMed Central

    Saha, Mitul; Morais, Marc C.

    2012-01-01

    Motivation: Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a ‘mosaic’ backbone model of the assembly that could aid map interpretation and illuminate biological function. Result: Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM—a computational tool that can identify folded macromolecular domains in medium to low resolution (4–15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies. Availability and implementation: FOLD-EM is available at: http

  4. Special Education Teachers' Knowledge and Use of Brain-Based Teaching, Common Core State Standards, Formative Feedback Practices and Instructional Efficacy for the Diverse Learning Needs of Students in High and Low Proficiency Groups

    ERIC Educational Resources Information Center

    Walker-Thompson, Malasia

    2014-01-01

    This study examined special education teachers' knowledge and use of: brain-based teaching strategies, Common Core State Standards, formative feedback, and instructional efficacy for diverse students. The study identified the differences amongst special education teachers' responses on the dimensions of brain-based teaching strategies, Common Core…

  5. Using power spectrum analysis to evaluate (18)O-water labeling data acquired from low resolution mass spectrometers.

    PubMed

    Sadygov, Rovshan G; Zhao, Yingxin; Haidacher, Sigmund J; Starkey, Jonathan M; Tilton, Ronald G; Denner, Larry

    2010-08-06

    We describe a method for ratio estimations in (18)O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allow commonly used ion trap mass spectrometers to attain isotopic resolution, which makes them amenable to use in labeling schemes such as (18)O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach that may be uniquely suited to these data types. The software implementation uses a power spectrum to remove high-frequency noise and band-filter contributions from coeluting species of differing charge states. From the elemental composition of a peptide sequence, we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer.

  6. A method of discriminating transuranic radionuclides from radon progeny using low-resolution alpha spectroscopy and curve-fitting techniques.

    PubMed

    Konzen, Kevin; Brey, Richard

    2012-05-01

    ²²²Rn (radon) and ²²⁰Rn (thoron) progeny are known to interfere with determining the presence of long-lived transuranic radionuclides, such as plutonium and americium, and require from several hours up to several days for conclusive results. Methods are proposed that should expedite the analysis of air samples for determining the amount of transuranic radionuclides present using low-resolution alpha spectroscopy systems available from typical alpha continuous air monitors (CAMs) with multi-channel analyzer (MCA) capabilities. An alpha spectra simulation program was developed in Microsoft Excel visual basic that employed the use of Monte Carlo numerical methods and serial-decay differential equations that resembled actual spectra. Transuranic radionuclides were able to be quantified with statistical certainty by applying peak fitting equations using the method of least squares. Initial favorable results were achieved when samples containing radon progeny were decayed 15 to 30 min, and samples containing both radon and thoron progeny were decayed at least 60 min. The effort indicates that timely decisions can be made when determining transuranic activity using available alpha CAMs with alpha spectroscopy capabilities for counting retrospective air samples if accompanied by analyses that consider the characteristics of serial decay.

  7. LOW-RESOLUTION SPECTROSCOPY FOR THE GLOBULAR CLUSTERS WITH SIGNS OF SUPERNOVA ENRICHMENT: M22, NGC 1851, AND NGC 288

    SciTech Connect

    Lim, Dongwook; Han, Sang-Il; Lee, Young-Wook; Roh, Dong-Goo; Sohn, Young-Jong; Chun, Sang-Hyun; Lee, Jae-Woo; Johnson, Christian I.

    2015-01-01

    There is increasing evidence for the presence of multiple red giant branches (RGBs) in the color-magnitude diagrams of massive globular clusters (GCs). In order to investigate the origin of this split on the RGB, we have performed new narrow-band Ca photometry and low-resolution spectroscopy for M22, NGC 1851, and NGC 288. We find significant differences (more than 4σ) in calcium abundance from the spectroscopic HK' index for M22 and NGC 1851. We also find more than 8σ differences in CN-band strength between the Ca-strong and Ca-weak subpopulations for these GCs. For NGC 288, however, a large difference is detected only in the CN strength. The calcium abundances of RGB stars in this GC are identical to within the errors. This is consistent with the conclusion from our new Ca photometry where the RGB splits are confirmed in M22 and NGC 1851, but not in NGC 288. We also find interesting differences in the CN-CH correlations among these GCs. While CN and CH are anti-correlated in NGC 288, they show a positive correlation in M22. NGC 1851, however, shows no difference in CH between the two groups of stars with different CN strengths. We suggest that all of these systematic differences would be best explained by how strongly Type II supernovae enrichment has contributed to the chemical evolution of these GCs.

  8. Gender classification in low-resolution surveillance video: in-depth comparison of random forests and SVMs

    NASA Astrophysics Data System (ADS)

    Geelen, Christopher D.; Wijnhoven, Rob G. J.; Dubbelman, Gijs; de With, Peter H. N.

    2015-03-01

    This research considers gender classification in surveillance environments, typically involving low-resolution images and a large amount of viewpoint variations and occlusions. Gender classification is inherently difficult due to the large intra-class variation and interclass correlation. We have developed a gender classification system, which is successfully evaluated on two novel datasets, which realistically consider the above conditions, typical for surveillance. The system reaches a mean accuracy of up to 90% and approaches our human baseline of 92.6%, proving a high-quality gender classification system. We also present an in-depth discussion of the fundamental differences between SVM and RF classifiers. We conclude that balancing the degree of randomization in any classifier is required for the highest classification accuracy. For our problem, an RF-SVM hybrid classifier exploiting the combination of HSV and LBP features results in the highest classification accuracy of 89.9 0.2%, while classification computation time is negligible compared to the detection time of pedestrians.

  9. Semi-automated 3D segmentation of major tracts in the rat brain: comparing DTI with standard histological methods.

    PubMed

    Gyengesi, Erika; Calabrese, Evan; Sherrier, Matthew C; Johnson, G Allan; Paxinos, George; Watson, Charles

    2014-03-01

    Researchers working with rodent models of neurological disease often require an accurate map of the anatomical organization of the white matter of the rodent brain. With the increasing popularity of small animal MRI techniques, including diffusion tensor imaging (DTI), there is considerable interest in rapid segmentation methods of neurological structures for quantitative comparisons. DTI-derived tractography allows simple and rapid segmentation of major white matter tracts, but the anatomic accuracy of these computer-generated fibers is open to question and has not been rigorously evaluated in the rat brain. In this study, we examine the anatomic accuracy of tractography-based segmentation in the adult rat brain. We analysed 12 major white matter pathways using semi-automated tractography-based segmentation alongside manual segmentation of Gallyas silver-stained histology sections. We applied four fiber-tracking algorithms to the DTI data-two integration methods and two deflection methods. In many cases, tractography-based segmentation closely matched histology-based segmentation; however different tractography algorithms produced dramatically different results. Results suggest that certain white matter pathways are more amenable to tractography-based segmentation than others. We believe that these data will help researchers decide whether it is appropriate to use tractography-based segmentation of white matter structures for quantitative DTI-based analysis of neurologic disease models.

  10. Analysis of human blood serum and human brain samples by total reflection X-ray fluorescence spectrometry applying Compton peak standardization

    NASA Astrophysics Data System (ADS)

    Marcó, L. M.; Greaves, E. D.; Alvarado, J.

    1999-10-01

    The method of using the Compton peak as internal standard in total reflection X-ray fluorescence (TXRF) determination is established for trace element determination of Fe, Cu, Zn, Se and Pt in human serum and of Cu and Zn in homogenized brain samples. A new method of spectrometer sensitivity calibration using spiked matrices with known amounts of trace elements is tested against established methods of matrix matching as well as internal element addition. The analytical results with the proposed procedure are compared to a certified international standard and to values with Atomic Absorption Spectrometry (AAS) obtaining analytical results of comparable accuracy and precision. The method is adequate for routine clinical analysis as it has the advantages of requiring very small amounts of material and simple preparations, which avoids the chemical digestion stage.

  11. Low-resolution mass spectrometric relative response factors (RRFs) and relative retention times (RRTs) on two common gas chromatographic stationary phases for 87 polychlorinated dibenzofurans.

    PubMed

    Lundgren, Kjell; Rappe, Christoffer; Tysklind, Mats

    2004-05-01

    All 87 tetra- to octa-chlorinated dibenzofurans (PCDFs) were analysed using high-resolution gas chromatography/low-resolution mass spectrometry (HRGC-LRMS). The mass spectrometer was operated in two different modes: electron ionisation (EI), and negative ion chemical ionisation (NCI) with methane as a reagent gas. Baseline separation and identification of all PCDF congeners was carried out using one non-polar (DB-5) and one polar (RT-2330) capillary GC column. Relative retention times (RRTs) on both columns, and relative response factors (RRFs) in both EI- and NCI-modes, were calculated for all 87 of the PCDFs. Comparison of the EI-RRFs and NCI-RRFs showed that the mass spectrometric NCI-responses varied to a higher degree than the EI-responses. The level of NCI-response was dependent on the substitution positions of the chlorine atoms on the dibenzofuran molecule skeleton. The ratio between the highest and lowest RRFs was 26 in the NCI-mode, but only 2.3 in the EI-mode. Thus, quantification of tetra- to octa-CDFs in environmental samples using the NCI-mode will result in incorrect estimates of PCDF concentrations unless 13C-labelled internal standards are used for each congener, or RRFs are taken into consideration. In contrast, the quantification of PCDFs in the EI-mode using a single internal 13C-labelled PCDF standard for each PCDF homologue is accurate according to the findings in this investigation. A flue gas sample from a municipal solid waste incinerator (MSWI) analysed in the NCI-mode was quantified with and without NCI-RRFs. When using NCI-RRFs the reported concentration of SigmaPCDFs in the flue gas sample increased by 40%. Furthermore, TCDF analysis was compared using two mass spectrometers (a VG 12-250 and a Finnigan 4500) operating in EI-mode. These quadrupole instruments performed equally well, giving similar EI-RRFs for the tested compounds.

  12. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

    2013-01-01

    Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

  13. B fields in OB stars (BOB): Low-resolution FORS2 spectropolarimetry of the first sample of 50 massive stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Castro, N.; Schöller, M.; Hubrig, S.; Langer, N.; Morel, T.; Briquet, M.; Herrero, A.; Przybilla, N.; Sana, H.; Schneider, F. R. N.; de Koter, A.; BOB Collaboration

    2015-10-01

    Within the context of the collaboration "B fields in OB stars" (BOB), we used the FORS2 low-resolution spectropolarimeter to search for a magnetic field in 50 massive stars, including two reference magnetic massive stars. Because of the many controversies of magnetic field detections obtained with the FORS instruments, we derived the magnetic field values with two completely independent reduction and analysis pipelines. We compare and discuss the results obtained from the two pipelines. We obtained a general good agreement, indicating that most of the discrepancies on magnetic field detections reported in the literature are caused by the interpretation of the significance of the results (i.e., 3-4σ detections considered as genuine, or not), instead of by significant differences in the derived magnetic field values. By combining our results with past FORS1 measurements of HD 46328, we improve the estimate of the stellar rotation period, obtaining P = 2.17950 ± 0.00009 days. For HD 125823, our FORS2 measurements do not fit the available magnetic field model, based on magnetic field values obtained 30 years ago. We repeatedly detect a magnetic field for the O9.7V star HD 54879, the HD 164492C massive binary, and the He-rich star CPD -57 3509. We obtain a magnetic field detection rate of 6 ± 4%, while by considering only the apparently slow rotators we derive a detection rate of 8 ± 5%, both comparable with what was previously reported by other similar surveys. We are left with the intriguing result that, although the large majority of magnetic massive stars is rotating slowly, our detection rate is not a strong function of the stellar rotational velocity. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 191.D-0255(A, C).

  14. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm.

    PubMed Central

    Chacón, P; Morán, F; Díaz, J F; Pantos, E; Andreu, J M

    1998-01-01

    Small-angle x-ray solution scattering (SAXS) is analyzed with a new method to retrieve convergent model structures that fit the scattering profiles. An arbitrary hexagonal packing of several hundred beads containing the problem object is defined. Instead of attempting to compute the Debye formula for all of the possible mass distributions, a genetic algorithm is employed that efficiently searches the configurational space and evolves best-fit bead models. Models from different runs of the algorithm have similar or identical structures. The modeling resolution is increased by reducing the bead radius together with the search space in successive cycles of refinement. The method has been tested with protein SAXS (0.001 < S < 0.06 A(-1)) calculated from x-ray crystal structures, adding noise to the profiles. The models obtained closely approach the volumes and radii of gyration of the known structures, and faithfully reproduce the dimensions and shape of each of them. This includes finding the active site cavity of lysozyme, the bilobed structure of gamma-crystallin, two domains connected by a stalk in betab2-crystallin, and the horseshoe shape of pancreatic ribonuclease inhibitor. The low-resolution solution structure of lysozyme has been directly modeled from its experimental SAXS profile (0.003 < S < 0.03 A(-1)). The model describes lysozyme size and shape to the resolution of the measurement. The method may be applied to other proteins, to the analysis of domain movements, to the comparison of solution and crystal structures, as well as to large macromolecular assemblies. PMID:9635731

  15. Characterization and Low-Resolution Structure of an Extremely Thermostable Esterase of Potential Biotechnological Interest from Pyrococcus furiosus.

    PubMed

    Mandelli, F; Gonçalves, T A; Gandin, C A; Oliveira, A C P; Oliveira Neto, M; Squina, F M

    2016-11-01

    Enzymes isolated from extremophiles often exhibit superior performance and potential industrial applications. There are several advantages performing biocatalysis at elevated temperatures, including enhanced reaction rates, increased substrate solubility and decreased risks of contamination. Furthermore, thermophilic enzymes usually exhibit high resistance against many organic solvents and detergents, and are also more resistant to proteolytic attack. In this study, we subcloned and characterized an esterase from the hyperthermophilic archaeon Pyrococcus furiosus (Pf_Est) that exhibits optimal activity around 80 °C using naphthol-derived substrates and p-nitrophenyl palmitate (pNPP). According to the circular dichroism spectra, the secondary structure of P. furiosus esterase, which is predominantly formed by a β-sheet structure, is very stable, even after incubation at 120°C. We performed SAXS to determine the low-resolution structure of Pf_Est, which is monomeric in solution at 80 °C and has a molecular weight of 28 kDa. The Km and V max values for this esterase acting on pNPP were 0.53 mmol/L and 6.5 × 10(-3) U, respectively. Pf_Est was most active in the immiscible solvents and retained more than 50 % in miscible solvents. Moreover, Pf_Est possesses transesterification capacity, presenting better results when isobutanol was used as an acyl acceptor (2.69 ± 0.14 × 10(-2) μmol/min mg) and the highest hydrolytic activity toward olive oil among different types of oils testes in this study. Collectively, these biophysical and catalytic properties are of interest for several biotechnological applications that require harsh conditions, including high temperature and the presence of organic solvents.

  16. Use of a shielded low resolution gamma spectrometer for segregation of free release and low level waste

    SciTech Connect

    Wilkins, C.G.; Alvarez, E.; Cocks, J.; Davison, L.; Mattinson, A.

    2007-07-01

    In the UK, low level radioactive waste (LLW) is sent to the national Low Level Waste Repository (LLWR) at Drigg in Cumbria. Strict rules limit the specific activity of waste that is sent to the LLW Repository and waste producers and consignors have to demonstrate that the waste they send to the repository meets its conditions for acceptance. However, the limited capacity of the Low Level Waste Repository means that it is just as important for waste consignees to ensure that inactive 'free release' or 'exempt' waste is not inadvertently sent to the repository. Incorrect segregation of waste in a decommissioning activity can mean that large amounts of the waste produced is below the exemption limit and could therefore be disposed of in conventional landfill. Sellafield Ltd. is using a pair of Canberra WM2750 Clearance Monitors to assay 100 litre packages of soft waste produced in some of their decommissioning activities at Sellafield. The WM2750 uses low resolution gamma spectrometry (LRGS) to determine the radionuclide content of packages or drums of LLW up to a maximum of 140 litre capacity. It uses a lead shielded measurement chamber to reduce the local radiation background along with high efficiency sodium iodide (NaI) detectors in order to obtain the measurement sensitivity required to be able to distinguish between LLW and exempt waste in a measurement time of less than 1 minute per package. This paper describes the waste monitoring process and the design of the clearance monitor - in particular how it was calibrated and the performance testing that was carried out to ensure that waste items identified by the monitors as being exempt waste are suitable for disposal to a conventional landfill site. (authors)

  17. Spitzer/infrared spectrograph investigation of mipsgal 24 μm compact bubbles: low-resolution observations

    SciTech Connect

    Nowak, M.; Flagey, N.; Noriega-Crespo, A.; Carey, S. J.; Van Dyk, S. D.; Billot, N.; Paladini, R.

    2014-12-01

    We present Spitzer/InfraRed Spectrograph (IRS) low-resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 μm Galactic plane survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories and that this distinction correlates with the morphologies of the MBs in the mid-infrared (IR). The four MBs with central sources in the mid-IR exhibit dust-rich, low-excitation spectra, and their 24 μm emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high-excitation gas lines (e.g., [O IV] 26.0 μm, [Ne V] 14.3 and 24.3 μm, and [Ne III] 15.5 μm), and the [O IV] line accounts for 50% to almost 100% of the 24 μm emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high-excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae (PNs) with peculiar white dwarfs (e.g., Wolf-Rayet [WR] and novae) at their centers. The central stars of the four dust-rich MBs are all massive star candidates. Dust temperatures range from 40 to 100 K in the outer shells. We constrain the extinction along the lines of sight from the IRS spectra. We then derive distance, dust masses, and dust production rate estimates for these objects. These estimates are all consistent with the nature of the central stars. We summarize the identifications of MBs made to date and discuss the correlation between their mid-IR morphologies and natures. Candidate Be/B[e]/luminous blue variable and WR stars are mainly 'rings' with mid-IR central sources, whereas PNs are mostly 'disks' without mid-IR central sources. Therefore we expect that most of the 300 remaining unidentified MBs will be classified as PNs.

  18. Re-evaluation of low-resolution crystal structures via interactive molecular-dynamics flexible fitting (iMDFF): a case study in complement C4.

    PubMed

    Croll, Tristan Ian; Andersen, Gregers Rom

    2016-09-01

    While the rapid proliferation of high-resolution structures in the Protein Data Bank provides a rich set of templates for starting models, it remains the case that a great many structures both past and present are built at least in part by hand-threading through low-resolution and/or weak electron density. With current model-building tools this task can be challenging, and the de facto standard for acceptable error rates (in the form of atomic clashes and unfavourable backbone and side-chain conformations) in structures based on data with dmax not exceeding 3.5 Å reflects this. When combined with other factors such as model bias, these residual errors can conspire to make more serious errors in the protein fold difficult or impossible to detect. The three recently published 3.6-4.2 Å resolution structures of complement C4 (PDB entries 4fxg, 4fxk and 4xam) rank in the top quartile of structures of comparable resolution both in terms of Rfree and MolProbity score, yet, as shown here, contain register errors in six β-strands. By applying a molecular-dynamics force field that explicitly models interatomic forces and hence excludes most physically impossible conformations, the recently developed interactive molecular-dynamics flexible fitting (iMDFF) approach significantly reduces the complexity of the conformational space to be searched during manual rebuilding. This substantially improves the rate of detection and correction of register errors, and allows user-guided model building in maps with a resolution lower than 3.5 Å to converge to solutions with a stereochemical quality comparable to atomic resolution structures. Here, iMDFF has been used to individually correct and re-refine these three structures to MolProbity scores of <1.7, and strategies for working with such challenging data sets are suggested. Notably, the improved model allowed the resolution for complement C4b to be extended from 4.2 to 3.5 Å as demonstrated by paired refinement.

  19. Standardized extract of Bacopa monniera (BESEB CDRI-08) attenuates contextual associative learning deficits in the aging rat's brain induced by D-galactose.

    PubMed

    Prisila Dulcy, Charles; Singh, Hemant K; Preethi, Jayakumar; Rajan, Koilmani Emmanuvel

    2012-10-01

    In this study, we examined the neuroprotective effect of standardized Bacopa monniera extract (BME: BESEB CDRI-08) against the D-galactose (D-gal)-induced brain aging in rats. Experimental groups were subjected to contextual-associative learning task. We found that the administration of BME in the D-gal-treated group attenuated contextual-associative learning deficits; the individuals showed more correct responses and retrieved the reward with less latency. Subsequent analysis showed that the BME administration significantly decreased advance glycation end product (AGE) in serum and increased the activity of antioxidant response element (ARE) and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nuclear transcription factor NF-E2-related factor 2 (Nrf2), accompanied by a reduction in the level of serotonin (5-HT) in the hippocampus. The BME treatment also reversed D-gal-induced brain aging by upregulating the levels of the presynaptic proteins synaptotagmin I (SYT1) and synaptophysin (SYP) and the postsynaptic proteins Ca(2+) /calmodulin dependent protein kinase II (αCaMKII) and postsynaptic density protein-95 (PSD-95) in the hippocampus during synaptic plasticity. A significant finding is that the D-gal- + BME-treated rats exhibited more correct responses in contextual-associative learning than D-gal alone-treated rats. Our findings suggest that BME treatment attenuates D-gal-induced brain aging and regulates the level of antioxidant enzymes, Nrf2 expression, and the level of 5-HT, which was accompanied by concomitantly increased levels of synaptic proteins SYT1, SYP, αCaMKII, p-αCaMKII, and PSD-95.

  20. A clearer view of the insect brain—combining bleaching with standard whole-mount immunocytochemistry allows confocal imaging of pigment-covered brain areas for 3D reconstruction

    PubMed Central

    Stöckl, Anna L.; Heinze, Stanley

    2015-01-01

    In the study of insect neuroanatomy, three-dimensional (3D) reconstructions of neurons and neuropils have become a standard technique. As images have to be obtained from whole-mount brain preparations, pigmentation on the brain surface poses a serious challenge to imaging. In insects, this is a major problematic in the first visual neuropil of the optic lobe, the lamina, which is obstructed by the pigment of the retina as well as by the pigmented fenestration layer. This has prevented inclusion of this major processing center of the insect visual system into most neuroanatomical brain atlases and hinders imaging of neurons within the lamina by confocal microscopy. It has recently been shown that hydrogen peroxide bleaching is compatible with immunohistochemical labeling in insect brains, and we therefore developed a simple technique for removal of pigments on the surface of insect brains by chemical bleaching. We show that our technique enables imaging of the pigment-obstructed regions of insect brains when combined with standard protocols for both anti-synapsin-labeled as well as neurobiotin-injected samples. This method can be combined with different fixation procedures, as well as different fluorophore excitation wavelengths without negative effects on staining quality. It can therefore serve as an effective addition to most standard histology protocols used in insect neuroanatomy. PMID:26441552

  1. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a

  2. CARMENES science preparation: characterisation of M dwarfs with low-resolution spectroscopy and search for low-mass wide companions to young stars

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.

    2015-11-01

    This thesis is focused on the study of low-mass objects that can be targets of exoplanet searches with near-infrared spectrographs in general and CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs; see Quirrenbach et al. 2014) in particular. The CARMENES consortium comprises 11 institutions from Germany and Spain that are building a high-resolution spectrograph (R=82,000) with two channels, visible (0.55 - 1.05 um) and infrared (0.95 - 1.7 um), for the 3.5 m Calar Alto telescope. It will observe a sample of 300 M dwarfs in 600 nights of guaranteed time during at least three years, starting in January 2016. The final sample will be chosen from the 2200 M dwarfs included in the CARMENCITA input catalogue. For these stars, we have obtained and collected a large amount of data: spectral types, radial and rotational velocities, photometry in several bands, etc. Part of the e effort of the science preparation necessary for the final selection of targets for CARMENES and other near-infrared spectrographs has been collected in two publications, which are presented in this PhD thesis. In the first publication (Alonso-Floriano et al., 2015A&A...577A.128A), we obtained low-resolution spectra for 753 stars using the CAFOS spectrograph at the 2.2 m Calar Alto telescope. The main goal was to derive accurate spectral types, which are fundamental parameters for the sample selection. We used a grid of 49 standard stars, from spectral types K3V to M8V, together with a double least-square minimisation technique and 31 spectral indices previously defined by other authors. In addition, we quantified the surface gravity, metallicity and chromospheric activity of the sample, in order to detect low-gravity stars (giants and very young), metal-poor and very metal-poor stars (subdwarfs), and very active stars. In the second publication (Alonso-Floriano et al., 2015A&A...583A..85A), we searched for common proper

  3. The power of low-resolution spectroscopy: On the spectral classification of planet candidates in the ground-based CoRoT follow-up

    NASA Astrophysics Data System (ADS)

    Ammler-von Eiff, M.; Sebastian, D.; Guenther, E. W.; Stecklum, B.; Cabrera, J.

    2015-02-01

    Planetary transits detected by the CoRoT mission can be mimicked by a low-mass star in orbit around a giant star. Spectral classification helps to identify the giant stars and also early-type stars which are often excluded from further follow-up. We study the potential and the limitations of low-resolution spectroscopy to improve the photometric spectral types of CoRoT candidates. In particular, we want to study the influence of the signal-to-noise ratio (SNR) of the target spectrum in a quantitative way. We built an own template library and investigate whether a template library from the literature is able to reproduce the classifications. Including previous photometric estimates, we show how the additional spectroscopic information improves the constraints on spectral type. Low-resolution spectroscopy (R≈ 1000) of 42 CoRoT targets covering a wide range in SNR (1-437) and of 149 templates was obtained in 2012-2013 with the Nasmyth spectrograph at the Tautenburg 2 m telescope. Spectral types have been derived automatically by comparing with the observed template spectra. The classification has been repeated with the external CFLIB library. The spectral class obtained with the external library agrees within a few sub-classes when the target spectrum has a SNR of about 100 at least. While the photometric spectral type can deviate by an entire spectral class, the photometric luminosity classification is as close as a spectroscopic classification with the external library. A low SNR of the target spectrum limits the attainable accuracy of classification more strongly than the use of external templates or photometry. Furthermore we found that low-resolution reconnaissance spectroscopy ensures that good planet candidates are kept that would otherwise be discarded based on photometric spectral type alone.

  4. The low-resolution structure of nHDL reconstituted with DMPC with and without cholesterol reveals a mechanism for particle expansion[S

    PubMed Central

    Gogonea, Valentin; Gerstenecker, Gary S.; Wu, Zhiping; Lee, Xavier; Topbas, Celalettin; Wagner, Matthew A.; Tallant, Thomas C.; Smith, Jonathan D.; Callow, Philip; Pipich, Vitaliy; Malet, Hélène; Schoehn, Guy; DiDonato, Joseph A.; Hazen, Stanley L.

    2013-01-01

    Small-angle neutron scattering (SANS) with contrast variation was used to obtain the low-resolution structure of nascent HDL (nHDL) reconstituted with dimyristoyl phosphatidylcholine (DMPC) in the absence and presence of cholesterol, [apoA1:DMPC (1:80, mol:mol) and apoA1:DMPC:cholesterol (1:86:9, mol:mol:mol)]. The overall shape of both particles is discoidal with the low-resolution structure of apoA1 visualized as an open, contorted, and out of plane conformation with three arms in nascent HDL/dimyristoyl phosphatidylcholine without cholesterol (nHDLDMPC) and two arms in nascent HDL/dimyristoyl phosphatidylcholine with cholesterol (nHDLDMPC+Chol). The low-resolution shape of the lipid phase in both nHDLDMPC and nHDLDMPC+Chol were oblate ellipsoids, and fit well within their respective protein shapes. Modeling studies indicate that apoA1 is folded onto itself in nHDLDMPC, making a large hairpin, which was also confirmed independently by both cross-linking mass spectrometry and hydrogen-deuterium exchange (HDX) mass spectrometry analyses. In nHDLDMPC+Chol, the lipid was expanded and no hairpin was visible. Importantly, despite the overall discoidal shape of the whole particle in both nHDLDMPC and nHDLDMPC+Chol, an open conformation (i.e., not a closed belt) of apoA1 is observed. Collectively, these data show that full length apoA1 retains an open architecture that is dictated by its lipid cargo. The lipid is likely predominantly organized as a bilayer with a micelle domain between the open apoA1 arms. The apoA1 configuration observed suggests a mechanism for accommodating changing lipid cargo by quantized expansion of hairpin structures. PMID:23349207

  5. NORMA: a tool for flexible fitting of high-resolution protein structures into low-resolution electron-microscopy-derived density maps.

    PubMed

    Suhre, Karsten; Navaza, Jorge; Sanejouand, Yves Henri

    2006-09-01

    This paper describes a freely available software suite that allows the modelling of large conformational changes of high-resolution three-dimensional protein structures under the constraint of a low-resolution electron-density map. Typical applications are the interpretation of electron-microscopy data using atomic scale X-ray structural models. The software package provided should enable the interested user to perform flexible fitting on new cases without encountering major technical difficulties. The NORMA software suite including three fully executable reference cases and extensive user instructions are available at http://www.elnemo.org/NORMA/.

  6. High-resolution parallel phase-shifting digital holography using a low-resolution phase-shifting array device based on image inpainting.

    PubMed

    Jiao, Shuming; Zou, Wenbin

    2017-02-01

    Parallel phase-shifting digital holography can record high-quality holograms efficiently from fast-moving objects in a dynamic scene. However, a phase-shifting array device with a cell size identical to image sensors is required, which imposes difficulty in practice. This Letter proposes a novel scheme to employ a low-resolution phase-shifting array device to achieve high-resolution parallel phase-shifting digital holography, based on image inpainting performed on incomplete holograms. The experimental results validate the effectiveness of the proposed scheme.

  7. Computer programs for the interpretation of low resolution mass spectra: Program for calculation of molecular isotopic distribution and program for assignment of molecular formulas

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Kohl, F. J.

    1977-01-01

    Two FORTRAN computer programs for the interpretation of low resolution mass spectra were prepared and tested. One is for the calculation of the molecular isotopic distribution of any species from stored elemental distributions. The program requires only the input of the molecular formula and was designed for compatability with any computer system. The other program is for the determination of all possible combinations of atoms (and radicals) which may form an ion having a particular integer mass. It also uses a simplified input scheme and was designed for compatability with any system.

  8. Visualizing human brain surface from T1-weighted MR images using texture-mapped triangle meshes.

    PubMed

    Seppä, Mika; Hämäläinen, Matti

    2005-05-15

    We describe a novel method for visualizing brain surface from anatomical magnetic resonance images (MRIs). The method utilizes standard 2D texture mapping capabilities of OpenGL graphics language. It combines the benefits of volume rendering and triangle-mesh rendering, allowing fast and realistic-looking brain surface visualizations. Consequently, relatively low-resolution triangle meshes can be used while the texture images provide the necessary details. The mapping is optimized to provide good texture-image resolution for the triangles with respect to their original sizes in the 3D MRI volume. The actual 2D texture images are generated by depth integration from the original MRI data. Our method adapts to anisotropic voxel sizes without any need to interpolate the volume data into cubic voxels, and it is very well suited for visualizing brain anatomy from standard T(1)-weighted MR images. Furthermore, other OpenGL objects and techniques can be easily combined, for example, to use cut planes, to show other surfaces and objects, and to visualize functional data in addition to the anatomical information.

  9. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models

    NASA Astrophysics Data System (ADS)

    Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing

    2017-02-01

    The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.

  10. IMPROVING THE ACCURACY OF HISTORIC SATELLITE IMAGE CLASSIFICATION BY COMBINING LOW-RESOLUTION MULTISPECTRAL DATA WITH HIGH-RESOLUTION PANCHROMATIC DATA

    SciTech Connect

    Getman, Daniel J

    2008-01-01

    Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic data (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.

  11. Brain death.

    PubMed

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families.

  12. Women with type 2 diabetes mellitus have lower cortical porosity of the proximal femoral shaft using low-resolution CT than nondiabetic women, and increasing glucose is associated with reduced cortical porosity.

    PubMed

    Osima, Marit; Kral, Rita; Borgen, Tove T; Høgestøl, Ingvild K; Joakimsen, Ragnar M; Eriksen, Erik F; Bjørnerem, Åshild

    2017-04-01

    Increased cortical porosity has been suggested as a possible factor increasing fracture propensity in patients with type 2 diabetes mellitus (T2DM). This is a paradox because cortical porosity is generally associated with high bone turnover, while bone turnover is reduced in patients with T2DM. We therefore wanted to test the hypothesis that women with T2DM have lower bone turnover markers (BTM) and lower cortical porosity than those without diabetes, and that higher serum glucose and body mass index (BMI) are associated with lower BTM, and with lower cortical porosity. This cross-sectional study is based on a prior nested case-control study including 443 postmenopausal women aged 54-94years from the Tromsø Study, 211 with non-vertebral fracture and 232 fracture-free controls. Of those 443 participants, 22 women exhibited T2DM and 421 women did not have diabetes. All had fasting blood samples assayed for procollagen type I N-terminal propeptide (PINP), C-terminal cross-linking telopeptide of type I collagen (CTX) and glucose, and femoral subtrochanteric architecture was quantified using low-resolution clinical CT and StrAx1.0 software. Women with T2DM had higher serum glucose (7.2 vs. 5.3mmol/L), BMI (29.0 vs. 26.4kg/m(2)), and higher femoral subtrochanteric total volumetric bone mineral density (vBMD) (783 vs. 715mgHA/cm(3)), but lower cortical porosity (40.9 vs. 42.8%) than nondiabetic women (all p<0.05). Each standard deviation (SD) increment in glucose was associated with 0.10-0.12 SD lower PINP and CTX, and 0.13 SD lower cortical porosity (all p<0.05). Each SD increment in BMI was associated with 0.10-0.18 SD lower serum PINP and CTX, and 0.19 SD thicker cortices (all p<0.05). Increasing glucose and BMI were associated with lower bone turnover suggesting that reduced intracortical and endocortical remodeling leads to reduced porosity and thicker cortices. Using low-resolution clinical CT, cortical porosity was lower in women with T2DM compared to women

  13. Deep Brain Stimulation in Anorexia Nervosa: Hope for the Hopeless or Exploitation of the Vulnerable? The Oxford Neuroethics Gold Standard Framework.

    PubMed

    Park, Rebecca J; Singh, Ilina; Pike, Alexandra C; Tan, Jacinta O A

    2017-01-01

    Neurosurgical interventions for psychiatric disorders have a long and troubled history (1, 2) but have become much more refined in the last few decades due to the rapid development of neuroimaging and robotic technologies (2). These advances have enabled the design of less invasive techniques, which are more focused, such as deep brain stimulation (DBS) (3). DBS involves electrode insertion into specific neural targets implicated in pathological behavior, which are then repeatedly stimulated at adjustable frequencies. DBS has been used for Parkinson's disease and movement disorders since the 1960s (4-6) and over the last decade has been applied to treatment-refractory psychiatric disorders, with some evidence of benefit in obsessive-compulsive disorder (OCD), major depressive disorder, and addictions (7). Recent consensus guidelines on best practice in psychiatric neurosurgery (8) stress, however, that DBS for psychiatric disorders remains at an experimental and exploratory stage. The ethics of DBS-in particular for psychiatric conditions-is debated (1, 8-10). Much of this discourse surrounds the philosophical implications of competence, authenticity, personality, or identity change following neurosurgical interventions, but there is a paucity of applied guidance on neuroethical best practice in psychiatric DBS, and health-care professionals have expressed that they require more (11). This paper aims to redress this balance by providing a practical, applied neuroethical gold standard framework to guide research ethics committees, researchers, and institutional sponsors. We will describe this as applied to our protocol for a particular research trial of DBS in severe and enduring anorexia nervosa (SE-AN) (https://clinicaltrials.gov/ct2/show/NCT01924598, unique identifier NCT01924598), but believe it may have wider application to DBS in other psychiatric disorders.

  14. Deep Brain Stimulation in Anorexia Nervosa: Hope for the Hopeless or Exploitation of the Vulnerable? The Oxford Neuroethics Gold Standard Framework

    PubMed Central

    Park, Rebecca J.; Singh, Ilina; Pike, Alexandra C.; Tan, Jacinta O. A.

    2017-01-01

    Neurosurgical interventions for psychiatric disorders have a long and troubled history (1, 2) but have become much more refined in the last few decades due to the rapid development of neuroimaging and robotic technologies (2). These advances have enabled the design of less invasive techniques, which are more focused, such as deep brain stimulation (DBS) (3). DBS involves electrode insertion into specific neural targets implicated in pathological behavior, which are then repeatedly stimulated at adjustable frequencies. DBS has been used for Parkinson’s disease and movement disorders since the 1960s (4–6) and over the last decade has been applied to treatment-refractory psychiatric disorders, with some evidence of benefit in obsessive–compulsive disorder (OCD), major depressive disorder, and addictions (7). Recent consensus guidelines on best practice in psychiatric neurosurgery (8) stress, however, that DBS for psychiatric disorders remains at an experimental and exploratory stage. The ethics of DBS—in particular for psychiatric conditions—is debated (1, 8–10). Much of this discourse surrounds the philosophical implications of competence, authenticity, personality, or identity change following neurosurgical interventions, but there is a paucity of applied guidance on neuroethical best practice in psychiatric DBS, and health-care professionals have expressed that they require more (11). This paper aims to redress this balance by providing a practical, applied neuroethical gold standard framework to guide research ethics committees, researchers, and institutional sponsors. We will describe this as applied to our protocol for a particular research trial of DBS in severe and enduring anorexia nervosa (SE-AN) (https://clinicaltrials.gov/ct2/show/NCT01924598, unique identifier NCT01924598), but believe it may have wider application to DBS in other psychiatric disorders. PMID:28373849

  15. Crystal structure of a novel non-Pfam protein PF2046 solved using low resolution B-factor sharpening and multi-crystal averaging methods

    SciTech Connect

    Su, Jing; Li, Yang; Shaw, Neil; Zhou, Weihong; Zhang, Min; Xu, Hao; Wang, Bi-Cheng; Liu, Zhi-Jie

    2012-11-13

    Sometimes crystals cannot diffract X-rays beyond 3.0 {angstrom} resolution due to the intrinsic flexibility associated with the protein. Low resolution diffraction data not only pose a challenge to structure determination, but also hamper interpretation of mechanistic details. Crystals of a 25.6 kDa non-Pfam, hypothetical protein, PF2046, diffracted X-rays to 3.38 {angstrom} resolution. A combination of Se-Met derived heavy atom positions with multiple cycles of B-factor sharpening, multi-crystal averaging, restrained refinement followed by manual inspection of electron density and model building resulted in a final model with a R value of 23.5 (R{sub free} = 24.7). The asymmetric unit was large and consisted of six molecules arranged as a homodimer of trimers. Analysis of the structure revealed the presence of a RNA binding domain suggesting a role for PF2046 in the processing of nucleic acids.

  16. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  17. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  18. Vocal and visual stimulation, congruence and lateralization affect brain oscillations in interspecies emotional positive and negative interactions.

    PubMed

    Balconi, Michela; Vanutelli, Maria Elide

    2016-01-01

    The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect."

  19. Effects of caffeine and maltodextrin mouth rinsing on P300, brain imaging, and cognitive performance.

    PubMed

    De Pauw, K; Roelands, B; Knaepen, K; Polfliet, M; Stiens, J; Meeusen, R

    2015-03-15

    Caffeine (CAF) and maltodextrin (MALT) mouth rinses (MR) improve exercise performance. The current experiment aims to determine the effect of CAF and MALT MR on cognitive performance and brain activity. Ten healthy male subjects (age 27 ± 3 yr) completed three experimental trials. Each trial included four Stroop tasks: two familiarization tasks, and one task before and one task after an MR period. The reaction time (in milliseconds) and accuracy (percent) of simple, congruent, and incongruent stimuli were assessed. Electroencephalography was applied throughout the experiment to record brain activity. The amplitudes and latencies of the P300 were determined during the Stroop tasks before and after the MR period. Subjects received MR with CAF (0.3 g/25 ml), MALT (1.6 g/25 ml), or placebo (PLAC) in a randomized, double-blind, crossover design. During MR, the brain imaging technique standardized low-resolution brain electromagnetic tomography was applied. Magnitude-based inferences showed that CAF MR is likely trivial (63.5%) and likely beneficial (36.4%) compared with PLAC MR, and compared with MALT MR likely beneficial to reaction time on incongruent stimuli (61.6%). Additionally, both the orbitofrontal and dorsolateral prefrontal cortex were activated only during CAF MR, potentially explaining the likely beneficial effect on reaction times. MALT MR increased brain activity only within the orbitofrontal cortex. However, this brain activation did not alter the reaction time. Furthermore, no significant differences in the accuracy of stimuli responses were observed between conditions. In conclusion, only CAF MR exerted a likely beneficial effect on reaction time due to the subsequent activation of both the orbitofrontal and dorsolateral prefrontal cortexes.

  20. Recommendations for Development of New Standardized Forms of Cocoa Breeds and Cocoa Extract Processing for the Prevention of Alzheimer's Disease: Role of Cocoa in Promotion of Cognitive Resilience and Healthy Brain Aging.

    PubMed

    Dubner, Lauren; Wang, Jun; Ho, Lap; Ward, Libby; Pasinetti, Giulio M

    2015-01-01

    It is currently thought that the lackluster performance of translational paradigms in the prevention of age-related cognitive deteriorative disorders, such as Alzheimer's disease (AD), may be due to the inadequacy of the prevailing approach of targeting only a single mechanism. Age-related cognitive deterioration and certain neurodegenerative disorders, including AD, are characterized by complex relationships between interrelated biological phenotypes. Thus, alternative strategies that simultaneously target multiple underlying mechanisms may represent a more effective approach to prevention, which is a strategic priority of the National Alzheimer's Project Act and the National Institute on Aging. In this review article, we discuss recent strategies designed to clarify the mechanisms by which certain brain-bioavailable, bioactive polyphenols, in particular, flavan-3-ols also known as flavanols, which are highly represented in cocoa extracts, may beneficially influence cognitive deterioration, such as in AD, while promoting healthy brain aging. However, we note that key issues to improve consistency and reproducibility in the development of cocoa extracts as a potential future therapeutic agent requires a better understanding of the cocoa extract sources, their processing, and more standardized testing including brain bioavailability of bioactive metabolites and brain target engagement studies. The ultimate goal of this review is to provide recommendations for future developments of cocoa extracts as a therapeutic agent in AD.

  1. Determination of Bromine Stable Isotope Ratios from Saline Solutions by "Wet Plasma" MC-ICPMS Including a Comparison between High- and Low-Resolution Modes, and Three Introduction Systems.

    PubMed

    Louvat, Pascale; Bonifacie, Magali; Giunta, Thomas; Michel, Agnès; Coleman, Max

    2016-04-05

    We describe a novel method for measuring stable bromine isotope compositions in saline solutions such as seawater, brines, and formation waters. Bromine is extracted from the samples by ion exchange chromatography on anion exchange resin AG 1-X4 with NH4NO3 and measured by MC-ICP-MS in wet plasma conditions. Sample introduction through a small spray chamber provided good sensitivity and stability of the Br signal compared to direct injection (d-DIHEN) and desolvation (APEX). NH4NO3 media allowed fast (<3 min) washing of the system. Despite Ar2H(+) spectral interference on (81)Br(+), for the first time low-resolution mode (with appropriate tuning of Ar2H(+)/(81)Br(+) sensitivity) gave higher precision (81)Br/(79)Br measurements than high-resolution (HR), due to the narrowness of the (81)Br(+) plateau in HR mode and to slight mass drifting with time. Additionally, 1 μg Br is the lower amount needed for a triplicate determination of δ(81)Br by MC-ICP-MS, with reproducibility often < ± 0.1‰ (2 SD). Four HBr solutions were prepared by evaporation/condensation in order to obtain in-house reference solutions with 3‰ variations in δ(81)Br and to assess the reproducibility and accuracy of the method. Long-term (>3 years) reproducibility between ± 0.11 and ± 0.27‰ (2 SD) was obtained for the four HBr solutions, the international standard reference material NIST SRM 977 (δ(81)BrSMOB = -0.65 ± 1.1‰, 1 SD), and seawaters (synthetic and natural). The accuracy of the MC-ICP-MS method was validated by comparing the δ(81)Br obtained for these solutions with dual-inlet IRMS measurements on CH3Br gas. Finally, the method was successfully applied to 22 natural samples.

  2. Food peptidomics of in vitro gastrointestinal digestions of partially purified bovine hemoglobin: low-resolution versus high-resolution LC-MS/MS analyses.

    PubMed

    Caron, Juliette; Chataigné, Gabrielle; Gimeno, Jean-Pascal; Duhal, Nathalie; Goossens, Jean-François; Dhulster, Pascal; Cudennec, Benoit; Ravallec, Rozenn; Flahaut, Christophe

    2016-07-01

    Consumers and governments have become aware how the daily diet may affect the human health. All proteins from both plant and animal origins are potential sources of a wide range of bioactive peptides and the large majority of those display health-promoting effects. In the meat production food chain, the slaughterhouse blood is an inevitable co-product and, today, the blood proteins remain underexploited despite their bioactive potentiality. Through a comparative food peptidomics approach we illustrate the impact of resolving power, accuracy, sensitivity, and acquisition speed of low-resolution (LR)- and high-resolution (HR)-LC-ESI-MS/MS on the obtained peptide mappings and discuss the limitations of MS-based peptidomics. From in vitro gastrointestinal digestions of partially purified bovine hemoglobin, we have established the peptide maps of each hemoglobin chain. LR technique (normal bore C18 LC-LR-ESI-MS/MS) allows us to identify without ambiguity 75 unique peptides while the HR approach (nano bore C18 LC-HR-ESI-MS/MS) unambiguously identify more than 950 unique peptides (post-translational modifications included). Herein, the food peptidomics approach using the most performant separation methods and mass spectrometers with high-resolution capabilities appears as a promising source of information to assess the health potentiality of proteins.

  3. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    PubMed Central

    Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun

    2017-01-01

    To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the high-resolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method. PMID:28208837

  4. The evaluation of a low resolution fourier transform infrared (FTIR) gas analyser for monitoring of solvent emission rates under field conditions.

    PubMed

    Räisänen, J; Niemelä, R

    1999-12-01

    The applicability of a low resolution (8 cm-1) Fourier transform infrared (FTIR) gas analyser with an absorption path length of 3 m was evaluated for the on-line monitoring of organic solvent mixture emissions in a flexographic ink manufacturing plant. The on-line monitoring revealed that the highest variations of solvent concentrations, up to three decades, occurred in the exhaust air. The FTIR analyser with a dynamic range of four decades covers well the concentration ranges typically found in the exhaust air and in the workroom air of ink manufacturing plants. The average emission rate of solvent mixture based on a sampling period of two days was 1.8 kg h-1 consisting of mainly ethanol (70%), ethyl acetate (15%) and propan-2-ol (11%). The detection limits of the analyser for the solvent compounds ranged from 0.3 to 4.3 mg m-3 and the measurement uncertainty was less than 10% in the concentration range of 8-15,000 mg m-3. These characteristics make the apparatus appropriate for most industrial hygiene applications. An FTIR spectrophotometer, equipped with an multipoint sampling unit, facilitates rapid identification of solvent components, real-time display of concentration data relevant to workroom air and environment monitoring as well as process control. Furthermore, the on-line concentration information enabled a rapid selection of representative sampling locations. The spectrophotometer is transportable, rugged and relatively simple to calibrate even in a hostile industrial environment.

  5. Low-resolution structure of the full-length barley (Hordeum vulgare) SGT1 protein in solution, obtained using small-angle X-ray scattering.

    PubMed

    Taube, Michał; Pieńkowska, Joanna R; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed.

  6. Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    PubMed Central

    de Oliveira Neto, Mario; Figueira, Ana Carolina M.; Webb, Paul; Saidemberg, Daniel; Palma, Mario S.; Polikarpov, Igor

    2012-01-01

    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex. PMID:22363753

  7. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images.

    PubMed

    Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun

    2017-02-13

    To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  8. Brain mapping after prolonged cycling and during recovery in the heat.

    PubMed

    De Pauw, Kevin; Roelands, Bart; Marusic, Uros; Tellez, Helio Fernandez; Knaepen, Kristel; Meeusen, Romain

    2013-11-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.

  9. Brain mapping after prolonged cycling and during recovery in the heat

    PubMed Central

    De Pauw, Kevin; Roelands, Bart; Marušič, Uroš; Tellez, Helio Fernandez; Knaepen, Kristel

    2013-01-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing. PMID:23990240

  10. Brain herniation

    MedlinePlus

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  11. Whither brain death?

    PubMed

    Bernat, James L

    2014-01-01

    The publicity surrounding the recent McMath and Muñoz cases has rekindled public interest in brain death: the familiar term for human death determination by showing the irreversible cessation of clinical brain functions. The concept of brain death was developed decades ago to permit withdrawal of therapy in hopeless cases and to permit organ donation. It has become widely established medical practice, and laws permit it in all U.S. jurisdictions. Brain death has a biophilosophical justification as a standard for determining human death but remains poorly understood by the public and by health professionals. The current controversies over brain death are largely restricted to the academy, but some practitioners express ambivalence over whether brain death is equivalent to human death. Brain death remains an accepted and sound concept, but more work is necessary to establish its biophilosophical justification and to educate health professionals and the public.

  12. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    PubMed

    Liyanage, Kishan Andre; Steward, Christopher; Moffat, Bradford Armstrong; Opie, Nicholas Lachlan; Rind, Gil Simon; John, Sam Emmanuel; Ronayne, Stephen; May, Clive Newton; O'Brien, Terence John; Milne, Marjorie Eileen; Oxley, Thomas James

    2016-01-01

    Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution) MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap) to 1 (complete overlap). For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  13. Low-resolution gamma-ray spectrometry for an information barrier based on a multi-criteria template-matching approach

    NASA Astrophysics Data System (ADS)

    Göttsche, Malte; Schirm, Janet; Glaser, Alexander

    2016-12-01

    Gamma-ray spectrometry has been successfully employed to identify unique items containing special nuclear materials. Template information barriers have been developed in the past to confirm items as warheads by comparing their gamma signature to the signature of true warheads. Their development has, however, not been fully transparent, and they may not be sensitive to some relevant evasion scenarios. We develop a fully open template information barrier concept, based on low-resolution measurements, which, by design, reduces the extent of revealed sensitive information. The concept is based on three signatures of an item to be compared to a recorded template. The similarity of the spectrum is assessed by a modification of the Kolmogorov-Smirnov test to confirm the isotopic composition. The total gamma count rate must agree with the template as a measure of the projected surface of the object. In order to detect the diversion of fissile material from the interior of an item, a polyethylene mask is placed in front of the detector. Neutrons from spontaneous and induced fission events in the item produce 2.223 MeV gamma rays from neutron capture by hydrogen-1 in the mask. This peak is detected and its intensity scales with the item's fissile mass. The analysis based on MCNP Monte Carlo simulations of various plutonium configurations suggests that this concept can distinguish a valid item from a variety of invalid ones. The concept intentionally avoids any assumptions about specific spectral features, such as looking for specific gamma peaks of specific isotopes, thereby facilitating a fully unclassified discussion. By making all aspects public and allowing interested participants to contribute to the development and benchmarking, we enable a more open and inclusive discourse on this matter.

  14. LRS2: design, assembly, testing, and commissioning of the second-generation low-resolution spectrograph for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Hill, Gary J.; Lee, Hanshin; Tuttle, Sarah E.; Vattiat, Brian L.; Drory, Niv; Indahl, Briana L.; Peterson, Trent W.; Ramsey, Jason

    2016-08-01

    The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET) at McDonald Observatory. Designed as a powerful spectroscopic follow-up platform, LRS2 is based on the design of the HETs new Visible Integral-field Replicable Unit Spectrograph (VIRUS) and provides integral field spectroscopy for two seeing-limited fields of 6"×12" with unity fill factor. The replicable design of VIRUS has been leveraged for LRS2 to gain broad wavelength coverage from 370 nm to 1.0 μm, spread between two fiber-fed dual-channel spectrographs that operate in unison but observe independent fields that are separated by 100". The blue spectrograph pair, LRS2-B, covers 364<=λ (nm) <= 467 and 454 <= λ (nm)<=700 at fixed resolving powers of R =λ/δλ≍2500 and 1400, respectively, while the red spectrograph pair, LRS2-R, covers 643<=λ (nm)<=845 and 823<=λ (nm)<=1056 with both of its channels having R≍2500. In this paper, a detailed description of the instrument's design, assembly, and laboratory testing is provided in which the focus is placed on the departures from the basic framework of the design and processes previously established for VIRUS. Both LRS2 spectrograph pairs have been successfully deployed on the HET, and commissioning efforts are ongoing. Using on-sky data, the performance of the spectrograph is compared to models of the instrumental sensitivity. The measured performance of LRS2 indicates that the instrument will provide efficient spectroscopic follow-up observations of individual targets, and will be especially powerful when combined with the extensive survey capabilities of VIRUS for HETDEX.

  15. A Comparison of Electron Density Profiles Derived from the Low Resolution Airglow and Aurora Spectrograph (LORAAS) Ultraviolet Measurements: Resolution of the 911 Å Conundrum

    NASA Astrophysics Data System (ADS)

    Dymond, K.; Budzien, S. A.; Coker, C.; Nicholas, A. C.; Stephan, A. W.; Bishop, R. L.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.

    2010-12-01

    Previous measurements of the 911 Å emission made by sounding rockets, at altitude less than 320 km, indicated that the emission was either very weak or non-existent. Newer measurements made by the Remote Atmospheric and Ionospheric Detection System (RAIDS) currently in operation aboard the International Space Station, at an altitude of 340 km, show the same behavior. Yet, satellite-based measurements made at altitudes above 800 km showed the emission to be present and strong enough to be accurately measured and inverted; those inversions were validated against ionosonde measurements and demonstrated the possibility of using the 911 Å emission for daytime ionospheric sensing. So the conundrum is: why do measurements made at lower altitudes (< 350 km) indicate weak or non-existent emission while satellite measurements at higher altitudes (>800 km) show the presence of the emission at the expected level? We present our measurements of the daytime and nighttime electron density derived by analysis of the O I 1356 and O I 911 Å altitude profiles measured by the Low Resolution Airglow and Aurora Spectrograph (LORAAS) instrument launched aboard the Advanced Research and Global Observation Satellite (ARGOS), which operated between mid-May 1999 and April 2002. We compare the retrieved electron density profiles inferred from the limb intensities of the ultraviolet emissions to peak heights and peak densities measured during ionosonde overflights. We show that the 911 Å emission is strongly affected by the height of the ionosphere and show that this is consistent with absorption of the 911 Å by atomic oxygen. Model results are presented showing that the RAIDS and sounding rocket measurements can be explained by this absorption.

  16. Design and construction progress of LRS2-B: a new low resolution integral-field spectrograph for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Lee, Hanshin; Hill, Gary J.; Cornell, Mark E.; Tuttle, Sarah E.; Vattiat, Brian L.

    2012-09-01

    The upcoming Wide-Field Upgrade (WFU) has ushered in a new era of instrumentation for the Hobby-Eberly Telescope (HET). Here, we present the design, construction progress, and lab tests completed to date of the blue-optimized second generation Low Resolution Spectrograph (LRS2-B). LRS2-B is a dual-channel, fiber fed instrument that is based on the design of the Visible Integral Field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy eXperiment (HETDEX). LRS2-B utilizes a microlens-coupled integral field unit (IFU) that covers a 7"x12" area on the sky having unity fill-factor with ~300 spatial elements that subsample the median HET image quality. The fiber feed assembly includes an optimized dichroic beam splitter that allows LRS2-B to simultaneously observe 370 <λ(nm) < 470 and 460 < λ(nm) < 700 at fixed resolving powers of R ≍ λ/Δλ ≍ 1900 and 1200, respectively. We discuss the departures from the nominal VIRUS design, which includes the IFU, fiber feed, camera correcting optics, and volume phase holographic grisms. Additionally, the motivation for the selection of the wavelength coverage and spectral resolution of the two channels is briefly discussed. One such motivation is the follow-up study of spectrally and (or) spatially resolved Lyα emission from z ≍ 2.5 star-forming galaxies in the HETDEX survey. LRS2-B is planned to be a commissioning instrument for the HET WFU and should be on-sky during quarter 4 of 2013. Finally, we mention the current state of LRS2-R, the red optimized sister instrument of LRS2-B.

  17. A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates: Validation and Implementation of a Toolbox

    PubMed Central

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows

  18. Time course and localization of brain activity in humor comprehension: An ERP/sLORETA study.

    PubMed

    Shibata, Midori; Terasawa, Yuri; Osumi, Takahiro; Masui, Keita; Ito, Yuichi; Sato, Arisa; Umeda, Satoshi

    2017-02-15

    Although a number of studies have investigated the incongruity-detection and resolution process in humor comprehension, it is difficult to functionally and anatomically dissociate these processes. We used event-related potentials (ERP) and standardized low resolution brain electromagnetic tomography analysis (sLORETA) to examine the time course and localization of brain activity during incongruity detection and resolution. We used the same materials as in our previous fMRI study. Eighteen participants read funny and unfunny scenarios and judged whether the target sentence was funny or not. Results indicated that ERPs elicited by a funny punch line showed a P2 component followed by a P600 component over the centro-parietal electrode sites. Our sLORETA analysis of the P2 ERPs revealed a stronger activation for the funny vs. unfunny condition in the superior frontal gyrus (SFG) and medial prefrontal cortex (mPFC). For the P600 ERPs, the funny punch line elicited greater activation in the temporal-parietal regions. These results indicate that incongruity-detection processes activate the SFG and mPFC in the P2 time window, while incongruity-resolution processes generate activation at the temporal-parietal regions in the P600 time window. These results provide the evidence that verbal humor comprehension is processed in steps which start with the incongruity detection in the early P2 time window and followed by a P600 component reflecting incongruity resolution.

  19. Shape and Albedo from Shading (SAfS) for Pixel-Level dem Generation from Monocular Images Constrained by Low-Resolution dem

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian

    2016-06-01

    ) Narrow Angle Camera (NAC) (0.5 m spatial resolution), constrained by the SELENE and LRO Elevation Model (SLDEM 2015) of 60 m spatial resolution. The results indicate that local details are largely recovered by the algorithm while low frequency topographic consistency is affected by the low-resolution DEM.

  20. Alcohol affects the brain's resting-state network in social drinkers.

    PubMed

    Lithari, Chrysa; Klados, Manousos A; Pappas, Costas; Albani, Maria; Kapoukranidou, Dorothea; Kovatsi, Leda; Bamidis, Panagiotis D; Papadelis, Christos L

    2012-01-01

    Acute alcohol intake is known to enhance inhibition through facilitation of GABA(A) receptors, which are present in 40% of the synapses all over the brain. Evidence suggests that enhanced GABAergic transmission leads to increased large-scale brain connectivity. Our hypothesis is that acute alcohol intake would increase the functional connectivity of the human brain resting-state network (RSN). To test our hypothesis, electroencephalographic (EEG) measurements were recorded from healthy social drinkers at rest, during eyes-open and eyes-closed sessions, after administering to them an alcoholic beverage or placebo respectively. Salivary alcohol and cortisol served to measure the inebriation and stress levels. By calculating Magnitude Square Coherence (MSC) on standardized Low Resolution Electromagnetic Tomography (sLORETA) solutions, we formed cortical networks over several frequency bands, which were then analyzed in the context of functional connectivity and graph theory. MSC was increased (p<0.05, corrected with False Discovery Rate, FDR corrected) in alpha, beta (eyes-open) and theta bands (eyes-closed) following acute alcohol intake. Graph parameters were accordingly altered in these bands quantifying the effect of alcohol on the structure of brain networks; global efficiency and density were higher and path length was lower during alcohol (vs. placebo, p<0.05). Salivary alcohol concentration was positively correlated with the density of the network in beta band. The degree of specific nodes was elevated following alcohol (vs. placebo). Our findings support the hypothesis that short-term inebriation considerably increases large-scale connectivity in the RSN. The increased baseline functional connectivity can -at least partially- be attributed to the alcohol-induced disruption of the delicate balance between inhibitory and excitatory neurotransmission in favor of inhibitory influences. Thus, it is suggested that short-term inebriation is associated, as expected

  1. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  2. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Rajan, Koilmani E

    2016-01-01

    Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15-29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory.

  3. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory

    PubMed Central

    Preethi, Jayakumar; Singh, Hemant K.; Rajan, Koilmani E.

    2016-01-01

    Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15–29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory. PMID:27445807

  4. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  5. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  6. Brain components

    MedlinePlus Videos and Cool Tools

    The brain is composed of more than a thousand billion neurons. Specific groups of them, working in concert, provide ... of information. The 3 major components of the brain are the cerebrum, cerebellum, and brain stem. The ...

  7. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury?

    PubMed

    Kirkman, M A; Smith, M

    2014-01-01

    Measurement of intracranial pressure (ICP) and mean arterial pressure (MAP) is used to derive cerebral perfusion pressure (CPP) and to guide targeted therapy of acute brain injury (ABI) during neurointensive care. Here we provide a narrative review of the evidence for ICP monitoring, CPP estimation, and ICP/CPP-guided therapy after ABI. Despite its widespread use, there is currently no class I evidence that ICP/CPP-guided therapy for any cerebral pathology improves outcomes; indeed some evidence suggests that it makes no difference, and some that it may worsen outcomes. Similarly, no class I evidence can currently advise the ideal CPP for any form of ABI. 'Optimal' CPP is likely patient-, time-, and pathology-specific. Further, CPP estimation requires correct referencing (at the level of the foramen of Monro as opposed to the level of the heart) for MAP measurement to avoid CPP over-estimation and adverse patient outcomes. Evidence is emerging for the role of other monitors of cerebral well-being that enable the clinician to employ an individualized multimodality monitoring approach in patients with ABI, and these are briefly reviewed. While acknowledging difficulties in conducting robust prospective randomized studies in this area, such high-quality evidence for the utility of ICP/CPP-directed therapy in ABI is urgently required. So, too, is the wider adoption of multimodality neuromonitoring to guide optimal management of ICP and CPP, and a greater understanding of the underlying pathophysiology of the different forms of ABI and what exactly the different monitoring tools used actually represent.

  8. Standards not that standard.

    PubMed

    Vilanova, Cristina; Tanner, Kristie; Dorado-Morales, Pedro; Villaescusa, Paula; Chugani, Divya; Frías, Alba; Segredo, Ernesto; Molero, Xavier; Fritschi, Marco; Morales, Lucas; Ramón, Daniel; Peña, Carlos; Peretó, Juli; Porcar, Manuel

    2015-01-01

    There is a general assent on the key role of standards in Synthetic Biology. In two consecutive letters to this journal, suggestions on the assembly methods for the Registry of standard biological parts have been described. We fully agree with those authors on the need of a more flexible building strategy and we highlight in the present work two major functional challenges standardization efforts have to deal with: the need of both universal and orthogonal behaviors. We provide experimental data that clearly indicate that such engineering requirements should not be taken for granted in Synthetic Biology.

  9. Radioresistance of Brain Tumors

    PubMed Central

    Kelley, Kevin; Knisely, Jonathan; Symons, Marc; Ruggieri, Rosamaria

    2016-01-01

    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. PMID:27043632

  10. Abnormal Error Monitoring in Math-Anxious Individuals: Evidence from Error-Related Brain Potentials

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants’ math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN. PMID:24236212

  11. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Angels

    2013-01-01

    This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA) and seventeen low math-anxious (LMA) individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN) in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN), the error positivity component (Pe), classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA) we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  12. Familiality in brain tumors

    PubMed Central

    Blumenthal, Deborah T.; Cannon-Albright, Lisa A.

    2008-01-01

    Background: Familiality in brain tumors is not definitively substantiated. Methods: We used the Utah Population Data Base (UPDB), a genealogy representing the Utah pioneers and their descendants, record-linked to statewide cancer records, to describe the familial nature of primary brain cancer. We examined the familial clustering of primary brain tumors, including subgroups defined by histologic type and age at diagnosis. The UPDB includes 1,401 primary brain tumor cases defined as astrocytoma or glioblastoma, all with at least three generations of genealogy data. We tested the hypothesis of excess relatedness of brain tumor cases using the Genealogical Index of Familiality method. We estimated relative risks for brain tumors in relatives using rates of brain tumors estimated internally. Results: Significant excess relatedness was observed for astrocytomas and glioblastomas considered as a group (n = 1,401), for astrocytomas considered separately (n = 744), but not for glioblastomas considered separately (n = 658). Significantly increased risks to first- and second-degree relatives for astrocytomas were identified for relatives of astrocytomas considered separately. Significantly increased risks to first-degree relatives, but not second degree, were observed for astrocytoma and glioblastoma cases considered together, and for glioblastoma cases considered separately. Conclusions: This study provides strong evidence for a familial contribution to primary brain cancer risk. There is evidence that this familial aspect includes not only shared environment, but also a heritable component. Extended high-risk brain tumor pedigrees identified in the UPDB may provide the opportunity to identify predisposition genes responsible for familial brain tumors. GLOSSARY GBM = glioblastoma; GIF = Genealogical Index of Familiality; HGG = high-grade gliomas; ICD-O = International Classification of Disease–Oncology; LGG = low-grade gliomas; RR = relative risks; SEER = Surveillance

  13. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  14. Brain Aneurysm

    MedlinePlus

    ... tests don't provide enough information. Screening for brain aneurysms The use of imaging tests to screen ... and occupational therapy to relearn skills. Treating unruptured brain aneurysms Surgical clipping or endovascular coiling can be ...

  15. Brain Development

    MedlinePlus

    ... developed the f… Series Healthy Minds: Nurturing Your Child's Development Each of these age-based handouts are based ... report from the National Academy of Sciences on child and brain development. Podcast Nurturing Brain Development From Birth to Three ...

  16. Brain Fog

    MedlinePlus

    ... friendships and relationships. • Take your body to the gym and don’t forget to visit the “BRAIN SPA” – both will improve brain function. • Recent scientific data show that longevity ...

  17. Brain Power.

    ERIC Educational Resources Information Center

    Albrecht, Karl

    2002-01-01

    Reviews significant findings of recent brain research, including the concept of five minds: automatic, subconscious, practical, creative, and spiritual. Suggests approaches to training the brain that are related to this hierarchy of thinking. (JOW)

  18. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  19. Brain Lesions

    MedlinePlus

    ... MRI scans, brain lesions appear as dark or light spots that don't look like normal brain tissue. Usually, a brain lesion is an incidental finding unrelated to the condition or symptom that led to the imaging test in the first place. ...

  20. The Brain.

    ERIC Educational Resources Information Center

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  1. Brain tumor imaging: imaging brain metastasis using a brain-metastasizing breast adenocarcinoma.

    PubMed

    Madden, Kelley S; Zettel, Martha L; Majewska, Ania K; Brown, Edward B

    2013-03-01

    Brain metastases from primary or secondary breast tumors are difficult to model in the mouse. When metastatic breast cancer cell lines are injected directly into the arterial circulation, only a small fraction of cells enter the brain to form metastatic foci. To study the molecular and cellular mechanisms of brain metastasis, we have transfected MB-231BR, a brain-homing derivative of a human breast adenocarcinoma line MDA-MB-231, with the yellow fluorescent protein (YFP) variant Venus. MB-231BR selectively enters the brain after intracardiac injection into the arterial circulation, resulting in accumulation of fluorescent foci of cells in the brain that can be viewed by standard fluorescence imaging procedures. We describe how to perform the intracardiac injection and the parameters used to quantify brain metastasis in brain sections by standard one-photon fluorescence imaging. The disadvantage of this model is that the kinetics of growth over time cannot be determined in the same animal. In addition, the injection technique does not permit precise placement of tumor cells within the brain. This model is useful for determining the molecular determinants of brain tumor metastasis.

  2. Left Brain. Right Brain. Whole Brain

    ERIC Educational Resources Information Center

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  3. Standardizing Data Collection in Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    Union (https://webgate.ec.europa.eu/idb/documents/2009-IDB-Report_screen.pdf ) and the Centers for Disease control in the USA (http://www.cdc.gov...for burst suppression) No Yes Neuromuscular blockade (paralysis) No Yes CSF drainage  ml/day (ɝ ml/hour) No Yes CSF drainage ≥120 ml (≥5 ml

  4. Brain to music to brain!

    PubMed

    Azizi, S Ausim

    2009-07-31

    It has been implicitly understood that culture and music as collective products of human brain in turn influence the brain itself. Now, imaging and anatomical data add substance to this notion. The impact of playing piano on the brain of musicians and its possible effects on cultural and neurological evolution are briefly discussed.

  5. Brain death: the European perspective.

    PubMed

    Citerio, Giuseppe; Murphy, Paul G

    2015-04-01

    Some of the seminal steps toward the recognition and definition of brain death were European. There is a general consensus on both the medical concept of brain death in Europe as well as the minimum fundamental clinical standards that are required for its diagnosis-the absence of consciousness, brainstem reflexes, and the ability to breathe in the absence of reversible or confounding conditions. Two aspects of brain death determination are addressed in this article. The authors analyze how brain death is diagnosed across Europe, identifying both the similarities and differences that exist between countries (the latter mainly concerning ancillary tests, timing, and the number of physicians involved in the brain death determination). In addition, they describe the very considerable variations in when brain death determinations are made between and within individual European countries, and propose that they are due to differences in the end-of-life care practices in patients with irreversible brain injuries, medical attitudes, and organ donation practices. Although legislation is available to standardize the brain death diagnosis process in most individual European countries, there are still disparities across Europe as a whole. The current variation in practice makes a continental consensus for the definition of brain death imperative.

  6. Sex differences in the brain response to affective scenes with or without humans.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; Zani, Alberto; Trestianu, Laura

    2009-10-01

    Recent findings have demonstrated that women might be more reactive than men to viewing painful stimuli (vicarious response to pain), and therefore more empathic [Han, S., Fan, Y., & Mao, L. (2008). Gender difference in empathy for pain: An electrophysiological investigation. Brain Research, 1196, 85-93]. We investigated whether the two sexes differed in their cerebral responses to affective pictures portraying humans in different positive or negative contexts compared to natural or urban scenarios. 440 IAPS slides were presented to 24 Italian students (12 women and 12 men). Half the pictures displayed humans while the remaining scenes lacked visible persons. ERPs were recorded from 128 electrodes and swLORETA (standardized weighted Low-Resolution Electromagnetic Tomography) source reconstruction was performed. Occipital P115 was greater in response to persons than to scenes and was affected by the emotional valence of the human pictures. This suggests that processing of biologically relevant stimuli is prioritized. Orbitofrontal N2 was greater in response to positive than negative human pictures in women but not in men, and not to scenes. A late positivity (LP) to suffering humans far exceeded the response to negative scenes in women but not in men. In both sexes, the contrast suffering-minus-happy humans revealed a difference in the activation of the occipito/temporal, right occipital (BA19), bilateral parahippocampal, left dorsal prefrontal cortex (DPFC) and left amygdala. However, increased right amygdala and right frontal area activities were observed only in women. The humans-minus-scenes contrast revealed a difference in the activation of the middle occipital gyrus (MOG) in men, and of the left inferior parietal (BA40), left superior temporal gyrus (STG, BA38) and right cingulate (BA31) in women (270-290 ms). These data indicate a sex-related difference in the brain response to humans, possibly supporting human empathy.

  7. Transcranial brain stimulation: closing the loop between brain and stimulation

    PubMed Central

    Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman

    2016-01-01

    Purpose of review To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. Recent findings Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified rules. In contrast, adaptive closed-loop stimulation dynamically adjusts stimulation settings based on the occurrence of stimulation-induced state changes. Summary Approaches that take into account trait-related and state-related determinants of stimulation-induced plasticity bear considerable potential to establish noninvasive transcranial brain stimulation as interventional therapeutic tool. PMID:27224087

  8. Brain surgery - discharge

    MedlinePlus

    ... to take these medicines. If you had a brain aneurysm , you may also have other symptoms or problems. ... chap 28. Read More Acoustic neuroma Brain abscess Brain aneurysm repair Brain surgery Brain tumor - children Brain tumor - ...

  9. Standard Procedure.

    ERIC Educational Resources Information Center

    Uher, Alan E.

    Whether common standards exist among the national standards for kindergarten through grade 12 mathematics, science, and civics and government was studied. Common standards were explored among "Curriculum and Evaluation Standards for School Mathematics," produced by the National Council of Teachers of Mathematics, the "National…

  10. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  11. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  12. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  13. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an...

  14. Management of brain metastases.

    PubMed

    Soffietti, Riccardo; Rudā, Roberta; Mutani, Roberto

    2002-10-01

    Brain metastases occur in 20-40% of patients with cancer and their frequency has increased over time. Lung, breast and skin (melanoma) are the commonest sources of brain metastases, and in up to 15% of patients the primary site remains unknown. After the introduction of MRI, multiple lesions have outnumbered single lesions. Contrast-enhanced MRI is the gold standard for the diagnosis. There are no pathognomonic features on CT or MRI that distinguish brain metastases from primary malignant brain tumors or nonneoplastic conditions: therefore a tissue diagnosis by biopsy should be always obtained in patients with unknown primary tumor before undergoing radiotherapy and/or chemotherapy. Some factors are prognostically important: a high Performance Status, a solitary brain metastasis, an absence of systemic metastases, a controlled primary tumor and a younger age. Based on these factors, subgroups of patients with different prognosis have been identified (RPA class I, II, III). Symptomatic therapy includes corticosteroids to reduce vasogenic cerebral edema and anticonvulsants to control seizures. In patients with newly diagnosed brain metastases prophylactic anticonvulsants should not be used routinely. The combination of surgery and whole-brain radiotherapy (WBRT) is superior to WBRT alone for the treatment of single brain metastasis in patients with limited or absent systemic disease and good neurological condition. Complete surgical resection allows a relief of intracranial hypertension, seizures and focal neurological deficits. Radiosurgery, alone or in conjunction with WBRT, yields results which are comparable to those reported after surgery followed by WBRT, provided that lesion's diameter does not exceed 3-3.5 cm. Radiosurgery offers the potential of treating patients with surgically inaccessible metastases. Still controversial is the need for WBRT after surgery or radiosurgery: local control seems better with the combined approach, but overall survival does not

  15. Analysis of the IRAS Low Resolution Spectra

    DTIC Science & Technology

    1988-04-01

    which were previously not known. 1. RESEARCH The Infrared Astronomical Satellite , IRAS, surveyed the sky in four wavelength bands centered on 12, 25, 60...agree at 12 Am unless a linear baseline is subtracted from the usable portion of the spectrum. The IRAS science team characterized the LRS spectra...that have silicate dust grain emission features extending from about 8 -14 Am with a maximum around 10 Am are characterized as 2n where n= I to 9

  16. Emulation to simulate low resolution atmospheric data

    SciTech Connect

    Hebbur Venkata Subba Rao, Vishwas; Archibald, Richard K; Evans, Katherine J

    2012-08-01

    Climate simulations require significant compute power, they are complex and therefore it is time consuming to simulate them. We have developed an emulator to simulate unknown climate datasets. The emulator uses stochastic collocation and multi-dimensional in- terpolation to simulate the datasets. We have used the emulator to determine various physical quantities such as temperature, short and long wave cloud forcing, zonal winds etc. The emulation gives results which are very close to those obtained by simulations. The emulator was tested on 2 degree atmospheric datasets. The work evaluates the pros and cons of evaluating the mean first and inter- polating and vice versa. To determine the physical quantities, we have assumed them to be a function of time, longitude, latitude and a random parameter. We have looked at parameters that govern high stable clouds, low stable clouds, timescale for convection etc. The emulator is especially useful as it requires negligible compute times when compared to the simulation itself.

  17. Pediatric brain death determination.

    PubMed

    Mathur, Mudit; Ashwal, Stephen

    2015-04-01

    Clinical guidelines for the determination of brain death in children were first published in 1987. These guidelines were revised in 2011 under the auspices of the Society of Critical Care Medicine, the American Academy of Pediatrics, and the Child Neurology Society, and provide the minimum standards that must be satisfied before brain death can be declared in infants and children. After achieving physiologic stability and exclusion of confounders, two examinations including apnea testing separated by an observation period (24 hours for term newborns up to 30 days of age, and 12 hours for infants and children from 31 days up to 18 years) are required to establish brain death. Apnea testing should demonstrate a final arterial PaCO2 20 mm Hg above the baseline and ≥ 60 mm Hg with no respiratory effort during the testing period. Ancillary studies (electroencephalogram and radionuclide cerebral blood flow) are not required to establish brain death and are not a substitute for the neurologic examination. The committee concluded that ancillary studies may be used (1) when components of the examination or apnea testing cannot be completed, (2) if uncertainty about components of the neurologic examination exists, (3) if a medication effect may be present, or (4) to reduce the interexamination observation period. When ancillary studies are used, a second clinical examination and apnea test should still be performed and components that can be completed must remain consistent with brain death.

  18. Brain investigation and brain conceptualization

    PubMed Central

    Redolfi, Alberto; Bosco, Paolo; Manset, David; Frisoni, Giovanni B.

    Summary The brain of a patient with Alzheimer’s disease (AD) undergoes changes starting many years before the development of the first clinical symptoms. The recent availability of large prospective datasets makes it possible to create sophisticated brain models of healthy subjects and patients with AD, showing pathophysiological changes occurring over time. However, these models are still inadequate; representations are mainly single-scale and they do not account for the complexity and interdependence of brain changes. Brain changes in AD patients occur at different levels and for different reasons: at the molecular level, changes are due to amyloid deposition; at cellular level, to loss of neuron synapses, and at tissue level, to connectivity disruption. All cause extensive atrophy of the whole brain organ. Initiatives aiming to model the whole human brain have been launched in Europe and the US with the goal of reducing the burden of brain diseases. In this work, we describe a new approach to earlier diagnosis based on a multimodal and multiscale brain concept, built upon existing and well-characterized single modalities. PMID:24139654

  19. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal ... Vasculitis Therapy as Effective as Standard Care Mutated Genes in Schizophrenia Map to Brain Networks Connect with Us Subscribe to ...

  20. [Brain concussion].

    PubMed

    Pälvimäki, Esa-Pekka; Siironen, Jari; Pohjola, Juha; Hernesniemi, Juha

    2011-01-01

    Brain concussion is a common disturbance caused by external forces or acceleration affecting the head. It may be accompanied by transient loss of consciousness and amnesia. Typical symptoms include headache, nausea and dizziness; these may remain for a week or two. Some patients may experience transient loss of inability to create new memories or other brief impairment of mental functioning. Treatment is symptomatic. Some patients may suffer from prolonged symptoms, the connection of which with brain concession is difficult to show. Almost invariably the prognosis of brain concussion is good.

  1. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  2. Brain Stimulation Therapies

    MedlinePlus

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  3. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  4. Right Hemisphere Brain Damage

    MedlinePlus

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  5. Anatomy of the Brain

    MedlinePlus

    ... Young Adult Guidelines For brain tumor information and support Call: 800-886-ABTA (2282) or Complete our contact form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of ...

  6. Fragile Brains.

    ERIC Educational Resources Information Center

    Jensen, Eric

    2001-01-01

    Describes three types of brain disorders: the sluggish, the oppositional, and the depressed. Explains how to identify these disorders and offers educators strategies for dealing with each. (Contains 11 references.) (PKP)

  7. Brain abscess

    MedlinePlus

    ... small abscess (less than 2 cm) An abscess deep in the brain An abscess and meningitis Several ... or MRI scan may be needed for a deep abscess. During this procedure, medicines may be injected ...

  8. Brain Basics

    MedlinePlus Videos and Cool Tools

    ... genes and epigenetics may one day lead to genetic testing for people at risk for mental disorders. ... brain. DNA —The "recipe of life," containing inherited genetic information that helps to define physical and some ...

  9. Brain Autopsy

    MedlinePlus

    ... Monthly Donation Named Funds Planned Giving Gifts of Stock Business Partnerships Host an Event AFTD-Team Races ... family members to reach a closure after a long struggle. Brain autopsy is often done in conjunction ...

  10. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  11. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    PubMed

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  12. [Standard process of organ procurement].

    PubMed

    Fukushima, Norihide

    2010-12-01

    As revised Japanese Organ Transplantation Law was issued on 17th July, 2010, standard process of organ procurement after brain death was changed as follows. After the patient is determined clinically brain dead, a doctor may tell his or her relatives the opportunity of organ donation and ask them whether they want to listen organ procurement by JOT coordinators. If they want to do so and to donate organs, brain death is determined by legally regulated method. Around this period, his or her organs are evaluated whether they are transplantable or not. After the patient was legally sentenced brain dead, transplant recipients are selected and procurement teams are sent from transplant centers. Organ function is evaluated again by procurement teams and then organs are procured and transplanted.

  13. North Dakota Dance Content Standards.

    ERIC Educational Resources Information Center

    Anderson, Sue; Farrell, Renee; Robbins, Susan; Simonson, Paula; Stanley, Melissa

    Dance should be seen as an authentic avenue for allowing students to learn kinesthetically by using movement that is essential to brain development. Ideally students would be exposed to dance forms and patterns in other art forms like music and drama as well as units within physical education classes. These North Dakota standards may be taught…

  14. Training Standardization

    SciTech Connect

    Agnihotri, Newal

    2003-09-01

    The article describes the benefits of and required process and recommendations for implementing the standardization of training in the nuclear power industry in the United States and abroad. Current Information and Communication Technologies (ICT) enable training standardization in the nuclear power industry. The delivery of training through the Internet, Intranet and video over IP will facilitate this standardization and bring multiple benefits to the nuclear power industry worldwide. As the amount of available qualified and experienced professionals decreases because of retirements and fewer nuclear engineering institutions, standardized training will help increase the number of available professionals in the industry. Technology will make it possible to use the experience of retired professionals who may be interested in working part-time from a remote location. Well-planned standardized training will prevent a fragmented approach among utilities, and it will save the industry considerable resources in the long run. It will also ensure cost-effective and safe nuclear power plant operation.

  15. Brain cooling therapy.

    PubMed

    Gancia, P; Pomero, G

    2010-06-01

    Therapeutic hypothermia (whole body or selective head cooling) is becoming standard of care for brain injury in infants with perinatal hypoxic ischemic encephalopathy (HIE). Brain cooling reduces the rate of apoptosis and early necrosis, reduces cerebral metabolic rate and the release of nitric oxide and free radicals. Animal models of perinatal brain injury show histological and functional improvement due to of early hypothermia. The brain protection depends on the temperature and time delay between insult and beginning of treatment (more effective with cooling to 33 +/- 0.5 degrees C, and less than 6 hours after hypoxic-ischemic insult). Recent meta-analyses and systematic reviews in human neonates show reduction in mortality and long-term neurodevelopmental disability at 12-24 months of age, with more favourable effects in the less severe forms of HIE. The authors describe their experience in 53 term newborns with moderate-severe HIE treated with whole body cooling between 2001 and 2009, and studied with magnetic resonance imaging (MRI) and general movements (GMs) assessment. The creation of a network connecting the Neonatal Intensive Care Unit with the level I-II hospitals of the reference area, as part of regional network, is of paramount importance to enroll potential candidates and to start therapeutic hypothermia within optimal time window.

  16. Brain heterotopia.

    PubMed

    Modarresifar, Homayoun; Ho, Linh

    2009-03-01

    We present a case with intractable partial complex seizures in a 14-year-old girl who was found to have brain heterotopia on MRI and PET-CT. The patient presented with intractable partial complex seizures and a normal electroencephalogram. Her brain magnetic resonance imaging showed heterotopic gray matter lining the ventricular margin of the right occipital horn. Subsequent PET-CT demonstrated moderate tracer localization in the heterotopic gray matter surrounding the ventricular margin of the right occipital horn. Heterotopia may demonstrate normal or increased FDG uptake on PET, therefore its appearance may be deceiving when other pathologies are being considered.

  17. A systematic nomenclature for the insect brain.

    PubMed

    Ito, Kei; Shinomiya, Kazunori; Ito, Masayoshi; Armstrong, J Douglas; Boyan, George; Hartenstein, Volker; Harzsch, Steffen; Heisenberg, Martin; Homberg, Uwe; Jenett, Arnim; Keshishian, Haig; Restifo, Linda L; Rössler, Wolfgang; Simpson, Julie H; Strausfeld, Nicholas J; Strauss, Roland; Vosshall, Leslie B

    2014-02-19

    Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortium's nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects.

  18. EOS standards

    SciTech Connect

    Greeff, Carl W

    2011-01-12

    An approach to creating accurate EOS for pressure standards is described. Applications to Cu, Au, and Ta are shown. Extension of the method to high compressions using DFT is illustrated. Comparisons with modern functionals show promise.

  19. Networking standards

    NASA Technical Reports Server (NTRS)

    Davies, Mark

    1991-01-01

    The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.

  20. (Terminology standardization)

    SciTech Connect

    Strehlow, R.A.

    1990-10-19

    Terminological requirements in information management was but one of the principal themes of the 2nd Congress on Terminology and Knowledge Engineering. The traveler represented the American Society for Testing and Materials' Committee on Terminology, of which he is the Chair. The traveler's invited workshop emphasized terminology standardization requirements in databases of material properties as well as practical terminology standardizing methods. The congress included six workshops in addition to approximately 82 lectures and papers from terminologists, artificial intelligence practitioners, and subject specialists from 18 countries. There were approximately 292 registrants from 33 countries who participated in the congress. The congress topics were broad. Examples were the increasing use of International Standards Organization (ISO) Standards in legislated systems such as the USSR Automated Data Bank of Standardized Terminology, the enhanced Physics Training Program based on terminology standardization in Physics in the Chinese province of Inner Mongolia, and the technical concept dictionary being developed at the Japan Electronic Dictionary Research Institute, which is considered to be the key to advanced artificial intelligence applications. The more usual roles of terminology work in the areas of machine translation. indexing protocols, knowledge theory, and data transfer in several subject specialties were also addressed, along with numerous special language terminology areas.

  1. When Brain Death Belies Belief.

    PubMed

    Yanke, Greg; Rady, Mohamed Y; Verheijde, Joseph L

    2016-12-01

    The case of Jahi McMath has reignited a discussion concerning how society should define death. Despite pronouncing McMath brain dead based on the American Academy of Neurology criteria, the court ordered continued mechanical ventilation to accommodate the family's religious beliefs. Recent case law suggests that the potential for a successful challenge to the neurologic criteria of death provisions of the Uniform Determination of Death Act are greater than ever in the majority of states that have passed religious freedom legislation. As well, because standard ethical claims regarding brain death are either patently untrue or subject to legitimate dispute, those whose beliefs do not comport with the brain death standard should be able to reject it.

  2. Smart Brains.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1995-01-01

    New techniques have opened windows to the brain. Although the biochemistry of learning remains largely a mystery, the following findings seem to have clear implications for education: (1) the importance of early-learning opportunities for the very young; (2) the connection between music and abstract reasoning; and (3) the importance of good…

  3. Animating Brains.

    PubMed

    Borck, Cornelius

    2016-07-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title 'Voodoo Correlations in Social Neuroscience'. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of 'soul catching', the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain's electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains?

  4. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  5. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  6. Brain tumor - children

    MedlinePlus

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  7. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors A A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  8. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  9. The Creative Brain.

    ERIC Educational Resources Information Center

    Herrmann, Ned

    1982-01-01

    Outlines the differences between left-brain and right-brain functioning and between left-brain and right-brain dominant individuals, and concludes that creativity uses both halves of the brain. Discusses how both students and curriculum can become more "whole-brained." (Author/JM)

  10. Martian 'Brain'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    5 May 2004 Most middle-latitude craters on Mars have strange landforms on their floors. Often, the floors have pitted and convoluted features that lack simple explanation. In this case, the central part of the crater floor shown in this 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image bears some resemblance to the folded nature of a brain. Or not. It depends upon the 'eye of the beholder,' perhaps. The light-toned 'ring' around the 'brain' feature is more easily explained--windblown ripples and dunes. The crater occurs near 33.1oS, 91.2oW, and is illuminated from the upper left. The picture covers an area about 3 km (1.9 mi) across.

  11. Silicon Brains

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation <1 kW. For a balanced view on intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  12. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  13. Pesticide Standards

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1976-01-01

    The Environmental Protection Agency chose the American Society of Testing and Materials to develop standardized guidelines for pesticide registration. Since the numbers and uses of pesticides is so wide, establishing ecological and public health guidelines may be difficult. Strong industry and government representation might also hamper the…

  14. Animating Brains

    PubMed Central

    Borck, Cornelius

    2016-01-01

    A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322

  15. Low Resolution Structural Studies Indicate that the Activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis Has an Elongated Shape Which Allows Its Interaction with Both N- and M-Domains of Hsp90

    PubMed Central

    Seraphim, Thiago V.; Alves, Marina M.; Silva, Indjara M.; Gomes, Francisco E. R.; Silva, Kelly P.; Murta, Silvane M. F.; Barbosa, Leandro R. S.; Borges, Júlio C.

    2013-01-01

    The Hsp90 molecular chaperone is essential for protein homeostasis and in the maturation of proteins involved with cell-cycle control. The low ATPase activity of Hsp90 is critical to drive its functional cycle, which is dependent on the Hsp90 cochaperones. The Activator of Hsp90 ATPase-1 (Aha1) is a protein formed by two domains, N- and C-terminal, that stimulates the Hsp90 ATPase activity by several folds. Although the relevance of Aha1 for Hsp90 functions has been proved, as well as its involvement in the desensitization to inhibitors of the Hsp90, the knowledge on its overall structure and behavior in solution is limited. In this work we present the functional and structural characterization of Leishmania braziliensis Aha1 (LbAha1). This protozoan is the causative agent of cutaneous and mucocutaneous leishmaniasis, a neglected disease. The recombinant LbAha1 behaves as an elongated monomer and is organized into two folded domains interconnected by a flexible linker. Functional experiments showed that LbAha1 interacts with L. braziliensis Hsp90 (LbHsp90) with micromolar dissociation constant in a stoichiometry of 2 LbAha1 to 1 LbHsp90 dimer and stimulates 10-fold the LbHsp90 ATPase activity showing positive cooperativity. Furthermore, the LbHsp90::LbAha1 complex is directed by enthalphy and opposed by entropy, probably due to the spatial freedom restrictions imposed by the proteins’ interactions. Small-angle X-ray scattering data allowed the reconstruction of low resolution models and rigid body simulations of LbAha1, indicating its mode of action on LbHsp90. Western blot experiments allowed Aha1 identification (as well as Hsp90) in three Leishmania species at two temperatures, suggesting that Aha1 is a cognate protein. All these data shed light on the LbAha1 mechanism of action, showing that it has structural dimensions and flexibility that allow interacting with both N-terminal and middle domains of the LbHsp90. PMID:23826147

  16. An algorithm for generalizing topography to grids while preserving subscale morphologic characteristics—creating a glacier bed DEM for Jakobshavn trough as low-resolution input for dynamic ice-sheet models

    NASA Astrophysics Data System (ADS)

    Herzfeld, Ute C.; Wallin, Bruce F.; Leuschen, Carlton J.; Plummer, Joel

    2011-11-01

    The objective of this paper is to derive an algorithm for preserving important subscale morphologic characteristics at grids of lower-resolution, in particular for linear features such as canyons and ridge lines. The development of such an algorithm is necessitated by applications that require reduced spatial resolution, as is common in cartographic generalization, GIS applications, and geophysical modeling. Since any algorithm that results in weighted averages, including optimum interpolation and ordinary kriging, cannot reproduce correct depths, a new algorithm is designed based on principles of mathematical morphology. The algorithm described here is applied to derive a subglacial bed of the Greenland Ice Sheet that includes the trough of Jakobshavn Isbræ as a continuous canyon at correct depth in a low-resolution (5-km) digital elevation model (DEM). Data from recent airborne radar measurements of the elevation of the subglacial bed as part of the CReSIS project are utilized. The morphologic algorithm is designed with geophysical ice-sheet modeling in mind, in the following context. Currently occurring changes in the Earth's climate and the cryosphere cause changes in sea level, and the societal relevance of these natural processes motivates estimation of maximal sea-level rise in the medium-term future. The fast-moving outlet glaciers are more sensitive to climatic change than other parts of the Greenland ice sheet. Jakobshavn Isbrae, the fastest-moving ice stream in Greenland, follows a subglacial geologic trough. Since the existence of the trough causes the acceleration of the slow-moving inland ice in the Jakobshavn region and the formation of the ice stream, correct representation of the trough in a DEM is essential to model changes in the dynamics of the ice sheet and resultant sea-level predictions, even if current ice-sheet models can typically be run only at 5-km resolution. The DEM resultant from this study helps to bridge the conceptual gap between

  17. PCA and level set based non-rigid image registration for MRI and Paxinos-Watson atlas of rat brain

    NASA Astrophysics Data System (ADS)

    Cai, Chao; Liu, Ailing; Ding, Mingyue; Zhou, Chengping

    2007-12-01

    Image registration provides the ability to geometrically align one dataset with another. It is a basic task in a great variety of biomedical imaging applications. This paper introduced a novel three-dimensional registration method for Magnetic Resonance Image (MRI) and Paxinos-Watson Atlas of rat brain. For the purpose of adapting to a large range and non-linear deformation between MRI and atlas in higher registration accuracy, based on the segmentation of rat brain, we chose the principle components analysis (PCA) automatically performing the linear registration, and then, a level set based nonlinear registration correcting some small distortions. We implemented this registration method in a rat brain 3D reconstruction and analysis system. Experiments have demonstrated that this method can be successfully applied to registering the low resolution and noise affection MRI with Paxinos-Watson Atlas of rat brain.

  18. Mouse brain imaging using photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Xia, Jun; Wang, Lihong V.

    2014-03-01

    Photoacoustic computed tomography (PACT) provides structural and functional information when used in small animal brain imaging. Acoustic distortion caused by bone structures largely limits the deep brain image quality. In our work, we present ex vivo PACT images of freshly excised mouse brain, intending that can serve as a gold standard for future PACT in vivo studies on small animal brain imaging. Our results show that structures such as the striatum, hippocampus, ventricles, and cerebellum can be clearly di erentiated. An artery feature called the Circle of Willis, located at the bottom of the brain, can also be seen. These results indicate that if acoustic distortion can be accurately accounted for, PACT should be able to image the entire mouse brain with rich structural information.

  19. Study on Control of Brain Temperature for Brain Hypothermia Treatment

    NASA Astrophysics Data System (ADS)

    Gaohua, Lu; Wakamatsu, Hidetoshi

    The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.

  20. Interface standardization

    NASA Technical Reports Server (NTRS)

    Spencer, R.; Wong, V.

    1983-01-01

    Central-station applications create a large and attractive market for photovoltaics in the near future. However, some significant barriers lie between the industry of today and realization of that market. Manufacturing capacity and price are two principal impediments. The Utilities, which are the future system owners, are gaining experience with central-station PV power through the Sacramento Municipal Utility District, Hesperia and similar small central-station installations. SMUD has recognized that competition must be maintained to help reduce prices. So little standardization exists that the cost is driven upward to redefine mechanical and electrical interfaces for each vendor. New structues are required for each vendor and nonoptimum field geometries result from attempts to include more than one vendor in an array field. Standards at some hardware level are required.

  1. Sleep and Traumatic Brain Injury.

    PubMed

    Baumann, Christian R

    2016-03-01

    Post-traumatic sleep-wake disturbances are frequent and often chronic complications after traumatic brain injury. The most prevalent sleep-wake disturbances are insomnia, excessive daytime sleepiness, and pleiosomnia, (i.e., increased sleep need). These disturbances are probably of multifactorial origin, but direct traumatic damage to key brain structures in sleep-wake regulation is likely to contribute. Diagnosis and treatment consist of standard approaches, but because of misperception of sleep-wake behavior in trauma patients, subjective testing alone may not always suffice.

  2. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  3. Dysautonomia after pediatric brain injury

    PubMed Central

    KIRK, KATHERINE A; SHOYKHET, MICHAEL; JEONG, JONG H; TYLER-KABARA, ELIZABETH C; HENDERSON, MARYANNE J; BELL, MICHAEL J; FINK, ERICKA L

    2012-01-01

    AIM Dysautonomia after brain injury is a diagnosis based on fever, tachypnea, hypertension, tachycardia, diaphoresis, and/or dystonia. It occurs in 8 to 33% of brain-injured adults and is associated with poor outcome. We hypothesized that brain-injured children with dysautonomia have worse outcomes and prolonged rehabilitation, and sought to determine the prevalence of dysautonomia in children and to characterize its clinical features. METHOD We developed a database of children (n=249, 154 males, 95 females; mean (SD) age 11y 10mo [5y 7mo]) with traumatic brain injury, cardiac arrest, stroke, infection of the central nervous system, or brain neoplasm admitted to The Children’s Institute of Pittsburgh for rehabilitation between 2002 and 2009. Dysautonomia diagnosis, injury type, clinical signs, length of stay, and Functional Independence Measure for Children (WeeFIM) testing were extracted from medical records, and analysed for differences between groups with and without dysautonomia. RESULTS Dysautonomia occurred in 13% of children with brain injury (95% confidence interval 9.3–18.0%), occurring in 10% after traumatic brain injury and 31% after cardiac arrest. The combination of hypertension, diaphoresis, and dystonia best predicted a diagnosis of dysautonomia (area under the curve=0.92). Children with dysautonomia had longer stays, worse WeeFIM scores, and improved less on the score’s motor component (all p≤0.001). INTERPRETATION Dysautonomia is common in children with brain injury and is associated with prolonged rehabilitation. Prospective study and standardized diagnostic approaches are needed to maximize outcomes. PMID:22712762

  4. Mood state and brain electric activity in ecstasy users.

    PubMed

    Gamma, A; Frei, E; Lehmann, D; Pascual-Marqui, R D; Hell, D; Vollenweider, F X

    2000-01-17

    Resting EEG during open and closed eyes and subsequent mood ratings were obtained from 15 Ecstasy users and 14 Ecstasy-naive controls. Absolute spectral power on the scalp, and the three-dimensional, intracerebral distribution of neuroelectric activity using low resolution brain electromagnetic tomography (LORETA) were computed. LORETA revealed global increases of theta, alpha 1 and beta 2/3 power during eyes open in Ecstasy users, and spectral analyses revealed a right-posterior increase of alpha 2 power (confirmed by LORETA) and increased beta band activity during open eyes. Ecstasy users had higher levels of state depressiveness, emotional excitability and a trend-level increase in state anxiety. The observed differences may be related to regular exposure to Ecstasy or other illicit drugs, or may be pre-existing.

  5. Fortress brain.

    PubMed

    Royall, Donald R

    2013-02-01

    Neurodegenerative diseases are associated with neuronal inclusions, comprised of protein aggregates. In Alzheimer's Disease (AD) and Lewy Body Disease (LBD) such lesions are distributed in a hierarchical retrograde transynaptic spatial pattern. This implies a retrograde transynaptic temporal propagation as well. There can be few explanations for this other than infectious agents (prions and viruses). This suggests that AD and LBD (at least) may have infectious origins. Transynaptic infiltration of the CNS along cranial nerve or other major projections, by one or more infectious agents has important implications. The clinical syndrome and natural history of each neurodegenerative disorder will reflect its portal of entry. There may be a different neurodegenerative syndrome for each cranial nerve or other portal of entry, and not all may manifest as "dementia". Each syndrome may be associated with more than one pathological lesion. Each pathology may be associated with several clinical syndromes. Host-parasite interactions are species specific. This may explain the rarity of AD-like pathology in most other older mammals. Over evolutionary timescales, the human brain should be adapted to predation by neurotropic agents. Viewed from this perspective, the prion-like pro-inflammatory and pro-apoptotic properties of β-amyloid and other proteins may be adaptive, and anti-microbial. Reductions in synaptic density may slow the progress of invading pathogens, while perineuronal nets and other structures may guard the gates. This suggests a defense in depth of a structure, the brain, that is inherently vulnerable to invasion along its neural networks.

  6. [Standard rhinoplasty].

    PubMed

    Bardot, J; Jallut, Y; Nguyen, P-S

    2014-12-01

    Most patients who consult a surgeon for rhinoplasty do not want a radical change in their nose. They seek a reduction in the volume of the nasal pyramid and correction of a precise element that they judge to be ungainly--most often an osteocartilaginous hump. The procedure that we qualify as "standard" will eliminate the osteocartilaginous hump, decrease the dimensions of the septum and reduce the size of the alar crus of the alar cartilage. Although the required technical maneuvers are simple, their sequence must be coherent with a few basic rules that are simple but rarely explained in order to avoid defects linked to excessive, or on the contrary, insufficient corrections.

  7. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses.

    PubMed

    Guo, Bing-Bing; Zheng, Xiao-Lin; Lu, Zhen-Gang; Wang, Xing; Yin, Zheng-Qin; Hou, Wen-Sheng; Meng, Ming

    2015-10-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.

  8. Standardizing Immunohistochemistry

    PubMed Central

    Sompuram, Seshi R.; Vani, Kodela; Tracey, Brian; Kamstock, Debra A.

    2015-01-01

    A new standardized immunohistochemistry (IHC) control for breast cancer testing comprises formalin-fixed human epidermal growth factor receptor 2, estrogen receptor, or progesterone receptor peptide antigens covalently attached to 8-µm glass beads. The antigen-coated beads are suspended in a liquid matrix that hardens upon pipetting onto a glass microscope slide. The antigen-coated beads remain in place through deparaffinization, antigen retrieval, and immunostaining. The intensity of the beads’ stain provides feedback regarding the efficacy of both antigen retrieval and immunostaining. As a first report, we tested the sensitivity and specificity of the new IHC controls (“IHControls”). To evaluate sensitivity, various staining problems were simulated. IHControls detected primary and secondary reagent degradation similarly to tissue controls. This first group of IHControls behaved similarly to tissue controls expressing high concentrations of the antigen. The IHControls were also able to detect aberrations in antigen retrieval, as simulated by sub-optimal times or temperatures. Specificity testing revealed that each antigen-coated bead was specific for its cognate IHC test antibody. The data support the conclusion that, like tissue controls, IHControls are capable of verifying the analytic components of an immunohistochemical stain. Unlike tissue controls, IHControls are prepared in large bulk lots, fostering day-to-day reproducibility that can be standardized across laboratories. PMID:25940339

  9. Brain aneurysm repair - discharge

    MedlinePlus

    ... gov/pubmed/22556195 . Szeder V, Tateshima S, Duckwiler GR. Intracranial aneurysms and subarachnoid hemorrhage. In: Daroff RB, Jankovic J, ... chap 67. Read More Aneurysm in the brain Brain aneurysm repair Brain surgery Recovering after stroke Seizures Smoking - ...

  10. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  11. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Pediatric Brain Tumor Foundation Board Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  12. Brain-based Learning.

    ERIC Educational Resources Information Center

    Weiss, Ruth Palombo

    2000-01-01

    Discusses brain research and how new imaging technologies allow scientists to explore how human brains process memory, emotion, attention, patterning, motivation, and context. Explains how brain research is being used to revise learning theories. (JOW)

  13. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  14. Mild Traumatic Brain Injury

    MedlinePlus

    ... Questions Glossary Contact Us Visitor Feedback mild Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity ... most common deployment injuries is a mild Traumatic Brain Injury (TBI). A mild TBI is an injury ...

  15. Traumatic Brain Injury

    MedlinePlus

    ... brain to bump against the inside of your skull. Common TBIs, such as concussions, can happen during ... an object, like a bullet or piece of skull, pierces your brain. Symptoms of a traumatic brain ...

  16. That's Using Your Brain!

    ERIC Educational Resources Information Center

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  17. American Brain Tumor Association

    MedlinePlus

    ... Molecule Read More ABTA News April 6, 2017 Chicago-Based American Brain Tumor Association’s Breakthrough for Brain ... Association 8550 W. Bryn Mawr Ave. Ste 550 Chicago, IL 60631 © 2014 American Brain Tumor Association Phone: ...

  18. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease

  19. Nourish Your Brain

    MedlinePlus

    ... Tags: brain, brain-healthy, cognitive decline, dementia, diet, exercise, health, lifestyle Family Health, Prevention and Wellness, Seniors, Staying Healthy December 2010 Copyright © American Academy of ...

  20. Brain SPECT quantitation in clinical diagnosis

    SciTech Connect

    Hellman, R.S.

    1991-12-31

    Methods to quantitate SPECT data for clinical diagnosis should be chosen so that they take advantage of the lessons learned from PET data. This is particularly important because current SPECT high-resolution brain imaging systems now produce images that are similar in resolution to those generated by the last generation PET equipment (9 mm FWHM). These high-resolution SPECT systems make quantitation of SPECT more problematic than earlier. Methodology validated on low-resolution SPECT systems may no longer be valid for data obtained with the newer SPECT systems. For example, in patients with dementia, the ratio of parietal to cerebellar activity often was studied. However, with new instruments, the cerebellum appears very different: discrete regions are more apparent. The large cerebellar regions usually used with older instrumentation are of an inappropriate size for the new equipment. The normal range for any method of quantitation determined using older equipment probably changes for data obtained with new equipment. It is not surprising that Kim et al. in their simulations demonstrated that because of the finite resolution of imaging systems, the ability to measure pure function is limited, with {open_quotes}anatomy{close_quotes} and {open_quotes}function{close_quotes} coupled in a {open_quotes}complex nonlinear way{close_quotes}. 11 refs.

  1. Standard atmosphere

    NASA Technical Reports Server (NTRS)

    Gregg, Willis Ray

    1923-01-01

    This report was prepared at the request of the National Advisory Committee for Aeronautics and discusses the need of a standard set of values of pressure, temperature and density at various altitudes and points out the desirability of adopting such values as are most in accord with actual average conditions, in order that corrections in individual cases may be as small as possible. To meet this need, so far as the united states is concerned, all free-air observations obtained by means of kites and balloons at several stations in this country near latitude 40 degrees N., have been used, and average values of pressure, temperature, and density, based upon those observations, have been determined for summer, winter, and the year, and for all altitudes up to 20,000 meters (65,000 feet). These values are presented in tables and graphs in both metric and english units; and in the tables of densities there are also included values of density for other parts of the world, more particularly for Europe. A comparison with these values shows that, except in the lowest levels, the agreement is very satisfactory.

  2. Left brain, right brain: facts and fantasies.

    PubMed

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  3. Imaging brain development: the adolescent brain.

    PubMed

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  4. Brain AVM (Arteriovenous Malformation)

    MedlinePlus

    ... a brain scan for another health issue or after the blood vessels rupture and cause bleeding in the brain (hemorrhage). Once diagnosed, a brain AVM can often be treated successfully to prevent complications, such as brain damage or stroke. Find out why Mayo Clinic is the best ...

  5. Journal standards.

    PubMed

    Jackson, R

    2003-08-01

    Despite its many imperfections, the peer review process is a firmly established quality control system for scientific literature. It gives readers some assurance that the work and views that are reported meet standards that are acceptable to a journal. Maureen Revington's editorial in a recent issue of the Australian Veterinary Journal (Revington2002) gives a good concise warts and all overview of the process and is well worth reading. I have some concerns about several articles in the December 2002 issue of the New Zealand Veterinary Journal (Volume 50, Number 6), devoted to the health and welfare of farmed deer, that relate to extensive citing of non-peer reviewed papers. I can understand the need for information to flow from researchers to the wider community but that need is already satisfied by publications such as the proceedings of the Deer Branch of the New Zealand Veterinary Association and Proceedings of the New Zealand Society of Animal Production. Non-peer reviewed papers have been cited in the Journal in the past but never to the extent displayed in this particular issue. It degrades the peer-review process and creates an added burden for reviewers who are forced to grapple with the uncertainties of the science in non-peer reviewed citations. One of my fears is that this process allows science from non peer reviewed articles to be legitimised by its inclusion in a peer reviewed journal and perhaps go on to be accepted as dogma. This is a real danger given the difficulties associated with tracing back to original citations and the increasing volume of scientific literature. It also affords opportunities for agencies to pick up questionable and doubtful science and tout it as support for their products or particular points of view. If deer researchers choose to publish most of their work in proceedings then so be it. However this approach, which seems to becoming increasingly prevalent in the deer sector, is questionable from an established science point

  6. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  7. Joint factor and kinetic analysis of dynamic FDOPA PET scans of brain cancer patients.

    PubMed

    Dowson, N; Bourgeat, P; Rose, S; Daglish, M; Smith, J; Fay, M; Coulthard, A; Winter, C; MacFarlane, D; Thomas, P; Crozier, S; Salvado, O

    2010-01-01

    Kinetic analysis is an essential tool of Positron Emission Tomography image analysis. However it requires a pure tissue time activity curve (TAC) in order to calculate the system parameters. Pure tissue TACs are particularly difficult to obtain in the brain as the low resolution of PET means almost all voxels are a mixture of tissues. Factor analysis explicitly accounts for mixing but is an underdetermined problem that can give arbitrary results. A joint factor and kinetic analysis is proposed whereby factor analysis explicitly accounts for mixing of tissues. Hence, more meaningful parameters are obtained by the kinetic models, which also ensure a less ambiguous solution to the factor analysis. The method was tested using a cylindrical phantom and the 18F-DOPA data of a brain cancer patient.

  8. High Standards or a High Standard of Standardness?

    ERIC Educational Resources Information Center

    McWilliam, Erica

    2010-01-01

    This paper explores the difference between "high standards" and a "high standard of standardness" of professional service provision in teacher-librarianship. That is to say, it explores the difference between a demonstrated deep commitment to 21st century learning ("high standards") and demonstrated compliance with a pre-determined checklist of…

  9. CAPACITY OF PATIENTS WITH BRAIN METASTASES TO MAKE TREATMENT DECISIONS

    PubMed Central

    Triebel, Kristen L.; Gerstenecker, Adam; Meneses, Karen; Fiveash, John B.; Meyers, Christina A.; Cutter, Gary; Marson, Daniel C.; Martin, Roy C.; Eakin, Amanda; Watts, Olivia; Nabors, Louis B.

    2015-01-01

    OBJECTIVE To investigate medical decision-making capacity (MDC) in patients with brain metastasis. METHODS Participants were 41 adults with brain metastases with Karnofsky Performance Status scores ≥70 were recruited from an academic medical center and 41 demographically-matched controls recruited from the community. We evaluated MDC using the Capacity to Consent to Treatment Instrument (CCTI) and its four clinically relevant consent standards (expressing a treatment choice, appreciation, reasoning, and understanding). Capacity impairment ratings (no impairment, mild/moderate impairment, and severe impairment) on the consent standards were also assigned to each participant with brain metastasis using cutoff scores derived statistically from the performance of the control group. RESULTS The brain metastases patient group performed significantly below controls on consent standards of understanding and reasoning. Capacity compromise was defined as performance ≤1.5 standard deviations (SD) below the control group mean. Using this definition, approximately 60% of the participants with brain metastases demonstrated capacity compromise on at least one MDC standard. CONCLUSION When defining capacity compromise as performance ≤1.5 SD below the control group mean, over half of patients with brain metastases have reduced capacity to make treatment decisions. This impairment is demonstrated shortly after initial diagnosis of brain metastases and highlights the importance of routine clinical assessment of MDC following diagnosis of brain metastasis. These results also indicate a need for the development and investigation of interventions to support or improve MDC in this patient population. PMID:25613039

  10. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... IQ Intelligence Quotient NAAQS National Ambient Air Quality Standards NTTAA National Technology... systems (including their brains) arising from Pb exposure may include intelligence quotient (IQ)...

  11. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  12. Magnetic resonance spectroscopy of the human brain

    NASA Astrophysics Data System (ADS)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  13. Brain Computer Interfaces, a Review

    PubMed Central

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  14. Brain computer interfaces, a review.

    PubMed

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  15. Primary brain tumours in adults.

    PubMed

    Ricard, Damien; Idbaih, Ahmed; Ducray, François; Lahutte, Marion; Hoang-Xuan, Khê; Delattre, Jean-Yves

    2012-05-26

    Important advances have been made in the understanding and management of adult gliomas and primary CNS lymphomas--the two most common primary brain tumours. Progress in imaging has led to a better analysis of the nature and grade of these tumours. Findings from large phase 3 studies have yielded some standard treatments for gliomas, and have confirmed the prognostic value of specific molecular alterations. High-throughput methods that enable genome-wide analysis of tumours have improved the knowledge of tumour biology, which should lead to a better classification of gliomas and pave the way for so-called targeted therapy trials. Primary CNS lymphomas are a group of rare non-Hodgkin lymphomas. High-dose methotrexate-based regimens increase survival, but the standards of care and the place of whole-brain radiotherapy remain unclear, and are likely to depend on the age of the patient. The focus now is on the development of new polychemotherapy regimens to reduce or defer whole-brain radiotherapy and its delayed complications.

  16. Gaia, an all-sky survey for standard photometry

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.

    2017-03-01

    Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.

  17. Epidemiology of Brain Tumors.

    PubMed

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  18. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals.

  19. Understanding brain networks and brain organization

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz

    2014-09-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. However, as others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal "true" subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different "slices" of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks.

  20. Traumatic brain injury and forensic neuropsychology.

    PubMed

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition.

  1. Fluid markers of traumatic brain injury.

    PubMed

    Zetterberg, Henrik; Blennow, Kaj

    2015-05-01

    Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain. Whereas severe TBI can be diagnosed using a combination of clinical signs and standard neuroimaging techniques, mild TBI (also called concussion) is more difficult to detect. This is where fluid markers of injury to different cell types and subcellular compartments in the central nervous system come into play. These markers are often proteins, peptides or other molecules with selective or high expression in the brain, which can be measured in the cerebrospinal fluid or blood as they leak out or get secreted in response to the injury. Here, we review the literature on fluid markers of neuronal, axonal and astroglial injury to diagnose mild TBI and to predict clinical outcome in patients with head trauma. We also discuss chronic traumatic encephalopathy, a progressive neurodegenerative disease in individuals with a history of multiple mild TBIs in a biomarker context. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  2. Twenty-first century brain banking: at the crossroads.

    PubMed

    Graeber, Manuel B

    2008-05-01

    Brain banks form an increasingly important resource for research. In view of declining autopsy rates, brain banks are also gaining importance for medical diagnostics, quality control and teaching. In the case of neurodegenerative diseases, brain banks have become drivers of discovery and are yielding invaluable taxonomic references for neuropathologists. This article provides comments on two recent landmark papers in the field (Bell JE et al. Acta Neuropathol 2008. doi:10.1007/s00401-008-0358-8; Vonsattel JP et al. Acta Neuropathol 2008. doi:10.1007/s00401-007-0311-9). Professionalisation of brain banking standards, ethical principles safeguarding the running of a brain bank and a proposed code of conduct for brain bank staff are outlined and discussed. Special emphasis is placed on the need to enable sustainability of the human brain tissue resource in the face of increased financial pressures on medical institutions and raised public expectations towards ethical human brain banking in a globalised economic environment. It is proposed that brain banks undergo rigorous international audit as a prerequisite for their registration with the relevant national neuropathological society. This promises to be an important safeguard so that proper standards can be assured when tissue is handed out to commercial companies. Honesty, accountability and complete transparency are mandatory to allow long-lasting success of the brain banking operation by guaranteeing that the best possible use is made of the tissue. Preferred access by private tissue users must be avoided and money must never be allowed to buy access to a brain bank. Since brain banks operate internationally, any mistake made may be felt around the globe and could endanger the public's willingness to donate brains for research. The much-needed increase in the number of control brain donations will only be achievable if broad-based support from the general public can be won and maintained.

  3. Applications in brain proteomics: 8(th) HUPO Brain Proteome Project Workshop 7 October 2007, Seoul, Korea.

    PubMed

    Hamacher, Michael; Stephan, Christian; Hardt, Tanja; Eisenacher, Martin; Henkel, Andreas; Wiltfang, Jens; Jimenez, Connie R; Park, Young Mok; Marcus, Katrin; Meyer, Helmut E

    2008-05-01

    What are the current approaches in brain proteomics? Can we combine different, but complementary study designs to obtain better results concerning brain diseases? What are the neuro-hotspots, especially in Korea? These were some of the questions the participants of the 8(th) HUPO Brain Proteome Project Workshop tried to answer prior to the 6(th) HUPO World Congress in Seoul, Korea. Around 100 scientists came together during the afternoon of 7 October, 2007, to discuss and to catch up on the latest results and strategies concerning Huntington's disease, glioblastoma and standardization.

  4. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  5. Modulating brain oscillations to drive brain function.

    PubMed

    Thut, Gregor

    2014-12-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions.

  6. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  7. Left Brain, Right Brain: Facts and Fantasies

    PubMed Central

    Corballis, Michael C.

    2014-01-01

    Summary Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the “norm” of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal. PMID:24465175

  8. Brain aneurysm repair

    MedlinePlus

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  9. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  10. Genetic Brain Disorders

    MedlinePlus

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  11. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  12. Brain cancer spreads.

    PubMed

    Perryman, Lara; Erler, Janine T

    2014-07-30

    The discovery that ~20% of patients with brain cancer have circulating tumor cells breaks the dogma that these cells are confined to the brain and has important clinical implications (Müller et al., this issue).

  13. Biophysics: Unfolding the brain

    NASA Astrophysics Data System (ADS)

    Kuhl, Ellen

    2016-06-01

    The folded surface of the human brain, although striking, continues to evade understanding. Experiments with swelling gels now fuel the notion that brain folding is modulated by physical forces, and not by genetic, biological or chemical events alone.

  14. Brain Training for Seniors

    MedlinePlus

    ... than 65, stimulating your brain with activities and games can keep your mind sharp later in life ( ... you currently have some form of dementia, brain games and “active mind” activity can still help.There ...

  15. Arts with the Brain in Mind.

    ERIC Educational Resources Information Center

    Jensen, Eric

    To push for higher standards of learning, many policymakers are eliminating arts programs. This book presents the definitive case, based on what is known about the brain and learning, for making the arts a core part of the basic curriculum and thoughtfully integrating them into every subject. Separate chapters address musical, visual, and…

  16. Resonance of human brain under head acceleration

    PubMed Central

    Laksari, Kaveh; Wu, Lyndia C.; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C.

    2015-01-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull–brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull–brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain–skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  17. [Brain death, bioethics and organ transplantation].

    PubMed

    Flores, Juan Carlos; Pérez, Manuel; Thambo, Sergio; Valdivieso, Andrés

    2004-01-01

    The concept of death has evolved medically, legally and culturally since the introduction of life support technologies in the middle of the 20th century. The traditional cardiopulmonary and the new neurologically based brain death criterions of death are examined. We conclude that brain death, defined as total and irreversible loss of function of the whole brain, fulfills better "the permanent cessation of functioning of the organism as a whole" definition of death. Brain death diagnosis, based on standard neurologic clinical examination performed accurately, is unequivocal. Transplantation medicine, mostly based on organ donation of brain dead people, has become a routine and universally accepted therapeutic intervention nowadays, which benefits many people. Ethics foundations of organ transplantation are reviewed. Even though brain death and organ donation are widely accepted in medical, legal, religious and public opinion today, the whole society and medical community need to be further educated about these matters, so that unavoidable changes of traditional concepts might be better understood. Permanent education should be the best way to dissipate social fears and distrust towards organ donation and brain death.

  18. MEG Frequency Analysis Depicts the Impaired Neurophysiological Condition of Ischemic Brain

    PubMed Central

    Ikeda, Hidetoshi; Tsuyuguchi, Naohiro; Uda, Takehiro; Okumura, Eiichi; Asakawa, Takashi; Haruta, Yasuhiro; Nishiyama, Hideki; Okada, Toyoji; Kamada, Hajime; Ohata, Kenji; Miki, Yukio

    2016-01-01

    Purpose Quantitative imaging of neuromagnetic fields based on automated region of interest (ROI) setting was analyzed to determine the characteristics of cerebral neural activity in ischemic areas. Methods Magnetoencephalography (MEG) was used to evaluate spontaneous neuromagnetic fields in the ischemic areas of 37 patients with unilateral internal carotid artery (ICA) occlusive disease. Voxel-based time-averaged intensity of slow waves was obtained in two frequency bands (0.3–4 Hz and 4–8 Hz) using standardized low-resolution brain electromagnetic tomography (sLORETA) modified for a quantifiable method (sLORETA-qm). ROIs were automatically applied to the anterior cerebral artery (ACA), anterior middle cerebral artery (MCAa), posterior middle cerebral artery (MCAp), and posterior cerebral artery (PCA) using statistical parametric mapping (SPM). Positron emission tomography with 15O-gas inhalation (15O-PET) was also performed to evaluate cerebral blood flow (CBF) and oxygen extraction fraction (OEF). Statistical analyses were performed using laterality index of MEG and 15O-PET in each ROI with respect to distribution and intensity. Results MEG revealed statistically significant laterality in affected MCA regions, including 4–8 Hz waves in MCAa, and 0.3–4 Hz and 4–8 Hz waves in MCAp (95% confidence interval: 0.020–0.190, 0.030–0.207, and 0.034–0.213), respectively. We found that 0.3–4 Hz waves in MCAp were highly correlated with CBF in MCAa and MCAp (r = 0.74, r = 0.68, respectively), whereas 4–8 Hz waves were moderately correlated with CBF in both the MCAa and MCAp (r = 0.60, r = 0.63, respectively). We also found that 4–8 Hz waves in MCAp were statistically significant for misery perfusion identified on 15O-PET (p<0.05). Conclusions Quantitatively imaged spontaneous neuromagnetic fields using the automated ROI setting enabled clear depiction of cerebral ischemic areas. Frequency analysis may reveal unique neural activity that is distributed in

  19. Intra-operative probe for brain cancer: feasibility study

    NASA Astrophysics Data System (ADS)

    Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.

    2007-07-01

    The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.

  20. Operation Brain Trauma Therapy

    DTIC Science & Technology

    2014-10-01

    et al. Statins and neuroprotectants: A comparatife in vitro study of lipopholicity, blood-brain barrier penetration, lowering of brain cholesterol ...heterogeneous disease involving multiple brain injury phenotypes and that success of an agent tested across multiple established TBI models using an...coenzyme A (HMG CoA) reductase inhibitor Simvastatin reduces serum cholesterol but also inhibits neuro-inflammation and has possible effects on brain

  1. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  2. Brain Death Determination.

    PubMed

    Spinello, Irene M

    2015-09-01

    In the United States, each year 1% to 2% of deaths are brain deaths. Considerable variation in the practice of determining brain death still remains, despite the publication of practice parameters in 1995 and an evidence-based guideline update in 2010. This review is intended to give bedside clinicians an overview of definition, the causes and pitfalls of misdiagnosing brain death, and a focus on the specifics of the brain death determination process.

  3. Your Brain and Nervous System

    MedlinePlus

    ... los dientes Video: Getting an X-ray Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  4. Primary lymphoma of the brain

    MedlinePlus

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  5. Your Brain and Nervous System

    MedlinePlus

    ... Room? What Happens in the Operating Room? Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  6. Brain and Language.

    ERIC Educational Resources Information Center

    Damasio, Antonio R., Damasio, Hanna

    1992-01-01

    Discusses the advances made in understanding the brain structures responsible for language. Presents findings made using magnetic resonance imaging (MRI) and positron emission tomographic (PET) scans to study brain activity. These findings map the structures in the brain that manipulate concepts and those that turn concepts into words. (MCO)

  7. Brain Migration Revisited

    ERIC Educational Resources Information Center

    Vinokur, Annie

    2006-01-01

    The "brain drain/brain gain" debate has been going on for the past 40 years, with irresolvable theoretical disputes and unenforceable policy recommendations that economists commonly ascribe to the lack of reliable empirical data. The recent report of the World Bank, "International migration, remittances and the brain drain", documents the…

  8. Our Amazing Brains

    ERIC Educational Resources Information Center

    Bath, Howard

    2005-01-01

    This article begins a regular series on how brain research can help us understand young people and ourselves as well. The intent is to alert the reader to important information from recent research on the brain. This initial installment explores the concept of the triune brain, a term coined by neuroscientist Paul MacLean. This refers to three…

  9. Australian Brain Alliance.

    PubMed

    2016-11-02

    A proposal for an Australian Brain Initiative (ABI) is under development by members of the Australian Brain Alliance. Here we discuss the goals of the ABI, its areas of research focus, its context in the Australian research setting, and its necessity for ensuring continued success for Australian brain research.

  10. Brain Research and Learning.

    ERIC Educational Resources Information Center

    Claycomb, Mary

    Current research on brain activity has many implications for educators. The triune brain concept and the left and right hemisphere concepts are among the many complex theories evolving from experimentation and observation. The triune brain concept suggests that the human forebrain has expanded while retaining three structurally unique formations…

  11. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  12. The HUPO Brain Proteome Project--no need to hurry?

    PubMed

    Hamacher, M; Marcus, K; van Hall, A; Meyer, H E; Stephan, C

    2006-08-01

    The HUPO Brain Proteome Project (HUPO BPP) is dedicated to the analysis of the brain proteome and has initiated two pilot studies in order to elaborate a standardised system for data collection and reprocessing. Samples of mouse brains (different developmental stages) and human brain tissue (biopsy and post-mortem samples) were shipped to different laboratories in Europe, Asia and the US that were invited to identify as many proteins as possible using their own approaches. In addition, a centralised data reprocessing strategy has been elaborated in an iterative way to generate highly reliable lists of identified proteins. This consortium could be a good example for a standardized proteomics workflow.

  13. Standards 101: The ASA Standards program

    NASA Astrophysics Data System (ADS)

    Schomer, Paul

    2001-05-01

    ASA serves as a standards developer under the auspices of the American National Standards Institute (ANSI). The Standards Program is organized through four technical committees (S1, S2, S3, and S12) and one administrative committee (ASACOS). S1 deals with physical acoustics, S2 deals with shock and vibration, S3 deals with physiological and psychological acoustics and S12 deals with noise. ASACOS is the ASA Committee on Standards. The program has three primary tasks: (1) development of national standards (ANSI Standards), (2) national adoption of international standards (ANSI NAIS Standards), (3) providing the USA input to the development of international standards (ISO and IEC Standards). At every level the main work is accomplished in Working Groups (WG) that are staffed by hundreds of volunteers, mainly ASA members from its various technical committees such as Noise, Physical Acoustics, Architectural Acoustics, Physiological and Psychological Acoustics, etc. Overall, the Standards Program involves more ASA members than does any other single function of the society except meetings. It is the biggest outreach function of ASA affecting the health, welfare, and economic well-being of large sectors of society. It is a main way the ASA diffuses the knowledge of acoustics and its practical application, perhaps the main way.

  14. Standards 101: The ASA Standards program

    NASA Astrophysics Data System (ADS)

    Schomer, Paul

    2004-05-01

    ASA serves as a standards developer under the auspices of the American National Standards Institute (ANSI). The Standards Program is organized through four technical committees (S1, S2, S3, and S12) and one administrative committee (ASACOS). S1 deals with physical acoustics, S2 deals with shock and vibration, S3 deals with physiological and psychological acoustics and S12 deals with noise. ASACOS is the ASA Committee on Standards. The program has three primary tasks: (1) development of national standards (ANSI Standards), (2) national adoption of international standards (ANSI NAIS Standards), (3) providing the USA input to the development of international standards (ISO and IEC Standards). At every level the main work is accomplished in Working Groups (WG) that are staffed by hundreds of volunteers, mainly ASA members from its various technical committees such as Noise, Physical Acoustics, Architectural Acoustics, Physiological and Psychological Acoustics, etc. Overall, the Standards Program involves more ASA members than does any other single function of the society except meetings. It is the biggest outreach function of ASA affecting the health, welfare, and economic well-being of large sectors of society. It is a main way the ASA diffuses the knowledge of acoustics and its practical application, perhaps the main way.

  15. Standards 101; the ASA standards program

    NASA Astrophysics Data System (ADS)

    Schomer, Paul D.

    2002-11-01

    ASA supports the development of standards by serving as the secretariat for standards committees of the American National Standards Institute (ANSI). The program is organized through four ANSI technical committees (S1, S2, S3, and S12) and one administrative committee (ASACOS). S1 deals with physical acoustics, S2 deals with shock and vibration, S3 deals with physiological and psychological acoustics, and S12 deals with noise. ASACOS is the ASA Committee on Standards. The program has three primary tasks: (1) the development of National Standards (ANSI Standards), (2) the national adoption of an international standard (ANSI NAIS Standards), (3) providing the USA input to the development of International Standards (ISO and IEC Standards). At every level the main work is accomplished in Working Groups (WG) that are ''staffed'' by hundreds of volunteers--mainly ASA members from its various technical committees such as Noise, Physical Acoustics, Architectural Acoustics, Psychological and Physiological Acoustics, etc. Overall, the Standards Program involves more ASA members than does any other single function of the Society except meetings and it is the biggest outreach function of ASA affecting the health, welfare, and economic well-being of large segments of the population, the business and industrial community, and government at all levels.

  16. Brain plasticity in the developing brain.

    PubMed

    Kolb, Bryan; Mychasiuk, Richelle; Muhammad, Arif; Gibb, Robbin

    2013-01-01

    The developing normal brain shows a remarkable capacity for plastic change in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, parent-child relationships, peer relationships, stress, gonadal hormones, intestinal flora, diet, and injury. The effects of injury vary with the precise age-at-injury, with the general result being that injury during cell migration and neuronal maturation has a poor functional outcome, whereas similar injury during synaptogenesis has a far better outcome. A variety of factors influence functional outcome including the nature of the behavior in question and the age at behavioral assessment as well as pre- and postinjury experiences. Here, we review the phases of brain development, how factors influence brain, and behavioral development in both the normal and perturbed brain, and propose mechanisms that may underlie these effects.

  17. Quantitative EEG and neurofeedback in children and adolescents: anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury.

    PubMed

    Simkin, Deborah R; Thatcher, Robert W; Lubar, Joel

    2014-07-01

    This article explores the science surrounding neurofeedback. Both surface neurofeedback (using 2-4 electrodes) and newer interventions, such as real-time z-score neurofeedback (electroencephalogram [EEG] biofeedback) and low-resolution electromagnetic tomography neurofeedback, are reviewed. The limited literature on neurofeedback research in children and adolescents is discussed regarding treatment of anxiety, mood, addiction (with comorbid attention-deficit/hyperactivity disorder), and traumatic brain injury. Future potential applications, the use of quantitative EEG for determining which patients will be responsive to medications, the role of randomized controlled studies in neurofeedback research, and sensible clinical guidelines are considered.

  18. Hemispherical map for the human brain cortex

    NASA Astrophysics Data System (ADS)

    Tosun, Duygu; Prince, Jerry L.

    2001-07-01

    Understanding the function of the human brain cortex is a primary goal in human brain mapping. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in previous literature; but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. We describe a new approach that maps each hemisphere of the cortex to a portion of a sphere in a standard way, making comparison of anatomy and function across different subjects possible. Starting with a three-dimensional magnetic resonance image of the brain, the cortex is segmented and represented as a triangle mesh. Defining a cut around the corpus collosum identifies the left and right hemispheres. Together, the two hemispheres are mapped to the complex plane using a conformal mapping technique. A Mobius transformation, which is conformal, is used to transform the points on the complex plane so that a projective transformation maps each brain hemisphere onto a spherical segment comprising a sphere with a cap removed. We determined the best size of the spherical cap by minimizing the relative area distortion between hemispherical maps and original cortical surfaces. The relative area distortion between the hemispherical maps and the original cortical surfaces for fifteen human brains is analyzed.

  19. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    PubMed

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  20. Robotic multimodality stereotactic brain tissue identification: work in progress

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Galvagni, A.; Guerrero, M.; Papasin, R.; Wallace, M.; Winters, J.

    1997-01-01

    Real-time identification of tissue would improve procedures such as stereotactic brain biopsy (SBX), functional and implantation neurosurgery, and brain tumor excision. To standard SBX equipment has been added: (1) computer-controlled stepper motors to drive the biopsy needle/probe precisely; (2) multiple microprobes to track tissue density, detect blood vessels and changes in blood flow, and distinguish the various tissues being penetrated; (3) neural net learning programs to allow real-time comparisons of current data with a normative data bank; (4) three-dimensional graphic displays to follow the probe as it traverses brain tissue. The probe can differentiate substances such as pig brain, differing consistencies of the 'brain-like' foodstuff tofu, and gels made to simulate brain, as well as detect blood vessels imbedded in these substances. Multimodality probes should improve the safety, efficacy, and diagnostic accuracy of SBX and other neurosurgical procedures.

  1. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  2. Surface-based functional magnetic resonance imaging analysis of partial brain echo planar imaging data at 1.5 T.

    PubMed

    Jo, Hang Joon; Lee, Jong-Min; Kim, Jae-Hun; Choi, Chi-Hoon; Kang, Do-Hyung; Kwon, Jun Soo; Kim, Sun I

    2009-06-01

    Surface-based functional magnetic resonance imaging (fMRI) analysis is more sensitive and accurate than volume-based analysis for detecting neural activation. However, these advantages are less important in practical fMRI experiments with commonly used 1.5-T magnetic resonance devices because of the resolution gap between the echo planar imaging data and the cortical surface models. We expected high-resolution segmented partial brain echo planar imaging (EPI) data to overcome this problem, and the activation patterns of the high-resolution data could be different from the low-resolution data. For the practical applications of surface-based fMRI analysis using segmented EPI techniques, the effects of some important factors (e.g., activation patterns, registration and local distortions) should be intensively evaluated because the results of surface-based fMRI analyses could be influenced by them. In this study, we demonstrated the difference between activations detected from low-resolution EPI data, which were covering whole brain, and high-resolution segmented EPI data covering partial brain by volume- and surface-based analysis methods. First, we compared the activation maps of low- and high-resolution EPI datasets detected by volume- and surface-based analyses, with the spatial patterns of activation clusters, and analyzed the distributions of activations in occipital lobes. We also analyzed the high-resolution EPI data covering motor areas and fusiform gyri of human brain, and presented the differences of activations detected by volume- and surface-based methods.

  3. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  4. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  5. Smart Moves: Powering up the Brain with Physical Activity

    ERIC Educational Resources Information Center

    Conyers, Marcus; Wilson, Donna

    2015-01-01

    The Common Core State Standards emphasize higher-order thinking, problem solving, and the creation, retention, and application of knowledge. Achieving these standards creates greater cognitive demands on students. Recent research suggests that active play and regular exercise have a positive effect on brain regions associated with executive…

  6. Left Brain, Right Brain, Super Brain: The Holistic Model.

    ERIC Educational Resources Information Center

    Yellin, David

    Recent discoveries about the whole brain seem to call for a holistic approach to learning, one in which educators would teach the whole person, including physical and emotional states as well as cognitive abilities. Three holistic techniques are particularly relevant to education: (1) biofeedback; (2) yoga; and (3) the Lozanov method. Biofeedback…

  7. Consciousness, brain, neuroplasticity

    PubMed Central

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training. PMID:23847580

  8. Brain Stimulation in Addiction.

    PubMed

    Salling, Michael C; Martinez, Diana

    2016-11-01

    Localized stimulation of the human brain to treat neuropsychiatric disorders has been in place for over 20 years. Although these methods have been used to a greater extent for mood and movement disorders, recent work has explored brain stimulation methods as potential treatments for addiction. The rationale behind stimulation therapy in addiction involves reestablishing normal brain function in target regions in an effort to dampen addictive behaviors. In this review, we present the rationale and studies investigating brain stimulation in addiction, including transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Overall, these studies indicate that brain stimulation has an acute effect on craving for drugs and alcohol, but few studies have investigated the effect of brain stimulation on actual drug and alcohol use or relapse. Stimulation therapies may achieve their effect through direct or indirect modulation of brain regions involved in addiction, either acutely or through plastic changes in neuronal transmission. Although these mechanisms are not well understood, further identification of the underlying neurobiology of addiction and rigorous evaluation of brain stimulation methods has the potential for unlocking an effective, long-term treatment of addiction.

  9. Consciousness, brain, neuroplasticity.

    PubMed

    Askenasy, Jean; Lehmann, Joseph

    2013-01-01

    Subjectivity, intentionality, self-awareness and will are major components of consciousness in human beings. Changes in consciousness and its content following different brain processes and malfunction have long been studied. Cognitive sciences assume that brain activities have an infrastructure, but there is also evidence that consciousness itself may change this infrastructure. The two-way influence between brain and consciousness has been at the center of philosophy and less so, of science. This so-called bottom-up and top-down interrelationship is controversial and is the subject of our article. We would like to ask: how does it happen that consciousness may provoke structural changes in the brain? The living brain means continuous changes at the synaptic level with every new experience, with every new process of learning, memorizing or mastering new and existing skills. Synapses are generated and dissolved, while others are preserved, in an ever-changing process of so-called neuroplasticity. Ongoing processes of synaptic reinforcements and decay occur during wakefulness when consciousness is present, but also during sleep when it is mostly absent. We suggest that consciousness influences brain neuroplasticity both during wakefulness as well as sleep in a top-down way. This means that consciousness really activates synaptic flow and changes brain structures and functional organization. The dynamic impact of consciousness on brain never stops despite the relative stationary structure of the brain. Such a process can be a target for medical intervention, e.g., by cognitive training.

  10. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders.

    PubMed

    Nithianantharajah, Jess; Hannan, Anthony J

    2009-12-01

    The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.

  11. Using 3-D shape models to guide segmentation of MR brain images.

    PubMed Central

    Hinshaw, K. P.; Brinkley, J. F.

    1997-01-01

    Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9357670

  12. International Standardization of Bed Rest Standard Measures

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2010-01-01

    This slide presentation gives an overview of the standardization of bed rest measures. The International Countermeasures Working Group attempted to define and agree internationally on standard measurements for spaceflight based bed rest studies. The group identified the experts amongst several stakeholder agencys. It included information on exercise, muscle, neurological, psychological, bone and cardiovascular measures.

  13. Arizona Academic Standards, Kindergarten

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2007

    2007-01-01

    This publication contains Arizona public schools' academic standards for kindergarten. The contents of this document include the following: (1) The Arts Standard 2006--Kindergarten; (2) Comprehensive Health Education/Physical Activity Standards 1997--Readiness (Kindergarten); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8);…

  14. Standards for holdup measurement

    SciTech Connect

    Zucker, M.S.

    1982-01-01

    Holdup measurement, needed for material balance, depend intensively on standards and on interpretation of the calibration procedure. More than other measurements, the calibration procedure using the standard becomes part of the standard. Standards practical for field use and calibration techniques have been developed. While accuracy in holdup measurements is comparatively poor, avoidance of bias is a necessary goal.

  15. Arizona Academic Standards: Kindergarten

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for kindergarten. The contents of this document include the following: (1) The Arts Standard 2006--Kindergarten; (2) Comprehensive Health Education/Physical Activity Standards 1997--Readiness (Kindergarten); (3) Foreign and Native Language Standards 1997--Readiness…

  16. Metabolic profiling of Alzheimer's disease brains

    NASA Astrophysics Data System (ADS)

    Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa

    2013-08-01

    Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.

  17. Test-retest reliability of white matter structural brain networks: a multiband diffusion MRI study.

    PubMed

    Zhao, Tengda; Duan, Fei; Liao, Xuhong; Dai, Zhengjia; Cao, Miao; He, Yong; Shu, Ni

    2015-01-01

    The multiband EPI sequence has been developed for the human connectome project to accelerate MRI data acquisition. However, no study has yet investigated the test-retest (TRT) reliability of the graph metrics of white matter (WM) structural brain networks constructed from this new sequence. Here, we employed a multiband diffusion MRI (dMRI) dataset with repeated scanning sessions and constructed both low- and high-resolution WM networks by volume- and surface-based parcellation methods. The reproducibility of network metrics and its dependence on type of construction procedures was assessed by the intra-class correlation coefficient (ICC). We observed conserved topological architecture of WM structural networks constructed from the multiband dMRI data as previous findings from conventional dMRI. For the global network properties, the first order metrics were more reliable than second order metrics. Between two parcellation methods, networks with volume-based parcellation showed better reliability than surface-based parcellation, especially for the global metrics. Between different resolutions, the high-resolution network exhibited higher TRT performance than the low-resolution in terms of the global metrics with a large effect size, whereas the low-resolution performs better in terms of local (region and connection) properties with a relatively low effect size. Moreover, we identified that the association and primary cortices showed higher reproducibility than the paralimbic/limbic regions. The important hub regions and rich-club connections are more reliable than the non-hub regions and connections. Finally, we found WM networks from the multiband dMRI showed higher reproducibility compared with those from the conventional dMRI. Together, our results demonstrated the fair to good reliability of the WM structural brain networks from the multiband EPI sequence, suggesting its potential utility for exploring individual differences and for clinical applications.

  18. Standards for contamination control

    NASA Astrophysics Data System (ADS)

    Borson, Eugene N.

    2004-10-01

    Standards are an important component of national and international trade. We depend upon standards to assure that manufactured parts will work together, wherever they are made, and that we speak the same technical language, no matter what language we speak. Understanding is important in order to know when to take exceptions to or tailor the standard to fit the job. Standards that are used in contamination control have increased in numbers over the years as more industries have had to improve their manufacturing processes to enhance reliability or yields of products. Some older standards have been revised to include new technologies, and many new standards have been developed. Some of the new standards were written for specific industries while others apply to many industries. Many government standards have been replaced with standards from nongovernmental standards organizations. This trend has been encouraged by U.S. law that requires the government to use commercial standards where possible. This paper reviews some of the more important standards for the aerospace industry, such as IEST-STD-CC1246 and ISO 14644-1, that have been published in recent years. Benefits, usage, and problems with some standards will be discussed. Some standards are referenced, and websites of some standards organizations are listed.

  19. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion

  20. Brain Pressure Monitoring

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transducer originally used to measure air pressure in aircraft wind tunnel tests is the basis for a development important in diagnosis and treatment of certain types of brain damage. A totally implantable device, tbe intracranial pressure monitor measures and reports brain pressure by telemetry.

  1. Split Brain Functioning.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    1978-01-01

    Summarizing recent research, this article defines the functions performed by the left and right sides of the human brain. Attention is given to the right side, or the nondominant side, of the brain and its potential in terms of perception of the environment, music, art, geometry, and the aesthetics. (JC)

  2. The Emerging Scholarly Brain

    NASA Astrophysics Data System (ADS)

    Kurtz, Michael J.

    It is now a commonplace observation that human society is becoming a coherent super-organism, and that the information infrastructure forms its emerging brain. Perhaps, as the underlying technologies are likely to become billions of times more powerful than those we have today, we could say that we are now building the lizard brain for the future organism.

  3. Brain and Nervous System

    MedlinePlus

    ... other regions of the brain (such as the hippocampus and amygdala) for long-term storage and retrieval. As these messages travel through the brain, they too create pathways that serve as the basis of our memory. Movement. Different parts of the cerebrum are responsible ...

  4. Demystifying the Adolescent Brain

    ERIC Educational Resources Information Center

    Steinberg, Laurence

    2011-01-01

    Understanding the nature of brain development in adolescence helps explain why adolescents can vacillate so often between mature and immature behavior. Early and middle adolescence, in particular, are times of heightened vulnerability to risky and reckless behavior because the brain's reward center is easily aroused, but the systems that control…

  5. Brain Friendly School Libraries

    ERIC Educational Resources Information Center

    Sykes, Judith Anne

    2006-01-01

    This title gives concrete practical examples of how to align school library programs and instructional practice with the six key concepts of brain-compatible learning: increasing input to the brain; increasing experiential data; multiple source feedback; reducing threat; involving students in learning decision making; and interdisciplinary unit…

  6. Inside the Adolescent Brain

    ERIC Educational Resources Information Center

    Drury, Stacy S.

    2009-01-01

    Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.

  7. Imaging the Working Brain.

    ERIC Educational Resources Information Center

    Swithenby, S. J.

    1996-01-01

    Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)

  8. Drugs and the Brain.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHHS), Bethesda, MD.

    This booklet explores various aspects of drug addiction, with a special focus on drugs' effects on the brain. A brief introduction presents information on the rampant use of drugs in society and elaborates the distinction between drug abuse and drug addiction. Next, a detailed analysis of the brain and its functions is given. Drugs target the more…

  9. Measuring brain lipids.

    PubMed

    Dawson, Glyn

    2015-08-01

    The rapid development of analytical technology has made lipidomics an exciting new area and this review will focus more on modern approaches to lipidomics than on earlier technology. Although not fully comprehensive for all possible brain lipids, the intent is to at least provide a reference for the analysis of classes of lipids found in brain and nervous tissue. We will discuss problems posed by the brain because of its structural and functional heterogeneity, the development changes it undergoes (myelination, aging, pathology etc.) and its cellular heterogeneity (neurons, glia etc.). Section 2 will discuss the various ways in which brain tissue can be extracted to yield lipids for analysis and section 3 will cover a wide range of techniques used to analyze brain lipids such as chromatography and mass-spectrometry. In Section 4 we will discuss ways of analyzing some of the specific biologically active brain lipids found in very small amounts except in pathological conditions and section 5 looks to the future of experimental lipidomic modification in the brain. This article is part of a Special Issue entitled Brain Lipids.

  10. What a Brain!

    ERIC Educational Resources Information Center

    Love, Kim

    1997-01-01

    Outlines basic concepts about how the brain develops and considers how Head Start teachers and parents can take full advantage of the brain's multisensory learning approach to develop more effective ways to interact with children. Focuses on the critical developmental period for stimulating neurons and developing neural connections. Suggests…

  11. [Brain death diagnosis].

    PubMed

    Escudero, Dolores

    2009-05-01

    Brain death has been recognized by the scientific community as the person's death, and accepted in the legislation of different countries. Brain death is defined as the irreversible ending of the functions of all the intracranial neurological structure in both the brain and brain stem. This clinical situation appears when intracranial pressure exceeds the patient's systolic blood pressure, leading to brain circulatory arrest. The most frequent are cerebral hemorrhage and cranioencephalic trauma. Clinical diagnostic must be done by doctors with expertise in neurocritical patient treatment. This diagnosis is based on a systematic, complete and extremely rigorous clinical examination that confirms a non-reactive coma, absence of brain stem reflex, and absence of spontaneous breathing. Instrumental tests may be obligatory in some cases, this depending on each country. Electroencephalogram and evoked potentials are the electrophysiological tests used. In patients treated with sedative drugs, cerebral blood flow evaluation tests, such as cerebral angiography, transcranial Doppler or 99Tc-HMPAO scintigraphy, will be used. More than 92% of the transplants performed in Spain are performed with brain death donor organs. Brain death confirmation is a high responsibility act, with medical, ethical and legal significance since it requires removal of all artificial support, or organs extraction for transplant. Extensive knowledge on its diagnostic and correct decision making avoid unnecessary use of resources and improves management of organs for transplant.

  12. The Resilient Brain

    ERIC Educational Resources Information Center

    Brendtro, Larry K.; Longhurst, James E.

    2005-01-01

    Brain research opens new frontiers in working with children and youth experiencing conflict in school and community. Blending this knowledge with resilience science offers a roadmap for reclaiming those identified as "at risk." This article applies findings from resilience research and recent brain research to identify strategies for reaching…

  13. Feed Your Brain!

    ERIC Educational Resources Information Center

    Failmezger, Tammie L.

    2006-01-01

    Language arts teachers and library media specialists bear the responsibility of teaching students how to properly feed their brains. In this article, the author describes how she teaches her students to make wise choices when selecting books. Furthermore, she presents the "Brain Food Pyramid" model that looks similar to the food pyramid but it…

  14. Brain imaging in psychiatry

    SciTech Connect

    Morihisa, J.M.

    1984-01-01

    This book contains the following five chapters: Positron Emission Tomography (PET) in Psychiatry; Regional Cerebral Blood Flow (CBF) in Psychiatry: Methodological Issues; Regional Cerebral Blood Flow in Psychiatry: Application to Clinical Research; Regional Cerebral Blood Flow in Psychiatry: The Resting and Activated Brains of Schizophrenic Patients; and Brain Electrical Activity Mapping (BEAM) in Psychiatry.

  15. A Child's Brain. Part I.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1982-01-01

    The first of a series of articles on the human brain focuses on the cyclic nature of brain development. Educational and social issues evolving from current discoveries about the brain are also discussed. (CJ)

  16. Traumatic Brain Injury and Dystonia

    MedlinePlus

    Traumatic Brain Injury & Dystonia Traumatic brain injury (TBI) occurs when a sudden trauma damages to the brain. TBI can occur when the head suddenly and violently hits an object, or when an object pierces the skull and ...

  17. Brain Vascular Imaging Techniques

    PubMed Central

    Laviña, Bàrbara

    2016-01-01

    Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases. PMID:28042833

  18. Low-resolution gamma-ray measurements of uranium enrichment

    SciTech Connect

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-11-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the {sup 211}U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals.

  19. High-Resolution Data for a Low-Resolution World

    SciTech Connect

    Brady, Brendan Williams

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  20. On the calibration of the IRAS low-resolution spectra

    NASA Technical Reports Server (NTRS)

    Volk, Kevin; Cohen, Martin

    1989-01-01

    The need for corrections to the LRS spectra based on a study of a number of normal stars observed by IRAS is discussed. The spectra of bright stars, such as alpha CMa, were found to be inconsistent with blackbody sources, this effect being generally observed in sources earlier than about K3. An attempt is made to correct the LRS spectra by changing the blackbody calibration temperature for Alpha Tau, assumed to be a 10,000-K blackbody source for the original LRS flux calibration. It is found that an anomalously low color temperature must be assumed for alpha Tau to produce reasonable results for earlier-type stars. Corrections based on a set of stars with well-determined effective temperatures are examined, as are the resulting color temperatures for 72 stars with Atlas spectra.

  1. Estimating stellar wind parameters from low-resolution magnetograms

    NASA Astrophysics Data System (ADS)

    Jardine, M.; Vidotto, A. A.; See, V.

    2017-02-01

    Stellar winds govern the angular momentum evolution of solar-like stars throughout their main-sequence lifetime. The efficiency of this process depends on the geometry of the star's magnetic field. There has been a rapid increase recently in the number of stars for which this geometry can be determined through spectropolarimetry. We present a computationally efficient method to determine the 3D geometry of the stellar wind and to estimate the mass-loss rate and angular momentum loss rate based on these observations. Using solar magnetograms as examples, we quantify the extent to which the values obtained are affected by the limited spatial resolution of stellar observations. We find that for a typical stellar surface resolution of 20o-30o, predicted wind speeds are within 5 per cent of the value at full resolution. Mass-loss rates and angular momentum loss rates are within 5-20 per cent. In contrast, the predicted X-ray emission measures can be underestimated by one-to-two orders of magnitude, and their rotational modulations by 10-20 per cent.

  2. Intraoperative virtual brain counseling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando

    1997-06-01

    Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.

  3. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  4. Reviving brain death: a functionalist view.

    PubMed

    Lipuma, Samuel H; DeMarco, Joseph P

    2013-10-01

    Recently both whole brain death (WBD) and higher brain death (HBD) have come under attack. These attacks, we argue, are successful, leaving supporters of both views without a firm foundation. This state of affairs has been described as "the death of brain death." Returning to a cardiopulmonary definition presents problems we also find unacceptable. Instead, we attempt to revive brain death by offering a novel and more coherent standard of death based on the permanent cessation of mental processing. This approach works, we claim, by being functionalist instead of being based in biology, consciousness, or personhood. We begin by explaining why an objective biological determination of death fails. We continue by similarly rejecting current arguments offered in support of HBD, which rely on consciousness and/or personhood. In the final section, we explain and defend our functionalist view of death. Our definition centers on mental processing, both conscious and preconscious or unconscious. This view provides the philosophical basis of a functional definition that most accurately reflects the original spirit of brain death when first proposed in the Harvard criteria of 1968.

  5. Standards, Standards, Standards: The Unintended Consequences of Widening Participation?

    ERIC Educational Resources Information Center

    Stuart, Mary

    2002-01-01

    Debate over widening access to higher education is narrowing to a focus on preservation of standards. Examination of the discourses of school policy, classroom environment, and peer culture shows how these competing cultures can work against efforts to increase participation. (Contains 17 references.) (SK)

  6. Lutein and Brain Function

    PubMed Central

    Erdman, John W.; Smith, Joshua W.; Kuchan, Matthew J.; Mohn, Emily S.; Johnson, Elizabeth J.; Rubakhin, Stanislav S.; Wang, Lin; Sweedler, Jonathan V.; Neuringer, Martha

    2015-01-01

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities. PMID:26566524

  7. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  8. Water Quality Standards Handbook

    EPA Pesticide Factsheets

    The Water Quality Standards Handbook is a compilation of the EPA's water quality standards (WQS) program guidance including recommendations for states, authorized tribes, and territories in reviewing, revising, and implementing WQS.

  9. Medical Assisting Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the medical assisting program in Georgia. The standards are divided into 12 categories; Foundations (philosophy, purpose, goals, program objectives, availability, evaluation); Admissions (admission requirements, provisional admission requirements, recruitment, evaluation and planning); Program…

  10. The Brain from Within

    PubMed Central

    di Porzio, Umberto

    2016-01-01

    Functional magnetic resonance imaging (fMRI) provides a powerful way to visualize brain functions and observe brain activity in response to tasks or thoughts. It allows displaying brain damages that can be quantified and linked to neurobehavioral deficits. fMRI can potentially draw a new cartography of brain functional areas, allow us to understand aspects of brain function evolution or even breach the wall into cognition and consciousness. However, fMRI is not deprived of pitfalls, such as limitation in spatial resolution, poor reproducibility, different time scales of fMRI measurements and neuron action potentials, low statistical values. Thus, caution is needed in the assessment of fMRI results and conclusions. Additional diagnostic techniques based on MRI such as arterial spin labeling (ASL) and the measurement of diffusion tensor imaging (DTI) provide new tools to assess normal brain development or disruption of anatomical networks in diseases. A cutting edge of recent research uses fMRI techniques to establish a “map” of neural connections in the brain, or “connectome”. It will help to develop a map of neural connections and thus understand the operation of the network. New applications combining fMRI and real time visualization of one’s own brain activity (rtfMRI) could empower individuals to modify brain response and thus could enable researchers or institutions to intervene in the modification of an individual behavior. The latter in particular, as well as the concern about the confidentiality and storage of sensitive information or fMRI and lie detectors forensic use, raises new ethical questions. PMID:27375460

  11. Bilirubin oxidation in brain.

    PubMed

    Hansen, T W

    2000-01-01

    Bilirubin is a product of heme catabolism which by virtue of its lipid solubility can cross the blood-brain barrier and enter the brain. Neonatal jaundice is a common transitional phenomenon which is due to the combination of increased heme catabolism and rate limitations as far as hepatic conjugation and biliary excretion of bilirubin. In the great majority of cases this is an innocuous condition, which is even posited to have some beneficial effects due to the ability of bilirubin to quench free oxygen radicals. However, because bilirubin is neurotoxic, hyperbilirubinemia in the newborn may exceptionally result in death in the neonatal period, or survival with severe neurological sequelae (kernicterus). Bilirubin enters the brain through an intact blood-brain barrier. Clearance of bilirubin from brain partly involves retro-transfer through the blood-brain barrier, and possibly also through the brain-CSF barrier into CSF. Work in our lab during the past 5 years has substantiated earlier work which had suggested that bilirubin may also be metabolized in brain. The responsible enzyme is found on the inner mitochondrial membrane, and oxidizes bilirubin at a rate of 100-300 pmol bilirubin/mg protein/minute. The enzyme activity is lower in the newborn compared with the mature animal, and is also lower in neurons compared with glia. Studies of different rat strains have documented genetic variability. The enzyme is cytochrome-c-dependent, but has as yet not been unequivocally identified. The rate of oxidation of bilirubin is such that this enzyme probably contributes meaningfully to the clearance of bilirubin from brain.

  12. International dental standards.

    PubMed

    Jones, Derek W

    2007-09-22

    International dental standards are vital in maintaining the safety and quality of both the products and materials used by dental professionals and the many oral health products used by members of the general public, yet many dentists will be unaware of the role standards play in their daily practice. In this article, Derek W. Jones outlines the vital work of the International Standards Organization and highlights how standards pervade nearly every dental procedure.

  13. Artificial selection on relative brain size reveals a positive genetic correlation between brain size and proactive personality in the guppy.

    PubMed

    Kotrschal, Alexander; Lievens, Eva J P; Dahlbom, Josefin; Bundsen, Andreas; Semenova, Svetlana; Sundvik, Maria; Maklakov, Alexei A; Winberg, Svante; Panula, Pertti; Kolm, Niclas

    2014-04-01

    Animal personalities range from individuals that are shy, cautious, and easily stressed (a "reactive" personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a "proactive" personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large- and small-brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large-brained animals were faster to habituate to, and more exploratory in, open field tests. Large-brained females were also bolder. Second, large-brained animals excreted less cortisol in a stressful situation (confinement). Third, large-brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large-brained lines. Overall, the results point toward a more proactive personality type in large-brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness-related aspects of ecology such as dispersal and niche exploration.

  14. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2014-01-01

    The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI) and hemorrhagic shock (HS). The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy. PMID:27162857

  15. Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans.

    PubMed

    Meyer, Martin; Baumann, Simon; Jancke, Lutz

    2006-10-01

    Timbre is a major attribute of sound perception and a key feature for the identification of sound quality. Here, we present event-related brain potentials (ERPs) obtained from sixteen healthy individuals while they discriminated complex instrumental tones (piano, trumpet, and violin) or simple sine wave tones that lack the principal features of timbre. Data analysis yielded enhanced N1 and P2 responses to instrumental tones relative to sine wave tones. Furthermore, we applied an electrical brain imaging approach using low-resolution electromagnetic tomography (LORETA) to estimate the neural sources of N1/P2 responses. Separate significance tests of instrumental vs. sine wave tones for N1 and P2 revealed distinct regions as principally governing timbre perception. In an initial stage (N1), timbre perception recruits left and right (peri-)auditory fields with an activity maximum over the right posterior Sylvian fissure (SF) and the posterior cingulate (PCC) territory. In the subsequent stage (P2), we uncovered enhanced activity in the vicinity of the entire cingulate gyrus. The involvement of extra-auditory areas in timbre perception may imply the presence of a highly associative processing level which might be generally related to musical sensations and integrates widespread medial areas of the human cortex. In summary, our results demonstrate spatio-temporally distinct stages in timbre perception which not only involve bilateral parts of the peri-auditory cortex but also medially situated regions of the human brain associated with emotional and auditory imagery functions.

  16. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    PubMed

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  17. Enhancement of brain tumor MR images based on intuitionistic fuzzy sets

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Deng, He; Cheng, Lifang

    2015-12-01

    Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.

  18. Building Brains for Bodies

    DTIC Science & Technology

    1993-08-01

    34dU UAI:5 L.OVERED August 1993 memorandum 4. TITLE ANg SUBTITLn S. FUNDING NUMBERS Building Brains for Bodies N00014-91-J-4038 6. AUTHOR(S) Rodney...FIrS INSTfIflTE OF TEI( ’IINOL()( ;Y ARTIFI(’IAL INTLLWEII ,N’iE L,11OHXIOtlY A.I. Memo No. 1439 August. 1993 Building Brains for Bodies Rodney A...atioiial Ali enabling technology such as lie brain t hat we will power simply has not previously been available. build- has thle abilityv to revol itt onize

  19. Brain Organization and Psychodynamics

    PubMed Central

    Peled, Avi; Geva, Amir B.

    1999-01-01

    Any attempt to link brain neural activity and psychodynamic concepts requires a tremendous conceptual leap. Such a leap may be facilitated if a common language between brain and mind can be devised. System theory proposes formulations that may aid in reconceptualizing psychodynamic descriptions in terms of neural organizations in the brain. Once adopted, these formulations can help to generate testable predictions about brain–psychodynamic relations and thus significantly affect the future of psychotherapy. (The Journal of Psychotherapy Practice and Research 1999; 8:24–39) PMID:9888105

  20. Stricter clean air standards

    SciTech Connect

    Schell, D.

    1997-07-01

    New standards for ozone and particulate matter stir a debate between the EPA and industrial groups. The article discusses both the history of the ozone and particulates standards, the goal of the EPA to protect health and evaluation of what the standards mean to health, and the industrial response.

  1. New Coal Standards.

    ERIC Educational Resources Information Center

    Heritage, John

    1979-01-01

    Tighter federal air pollution control standards for new coal-burning electric power plants have been issued. Through use of air pollution control devices all types of coal will be useable under the new standards. Even stricter standards may be imposed where visibility may be affected in areas now enjoying very clean air. (RE)

  2. Library Technician Skill Standards.

    ERIC Educational Resources Information Center

    Highline Community Coll., Des Moines, WA.

    This document presents skill standards for library technicians. Introductory sections describe the industry and the job, what skill standards are, how the library technician skill standards were developed, employability skills and critical competencies, and the SCANS (Secretary's Commission on Achieving Necessary Skills) foundation skills profile.…

  3. Standards and Certification. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on standards and certification in human resource development (HRD). "Implementing Management Standards in the UK" (Jonathan Winterton, Ruth Winterton) reports on a study that explored the implementation of management standards in 16 organizations and identified 36 key themes and…

  4. ALA Standards Manual.

    ERIC Educational Resources Information Center

    American Library Association, Chicago, IL. Committee on Standards.

    This American Library Association (ALA) policy statement and procedure manual is intended for use in the preparation of all standards issued by ALA and its component units to insure coordination of format and correlation of content of ALA standards. A brief discussion of the purpose of standards is offered, followed by definitions of four types of…

  5. Automotive Technology Skill Standards

    ERIC Educational Resources Information Center

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  6. Standards for excellence

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A history of the development of standard units and regulations of measurement are discussed in this educational video. John Aston narrates the historical background, from colonial times to the present, of the need for measurement standardization and discusses the conception of the National Bureau of Standards (1901), of the United States Department of Commerce. Historical photography and film footage is included.

  7. Standards for Objective Tests

    ERIC Educational Resources Information Center

    Tristan, Agustin; Vidal, Rafael

    2007-01-01

    A new book of standards for quality of tests has been published in Spanish, filling a gap on this field. The book includes 64 standards, comments, a companion questionnaire for self-evaluation and a planning schedule; with those tools a non-expert may understand the standards, and easily follow some procedures to design or to improve a test. The…

  8. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  9. Standards for Administrators.

    ERIC Educational Resources Information Center

    Lashway, Larry

    1998-01-01

    This newsletter reviews five reports that address the implications of standards for administrators. These texts include "Designing and Implementing Standards-Based Accountability System" (Education Commission of the States), which describes some of the policy implications of standards-driven accountability; "Why Principals Fail: Are National…

  10. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    ERIC Educational Resources Information Center

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  11. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  12. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  13. A Right Brain/Left Brain Model of Acting.

    ERIC Educational Resources Information Center

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  14. Identification of the convulsant opiate thebaine in mammalian brain.

    PubMed Central

    Kodaira, H; Lisek, C A; Jardine, I; Arimura, A; Spector, S

    1989-01-01

    The convulsant opiate thebaine, an intermediate of morphine biosynthesis, was purified from bovine brain to homogeneity by gel filtration and high-performance liquid chromatography (HPLC) monitored by a radioimmunoassay. The immunoreactive material behaved identically to standard thebaine in two HPLC systems and was confirmed to be thebaine by combined gas chromatography/mass spectrometry. To our knowledge, the presence of thebaine in mammalian tissue has not been demonstrated previously. Codeine and morphine were also found to exist in ovine brain. The presence of thebaine in ovine brain provides strong evidence that morphine and codeine, in various mammalian tissues, are of endogenous origin and actually biosynthesized from a precursor. Images PMID:2911601

  15. Brain necrosis after radiotherapy for primary intracerebral tumor.

    PubMed

    Hohwieler, M L; Lo, T C; Silverman, M L; Freidberg, S R

    1986-01-01

    Radiotherapy is a standard postoperative treatment for cerebral glioma. We have observed the onset of symptoms related to brain necrosis, as opposed to recurrent tumor, in surviving patients. This has been manifest as dementia with a computed tomographic pattern of low density in the frontal lobe uninvolved with tumor, but within the field of radiotherapy. Two patients presented with mass lesions also unrelated to recurrent tumor. We question the necessity of full brain irradiation and suggest that radiotherapy techniques be altered to target the tumor and not encompass the entire brain.

  16. Permanent Turbidity-Standards

    PubMed Central

    Roessler, William G.; Brewer, Carl R.

    1967-01-01

    Permanent turbidity reference standards suitable for measurement of microbial suspensions were prepared by suspending finely divided titanium dioxide in aryl sulfonamide-formaldehyde or methylstyrene resins. Turbidities of these standards, adjusted to a useful range for microbiological and immunological studies, were compared with other reference standards in use today. Tube holders for a Coleman Photonephelometer and a Nepho-Colorimeter were modified to eliminate the water well and to allow use of optically standardized 10-, 16-, or 18-mm test tubes. The standards and the tube holders have been used satisfactorily for more than 12 years. Images Fig. 5 Fig. 6 PMID:6077410

  17. Airborne Network Camera Standard

    DTIC Science & Technology

    2015-06-01

    primarily to cover terminology included in or consistent with the GigE Vision (GEV) and IRIG 106-13 Chapter 10 standards for command and control over a...cover terminology included in or consistent with the GigE Vision1 (GEV) and IRIG 106-13 Chapter 102 standards for command and control over a variety of... standard is primarily to cover terminology included in or consistent with the GEV standard and the IRIG 106 Chapter 10 standard document. RCC Document

  18. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, Steven Y.

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  19. Embolization of Brain Aneurysms and Fistulas

    MedlinePlus

    ... Resources Professions Site Index A-Z Embolization of Brain Aneurysms and Arteriovenous Malformations/Fistulas Embolization of brain ... Brain Aneurysms and Fistulas? What is Embolization of Brain Aneurysms and Fistulas? Embolization of brain aneurysms and ...

  20. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas.

    PubMed

    Kuan, Leonard; Li, Yang; Lau, Chris; Feng, David; Bernard, Amy; Sunkin, Susan M; Zeng, Hongkui; Dang, Chinh; Hawrylycz, Michael; Ng, Lydia

    2015-02-01

    The Allen Mouse Brain Connectivity Atlas is a mesoscale whole brain axonal projection atlas of the C57Bl/6J mouse brain. Anatomical trajectories throughout the brain were mapped into a common 3D space using a standardized platform to generate a comprehensive and quantitative database of inter-areal and cell-type-specific projections. This connectivity atlas has several desirable features, including brain-wide coverage, validated and versatile experimental techniques, a single standardized data format, a quantifiable and integrated neuroinformatics resource, and an open-access public online database (http://connectivity.brain-map.org/). Meaningful informatics data quantification and comparison is key to effective use and interpretation of connectome data. This relies on successful definition of a high fidelity atlas template and framework, mapping precision of raw data sets into the 3D reference framework, accurate signal detection and quantitative connection strength algorithms, and effective presentation in an integrated online application. Here we describe key informatics pipeline steps in the creation of the Allen Mouse Brain Connectivity Atlas and include basic application use cases.

  1. Undiagnosed amebic brain abscess.

    PubMed

    Viriyavejakul, Parnpen; Riganti, Mario

    2009-11-01

    We report a case of amebic brain abscess due to Entamoeba histolytica. The patient was a 31-year-old man who presented with amebic liver abscess. His clinical course deteriorated in spite of proper drainage and treatment. He developed delirium, lethargy and then expired. With a history of heroin addiction, withdrawal syndrome from heroin was suspected. At autopsy, amebic abscesses were detected in the liver, large intestine, meninges and brain. A 19 cm amebic liver abscess was found in the right lobe of the liver. A 4 cm amebic brain abscess was found in the right occipital lobe. Microscopically, the tissue sections from the affected organs were confirmed to have degenerated E. histolytica trophozoites. Involvement of the brain in amebic liver abscess should be suspected in patients with neurological signs and symptoms.

  2. Metastatic brain tumor

    MedlinePlus

    ... them create an advance directive and power of attorney for health care. Support Groups You can ease ... surgery Brain tumor - children Breast cancer Increased intracranial pressure Lung cancer - small cell Melanoma Renal cell carcinoma ...

  3. Organic brain syndrome

    MedlinePlus

    ... the skull causing pressure on brain ( subdural hematoma ) Concussion BREATHING CONDITIONS Low oxygen in the body (hypoxia) ... disease Arrhythmias Chronic subdural hematoma CO2 blood test Concussion Confusion Creutzfeldt-Jakob disease Dementia due to metabolic ...

  4. Brain and Addiction

    MedlinePlus

    ... reward circuit” of the brain Some drugs, like marijuana and heroin , have chemical structures that mimic that ... Pleasure Effect Most drugs of abuse— nicotine , cocaine , marijuana , and others—affect the brain’s “reward” circuit, which ...

  5. Brain injury - discharge

    MedlinePlus

    ... But usually there is improvement. Behavior and Social Interaction People may display inappropriate behavior after a brain ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  6. Brain PET scan

    MedlinePlus

    ... Tell the difference between Parkinson disease and other movement disorders Several PET scans may be taken to determine ... identify where the seizures start in your brain Movement disorders (such as Parkinson disease )

  7. Brain Tumor Statistics

    MedlinePlus

    ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Press Releases Headlines Newsletter ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information ...

  8. Brains on video games.

    PubMed

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  9. Genetics and the Brain

    MedlinePlus

    ... Find us on YouTube Follow us on Instagram Genetics and the Brain by Carl Sherman September 10, ... effects that may be responsible. How Much Is Genetic? [x] , [xi] , [xii] , [xiii] A basic question in ...

  10. Modular Brain Networks

    PubMed Central

    Sporns, Olaf; Betzel, Richard F.

    2016-01-01

    The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics. PMID:26393868

  11. IEEE standards worldwide

    SciTech Connect

    Hammons, T.J. )

    1995-01-01

    This article presents North American views on the development and use of internationally acceptable standards through strengthened ties with global standards organizations. The key ingredient to enhance the international reputation of IEEE standards is, without doubt, greater participation of members around the world. Standards that will really have force are those that are recognized as preeminent and that are sought after by organizations worldwide. it will be necessary to develop enhanced liaisons with standards organizations around the world, such as the IEC. These are some of the issues that will be addressed by panelists representing standards organizations and users from North America, United States, Canada, and Mexico. Also discussed is the importance of standards in the NAFTA and GATT agreements on trade.

  12. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

  13. Is Brain Emulation Dangerous?

    NASA Astrophysics Data System (ADS)

    Eckersley, Peter; Sandberg, Anders

    2013-12-01

    Brain emulation is a hypothetical but extremely transformative technology which has a non-zero chance of appearing during the next century. This paper investigates whether such a technology would also have any predictable characteristics that give it a chance of being catastrophically dangerous, and whether there are any policy levers which might be used to make it safer. We conclude that the riskiness of brain emulation probably depends on the order of the preceding research trajectory. Broadly speaking, it appears safer for brain emulation to happen sooner, because slower CPUs would make the technology`s impact more gradual. It may also be safer if brains are scanned before they are fully understood from a neuroscience perspective, thereby increasing the initial population of emulations, although this prediction is weaker and more scenario-dependent. The risks posed by brain emulation also seem strongly connected to questions about the balance of power between attackers and defenders in computer security contests. If economic property rights in CPU cycles1 are essentially enforceable, emulation appears to be comparatively safe; if CPU cycles are ultimately easy to steal, the appearance of brain emulation is more likely to be a destabilizing development for human geopolitics. Furthermore, if the computers used to run emulations can be kept secure, then it appears that making brain emulation technologies ―open‖ would make them safer. If, however, computer insecurity is deep and unavoidable, openness may actually be more dangerous. We point to some arguments that suggest the former may be true, tentatively implying that it would be good policy to work towards brain emulation using open scientific methodology and free/open source software codebases

  14. Evolution of brain elaboration

    PubMed Central

    Farris, Sarah M.

    2015-01-01

    Large, complex brains have evolved independently in several lineages of protostomes and deuterostomes. Sensory centres in the brain increase in size and complexity in proportion to the importance of a particular sensory modality, yet often share circuit architecture because of constraints in processing sensory inputs. The selective pressures driving enlargement of higher, integrative brain centres has been more difficult to determine, and may differ across taxa. The capacity for flexible, innovative behaviours, including learning and memory and other cognitive abilities, is commonly observed in animals with large higher brain centres. Other factors, such as social grouping and interaction, appear to be important in a more limited range of taxa, while the importance of spatial learning may be a common feature in insects with large higher brain centres. Despite differences in the exact behaviours under selection, evolutionary increases in brain size tend to derive from common modifications in development and generate common architectural features, even when comparing widely divergent groups such as vertebrates and insects. These similarities may in part be influenced by the deep homology of the brains of all Bilateria, in which shared patterns of developmental gene expression give rise to positionally, and perhaps functionally, homologous domains. Other shared modifications of development appear to be the result of homoplasy, such as the repeated, independent expansion of neuroblast numbers through changes in genes regulating cell division. The common features of large brains in so many groups of animals suggest that given their common ancestry, a limited set of mechanisms exist for increasing structural and functional diversity, resulting in many instances of homoplasy in bilaterian nervous systems. PMID:26554044

  15. Neuroimaging predictors of cognitive performance across a standardized neurocognitive battery

    PubMed Central

    Roalf, David R.; Ruparel, Kosha; Gur, Raquel E.; Bilker, Warren; Gerraty, Raphael; Elliott, Mark A.; Gallagher, R. Sean; Almasy, Laura; Pogue-Geile, Michael F.; Prasad, Konasale; Wood, Joel; Nimgaonkar, Vishwajit L.; Gur, Ruben C.

    2014-01-01

    Objective The advent of functional magnetic resonance imaging (fMRI) enables the identification of brain regions recruited for specific behavioral tasks. Most fMRI studies focus on group effects in single tasks, which limits applicability where assessment of individual differences and multiple brain systems is needed. Method We demonstrate the feasibility of concurrently measuring fMRI activation patterns and performance on a computerized neurocognitive battery (CNB) in 212 healthy individuals at two sites. Cross-validated sparse regression of regional brain amplitude and extent of activation were used to predict concurrent performance on six neurocognitive tasks: abstraction/mental flexibility, attention, emotion processing, and verbal, face and spatial memory. Results Brain activation was task-responsive and domain-specific as reported in previous single-task studies. Prediction of performance was robust for most tasks, particularly for abstraction/mental flexibility and visuo-spatial memory. Conclusions The feasibility of administering a comprehensive neuropsychological battery in the scanner was established, and task-specific brain activation patterns improved prediction beyond demographic information. This benchmark index of performance-associated brain activation can be applied to link brain activation with neurocognitive performance during standardized testing. This first step in standardizing a neurocognitive battery for use in fMRI may enable quantitative assessment of patients with brain disorders across multiple cognitive domains. Such data may facilitate identification of neural dysfunction associated with poor performance, allow for identification of individuals at-risk for brain disorders, and help guide early intervention and rehabilitation of neurocognitive deficits. PMID:24364396

  16. Brain Research: Implications for Education.

    ERIC Educational Resources Information Center

    Crouch-Shinn, Jenella; Shaughnessy, Michael F.

    This paper attempts to examine the research of split-brain, hemispheric specialization, and brain function, as it pertains to handwriting, brain wave patterns, and lateral differences. Studies are reviewed which point to asymmetric differentiated functions and capacities of the two cerebral hemispheres in split-brain patients and in normal…

  17. Traumatic Brain Injuries. Guidelines Paper.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Special Education Services Unit.

    This paper on traumatic brain injuries begins with statistics on the incidence of the disorder, especially as they relate to Colorado. Traumatic brain injury is then defined, and problems caused by traumatic brain injury are discussed. The components of effective programming for students with traumatic brain injuries are described, followed by the…

  18. Examining the decomposed brain.

    PubMed

    MacKenzie, James Mackintosh

    2014-12-01

    Examination of the decomposed brain is a largely neglected area of forensic neuropathology. However, careful examination often yields valuable information that may assist in criminal proceedings. Decomposition encompasses the processes of autolysis, putrefaction, and decay. Most decomposed brains will be affected by both autolysis and putrefaction, resulting in a brain that may, at one end of the spectrum, be almost normal or, at the other end, pulpified, depending on the conditions in which the body remained after death and the postmortem interval. Naked eye examination may detect areas of hemorrhage and also guides appropriate sampling for histology. Histological appearances are often better than what would be predicted from the state of the brain. Histology often confirms macroscopic abnormalities and may also reveal other features such as ischemic injury. Silver staining demonstrates neuritic plaques, and immunocytochemistry for β-amyloid precursor protein and other molecules produces results comparable with those seen in well-preserved fixed brains. The usefulness of information derived from the examination of the decomposed brain in criminal proceedings is illustrated with 6 case reports drawn from the author's own practice.

  19. [Brain-gut interactions].

    PubMed

    Bonaz, B

    2010-08-01

    Our digestive tract has an autonomous functioning but also has a bidirectional relation with our brain known as brain-gut interactions. This communication is mediated by the autonomous nervous system, i.e., the sympathetic and parasympathetic nervous systems, with a mixed afferent and efferent component, and the circumventricular organs located outside the blood-brain barrier. The vagus nerve, known as the principal component of the parasympathetic nervous system, is a mixed nerve composed of 90% afferent fibers, which has physiological roles due to its putative vegetative functions. The vagus nerve has also anti-inflammatory properties both through the hypothalamic pituitary adrenal axis (through its afferents) and the cholinergic anti-inflammatory pathway (through its efferents). The sympathetic nervous system has a classical antagonist effect on the parasympathetic nervous system at the origin of an equilibrated sympathovagal balance in normal conditions. The brain is able to integrate inputs coming from the digestive tract inside a central autonomic network organized around the hypothalamus, limbic system and cerebral cortex (insula, prefrontal, cingulate) and in return to modify the autonomic nervous system and the hypothalamic pituitary adrenal axis in the frame of physiological loops. A dysfunction of these brain-gut interactions, favoured by stress, is most likely involved in the pathophysiology of digestive diseases such as irritable bowel syndrome or even inflammatory bowel diseases. A better knowledge of these brain-gut interactions has therapeutic implications in the domain of pharmacology, neurophysiology, behavioural and cognitive management.

  20. Brain Imaging Analysis

    PubMed Central

    BOWMAN, F. DUBOIS

    2014-01-01

    The increasing availability of brain imaging technologies has led to intense neuroscientific inquiry into the human brain. Studies often investigate brain function related to emotion, cognition, language, memory, and numerous other externally induced stimuli as well as resting-state brain function. Studies also use brain imaging in an attempt to determine the functional or structural basis for psychiatric or neurological disorders and, with respect to brain function, to further examine the responses of these disorders to treatment. Neuroimaging is a highly interdisciplinary field, and statistics plays a critical role in establishing rigorous methods to extract information and to quantify evidence for formal inferences. Neuroimaging data present numerous challenges for statistical analysis, including the vast amounts of data collected from each individual and the complex temporal and spatial dependence present. We briefly provide background on various types of neuroimaging data and analysis objectives that are commonly targeted in the field. We present a survey of existing methods targeting these objectives and identify particular areas offering opportunities for future statistical contribution. PMID:25309940

  1. Serotonin and brain development.

    PubMed

    Sodhi, Monsheel S K; Sanders-Bush, Elaine

    2004-01-01

    The role of the serotonergic system in the neuroplastic events that create, repair, and degenerate the brain has been explored. Synaptic plasticity occurs throughout life and is critical during brain development. Evidence from biochemical, pharmacological, and clinical studies demonstrates the huge importance of an intact serotonergic system for normal central nervous system (CNS)function. Serotonin acts as a growth factor during embryogenesis, and serotonin receptor activity forms a crucial part of the cascade of events leading to changes in brain structure. The serotonergic system interacts with brain-derived neurotrophic factor (BDNF), S100beta, and other chemical messengers, in addition to ts cross talk with the GABAergic, glutamatergic, and dopaminergic neurotransmitter systems. Disruption of these processes may contribute to CNS disorders that have been associated with impaired development. Furthermore, many psychiatric drugs alter serotonergic activity and have been shown to create changes in brain structure with long-term treatment. However, the mechanisms for their therapeutic efficacy are still unclear. Treatments for psychiatric illness are usually chronic and alleviate psychiatric symptoms, rather than cure these diseases. Therefore, greater exploration of the serotonin system during brain development and growth could lead to real progress in the discovery of treatments for mental disorders.

  2. Modules and brain mapping.

    PubMed

    Friston, Karl J; Price, Cathy J

    2011-05-01

    This review highlights the key role of modularity and the additive factors method in functional neuroimaging. Our focus is on structure-function mappings in the human brain and how these are disclosed by brain mapping. We describe how modularity of processing (and possibly processes) was a key point of reference for establishing functional segregation as a principle of brain organization. Furthermore, modularity plays a crucial role when trying to characterize distributed brain responses in terms of functional integration or coupling among brain areas. We consider additive factors logic and how it helped to shape the design and interpretation of studies at the inception of brain mapping, with a special focus on factorial designs. We look at factorial designs in activation experiments and in the context of lesion-deficit mapping. In both cases, the presence or absence of interactions among various experimental factors has proven essential in understanding the context-sensitive nature of distributed but modular processing and discerning the nature of (potentially degenerate) structure-function relationships in cognitive neuroscience.

  3. NDTA narcotics standard development

    NASA Astrophysics Data System (ADS)

    Ulvick, Sydney J.; Cui, Jing; Kunz, Terry D.; Hoglund, David E.; Pilon, Pierre; Lawrence, Andre H.; Drolet, Gerry; Su, Chih-Wu; Rigdon, Stephen W.; Demirgian, Jack C.; Shier, Patrick

    1997-01-01

    The Narcotics Detection Technology Assessment (NDTA) program is a series of studies conducted to evaluate illicit substance detection devices. The ability to effectively detect cocaine and heroin particles is directly related to the efficiency of a detection device's sample collection design. The NDTA tests are therefore structured to require sampling of narcotics from a surface. Tests standards are required which permit subnanogram to microgram quantities of narcotic to be dispensed onto a target surface for sampling. Optimally, the standard should not adversely affect the performance of the device under test. The NDTA test team has developed and experimentally characterized solution- deposited substrate standards, solution-deposited substrate- free standards, vapor-deposited standards, suspension standards, and dry mix standards, and dry mix standards. A variety of substrates and dry-mix fillers have been evaluated, including sand, fullerenes, copper powder, nickel powder, pulverized paper, and aluminum. Suspension standards were explored with a variety of liquids. The narcotic standards with the best performance were found to be dry mixes of cocaine with silver-coated nickel powder, and dry mixes of heroin with silanized glass beads.

  4. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program's function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned-standards integration system. The Program maintains a 'one stop-shop' Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  5. NASA Technical Standards Program

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, WIlliam W.

    2003-01-01

    The NASA Technical Standards Program was officially established in 1997 as result of a directive issued by the Administrator. It is responsible for Agency wide technical standards development, adoption (endorsement), and conversion of Center-unique standards for Agency wide use. One major element of the Program is the review of NSA technical standards products and replacement with non-Government Voluntary Consensus Standards in accordance with directions issued by the Office of Management and Budget. As part of the Program s function, it developed a NASA Integrated Technical Standards Initiative that consists of and Agency wide full-text system, standards update notification system, and lessons learned - standards integration system. The Program maintains a "one stop-shop" Website for technical standards ad related information on aerospace materials, etc. This paper provides information on the development, current status, and plans for the NAS Technical Standards Program along with metrics on the utility of the products provided to both users within the nasa.gov Domain and the Public Domain.

  6. Approach to standardizing MR image intensity scale

    NASA Astrophysics Data System (ADS)

    Nyul, Laszlo G.; Udupa, Jayaram K.

    1999-05-01

    Despite the many advantages of MR images, they lack a standard image intensity scale. MR image intensity ranges and the meaning of intensity values vary even for the same protocol (P) and the same body region (D). This causes many difficulties in image display and analysis. We propose a two-step method for standardizing the intensity scale in such a way that for the same P and D, similar intensities will have similar meanings. In the first step, the parameters of the standardizing transformation are 'learned' from an image set. In the second step, for each MR study, these parameters are used to map their histogram into the standardized histogram. The method was tested quantitatively on 90 whole brain FSE T2, PD and T1 studies of MS patients and qualitatively on several other SE PD, T2 and SPGR studies of the grain and foot. Measurements using mean squared difference showed that the standardized image intensities have statistically significantly more consistent range and meaning than the originals. Fixed windows can be established for standardized imags and used for display without the need of per case adjustment. Preliminary results also indicate that the method facilitates improving the degree of automation of image segmentation.

  7. Brain Cancer in Workers Employed at a Laboratory Research Facility

    PubMed Central

    Collins, James J.; Bender, Thomas John; Bonner, Eileen M.; Bodner, Kenneth M.; Kreft, Alisa M.

    2014-01-01

    Background An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated. Methods Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death. Results As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR) was 1.32 (95% confidence interval [95% CI] 0.66–2.37), but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels. Conclusion With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure. PMID:25493437

  8. Brain/MINDS: brain-mapping project in Japan.

    PubMed

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  9. International Standard for Phenoxymethylpenicillin

    PubMed Central

    Humphrey, J. H.; Lightbown, J. W.; Mussett, Marjorie V.

    1959-01-01

    A batch of highly purified phenoxymethylpenicillin has been examined by eight laboratories in seven different countries, and has been assayed against the phenoxymethylpenicillin standard of the Food and Drug Administration of the US Department of Health, Education, and Welfare. The material examined has been established as the International Standard for Phenoxymethylpenicillin, and the International Unit of Phenoxymethylpenicillin is defined as the activity contained in 0.000590 mg of the International Standard. PMID:14405369

  10. Cooled Ion Frequency Standard

    DTIC Science & Technology

    1988-09-27

    on Frequency Standards and Metrology, Ancona , Italy (Springer Verlag, 1988) to be published. 8. "High Accuracy Spectroscopy of Stored Ions," D.J...Wineland, W.M. Itano, J.S. Bergquist, J.J. Bollinger, F. Diedrich and S.L. Gilbert, Proc. 4th Symp. on Frequency Standards and Metrology, Ancona , Italy...Proc. 4th Symp. on Frequency Standards and Metrology, Ancona , Italy (Springer Verlag, 1988) to be published. 10. "Quantative Study of Laser Cooling in

  11. Evolving Parts Standardization

    DTIC Science & Technology

    2011-08-01

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 WARFIGHTER FOCUSED, GLOBALLY RESPONSIVE SUPPLY CHAIN LEADERSHIP 2 • Supports nearly...RESPONSIVE SUPPLY CHAIN LEADERSHIP 5 • Limited at DLA – Legacy systems with MIL- STD -965 requirements – Few parts review for MIL- STD -3018 • Standardization...Standardization by natural selection – Performance characteristics – MIL- STD -3018 – Availability, usage on other systems, environmental

  12. [Deep brain stimulation and neuroethics].

    PubMed

    Katayama, Yoichi; Fukaya, Chikashi

    2009-01-01

    The use of deep brain stimulation (DBS) for mental disorders has been discussed in Japan from the viewpoint of ethical problems. Trials of experimental therapies require a basis of sound scientific rationale. New standard therapy emerges from such trials through detailed analysis of the outcome and side effects. Long-suffering patients with intractable symptoms may desperately seek an experimental therapy even though it has not yet been accepted as standard therapy. The ethical committee of each institution evaluates the level of scientific rationale and the expected level of benefits on the bias of the reported data, and decides whether the patients can receive the experimental therapy. However, the use of DBS for mental disorders is not based on sound scientific rational, since the disease mechanisms involved are far from understood. The data reported from the previous trials are insufficient for assuring the satisfactory results for mental disoder patients. Most institutions in Japan do not accept such levels of scientific rationale and expected benefits. Furthermore, from the cultural perspective, strong skepticism exists in Japan with regard to surgical interventions for mental disorders. Such an attitude is unexpectedly in harmony with many of the subjects currently discussed in the field of neuroethics. For example, who has the right to control DBS? How does someone decide the level of control of mental function by DBS? These questions are related to the discussion on how human society is formed and how the ethics are decided by considering both scientific rationale and human society.

  13. Standardization: colorfull or dull?

    NASA Astrophysics Data System (ADS)

    van Nes, Floris L.

    2003-01-01

    After mentioning the necessity of standardization in general, this paper explains how human factors, or ergonomics standardization by ISO and the deployment of information technology were linked. Visual display standardization is the main topic; the present as well as the future situation in this field are treated, mainly from an ISO viewpoint. Some observations are made about the necessary and interesting co-operation between physicists and psychologists, of different nationality, who both may be employed by either private enterprise or governmental institutions, in determining visual display requirements. The display standard that is to succeed the present ISO standards in this area: ISO 9241-3, -7, -8 and ISO 13406-1, -2, will have a scope that is not restricted to office tasks. This means a large extension of the contexts for which display requirements have to be investigated and specified especially if mobile use of displays, under outdoor lighting conditions, is included. The new standard will be structured in such a way that it is better accessible than the present ones for different categories of standards users. The subject color in the new standard is elaborated here. A number of questions are asked as to which requirements on color rendering should be made, taking new research results into account, and how far the new standard should go in making recommendations to the display user.

  14. Standardization of hormone determinations.

    PubMed

    Stenman, Ulf-Håkan

    2013-12-01

    Standardization of hormone determinations is important because it simplifies interpretation of results and facilitates the use of common reference values for different assays. Progress in standardization has been achieved through the introduction of more homogeneous hormone standards for peptide and protein hormones. However, many automated methods for determinations of steroid hormones do not provide satisfactory result. Isotope dilution-mass spectrometry (ID-MS) has been used to establish reference methods for steroid hormone determinations and is now increasingly used for routine determinations of steroids and other low molecular weight compounds. Reference methods for protein hormones based on MS are being developed and these promise to improve standardization.

  15. Software Formal Inspections Standard

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Software Formal Inspections Standard (hereinafter referred to as Standard) is applicable to NASA software. This Standard defines the requirements that shall be fulfilled by the software formal inspections process whenever this process is specified for NASA software. The objective of this Standard is to define the requirements for a process that inspects software products to detect and eliminate defects as early as possible in the software life cycle. The process also provides for the collection and analysis of inspection data to improve the inspection process as well as the quality of the software.

  16. Avionic standard module development

    NASA Astrophysics Data System (ADS)

    Maki, Stanley C.; Cormier, Edmond P.; Piszkin, Thomas A.

    Avionics standard modules with redundancy offer substantial economic benefits compared to special-purpose processor units for the orbital transfer vehicle and advanced launch vehicle programs. A fiber optic, serial vehicle bus provides high throughput with modest hardware. A bistage, split tapered, star optical coupler uses a token-pass/token-demand protocol. It is reported that a standard module implementation of the above is a feasible, cost-effective approach to avionics design using standard buses and standard packaging. The VHSIC integrated package readily accommodates higher-speed VLSI chips as they become available.

  17. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot.

  18. Bacterial Brain Abscess

    PubMed Central

    Patel, Kevin

    2014-01-01

    Significant advances in the diagnosis and management of bacterial brain abscess over the past several decades have improved the expected outcome of a disease once regarded as invariably fatal. Despite this, intraparenchymal abscess continues to present a serious and potentially life-threatening condition. Brain abscess may result from traumatic brain injury, prior neurosurgical procedure, contiguous spread from a local source, or hematogenous spread of a systemic infection. In a significant proportion of cases, an etiology cannot be identified. Clinical presentation is highly variable and routine laboratory testing lacks sensitivity. As such, a high degree of clinical suspicion is necessary for prompt diagnosis and intervention. Computed tomography and magnetic resonance imaging offer a timely and sensitive method of assessing for abscess. Appearance of abscess on routine imaging lacks specificity and will not spare biopsy in cases where the clinical context does not unequivocally indicate infectious etiology. Current work with advanced imaging modalities may yield more accurate methods of differentiation of mass lesions in the brain. Management of abscess demands a multimodal approach. Surgical intervention and medical therapy are necessary in most cases. Prognosis of brain abscess has improved significantly in the recent decades although close follow-up is required, given the potential for long-term sequelae and a risk of recurrence. PMID:25360205

  19. Lung Cancer Brain Metastases.

    PubMed

    Goldberg, Sarah B; Contessa, Joseph N; Omay, Sacit B; Chiang, Veronica

    2015-01-01

    Brain metastases are common among patients with lung cancer and have been associated with significant morbidity and limited survival. However, the treatment of brain metastases has evolved as the field has advanced in terms of central nervous system imaging, surgical technique, and radiotherapy technology. This has allowed patients to receive improved treatment with less toxicity and more durable benefit. In addition, there have been significant advances in systemic therapy for lung cancer in recent years, and several treatments including chemotherapy, targeted therapy, and immunotherapy exhibit activity in the central nervous system. Utilizing systemic therapy for treating brain metastases can avoid or delay local therapy and often allows patients to receive effective treatment for both intracranial and extracranial disease. Determining the appropriate treatment for patients with lung cancer brain metastases therefore requires a clear understanding of intracranial disease burden, tumor histology, molecular characteristics, and overall cancer prognosis. This review provides updates on the current state of surgery and radiotherapy for the treatment of brain metastases, as well as an overview of systemic therapy options that may be effective in select patients with intracranial metastases from lung cancer.

  20. Microfluidic add-on for standard electrophysiology chambers.

    PubMed

    Mohammed, Javeed Shaikh; Caicedo, Hector Hugo; Fall, Christopher P; Eddington, David T

    2008-07-01

    We have developed a microfluidic brain slice device (microBSD) that marries an off-the shelf brain slice perfusion chamber with an array of microfluidic channels set into the bottom surface of the chamber substrate. As this device is created through rapid prototyping, once optimized, it is trivial to replicate and share the devices with other investigators. The device integrates seamlessly into standard physiology and imaging chambers and it is immediately available to the whole slice physiology community. With this technology we can address the flow of neurochemicals and any other soluble factors to precise locations in the brain slice with the temporal profile we choose. Dopamine (DA) was chosen as a model neurotransmitter and we have quantified delivery in brain tissue using cyclic voltammetry (CV) and fluorescence imaging.