Sample records for standing crop

  1. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    PubMed

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  2. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison ofmore » the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.« less

  3. Effects of peanut stand uniformity and herbicide regime on weed management and yield

    USDA-ARS?s Scientific Manuscript database

    Crop stand directly affects ability of any crop to compete with weeds. To capture this form of cultural weed control, final crop stands need to be uniform. Peanut stands are frequently non-uniform, despite the use of precision vacuum planters. Trials were conducted from 2009 through 2011 in Tifto...

  4. Silvicultural treatments in sapling stands

    Treesearch

    Neil I. Lamson

    1989-01-01

    Sapling stands are those in which codominant trees average less than 5 inches d.b.h. Silvicultural treatments in sapling stands can be summed up in two words: CROP TREES. Any silvicultural treatment must help crop trees if the investment in sapling stands is going to pay off. Just cutting "bad" or "undesirable" trees does not insure that crop trees...

  5. Effects of Stocking Rate on the Variability of Peak Standing Crop in a Desert Steppe of Eurasia Grassland

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwu; Jiao, Shuying; Han, Guodong; Zhao, Mengli; Ding, Haijun; Zhang, Xinjie; Wang, Xiaoliang; Ayers, Eldon L.; Willms, Walter D.; Havsatad, Kris; A, Lata; Liu, Yongzhi

    2014-02-01

    Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha-1 month-1; light (LG), 0.15 sheep ha-1 month-1; moderate (MG), 0.30 sheep ha-1 month-1; and heavy (HG), 0.45 sheep ha-1 month-1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased ( P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May-July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease ( P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase ( P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower ( P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.

  6. Protocol for monitoring standing crop in grasslands using visual obstruction

    Treesearch

    Lakhdar Benkobi; Daniel W. Uresk; Greg Schenbeck; Rudy M. King

    2000-01-01

    Assessment of standing crop on grasslands using a visual obstruction technique provides valuable information to help plan livestock grazing management and indicate the status of wildlife habitat. The objectives of this study were to: (1) develop a simple regression model using easily measured visual obstruction to estimate standing crop on sandy lowland range sites in...

  7. Remote sensing of perennial crop stand duration and pre-crop identification

    USDA-ARS?s Scientific Manuscript database

    Field to field variability in soil erosion and off-site transport of nutrients and pesticides in western Oregon in any single year is primarily driven by the question of whether individual fields were disturbed for planting of new crop stands or remained in production of established perennial crops...

  8. Crop-tree release thinning in 65-year-old commercial cherry-maple stands (5-year results)

    Treesearch

    H. Clay Smith; Gary W. Miller; Neil I. Lamson

    1994-01-01

    Crop-tree release was applied to a 65-year-old cherry-maple stand in north central West Virginia. Criteria were developed for selecting crop trees for high quality sawtimber and veneer products. Five-year stand growth, mortality, and ingrowth using basal areas, volume, relative density, and number of trees were discussed for the treatments.

  9. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  10. The central Appalachian hardwoods experience provides silvicultural tools for Ontario

    Treesearch

    Gary W. Miller; Ken A Elliott; Eric P. Boysen

    1998-01-01

    Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precommercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...

  11. Effect of crown growing space and age on the growth of northern red oak

    Treesearch

    Gary W. Miller

    1997-01-01

    Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precornrnercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...

  12. Ten-Year Performance of Eastern White Pine - under a Crop Tree Release Regime on an Outwash Site

    Treesearch

    Kenneth M. Desmarais; William B. Leak; William B. Leak

    2005-01-01

    A young stand of eastern white pine aged 38-40 years received a crop tree release cutting reducing stocking to 100 tree/ac. This stocking level reflects the number of sterms per acre that would be contained in a well stocked mature stand at final harvest (20-in. quadratic mean stand diameter). The stand then was monitored for growth and value change. Stems that grew...

  13. Crown release increases growth of crop trees

    Treesearch

    Neil I. Lamson; H. Clay Smith; Arlyn W. Perkey; Samuel M. Brock; Samuel M. Brock

    1990-01-01

    Two Appalachian hardwood stands in north-central West Virginia were thinned. The principal species were red oak, yellow-poplar, and chestnut oak. For both stands the site index for northern red oak averaged 75 feet. An areawide thinning using "basal-area control" was applied to a 54-yearold stand while specific crop trees were selected and released in a 12-...

  14. Role of fish distribution on estimates of standing crop in a cooling reservoir

    USGS Publications Warehouse

    Barwick, D. Hugh

    1984-01-01

    Estimates of fish standing crop from coves in Keowee Reservoir, South Carolina, were obtained in May and August for 3 consecutive years. Estimates were significantly higher in May than in August for most of the major species of fish collected, suggesting that considerable numbers of fish had migrated from the coves by August. This change in fish distribution may have resulted from the operation of a 2,580-megawatt nuclear power plant which altered reservoir stratification. Because fish distribution is sensitive to conditions of reservoir stratification, and because power plants often alter reservoir stratification, annual cove sampling in August may not be sufficient to produce comparable estimates of fish standing crop on which to assess the impact of power plant operations on fish populations. Comparable estimates of fish standing crop can probably be obtained from cooling reservoirs by collecting annual samples at similar water temperatures and concentrations of dissolved oxygen.

  15. Stand response of 16-year-old upland hardwood regeneration to crop-tree release on a medium quality site in the Southern Appalachians after 24 years

    Treesearch

    W. Henry. McNab

    2010-01-01

    A crop tree release was made in a 16-year-old upland hardwood stand on a medium-quality site using one of two treatments: mechanical or chemical. After 24 years there was no significant difference in stand response between the two treatments as measured by mean increase in stand diameter, basal area, total height, height to base of live...

  16. Shortleaf pine seed production in natural stands in the Ouachita and Ozark mountains

    Treesearch

    Michael G. Shelton; Robert F. Wittwer

    1996-01-01

    Seed production of shortleaf pine (Pinus echinata Mill.) was monitored from 1965 to 1974 to determine the periodicity qf seed crops in both woods-run stands and seed-production areas. One bumper and two good seed crops occurred during the 9-yr period. The two largest crops occurred in successive years, then seed production was low for 4 yr before...

  17. Spatial methods for deriving crop rotation history

    NASA Astrophysics Data System (ADS)

    Mueller-Warrant, George W.; Trippe, Kristin M.; Whittaker, Gerald W.; Anderson, Nicole P.; Sullivan, Clare S.

    2017-08-01

    Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers' desires to achieve specific objectives. Moran's I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.

  18. Crop tree release improves competitiveness of northern red oak growing in association with black cherry

    Treesearch

    Thomas M. Schuler

    2006-01-01

    In 1993, a crop tree study was established in a pole-sized stand consisting of black cherry (Prunus serotina Ehrh.) and northern red oak (Quercus rubra L.). Black cherry was the predominant species in the stand and appeared to be on the verge of virtually eliminating northern red oak based on its greater height growth potential. To assess crop tree management for...

  19. Early crop-tree release and species cleaning in young northern hardwoods: a financial analysis

    Treesearch

    Paul E. Sendak; William B. Leak

    2008-01-01

    In 1959 a study of crop-tree release and species cleaning was established in a 25-year-old northern hardwood stand growing on an above-average hardwood site that resulted from a silvicultural clearcut in the White Mountains of New Hampshire. The stand was followed for 5 years and based on the results, treatment effects were projected to a stand age of 45 years. These...

  20. Cone production, seed dispersal, germination in...old-growth redwood cut and uncut stands

    Treesearch

    Kenneth N. Boe

    1968-01-01

    Records of 5 and 6 years' cone crops in old-growth redwood (Sequoia sempervirens [D. Don Endl.] stands in northern California were studied for silvical facts. They show that (a) the principal trees in both cut and uncut stands bore fair to good cone crops for 5 consecutive years, (b) maximum seed dispersal of both total and sound seed occurred in winter, (c)...

  1. Standing crops and ecology of aquatic invertebrates in agricultural drainwater ponds in California

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1991-01-01

    We examined standing crops and ecology of aquatic invertebrates in agricultural drainwater evaporation ponds in California from October 1982 to March 1983 and September 1983 to March 1984. Evaporation ponds supported low diversities but high standing crops of aquatic invertebrates. A water boatman (Trichocorixa reticulata) and a midge (Tanypus grodhausi) were the most abundant invertebrates, constituting 44.9% and 51.4% of total macroinvertebrate biomass. Regression models indicated that of 6 environmental variables measured, only electrical conductivity (EC) and Julian date affected biomass and density of water boatmen. EC was the only significant correlate of midge biomass in evaporation ponds.

  2. Individual Oak Tree Growth in Southern Bottomland Hardwood Stands (Preliminary Results)

    Treesearch

    Luben D. Dimov; Brian Roy Lockhart; Jim L. Chambers

    2004-01-01

    Southern bottomland hardwood forests are an important natural resource. Silvicultural practices in them are often intended to provide suitable growing conditions to selected individual trees of valuable species by employing crop-tree management. Research on crop-tree management, however, has been considerably less than the research regarding stand-level management. In...

  3. Spatial methods for deriving crop rotation history

    USDA-ARS?s Scientific Manuscript database

    Converting multi-year remote sensing classification data into crop rotations is beneficial by defining length of crop rotation cycles and the specific sequences of intervening crops grown between the final year of a grass seed stand and establishment of a new perennial ryegrass seed crop. Markov mod...

  4. Autumnal Biomass and Potential Productivity of Salt Marsh Fungi from 29° to 43° North Latitude along the United States Atlantic Coast†

    PubMed Central

    Newell, Steven Y.; Blum, Linda K.; Crawford, Richard E.; Dai, Ting; Dionne, Michele

    2000-01-01

    It has been established that substantial amounts of fungal mass accumulate in standing decaying smooth cordgrass (Spartina alterniflora) marshes in the southeastern United States (e.g., in standing decaying leaf blades with a total fungal organic mass that accounts for about 20% of the decay system organic mass), but it has been hypothesized that in marshes farther north this is not true. We obtained samples of autumnal standing decaying smooth cordgrass from sites in Florida to Maine over a 3-year period. The variation in latitude could not explain any of the variation in the living fungal standing crop (as determined by ergosterol content) or in the instantaneous rates of fungal growth (as determined by acetate incorporation into ergosterol at a standard temperature, 20°C), which led to the conclusion that the potential levels of fungal production per unit of naturally decaying grass are not different in northern and southern marshes. Twenty-one percent of the variation in the size of the living fungal standing crop could be explained by variation in the C/N ratio (the higher the C/N ratio the smaller the fungal crop), but the C/P ratio was not related to the size of the fungal crop. Instantaneous rates of fungal growth were negatively related to the size of the living fungal crop (r = −0.35), but these rates were not correlated with C/nutrient ratios. The same two predominant species of ascomycetes (one Phaeosphaeria species and one Mycosphaerella species) were found ejecting ascospores from standing decaying smooth cordgrass blades at all of the sites examined from Florida to Maine. PMID:10618221

  5. Effect of crown growing space on the development of young hardwood crop trees

    Treesearch

    Gary W. Miller

    2000-01-01

    Crown release of individual crop trees can be used to increase the growth and competitiveness of selected trees in young hardwood stands. Forest managers need information on the response of individual trees to such thinnings to prescribe stand treatments that meet specific management objectives. Codominant northern red oak (Quercus rubra L.),...

  6. Forcasting Shortleaf Pine Seed Crops in the Ouachita Mountains

    Treesearch

    Michael G. Shelton; Robert F. Wittwer

    2004-01-01

    We field tested a cone-rating system to forecast seed crops from 1993 to 1996 in 28 shortleaf pine (Pinus echinata Mill.) stands, which represented a wide range of stand conditions. Sample trees were visually assigned to one of three cone-density classes based on cone spacing, occurrence of cones in clusters, and distribution of cones within the...

  7. Crop tree release options for young hardwood stands in North Carolina

    Treesearch

    Jamie L. Schuler; Daniel J. Robison

    2006-01-01

    Harvesting southern hardwood forests using even-aged reproduction methods commonly regenerate new stands with 20,000 to 50,000 stems per acre. Overstocking and an overabundance of non-commercial tree species are considered major constraints to growing productive and valuable hardwoods. Crop tree release practices have been promoted as an efficient way of thinning young...

  8. Residual stand damage from crop tree release felling operations in white oak stands

    Treesearch

    Jeffrey W. Stringer; Gary W. Miller; H. Clay Smith

    1988-01-01

    This study was conducted at the University of Kentucky's Robinson Forest located in Breathitt, Knott, and Perry counties in eastern Kentucky. Three treatments including two levels of croptree release, leaving 20 and 34 crop trees per acre, and a control treatment were replicated 4 times and randomly distributed among l.2 white oak (Quercus alba...

  9. Models that predict standing crop of stream fish from habitat variables: 1950-85.

    Treesearch

    K.D. Fausch; C.L. Hawkes; M.G. Parsons

    1988-01-01

    We reviewed mathematical models that predict standing crop of stream fish (number or biomass per unit area or length of stream) from measurable habitat variables and classified them by the types of independent habitat variables found significant, by mathematical structure, and by model quality. Habitat variables were of three types and were measured on different scales...

  10. Exploring the optimal economic timing for crop tree release treatments in hardwoods: results from simulation

    Treesearch

    Chris B. LeDoux; Gary W. Miller

    2008-01-01

    In this study we used data from 16 Appalachian hardwood stands, a growth and yield computer simulation model, and stump-to-mill logging cost-estimating software to evaluate the optimal economic timing of crop tree release (CTR) treatments. The simulated CTR treatments consisted of one-time logging operations at stand age 11, 23, 31, or 36 years, with the residual...

  11. An 11-year history of crop rotation into new perennial ryegrass and tall fescue

    USDA-ARS?s Scientific Manuscript database

    Converting multi-year remote sensing classification data into crop rotations is beneficial by defining the length of crop rotation cycles and the specific sequences of intervening crops grown between the final year of a grass seed stand and establishment of new perennial ryegrass and tall fescue see...

  12. Influence of thinning style on stand structure and growth in upland oaks: a 58-year case study

    Treesearch

    Jeffery S. Ward

    2003-01-01

    In 1937, a study comparing low and high thinning (partial crop tree release) was established in northwestern Connecticut. Oaks accounted for 65 percent of the crop trees that were partially released at stand ages 17, 26, and 42 years. Sawtimber trees had greater diameters, higher volumes, and higher tree grades on thinned than unmanaged plots. The higher oak density on...

  13. Production economics of harvesting young hardwood stands in central Appalachia

    Treesearch

    Yaoxiang Li; Jingxin Wang; Gary W. Miller; Joe McNeel

    2004-01-01

    Three harvesting systems of chainsaw/cable skidder, fell-buncher/grapple skidder, and harvester/forwarder were simulated in harvesting three hardwood stands of 30 to 50 years old in central Appalachia. Stands were generated by using a stand generator and harvesting prescriptions included clearcut, shelterwood cut, selective cut, diameter limit cut, and crop tree...

  14. Silvicultural rehabilitation of cutover mixedwood stands

    Treesearch

    Laura S. Kenefic; Mohammad Bataineh; Jeremy S. Wilson; John C. Brissette; Ralph D. Nyland

    2014-01-01

    We investigated rehabilitation of mixedwood stands degraded by exploitative cutting on the Penobscot Experimental Forest in Maine. Three precommercial rehabilitation treatments were applied: control (no rehabilitation), moderate rehabilitation (crop tree release [CTR]), and intensive rehabilitation (CTR, timber stand improvement [TSI], and red spruce fill planting)....

  15. Light-mediated self-organization of sunflower stands increases oil yield in the field

    PubMed Central

    López Pereira, Mónica; Sadras, Victor O.; Batista, William; Casal, Jorge J.; Hall, Antonio J.

    2017-01-01

    Here, we show a unique crop response to intraspecific interference, whereby neighboring sunflower plants in a row avoid each other by growing toward a more favorable light environment and collectively increase production per unit land area. In high-density stands, a given plant inclined toward one side of the interrow space, and the immediate neighbors inclined in the opposite direction. This process started early as an incipient inclination of pioneer plants, and the arrangement propagated gradually as a “wave” of alternate inclination that persisted until maturity. Measurements and experimental manipulation of light spectral composition indicate that these responses are mediated by changes in the red/far-red ratio of the light, which is perceived by phytochrome. Cellular automata simulations reproduced the patterns of stem inclination in field experiments, supporting the proposition of self-organization of stand structure. Under high crop population densities (10 and 14 plants per m2), as yet unachievable in commercial farms with current hybrids due to lodging and diseases, self-organized crops yielded between 19 and 47% more oil than crops forced to remain erect. PMID:28696316

  16. Light-mediated self-organization of sunflower stands increases oil yield in the field.

    PubMed

    López Pereira, Mónica; Sadras, Victor O; Batista, William; Casal, Jorge J; Hall, Antonio J

    2017-07-25

    Here, we show a unique crop response to intraspecific interference, whereby neighboring sunflower plants in a row avoid each other by growing toward a more favorable light environment and collectively increase production per unit land area. In high-density stands, a given plant inclined toward one side of the interrow space, and the immediate neighbors inclined in the opposite direction. This process started early as an incipient inclination of pioneer plants, and the arrangement propagated gradually as a "wave" of alternate inclination that persisted until maturity. Measurements and experimental manipulation of light spectral composition indicate that these responses are mediated by changes in the red/far-red ratio of the light, which is perceived by phytochrome. Cellular automata simulations reproduced the patterns of stem inclination in field experiments, supporting the proposition of self-organization of stand structure. Under high crop population densities (10 and 14 plants per m 2 ), as yet unachievable in commercial farms with current hybrids due to lodging and diseases, self-organized crops yielded between 19 and 47% more oil than crops forced to remain erect.

  17. Production economics of harvesting small-diameter hardwood stands in central Appalachia

    Treesearch

    Yaoxiang Li; Jingxin Wang; Gary Miller; Joe McNeel

    2006-01-01

    Three harvesting systems of chainsaw/cable skidder, feller-buncher/grapple skidder, and harvester/forwarder were simulated in harvesting three hardwood stands 30 to 50 years old in central Appalachia. Stands were generated by using a 3D stand generator. Harvesting prescriptions included clearcut, shelterwood cut, selective cut, diameter limit cut, and crop tree release...

  18. Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: A FACE study

    USGS Publications Warehouse

    Phillips, D.L.; Johnson, M.G.; Tingey, D.T.; Catricala, C.E.; Hoyman, T.L.; Nowak, R.S.

    2006-01-01

    Fine roots (??? 1mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free-air CO2 enrichment (FACE) facility in the Mojave Desert of southern Nevada, USA. Three replicate 25m diameter FACE rings were maintained at ambient (??? 370 ??mol mol-1) and elevated CO2 (??? 550 ??mol mol-1) atmospheric concentrations. Twenty-eight minirhizotron tubes were placed in each ring to sample three microsite locations: evergreen Larrea shrubs, drought-deciduous Ambrosia shrubs, and along systematic community transects (primarily in shrub interspaces which account for ??? 85% of the area). Seasonal dynamics were similar for ambient and elevated CO2: fine root production peaked in April-June, with peak standing crop occurring about 1 month later, and peak mortality occurring during the hot summer months, with higher values for all three measures in a wet year compared with a dry year. Fine root standing crop, production, and mortality were not significantly different between treatments except standing crop along community transects, where fine root length was significantly lower in elevated CO2. Fine root turnover (annual cumulative mortality/mean standing crop) ranged from 2.33 to 3.17 year-1, and was not significantly different among CO2 treatments, except for community transect tubes where it was significantly lower for elevated CO2. There were no differences in fine root responses to CO2 between evergreen (Larrea) and drought-deciduous (Ambrosia) shrubs. Combined with observations of increased leaf-level water-use efficiency and lack of soil moisture differences, these results suggest that under elevated CO2 conditions, reduced root systems (compared with ambient CO2) appear sufficient to provide resources for modest aboveground production increases across the community, but in more fertile shrub microsites, fine root systems of comparable size with those in ambient CO2 were required to support the greater aboveground production increases. For community transects, development of the difference in fine root standing crops occurred primarily through lower stimulation of fine root production in the elevated CO2 treatment during periods of high water availability. ?? 2005 Blackwell Publishing Ltd.

  19. Response to Crop-Tree Release: Sugar Maple, Red Oak, Black Cherry, and Yellow-Poplar Saplings in a 9-Year-Old Stand

    Treesearch

    Neil I. Lamson; H. Clay Smith

    1978-01-01

    Crop trees were released in an Appalachian hardwood stand (site index 70 for northern red oak) that had been clearcut 9 years earlier. We released 134 yellow-poplar, red oak, black cherry, and sugar maple stems of seedling origin to a 5-foot radius around the bole of each study tree; 140 comparable stems were not released. These trees were dominant, codominant, or...

  20. Stand and individual tree growth of mature red oak after crop tree management in southern New England: 5-year results

    Treesearch

    Jeffrey S. Ward

    2011-01-01

    In winter 2003-04, four oak management study areas were established in Connecticut. Each study area had three 0.62-acre treatment plots: B-level thinning, crop tree, and unmanaged. Each plot was located within a 3- to 5-acre area with similar treatment. The mature red oak sawtimber stands had no prior management and were 80 to 112 years old; upper canopy oaks averaged...

  1. An overview of CERES-Sorghum as implemented in the cropping systems model version 4.5

    USDA-ARS?s Scientific Manuscript database

    Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important grain crop globally. It stands out for its diversity of plant types, end-uses, and roles in cropping systems. This diversity presents opportunities but also complicates evaluation of production options, especially under climate uncert...

  2. A comparison of drill and broadcast methods for establishing cover crops on beds

    USDA-ARS?s Scientific Manuscript database

    Cover crops stands that are sufficiently dense soon after planting are more likely to suppress weeds, scavenge nutrients, and reduce erosion. Small-scale organic vegetable farmers often use broadcasting methods to establish cover crops but lack information on the most effective tool to incorporate ...

  3. Detecting and correcting logically inconsistent crop rotations and other land-use sequences

    USDA-ARS?s Scientific Manuscript database

    Multi-year landuse data of adequate duration and quality has the potential to identify crop rotation history on individual fields. In the diverse landscape of western Oregon where many crops are established perennials whose stands can remain in production for multiple years, our interests included m...

  4. Economic considerations of managing stands

    Treesearch

    Gary W. Miller

    1989-01-01

    Managing central hardwood stands involves making choices. Each year landowners face at least three alternatives for managing a stand: (1) allow it to grow undisturbed, (2) undertake a partial or complete commercial harvest, or (3) culture the timber crop through a precommercial investment. Each activity affects long-term monetary returns. The "best" choice in...

  5. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study.

    PubMed

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J; Ball, J Timothy; Johnson, Dale W

    2006-06-01

    We conducted a 4-year study of juvenile Pinus ponderosa fine root (< or =2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 mumol/mol, ambient+350 mumol/mol) and three N-fertilization levels (0, 10, 20 g m(-2) year(-1)). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m(-2)), production (m m(-2) year(-1)), and mortality (m m(-2) year(-1)) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m(-2)) in the second and third years, and production and mortality (m m(-2) year(-1)) in the third year. Higher mortality (m m(-2) year(-1)) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.

  6. Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone

    USGS Publications Warehouse

    O'Dell, Thomas E.; Ammirati, Joseph F.; Schreiner, Edward G.

    1999-01-01

    Sporocarps of epigeous ectomycorrhizal fungi and vegetation data were collected from eight Tsuga heterophylla (Raf.) Sarg. - Pseudotsuga menziesii (Mirb.) Franco stands along a wet to dry gradient in Olympic National Park, Washington, U.S.A. One hundred and fifty species of ectomycorrhizal fungi were collected from a total sample area of 2.08 ha. Over 2 years, fungal species richness ranged from 19 to 67 taxa per stand. Sporocarp standing crop ranged from 0 to 3.8 kg/ha, averaging 0.58 kg/ha, 0.06 kg/ha in spring and 0.97 kg/ha in fall. Sporocarp standing crop and fungal species richness were correlated with precipitation. These results demonstrated that ectomycorrhizal fungal sporocarp abundance and species richness can be partly explained in terms of an environmental gradient.

  7. Nearshore Community Studies of Neah Bay, Washington

    DTIC Science & Technology

    1988-06-01

    between 5 and 20 species at most sites (Miller et al. 1980; Long (1983). Only Beckett Point (Discovery Bay) had fish species richness appmaching the 47...while most of the MESA sites during spring and summer 1976-1979 had standing crops below 5 g m-2 ; only Twin Rivers (-9- -18 g m-2) and Beckett Point...tow-net standing crops, in contrast, were typically below 0.25 g m-3, except for catches at Dungeness Spit and Beckett Point which ranged as high as

  8. Planter closing wheel effects on cotton emergence in a conservation tillage system

    USDA-ARS?s Scientific Manuscript database

    Closing wheels on a row crop planter help provide good seed-soil contact during planting and can influence emergence and crop stand. Various types of closing wheels are available to producers for use on planters. Seven closing wheel types were used on a row crop planter planting cotton in a conser...

  9. 25. "TEST STAND 1A UTILIZED TO TEST THE ATLAS ICBM", ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. "TEST STAND 1-A UTILIZED TO TEST THE ATLAS ICBM", CROPPED OUT: "DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB." Photo no. 11,371 57; G-AFFTC 15 OCT 57. Looking southwest from below the stand. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  10. Effect of ammate on unwanted growth in oak--yellow-poplar stands in New Jersey

    Treesearch

    S. Little; H. A. Somes

    1954-01-01

    Stands of mixed oaks and yellow-poplar form the most valuable forest crop on many sites in central and northern New Jersey and in the Delaware Valley of southern New Jersey. However, these stands often contain shrubs and low-value hardwood trees that prevent satisfactory restocking of cutover areas.

  11. Effect of logging wounds on diameter growth of sawlog-size Appalachian hardwood crop trees

    Treesearch

    Neil I. Lamson; H. Clay Smith; H. Clay Smith

    1988-01-01

    In previously thinned, even-aged Appalachian hardwood stands, 5-year diameter growth of 102 wounded and 102 unwounded codominant crop trees were compared. A wounded crop tre was defined as one with at least one exposed sapwood logging wound at least 100 inch2 in size. An unwounded crop tree of the same species and size was selected near each of the 102 wounded trees....

  12. Long-term development of regeneration under longleaf pine seedtree and shelterwood stands

    Treesearch

    William D. Boyer

    1993-01-01

    Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut tofive residual basal areas in 1957, namely 9,18,2 7.36, and 45 ft2 per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 195.5 or 1961 seed crops, were established in treated stands. All pines on net 0.9 ac...

  13. Technical guide to crop tree release in hardwood forests

    Treesearch

    Gary W. Miller; Jeffrey W. Stringer; David C. Mercker

    2007-01-01

    Crop tree release (CTR) is a widely applicable silvicultural technique used to enhance the performance of individual trees. It offers flexibility in that it can be applied on small or large properties, and with certain modifications, it can be applied as a precommercial or commercial operation. By favoring the development of selected crop trees within a hardwood stand...

  14. Transgenic Crops and Sustainable Agriculture in the European Context

    ERIC Educational Resources Information Center

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  15. Crop trees and quality in bottomland hardwoods ten years after an early thinning in a young sprout-origin stand in south carolina

    Treesearch

    Lawrence E. Nix

    2006-01-01

    A 23-year-old, mostly sprout-origin stand in the Congaree river bottom near Columbia, SC, was commercially thinned in 1994 using three methods of thinning: (1) the "Leave tree", (2) “Trainer tree”, and (3) “Corridor” methods. The stand was created in 1971 by KG-blade shearing a 90-year-old, heavily cutover bottomland hardwood stand. Before thinning, the stand...

  16. Vegetative conditions and management options in even-age stands on the Monongahela National Forest

    Treesearch

    Gary W. Miller; James N. Kochenderfer; James Knibbs; John E. Baumgras

    2001-01-01

    In 1998, personnel with the Northeastern Research Station and the Monongahela National Forest initiated a comprehensive survey of even-age stands that regenerated between 1964 and 1990. Preliminary results indicate that clearcutting was successful in regenerating these young stands with a variety of woody and herbaceous plant species. Early cleanings using crop-tree...

  17. Shearing Restores Full Productivity to Sparse Aspen Stands

    Treesearch

    Donald A. Perala

    1983-01-01

    Four mature but grossly under-stocked (15 to 23 percent of normal) aspen stands were regenerated by suckering following shearing. Eight years later, aspen standing crop varied with site quality from 3.4 to 8.0 tons per acre -- nearly the potential for these sites at this age. Shearing is as effective as complete clearcutting for regenerating aspen.

  18. Silvicultural aspects intermediate cuttings

    Treesearch

    Kenneth L. Carvell

    1971-01-01

    Correct timing of the first thinning in mixed oak stands depends largely on the composition and condition of the stands and on available markets for small wood products. Delaying first thinnings in high-quality seedling-origin stands until a long, straight, clear bole has developed is of primary importance in assuring high quality of the final crop trees. However, many...

  19. Converting Virginia pine stump diameters to diameters breast high

    Treesearch

    Thomas W., Jr. Church

    1953-01-01

    Up until the last decade, practically no forest-management work had been done in stands of Virginia pine (Pinus virginiana Miller). It is still common practice to clear-cut the stand - with no consideration for a future crop. In some places this has resulted in satisfactory establishment of another pine stand. But usually hardwoods take over the site...

  20. Evaluating growth performance of young stands

    Treesearch

    A. L. Roe; R. E. Benson

    1966-01-01

    A simple procedure for evaluating the diameter growth of young stands in relation to potential growth is described. A comparison technique is developed which contrasts relative diameter of crop trees to the relative diameter growth of the last decade to show the condition and trend of growth in the stand. The method is objective, easy to use, and has several...

  1. Crop tree release increases growth of red oak sawtimber in southern New England: 12-year results

    Treesearch

    Jeffrey S. Ward

    2008-01-01

    In winter 1995, five crop tree thinning plots were established in central Connecticut. Stands were mature red oak sawtimber (74-94 years old) with no history of prior management. Crop trees were upper canopy red oaks (northern red, black, and scarlet) with a potential grade 1 or 2 butt log. Growth of crop trees was monitored for the next 12 years. Diameter, cubic-foot...

  2. Remote sensing of Myriophyllum spicatum L. in a shallow, eutrophic lake

    NASA Technical Reports Server (NTRS)

    Gustafson, T. D.; Adams, M. S.

    1973-01-01

    An aerial 35 mm system was used for the acquisition of vertical color and color infrared imagery of the submergent aquatic macrophytes of Lake Wingra, Wisconsin. A method of photographic interpretation of stem density classes is tested for its ability to make standing crop biomass estimates of Myriophyllum spicatum. The results of film image density analysis are significantly correlated with stem densities and standing crop biomass of Myriophyllum and with the biomass of Oedogonium mats. Photographic methods are contrasted with conventional harvest procedures for efficiency and accuracy.

  3. Post-harvest physiology

    USDA-ARS?s Scientific Manuscript database

    Weather and management constraints, as well as the intended use of the harvested forage, all influence the forage harvest system selected by the producer. Generally, maximum retention of dry matter from harvested forage crops is achieved at moistures intermediate between the standing fresh crop and ...

  4. Composition and diversity of weed communities in Al-Jouf province, northern Saudi Arabia

    PubMed Central

    Gomaa, Nasr H.

    2012-01-01

    The aim of this study was to identify the main weed communities in Al-Jouf province in northern Saudi Arabia. Moreover, the composition and diversity of these communities were studied in relation to soil variables and crop type. Some 54 stands representing olive orchards, date palm orchards, wheat crop and watermelon crop were studied, using ten quadrats (1 × 1 m) per stand. A total of 71 species belonging to 22 families and 61 genera were observed. The classification of vegetation using the Two Way Indicator Species Analysis (TWINSPAN) resulted in the recognition of four vegetation groups representing wheat crop, orchards in winter season, orchards in summer season and watermelon crop. These results suggested the importance of both crop and season for the formation of weed community. Detrended Correspondence Analysis (DCA) showed that these groups are clearly distinguished by the first two DCA axes. The species richness was higher in both olive and date palm orchards than in wheat and watermelon crops. This pattern of species richness could be related to farm management practices and habitat micro-heterogeneity. Soil electrical conductivity, organic carbon and soil texture showed significant correlations with species richness and the cover values of some dominant species, suggesting the significant role of soil characteristics in weed community structure and diversity. PMID:23961198

  5. Soil Carbon Budget During Establishment of Short Rotation Woody Crops

    NASA Astrophysics Data System (ADS)

    Coleman, M. D.

    2003-12-01

    Carbon budgets were monitored following forest harvest and during re-establishment of short rotation woody crops. Soil CO2 efflux was monitored using infared gas analyzer methods, fine root production was estimated with minirhizotrons, above ground litter inputs were trapped, coarse root inputs were estimated with developed allometric relationships, and soil carbon pools were measured in loblolly pine and cottonwood plantations. Our carbon budget allows evaluation of errors, as well as quantifying pools and fluxes in developing stands during non-steady-state conditions. Soil CO2 efflux was larger than the combined inputs from aboveground litter fall and root production. Fine-root production increased during stand development; however, mortality was not yet equivalent to production, showing the belowground carbon budget was not yet in equilibrium and root carbon standing crop was accruing. Belowground production was greater in cottonwood than pine, but the level of pine soil CO2 efflux was equal to or greater than that of cottonwood, indicating heterotrophic respiration was higher for pine. Comparison of unaccounted efflux with soil organic carbon changes provides verification of loss or accrual.

  6. Crop-tree release increases growth of 12-year-old yellow-poplar and black cherry

    Treesearch

    Neil I. Lamson; H. Clay Smith; H. Clay Smith

    1989-01-01

    Precommercial thinning was done in a 12-year-old Appalachian hardwood sapling stand in West Virginia. Two crop-tree release techniques were used--crown touching and crown touching plus 5 feet. Results indicated that both treatments significantly increased 5-year d.b.h. growth for released yellow-poplar and black cherry crop trees. Although there was a major increase in...

  7. Applying a crop-tree release in small-sawtimber white oak stands

    Treesearch

    Jeffrey W Stringer; Gary W. Miller; Robert F. Wittwer; Robert F. Wittwer

    1988-01-01

    Small-sawtimber white oak crop trees in Kentucky were released by a crown-touching technique. In two cutting treatments, 20 and 34 crop trees were released per acre at a total cost of $35 and $42, respectively. Both treatments yielded commercial volumes of cut material. Total mean merchantable volume (> 5.0 inches d.b.h.) in cut trees was 693 cubic feet/acre, with...

  8. Intensive Cleaning Increses Sapling Growth and Browse Production in the Southern Appalachians

    Treesearch

    Lino Della-Bianca

    1969-01-01

    All woody stems except selected crop trees were cut in an 11-year-old mixed-hardwood sapling stand in the Southern Appalachians to determine the effect of intensive cleaning on crop-tree growth and deer-browse production. During the 6-year post-cleaning period, crop trees in uncleaned compartments produced significantly more basal area and grew more in diameter than...

  9. SPRUCE S1 Bog Fine-root Production and Standing Crop Assessed With Minirhizotrons in the Southern and Northern Ends of the S1 Bog

    DOE Data Explorer

    Iversen, C. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Childs, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Norby, R. J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Garrett, A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Martin, A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Spence, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Ontl, T. A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    2017-01-01

    This data set reports fine-root peak growth and standing crop measurements from a forested, ombrotrophic bog as determined using non-destructive minirhizotron technology. Minirhizotron images were collected throughout the growing seasons of 2011 and 2012 at the southern and northern ends of the S1 bog across gradients of tree density in paired hummock and hollow microtopography. The dominant woody species in the bog, and focus of the investigation, were trees Picea mariana and Larix laricina, and ericaceous shrubs Rhododendron groenlandicum and Chamaedaphne calyculata.

  10. The role of disturbance severity and canopy closure on standing crop of understory plant species in ponderosa pine stands in northern Arizona, USA

    Treesearch

    Kyla E. Sabo; Carolyn Hull Sieg; Stephen C. Hart; John Duff Bailey

    2009-01-01

    Concerns about the long-term sustainability of overstocked dry conifer forests in western North America have provided impetus for treatments designed to enhance their productivity and native biodiversity. Dense forests are increasingly prone to large stand-replacing fires; yet, thinning and burning treatments, especially combined with other disturbances such as drought...

  11. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    PubMed

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  12. Perennial wheat lines have highly admixed population structure and elevated rates of outcrossing.

    USDA-ARS?s Scientific Manuscript database

    Perennial wheat has been proposed to alleviate long standing issues with soil erosion in annual cropping systems, while supporting rural communities and providing grain farmers with a marketable climate-resilient crop. The Washington State University perennial wheat breeding program has created sev...

  13. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Examples of direct marketing include selling through an on-farm or roadside stand, farmer's market, and... fresh market or processing: (a) Fresh Apricots; (b) Fresh Freestone Peaches; (c) Fresh Nectarines; (d..., the yield used to establish your production guarantee will be reduced for the current crop year...

  14. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Examples of direct marketing include selling through an on-farm or roadside stand, farmer's market, and... fresh market or processing: (a) Fresh Apricots; (b) Fresh Freestone Peaches; (c) Fresh Nectarines; (d..., the yield used to establish your production guarantee will be reduced for the current crop year...

  15. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Examples of direct marketing include selling through an on-farm or roadside stand, farmer's market, and... fresh market or processing: (a) Fresh Apricots; (b) Fresh Freestone Peaches; (c) Fresh Nectarines; (d..., the yield used to establish your production guarantee will be reduced for the current crop year...

  16. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Examples of direct marketing include selling through an on-farm or roadside stand, farmer's market, and... fresh market or processing: (a) Fresh Apricots; (b) Fresh Freestone Peaches; (c) Fresh Nectarines; (d..., the yield used to establish your production guarantee will be reduced for the current crop year...

  17. Remote Sensing Classification of Grass Seed Cropping Practices in Western Oregon

    USDA-ARS?s Scientific Manuscript database

    Multiband Landsat images and multi-temporal MODIS 16-day composite NDVI were classified into 16 categories representing the primary crop rotation options and stand establishment conditions present in western Oregon grass seed fields. Mismatch in resolution between MODIS and Landsat data was resolved...

  18. Precommercial Crop-Tree Thinning in a Mixed Northern Hardwood Stand

    Treesearch

    Nancy G. Voorhis; Nancy G. Voorhis

    1990-01-01

    Analysis of growth measurements taken 7 years after thinning an 8-year-old hardwood stand showed significant diameter and crown-diameter growth increases. Further analysis showed dissimilarities in the pattern of response of the three species observed: yellow birch, sugar maple, and paper birch.

  19. Silvicultural guide for paper birch in the northeast (revised)

    Treesearch

    L. O. Safford

    1983-01-01

    This revised guide provides practical information on silvicultural treatments to grow paper birch as a timber crop. It covers treatments for existing stands, the regeneration of new stands, and subsequent culture to maturity. The stocking chart has been revised to reflect results of current growth studies.

  20. Spatial patterns of fish communities along two estuarine gradients in southern Florida

    USGS Publications Warehouse

    Green, D.P.J.; Trexler, J.C.; Lorenz, J.J.; McIvor, C.C.; Philippi, T.

    2006-01-01

    In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.

  1. Effects of reproduction cutting method and hardwood retention on shortleaf pine seed production in natural stands of the Ouachita Mountains

    Treesearch

    Robert F. Wittwer; Micahel G. Shelton; James M. Guldin

    2003-01-01

    Shortleaf pine (Pinus echinata Mill.) seed production was monitored for 4 yr in stands harvested by a range of even- and uneven-aged reproduction cutting methods. The fifty-two 35–40 ac stands were distributed throughout the Ouachita Mountains from central Arkansas to eastern Oklahoma. Seed crops were characterized as good, poor, poor, and bumper,...

  2. Individual tree- versus stand-level approaches to thinning: is it a choice of one or the other, or a combination of both?

    Treesearch

    Christopher A. Nowak

    1995-01-01

    Thinning guidelines have existed for most eastern hardwood forests for 20 to 30 years. While these guidelines are presented in varying degrees of detail, they generally all contain recommendations on levels of residual stand density and stand structure, along with information on crop tree requirements. Recent attempts have been made to simplify thinning guidelines by...

  3. The impact of volunteer rice infestation on rice yield and grain quality

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) is a crop stand which emerges from shattered seeds of the previous crop. When present at sufficiently high levels, it can potentially affect the commercial market value of cultivated rice products, especially if it produces kernels with quality, uniformity, or size ...

  4. Social assessment for the Colville National Forest CROP program.

    Treesearch

    Angela J. Findley; Matthew S. Carroll; Keith A. Blatner

    2000-01-01

    A qualitative social assessment targeted salient issues connected to the Colville National Forest creating opportunities (CROP) research program that examines forest management alternatives for small-diameter stands in northeastern Washington. Research spanned various communities in three counties and investigated the diversity of fundamental values people attach to...

  5. Alfalfa stand length and subsequent crop patterns in the upper Midwestern United States

    USDA-ARS?s Scientific Manuscript database

    To gain perspective on alfalfa (Medicago sativa L.), annual crop rotations in the upper midwestern United States, USDA-National Agricultural Statistics Service (NASS) cropland data layers (CDLs) and USDA-NRCS soil survey layers were combined for six states (North Dakota, South Dakota, Nebraska, Minn...

  6. Association mapping of rice cold germination with the USDA mini-core

    USDA-ARS?s Scientific Manuscript database

    Assuring stand establishment is a critical first step in optimizing rice crop yields. Plant stand density can impact yield potential, incidence of some diseases, weed competition, and grain quality. Most rice production in the Southern USA is drill seeded in the spring. Planting can occur as early a...

  7. Fifteen-year results from six cutting methods in second-growth northern hardwoods.

    Treesearch

    Gayne G. Erdmann; Robert R. Oberg

    1973-01-01

    Presents and compares stand growth and yield information from three single-tree selection cuts, a crop-tree release treatment, an 8-inch diameter limit cut, and an uncut control. Discusses the influence of stand density on basal area growth, cubic volume growth, and board-foot volume growth.

  8. Prohexadione-calcium improves stand density and yield of alfalfa interseeded into silage corn

    USDA-ARS?s Scientific Manuscript database

    Interseeded alfalfa (Medicago sativa L.) could serve as a dual-purpose crop to provide groundcover for silage corn (Zea mays L.) and forage during subsequent years of production, but interspecific competition often leads to poor stands of alfalfa and unsatisfactory yields of corn. Four experiments e...

  9. Reproducing pine stands on the eastern shore of Maryland using a seed-tree cutting and preparing seedbeds with machinery and summer fires

    Treesearch

    S. Little; J. J. Mohr

    1954-01-01

    Pure pine stands are the most profitable forest crop on upland sites of the Eastern Shore of Maryland. The stands have been common in the past, because loblolly pine and pond pine usually made up most of the first forest growth on abandoned farmland. And apparently nearly all upland sites have been tilled at one time or another.

  10. Alfalfa varieties differ markedly in seedling survival when interseeded into corn and treated with prohexadione-calcium

    USDA-ARS?s Scientific Manuscript database

    Interseeded alfalfa could serve as a dual purpose crop for providing groundcover during silage corn production and forage during subsequent years of production, but this system has been unworkable because competition between the co-planted crops often leads to stand failure of interseeded alfalfa. R...

  11. Evaluation of short-rotation woody crops to stabilize a decommissioned swine lagoon

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C. Hennessey; Chad J. Penn

    2012-01-01

    Fast growing tree stands represent an environmentally friendly, less expensive method for stabilization of decommissioned animal production lagoons than traditional lagoon closure. We tested the feasibility of using short-rotation woody crops (SRWCs) in central Oklahoma to close a decommissioned swine lagoon by evaluating the growth performance and nutrient uptake of...

  12. 7 CFR 457.167 - Pecan revenue crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... include selling through an on-farm or roadside stand, or a farmer's market, or permitting the general... of in-shell pecans grown during a crop year. Harvest—Collecting mature pecans from the orchard. Hedge...—Pecans as they are removed from the orchard with the nut-meats in the shell. Interplanted—Acreage on...

  13. Airborne and ground-based remote sensing for the estimation of evapotranspiration and yield of bean, potato, and sugar beet crops

    NASA Astrophysics Data System (ADS)

    Jayanthi, Harikishan

    The focus of this research was two-fold: (1) extend the reflectance-based crop coefficient approach to non-grain (potato and sugar beet), and vegetable crops (bean), and (2) develop vegetation index (VI)-yield statistical models for potato and sugar beet crops using high-resolution aerial multispectral imagery. Extensive crop biophysical sampling (leaf area index and aboveground dry biomass sampling) and canopy reflectance measurements formed the backbone of developing of canopy reflectance-based crop coefficients for bean, potato, and sugar beet crops in this study. Reflectance-based crop coefficient equations were developed for the study crops cultivated in Kimberly, Idaho, and subsequently used in water availability simulations in the plant root zone during 1998 and 1999 seasons. The simulated soil water profiles were compared with independent measurements of actual soil water profiles in the crop root zone in selected fields. It is concluded that the canopy reflectance-based crop coefficient technique can be successfully extended to non-grain crops as well. While the traditional basal crop coefficients generally expect uniform growth in a region the reflectance-based crop coefficients represent the actual crop growth pattern (in less than ideal water availability conditions) in individual fields. Literature on crop canopy interactions with sunlight states that there is a definite correspondence between leaf area index progression in the season and the final yield. In case of crops like potato and sugar beet, the yield is influenced not only on how early and how quickly the crop establishes its canopy but also on how long the plant stands on the ground in a healthy state. The integrated area under the crop growth curve has shown excellent correlations with hand-dug samples of potato and sugar beet crops in this research. Soil adjusted vegetation index-yield models were developed, and validated using multispectral aerial imagery. Estimated yield images were compared with the actual yields extracted from the ground. The remote sensing-derived yields compared well with the actual yields sampled on the ground. This research has highlighted the importance of the date of spectral emergence, the need to know the duration for which the crops stand on the ground, and the need to identify critical periods of time when multispectral coverages are essential for reliable tuber yield estimation.

  14. The production and use of wood chips from Virginia pine thinnings

    Treesearch

    Richard H. Fenton

    1956-01-01

    In most forest-management plans, attention is usually directed to certain cultural treatments early in the life of a stand. These are generally some form of weeding or thinning to favor the ultimate crop trees by cutting out a proportion of the young stand that seems least desirable to retain.

  15. Revisiting the relationship between common weather variables and loblolly-shortleaf pine seed crops in natural stands

    Treesearch

    Michael D. Cain; Michael G Shelton

    2000-01-01

    Seed production was monitored during 24 years using seed-collection traps in loblolly-shortleaf pine (Pinus taeda L.-P. echinata Mill.) stands located in southeast Arkansas, north-central Louisiana, and southwest Mississippi on the southeastern Coastal Plain, USA. Sound seed production was correlated with mean monthly precipitation...

  16. Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?

    PubMed Central

    Pignon, Charles P.; Jaiswal, Deepak; McGrath, Justin M.

    2017-01-01

    Abstract The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been systematically studied in field stands of C4 crops. ΦCO2max,app was derived from the initial slope of the response of leaf CO2 uptake (A) to photon flux (Q). Leaf fractional light absorptance (α) was measured to determine the absolute maximum quantum yield of CO2 assimilation on an absorbed light basis (ΦCO2max,abs). Light response curves were determined on sun and shade leaves of 49 field plants of Miscanthus × giganteus and Zea mays following canopy closure. ΦCO2max,app and ΦCO2max,abs declined significantly by 15–27% (P<0.05) with canopy depth. Experimentally, leaf age was shown unlikely to cause this loss. Modeling canopy CO2 assimilation over diurnal courses suggested that the observed decline in ΦCO2max,app with canopy depth costs 10% of potential carbon gain. Overcoming this limitation could substantially increase the productivity of major C4 crops. PMID:28110277

  17. Response to crop-tree release by 7-year-old stems of red maple stump sprouts and northern red oak advance reproduction

    Treesearch

    G. R., Jr. Trimble

    1974-01-01

    This paper deals with crop-tree release sf two species typical of a fair site: red maple stump sprouts and northern red oak advance reproduction. A study was made to test the feasibility of doing a crop-tree release immediately after the canopy closed and crown classes could be distinguished. The study was made in a 7-year-old even-aged hardwood stand on the Fernow...

  18. Targeting ecosystem features for conservation: Standing crops in the Florida Everglades

    USGS Publications Warehouse

    Turner, A.M.; Trexler, J.C.; Jordan, C.F.; Slack, S.J.; Geddes, P.; Chick, J.H.; Loftus, W.F.

    1999-01-01

    The Everglades in southern Florida, U.S.A., is a major focus of conservation activities. The freshwater wetlands of the Everglades do not have high species richness, and no species of threatened aquatic animals or plants live there. We have, however, identified a distinctive ecological feature of the Everglades that is threatened by canal construction, draining, and nutrient enrichment from agricultural runoff compared to values reported from other freshwater systems, standing stocks of periphyton in relatively undisturbed areas of the Everglades were unusually high, and standing stocks of invertebrates and fish were unusually low. Averaging data gathered from nine sites and five sampling periods spanning I year, we found that periphyton standing crop was 88.2 g/m2 (ash-free dry mass), invertebrate standing stock was 0.64 g/m2 (dry mass), and fish standing stock was 1.2 g/m2 (dry mass of large and small species combined). We found that fish standing stocks were much higher in phosphorus-enriched sites than in nearby reference sites but that invertebrate standing stocks were similar in enriched and reference sites. Our results support the notion that oligotrophy is at least partially responsible for the low standing stocks of fish, but they also suggest that species interactions and a paucity of deep-water refugia are important. Anthropogenic eutrophication in Everglades marshes will lead to the loss of distinctive ecosystem features. A focus on species richness and 'hot spots' of threatened species provides no basis for conservation of ecosystems like the Everglades. If oligotrophic ecosystems often have low species richness, they will be underrepresented in preservation networks based on some common criteria for establishing conservation priorities.

  19. Early crop-tree release in even-aged stands of Appalachian hardwoods

    Treesearch

    George R., Jr. Trimble; George R. Trimble

    1971-01-01

    Now that even-aged silviculture is well established as a successful method of growing Appalachian hardwoods, a pressing need exists for guidelines for precommercial operations. We started research several years ago on the Fernow Experimental Forest near Parsons, West Virginia, to learn more about the cost and methodology of early crop-tree release in mountain hardwood...

  20. Ground cover management in walnut and other hardwood plantings

    Treesearch

    J.W. Van Sambeek; H.E. Garrett

    2004-01-01

    Ground cover management in walnut plantings and established stands can include (1) manipulating the resident vegetation, (2) mechanical control, (3) chemical control, (4) mulching, (5) planting cover crops, or (6) interplanting woody nurse crops. Data from over 110 reports were used to compile a database that compared growth of black walnut and other hardwoods under...

  1. Dispersal of white spruce seed on Willow Island in interior Alaska.

    Treesearch

    Andrew Youngblood; Timothy A. Max

    1992-01-01

    The seasonal and spatial patterns of dispersal of white spruce (Picea glauca (Moench) Voss) seed were studied from 1986 to 1989 in floodplain stands along the Tanana River near Fairbanks, Alaska. Analysis of the 1987 crop showed that production of filled seed was strongly related to estimated production of total seed and unrelated to selected stand...

  2. Precommercial thinning in a northern conifer stand: 18-year results

    Treesearch

    John C. Brissette; Robert M., Jr. Frank; Timothy L. Stone; Thomas A. Skratt

    1999-01-01

    Four levels of precommercial thinning were applied with and without fertilization in a young, even-aged stand of northern conifers in east-central Maine. After 18 years, precommercial thinning resulted in longer and wider crowns and greater survival, growth, and yield of selected crop trees compared to untreated controls. Growth and yield were greater with uniform...

  3. Early Thinning in Bottomland Hardwoods

    Treesearch

    Madison P. Howell; Lawrence E. Nix

    2002-01-01

    A 23-year-old sprout origin stand in the Congaree river bottom near Columbia S.C was commercially thinned in 1994 using standard "Leave Tree", "Trainer Tree", and "Corridor" methods. The stand consisted of 260-325 trees per acre and 28-31 cords per acre. There were 90-140 potential crop trees (30 to 40 percent commercial oaks) of...

  4. Seedfall in a young-growth Douglas-fir stand: 1950-1978.

    Treesearch

    D.L. Reukema

    1982-01-01

    A 29-year record of seedfall in thinned and unthinned portions of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand, spanning ages 39 through 68, reveals annual seed production from no seeds to about 3 million per hectare. For the nine largest crops, annual seedfall in the best seed-producing thinning treatment included at least 100 000...

  5. Slash disposal in oak-pine stands of southern New Jersey

    Treesearch

    S. Little; H. A. Somes

    1949-01-01

    Slash left from cutting operations in forest stands may have several important economic effects. It may kill established reproduction or provide unfavorable conditions for the establishment of new seedlings, thus preventing the restocking of the area with a desirable crop of timber. Slash may also create a serious fire hazard, providing fuel for intense fires that are...

  6. The efficacy of winter cover crops to stabilize soil inorganic nitrogen after fall-applied anhydrous ammonia.

    PubMed

    Lacey, Corey; Armstrong, Shalamar

    2015-03-01

    There is a dearth of knowledge on the ability of cover crops to increase the effectiveness of fall-applied nitrogen (N). The objective of this study was to investigate the efficacy of two cover crop species to stabilize inorganic soil N after a fall application of N. Fall N was applied at a rate of 200 kg N ha into living stands of cereal rye, tillage radish, and a control (no cover crop) at the Illinois State University Research and Teaching Farm in Lexington, Illinois. Cover crops were sampled to determine N uptake, and soil samples were collected in the spring at four depths to 80 cm to determine the distribution of inorganic N within the soil profile. Tillage radish (131.9-226.8 kg ha) and cereal rye (188.1-249.9 kg ha N) demonstrated the capacity to absorb a minimum of 60 to 80% of the equivalent rate of fall-applied N, respectively. Fall applying N without cover crops resulted in a greater percentage of soil NO-N (40%) in the 50- to 80-cm depth, compared with only 31 and 27% when tillage radish and cereal rye were present at N application. At planting, tillage radish stabilized an average of 91% of the equivalent rate of fall-applied N within the 0- to 20-cm, depth compared with 66 and 57% for the cereal rye and control treatments, respectively. This study has demonstrated that fall applying N into a living cover crop stand has the potential to reduce the vulnerability of soil nitrate and to stabilize a greater concentration of inorganic N within the agronomic depths of soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. A method to minimize the time needed for formation of mycorrhizas in sweet corn seedlings for outplanting using AM fungus inoculum produced on-farm

    USDA-ARS?s Scientific Manuscript database

    A preliminary greenhouse growth phase prior to outplanting allows for earlier stand establishment and the greater profits that early-harvested crops can receive. Inoculation of potting media used for these crops with arbuscular mycorrhizal [AM] fungi would help combat the effects of low soil temper...

  8. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Treesearch

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  9. Early competition shapes maize whole-plant development in mixed stands

    PubMed Central

    Evers, Jochem B.

    2014-01-01

    Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719

  10. Effects on and recovery of microplankton and microbenthon to Gulf of Mexico oil spills impacting outer and mid shelfal, inner shelfal, and estuarine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, R.E.; Wigley, C.R.; Fisco, P.

    1982-01-01

    During 1979, 1980, and 1981 3 major and different environments of human interest and economic well-being were impacted by 3 different and major Gulf of Mexico oil spills. All the studied spills had pre-spill data. This study revealed 3 conclusions useful in the monitoring of spill recovery. (1) Immediately or continually impacted areas exhibited a mass mortality for microplankton in pelagic systems, and an abnormally high concentration (collection) of nematodes in nearshore sands. (2) Impacted benthonic areas exhibited increases in nematode standing corps followed by increases in benthonic forminiferal standing crops. (3) Recovery to pre-spill conditions may be indicated bymore » termination of red tide condition or mortality of susceptible microplankton; return to pre-spill standing crops, taxonomic character, and diversity of microbenthon or microplankton; and return to pre-spill seasonal fluctuation of peaks and lows in microbenthon and microplankton.« less

  11. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  12. Thinning northern hardwoods in New England by dominant-tree removal — early results

    Treesearch

    William Leak

    2007-01-01

    Commercial thinning is a widely accepted practice in northern hardwood stands of New England. Commercial thinning guidelines for eastern hardwoods generally recommend releasing selected crop trees or the removal of trees in less-than-dominant crown classes unless they are of poor health or quality. However, many northern hardwood stands in New England have a dominant...

  13. Seed production of Douglas-fir increased by thinning.

    Treesearch

    Donald L. Reukema

    1961-01-01

    In planning thinnings and final harvest cuttings for stands of young-growth Douglas-fir, foresters need reliable information on the capacity of young-growth stands to bear seed, on the periodicity of seed crops, and on the effects of thinning and other forest practices on seed production. One of the first studies designed to help provide this information was begun in...

  14. Estimating bottomland hardwood growth and yield

    Treesearch

    1989-01-01

    Most bottomland hardwoods grow on very productive sites-site index 70 or more. A fully stocked immature stand (table 1, fig. 1) requires tending throughout its life. The goal is to attain a stand of approximately 50 high quality trees of commercial species per acre at maturity. Releasing these crop trees can result in the cumulative yield of 2,000-4,000 board feet per...

  15. Logging impact in uneven-aged stands of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    John P. Dwyer

    1999-01-01

    Today, there is keen interest in using alternative silvicultural systems like individual-tree selection, group openings and shelterwood because the general public feels these systems are more acceptable than clearcutting. Consequently, due to repeated entries into forest stands and the fact that residual crop trees have to be carried for a long period of time between...

  16. Stand Dynamics and Plant Associates of Loblolly Pine Plantations to Midrotation after Early Intensive Vegetation Management-A Southeastern United States Regional Study

    Treesearch

    James H. Miller; Bruce R. Zutter; Ray A. Newbold; M. Boyd Edwards; Shepard M. Zedaker

    2003-01-01

    Increasingly, pine plantations worldwide are grown using early control of woodv and/or herbaceous vegetation. Assuredsustainablepractices require long-term data on pine plantation development detailing patterns and processes to understand both crop-competition dynamics and the role of stand participants in providing multiple attributes such as biodiversity conservation...

  17. Harvesting short rotation woody crops with a shear

    Treesearch

    Wellington Cardoso; Dana Mitchell; Tom Gallagher; Daniel and de Souza

    2014-01-01

    A time and motion study was performed on a skid steer equipped with a 14-inch tree shear attachment. The machine was used to install initial coppice harvesting treatments on three stands across the south. The study included one willow and two cottonwood sites. The stands averaged from 2 to 4 years old. Approximately 200 trees were shear harvested from each of the...

  18. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    PubMed

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  19. Response to crop-tree release by 7-year-old stems of yellow-poplar and black cherry

    Treesearch

    G.R. Jr. Trimble; G.R. Jr. Trimble

    1973-01-01

    Five years after crop-tree release of yellow-poplar and black cherry sterns in a 7-year-old stand of Appalachian hardwoods, measurements indicated that released trees were but slightly superior to control trees in height, diameter, and crown position. Sprout regrowth of cut tree stems and grapevines had largely nullified the effects of release. Indications are that for...

  20. Herbicide hardwood crop tree release in central West Virginia

    Treesearch

    Jeffrey D. Kochenderfer; Shepard M. Zedaker; James E. Johnson; David W. Smith; Gary W. Miller

    2001-01-01

    Chemical crop tree release treatments were applied to young hardwood stands at three sites in central West Virginia to evaluate the effectiveness of glyphosate as Accord (41.5% SL), imazapyr as Arsenal AC (53.1% SL) and Chopper (27.6% EC), and triclopyr as Garlon 3A (44.4% triethylamine salt SL), and Garlon 4 (61.6% butoxyethyl ester EC) using hack-and-squirt injection...

  1. Weather effects on the success of longleaf pine cone crops

    Treesearch

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  2. Precommercial crop-tree release increases diameter growth of Appalachian hardwood saplings

    Treesearch

    H. Clay Smith; Neil I. Lamson

    1983-01-01

    Codominant seedling-origin crop trees 25 to 39 feet tall in even-aged, precommercial-size hardwood stands were released in West Virginia. Trees were located on two sites: good oak site index 75 and fair oak site 63. Species studied were black cherry, sweet birch, and yellow-poplar. Three-year results indicated that the trees generally responded to release; the 3-year...

  3. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization

    Treesearch

    Mark Coleman

    2007-01-01

    In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of...

  4. Interaction of beaver and elk herbivory reduces standing crop of willow

    USGS Publications Warehouse

    Baker, B.W.; Mitchell, D.C.S.; Ducharme, H.C.; Stanley, T.R.; Peinetti, H.R.

    2005-01-01

    Populations of beaver and willow have not thrived in riparian environments that are heavily browsed by livestock or ungulates, such as elk. The interaction of beaver and elk herbivory may be an important mechanism underlying beaver and willow declines in this competitive environment. We conducted a field experiment that compared the standing crop of willow three years after simulated beaver cutting on paired plants with and without intense elk browsing (∼85% utilization rate). Simulated beaver cutting with intense elk browsing produced willow that was small (biomass and diameter) and short, with far fewer, but longer, shoots and a higher percentage of dead biomass. In contrast, simulated beaver cutting without elk browsing produced willow that was large, tall, and leafy, with many more, but shorter, shoots (highly branched) and a lower percentage of dead biomass. Total stem biomass after three years was 10 times greater on unbrowsed plants than on browsed plants. Unbrowsed plants recovered 84% of their pre-cut biomass after only two growing seasons, whereas browsed plants recovered only 6%. Thus, the interaction of beaver cutting and elk browsing strongly suppressed the standing crop of willow. We predict that a lack of willow suitable as winter food for beaver can cause beaver populations to decline, creating a feedback mechanism that reduces beaver and willow populations. Thus, intense herbivory by ungulates or livestock can disrupt beaver–willow mutualisms that naturally occur in less competitive environments.

  5. Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants

    NASA Astrophysics Data System (ADS)

    Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe

    2005-10-01

    In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.

  6. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus

    PubMed Central

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector’s life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis’ life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector–based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector. PMID:27159134

  7. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.

    PubMed

    Ogada, Pamella Akoth; Moualeu, Dany Pascal; Poehling, Hans-Michael

    2016-01-01

    Several models have been studied on predictive epidemics of arthropod vectored plant viruses in an attempt to bring understanding to the complex but specific relationship between the three cornered pathosystem (virus, vector and host plant), as well as their interactions with the environment. A large body of studies mainly focuses on weather based models as management tool for monitoring pests and diseases, with very few incorporating the contribution of vector's life processes in the disease dynamics, which is an essential aspect when mitigating virus incidences in a crop stand. In this study, we hypothesized that the multiplication and spread of tomato spotted wilt virus (TSWV) in a crop stand is strongly related to its influences on Frankliniella occidentalis preferential behavior and life expectancy. Model dynamics of important aspects in disease development within TSWV-F. occidentalis-host plant interactions were developed, focusing on F. occidentalis' life processes as influenced by TSWV. The results show that the influence of TSWV on F. occidentalis preferential behaviour leads to an estimated increase in relative acquisition rate of the virus, and up to 33% increase in transmission rate to healthy plants. Also, increased life expectancy; which relates to improved fitness, is dependent on the virus induced preferential behaviour, consequently promoting multiplication and spread of the virus in a crop stand. The development of vector-based models could further help in elucidating the role of tri-trophic interactions in agricultural disease systems. Use of the model to examine the components of the disease process could also boost our understanding on how specific epidemiological characteristics interact to cause diseases in crops. With this level of understanding we can efficiently develop more precise control strategies for the virus and the vector.

  8. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    PubMed

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net benefit, and benefit-cost ratio were the highest in the S3 treatment during both years of experimentation. Thus, relay cropping of wheat in standing cotton might be a viable option to improve the soil physical environment and profitability of the cotton-wheat cropping system.

  9. Effects of herbicide release on the growth of 8- to 12-year-old hardwood trees

    Treesearch

    G.W. Wendel; Neil I. Lamson; Neil I. Lamson

    1987-01-01

    In 8- to 12-year-old Appalachian hardwood stands, crop trees were released by stem injecting competing trees with a 20 percent aqueous solution of glyphosate. Species released were black cherry, red oak, and sugar maple. Release treatments were (a) injection of all trees within a 5-foot radius of the crop tree bole and (b) injections of all trees whose crown touched...

  10. Long-term effects of precommercial thinning on stem form, volume, and branch characteristics of red spruce and balsam fir crop trees

    Treesearch

    Aaron Weiskittel; Laura S. Kenefic; Robert S. Seymour; Leah M. Phillips

    2009-01-01

    The effects of precommercial thinning (PCT) on stem dimensions, form, volume, and branch attributes of red spruce [Picea rubens Sarg.] and balsam fir [Abies balsamea (L.) Mill.] crop trees were assessed 25 years after treatment in an even-aged northern conifer stand. Treatments were a uniform 2.4 x 2.4-m spacing and a control (no...

  11. Spatial and Temporal Distribution of Weeviled Acorns within a Northern Red oak Seedling Orchard

    Treesearch

    D.R. Miller; S.E. Scharbaum

    2004-01-01

    Acorn insects can have a severe impact on mass production and regeneration. Gibson (1972) reported losses of 10 to 100 percent of acorn crops in stands of white oak, whereas Gibson (1982) reported losses of up to 96 percent in stands of northern red oak. Acorn insects can be divided into two groups: primary and secondary insects. The primary insects include the...

  12. Partial cutting of western hemlock and sitka spruce in southeast Alaska.

    Treesearch

    Wilbur A. Farr; A.S. Harris

    1971-01-01

    This study of response to partial cutting over a 17-year period in a 96-year-old stand of western hemlock-Sitka spruce at Karta Bay, Alaska, showed that crop trees left after partial cutting were able to increase or maintain &out the same rate of diameter growth as before thinning, but growth in diameter of trees in an unthinned stand followed the norma2 pattern of...

  13. Products Derived from Thinning Two Hardwood Timber Stands in the Appalachians

    Treesearch

    E. Paul Craft; John E. Baumgras

    1978-01-01

    Two sample plots in poletimber-small sawtimber stands of Allegheny hardwoods were thinned to improve crop-tree spacing. Thinning produced nearly 35 tons per acre of wood fiber, including 13 tons of sawable boltwood, 3-l/2 tons of standard sawlogs, 18 tons of pulpwood, and 1 ton of fuelwood. Nearly 3,700 board feet of lumber and cants were produced from the sawbolts and...

  14. Acorn production in northern red oak stands in northwestern Pennsylvania

    Treesearch

    L. R. Auchmoody; H. Clay Smith; Russell S. Walters

    1993-01-01

    Northern red oak acorn production was measured in 21 maturing stands on good sites in northwestern Pennsylvania. The number of acorns produced per acre varied from a low of 7,000 to nearly 273,000. Acorns were produced in all years. In no year was there consistently good acorn production at all areas, nor was there a good crop for more than two consecutive years at any...

  15. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  16. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  17. Vernonia galamensis, potential new crop source of epoxy acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdue, R.E. Jr.; Carlson, K.D.; Gilbert, M.G.

    Vernonia galamensis is a good source of seed oil rich in epoxy acid, which can be used to manufacture plastic formulations, protective coatings, and other products. Seed from a natural stand in Ethiopia contained 31% epoxy acid. Under cultivation in Kenya, this unimproved germ plasm produced a substantial yield of seed with 32% epoxy acid. This African species has good natural seed retention and is a promising new crop for semiarid tropical areas. 11 references.

  18. Comparing crop rotations between organic and conventional farming.

    PubMed

    Barbieri, Pietro; Pellerin, Sylvain; Nesme, Thomas

    2017-10-23

    Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.

  19. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  20. The effects of long-term management on patterns of carbon storage in a northern highbush blueberry production system.

    PubMed

    Nemeth, Denise; Lambrinos, John G; Strik, Bernadine C

    2017-02-01

    Perennial crops potentially provide a sink for atmospheric carbon. However, there is a poor understanding of how perennial crops differ in their carbon allocation patterns, and few studies have tested how agronomic practices such as fertilization influence long-term patterns of carbon allocation in actual production systems. In this study, we report results of a long-term field experiment that tested the individual and combined effects of organic matter incorporation and nitrogen fertilization on carbon allocation. The mature (nine-year-old) blueberry plants in this study had an average standing carbon stock of 1147gCm -2 and average annual Net Primary Production (NPP) of 523gCm -2 yr -1 , values that are similar to those reported for other woody crops. Forty-four percent of blueberry annual NPP was sequestered in persistent biomass, 19% was exported as harvested fruit, and 37% entered the detrital pathway. Nitrogen applied at rates typical for blueberry production throughout the span of the study had no significant effect on total plant or soil C. However, pre-planting organic matter incorporation and periodic mulching with sawdust significantly increased both soil organic matter and soil C. Pre-planting organic matter incorporation also increased total standing plant C nine years later at maturity. At the field scale, we estimate that fields receiving pre-planting organic matter incorporation would have 4.8% (4.5Mgha -1 ) more standing C relative to non-amended fields, although the difference is within the range of uncertainty of the estimated values. These results suggest that blueberry production can provide a valuable medium-term carbon store that is comparable in magnitude to that of temperate tree crops, but overall carbon budgets are influenced by management practices over the first decade after planting. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Interference and economic threshold level of little seed canary grass in wheat under different sowing times.

    PubMed

    Hussain, Saddam; Khaliq, Abdul; Matloob, Amar; Fahad, Shah; Tanveer, Asif

    2015-01-01

    Little seed canary grass (LCG) is a pernicious weed of wheat crop causing enormous yield losses. Information on the interference and economic threshold (ET) level of LCG is of prime significance to rationalize the use of herbicide for its effective management in wheat fields. The present study was conducted to quantify interference and ET density of LCG in mid-sown (20 November) and late-sown (10 December) wheat. Experiment was triplicated in randomized split-plot design with sowing dates as the main plots and LCG densities (10, 20, 30, and 40 plants m(-2)) as the subplots. Plots with two natural infestations of weeds including and excluding LCG were maintained for comparing its interference in pure stands with designated densities. A season-long weed-free treatment was also run. Results indicated that composite stand of weeds, including LCG, and density of 40 LCG plants m(-2) were more competitive with wheat, especially when crop was sown late in season. Maximum weed dry biomass was attained by composite stand of weeds including LCG followed by 40 LCG plants m(-2) under both sowing dates. Significant variations in wheat growth and yield were observed under the influence of different LCG densities as well as sowing dates. Presence of 40 LCG plants m(-2) reduced wheat yield by 28 and 34% in mid- and late-sown wheat crop, respectively. These losses were much greater than those for infestation of all weeds, excluding LCG. Linear regression model was effective in simulating wheat yield losses over a wide range of LCG densities, and the regression equations showed good fit to observed data. The ET levels of LCG were 6-7 and 2.2-3.3 plants m(-2) in mid- and late-sown wheat crop, respectively. Herbicide should be applied in cases when LCG density exceeds these levels under respective sowing dates.

  2. Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development

    PubMed Central

    Cournède, Paul-Henry; Mathieu, Amélie; Houllier, François; Barthélémy, Daniel; de Reffye, Philippe

    2008-01-01

    Background and Aims The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x–y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development. Methods The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France). Key Results and Conclusions The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production ( Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source–sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model. PMID:18037666

  3. Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development.

    PubMed

    Cournède, Paul-Henry; Mathieu, Amélie; Houllier, François; Barthélémy, Daniel; de Reffye, Philippe

    2008-05-01

    The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x-y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development. The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France). The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production (Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source-sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model.

  4. Primary production in the tropical continental shelf seas bordering northern Australia

    NASA Astrophysics Data System (ADS)

    Furnas, Miles J.; Carpenter, Edward J.

    2016-10-01

    Pelagic primary production (14C uptake) was measured 81 times between 1990 and 2013 at sites spanning the broad, shallow Northern Australian Shelf (NAS; 120-145°E) which borders the Australian continent. The mean of all areal production measurements was 1048±109 mg C m-2 d-1 (mean±95% CI). Estimates of areal primary production were correlated with integral upper-euphotic zone chlorophyll stocks (above the 50% and 20% light penetration depths) accessible to ocean color remote sensing and total water column chlorophyll standing crop, but not surface (0-2 m) chlorophyll concentrations. While the NAS is subject to a well characterized monsoonal climate regime (austral summer-NW monsoon -wet: austral winter- SE monsoon -dry), most seasonal differences in means of regional-scale chlorophyll standing crop (11-33 mg Chl m-2 for 12 of 15 season-region combinations) and areal primary production (700-1850 mg C m- day-1 for 12 of 15 season-region combinations) fell within a 3-fold range. Apart from the shallow waters of the Torres Strait and northern Great Barrier Reef, picoplankton (<2 μm size fraction) dominated chlorophyll standing crop and primary production with regional means of picoplankton contributions ranging from 45 to >80%. While the range of our post-1990 areal production estimates overlaps the range of production estimates made in NAS waters during 1960-62, the mean of post-1990 estimates is over 2-fold greater. We regard the difference to be due to improvements in production measurement techniques, particularly regarding the reduction of potential metal toxicity and incubations in more realistic light regimes.

  5. Production and standing crop of litter and humus in a forest exposed to chronic gamma irradiation for twelve years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentano, T.V.; Woodwell, G.M.

    Continuous exposure since 1961 of an oak-pine forest at Brookhaven National Laboratory to chronic gamma irradiation has shown: (1) progressive reduction in litter production from the first year through 1965; (2) greater litter production in 1973 compared to 1965 at exposure rates below 9 R/day primarily because of the prolific sprouting of the oaks, especially Quercus alba; (3) further reduction in litter production in intermediate zones (14-49 R/day) from 1965 to 1973 as a result of replacement of the forest by a Carex pensylvanica mat; (4) increased litter production in the high exposure zone (125 R/day) in 1973 as amore » result of colonization by adventive species; (5) reduction in the standing crop of litter by 1973 at the lowest exposure rate studied (3.5 R/day) although in 1965 there was no reduction at exposure rates up to 15 R/day; (6) decline in humus content at 4.6 R/day and above with the standing crop in the Carex zone exceeding that of the shrub and damaged forest zones of lower exposures. Both further losses and partial recovery in the production and storage of organic matter have occurred since 1965. These changes constitute a portion of the long-term response of the forest to chronic disturbance. The pattern of response is the result of ecosystem processes that are still not in equilibrium with the chronic disturbance and which were not predictable from short-term studies, even those spanning as much as 4 yr.« less

  6. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    USGS Publications Warehouse

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton haa??1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  7. Space Radar Image of Altona, Manitoba, Canada

    NASA Image and Video Library

    1999-05-01

    This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. http://photojournal.jpl.nasa.gov/catalog/PIA01742

  8. IMI resistance associated to crop-weed hybridization in a natural Brassica rapa population: characterization and fate.

    PubMed

    Ureta, M S; Torres Carbonell, F; Pandolfo, C; Presotto, A D; Cantamutto, M A; Poverene, M

    2017-03-01

    Wild turnip (Brassica rapa) is a common weed and a close relative to oilseed rape (Brassica napus). The Clearfield® production system is a highly adopted tool which provides an alternative solution for weed management, but its efficiency is threatened by gene transfer from crop to weed relatives. Crop-weed hybrids with herbicide resistance were found in the progeny of a B. rapa population gathered from a weedy stand on the borders of an oilseed rape (B. napus) imidazolinone (IMI)-resistant crop. Interspecific hybrids were confirmed by morphological traits in the greenhouse and experimental field, survival after imazethapyr applications, DNA content through flow cytometry, and pollen viability. The transference of herbicide resistance was demonstrated even in a particular situation of pollen competition between both an herbicide-resistant crop and a non-resistant crop. However, IMI resistance was not found in further generations collected at the same location. These results verify gene transmission from oilseed rape to B. rapa in the main crop area in Argentina where resistant and susceptible varieties are found and seed loss and crop volunteers are common. Hybridization, introgression, and herbicide selection would be associated with the loss of effectiveness of IMI technology.

  9. Applications of UAVs in row-crop agriculture: advantages and limitations

    NASA Astrophysics Data System (ADS)

    Basso, B.; Putnam, G.; Price, R.; Zhang, J.

    2016-12-01

    The application of Unmanned Aerial Vehicles (UAV) to monitor agricultural fields has increased over the last few years due to advances in the technology, sensors, post-processing software for image analysis, along with more favorable regulations that allowed UAVs to be flown for commercial use. UAV have several capabilities depending on the type of sensors that are mounted onboard. The most widely used application remains crop scouting to identify areas within fields where the crops underperform for various reasons (nutritional status and water stress, presence of weeds, poor stands etc). In this talk, we present the preliminary results of UAVs field based research to better understand spatial and temporal variability of crop yield. Their advantage in providing timely information is critical, but adaptive management requires a system approach to account for the interactions occurring between genetics, environment and management.

  10. Wetland biomass crops: Studies in natural and managed stands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, N.J.

    1989-01-01

    Wetlands dominated by Typha spp. and other emergent macrophytes are some of the most productive natural systems in the temperate zone. The subject of this thesis is the selection and management of potential emergent biomass crops and is presented in the following three chapters: (1) The Productivity of Typha spp. in Managed Stands in Minnesota, (II) The Establishment of Typha spp. on a Northern Minnesota Peatland, and (III) Wetland Species Yield Comparisons. Typha rhizomes were planted in a series of 1.5 m{sup 2} paddies. Variables investigated included planting density, fertilizer application rate and seasonal changes in above and below-ground biomass,more » shoot height and density. Yield increased with increased planting density. Maximum shoot dry weight occurred in August while maximum below ground dry weight was obtained in October. Trial plots were established on a northern Minnesota peatland using both rhizomes and seed. The influence of planting density, substrate preparation and fertilizer application on the seasonal development and productivity of trial plots was investigated. Through extensive literature surveys and sampling natural stands, five species were identified for further screening including: Carex atherodes, Phragmites australis, Scirpus fluviatilis, Sparganium eurycarpum and Spartina pectinata. These species, along with planting stock from five productive Typha stands were planted in 1.5 m{sup 2} paddies to compare productivity and growth characteristics under identical conditions. Trial plots of Phragmites, Scirpus and Sparganium were also established on excavated peatland plots.« less

  11. Uav and GIS Based Tool for Collection and Propagation of Seeds Material - First Results

    NASA Astrophysics Data System (ADS)

    Stereńczak, K.; Mroczek, P.; Jastrzębowski, S.; Krok, G.; Lisańczuk, M.; Klisz, M.; Kantorowicz, W.

    2016-06-01

    Seed management carried out by The State Forests National Forest Holding is an integral part of rational forest management. Seed collection takes place mainly from stands belonging to first category of forest reproductive material, which is the largest seed base in Poland. In smaller amount, seeds are collected in selective objects of highest forest reproductive material category (selected seed stands, seed orchards). The previous estimation methods of seed crop were based on visual assessment of cones in the stands for their harvest. Following the rules of FRM transfer is additional difficulty of rational seed management which limits the possibility of the use of planting material in Poland. Statements concerning forecast of seed crop and monitoring of seed quality is based on annual reports from the State Forest Service. Forest Research Institute is responsible for preparing and publishing above-mentioned statements. A small extent of its automatization and optimization is a large disadvantage of this procedure. In order to make this process more effective web-based GIS application was designed. Its main performance will give a possibility to upload present-day information on seed efficiency, their spatial pattern and availability. Currently this system is under preparation. As a result, the project team will get a possibility to increase participation of seed material collected from selected seed base and to share good practices on this issue in more efficient way. In the future this will make it possible to obtain greater genetic gain of selection strategy. Additionally, first results presented in literature showed possible use of unmanned aerial system/vehicle (UAS/V) for supporting of seed crop forecast procedure.

  12. The impact of extremely low frequency electromagnetic fields on stream periphyton: An eleven-year study

    USGS Publications Warehouse

    Burton, T.M.; Uzarski, D.G.; Stelzer, R.S.; Eggert, S.L.; Sobczak, W.V.; Mullen, D.M.

    2000-01-01

    Potential effects of extremely low frequency (ELF) electromagnetic fields on periphyton were studied from 1983 to 1993 using a Before, After, Control and Impact design. The study was conducted at two sites on the Ford River, a fourth-order brown water trout stream in Dickinson County, Michigan. The Reference site received 4.9-6.5 times less exposure to ground electric fields and from 300 to 334 times less exposure to magnetic flux from 1989 to 1993 when the antenna was operational at 76 Hz than did the Antenna site. The objective of the study was to determine if ELF electromagnetic fields had caused changes in structure and/or function of algal communities in the Ford River. Significant differences in chlorophyll a standing crop and daily accumulation rate (a surrogate for primary productivity), and organic matter standing crop and daily accumulation rate were observed between the Reference and Antenna site after the antenna became operational. These four related community function variables all increased at the Antenna site with largest and most consistent increases occurring for chlorophyll measures. Compared to pre-operational data, the increase in chlorophyll at the Antenna site also occurred during a period of low amperage testing in 1986-1988, and did not increase further when the antenna became fully operational in 1989, indicating a low threshold for response. There was no significant differences between the Antenna and Reference sites in community structure variables such as diversity, evenness and the relative abundance of dominant diatoms. Thus, 76 Hz ELF electromagnetic radiation apparently did not change the basic makeup of the diatom community but did increase accumulation rates and standing crops of chlorophyll a and organic matter.

  13. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study.

    PubMed

    Bani, Aida; Echevarria, Guillaume; Sulçe, Sulejman; Morel, Jean Louis

    2015-01-01

    Large ultramafic areas exist in Albania, which could be suitable for phytomining with native Alyssum murale. We undertook a five-year field experiment on an ultramafic Vertisol, aimed at optimizing a low-cost Ni-phytoextraction crop of A. murale which is adapted to the Balkans. The following aspects were studied on 18-m2 plots in natural conditions: the effect of (i) plant phenology and element distribution, (ii) plant nutrition and fertilization, (iii) plant cover and weed control and (iv), planting technique (natural cover vs. sown crop). The optimal harvest time was set at the mid-flowering stage when Ni concentration and biomass yield were highest. The application of N, P, and K fertilizers, and especially a split 100-kg ha(-1) N application, increased the density of A. murale against all other species. It significantly increased shoot yield, without reducing Ni concentration. In natural stands, the control of graminaceous weeds required the use of an anti-monocots herbicide. However, after the optimization of fertilization and harvest time, weed control procured little benefit. Finally, cropping sown A. murale was more efficient than enhancing native stands and gave higher biomass and phytoextraction yields; biomass yields progressively improved from 0.3 to 9.0 t ha(-1) and phytoextracted Ni increased from 1.7 to 105 kg ha(-1).

  14. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    PubMed

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  15. ASSESSMENT STREAMS OF THE EASTERN UNITED STATES USING A PERIPHYTON INDEX OF BIOTIC INTEGRITY

    EPA Science Inventory

    Benthic algae were collected from 186 eastern United States streams and analyzed for diatom species richness and dominance, the relative abundance of acidobiontic, eutraphentic, and motile diatoms, standing crops of chlorophyll and biomass, and alkaline phosphatase activity. Thes...

  16. Producing Seed Crops to Naturally Regenerate Southern Pines

    Treesearch

    James P. Barnett; Ronald O. Haugen

    1995-01-01

    The biological processes that affect seed production in natural southern pine are documented, and information that will allow foresters to manipulate stands in a manner to improve and predict seed production is provided. As a result, natural regeneration should become a more reliable technique.

  17. Standing crop and sediment production of reef-dwelling foraminifera on O'ahu, Hawai'i

    USGS Publications Warehouse

    Harney, J.N.; Hallock, P.; Fletcher, C. H.; Richmond, B.M.

    1999-01-01

    Most of O'ahu's nearshore and beach sands are highly calcareous and of biogenic origin. The pale-colored constituent grains are the eroded remains of carbonate shells and skeletons produced by marine organisms living atop the island's fringing reefs and in the shallow waters near shore. Previous studies have shown that the tests of symbiont-bearing benthic foraminifera compose a substantial portion (up to one-fourth) of these organically produced sands. We sampled a variety of reef flat and slope habitats to obtain standing-crop data and production estimates for several sand-producing genera of reef-dwelling foraminifera. We found that modern communities of these shelled protists occur in dense numbers islandwide, reaching densities up to 105 individuals per square meter of suitable substrate in the more productive habitats. Further research on the contribution of foraminifera to beach, nearshore, and offshore sands is planned for O'ahu and neighboring islands to describe their roles in the sediment budget more completely.

  18. Attitudes of Agricultural Experts Toward Genetically Modified Crops: A Case Study in Southwest Iran.

    PubMed

    Ghanian, Mansour; Ghoochani, Omid M; Kitterlin, Miranda; Jahangiry, Sheida; Zarafshani, Kiumars; Van Passel, Steven; Azadi, Hossein

    2016-04-01

    The production of genetically modified (GM) crops is growing around the world, and with it possible opportunities to combat food insecurity and hunger, as well as solutions to current problems facing conventional agriculture. In this regard the use of GMOs in food and agricultural applications has increased greatly over the past decade. However, the development of GM crops has been a matter of considerable interest and worldwide public controversy. This, in addition to skepticism, has stifled the use of this practice on a large scale in many areas, including Iran. It stands to reason that a greater understanding of this practice could be formed after a review of the existing expert opinions surrounding GM crops. Therefore, the purpose of this study was to analyze the predictors that influence agricultural experts' attitudes toward the development of and policies related to GM crops. Using a descriptive correlational research method, questionnaire data was collected from 65 experts from the Agricultural Organization in the Gotvand district in Southwest Iran. Results indicated that agricultural experts were aware of the environmental benefits and possible risks associated with GM crops. The majority of participants agreed that GM crops could improve food security and accelerate rural development, and were proponents of labeling practices for GM crops. Finally, there was a positive correlation between the perception of benefits and attitudes towards GM crops.

  19. Determining switchgrass biomass supplies for cellulosic biorefineries

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is being developed into a bioenergy crop for use in temperate regions of the USA. Information on spatial and temporial variation for stands and biomass yield among and within fields in large agroecoregions is not available. A reliable feedstock supply will be essent...

  20. Gibberellin Signaling: a Wake-up Call for Seed Germination

    USDA-ARS?s Scientific Manuscript database

    Making an appropriate decision to germinate is essential for the survival of plant species and is important for proper stand establishment in crop plants. Germination is regulated by the antagonistic effects to two plant hormones in Arabidopsis thaliana: abscisic acid (ABA) induces dormancy and repr...

  1. Practical Exercises for the Study of Community Ecology at Advanced Level.

    ERIC Educational Resources Information Center

    Putman, R. J.

    1984-01-01

    Describes a series of short-term modular experiments which focus on community structure (standing crop biomass) and function (system energy flow). One exercise examines decomposers while another shows energy use by individuals. Equipment needed, procedures used, and results obtained are included. (Author/DH)

  2. Geographic trends in alfalfa stand age and crops that follow alfalfa

    USDA-ARS?s Scientific Manuscript database

    USDA-National Agricultural Statistics Service cropland data layers and Soil Survey Geographic Database layers were combined for six states (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, and Wisconsin) and seven years (2006-2012) to determine how soil texture and geographic location affect t...

  3. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the basins west of the Mid-Atlantic Ridge, resulting from interaction of abyssal currents with the bottom, range from ??? 2 ?? 106 tons in the equatorial Guyana Basin to ??? 50 ?? 106 tons in the North American Basin. The total resuspended particulate load in the western basins (111 ?? 106 tons) is almost an order of magnitude greater than that in the basins east of the Mid-Atlantic Ridge (13 ?? 106 tons). The net northward flux of resuspended particles carried in the AABW drops from ??? 8 ?? 106 tons/year between the southern and northern ends of the Brazil Basin and remains ??? 1 ?? 106 tons/year across the Guyana Basin. ?? 1977.

  4. 7 CFR 82.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... means “Application for Clingstone Peach Tree Removal Program.” (d) Calendar year means the 12-month... industry in California. (f) Diversion means the removal of clingstone peach trees after approval of... clingstone peach trees are no longer standing and capable of producing a crop, and the roots of the trees...

  5. Evaluation of Physical Strength of Wheat Straw Under Different Fertilizer Treatments and Rates

    USDA-ARS?s Scientific Manuscript database

    Application of nitrogen (N) fertilizer as urea ammonium nitrate and N plus sulfur fertilizer as ammonium thiosulfate as a mist on crop residue to stimulate microbial activity and subsequent decomposition of the residue is often debated, particularly for its potential to solve stand establishment iss...

  6. Antibacterial activity of plant defensins against alfalfa crown rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa) is the fourth most widely grown crop in the United States. Alfalfa crown rot is a disease complex that severely decreases alfalfa stand density and productivity in all alfalfa-producing areas. Currently, there are no viable methods of disease control. Plant defensins are sm...

  7. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  8. ESTIMATES OF DOUGLAS-FIR FINE ROOT PRODUCTION AND MORTALITY FROM MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons were used to assess the influence of soil resources on fine root (diameter < 2 mm) production, mortality, and standing crop over a two-year period. Two study sites were located, along an elevational transect, in the Oregon Cascade Mountains in mature (> 100 years o...

  9. QUANTIFYING UNCERTAINTY IN NET PRIMARY PRODUCTION MEASUREMENTS

    EPA Science Inventory

    Net primary production (NPP, e.g., g m-2 yr-1), a key ecosystem attribute, is estimated from a combination of other variables, e.g. standing crop biomass at several points in time, each of which is subject to errors in their measurement. These errors propagate as the variables a...

  10. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... selling through an on-farm or roadside stand, farmer's market, and permitting the general public to enter..., section equivalents, or FSA farm serial number optional units may be established if each optional unit is..., section equivalents, FSA farm serial number, or on non-contiguous land, optional units may be established...

  11. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  12. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  13. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  14. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  15. Accounting for alfalfa N credits increases returns to corn production

    USDA-ARS?s Scientific Manuscript database

    Guidelines are relatively consistent across the Upper Midwest regarding the N benefit of alfalfa to the following grain crops. With higher corn yields and prices, however, some growers have questioned these guidelines and whether more N fertilizer is needed for first-year corn following a good stand...

  16. Control of sprouting of tanoak and madone stumps

    Treesearch

    G. H. Schubert

    1950-01-01

    In part of the high- site-quality pine and fir types of California, stand improvement cuttings are made especially difficult by the sprouting habit of tanoak (Lithocarpus densiflora Hook . and Arn . ) and madrone (Arbutus menziesii Pursh.). The stumps of these species sprout so vigorously that release of the favored crop trees...

  17. 29 CFR 575.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN HAND HARVESTING OF SHORT SEASON CROPS... Administrator advising the named employer or group of employers that 10 and 11 year old minors may be employed... standing in place of a parent reside year-round. Secretary means the Secretary of Labor, United States...

  18. 29 CFR 575.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROVISIONS FOR AGRICULTURAL EMPLOYMENT OF 10 AND 11 YEAR OLD MINORS IN HAND HARVESTING OF SHORT SEASON CROPS... Administrator advising the named employer or group of employers that 10 and 11 year old minors may be employed... standing in place of a parent reside year-round. Secretary means the Secretary of Labor, United States...

  19. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    USDA-ARS?s Scientific Manuscript database

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  20. Enhancing forage yields and soil conservation by interseeding alfalfa into silage corn

    USDA-ARS?s Scientific Manuscript database

    Recent field studies have identified prohexadione-calcium (PHD) as an effective plant growth regulator for enhancing the establishment of alfalfa interseeded into corn as a dual-purpose cover and forage crop. Foliar applications of PHD on seedlings doubled or tripled stand survival of interseeded al...

  1. Corn stover for advanced biofuels – Soil “Lorax” perspectives

    USDA-ARS?s Scientific Manuscript database

    Crop residues serve numerous agroecosystem function. Harvesting these materials must be done in a manner that protects the soil. Soil is the thin layer that stand be us and starvation. Strategies to protect the soil resource to balance current and future societal needs will be discussed....

  2. ELEVATED CO2 AND ELEVATED TEMPERATURE HAVE NO EFFECT ON DOUGLAS-FIR FINE-ROOT DYNAMICS IN NITROGEN-POOR SOIL

    EPA Science Inventory

    Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...

  3. Standing crop residues and wind erosion

    USDA-ARS?s Scientific Manuscript database

    Wind erosion and blinding dust storms in the Central Great Plains region still occasionally erupt. Eliminating all tillage remains the best remedy. However, farmers in the region somehow fail to remember the lessons learned in the “dirty 30’s”. They forget how devastating tillage is in disrupting t...

  4. Chile stand management for mechanical green chile harvest

    USDA-ARS?s Scientific Manuscript database

    Currently the red chile crop is mechanically harvested. Because the pods will be dehydrated before consumption, breakage and bruising of red pods is not a concern. Green chile, however, is currently hand harvested because of the fragile nature of the fruit and the need to avoid pod damage. Hand h...

  5. Five-year radial growth of red oaks in mixed bottomland hardwood stands

    Treesearch

    Luben D. Dimov; Jim L. Chambers; Brian Roy Lockhart

    2008-01-01

    We studied the relationships among 5-year radial (diameter and basal area) growth of red oak (genus Quercus, subgenus Erythrobalanus) crop trees and predictor variables representing individual tree vigor, distance-dependant competition measures, and distance-independent competition measures. The red oaks we examined are...

  6. Framing GM Crops as a Food Security Solution

    ERIC Educational Resources Information Center

    Dibden, Jacqui; Gibbs, David; Cocklin, Chris

    2013-01-01

    The spectre of a food security crisis has raised important questions about future directions for agriculture and given fresh impetus to a long-standing debate about the potential contribution of agricultural biotechnology to food security. This paper considers the discursive foundations for promotion of agricultural biotechnology, arguing that…

  7. Management of Rhizoctonia Damping-off of Brassica Oilseed Crops in the PNW

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani can cause pre and post-emergence damping off of Brassica oilseed species with adverse effects on stand establishment. In greenhouse experiments, we have examined resistance to two groups (AGs) of Rhizoctonia solani among various Brassica species and varieties. R. solani AG 2-1 is ...

  8. Helping crops stand up to salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raeburn, P.

    1985-05-01

    A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.

  9. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    PubMed

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P

  10. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus

    PubMed Central

    Davis, R. F.; Baird, R. E.; McNeil, R. D.

    2000-01-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P ≤ 0.05) following cotton root destruction. Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P ≤ 0.05) H. columbus population levels at planting in 1996 but not in 1997, but cotton yield was not increased by root destruction in either year. Removing debris following root destruction did not lower H. columbus levels compared to leaving debris on the soil surface. This study suggests that a rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton. PMID:19271009

  11. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  12. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    PubMed

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  13. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  14. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient

    USDA-ARS?s Scientific Manuscript database

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canop...

  15. Spring precipitation as a predictor for peak standing crop of mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    Ranchers and range managers in the West are at the mercy of climatic conditions that determine the amount of annual forge available on rangeland. Typically, stocking or de-stocking decisions need to be made before the final annual forage production level is known. Since erroneous stocking rate decis...

  16. Assembly and annotation of the wildrice transcriptome challenged by Cochliobolus miyabeanus, the fungal brown spot pathogen

    USDA-ARS?s Scientific Manuscript database

    American wildrice (Zizania palustris) is an aquatic cereal that is harvested from natural stands and commercial paddies for its gourmet grain. Fungal brown spot (FBS), caused by Cochliobolus miyabeanus, is the most important disease that inflicts annual yield losses in this crop. The development of ...

  17. Control of sprouting of tanoak and madrone stumps

    Treesearch

    G. H. Schubert

    1950-01-01

    In part of the high-site-quality pine and fir types of California, stand improvement cuttings are made especially difficult by the sprouting habit of tanoak (Lithocarpus densiflora Hook. and Arn. ) and madrone (Arbutus menziesii Pursh.). The stumps of these species sprout so vigorously that release of the favored crop trees is...

  18. Camelina growth and yield response to sowing depth and rate in the northern Corn Belt USA

    USDA-ARS?s Scientific Manuscript database

    Camelina (Camelina sativa L.) is gaining interest as a productive alternative oilseed crop for biofuels and healthy food-use applications. Developing sound agronomic practices for its production is key to optimizing its seed oil yield potential. Plant stand establishment of camelina has been problem...

  19. History of Piedmont Forests: Implications For Current Pine Management

    Treesearch

    D.H. Van Lear; R.A. Harper; P.R. Kapeluck; W.D. Carroll

    2004-01-01

    Piedmont forests were maintained for millennia in an open condition by anthropogenic- and lightning-ignited fires. After European settlement, row-crop agriculture caused serious soil erosion, making Piedmont soils less capable of supplying moisture and nutrients during drought periods. Dense stands of pine, both naturally and artificially regenerated over the past 70...

  20. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    USDA-ARS?s Scientific Manuscript database

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  1. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    PubMed

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  2. The carrying capacity for juvenile salmonids in some northern California streams

    Treesearch

    James W. Burns

    1971-01-01

    Standing crops of juvenile coho (silver) salmon (Oncorhynchus kisutch), steelhead rainbow trout (Salmo gairdneri), and coast cutthroat trout (Salmo clarki) were examined in seven coastal streams to define the natural carrying capacity of these streams, and to develop methods of population comparison and prediction which could be used to determine the effects of road...

  3. Effect of annual, growing season, and spring precipitation on peak standing crop at three locations

    USDA-ARS?s Scientific Manuscript database

    Ranchers and range managers in the West are at the mercy of climatic conditions that determine the amount of annual forage available on rangeland. Typically, stocking or de-stocking decisions need to be made before the final forage production level is known. Ranchers and range managers need a decisi...

  4. Establishment of the woody grass Arundinaria gigantea for riparian restoration

    Treesearch

    Adam J. Dattilo; Charles C. Rhoades

    2005-01-01

    Canebrakes are dense stands of Arundinaria gigantea (Walt.) Muhl. that covered large areas of the southeastern North America. With agricultural development, canebrakes were quickly converted to crop and pastureland and now occur only in small, isolated patches. There is growing interest in the use of A. gigantea and other temperate bamboo species in riparian and...

  5. Gypsy moth effects on mast production

    Treesearch

    Kurt W. Gottschalk

    1990-01-01

    Gypsy moth outbreaks can have drastic effects on many forest resources and uses. Because the gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...

  6. Within-population spatial synchrony in mast seeding of North American oaks.

    Treesearch

    A.V. Liebhold; M. Sork; O.N. Peltonen; Westfall R. Bjørnstad; J. Elkinton; M. H. J. Knops

    2004-01-01

    Mast seeding, the synchronous production of large crops of seeds, has been frequently documented in oak species. In this study we used several North American oak data-sets to quantify within-stand (10 km) synchrony in mast dynamics. Results indicated that intraspecific synchrony in seed production always exceeded interspecific synchrony and was essentially constant...

  7. Herbicides: an unexpected ally for native plants in the war against invasive species

    Treesearch

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  8. Rotations

    Treesearch

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  9. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L.) line SYN-172

    USDA-ARS?s Scientific Manuscript database

    The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG-8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these cond...

  10. Roles for agroforestry in hardwood regeneration and natural-stand management

    Treesearch

    H. E. ' Gene' Garrett

    2003-01-01

    A convincing case can be made that current land-use patterns in the Central Hardwood region reflect a significant underutilization of our land-based resources. A land-use strategy is required that would allow landowners who are interested in converting marginal crop lands to forests, or unproductive woodlots to productive woodlots, to make the change without financial...

  11. Nitrogen and Phosphorus in Water, An Annotated Selected Bibliography of Their Biological Effects.

    ERIC Educational Resources Information Center

    Mackenthun, Kenneth M.

    Included in this bibliography are annotations of quantitative data on the content or concentration of nitrogen and phosphorus in plants and animals, the contribution to water of these elements from various sources (soil, fertilizers, excretion, sewage, precipitation, urban run-off), and the effect their presence has on aquatic standing crops and…

  12. Predicting abundance and productivity of blueberry plants under insect defoliation in Alaska

    Treesearch

    Robin Reich; Nathan Lojewski; John Lundquist; Vanessa Bravo

    2018-01-01

    Unprecedented outbreaks of defoliating insects severely damaged blueberry crops near Port Graham on the Kenai Peninsula in Alaska from 2008-2012. The Native people in this region rely heavily on gathered blueberries and other foods for sustenance and nourishment. Influences of topography and stand structure on blueberry abundance and fruiting were examined and used to...

  13. Natural reproduction of shasta red fir from a single good cone crop.

    Treesearch

    William I. Stein

    1954-01-01

    The initiation and rapid increase in harvesting of Shasta red fir mountain hemlock stands in southwestern Oregon have emphasized the lack of information needed to manage these species intelligently. The most important single management practice for converting old growth to managed forests is the application of cutting methods that will assure prompt regeneration of...

  14. Dual-cropping loblolly pine for biomass energy and conventional wood products

    Treesearch

    D. Andrew Scott; Allan Tiarks

    2008-01-01

    Southern pine stands have the potential to provide significant feedstocks for the growing biomass energy and biofuel markets. Although initial feedstocks likely will come from low-value small-diameter trees, understory vegetation, and slash, a sustainable and continuous supply of biomass is necessary to support and grow a wood bioenergy market. As long as solidwood...

  15. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    Treesearch

    Jason B. Dunham; Brian S. Cade; James W. Terrell

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The...

  16. The Trophic Significance of Bacteria in a Detritus-Based Stream Food Web

    Treesearch

    Robert O. Hall; Judy L. Meyer

    1998-01-01

    We compared relative use of streamwater dissolved organic carbon (DOC) by bacteria and the trophic significance of bacteria to invertebrates in two headwater streams at Coweeta Hydrologic Laboratory in North Carolina: a stream with all leaf litter inputs excluded for 1 yr, and a reference stream. Leaf litter standing crop in the treatment stream was

  17. Eliminating blister rust cankers from sugar pine by pruning.

    Treesearch

    G. L. Hayes; William I. Stein

    1957-01-01

    Well-stocked patches of vigorous advance reproduction are found in many deteriorating old-growth stands in southwestern Oregon. If carefully released from the over story, this reproduction can shorten the rotation length of the next crop by many years. Often sugar pine is the fastest-growing component of the reproduction, but it is frequently infected with blister rust...

  18. Standing crop and animal consumption of fungal sporocarps in Pacific Northwest forests

    Treesearch

    Malcolm North; James Trappe; Jerry Franklin

    1997-01-01

    Although fungal fruiting bodies are a common food supplement for many forest animals and an important dietary staple for several small mammals, changes in their abundance and consumption with forest succession or disturbance have not been quantified. Above- and belowground fungal fruiting bodies (epigeous and hypogeous sporocarps) were sampled for 46 mo in managed-...

  19. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Treesearch

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  20. Small mammal populations in a grazed and ungrazed riparian habitat in Nevada

    Treesearch

    Dean E. Medin; Warren P. Clary

    1989-01-01

    Small mammal populations were compared between a grazed habitat and a comparable adjoining habitat protected from grazing by an exclosure. Composition, naive densiiy, standing crop biomass, species diversity, and other attributes of the small mammal communities were assessed. More species and higher numbers of most small mammals were found in the ungrazed habitat....

  1. Using a model and forecasted weather to predict forage and livestock production for making stocking decisions in the coming growing season

    USDA-ARS?s Scientific Manuscript database

    Forecasting peak standing crop (PSC) for the coming grazing season can help ranchers make appropriate stocking decisions to reduce enterprise risks. Previously developed PSC predictors were based on short-term experimental data (<15 yr) and limited stocking rates (SR) without including the effect of...

  2. Thinning sprout clumps

    Treesearch

    Richard M. Godman

    1992-01-01

    How do you deal with stump sprouts in second-growth hardwood stands? Although thinning them takes special effort to avoid causing decay, stump sprouts are the only way to regenerate certain species such as basswood. Generally, you should thin them early and preferably when potential crop stems are 3 inches d.b.h. or less. But if you delay thinning until they are pole-...

  3. First report of alfalfa (Medicago sativa L.) seed rot, seedling root rot, and damping off caused by Pythium spp. in Sudanese soil

    USDA-ARS?s Scientific Manuscript database

    Alfalfa is an important forage crop in Sudan but has relatively low biomass yields. In September 2016 soil samples were collected from three commercial alfalfa production fields near Khartoum, Sudan with poor seedling establishment and rapid stand decline. Soil samples from each field were evaluated...

  4. Analysis and mapping of Rhizoctonia root rot resistance traits from the synthetic wheat (Triticum aestivum L) line SYN-172

    USDA-ARS?s Scientific Manuscript database

    The prevalence of root disease after planting in cold spring soils has hindered the adoption of reduced or no-tillage cereal cropping systems in the Pacific Northwest. In particular, Rhizoctonia solani AG8, a necrotrophic root pathogen, can cause significant damage to wheat stands under these condi...

  5. An Index of Competition Based on Relative Crown Position and Size

    Treesearch

    Dwight D. O' Neal; Allan E. Houston; Edward R. Buckner; James S. Meadows

    1995-01-01

    A new competition index, the Crown Position Index (CPI) was evaluated using a 41-year-old, well stocked, upland hardwood stand in southwestern Tennessee. CPI wss based on relative crown position and crown size as expressed by crown projections and relative heights of crop trees and their competitors. Comparisons were made among CPI, the Hegyl (1974)...

  6. Roles for agroforestry in hardwood regeneration and natural-stand management

    Treesearch

    H. E. ' Gene' Garrett

    2003-01-01

    A convincing case can be made that current land-use patterns in the Central Hardwood region reflect a significant underutilization of our land-based resources. A landuse strategy is required that would allow landowners who are interested in converting marginal crop lands to forests, or unproductive woodlots to productive woodlots, to make the change without financial...

  7. The impact of Genetically Modified (GM) crops in modern agriculture: A review.

    PubMed

    Raman, Ruchir

    2017-10-02

    Genetic modification in plants was first recorded 10,000 years ago in Southwest Asia where humans first bred plants through artificial selection and selective breeding. Since then, advancements in agriculture science and technology have brought about the current GM crop revolution. GM crops are promising to mitigate current and future problems in commercial agriculture, with proven case studies in Indian cotton and Australian canola. However, controversial studies such as the Monarch Butterfly study (1999) and the Séralini affair (2012) along with current problems linked to insect resistance and potential health risks have jeopardised its standing with the public and policymakers, even leading to full and partial bans in certain countries. Nevertheless, the current growth rate of the GM seed market at 9.83-10% CAGR along with promising research avenues in biofortification, precise DNA integration and stress tolerance have forecast it to bring productivity and prosperity to commercial agriculture.

  8. Carbon dioxide and water exchange of a soybean stand grown in the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1990-01-01

    Soybean plants were grown under metal halide lamps in NASA's biomass production chamber (BPC). Experiments were conducted to determine whole stand rates of carbon dioxide exchange and transpiration as influenced by time of day, CO2 concentration, irradiance, and temperature. Plants were grown at a population of 24 plants/sq m, a daily cycle of 12 hr light/12 hr dark, and average temperature regime of 26 C light/20 C dark, and a CO2 concentration enriched and maintained at 1000 ppm during the photoperiod. A distinct diurnal pattern in the rate of stand transpiration was measured at both ambient and enriched (1000 ppm) concentration of CO2. Data generated in this study represent true whole stand responses to key developmental and environmental variables and will be valuable in database construction for future working CELSS. Crop growth studies in the BPC were conducted with a high degree of environmental control, gas tightness during growth, and have used large plant stands. These characteristics have placed it in a unique position internationally as a research tool and as a preprototype subcomponent to a fully integrated CELSS. The results from the experiments are presented.

  9. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities

    PubMed Central

    Jarvis, Devra I.; Brown, Anthony H. D.; Cuong, Pham Hung; Collado-Panduro, Luis; Latournerie-Moreno, Luis; Gyawali, Sanjaya; Tanto, Tesema; Sawadogo, Mahamadou; Mar, Istvan; Sadiki, Mohammed; Hue, Nguyen Thi-Ngoc; Arias-Reyes, Luis; Balma, Didier; Bajracharya, Jwala; Castillo, Fernando; Rijal, Deepak; Belqadi, Loubna; Rana, Ram; Saidi, Seddik; Ouedraogo, Jeremy; Zangre, Roger; Rhrib, Keltoum; Chavez, Jose Luis; Schoen, Daniel; Sthapit, Bhuwon; De Santis, Paola; Fadda, Carlo; Hodgkin, Toby

    2008-01-01

    Varietal data from 27 crop species from five continents were drawn together to determine overall trends in crop varietal diversity on farm. Measurements of richness, evenness, and divergence showed that considerable crop genetic diversity continues to be maintained on farm, in the form of traditional crop varieties. Major staples had higher richness and evenness than nonstaples. Variety richness for clonal species was much higher than that of other breeding systems. A close linear relationship between traditional variety richness and evenness (both transformed), empirically derived from data spanning a wide range of crops and countries, was found both at household and community levels. Fitting a neutral “function” to traditional variety diversity relationships, comparable to a species abundance distribution of “neutral ecology,” provided a benchmark to assess the standing diversity on farm. In some cases, high dominance occurred, with much of the variety richness held at low frequencies. This suggested that diversity may be maintained as an insurance to meet future environmental changes or social and economic needs. In other cases, a more even frequency distribution of varieties was found, possibly implying that farmers are selecting varieties to service a diversity of current needs and purposes. Divergence estimates, measured as the proportion of community evenness displayed among farmers, underscore the importance of a large number of small farms adopting distinctly diverse varietal strategies as a major force that maintains crop genetic diversity on farm. PMID:18362337

  10. Species Composition and Habitat Associations of Benthic Algal Assemblages in Headwater Streams of the Sierra Nevada, California

    Treesearch

    Larry R. Brown; Jason T. May; Carolyn T. Hunsaker

    2008-01-01

    Despite their trophic importance and potential importance as bioindicators of stream condition, benthic algae have not been well studied in California. In particular there are few studies from small streams in the Sierra Nevada. The objective of this study was to determine the standing crop of chlorophyll-a and benthic algal species assemblages...

  11. Western redcedar response to precommercial thinning and fertilization through 25 years posttreatment

    Treesearch

    Warren D. Devine; Constance A. Harrington

    2009-01-01

    There is little infonnation available on the long-term effects of managing western redcedar (Thuja plicata Donn ex D. Don). In a 15- to 20-year-old naturally regenerated second-growth redcedar stand on a poor site on the Olympic Peninsula of Washington, we tested crop tree (largest 250 trees/ha) response to precommercial thinning and fertilization in...

  12. Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site

    Treesearch

    James D. Haywood; Finis L. Harris; Harold E. Grelen; Henry A. Pearson

    2001-01-01

    From 1962 through 1998, 20 prescribed bums were applied in a natural stand of longleaf pine(Pinus palustris Mill.) to determine the effects of various fire regimes on the forest plant community. The original longleaf seedlings regenerated from the 1955 seed crop and were growing in a grass-dominated cover when the study began. By 1999, prescribed...

  13. Economics of Coharvesting Smallwood by Chainsaw and Skidder for Crop Tree Management in Missouri

    Treesearch

    Peter Becker; E.M.(Ted) Bilek; Terry Cunningham; Michael Bill; Marty Calvert; Jason Jensen; Michael Norris; Terry Thompson

    2011-01-01

    Forest improvement harvests using individual-tree and group selection were conducted in four oak or oak-hickory stands in the Missouri Ozarks with conventional equipment (chainsaw and skidder). Volumes (and revenues) for different timber classes (sawlogs and smallwood from topwood and small trees) and hours of machine use were recorded to calculate production rates....

  14. Gypsy moth impacts on oak acorn production

    Treesearch

    Kurt W. Gottschalk

    1991-01-01

    Gypsy moth outbreaks can have drastic effects on many f a s t resources and uses. Because gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...

  15. Long–term functional group recovery of lotic macroinvertebrates from logging disturbance.Canadian Journal of Fisheries and Aquatic Sciences

    Treesearch

    Damon T. Ely; J. Bruce Wallace

    2010-01-01

    Clear-cut logging rapidly affects stream macroinvertebrates through substantial alteration of terrestrial–aquatic resource linkages; however, lesser known are the long-term influences of forest succession on benthic macroinvertebrate assemblages, which play key roles in stream ecosystem function. We compared secondary production and standing crops of detritus in two...

  16. Chapter 24. Seed collection, cleaning, and storage

    Treesearch

    Kent R. Jorgensen; Richard Stevens

    2004-01-01

    Acquisition of quality seed in the quantity needed is essential for successful restoration and revegetation programs. Seed is grown and harvested as a crop, or collected from native stands. In the past, when native species were seeded, it was either collect the seed yourself, or go without. Now, there are dealers who supply seed of many native species on a regular...

  17. Natural reproduction in certain cutover pine-fir stands in California

    Treesearch

    H.A. Fowells; G.H. Schubert

    1951-01-01

    Natural reproduction must provide future crops of timber on most of the forest land being placed under management in California. Relatively few acres will be planted or seeded in the near future because planting costs are high, facilities for undertaking large-scale planting are inadequate, and direct seeding has not yet proved satisfactory. In the pine region it is...

  18. Characteristics of the Psidium cattleianum (Myrtaceae) Seed bank in Hawaiian lowland wet forests

    Treesearch

    Amanda L. Uowolo; Julie S. Denslow

    2008-01-01

    Psidium cattleianum Sabine (strawberry guava) is one of Hawai‘i’s most disruptive alien plants. Dense stands can suppress growth and establishment of native species, support high populations of crop-damaging fruit flies, and preclude restoration or management of native forests. Our research investigated factors affecting persistence of P...

  19. Chemical release of pole-sized trees in a central hardwood clearcut

    Treesearch

    J. W. Van Sambeek; D. Abugarshall Kai; David B. Shenaut

    1995-01-01

    Our study evaluated the effectiveness of tree injection and full basal bark treatments using three herbicide formulations at reduced or standard practice rates to release crop trees in an overstocked pole-sized Central Hardwood stand. Herbicides tested included glyphosate (Accord), dicamba only (Banvel CST), and dicamba+2,4-D (Banvel 520). The study was conducted in a...

  20. Twenty years of natural loblolly and shortleaf pine seed production on the Crossett Experimental Forest in southeastern Arkansas

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2001-01-01

    Loblolly and shortleaf pine (Pinus taeda L. and P. chinata Mill., respectively) seed crops were monitored for 20 consecutive years (1980-1981 through 1999-2000) using seed-collection traps in natural stands on the Upper Coastal Plain of southeastern Arkansas. Each seed-collection period began on October 1 and continued...

  1. Sugar concentration in nectar: a quantitative metric of crop attractiveness for refined pollinator risk assessments.

    PubMed

    Knopper, Loren D; Dan, Tereza; Reisig, Dominic D; Johnson, Josephine D; Bowers, Lisa M

    2016-10-01

    Those involved with pollinator risk assessment know that agricultural crops vary in attractiveness to bees. Intuitively, this means that exposure to agricultural pesticides is likely greatest for attractive plants and lowest for unattractive plants. While crop attractiveness in the risk assessment process has been qualitatively remarked on by some authorities, absent is direction on how to refine the process with quantitative metrics of attractiveness. At a high level, attractiveness of crops to bees appears to depend on several key variables, including but not limited to: floral, olfactory, visual and tactile cues; seasonal availability; physical and behavioral characteristics of the bee; plant and nectar rewards. Notwithstanding the complexities and interactions among these variables, sugar content in nectar stands out as a suitable quantitative metric by which to refine pollinator risk assessments for attractiveness. Provided herein is a proposed way to use sugar nectar concentration to adjust the exposure parameter (with what is called a crop attractiveness factor) in the calculation of risk quotients in order to derive crop-specific tier I assessments. This Perspective is meant to invite discussion on incorporating such changes in the risk assessment process. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  2. Emergent aquatics: stand establishment, management, and species screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, D.C.; Andrews, N.J.; Dubbe, D.R.

    1982-11-01

    Several emergent aquatic species have been identified as potential biomass crops, including Typha spp. (cattail), Scirpus spp. (rush), Sparganium spp. (bur reed), and Phragmites (reed). This report discusses first year results from studies of stand establishment and management, Typha nutrient requirements, wetland species yield comparisons, and Typha micropropagation. In a comparison of the relative effectiveness of seed, seedlings, and rhizomes for stand establishment, rhizomes appeared to be more consistent and productive under a wire variety of conditions. Both rhizomes and seedling established plots grew successfully on excavated peatland sites. First season results from a multiyear fertilizer rate experiment indicate thatmore » fertilizer treatment resulted in significantly increased tissue nutrient concentrations which should carry over into subsequent growing seasons. Shoot density and belowground dry weight were also significantly increased by phosphorus + potassium and potassium applications, respectively. First season yields of selected wetland species from managed paddies generally were comparable to yields reported from natural stands. Several particularly productive clones of Typha spp. have been identified. A method of establishing Typha in tissue culture is described.« less

  3. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (p<0.05) runoff coefficients averaged over 8 years were 14, 20 and 27% for DER+, TER+ and CT, respectively. Mean soil losses were 4 t ha-1 y-1 in DER+, 13 in TER+ and 18 in CT. Soil water storage during the growing season was constantly higher in CA-based systems compared with CT. A period of at least three years of cropping was required before improvements in crop yield became significant. Further, modeling of the sediment budgets shows that total soil loss due to sheet and rill erosion in cropland, when CA would be practiced at large scale in a 180 ha catchment, would reduce to 581 t y-1, instead of 1109 t y-1 under the current farmer practice. Using NASA/GISS Model II precipitation projections of IPCC scenario A1FI, CA is estimated to reduce soil loss and runoff and mitigate the effect of increased rainfall due to climate change. For smallholder farmers in semi-arid agro-ecosystems, CA-based systems constitute a field rainwater and soil conservation improvement strategy that enhances crop and economic productivity and reduces siltation of reservoirs, especially under changing climate. The reduction in draught power requirement would enable a reduction in oxen density and crop residue demand for livestock feed, which would encourage smallholder farmers to increase biomass return to the soil. Adoption of CA-based systems in the study area requires further work to improve smallholder farmers' awareness on benefits, to guarantee high standards during implementation and to design appropriate weed management strategies.

  4. Improved conversion of herbaceous biomass to biofuels: Potential for modification of key plant characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sladden, S.E.; Bransby, D.I.

    1989-10-01

    Biomass crops are converted to fuels via biochemical and thermochemical processes. The process preferred depends on properties and cost of available feedstocks, and on the specific products desired. Since most mature biomass crops are composed of up to 80% cell wall fibers, the properties of these fibers determine, to a large degree, the conversion potential of the crop. However, biomass crops also contain small amounts of proteins, soluble carbohydrates and interfering materials (e.g., tannins and silica) which also influence the desirability of the feedstock in specific conversion processes. Fortunately, wide variation exists in the chemical composition of potential biomass crops.more » Although the chemical composition of feedstocks can be influenced significantly with judicious management has species selection, some traits are sufficiently heritable to permit breeding for improved feedstock composition. In addition to breeding for specific compositional traits directly, selection for in vitro digestibility or for easily-measured canopy or physiological traits may lead to more rapid and efficient progress in feedstock improvement, provided those measurements are highly-correlated with desirable feedstock composition. At the same time breeders must improve, or at least avoid damaging, stand longevity, tendency of plants to lodge, and establishment traits (e.g., disease resistance and seedling vigor). 46 refs., 8 tabs.« less

  5. Switchgrass as a biofuels crop for the upper Southeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, D.J.; Wolf, D.D.

    1993-12-31

    Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties ofmore » switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.« less

  6. Phoenix, AZ, USA

    NASA Image and Video Library

    1973-06-22

    SL2-03-200 (22 June 1973) --- The city of Phoenix, AZ (33.5N, 112.0W) can be seen in good detail in this color infrared scene. Situated among truck crop agriculture fields, the color infrared photo depicts the vegetated fields as shades of red making the agriculture stand out in this desert environment. To the east, Lake Theodore Roosevelt and dam can be easily seen. Photo credit: NASA

  7. Loblolly and shortleaf pine seed viability through 21 months of field storage: Can carry-over occur between seed crops?

    Treesearch

    Michael D. Cain; Michael G. Shelton

    1997-01-01

    About two-thirds of pine stands in the southeastern United States originated from natural seedfall (USDA Forest Service 1988) and this method of regeneration continues to be impor-tant for perpetuating the species. Loblolly and shortleaf pines (Pinus taeda L. and Pinus echinatu Mill., respectively) are common associates throughout this geographic area and are the most...

  8. Storage and export of organic matter in a headwater stream: responses to long-term detrital manipulations

    Treesearch

    Sue L. Eggert; J. Bruce Wallace; Judy L. Meyer; Jackson R. Webster

    2012-01-01

    Riparian habitats provide organic matter inputs that influence stream biota and ecosystem processes in forested watersheds. Over a 13-yr period, we examined the effects of litter exclusion, small- and large-wood removal, and the addition of leaf species of varying detrital quality on organic matter standing crop and export of organic and inorganic particles in a high-...

  9. Site productivity - current estimates, change, and possible enhancements for the Northern Research Station

    Treesearch

    Scott A. Pugh

    2012-01-01

    Site productivity (SP) is the inherent capacity to grow crops of industrial wood. SP identifies the potential growth in cubic feet/acre/year and is based on the culmination of mean annual increment of fully stocked natural stands. Changes in SP were summarized for timberland and the associated effects on net growth and removal estimates were investigated using data...

  10. Effects of forest disturbance and soil depth on digestible energy for moose and white-tailed deer

    Treesearch

    Hewlette S. Crawford; R. A. Lautenschlager; Martin R. Stokes; Timothy L. Stone

    1993-01-01

    Spruce budworm defoliation, clearcutting for salvage, and prescribed burning of clearcut areas on deep and shallow soils influenced deer and moose foraging in eastern Maine spruce-fir forests from 1980 to 1984. Plant standing crop biomass, seasonal plant selection by tractable moose and white-tailed deer, and digestible energy for deer and moose were determined for...

  11. Documentation and user guides for SPBLOB: a computer simulation model of the join population dynamics for loblolly pine and the southern pine beetle

    Treesearch

    John Bishir; James Roberds; Brian Strom; Xiaohai Wan

    2009-01-01

    SPLOB is a computer simulation model for the interaction between loblolly pine (Pinus taeda L.), the economically most important forest crop in the United States, and the southern pine beetle (SPB: Dendroctonus frontalis Zimm.), the major insect pest for this species. The model simulates loblolly pine stands from time of planting...

  12. Autumn predation of northern red oak seed crops

    Treesearch

    Kim C. Steiner

    1995-01-01

    Production and autumn predation of northern red oak acorns was measured over four years in five Pennsylvania stands dominated by this species. Mean annual production was 41,779/acre, of which an average of 7.9% was destroyed by insects or decay following insect attack, and an average of 38.6% was destroyed or removed by vertebrates. White-tailed deer appeared to be the...

  13. Determination of Winter Wheat Phenology in Bavaria- A Contribution to Regional Crop Health Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Bruggemann, Lena; Bach, Heike; Ruf, Tobias; Appel, Florian; Migdall, Silke; Hank, Tobias; Mauser, Wolfram; Eiblmeier, Peter

    2016-08-01

    The central topic of this study is the monitoring of winter wheat phenology and the detection of anthesis (flowering) using remotely sensed data as well as crop growth modeling. It is not possible to directly observe the flowering of wheat with optical satellite sensors. Thus, an approach that combines crop growth modeling with remote sensing data covering optical and microwave spectral ranges was developed. This was done in three steps: The hydro-agroecological land surface model PROMET was first run in a stand-alone version for selected sites distributed throughout Bavaria using only static input parameters (e.g. soil map) and current meteorological data as driving factors. Thus, multitemporal information from optical remote sensing data was assimilated into the model runs in a second step to improve the accuracy of the results. Finally, the use of radar data for anthesis detection in winter wheat was tested using Sentinel-1 data of 2015 in dual polarization mode (VV+VH).

  14. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    PubMed

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  15. Science, politics, and the GM debate in Europe.

    PubMed

    Tencalla, Francesca

    2006-02-01

    Europe today stands at a crossroad, facing challenges but also opportunities. In its intent to make Europe a leading technology-based economy by 2010, the European Commission has identified biotechnology and genomics as fields for future growth, crucial for supporting the agricultural and food processing industry. Since first commercialization in 1996, GM crop areas have grown at double-digit rates, making this one of the most rapidly adopted technologies in agriculture. However, in contrast to other world areas and despite European Commission support, Europe has found itself 'bogged-down' in a polemic between opponents and supporters of plant biotechnology. As a result, planted areas have remained small. This stalemate is due to a lack of political leadership, especially at the Member State level, all the more surprising in light of European early development and competitive advantage with crop biotechnology. This situation proves once again that, for cutting-edge innovations, a solid science base alone is not sufficient. Acceptance or rejection of new technologies depends on interlinked political, economic, and societal factors that create a favorable or unfavorable situation at a given time. This article will look at GM crops in Europe and the role science and politics have played in the introduction of crop biotechnology.

  16. Development of an early warning system of crop moisture conditions using passive microwave

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II (Principal Investigator)

    1982-01-01

    Emissivities were calculated from the Nimbus 5 electrically scanning microwave radiometer (ESMR) over 25 km grid cells for the southern Great Plains includin the western two-thirds of Kansas and Oklahoma and northwest Texas. These emissivities, normalized for seasonal temperature changes, were in excellent agreement with theory and measurements made from aircraft and truck sensors at the 1.55 cm wavelength of ESMR. These emissivities were related to crop moisture conditions of the winter wheat in the major wheat producing counties of the three states. High correlations were noted between emissitivity and an antecedent precipitation index (API) used to infer soil moisture for periods when the soils were essentially bare. The emissivities from ESMR were related through API and actual crop condition reports to progress of fall planting, adequacy of crop moisture for stand establishment, and periods of excessive moisture that necessitated replanting. Periods of prolonged frozen soil in the winter were observable at several grid points. The average emissivities of the canopy/soil surface during the maximum canopy development times in the spring showed a good agreement with moisture stress inferred from rainfall and yield data.

  17. Initial response of loblolly pine and competition to mid rotation fertilization and herbicide application in the gulf coastal plain

    Treesearch

    Hal O. Liechty; Conner Fristoe

    2010-01-01

    Application of N and P to mid-rotation loblolly pines (Pinus taeda L.) stands is a common silvicultural practice used to increase crop tree production in the Gulf Coastal Plain. Mid-rotation applications of herbicides or combined applications of herbicide and fertilizer are a less common practice. We applied herbicide (1.17 l imazapyr and 0.23 l...

  18. Weed Control and Site Preparation for Natural Regeneration of Cottonwood

    Treesearch

    Robert L. Johnson

    1962-01-01

    Some of the finest forest land in the country is in the batture of the Mississippi River - the area between the levees and the river. Many of these sites once bore nearly pure stands of cottonwood, and cottonwood probably is the most valuable timber crop that could be grown on them today. After the old-growth was harvested, though, the sites were taken over largely by...

  19. Competition After Windrowing or Single-Roller Chopping For Site Preparation in the Southern Piedmont

    Treesearch

    James H. Miller

    1980-01-01

    For two years, post-treatment regrowth of herbaceous and woody species was sampled on two adjoining areas in the southern Piedmont where they had been either sheared and piled into windrows or chopped by a single pass of a single-drum roller-chopper. Windrowing yielded 55% less total standing crop of woody trees, shrubs, and vines after 2 years than chopping did. But...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brook, I.M.

    Five Thalassia communities with high blade density (greater than 3,000 blades/m/sup 2/) were sampled by suction dredge in April 1973. Four sites were in south Biscayne Bay, and one was at Murray Key in the Everglades National Park on the southwest coast of Florida. Macrofaunal abundance ranged from 292 to 10,728 individuals/m/sup 2/. It is postulated that a high standing crop of seagrass may not be the primary determining factor in faunal abundance.

  1. Floristic evolution in an agroforestry system cultivation in Southern Brazil.

    PubMed

    Silva, Luís C R; Machado, Sebastião A; Galvão, Franklin; Figueiredo, Afonso

    2016-06-07

    Bracatinga (Mimosa scabrella Bentham) is an important pioneer tree species in Ombrophylous Mixed Forest of Brazil and is widely used as an energy source. In traditional agroforestry systems, regeneration is induced by fire, then pure and dense stands known as bracatinga stands (bracatingais) are formed. In the first year, annual crops are intercalated with the seedlings. At that time the seedlings are thinned, then the stands remain at a fallow period and cut at seven years old. The species is very important mainly for small landowners. We studied the understory species that occur naturally during the succession over several years in order to manage them rationally in the future and maintain the natural vegetation over time. Three to 20 year-old Bracatinga stands were sampled between 1998 and 2011. All tree species with diameter at breast height (DBH) ≥ 5 cm were measured.The floristic evolution was assessed with respect to Sociability Index, the Shannon Diversity Index and the Pielou Evenness Index. Graphs of rank/abundance over different age groups were evaluated using the Kolmogorov-Smirnov test. We identified 153 species dispersed throughout the understory and tend to become aggregated over time.

  2. Investigating the pollination syndrome of the Hawaiian lobeliad genus Clermontia (Campanulaceae) using floral nectar traits.

    PubMed

    Pender, Richard J; Morden, Clifford W; Paull, Robert E

    2014-01-01

    Floral nectar sugar compositions have, for several decades, been used to predict a plant species' pollinator guild. Plants possessing a generalist ornithophilous pollination syndrome produce nectar that is dilute (8-12% w/v sugars) with a low sucrose to hexose (glucose and fructose) ratio. The Hawaiian lobeliad genus Clermontia contains 22 endemic species of shrubs and small trees that are believed to have evolved flowers adapted for pollination by now mostly extinct or endangered endemic passerines in the Drepanidinae and Mohoidae. We analyzed the nectar sugar compositions, concentration, and nectar standing crop of 23 taxa to test the assumption that Clermontia taxa have evolved floral traits in response to selection pressures from these avian pollinators. All Clermontia taxa produced nectar with sugar concentrations (mean: 9.2% w/v ± 1.8 SD) comparable to the nectar of other plant species with a generalized bird pollination system. Nectar sugars were overwhelmingly composed of hexoses in all taxa (mean sucrose/hexose ratio: 0.02 ± 0.02). Nectar standing crop volumes varied widely among taxa, ranging from 9.7 µL ± 7.1 to 430.5 µL ± 401.8 (mean volume: 177.8 ± 112.0). Collectively, the nectar traits indicate that Clermontia species possess a generalist passerine pollination syndrome.

  3. What would the world be like without animals for food, fiber, and labor? Are we morally obligated to do without them?

    PubMed

    Davis, S L

    2008-02-01

    Numerous animal rights and animal liberation theorists have concluded that nonhuman animals have moral standing and noninterference rights. Therefore, they say that humans are morally obligated to stop using animals for food, fiber, labor, and research. I disagree with that conclusion for at least 2 reasons. First, it has been suggested that food production models are possible using large herbivores that might actually cause less harm (kill) to animals than a vegan food production model. This is because intensive crop production used to produce food for a vegan diet kills (harms) far more animals of the field than extensive agriculture (pasture production). So, a combined food production system that includes crops and pasture harvested by large herbivores to be used for human food may kill fewer animals than would a vegan-crop model. Second, pragmatically, it is improbable that all peoples of the world could ever be convinced that they must give up animals. In fact, it may be unethical to try to do that, because in poor countries, these animals are essential to the survival of the human populations. But what about the richer nations? Maybe they will or should be convinced to do without animals because of the moral strength of the animal rights and animal liberation theories. However, I believe that there are far too many obstacles for that to happen. What then are we morally obligated to do about animals? I suggest that animals do have moral standing, and that we are morally obligated to recognize their unique species-specific natures and treat them accordingly. That would mean treating animals according to their physical and behavioral needs or telos. That, I believe, is the most likely outcome of the conversation about animal rights.

  4. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series.

    PubMed

    Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina

    2015-01-01

    Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies.

  5. Dynamics of Weeds in the Soil Seed Bank: A Hidden Markov Model to Estimate Life History Traits from Standing Plant Time Series

    PubMed Central

    Borgy, Benjamin; Reboud, Xavier; Peyrard, Nathalie; Sabbadin, Régis; Gaba, Sabrina

    2015-01-01

    Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies. PMID:26427023

  6. Site-adapted cultivation of bioenergy crops - a strategy towards a greener and innovative feedstock production

    NASA Astrophysics Data System (ADS)

    Ruf, Thorsten; Emmerling, Christoph

    2017-04-01

    Cultivation of bioenergy crops is of increasing interest to produce valuable feedstocks e.g. for anaerobic digestion. In the past decade, the focus was primarily set to cultivation of the most economic viable crop, namely maize. In Germany for example, the cultivation area of maize was expanded from approx. 200,000 ha in 2006 to 800,000 ha in 2015. However, this process initiated a scientific and public discussion about the sustainability of intense maize cultivation. Concerns addressed in this context are depletion of soil organic matter, soil erosion and compaction as well as losses of (agro-)biodiversity. However, from a soil science perspective, several problems arise from not site-adapted cultivation of maize. In contrast, the cultivation of perennial bioenergy crops may provide a valuable opportunity to preserve or even enhance soil fertility and agrobiodiversity without limiting economic efficiency. Several perennial energy crops, with various requirements regarding stand conditions, allow a beneficial selection of the most suitable species for a respective location. The study aimed to provide a first step towards a more strategic planning of bioenergy crop cultivation with respect to spatial arrangement, distribution and connectivity of sites on a regional scale. The identification of pedological site characteristics is a crucial step in this process. With the study presented, we tried to derive site information that allow for an assessment of the suitability for specific energy crops. Our idea is to design a multifunctional landscape with a coexistence of sites with reduced management for soil protection and highly productive site. By a site adapted cultivation of perennial energy plants in sensitive areas, a complex, heterogeneous landscape could be reached.

  7. Epicormic branching in red oak crop trees five years after thinning and fertilizer application in a bottomland hardwood stand

    Treesearch

    Brian Roy Lockhart; Alexander J. Michalek; Matthew W. Lowe

    2006-01-01

    Epicormic branches are defined as shoots arising from adventitious or dormant buds on the stem or branch of a woody plant, often following exposure to increased light levels or fire. They are a serious concern to hardwood forest managers because epicormic branches are considered defects and reduce the monetary value of logs and the lumber cut from them. The presence of...

  8. Recovery of planted loblolly pine 5 years after severe ice storms in Arkansas

    Treesearch

    Don C. Bragg; Michael G. Shelton

    2010-01-01

    Following a severe ice storm, one of a landowner’s first considerations regarding the future of their damaged stands should be on the recovery potential of injured crop trees. The ice storms that struck Arkansas in December 2000 provided an opportunity to monitor 410 injured loblolly pines (Pinus taeda L.), representing a wide range of damage in 18 –20-year-old...

  9. Diversifying mechanisms in the on-farm evolution of crop mixtures.

    PubMed

    Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle

    2015-06-01

    While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.

  10. Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubrey, Doug, P.; Coyle, David, R. Coleman, Mark, D.

    2011-08-26

    Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources. We constructed N budgets by measuring N concentration ([N]) and N content (N{sub C}) of above- and belowground perennial and ephemeral tissues, determined N uptake (N{submore » UP}), and calculated N use efficiency (NUE). Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N{sub C} and N{sub UP} increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N{sub UP}. Inclusion of above- and belowground ephemeral tissue turnover in N{sub UP} calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200 kg N ha{sup -1} year{sup -1} while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent. Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.« less

  11. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    NASA Technical Reports Server (NTRS)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  12. Carbon dioxide and water exchange rates by a wheat crop in NASA's biomass production chamber: Results from an 86-day study (January to April 1989)

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Sager, J. C.

    1990-01-01

    Gas exchange measurements were taken for a 20 sq m wheat stand grown from seed to harvest in NASA's Biomass Production Chamber. Respiration of the wheat stand caused the CO2 concentrations to rise an average of 440 ppm during the 4-h dark period each day, or 7.2 umol/sq m/sec. Dark period respiration was sensitive to temperature changes and could be increased 70 to 75 percent by raising the temperature from 16 C to 24 C. Stand photosynthesis (measured from the rate of CO2 drawdown immediately after the lights came on each day) peaked at 27 umol/sq m/sec at 25 days after planting and averaged 15 umol/sq m/sec throughout the study. By combining the average light period photosynthesis and average dark period respiration, a net of 860 g or 470 liters of CO2 were fixed per day. Stand photosynthetic rates showed a linear increase with increasing irradiance (750 umol/sq m/sec PPF the highest level tested), with an average light compensation point after day 30 of 190 umol/sq m/sec. Stand photosynthesis decreased slightly when CO2 levels were decreased from 2200 to 800 ppm, but dropped sharply when CO2 was decreased below 700 to 800 ppm. Water production from stand transpiration peaked at 120 L/day near 25 days and averaged about 90 L/day, or 4.5 L/sq m/day throughout the study.

  13. Object oriented classification of high resolution data for inventory of horticultural crops

    NASA Astrophysics Data System (ADS)

    Hebbar, R.; Ravishankar, H. M.; Trivedi, S.; Subramoniam, S. R.; Uday, R.; Dadhwal, V. K.

    2014-11-01

    High resolution satellite images are associated with large variance and thus, per pixel classifiers often result in poor accuracy especially in delineation of horticultural crops. In this context, object oriented techniques are powerful and promising methods for classification. In the present study, a semi-automatic object oriented feature extraction model has been used for delineation of horticultural fruit and plantation crops using Erdas Objective Imagine. Multi-resolution data from Resourcesat LISS-IV and Cartosat-1 have been used as source data in the feature extraction model. Spectral and textural information along with NDVI were used as inputs for generation of Spectral Feature Probability (SFP) layers using sample training pixels. The SFP layers were then converted into raster objects using threshold and clump function resulting in pixel probability layer. A set of raster and vector operators was employed in the subsequent steps for generating thematic layer in the vector format. This semi-automatic feature extraction model was employed for classification of major fruit and plantations crops viz., mango, banana, citrus, coffee and coconut grown under different agro-climatic conditions. In general, the classification accuracy of about 75-80 per cent was achieved for these crops using object based classification alone and the same was further improved using minimal visual editing of misclassified areas. A comparison of on-screen visual interpretation with object oriented approach showed good agreement. It was observed that old and mature plantations were classified more accurately while young and recently planted ones (3 years or less) showed poor classification accuracy due to mixed spectral signature, wider spacing and poor stands of plantations. The results indicated the potential use of object oriented approach for classification of high resolution data for delineation of horticultural fruit and plantation crops. The present methodology is applicable at local levels and future development is focused on up-scaling the methodology for generation of fruit and plantation crop maps at regional and national level which is important for creation of database for overall horticultural crop development.

  14. Fall rice straw management and winter flooding treatment effects on a subsequent soybean crop

    USGS Publications Warehouse

    Anders, M.M.; Windham, T.E.; McNew, R.W.; Reinecke, K.J.

    2005-01-01

    The effects of fall rice (Oryza sativa L.) straw management and winter flooding on the yield and profitability of subsequent irrigated and dryland soybean [Glycine max (L.) Merr.] crops were studied for 3 years. Rice straw treatments consisted of disking, rolling, or standing stubble. Winter flooding treatments consisted of maintaining a minimum water depth of 10 cm by pumping water when necessary, impounding available rainfall, and draining fields to prevent flooding. The following soybean crop was managed as a conventional-tillage system or no-till system. Tillage system treatments were further divided into irrigated or dryland. Results indicated that there were no significant effects from either fall rice straw management or winter flooding treatments on soybean seed yields. Soybean seed yields for, the conventional tillage system were significantly greater than those for the no-till system for the first 2 yrs and not different in the third year. Irrigated soybean seed yields were significantly greater than those from dryland plots for all years. Net economic returns averaged over the 3 yrs were greatest ($390.00 ha-1) from the irrigated no-till system.

  15. Phenology satellite experiment

    NASA Technical Reports Server (NTRS)

    Dethier, B. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The detection of a phenological event (the Brown Wave-vegetation sensescence) for specific forest and crop types using ERTS-1 imagery is described. Data handling techniques including computer analysis and photointerpretation procedures are explained. Computer analysis of multspectral scanner digital tapes in all bands was used to give the relative changes of spectral reflectance with time of forests and specified crops. These data were obtained for a number of the twenty-four sites located within four north-south corridors across the United States. Analysis of ground observation photography and ERTS-1 imagery for sites in the Appalachian Corridor and Mississippi Valley Corridor indicates that the recession of vegetation development can be detected very well. Tentative conclusions are that specific phenological events such as crop maturity or leaf fall can be mapped for specific sites and possible for different regions. Preliminary analysis based on a number of samples in mixed deciduous hardwood stands indicates that as senescence proceeds both the rate of change and differences in color among species can be detected. The results to data show the feasibility of the development and refinement of phenoclimatic models.

  16. A generic model for estimating biomass accumulation and greenhouse gas emissions from perennial crops

    NASA Astrophysics Data System (ADS)

    Ledo, Alicia; Heathcote, Richard; Hastings, Astley; Smith, Pete; Hillier, Jonathan

    2017-04-01

    Agriculture is essential to maintain humankind but is, at the same time, a substantial emitter of greenhouse gas (GHG) emissions. With a rising global population, the need for agriculture to provide secure food and energy supply is one of the main human challenges. At the same time, it is the only sector which has significant potential for negative emissions through the sequestration of carbon and offsetting via supply of feedstock for energy production. Perennial crops accumulate carbon during their lifetime and enhance organic soil carbon increase via root senescence and decomposition. However, inconsistency in accounting for this stored biomass undermines efforts to assess the benefits of such cropping systems when applied at scale. A consequence of this exclusion is that efforts to manage this important carbon stock are neglected. Detailed information on carbon balance is crucial to identify the main processes responsible for greenhouse gas emissions in order to develop strategic mitigation programs. Perennial crops systems represent 30% in area of total global crop systems, a considerable amount to be ignored. Furthermore, they have a major standing both in the bioenergy and global food industries. In this study, we first present a generic model to calculate the carbon balance and GHGs emissions from perennial crops, covering both food and bioenergy crops. The model is composed of two simple process-based sub-models, to cover perennial grasses and other perennial woody plants. The first is a generic individual based sub-model (IBM) covering crops in which the yield is the fruit and the plant biomass is an unharvested residue. Trees, shrubs and climbers fall into this category. The second model is a generic area based sub-model (ABM) covering perennial grasses, in which the harvested part includes some of the plant parts in which the carbon storage is accounted. Most second generation perennial bioenergy crops fall into this category. Both generic sub-models presented in this paper can be parametrized for different crops. Quantifying CO2 capture by plants and biomass accumulation and changes in soil carbon, are key in evaluating the impacts of perennial crops in life cycle analysis. We then use this model to illustrate the importance of biomass in the overall GHG estimation from four important perennial crops - sugarcane, Miscanthus, coffee, and apples - which were chosen to cover tropical and temperate regions, trees and grasses, and energy and food supply.

  17. Food biotechnology: benefits and concerns.

    PubMed

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  18. The British in Kenya (1952-1960): Analysis of a Successful Counterinsurgency Campaign

    DTIC Science & Technology

    2005-06-01

    East Africa to seek their riches in cattle , coffee, mining, and selling safaris to tourists. While the other colonial powers set their sights on...violence on a large scale by early 1952. Cattle on white settlements were being destroyed and standing crops and haystacks set on fire, particularly...Guards used pliers to castrate Mau Mau prisoners. Whatever the method and level of brutality, by the latter half of the 1950s most Kikuyu had turned

  19. The effects of plant density and nectar reward on bee visitation to the endangered orchid Spiranthes romanzoffiana

    NASA Astrophysics Data System (ADS)

    Duffy, Karl J.; Stout, Jane C.

    2008-09-01

    Density can affect attraction of pollinators, with rare plants receiving fewer pollinating visits compared with more common co-flowering species. However, if a locally rare species is very attractive in terms of the rewards it offers pollinators, it may be preferentially visited. Spiranthes romanzoffiana is a nectar rewarding, geographically rare, endangered orchid species which forms small populations in Ireland, co-flowering with more common, florally rewarding species. We examined visitation rates to S. romanzoffiana and two nectar rewarding co-flowering species ( Mentha aquatica and Prunella vulgaris) in the west of Ireland. These three plant species were visited by three bee species ( Bombus pascuorum, B. hortorum and Apis mellifera). B. pascuorum was the most common visitor, while A. mellifera was least common. Our results suggest that individual S. romanzoffiana inflorescences compete intraspecifically for visitation from pollinators at high densities. The relationship between visitation to S. romanzoffiana and total floral density appeared to be positive, suggesting interspecific facilitation of pollinator visitation at high densities. Nectar standing crop varied through the season, among species and between open and bagged flowers. Nectar standing crop was not correlated with visitation in S. romanzoffiana. Despite relatively high visitation, S. romanzoffiana produced no mature fruit during this flowering season. The lack of fruit maturation in this species may be a major factor causing its rarity in Europe.

  20. Diallel analysis of corn for special use as corn grits: determining the main genetic effects for corn gritting ability.

    PubMed

    Conrado, T V; Scapim, C A; Bignotto, L S; Pinto, R J B; Freitas, I L J; Amaral, A T; Pinheiro, A C

    2014-08-26

    Corn grits are used for various purposes such as flakes, snacks, livestock feed, hominy, extruded products, beer, etc. The grit size proportion varies according to the hybrid, and thus, once the use of the grits is linked to the particle size, determining the genetic effects is essential to develop hybrids for any specific use. For this purpose a complete diallel series of crosses, involving eight parents, was performed near Maringá, PR, Brazil. The objective of this study was to evaluate the general (GCA) and specific (SCA) combining abilities of 28 progeny for selection of hybrids for breeding programs and extraction of inbred lines for hybrid development. The response variables, such as plant height, ear insertion height, crop stand, grain yield, and grits, small grits and bran production, were gauged and appraised for each of the 28 progeny. The trait effects and GCA were significant for all response variables, while for SCA, only grain yield and crop stand showed significance (P < 0.05), according to Griffing (1955) analysis. A significant weak negative partial correlation was found between grain yield and grits conversion. In relation to the hybrid selection for breeding programs, the parent IAC Nelore was highly recommended for recurrent selection and the hybrids IPR 119 x HT 392 and IAC Nelore x HD 332 for the extraction of pure lines for hybrid development.

  1. [Microzooplankton herbivory during red tide-frequent-occurrence period in spring in the East China Sea].

    PubMed

    Sun, Jun; Liu, Dongyan; Wang, Zonglin; Shi, Xiaoyong; Li, Ruixiang; Zhu, Mingyuan

    2003-07-01

    Five typical stations in the Changjiang River estuary and adjacent waters of the East China Sea, were chosen as the sites to study phytoplankton growth and microzooplankton ingestion by on-deck-incubation dilution experiment from 25th April to 25th May 2002. The results showed that microzooplankton ingestion was a key process for controlling red tide event. Strombidium sulcatum, Noctiluca scintillans and Mesodinium robudium were dominant microzooplankton species. In this study, the ingestion rate of microzooplankton ranged from 0.28 to 1.13 d-1; ingestion pressure on percentage of phytoplankton standing crop ranged from 35.14% to 811.69%; ingestion pressure on percentage of potential production ranged from 74.04% to 203.25%; and ingestion rate of phytoplankton carbon ranged from 9.58 to 97.91 C.L-1.d-1. The microzooplankton grazing rate, ingestion pressure on percentage of phytoplankton standing crop, and ingestion rate of phytoplankton carbon were higher near coastal area, but lower at open sea, and the microzooplankton ingestion pressure on percentage of phytoplankton potential production was no the contrary. Compared with the similar studies around the world, the ingestion pressure of microzooplankton in the East China Sea was at a higher level. The primary deduction was that Strombidium was the key microzooplankton species on controlling Prorocentrum dentatum, the most important red tide species in the East China Sea.

  2. Effect of Climate Extremes, Seasonal Change, and Agronomic Practices on Measured Evapotranspiration and CO2 Exchange in Sacramento-San Joaquin River Delta Alfalfa Fields

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Paw U, K. T.; Little, C.; Lambert, J. J.

    2017-12-01

    Evapotranspiration and CO2 exchange was measured in five alfalfa fields in the Sacramento-San Joaquin River Delta region from 2016 to 2017 using eddy covariance and surface renewal methods. Seasonal changes of evapotranspiration and CO2 fluxes were compared between 2016, a drought year, and 2017, a high rainfall year. Additionally, changes in evapotranspiration and CO2 flux were investigated across various agronomic considerations, such as irrigation methods (border-check flood and sub-surface), stand life, and herbicide programs. Components of the energy balance, including net radiation, latent heat, ground heat flux, and sensible heat, were evaluated considering correlations to wind speed measured by three sonic anemometers, irrigation frequency, and crop cutting cycle. Comparisons between two different types of radiometers were also carried out. Under drought conditions, we observed higher amounts of evapotranspiration in a field having a stand life of less than two years of age compared to older stands, and in a sub-surface irrigated field compared to flood irrigated fields.

  3. Ecophysiological variables influencing Aleppo pine seed and cone production: a review.

    PubMed

    Ayari, Abdelaziz; Khouja, Mohamed Larbi

    2014-04-01

    The most interesting factors associated with seed and cone production of Aleppo pine were largely reviewed to identify broad patterns and potential effectiveness of reforestation efforts and planning. Aleppo pine cone production and seed yields are relatively variable, with differences between spatial and temporal influences. These differences are considered, mainly between (i) year, (ii) stand characteristics and (iii) individual tree measurements. Annual variability among populations was recorded for cone production per tree, based on influencing factors such as genetic characteristics, wetness, nutrient availability, insect pests and disease. In addition, some factors may affect Aleppo pine tree growth directly but may be affecting seed and cone production indirectly. Therefore, reduced stand density results in less competition among Aleppo pine trees and accompanying understory flora, which subsequently increases the stem diameter and other tree dimensions, including seed production. This review suggests that reforestation planning, particularly thinning, will result in improved tree morphology that will increase Aleppo pine seed and cone crops. Wildfire intensity and stand conditions such as light and soil nutrient status are also examined.

  4. Effect of Land Use Legacy on Forest Carbon Dynamics in the NE U.S.

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.

    2016-12-01

    Forest stand age is a prime determinant of the strength of the carbon sink, as younger, growing forests tend to be stronger sinks than more mature forests. The substantial carbon sink in the NE U.S. is due to forests regrowing from previous disturbance. The particular type of disturbance, whether agricultural abandonment, timber harvest, or fire, can have an impact on the Net Ecosystem Productivity (NEP) observed today, especially for more recently disturbed forests. Nutrient levels, particularly nitrogen, are the most important factor determining the rate of regrowth following disturbance. Agriculture results in depletion of nutrients from the soil, so often results in slower regrowth than timber harvest, for example. If fire is also used during harvesting, nutrient depletion may be even more severe. This study will use the 1 km USDA forest stand age data for the NE U.S. for a series of model sensitivity experiments with the TEM-Hydro model. Three simulations will apply a single disturbance to result in the correct stand age, with agricultural abandonment, timber harvest, and fire applied at the year of disturbance, respectively. A 1/8o run will explore how aggregated stand age affects NEP relative to higher resolution stand age. Preliminary results for a single grid in PA show timber harvest has faster regrowth than regrowth from agricultural abandonment, though fertilization quickens regrowth rates. The effect of crops on NEP is a larger sink than timber harvest in the 5 years following disturbance, but a smaller sink in the decades following, with equivalent NEP values after about 50 years. A simple stand age mixture experiment shows that heterogeneous stand age matters most in the first 20 years following disturbance. These methods will be applied to realistic stand ages for the entire NE U.S. to determine the importance of disturbance type on forest regrowth.

  5. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    PubMed Central

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3 --N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha-1 biomass, whereas mixtures averaged 4.1 Mg ha-1 and hairy vetch 2.3 Mg ha-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3 --N (0 to 30 cm depth) averaged 62 kg ha-1 for rye, 97 kg ha-1 for the mixtures, and 119 kg ha-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures. PMID:26080008

  7. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    PubMed

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(-)-N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1) biomass, whereas mixtures averaged 4.1 Mg ha(-1) and hairy vetch 2.3 Mg ha(-1). Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1) N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3(-)-N (0 to 30 cm depth) averaged 62 kg ha(-1) for rye, 97 kg ha(-1) for the mixtures, and 119 kg ha(-1) for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  8. New Orleans after Hurricane Katrina

    NASA Image and Video Library

    2005-09-08

    JSC2005-E-37989 (8 September 2005)--- Extensive flooding of neighborhoods to the east of the 17th Street Canal (left center, oriented north-south) is evident in this image acquired on September 8, 2005 from the International Space Station. Standing water in the street grid imparts a dark greenish brown coloration to the inundated regions. Flooded portions of I-610 (extending east-west) are clearly visible in the center of the image. Image is cropped from original ISS011-E-12527 and is oriented with north to the top.

  9. Environmental Impact Research Program. Yellow Sweetclover (Melilotus officinalis) Section 7.3.4, U.S. Army Corps of Engineers Wildlife Resources Management Manual.

    DTIC Science & Technology

    1986-07-01

    Gambel’s quail (Callipepla gconbelii), and California quail (C. californica). Muskrats (Ondatra zibethicus) and cottontails (Sylvi- 7agus spp.) eat the...sodbound grass stands that need renovation can benefit from sweetclover seedings. In these areas sweetclover can be used as green manure; a cover crop...prevent inter- ference with carbohydrate storage and rootcrown bud development. Second-year production of sweetclover is closely correlated with the

  10. Trident Biological Surveys: SUBASE Bangor (July 1977 and June 1978) and Indian Island Annex (January, May 1974 and June 1978). Supplement 2.

    DTIC Science & Technology

    1979-12-01

    or critical marine habitats affected by construction activities. Adverse impact has been limited to the biota physically disrupted by the mechanical ...Adverse impact has been limited to the biota physically disrupted by the mechanical process of pier construction. Commercial clam densities, standing crop...such as those at SUBASE Bangor. Samples are often expensive and time consuming to obtain: however, the reliability of one’s results depends heavily upon

  11. Cultural Resources Intensive Survey, With Testing, of the Millington, Naval Base Levee Construction Site, Millington Shelby County, Tennessee.

    DTIC Science & Technology

    1990-01-01

    terraces, and fall and spring migratory waterfowl in areas of seasonally standing water . Hickory nuts thus appear to be the most strategic resource, * in...for agriculture . Such soils are difficult to work until late in the planting season, are subject to wet-year moisture damage to crops, and provide an...effective barrier to root growth during dry years. Prehistoric agricultural activities tend to focus on better-drained soils such as Collins, Memphis

  12. Water use of a multigenotype poplar short-rotation coppice from tree to stand scale.

    PubMed

    Bloemen, Jasper; Fichot, Régis; Horemans, Joanna A; Broeckx, Laura S; Verlinden, Melanie S; Zenone, Terenzio; Ceulemans, Reinhart

    2017-02-01

    Short-rotation coppice (SRC) has great potential for supplying biomass-based heat and energy, but little is known about SRC's ecological footprint, particularly its impact on the water cycle. To this end, we quantified the water use of a commercial scale poplar ( Populus ) SRC plantation in East Flanders (Belgium) at tree and stand level, focusing primarily on the transpiration component. First, we used the AquaCrop model and eddy covariance flux data to analyse the different components of the stand-level water balance for one entire growing season. Transpiration represented 59% of evapotranspiration (ET) at stand scale over the whole year. Measured ET and modelled ET were lower as compared to the ET of reference grassland, suggesting that the SRC only used a limited amount of water. Secondly, we compared leaf area scaled and sapwood area scaled sap flow ( F s ) measurements on individual plants vs. stand scale eddy covariance flux data during a 39-day intensive field campaign in late summer 2011. Daily stem diameter variation (∆ D ) was monitored simultaneously with F s to understand water use strategies for three poplar genotypes. Canopy transpiration based on sapwood area or leaf area scaling was 43.5 and 50.3 mm, respectively, and accounted for 74%, respectively, 86%, of total ecosystem ET measured during the intensive field campaign. Besides differences in growth, the significant intergenotypic differences in daily ∆ D (due to stem shrinkage and swelling) suggested different water use strategies among the three genotypes which were confirmed by the sap flow measurements. Future studies on the prediction of SRC water use, or efforts to enhance the biomass yield of SRC genotypes, should consider intergenotypic differences in transpiration water losses at tree level as well as the SRC water balance at stand level.

  13. Correlations between the modelled potato crop yield and the general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Sepp, Mait; Saue, Triin

    2012-07-01

    Biology-related indicators do not usually depend on just one meteorological element but on a combination of several weather indicators. One way to establish such integral indicators is to classify the general atmospheric circulation into a small number of circulation types. The aim of present study is to analyse connections between general atmospheric circulation and potato crop yield in Estonia. Meteorologically possible yield (MPY), calculated by the model POMOD, is used to characterise potato crop yield. Data of three meteorological stations and the biological parameters of two potato sorts were applied to the model, and 73 different classifications of atmospheric circulation from catalogue 1.2 of COST 733, domain 05 are used to qualify circulation conditions. Correlation analysis showed that there is at least one circulation type in each of the classifications with at least one statistically significant (99%) correlation with potato crop yield, whether in Kuressaare, Tallinn or Tartu. However, no classifications with circulation types correlating with MPY in all three stations at the same time were revealed. Circulation types inducing a decrease in the potato crop yield are more clearly represented. Clear differences occurred between the observed geographical locations as well as between the seasons: derived from the number of significant circulation types, summer and Kuressaare stand out. Of potato varieties, late 'Anti' is more influenced by circulation. Analysis of MSLP maps of circulation types revealed that the seaside stations (Tallinn, Kuressaare) suffer from negative effects of anti-cyclonic conditions (drought), while Tartu suffers from the cyclonic activity (excessive water).

  14. New and Emerging Viruses of Blueberry and Cranberry

    PubMed Central

    Martin, Robert R.; Polashock, James J.; Tzanetakis, Ioannis E.

    2012-01-01

    Blueberry and cranberry are fruit crops native to North America and they are well known for containing bioactive compounds that can benefit human health. Cultivation is expanding within North America and other parts of the world raising concern regarding distribution of existing viruses as well as the appearance of new viruses. Many of the known viruses of these crops are latent or asymptomatic in at least some cultivars. Diagnosis and detection procedures are often non-existent or unreliable. Whereas new viruses can move into cultivated fields from the wild, there is also the threat that devastating viruses can move into native stands of Vaccinium spp. or other native plants from cultivated fields. The aim of this paper is to highlight the importance of blueberry and cranberry viruses, focusing not only on those that are new but also those that are emerging as serious threats for production in North America and around the world. PMID:23202507

  15. Erosion control in orchards and vineyards by a new soil and cover crop management method

    NASA Astrophysics Data System (ADS)

    Hartl, Wilfried; Guettler, Hans; Auer, Karl; Erhart, Eva

    2016-04-01

    Cover crops are the basis for an erosion-free soil management in orchards and vineyards. The soil cover provided by the foliage and the intensive root formation counteract erosion. Cover crops provide the soil microfauna with fresh organic matter which improves soil structure and porosity. The water demand of cover crops, however, may pose problems for the water supply of the trees and vines in dry seasons. Therefore it is necessary to adjust the growth of the cover crops to the actual water conditions. In years with ample precipitation cover crops may be allowed lush vegetative growth till flowering and formation of seeds. In dry years, the growth of the cover crop must be restricted to stop the competition for water, sometimes even by cutting off the cover crop roots. The course of the weather is incalculable and rainfall may be very variable during the year, so it is sometimes necessary to adust the cover crop management several times a year. A new special equipment, which can perform all the tasks necessary for the flexible cover crop management has been developed together with the agricultural machinery manufacturers Bodenwerkstatt Ertl-Auer GmbH and Güttler GmbH. The GreenManager® device consists of three modules, namely a specific type of cultivator, a harrow and a prismatic roller with seeding equipment, which can be used separately or in combination. The GreenManager® can reduce cover crops by flattening the plants in the whole row middle, by bringing down the cover crops with the harrow, or by horizontally cutting the cover crop roots a few centimetres beneath the soil surface in the central part of the row middle or in the whole row middle. These measures reduce the water competition by cover crops without generating further losses of soil moisture through intensive soil cultivation. At the same time the risk of soil erosion is kept to a minimum, because the soil remains covered by dead plant biomass. In one passage the GreenManager® can direct-drill large-grain cover crop seeds and simultaneously cut the roots of the standing vegetation in the row middle, plus at the same time sow small-grain seeds over the whole middle. The large grains are placed several centimetres deep with the cultivator, while the small grains are spread on the surface in a seedbed prepared by the prismatic roller or the harrow module. So it is secured that on rewetting of the soil the next generation of cover crops will be established straight away. In all cases, however, the soil remains covered with living or dead plant biomass, so that the erosion risk is minimized. Uppermost goals of the flexible cover crop management are the well-being of the fruit trees and vines and maximum erosion protection of the soil.

  16. [Measurement and analysis of reflected information from crops canopy suffering from wind disaster influence].

    PubMed

    Bao, Yu-Long; Zhang, Ji-Quan; Liu, Xiao-Jing; Wang, Yong-Fang; Ma, Dong-Lai; Sun, Zhong-Qiu

    2013-04-01

    The corn in the grain filling stage fell over in the central region of Jilin province by the Typhoon Bolaven influence. In order to determine the impact of falling over corn canopy on the reflected information, the hyperspectral reflectance was detected at different viewing zenith angles, at the same time, the polarized reflection was also measured. The results from the analysis by combining the reflection and polarization from corn canopy showed that the reflection of falling over corn is low in visible, while increases in the near infrared wavelength. The reflection from falling over corn canopy was more anisotropic than stand-up corn canopy. The reflected light was highly polarized, the polarization of corn canopy provided the probability for distinguishing between falling over corn and stand-up corn. This research provides a basis for estimating the disaster area and lost units.

  17. Space/age forestry: Implications of planting density and rotation age in SRIC management decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merriam, R.A.; Phillips, V.D.; Liu, W.

    1993-12-31

    Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees inmore » a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.« less

  18. Preliminary Evaluation of TM for Soils Information

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Houston, A. G.; Pitts, D. E.

    1984-01-01

    Thematic mapper data acquired over Mississippi County, Arkansas, were examined for utility in separating soil associations within generally level alluvium deposited by the Mississippi River. The 0.76 to 0.90 micron (Band 4) and the 1.55 to 1.75 micron (Band 5) were found to separate the different soil associations fairly well when compared to the USDA-SCS general soil map. The thermal channel also appeared to provide information at this level. A detailed soil survey was available at the field level along with ground observations of crop type, plant height, percent cover and growth stage. Soils within the fields ranged from uniform to soils that occur as patches of sand that stand out strongly against the intermingled areas of dark soil. Examination of the digital values of individual TM bands at the field level indicates that the influence of the soil is greater in TM than it was in MSS bands. The TM appears to provide greater detail of within field variability caused by soils than MSS and thus should provide improved information relating to crop and soil properties. However, this soil influence may cause crop identification classification procedures to have to account for the soil in their algorithms.

  19. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials.

    PubMed

    Li, J T; Liao, B; Dai, Z Y; Zhu, R; Shu, W S

    2009-08-01

    Use of metal-accumulating woody species to extract metals from heavy metal contaminated soil has received more attention. While considerable studies have focused on the phytoextraction potential of willow (Salix spp.) and poplar (Populus spp.), similar information is rare for other woody species. Carambola (Averrhoa carambola) is a high-biomass tree and has been identified as a new Cd-accumulating species. The present study aimed to evaluate the Cd phytoextraction potential of carambola under field condition. After growing in a slightly Cd-contaminated site for about 170 d, the carambola stand initiated by seed-seedling with high planting density (encoded with "HD-1yr") attained a high shoot biomass yield of 18.6 t ha(-1) and extracted 213 g Cdha(-1), resulting in a 1.6-fold higher Cd removal efficiency than that of a contrasting stand established by grafted-seedling with low planting density (5.3% vs. 2%). That is, "HD-1yr" would remove 50% of the total soil Cd with 13yr, assuming that the Cd removal efficiency would not change over time. Further, one crop of "HD-1yr" significantly decreased (63-69%) the Cd uptake by subsequent vegetables. Among the four carambola stands established using grafted-seedling, the 2-yr-old stand exhibited the highest annual Cd removal efficiency (3.7%), which was yet lower than that of "HD-1yr". These results suggested that phytoextraction of Cd by carambola (especially for "HD-1yr" stand) presented a feasible option to clean up agricultural soils slightly contaminated by Cd.

  20. Transfer from long to short photoperiods affects production efficiency of day-neutral rice

    NASA Technical Reports Server (NTRS)

    Goldman, K. R.; Mitchell, C. A.

    1999-01-01

    The day-neutral, semidwarf rice (Oryza sativa L.) cultivar Ai-Nan-Tsao was grown in a greenhouse under summer conditions using high-pressure sodium lamps to extend the natural photoperiod. After allowing 2 weeks for germination, stand establishment, and thinning to a consistent planting density of 212 plants/m2, stands were maintained under continuous lighting for 35 or 49 days before shifting to 8- or 12-h photoperiods until harvest 76 days after planting. Non-shifted control treatments consisting of 8-, 12-, or 24-h photoperiods also were maintained throughout production. Tiller number increased as duration of exposure to continuous light increased before shifting to shorter photoperiods. However, shoot harvest index and yield efficiency rate were lower for all plants receiving continuous light than for those under the 8- or 12-h photoperiods. Stands receiving 12-h photoperiods throughout production had the highest grain yield per plant and equaled the 8-h-photoperiod control plants for the lowest tiller number per plant. As long as stands were exposed to continuous light, tiller formation continued. Shifting to shorter photoperiods late in the cropping cycle resulted in newly formed tillers that were either sterile or unable to mature grain before harvest. Late-forming tillers also suppressed yield of grain in early-forming tillers, presumably by competing for photosynthate or for remobilized assimilate during senescence. Stands receiving 12-h photoperiods throughout production not only produced the highest grain yield at harvest but had the highest shoot harvest index, which is important for resource-recovery strategies in advanced life-support systems proposed for space.

  1. Multitemporal spectroscopy for crop stress detection using band selection methods

    NASA Astrophysics Data System (ADS)

    Mewes, Thorsten; Franke, Jonas; Menz, Gunter

    2008-08-01

    A fast and precise sensor-based identification of pathogen infestations in wheat stands is essential for the implementation of site-specific fungicide applications. Several works have shown possibilities and limitations for the detection of plant stress using spectral sensor data. Hyperspectral data provide the opportunity to collect spectral reflectance in contiguous bands over a broad range of the electromagnetic spectrum. Individual phenomena like the light absorption of leaf pigments can be examined in detail. The precise knowledge of stress-dependent shifting in certain spectral wavelengths provides great advantages in detecting fungal infections. This study focuses on band selection techniques for hyperspectral data to identify relevant and redundant information in spectra regarding a detection of plant stress caused by pathogens. In a laboratory experiment, five 1 sqm boxes with wheat were multitemporarily measured by a ASD Fieldspec® 3 FR spectroradiometer. Two stands were inoculated with Blumeria graminis - the pathogen causing powdery mildew - and one stand was used to simulate the effect of water deficiency. Two stands were kept healthy as control stands. Daily measurements of the spectral reflectance were taken over a 14-day period. Three ASD Pro Lamps were used to illuminate the plots with constant light. By applying band selection techniques, the three types of different wheat vitality could be accurately differentiated at certain stages. Hyperspectral data can provide precise information about pathogen infestations. The reduction of the spectral dimension of sensor data by means of band selection procedures is an appropriate method to speed up the data supply for precision agriculture.

  2. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  3. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    PubMed

    Irvine, Irina C; Brigham, Christy A; Suding, Katharine N; Martiny, Jennifer B H

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  4. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a variety of data mining and modeling options and results strongly lean toward solutions of ensemble decision trees like Cubist and Random Forest. Those comparisons of what are seen as best will be also be shown. And finally, important model refinements accounting for temporal and spatial trends have also been considered and results will be presented.

  5. Determining forage availability and use patterns for bison in the Hayden Valley of Yellowstone National Park

    USGS Publications Warehouse

    Olenicki, Thomas J.; Irby, Lynn R.

    2005-01-01

    4. Estimate annual production and standing crop available during non-growing seasons for herbaceous and shrub layers in major habitat types in the Hayden Valley. Our efforts to describe forage use by bison focused on assessing finer scale habitat use is a core summer range for bison in YNP. We also collected information on bison food habits and forage quality to begin to explain the “whys” of bison distribution. Short-term impacts of bison forage utilization were addressed by comparing standing biomass in plots protected from grazing with plots exposed to grazing. Historical data were not available to directly address long-term effects of ungulate foraging in the Hayden Valley, but we were able to indirectly assess some aspects of this question by determining the frequency of repeat grazing over a 3-year period and the rate at which trees along the margins of the Hayden Valley were being killed by bison rubbing The third objective, determining the relative efficacy of different vegetation monitoring approaches, was accomplished by comparing estimates of standing biomass and biomas: utilization obtained via conventional exclosure techniques with estimates based on remote sensing techniques (ground-based and satellite-borne multi-spectral radiometry|[MSR]). We addressed efficacy in terms of precision and accuracy of estimates, reliability, and logistical costs at different coverage scales. The fourth objective, estimation of forage available for ungulates in the Hayden Valley, was achieved using conventional exclosure methodology and remote sensing. We were able to estimate herbaceous biomass production during 3 different years. Exclosures allowed us to estimated changes instanding crop of herbaceous vegetation at the plant community (conventional cover types, moisture plant growth form groups, and communities defined by dominant graminoids) and catena (a repeating sequence of communities tied to landscape physiognomy) scales. We developed empirical approaches that allowed us to estimate standing biomass of herbaceous plants from reflectance data obtained from ground-based and satellite-borne multi-spectral radiometry (MSR) units. We demonstrated the potential to estimate biomass of shrubs using the same approaches. We did not have time and resources to complete vegetation maps that would optimize estimates from remote sources, but we have outlined procedures that can be followed in the future to obtain biomass estimates at the landscape scale.

  6. Scientific investigations in the Gulf of Mexico and Caribbean Sea during the 1974-1975 Calypso cruise, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Elsayed, S. Z.; Reheim, H. A.; Fryxell, G. A.; Harlan, J. C.; Hill, J. M.; Babai, P.; Whitney, P.

    1975-01-01

    The distribution and concentrations of the standing crop of phytoplankton and nutrient salts in the Gulf of Mexico and the Caribbean Sea were investigated to provide ground truth for correlating temperature and chlorophyll-a measurements with observations from NASA U-2 aircraft equipped with specially designed sensors for measuring ocean color phenomena. The physical, chemical, and biological data obtained is summarized. Sampling procedures and methods used for determining plant pigments, species composition of phytoplankton, nutrient salt analysis, and the euphotic zones are described.

  7. Inventory and analysis of natural vegetation and related resources from space and high altitude photography

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.

    1972-01-01

    A multiple sampling technique was developed whereby spacecraft photographs supported by aircraft photographs could be used to quantify plant communities. Large scale (1:600 to 1:2,400) color infrared aerial photographs were required to identify shrub and herbaceous species. These photos were used to successfully estimate a herbaceous standing crop biomass. Microdensitometry was used to discriminate among specific plant communities and individual plant species. Large scale infrared photography was also used to estimate mule deer deaths and population density of northern pocket gophers.

  8. Ethnoarcheology of the Bay Springs Farmsteads.

    DTIC Science & Technology

    1982-09-20

    5,853 13,528 19,159 6,609 7,611 Free coloured ? 1 9 741 1,163 Slave ? 1,961 4,981 -- -- *In 1870 Old Tishomingo County was divided into three counties...he lost his entire cotton crop in 1937 to a flood. Apparently the concern * "over flooding in the owners’ eyes was superceded by their desire to have...across the road and past the dazed eyes of R.G. Adams, who was standing at the north window of the original house. The Adams family left the house

  9. East Bay Marina Olympia, Thurston County, Washington. Final Detailed Project Report, Section 107, 1960 River and Harbor Act and Environmental Impact Statement

    DTIC Science & Technology

    1980-12-01

    Int. Revue ges. Hydrobiology . Vol. 56, No. 6, pp. 947-956. 17. Pomeroy, L. R. 1959. Primary productivity of Boca Ciega Bay, Florida. Bull. Mar. Sci...4.7 feet to +18.2 feet mean lower low water (MLLW). AFFECTED ENVIRONMENT 2-6. Water Quality. Budd Inlet is a very productive area having about the...same salinity, nutrients, and turbidity as the other bays of south- ern Puget Sound. Phytoplankton production and standing crops in Budd Inlet increase

  10. What impact will EPPO's new resistance risk assessment guideline have on selection pressure in the European Union?

    PubMed

    Leonard, Paul K; Dutton, Robert

    2002-09-01

    This paper examines practical and regulatory implications, including both costs and benefits, resulting from implementation of EPPO's new resistance risk analysis guideline. Crop-protection companies operating in Europe are preparing risk analyses and management strategies, and are monitoring for resistance. However, this is a complex and expensive process involving technical, commercial and regulatory functions. The actual cost of filling these data gaps is consequently greater than many would have anticipated. The agrochemical industry has a vested interest in managing resistance and is committed to maintaining the essential contribution of crop-protection products to sustainable agriculture. However, with increasing regulatory costs, it is important that regulatory authorities concentrate requirements for resistance risk analyses, management strategies and monitoring where these are most needed. Should these requirements be applied indiscriminately, crop-protection companies will have to consider whether or not it is economically justifiable to make these investments, or whether to remove less profitable uses from product labels. In such situations, minor crops stand to be disproportionately effected. One year after publication, it is too early to measure the guideline's impact on selection pressure. It is already clear that the guideline represents an unprecedented step forward in the regulation and harmonisation of resistance management. There are, however, valid arguments against regulation of resistance management. One of the most important criticisms that is levelled against the latter approach is that, with the best motivation and with appropriate use restrictions on labels, these actions alone do not solve the problem. It is critical that all stakeholders in the crop protection process are made aware of the importance of resistance management and of complying with prescribed strategies.

  11. Ghg and Aerosol Emission from Fire Pixel during Crop Residue Burning Under Rice and Wheat Cropping Systems in North-West India

    NASA Astrophysics Data System (ADS)

    Acharya, Prasenjit; Sreekesh, S.; Kulshrestha, Umesh

    2016-10-01

    Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM) due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI). MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA) during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4) during rice and 10.89 t/ha (±8.7) during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.

  12. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    PubMed

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.

  13. SRWC bioenergy productivity and economic feasibility on marginal lands.

    PubMed

    Ghezehei, Solomon B; Shifflett, Shawn D; Hazel, Dennis W; Nichols, Elizabeth Guthrie

    2015-09-01

    Evolving bioenergy markets necessitate consideration of marginal lands for woody biomass production worldwide particularly the southeastern U.S., a prominent wood pellet exporter to Europe. Growing short rotation woody crops (SRWCs) on marginal lands minimizes concerns about using croplands for bioenergy production and reinforces sustainability of wood supply to existing and growing global biomass markets. We estimated mean annual aboveground green biomass increments (MAIs) and assessed economic feasibility of various operationally established (0.5 ha-109 ha) SRWC stands on lands used to mitigate environmental liabilities of municipal wastewater, livestock wastewater and sludge, and subsurface contamination by petroleum and pesticides. MAIs (Mg ha(-1) yr(-1)) had no consistent relationship with stand density or age. Non-irrigated Populus, Plantanus occidentalis L. and Pinus taeda L. stands produced 2.4-12.4 Mg ha(-1) yr(-1). Older, irrigated Taxodium distchum L., Fraxinus pennsylvanica L., and coppiced P. occidentalis stands had higher MAIs (10.6-21.3 Mg ha(-1) yr(-1)) than irrigated Liquidambar styraciflua L. and non-coppiced, irrigated P. occidentalis (8-18 Mg ha(-1) yr(-1)). Natural hardwood MAIs at 20-60 years were less than hardwood and P. taeda productivities at 5-20 years. Unlike weed control, irrigation and coppicing improved managed hardwood productivity. Rotation length affected economic outcomes although the returns were poor due to high establishment and maintenance costs, low productivities and low current stumpage values, which are expected to quickly change with development of robust global markets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nutritive Value Response of Native Warm-Season Forage Grasses to Harvest Intervals and Durations in Mixed Stands

    PubMed Central

    Temu, Vitalis W.; Rude, Brian J.; Baldwin, Brian S.

    2014-01-01

    Interest in management of native warm-season grasses for multiple uses is growing in southeastern USA. Forage quality response of early-succession mixed stands of big bluestem (BB, Andropogon gerardii), indiangrass (IG, Sorghastrum nutans), and little bluestem (SG, Schizachyrium scoparium) to harvest intervals (30-, 40-, 60-, 90 or 120-d) and durations (one or two years) were assessed in crop-field buffers. Over three years, phased harvestings were initiated in May, on sets of randomized plots, ≥90 cm apart, in five replications (blocks) to produce one-, two-, and three-year-old stands, by the third year. Whole-plot regrowths were machine-harvested after collecting species (IG and LB) sample tillers for leafiness estimates. Species-specific leaf area (SLA) and leaf-to-stem ratio (LSR) were greater for early-season harvests and shorter intervals. In a similar pattern, whole-plot crude protein concentrations were greatest for the 30-d (74 g·kg−1 DM) and the least (40 g·kg−1 DM) for the 120-d interval. Corresponding neutral detergent fiber (NDF) values were the lowest (620 g·kg−1 DM) and highest (710 g·kg−1 DM), respectively. In vitro dry matter and NDF digestibility were greater for early-season harvests at shorter intervals (63 and 720 g·kg−1 DM). With strategic harvesting, similar stands may produce quality hay for beef cattle weight gain. PMID:27135504

  15. Integration of lessons from recent research for “Earth to Mars” life support systems

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An "Earth to Mars" project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.

  16. [Response of copepod community characteristics to environmental factors in the Backshore Wetland of Expo Garden, Shanghai].

    PubMed

    Chen, Li-Jing; Wu, Yan-Fang; Jing, Yu-Xiang; Wang, Cong; Zhang, Yin-Jiang

    2012-11-01

    The Backshore Wetland of Expo Garden was the emphasis of the World Expo construction project in Shanghai in 2010, China programming district. We carried out studies on the community structure and spatial-temporal variation of copepod from September 2009 to August 2010. Statistical Product and Service Solutions (SPSS) was used for relevant statistical analysis between physicochemical parameters and copepod standing crop. Canonical correspondence analysis (CCA) was applied to further explore the correlation between copepod species and environmental parameters using CANOCO 4.5. A total of 23 copepod species in 11 genera, 6 families were identified. 5 dominant species of copepod were recorded during the survey period. They were Eucyclops serrulatus, Thermocyclops taihokuensis, Mesocyclops leuckarti, Thermocyclops brevifurcatus and Microcyclops varicans. The annual mean density of copepod was (8.6 +/- 16.6) ind x L(-1) and the biomass was (0.083 6 +/- 0.143 1) mg x L(-1). The standing crop of copepod had its first peak in July, the second in October and the bottom in January. The highest trophic level was measured at Site 1, decreasing along the flowing direction of the water current, and the lowest level was found at Site 10. The Margelf index remained low in winter and spring, but was increased in summer and autumn. The community structure of copepod was analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Water temperature, pH, nitrate nitrogen, nitrite nitrogen, TN, TP and dissolved oxygen were strongly correlated with the copepod community structure.

  17. Evapotranspiration rates and crop coefficients for a restored marsh in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Anderson, Frank E.; Snyder, Richard L.

    2008-01-01

    The surface renewal method was used to estimate evapotranspiration (ET) for a restored marsh on Twitchell Island in the Sacramento–San Joaquin Delta, California, USA. ET estimates for the marsh, together with reference ET measurements from a nearby climate station, were used to determine crop coefficients over a 3‐year period during the growing season. The mean ET rate for the study period was 6 mm day−1, which is high compared with other marshes with similar vegetation. High ET rates at the marsh may be due to the windy, semi‐arid Mediterranean climate of the region, and the permanently flooded nature of the marsh, which results in very low surface resistance of the vegetation. Crop coefficient (Kc) values for the marsh ranged from 0·73 to 1·18. The mean Kc value over the entire study period was 0·95. The daily Kc values for any given month varied from year to year, and the standard deviation of daily Kc values varied between months. Although several climate variables were undoubtedly responsible for this variation, our analysis revealed that wind direction and the temperature of standing water in the wetland were of particular importance in determining ET rates and Kc values. 

  18. Synergy of agroforestry and bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.; Clason, Terry R.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  19. Application of nanoelements in plant nutrition and its impact in ecosystems

    NASA Astrophysics Data System (ADS)

    Berenice Morales-Díaz, América; Ortega-Ortíz, Hortensia; Juárez-Maldonado, Antonio; Cadenas-Pliego, Gregorio; González-Morales, Susana; Benavides-Mendoza, Adalberto

    2017-03-01

    Agriculture stands to benefit from nanotechnology in areas such as combating pests and pathogens, regulating the growth and quality of crops, and developing intelligent materials and nanosensors. The objective of this paper is to provide an overview of the use of nanomaterials (NMs) and nanoparticles (NPs) in plant nutrition, highlighting their advantages and potential uses, but also reviewing their possible environmental destination and effects on ecosystems and consumers. NPs and NMs have been shown to be an attractive alternative for the manufacture of nanofertilizers (NFs), which are more effective and efficient than traditional fertilizers. Because of their impact on crop nutritional quality and stress tolerance in plants, the application of NFs is increasing. However, there are virtually no studies on the potential environmental impact of NPs and NMs when used in agriculture. These studies are necessary because NPs and NMs can be transferred to ecosystems by various pathways where they can cause toxicity to organisms, affecting the biodiversity and abundance of these ecosystems, and may ultimately even be transferred to consumers.

  20. Food for Thought: Crop Yields in the Columbia River Basin in an Altered Future

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Nelson, R.; Stockle, C.; Kruger, C.; Brady, M.; Adam, J. C.

    2013-12-01

    Growth of global population and food consumption in the next several decades is expected to result in a food security challenge. Strategies to address this challenge, such as enhancing agricultural productivity and resiliency, need to be considered within the context of a full range of plausible consequences so as to identify investments that create win-win-win scenarios for the environment, economy, and society. Regional earth systems models can provide the necessary scale-appropriate framework to inform the decision making context for adaptation strategies, especially in the context of global change. In an altered future, changes to climate, technology and socioeconomics affect regional agriculture both directly and indirectly. These effects are not independent and an integrated process-based model may better capture unanticipated non-linear and non-monotonic responses and feedbacks over time . BioEarth is a research initiative designed to explore the coupling of multiple stand-alone earth systems models to generate usable information for agricultural and natural resource decision making at the regional scale at decadal time-steps. This project focuses on the U.S. Pacific Northwest (PNW) region and is a framework that integrates atmospheric, terrestrial, aquatic, and economic models. We apply component models of BioEarth to the Columbia River basin in the PNW to study the direct and indirect impacts of climate change on regional irrigated and dryland crop yields for a variety of annual and perennial crops. Results indicate that the net effect of climate change on crop yields is dependent on the crop type. There is a negative effect of temperature on yields for most crops. Dryland winter wheat is a notable exception. With warming, although the available growing season increases, faster thermal accumulation results in a shorter time to maturity. Precipitation changes in the region have a positive impact on dryland agriculture. Carbon dioxide (CO2) fertilization has a positive impact on crop yields for most crops. This positive impact is minimal for corn which is a C4 crop that is already CO2 efficient. The net response is an increase in yields for dryland agriculture and depends on the crop type for irrigated agriculture. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not translate into an increased negative effect on yields. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops getting through growth stages earlier in the season with wetter spring conditions. The non linear and non monotonic nature of the response of climate change on crop yields is discussed. In accounting for biophysical effects of climate change on crop yields, socio-economic effects cannot be ignored because biophysical effects are nested with the framework of human decision making. We also discuss our results in the context of socioeconomic factors . Current results assume no adaptation strategies and incorporating this is our next step.

  1. Influence of future cropland expansion on regional and global tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models. It was found that the effect of transplanting these isoprene schemes into the base CheT chemistry scheme lead, in both cases, to higher ozone over isoprene rich regions by up to ~40 ppb. Furthermore, upon repeating the land use change experiment with these other isoprene schemes, it was found that the AQUM scheme produced more ozone (up to ~20 ppb more) in isoprene rich regions due to crop expansion than CheT. However the CESM Superfast scheme showed the opposite effect, producing less ozone than the CheT scheme in isoprene-rich regions. These varied responses highlight the sensitivity of future trends in surface ozone to isoprene chemistry within the range of some currently used chemical schemes, and suggest that further research is needed in order to most effectively parameterise this complex chemistry.

  2. Ethylene Production by Plants in a Closed Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    1996-01-01

    Ethylene production by 20-sq m stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml/sq m/day during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 ml/g fresh weight/h. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  3. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a fifteen year record of monitoring and operational data are presented that can be used by others in managing irrigation of saline water to poplar trees. When salinity is carefully managed, tree systems can help to provide sustainable leachate management solutions for landfills.

  4. Stem demography and postfire recruitment of a resprouting serotinous conifer

    USGS Publications Warehouse

    Keeley, Jon E.; Keeley, Melanie B.; Bond, William J.

    1999-01-01

    The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4–9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionallyWiddring-tonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fires, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in theCupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait inWiddringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,’but also are intense enough to incinerate cone-bearing stems.

  5. Stem demography and post-fire recruitment of a resprouting serotinous conifer

    USGS Publications Warehouse

    Keeley, J.E.; Keeley, M.B.; Bond, W.J.

    1999-01-01

    The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4 - 9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdringtonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fries, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,' but also are intense enough to incinerate cone-bearing stems.

  6. The effects on photosynthetic CO{sub 2} assimilation to long-term elevation of atmospheric CO{sub 2} concentration: An assessment of the response of Trifolium Repens L. cv. Blanca grown at F.A.C.E.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C.E.

    1994-11-01

    Understanding how photosynthetic capacity acclimates to elevated CO{sub 2} concentrations is vital in predicting the response of important grassland species such as Trifolium repens. Previous studies of acclimatization have been carried out in artificial experimental conditions, such as acrylic greenhouses or controlled environment chambers. The advent of FACE technology has enabled a large area of crop to be fumigated in the field, providing more realistic growing conditions. Pure stands of Trifolium repens L. cv. Blanca grown at either 355 or 600{mu}mol mol{sup -1} CO{sub 2} were examined, and their photosynthetic response to elevated Ca determined via gas exchange studies. Ratesmore » of photosynthesis of young, fully expanded leaves were increased between 21 and 36% when grown and measured at elevated CO{sub 2}. This increase in A corresponded to a decrease in g{sub S} of between 18 and 52%. No acclimation effect was observed in the most frequently cut stands, whilst the response of stands clipped only 4 times per year was more variable. When down regulation of V{sub cmax} did occur, this was not nearly as marked as that which occurred in 3 other temperate species (Chrysanthemum leucanthemum, Ranunculus friesianus, Plantago lanceolata (L.) J. & C. Presl.), at similar growth regimes. No acclimation of stomatal frequency, SI or pore length was found to occur in the enriched clover stands.« less

  7. Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia.

    PubMed

    Johansson, Therese; Gibb, Heloise

    2012-01-01

    Forest management alters species behaviours, distributions and interactions. To evaluate forestry effects on ant foraging performance, we compared the quality and quantity of honeydew harvested by ants among clear-cuts, middle-aged and mature spruce-dominated stands in boreal forests in Sweden. Honeydew quality was examined using honeydew collected by squeezing the gasters of laden Formica aquilonia workers. We used fifteen laden individuals at each study site (four replicates of each stand age) and analysed honeydew chemical composition with gas chromatography-mass spectroscopy. To compare the quantity of honeydew collected by individual ants, we collected and weighed five ants moving up and five ants moving down each of ten trees at the twelve sites (totally 1200 ants). The concentration of trehalose in honeydew was lower in clear-cuts compared with middle aged and mature stands, and similar trends were shown for sucrose, raffinose and melezitose, indicating poorer honeydew quality on clear cuts. Concentrations of the amino acid serine were higher on clear-cuts. The same trend occurred for glutamine, suggesting that increased N-uptake by the trees after clear cutting is reflected in the honeydew of aphids. Ants in mature stands had larger heads and carried proportionally more honeydew and may therefore be more efficient foragers. Human alternation of habitats through clear-cutting thus affects food quality and worker condition in F. aquilonia. This is the first study to show that honeydew quality is affected by anthropogenic disturbances, likely contributing to the reduction in size and abundance of F. aquilonia workers and mounds after clear cutting.

  8. A Numerical Estimate of The Impact of The Saharan Dust On Medityerranean Trophic Web

    NASA Astrophysics Data System (ADS)

    Crise, A.; Crispi, G.

    A first estimate of the importance of Saharan dust as input of macronutrients on the phytoplankton standing crop concentration and primary production at basin scale is here presented using a three-dimensional numerical model of the Mediterranean Sea. The numerical scheme adopted is a 1/4 degree resolution 31 levels MOM-based eco- hydrodynamical model with climatological ('perpetual year') forcings coupled on-line with a structure including multi-nutrient, size-fractionated phytoplankton functional groups, herbivores and a parametrized recycling detritus submodel, so to (explicitely or implicitely) include the major energy pathways of the upper layer mediterranean ecosystem. This model takes into account as potential limiting factors, among others, Nitrogen (in its oxidized and reduced forms) and Phosphorus. A gridded data setof (wet and dry) dust deposition over Mediterranean derived from SKIRON operational model is used to identify statistically the areas and the duration/intensity of the events. Starting from this averaging process, experiments are carried out to study the dust induced episodes of release of bioavailable phosphorus which is supposed to be the limiting factor in the oligotrophic waters of the surface layer in Med Sea. The metrics for the evaluation of the impact of deposition have been identified in phyto standing crop, primary and export production and switching in the food web functioning. These global parameters, even if cannot exaust the whealth of the informations provided by the model, can help discriminate the sensitivity of food web to the nutrient pulses induced by the deposition. First results of a scenario analysis of typical atmospheric input events, provide evidence of the response of the upper layer ecosystem to assess the sensitivity of the model predictions to the variability to integrated intensity of external input.

  9. Response of periphyton fatty acid composition to supplemental flows in the upper Esopus Creek, Catskill Mountains, New York

    USGS Publications Warehouse

    George, Scott D.; Ernst, Anne G.; Baldigo, Barry P.; Honeyfield, Dale C.

    2016-01-07

    Fatty acid analysis of periphyton is an emerging tool for assessing the condition of a stream ecosystem on the basis of its water quality. The study presented in this report was designed to test the hypothesis that periphyton communities have a fatty acid profile that can detect excessive turbidity and suspended sediment. The fatty acid composition of periphyton was assessed during two seasons upstream and downstream from an underground aqueduct that provides supplemental flows, which are a potential source of turbidity and suspended sediment on the upper Esopus Creek, New York. These data were compared with measurements of periphyton standing crop, diatom community structure and integrity, and basic water-quality parameters. Periphyton standing crop and diatom community integrity indicated little evidence of impairment from the supplemental flows. The relative abundances of two physiologically important fatty acids, γ-linolenic acid (18:3ω6) and eicosapentaenoic acid (20:5ω3), were significantly lower downstream from the supplemental flows and multivariate analyses of fatty acid profiles identified significant differences between sites upstream and downstream from the supplemental flows. Individual fatty acids and summary metrics, however, were not significantly correlated with turbidity or suspended sediment. Together, these results indicate that the supplemental flows may cause some measurable effects but they do not constitute a major disturbance to the periphyton community on the upper Esopus Creek. Fatty acid analysis may have potential as a tool for monitoring changes in periphyton nutritional composition that may reflect water quality and ecosystem health but needs to be further evaluated around a more definitive source of water-quality impairment.

  10. Bird pollination of Canary Island endemic plants

    NASA Astrophysics Data System (ADS)

    Ollerton, Jeff; Cranmer, Louise; Stelzer, Ralph J.; Sullivan, Steve; Chittka, Lars

    2009-02-01

    The Canary Islands are home to a guild of endemic, threatened bird-pollinated plants. Previous work has suggested that these plants evolved floral traits as adaptations to pollination by flower specialist sunbirds, but subsequently, they appear to have co-opted generalist passerine birds as sub-optimal pollinators. To test this idea, we carried out a quantitative study of the pollination biology of three of the bird-pollinated plants, Canarina canariensis (Campanulaceae), Isoplexis canariensis (Veronicaceae) and Lotus berthelotii (Fabaceae), on the island of Tenerife. Using colour vision models, we predicted the detectability of flowers to bird and bee pollinators. We measured pollinator visitation rates, nectar standing crops as well as seed-set and pollen removal and deposition. These data showed that the plants are effectively pollinated by non-flower specialist passerine birds that only occasionally visit flowers. The large nectar standing crops and extended flower longevities (>10 days) of Canarina and Isoplexis suggests that they have evolved a bird pollination system that effectively exploits these low frequency non-specialist pollen vectors and is in no way sub-optimal. Seed set in two of the three species was high and was significantly reduced or zero in flowers where pollinator access was restricted. In L. berthelotii, however, no fruit set was observed, probably because the plants were self-incompatible horticultural clones of a single genet. We also show that, while all three species are easily detectable for birds, the orange Canarina and the red Lotus (but less so the yellow-orange Isoplexis) should be difficult to detect for insect pollinators without specialised red receptors, such as bumblebees. Contrary to expectations if we accept that the flowers are primarily adapted to sunbird pollination, the chiffchaff ( Phylloscopus canariensis) was an effective pollinator of these species.

  11. NASA's Contributions to Controlled Environment Agriculture

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2016-01-01

    It may come as a surprise, but NASA has been a long-standing sponsor of controlled environment agriculture (CEA) research. This is based on the potential for using plants (crops) for life support systems in space. Through photosynthesis, crops could produce food and oxygen for humans, while removing CO2. In addition, plant transpiration could help purify waste water. NASAs interest in bioregenerative life support dates back to the late 1950s. At that time, much of the testing focused on algae, but over the years moved toward higher plants as CEA techniques improved. Throughout the 1980s and 90s, extensive testing was carried out at different universities to gather horticultural data for a range of crops, including wheat, soybean, lettuce, potato, sweet potato, cowpea, rice and more. These studies examined different electric light sources, mineral nutrition, recirculating hydroponics, effects of CO2, temperature, photosynthetic photon flux (PPF), and photoperiod on the crops, and identified cultivars that would be useful for space. Findings from these studies were then used to conduct large scale (20 sq m), closed atmosphere tests at Kennedy Space Center, and later at NASA Johnson Space Center, where plant growth chambers were linked to human habitats. Results showed that with high light input and careful horticultural management, about 20-25 sq m of crops under continuous cultivation could produce the O2 for one person, and about 40-50 sq m could produce enough dietary calories. The ability to sustain these production levels and accurately assess system costs and failures needs further study. In all likelihood, the use of plants for life support will evolve, where for early missions like the International Space Station, crops will be grown in small chambers to provide supplemental fresh foods. As mission durations and distances increase, the systems could expand to assume more of the life support burden. But the constraints of space travel require that these approaches be efficient in terms of mass, volume, and energy, which are similar to challenges facing terrestrial CEA, such as vertical agriculture systems.

  12. Improving the use of crop models for risk assessment and climate change adaptation.

    PubMed

    Challinor, Andrew J; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin

    2018-01-01

    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1.Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk?2.Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output.3.Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.

  13. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation

    NASA Astrophysics Data System (ADS)

    Poulet, L.; Massa, G. D.; Morrow, R. C.; Bourget, C. M.; Wheeler, R. M.; Mitchell, C. A.

    2014-07-01

    Bioregenerative life-support systems involving photoautotrophic organisms will be necessary to sustain long-duration crewed missions at distant space destinations. Since sufficient sunlight will not always be available for plant growth at many space destinations, efficient electric-lighting solutions are greatly needed. The present study demonstrated that targeted plant lighting with light-emitting diodes (LEDs) and optimizing spectral parameters for close-canopy overhead LED lighting allowed the model crop leaf lettuce (Lactuca sativa L. cv. 'Waldmann's Green') to be grown using significantly less electrical energy than using traditional electric-lighting sources. Lettuce stands were grown hydroponically in a growth chamber controlling temperature, relative humidity, and CO2 level. Several red:blue ratios were tested for growth rate during the lag phase of lettuce growth. In addition, start of the exponential growth phase was evaluated. Following establishment of a 95% red + 5% blue spectral balance giving the best growth response, the energy efficiency of a targeted lighting system was compared with that of two total coverage (untargeted) LED lighting systems throughout a crop-production cycle, one using the same proportion of red and blue LEDs and the other using white LEDs. At the end of each cropping cycle, whole-plant fresh and dry mass and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed for crop lighting. Lettuce crops grown with targeted red + blue LED lighting used 50% less energy per unit dry biomass accumulated, and the total coverage white LEDs used 32% less energy per unit dry biomass accumulated than did the total coverage red + blue LEDs. An energy-conversion efficiency of less than 1 kWh/g dry biomass is possible using targeted close-canopy LED lighting with spectral optimization. This project was supported by NASA grant NNX09AL99G.

  14. Innovations in LED lighting for reduced-ESM crop production in space

    NASA Astrophysics Data System (ADS)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission of lower leaves. One system modification has led to lightsicles of different lengths, allowing a wider array of intracanopy lighting configurations. Another development is an adaptive system in which each light engine can be operated independently, and photodiodes can detect reflectance patterns off of leaves from flashing green LEDs, thereby indicating positions of leaves within the foliar canopy relative to any given light engine on a lightsicle. When this advanced hardware is coupled to tailored software, the reflectance can be used to auto-detect changes in plant growth and adjust the lighting accordingly. These lighting systems have been tested with cowpea, pepper (Capsicum annuum L. cv. Triton) and Lettuce (Lactuca sativa L. cv. Waldmanns Green) with limited testing of other ALS candidate crop species. The versatility of these LED lighting systems will allow energy-efficient light delivery to a wide variety of crops with different growth habits, including planophile, erectophile, and rosette species. This research has been supported by NASA grants NAG5-12686 (NSCORT) and NNK05OA20C (SBIR Phase 1) and NNK06OM01C (SBIR Phase 2).

  15. Effect of land use change for bioenergy on greenhouse gas emissions from a wet marginal soil in New York State, USA.

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Mason, Cedric; Steenhuis, Tammo; Richards, Brian

    2013-04-01

    Millions of hectares of marginal lands in the Northeast USA no longer used for agriculture are suitable for production of second-generation cellulosic bioenergy crops, offering the potential for regional bioenergy production without inducing food vs. fuel competition for prime farmland. Abundant water resources, close proximity between production and markets, and compatibility with existing agricultural systems all favor development in the region. Yet, little is known about how sustainable bioenergy crop production on marginal lands is regarding greenhouse gas emissions. In a 10-ha field trial on wet marginal soils in upstate New York, we are assessing the effect of land use change (from fallow land to perennial grass stands) on N2O and CH4 emissions. The deep clay loam is unsuited for row-crop agriculture because it is too dry in summer and too wet in winter. Monthly chamber campaigns were performed from April to November 2012 to monitor large scale (10-20 m resolution) differences caused by land cover type (n=4 for both switchgrass, reed-canary grass and a 50-yr unplowed control) across soil moisture gradients (n=5 soil moisture levels per replicate). Additional weekly campaigns assessed the smaller scale spatial and temporal variability in emissions at meter-scale. Here we present results of both the large and small-scale patterns in greenhouse gas emissions from this marginal soil, and discuss effects of soil properties and hydrologic conditions as potential drivers. Insight gained about the environmental impact of bioenergy crops can be used to assess the sustainability of using this region's underutilized land base for energy production.

  16. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests.

    PubMed

    Sohn, Julia A; Hartig, Florian; Kohler, Martin; Huss, Jürgen; Bauhus, Jürgen

    2016-10-01

    Droughts and their negative effects on forest ecosystems are projected to increase under climate change for many regions. It has been suggested that intensive thinning could reduce drought impacts on established forests in the short-term. Most previous studies on the effect of thinning on drought impacts, however, have been confined to single forest sites. It is therefore still unclear how general and persisting the benefits of thinning are. This study assesses the potential of thinning to increase drought tolerance of the wide spread Scots pine (Pinus sylvestris) in Central Europe. We hypothesized (1) that increasing thinning intensity benefits the maintenance of radial growth of crop trees during drought (resistance) and its recovery following drought, (2) that those benefits to growth decrease with time elapsed since the last thinning and with stand age, and (3) that they may depend on drought severity as well as water limitations in pre- and post-drought periods. To test these hypotheses, we assessed the effects of thinning regime, stand age, and drought severity on radial growth of 129 Scots pine trees during and after drought events in four long-term thinning experiments in Germany. We found that thinning improved the recovery of radial growth following drought and to a lesser extent the growth resistance during a drought event. Growth recovery following drought was highest after the first thinning intervention and in recently and heavily thinned stands. With time since the last thinning, however, this effect decreased and could even become negative when compared to unthinned stands. Further, thinning helped to avoid an age-related decline in growth resistance (and recovery) following drought. The recovery following drought, but not the resistance during drought, was related to water limitations in the drought period. This is the first study that analyzed drought-related radial growth in trees of one species across several stands of different age. The interaction between thinning intensity and time since the last thinning underline the importance to distinguish between short- and long-term effects of thinning. According to our analysis, only thinning regimes, with relatively heavy and frequent thinning interventions would increase drought tolerance in pine stands. © 2016 by the Ecological Society of America.

  17. Persistence and degradation of the herbicide hexazinone in soils of lowbush blueberry fields in Nova Scotia, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, K.I.N.; Kimball, E.R.

    1987-02-01

    Hexazinone is a broad spectrum herbicide used primarily in forestry, industrial and right-of-way weed control. Hexazinone is very water soluble. It readily leaches in soils and, depending on rainfall and slope, can be transported laterally following surface applications. Eight metabolites were extracted from UC-hexazinone treated soils and metabolite C was the major metabolite at each location. Hexazinone is degraded primarily by microorganisms in the soil with little degradation occurring under sterile or anaerobic conditions. The native lowbush blueberry (Vaccinium angustifolium) is tolerant to hexazinone at rates that give selective control of many weedy species associated with this crop. This blueberrymore » is an important fruit crop of Maine and the Eastern Canadian provinces where commercial fields have been developed by management of wild stands originating from forests or abandoned farmland. Hexazinone is now widely used in all blueberry producing areas with thousands of hectares treated annually. The following study examines the fate of this UC-labelled herbicide in several typical soil types in the field and under laboratory conditions.« less

  18. Ustilago maydis populations tracked maize through domestication and cultivation in the Americas

    PubMed Central

    Munkacsi, Andrew B; Stoxen, Sam; May, Georgiana

    2008-01-01

    The domestication of crops and the development of agricultural societies not only brought about major changes in human interactions with the environment but also in plants' interactions with the diseases that challenge them. We evaluated the impact of the domestication of maize from teosinte and the widespread cultivation of maize on the historical demography of Ustilago maydis, a fungal pathogen of maize. To determine the evolutionary response of the pathogen's populations, we obtained multilocus genotypes for 1088 U. maydis diploid individuals from two teosinte subspecies in Mexico and from maize in Mexico and throughout the Americas. Results identified five major U. maydis populations: two in Mexico; two in South America; and one in the United States. The two populations in Mexico diverged from the other populations at times comparable to those for the domestication of maize at 6000–10 000 years before present. Maize domestication and agriculture enforced sweeping changes in U. maydis populations such that the standing variation in extant pathogen populations reflects evolution only since the time of the crop's domestication. PMID:18252671

  19. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  20. Communication and implementation of change in crop protection.

    PubMed

    Escalada, M M; Heong, K L

    1993-01-01

    The slow adoption of integrated pest management (IPM) has been attributed to the widespread gaps in farmers' knowledge of rational pest management. Other factors such as farmers' perception of high input use and promotion of pesticides also influence decisions to practise rational pest management. To bridge these gaps and improve farmers' pest management practices, most IPM implementation programmes rely on communication strategies. These communication approaches utilize either mass media or interpersonal channels or a combination. The choice of which communication approach to employ depends on project objectives and resources. Among extension and communication approaches used in crop protection, strategic extension campaigns, farmer field schools and farmer participatory research stand out in their ability to bring about significant changes in farmers' pest management practices. While extension campaigns have greater reach, farmer participation and experiential learning achieve more impact because learning effects are sustained. Communication media are important in raising awareness and creating a demand for IPM information but interpersonal channels and group methods such as the farmer field school and farmer participatory research are essential to accomplish the tasks of discovery and experiential learning of IPM skills.

  1. Plant stress analysis technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebadian, M.A.

    1998-01-01

    Monitoring vegetation is an active area of laser-induced fluorescence imaging (LIFI) research. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) is assisting in the transfer of the LIFI technology to the agricultural private sector through a market survey. The market survey will help identify the key eco-agricultural issues of the nations that could benefit from the use of sensor technologies developed by the Office of Science and Technology (OST). The principal region of interest is the Western Hemisphere, particularly, the rapidly growing countries of Latin America and the Caribbean. The analysis of needs will assure thatmore » the focus of present and future research will center on economically important issues facing both hemispheres. The application of the technology will be useful to the agriculture industry for airborne crop analysis as well as in the detection and characterization of contaminated sites by monitoring vegetation. LIFI airborne and close-proximity systems will be evaluated as stand-alone technologies and additions to existing sensor technologies that have been used to monitor crops in the field and in storage.« less

  2. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    PubMed

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  3. On contemporary sedimentation at the titanic survey area

    NASA Astrophysics Data System (ADS)

    Lukashin, V. N.

    2009-12-01

    The basic parameters of the sedimentation environment are considered: the Western Boundary Deep Current that transports sedimentary material and distributes it on the survey area; the nepheloid layer, its features, and the distribution of the concentrations and particulate standing crop in it; the distribution of the horizontal and vertical fluxes of the sedimentary material; and the bottom sediments and their absolute masses. The comparison of the vertical fluxes of the particulate matter and the absolute masses of the sediments showed that the contemporary fluxes of sedimentary material to the bottom provided the distribution of the absolute masses of the sediments in the survey area during the Holocene.

  4. BOREAS TF-11 Biomass Data over the SSA-Fen

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)

    2000-01-01

    The BOREAS TF-11 team collected several data sets in its efforts to fully describe the flux and site characteristics at the SSA-Fen site. This data set contains plant cover, standing crop of plant biomass, and estimated net primary productivity at each chamber site at the end of the 1994 field season. The measurements were conducted as part of a 2 x 2 factorial experiment in which we added carbon (300 g/sq m as wheat straw) and nitrogen (6 g/sq m as urea) to four replicate locations in the vicinity of the TF-11 tower. The data are stored in tabular ASCII files.

  5. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong -Jin; Yoo, Chang Geun; Flanagan, Amy

    The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass (Panicum virgatum). Switchgrass is an outcrossing species with an allotetraploid genome (2n = 4x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock’s recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process.

  6. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release

    DOE PAGES

    Park, Jong -Jin; Yoo, Chang Geun; Flanagan, Amy; ...

    2017-11-30

    The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass (Panicum virgatum). Switchgrass is an outcrossing species with an allotetraploid genome (2n = 4x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock’s recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process.

  7. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.

    PubMed

    Oikawa, Shimpei; Ainsworth, Elizabeth A

    2016-08-01

    Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37-116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Understory biomass from southern pine forests as a fuel source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, T.T.; Baker, J.B.

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2more » ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.« less

  9. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    PubMed

    Chávez, Roberto O; Clevers, Jan G P W; Verbesselt, Jan; Naulin, Paulette I; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi) and between winter and summer (ΔNDVI W-S). In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  10. Detecting Leaf Pulvinar Movements on NDVI Time Series of Desert Trees: A New Approach for Water Stress Detection

    PubMed Central

    Chávez, Roberto O.; Clevers, Jan G. P. W.; Verbesselt, Jan; Naulin, Paulette I.; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf ‘solar tracking’ occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVImo-mi) and between winter and summer (ΔNDVIW-S). In this paper, we showed that the ΔNDVImo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVIW-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVImo-mi and ΔNDVIW-S. For an 11-year time series without rainfall events, Landsat ΔNDVIW-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVImo-mi and ΔNDVIW-S have potential to detect early water stress of paraheliotropic vegetation. PMID:25188305

  11. Plant characterization of genetically modified maize hybrids MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6: alternatives for maize production in Mexico.

    PubMed

    Heredia Díaz, Oscar; Aldaba Meza, José Luis; Baltazar, Baltazar M; Bojórquez Bojórquez, Germán; Castro Espinoza, Luciano; Corrales Madrid, José Luis; de la Fuente Martínez, Juan Manuel; Durán Pompa, Héctor Abel; Alonso Escobedo, José; Espinoza Banda, Armando; Garzón Tiznado, José Antonio; González García, Juvencio; Guzmán Rodríguez, José Luis; Madueño Martínez, Jesús Ignacio; Martínez Carrillo, José Luis; Meng, Chen; Quiñones Pando, Francisco Javier; Rosales Robles, Enrique; Ruiz Hernández, Ignacio; Treviño Ramírez, José Elías; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2017-02-01

    Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009-2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.

  12. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.

    PubMed

    Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  13. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    NASA Astrophysics Data System (ADS)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  14. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    NASA Astrophysics Data System (ADS)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea and flax. Results of this research demonstrate that—under the right environmental conditions—there is considerable potential for both direct and indirect N2O emissions during crop residue decomposition. Moreover, emission factors for the various crop residues tended to increase in the order: wheat ≤ urea < pea < flax << canola.

  15. Future Irrigation Requirement of Rice Under Irrigated Area - Uncertainty through GCMs and Crop Models : A Case Study of Indo-Gangetic Plains of India

    NASA Astrophysics Data System (ADS)

    Pillai, S. N.; Singh, H.; Ruane, A. C.; Boote, K. G.; Porter, C.; Rosenzweig, C.; Panwar, A. S.

    2017-12-01

    Indo-Gangetic Plains (IGP), the food basket of South Asia, characterised by predominantly cereal-based farming systems where livestock is an integral part of farm economy. Climate change is projected to have significant effects on agriculture production and hence on food and livelihood security because more than 90 per cent farmers fall under small and marginal category. The rising temperatures and uncertainties in rainfall associated with global warming may have serious direct and indirect impacts on crop production. A loss of 10-40% crop production is predicted in different crops in India by the end of this century by different researchers. Cereal crops (mainly rice and wheat) are crucial to ensuring the food security in the region, but sustaining their productivity has become a major challenge due to climate variability and uncertainty. Under AgMIP Project, we have analysed the climate change impact on farm level productivity of rice at Meerut District, Uttar Pradesh using 29 GCMs under RCP4.5 and RCP8.5 during mid-century period 2041-2070. Two crop simulation models DSSAT4.6 and APSIM7.7 were used for impact study. There is lot of uncertainty in yield level by different GCMs and crop models. Under RCP4.5, APSIM showed a declining yield up to 14.5 % while DSSAT showed a declining yield level of 6.5 % only compared to the baseline (1980-2010). However, out of 29 GCMs, 15 GCMs showed negative impact and 14 showed positive impact under APSIM while it showed 21 and 8 GCMs, respectively in the case of DSSAT. DSSAT and APSIM simulated irrigation water requirement in future of the order of 645±75 mm and 730±107 mm, respectively under RCP4.5. However, the same will be of the order of 626 ± 99 mm and 749 ± 147 mm, respectively under RCP8.5. Projected irrigation water productivity showed a range of 4.87-12.15 kg ha-1 mm-1 and 6.77-12.63 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP4.5, which stands an average of 7.81 and 8.53 kg ha-1 mm-1 during the baseline period. It reduced to 4.22-10.64 and 6.37-12.56 kg ha-1 mm-1 through APSIM and DSSAT, respectively under RCP8.5. This showed the uncertainty of GCMs as well as the Crop models for future projection. A multi-model approach with optimistic and pessimistic projections should be used for scenario analysis and policy planning in future rather than single model projections.

  16. Radon as a tracer of biogenic gas equilibration and transport from methane-saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Chanton, Jeffrey P.

    1989-01-01

    Data on Rn-222 activity in methane-rich gas bubbles from anoxic coastal sediments of Cape Lookout Bight, North Carolina, were used to determine gas equilibration with pore waters and the rates of ebullitive stripping and transport of gases to overlying waters and the atmosphere. Results showed that, during summer months, the bubble ebullition process strips and transports 1.9-4.8 percent/day of the standing crop of radon (and, by inference, other gases equilibrated with gas bubbles) in surface sediments of Cape Lookout Bight to the troposphere. Thus, the ebullitive mode of gas transport represents an effective mechanism for delivering reduced biogenic gases directly to the atmosphere.

  17. Chilli Anthracnose: The Epidemiology and Management.

    PubMed

    Saxena, Amrita; Raghuwanshi, Richa; Gupta, Vijai Kumar; Singh, Harikesh B

    2016-01-01

    Indian cuisine is renowned and celebrated throughout the world for its spicy treat to the tongue. The flavor and aroma of the food generated due to the use of spices creates an indelible experience. Among the commonly utilized spices to stimulate the taste buds in Indian food, whole or powdered chilli constitutes an inevitable position. Besides being a vital ingredient of of Indian food, chilli occupy an important position as an economic commodity, a major share in Indian economy. Chilli also has uncountable benefits to human health. Fresh green chilli fruits contain more Vitamin C than found in citrus fruits, while red chilli fruits have more Vitamin A content than as found in carrots. The active component of the spice, Capsaicin possesses the antioxidant, anti-mutagenic, anti-carcinogenic and immunosuppressive activities having ability to inhibit bacterial growth and platelet aggregation. Though introduced by the Portuguese in the Seventeenth century, India has been one of the major producers and exporters of this crop. During 2010-2011, India was the leading exporter and producer of chilli in the world, but recently due to a decline in chilli production, it stands at third position in terms of its production. The decline in chilli production has been attributed to the diseases linked with crop like anthracnose or fruit rot causing the major share of crop loss. The disease causes severe damage to both mature fruits in the field as well as during their storage under favorable conditions, which amplifies the loss in yield and overall production of the crop. This review gives an account of the loss in production and yield procured in chili cultivation due to anthracnose disease in Indian sub-continent, with emphasis given to the sustainable management strategies against the conventionally recommended control for the disease. Also, the review highlights the various pathogenic species of Colletotrichum spp, the causal agent of the disease, associated with the host crop in the country. The information in the review will prove of immense importance for the groups targeting the problem, for giving a collective information on various aspects of the epidemiology and management of the disease.

  18. Chilli Anthracnose: The Epidemiology and Management

    PubMed Central

    Saxena, Amrita; Raghuwanshi, Richa; Gupta, Vijai Kumar; Singh, Harikesh B.

    2016-01-01

    Indian cuisine is renowned and celebrated throughout the world for its spicy treat to the tongue. The flavor and aroma of the food generated due to the use of spices creates an indelible experience. Among the commonly utilized spices to stimulate the taste buds in Indian food, whole or powdered chilli constitutes an inevitable position. Besides being a vital ingredient of of Indian food, chilli occupy an important position as an economic commodity, a major share in Indian economy. Chilli also has uncountable benefits to human health. Fresh green chilli fruits contain more Vitamin C than found in citrus fruits, while red chilli fruits have more Vitamin A content than as found in carrots. The active component of the spice, Capsaicin possesses the antioxidant, anti-mutagenic, anti-carcinogenic and immunosuppressive activities having ability to inhibit bacterial growth and platelet aggregation. Though introduced by the Portuguese in the Seventeenth century, India has been one of the major producers and exporters of this crop. During 2010–2011, India was the leading exporter and producer of chilli in the world, but recently due to a decline in chilli production, it stands at third position in terms of its production. The decline in chilli production has been attributed to the diseases linked with crop like anthracnose or fruit rot causing the major share of crop loss. The disease causes severe damage to both mature fruits in the field as well as during their storage under favorable conditions, which amplifies the loss in yield and overall production of the crop. This review gives an account of the loss in production and yield procured in chili cultivation due to anthracnose disease in Indian sub-continent, with emphasis given to the sustainable management strategies against the conventionally recommended control for the disease. Also, the review highlights the various pathogenic species of Colletotrichum spp, the causal agent of the disease, associated with the host crop in the country. The information in the review will prove of immense importance for the groups targeting the problem, for giving a collective information on various aspects of the epidemiology and management of the disease. PMID:27746765

  19. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.

    PubMed

    Lopes, Thomas; Hatt, Séverin; Xu, Qinxuan; Chen, Julian; Liu, Yong; Francis, Frédéric

    2016-12-01

    Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Weed vegetation ecology of arable land in Salalah, Southern Oman.

    PubMed

    El-Sheikh, Mohamed A

    2013-07-01

    This paper applies multivariate statistical methods to a data set of weed relevés from arable fields in two different habitat types of coastal and mountainous escarpments in Southern Oman. The objectives were to test the effect of environmental gradients, crop plants and time on weed species composition, to rank the importance of these particular factors, and to describe the patterns of species composition and diversity associated with these factors. Through the application of TWINSPAN, DCA and CCA programs on data relating to 102 species recorded in 28 plots and farms distributed in the study area, six plant communities were identified: I- Dichanthium micranthum, II- Cynodon dactylon-D. micranthum, III- Convolvulus arvensis, IV- C. dactylon-Sonchus oleraceus, V- Amaranthus viridis and VI- Suaeda aegyptiaca-Achyranthes aspera. The ordination process (CCA) provided a sequence of plant communities and species diversity that correlated with some anthropogenic factors, physiographic variables and crop types. Therefore, length of time since farm construction, disturbance levels and altitude are the most important factors related to the occurrence of the species. The perennial species correlated with the more degraded mountain areas of new farm stands, whereas most of the annuals correlated with old lowland and less disturbed farms.

  1. Weed vegetation ecology of arable land in Salalah, Southern Oman

    PubMed Central

    El-Sheikh, Mohamed A.

    2013-01-01

    This paper applies multivariate statistical methods to a data set of weed relevés from arable fields in two different habitat types of coastal and mountainous escarpments in Southern Oman. The objectives were to test the effect of environmental gradients, crop plants and time on weed species composition, to rank the importance of these particular factors, and to describe the patterns of species composition and diversity associated with these factors. Through the application of TWINSPAN, DCA and CCA programs on data relating to 102 species recorded in 28 plots and farms distributed in the study area, six plant communities were identified: I- Dichanthium micranthum, II- Cynodon dactylon–D. micranthum, III- Convolvulus arvensis, IV- C. dactylon–Sonchus oleraceus, V- Amaranthus viridis and VI- Suaeda aegyptiaca–Achyranthes aspera. The ordination process (CCA) provided a sequence of plant communities and species diversity that correlated with some anthropogenic factors, physiographic variables and crop types. Therefore, length of time since farm construction, disturbance levels and altitude are the most important factors related to the occurrence of the species. The perennial species correlated with the more degraded mountain areas of new farm stands, whereas most of the annuals correlated with old lowland and less disturbed farms. PMID:23961246

  2. Emission reduction by multipurpose buffer strips on arable fields.

    PubMed

    Sloots, K; van der Vlies, A W

    2007-01-01

    In the area managed by Hollandse Delta, agriculture is under great pressure and the social awareness of the agricultural sector is increasing steadily. In recent years, a stand-still has been observed in water quality, in terms of agrochemicals, and concentrations even exceed the standard. To improve the waterquality a multi-purpose Field Margin Regulation was drafted for the Hoeksche Waard island in 2005. The regulation prescribes a crop-free strip, 3.5 m wide, alongside wet drainage ditches. The strip must be sown with mixtures of grasses, flowers or herbs. No crop protection chemicals or fertilizer may be used on the strips. A total length of approximately 200 km of buffer strip has now been laid. Besides reducing emissions, the buffer strips also stimulate natural pest control methods and encourage local tourism. Finally, the strips should lead to an improvement in the farmers' image. The regulation has proved to be successful. The buffer strips boosted both local tourism and the image of the agricultural sector. Above all, the strips provided a natural shield for emission to surface water, which will lead to an improvement of the water quality and raise the farmers' awareness of water quality and the environment.

  3. Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds.

    PubMed

    Zhila, Natalia; Murueva, Anastasiya; Shershneva, Anna; Shishatskaya, Ekaterina; Volova, Tatiana

    2017-10-03

    The present study reports the herbicidal activity of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB)/MET and P(3HB)/TBM]. The developed formulations were constructed as films and microgranules, which were tested against the weeds such as white sweet clover Melilotus albus and lamb's quarters Chenopodium album in the presence of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) as the subject crop for investigation. The activity was measured in laboratory scale experiments by determining the density and weight of the vegetative organs of weeds. The study was also aimed at testing the effect of the experimental formulation on the growth of wheat crop as dependent on the method of herbicide delivery. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations.

  4. Patch to landscape patterns in post fire recruitment of a serotinous conifer

    USGS Publications Warehouse

    Ne'eman, Gidi; Fotheringham, C.J.; Keeley, J.E.

    1999-01-01

    Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1-2 m2 but older patches had thinned to one tree every 3-15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks - facing both a potential 'immaturity risk' and a 'senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests - thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the 'permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.

  5. Late quaternary environmental changes in the upper Las Vegas valley, Nevada

    NASA Astrophysics Data System (ADS)

    Quade, Jay

    1986-11-01

    Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.

  6. Landscape prediction and mapping of game fish biomass, an ecosystem service of Michigan rivers

    USGS Publications Warehouse

    Esselman, Peter C.; Stevenson, R Jan; Lupi, Frank; Riseng, Catherine M.; Wiley, Michael J.

    2015-01-01

    The increased integration of ecosystem service concepts into natural resource management places renewed emphasis on prediction and mapping of fish biomass as a major provisioning service of rivers. The goals of this study were to predict and map patterns of fish biomass as a proxy for the availability of catchable fish for anglers in rivers and to identify the strongest landscape constraints on fish productivity. We examined hypotheses about fish responses to total phosphorus (TP), as TP is a growth-limiting nutrient known to cause increases (subsidy response) and/or decreases (stress response) in fish biomass depending on its concentration and the species being considered. Boosted regression trees were used to define nonlinear functions that predicted the standing crops of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, Smallmouth Bass Micropterus dolomieu, panfishes (seven centrarchid species), and Walleye Sander vitreus by using landscape and modeled local-scale predictors. Fitted models were highly significant and explained 22–56% of the variation in validation data sets. Nonlinear and threshold responses were apparent for numerous predictors, including TP concentration, which had significant effects on all except the Walleye fishery. Brook Trout and Smallmouth Bass exhibited both subsidy and stress responses, panfish biomass exhibited a subsidy response only, and Brown Trout exhibited a stress response. Maps of reach-specific standing crop predictions showed patterns of predicted fish biomass that corresponded to spatial patterns in catchment area, water temperature, land cover, and nutrient availability. Maps illustrated predictions of higher trout biomass in coldwater streams draining glacial till in northern Michigan, higher Smallmouth Bass and panfish biomasses in warmwater systems of southern Michigan, and high Walleye biomass in large main-stem rivers throughout the state. Our results allow fisheries managers to examine the biomass potential of streams, describe geographic patterns of fisheries, explore possible nutrient management targets, and identify habitats that are candidates for species management.

  7. Contrasted nitrogen utilization in annual C 3 grass and legume crops: Physiological explorations and ecological considerations

    NASA Astrophysics Data System (ADS)

    Del Pozo, Alejandro; Garnier, Eric; Aronson, James

    2000-01-01

    Although it is well known that legumes have unusually high levels of nitrogen in both reproductive and vegetative organs, the physiological implications of this pattern have been poorly assessed. We conducted a literature survey and used data from two (unpublished) experiments on annual legumes and C 3 grasses in order to test whether these high nitrogen concentrations in legumes are correlated to high rates of carbon gain. Three different temporal/spatial scales were considered: full growing season/stand, days to month/whole plant and seconds/leaf. At the stand level, and for plants grown under both extratropical and tropical settings, biomass per unit organic-nitrogen was lower in legume than in grass crops. At a shorter time scale, the relative growth rate per unit plant nitrogen (`nitrogen productivity') was lower in faba bean ( Vicia faba var. minor cv. Tina) than in wheat ( Triticum aestivum cv. Alexandria), and this was confirmed in a comparison of two wild, circum-Mediterranean annuals - Medicago minima, a legume, and Bromus madritensis, a grass. Finally, at the leaf level, a synthesis of published data comparing soybean ( Glycine max) and rice ( Oryza sativa) on the one hand, and our own data on faba bean and wheat on the other hand, demonstrates that the photosynthetic rate per unit leaf nitrogen (the photosynthetic nitrogen use efficiency) is consistently lower in legumes than in grasses. These results demonstrate that, regardless of the scale considered and although the organic-nitrogen concentration in vegetative organs of legumes is higher than in grasses, this does not lead to higher rates of carbon gain in the former. Various physiological factors affecting the efficiency of nitrogen utilization at the three time scales considered are discussed. The suggestion is made that the ecological significance of the high nitrogen concentration in legumes may be related to a high nitrogen demand for high quality seed production at a time when nitrogen fixation is shut off rather than to a high production potential.

  8. Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest

    NASA Astrophysics Data System (ADS)

    Tanner, Edmund Vincent John; Sheldrake, Merlin W. A.; Turner, Benjamin L.

    2016-11-01

    Increasing atmospheric CO2 and temperature may increase forest productivity, including litterfall, but the consequences for soil organic matter remain poorly understood. To address this, we measured soil carbon and nutrient concentrations at nine depths to 2 m after 6 years of continuous litter removal and litter addition in a semi-evergreen rain forest in Panama. Soils in litter addition plots, compared to litter removal plots, had higher pH and contained greater concentrations of KCl-extractable nitrate (both to 30 cm); Mehlich-III extractable phosphorus and total carbon (both to 20 cm); total nitrogen (to 15 cm); Mehlich-III calcium (to 10 cm); and Mehlich-III magnesium and lower bulk density (both to 5 cm). In contrast, litter manipulation did not affect ammonium, manganese, potassium or zinc, and soils deeper than 30 cm did not differ for any nutrient. Comparison with previous analyses in the experiment indicates that the effect of litter manipulation on nutrient concentrations and the depth to which the effects are significant are increasing with time. To allow for changes in bulk density in calculation of changes in carbon stocks, we standardized total carbon and nitrogen on the basis of a constant mineral mass. For 200 kg m-2 of mineral soil (approximately the upper 20 cm of the profile) about 0.5 kg C m-2 was "missing" from the litter removal plots, with a similar amount accumulated in the litter addition plots. There was an additional 0.4 kg C m-2 extra in the litter standing crop of the litter addition plots compared to the control. This increase in carbon in surface soil and the litter standing crop can be interpreted as a potential partial mitigation of the effects of increasing CO2 concentrations in the atmosphere.

  9. A Comparison Between Late Summer 2012 and 2013 Water Masses, Macronutrients, and Phytoplankton Standing Crops in the Northern Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Danielson, S. L.; Eisner, L. B.; Ladd, C. A.; Mordy, C. W.; Sousa, L.; Weingartner, T.

    2016-02-01

    Survey data from the northern Bering and Chukchi sea continental shelves in August-September 2012 and 2013 reveal interannual differences in the spatial structure of water masses along with statistically significant differences in thermohaline and chemical properties and phytoplankton communities. We find that the near-bottom Bering-Chukchi Summer Water (BCSW) was more saline in 2012 and Alaskan Coastal Waters (ACW) were warmer in 2013. Both carried higher nutrient concentrations in 2012, supporting a larger chlorophyll a standing crop biomass that was comprised primarily of small (<10 μm) size class phytoplankton. The location of phytoplankton biomass concentrations and their size compositions reveal linkages between the wind fields, seafloor topography, water masses, and the pelagic production. The horizontal structure of the shelf water masses differed in part because of the August regional wind field, which was more energetic in 2012 but was more persistent in direction in 2013. ACW were found all along the coast from Nunivak Island to Point Barrow in 2012, but in response to the persistent wind of 2013 ACW was not found north of Ledyard Bay. Instead, the 2013 NE Chukchi shelf was flooded with cold and fresh waters derived from ice melt waters (MW) that resided above cold and salty Bering-Chukchi Winter Waters (BCWW). Similarly, in the northern Bering Sea, low-salinity coastal waters from western Alaska were driven offshore to a greater extent in 2013, while in 2012 they were found more confined to shore and more prominently extended northward through Bering Strait. The water mass distributions together with the winds and limited surface current data suggest that the NE Chukchi Alaskan Coastal Current (ACC) was shut down for a time in August and September 2013. Our results have implications for the fate of fresh water, heat, and pelagic production on the Bering-Chukchi shelves.

  10. Drought in West Africa: How CHIRPS and Reference Evapotranspiration can be used for Index Insurance in a Non-Stationary Setting

    NASA Astrophysics Data System (ADS)

    Blakeley, S. L.; Husak, G. J.; Harrison, L.; Funk, C. C.; Osgood, D. E.; Peterson, P.

    2017-12-01

    Index insurance is increasingly used as a safety net and productivity tool in order to improve the resilience of small-holder farmers in developing countries. In West Africa, there are already index insurance projects in many countries, and various non-governmental organizations are eager to expand implementation of this risk management tool. Often, index insurance payouts rely on rainfall to determine drought years, but designation of years based on precipitation variations is particularly complex in places like West Africa where precipitation is subject to much natural variability across timescales [Giannini 2003, among others]. Furthermore, farmers must also rely on other weather factors for good crop yields, such as the availability of moisture for their plants to absorb and maximum daily temperatures staying within an acceptable range for the crops. In this presentation, the payouts of an index based on rainfall (as measured by the Climate Hazards Group Infrared Precipitation with Stations {CHIRPS} dataset) is compared to the payouts of an index using reference evapotranspiration data (using the ASCE's Penmen-Monteith formula and MERRA-2 drivers). The West African rainfall index exhibits a fair amount of long-term variability, reflective of the Atlantic Multidecadal Oscillation, but the reference evapotranspiration index shows different variability, through changes in radiative forcing and temperatures. Therefore, the use of rainfall for an index is appropriate for capturing rainfall deficits, but reference evapotranspiration may also be an appropriate addition to an index or as a stand-alone index for capturing crop stress. In summary, the results point to farmer input as an invaluable source of knowledge in determining the most appropriate dataset as an index for crop insurance. Alessandra Giannini, R Saravanan, and P Chang. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302(5647):1027-1030, 2003.

  11. The interplay between societal concerns and the regulatory frame on GM crops in the European Union.

    PubMed

    Devos, Yann; Reheul, Dirk; De Waele, Danny; Van Speybroeck, Linda

    2006-01-01

    Recapitulating how genetic modification technology and its agro-food products aroused strong societal opposition in the European Union, this paper demonstrates how this opposition contributed to shape the European regulatory frame on GM crops. More specifically, it describes how this opposition contributed to a de facto moratorium on the commercialization of new GM crop events in the end of the nineties. From this period onwards, the regulatory frame has been continuously revised in order to slow down further erosion of public and market confidence. Various scientific and technical reforms were made to meet societal concerns relating to the safety of GM crops. In this context, the precautionary principle, environmental post-market monitoring and traceability were adopted as ways to cope with scientific uncertainties. Labeling, traceability, co-existence and public information were installed in an attempt to meet the general public request for more information about GM agro-food products, and the specific demand to respect the consumers' and farmers' freedom of choice. Despite these efforts, today, the explicit role of public participation and/or ethical consultation during authorization procedures is at best minimal. Moreover, no legal room was created to progress to an integral sustainability evaluation during market procedures. It remains to be seen whether the recent policy shift towards greater transparency about value judgments, plural viewpoints and scientific uncertainties will be one step forward in integrating ethical concerns more explicitly in risk analysis. As such, the regulatory frame stands open for further interpretation, reflecting in various degrees a continued interplay with societal concerns relating to GM agro-food products. In this regard, both societal concerns and diversely interpreted regulatory criteria can be inferred as signaling a request - and even a quest - to render more explicit the broader-than-scientific dimension of the actual risk analysis.

  12. Degradation and Improvement of Argiudolls in Centre Santa Fe (Argentina): Changes in Physical and Chemical Soil Properties and in its Productive Capacity Using a sSmulation Model of Crop Growth

    NASA Astrophysics Data System (ADS)

    Pilatti, M. A.; Marano, R.; Felli, O.; Alesso, A.; Carrizo, M. E.; Miretti, M. C.

    2012-04-01

    Traditional tillage without adequate crop rotation and restoration of nutrients had generated degradation of the soils in Santa Fe. For this reason, it is important to find alternative systems to improve them. The A horizon of a typical Argiudoll of the centre of Santa Fe was chosen in 1983 and 2003 to evaluate: (to) physical and chemical properties of the natural soil (SN), (b) level of deterioration or improvement of those properties due to the management system (LC: traditional till during 50 years with the last 15 years of wheat-soya; RAG: crop-grass rotation under no-till with partial reposition of N, P and S), (c) productive capacity (CP) of the SN and the soil changes according to its management (LC and RAG). Soil data were introduced into a model of crop production (FitoSim), using corn as pattern and 30 years of meteorological data, to evaluate the effect of the soil use on the productive capacity. LC and RAG significantly differ from SN. The former have smaller values of CO, Nt, P e, pH, Ca, K, soil bulk density, relative aggregates stability, least limiting water range and crust infiltration. However the indexes are worse in LC. RAG has greater values of P, Nt and particulate N. The mean potential yield was 16200 kg/ha. The index of production capacity of SN was 75%, i.e. the limitations of the soil and rain only allow taking advantage of 75% of the environment potential capacity. In LC that loss reached 72%. The loss of productive capacity of the evaluated management systems was 21 and 69% for RAG and LC, standing out that although RAG is degraded with regard to the SN, however it is a more conservationist management system that LC. Subsidiado por CA+ID 2009 (UNL) 12/C114; SECTEI- Ley23877-09-04; INTA PNECO-093012

  13. Impact of climate change on crop nutrient and water use efficiencies.

    PubMed

    Brouder, Sylvie M; Volenec, Jeffrey J

    2008-08-01

    Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO(2) will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO(2) will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.

  14. Gas transfer between the atmosphere and irrigated sugarcane plantation sites under different rainfall in Hawai'i

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Giambelluca, T. W.; Crow, S. E.; Mudd, R. G.; Youkhana, A.; Nullet, M.; Nakahata, M.

    2015-12-01

    Sugarcane plantation land cover is increasing in area in Brazil, South Asia and the Pacific Islands because of the growing demand for sugar and biofuel production. While a large portion of sugarcane cultivated in Brazil is rain-fed and experiences drought influences on gas exchange, sugarcane in Hawai'i is thought to be buffered from drought effects because it is drip irrigated. Knowledge about carbon sequestration and evapotranspiration rates is fundamental both for the prediction of sugar and biofuel production and for water resource management for the large plantations. To understand gas transfer under spatially and temporally heterogeneous environments, we investigated the leaf- soil- and stand-scale gas transfer processes at two irrigated sugarcane plantation study sites in Hawai'i with contrasting rainfall. Gas and energy transfers were monitored using eddy covariance systems for a full- and later half- crop cycle. Leaf ecophysiological traits were measured for stands of different ages to evaluate the effects of stand age on gas transfer. Carbon sequestration rates (Fc) showed a strong relationship with solar radiation with small differences between sites. Latent heat flux expressed as the evapotranspiration rates (ET) also had a strong relationship with solar radiation, but showed seasonality due to variations in biological control (surface conductance) and atmospheric evaporative demand. The difference in ET and its responses to environments was less clear partly buffered by the differences in the stand age and seasons. The stable Fc-solar radiation relationship despite the variation in surface conductance was partly due to the saturation of net photosynthetic rates with intercellular CO2 concentration and the low sensitivity of net photosynthesis to variations in surface conductance in sugarcane with the C4 photosynthesis pathway. The response of gas transfer to periodic irrigation, rainfall and age-related changes in leaf ecophysiological traits will be discussed.

  15. ESTABLISHMENT AND EVALUATION OF SWITCHGRASS ON RECLAIMED MINE SOIL [English

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, David; Shankle, Brandon; Oswalt, Ernest

    Switchgrass (Panicum virgatum L.) is a native warm season perennial grass that has productive potential of up to 20 Mg ha-1 of biomass and it persists for decades when harvested once per year. Switchgrass provides excellent ground cover and soil stabilization once established and contributes to soil sequestration of new carbon. Slow establishment on newly reclaimed soil, however, provides for significant erosive opportunities thereby requiring initial soil stabilization with a cover crop. Several planting options were evaluated on two topsoil substitute soils. The planting options included: 1) an existing stand of bermudagrass (Cynodon dactylon L.) that was killed with glyphosatemore » followed by disking in red oxidized topsoil substitute and prime farmland topsoil respread in 2007, 2) red oxidized topsoil substitute was seeded directly with switchgrass, 3) browntop millet (Panicum ramosum) was established with switchgrass, 4) or switchgrass was established in senescing browntop millet or wheat without tillage. Switchgrass was successfully established into a bermudagrass sod that had been killed with herbicides and disked as well as into a senescing stand of browntop millet or wheat. Significant soil erosion occurred on the disked area in 2008 leading to considerable repair work followed by planting wheat. Disked areas that did not erode had an excellent stand of switchgrass with 23.3 plants m-2 in November, 2008. Eroded areas replanted in April, 2009 into senescing wheat had 46 plants m-2 by July, 2009. The area planted directly into newly respread soil in May, 2009 was eroded severely by a 75 mm thunderstorm and was repaired, disked and replanted to switchgrass and browntop millet. Switchgrass seeded with browntop millet had a sparse switchgrass stand and was replanted to switchgrass in August, 2009. Rainfall volumes from August, 2009 to October, 2009 totaled 750 mm, but new erosion damage in areas successfully planted to switchgrass has been minimal.« less

  16. Three centuries of managing introduced conifers in South Africa: Benefits, impacts, changing perceptions and conflict resolution.

    PubMed

    van Wilgen, Brian W; Richardson, David M

    2012-09-15

    Alien conifers, mainly pines, have been planted in South Africa for a range of purposes for over 300 years. Formal plantations cover 660,000 ha of the country, and invasive stands of varying density occur on a further 2.9 million ha. These trees have brought many benefits but have also caused unintended problems. The management of alien conifers has evolved in response to emerging problems such as excessive water use by plantations of conifers, changing values and markets, and the realities of a new ecological order brought about by invasive alien conifers. This paper reviews the history of conifer introductions to South Africa, the benefits and impacts with which they are associated, and the ongoing and evolving research that has been conducted to inform their management. The South African approach has included taking courageous steps to address the problem of highly invasive species that are also an important commercial crop. These interventions have not, however, had the desired effect of both retaining benefits from formal plantations while simultaneously reversing the trend of growing impacts associated with self-sown invasive stands. We suggest that different approaches need to be considered, including the systematic phasing out of commercial forestry in zones where it delivers low returns, and the introduction of more effective, focussed and integrated, region-specific approaches to the management of invasive stands of conifers. These steps would deliver much improved economic outcomes by protecting valuable ecosystem services, but will require political commitment to policies that could be unpopular in certain sectors of society. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    NASA Astrophysics Data System (ADS)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable the successful production of irrigated alfalfa with use of saline (up to 8 dS/m ECw) irrigation water, including careful water management during stand establishment, prevention of crusting, and agronomic practices to promote water infiltration. Irrigated regions looking for economically-viable crop species to grow under saline conditions may consider alfalfa grown utilizing appropriate methodologies, including salt-tolerant varieties and agronomic practices to mitigate the secondary effects of soil salinity and sodicity.

  18. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem carbon use efficiency. Improved measurements of roots and their distribution throughout the soil profile will advance our understanding of water and nutrient acquisition by trees and provide important benchmarks for models of biogeochemical cycling in tropical ecosystems and their responses to elevated atmospheric CO2.

  19. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    NASA Astrophysics Data System (ADS)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but it was not significant. The increasing soil carbon stocks in SRC stands on former cropland can be attributed to the increased leaf and litter input from the perennial SRC plantations as well as less stimulation of organic matter decomposition after cessation of annual. Initial losses of soil carbon after the land use change have also been reported by other studies, but the soil carbon accumulation high rates suggest that SRC can act as sinks at least for some decades. Our results indicate that a steady state has not yet been reached after 29 years. Key words: Bioenergy,Land Use Change, poplar, Short Rotation Coppice, Soil Organic Carbon, willow,

  20. Earth observation taken by the Expedition 33 crew.

    NASA Image and Video Library

    2012-11-18

    ISS033-E-022759 (18 Nov. 2012) --- Agricultural fields under snow in easternmost China are featured in this image photographed by an Expedition 33 crew member on the International Space Station. This photograph highlights many hundreds of rectangular fields on either side of a 36-kilometer stretch of the braided Songhua River (right). Some fields are easier to see than others due to the winter snow cover. The Songhua joins with the Amur R. about 40 kilometers downstream, at the border with Russia?s Far East. Numerous villages also appear as small gray polygons. Broad floodplains can be recognized on both sides of the river, occupied by fewer fields by almost no villages. The town of Suibing stands out as a larger gray patch on the banks of the river. A significant 300-meter-high hill south of the river throws midmorning shadows (left). The region is one of the most heavily cultivated in northeastern China with corn, soybeans, and sorghum being major crops. The areas of varying whiteness of the snow cover may correlate with zones of different crops and forest cover (for example, on the hill in the center part of the image). The degree to which fallow fields are cleared of vegetation may also affect the apparent snow brightness.

  1. A critical analysis of species selection and high vs. low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems

    DOE PAGES

    Fischer, M.; Kelley, A. M.; Ward, E. J.; ...

    2017-02-03

    Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less

  2. A critical analysis of species selection and high vs. low-input silviculture on establishment success and early productivity of model short-rotation wood-energy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, M.; Kelley, A. M.; Ward, E. J.

    Most research on bioenergy short rotation woody crops (SRWC) has been dedicated to the genera Populus and Salix. These species generally require relatively high-input culture, including intensive weed competition control, which increases costs and environmental externalities. Widespread native early successional species, characterized by high productivity and good coppicing ability, may be better adapted to local environmental stresses and therefore could offer alternative low-input bioenergy production systems. In order to test this concept, we established a three-year experiment comparing a widely-used hybrid poplar (Populus nigra × P. maximowiczii, clone ‘NM6’) to two native species, American sycamore (Platanus occidentalis L.) and tuliptreemore » (Liriodendron tulipifera L.) grown under contrasting weed and pest control at a coastal plain site in eastern North Carolina, USA. Mean cumulative aboveground wood production was significantly greater in sycamore, with yields of 46.6 Mg ha -11 under high-inputs and 32.7 Mg ha -1 under low-input culture, which rivaled the high-input NM6 yield of 32.9 Mg ha -1. NM6 under low-input management provided noncompetitive yield of 6.2 Mg ha -1. We also found that sycamore showed superiority in survival, biomass increment, weed resistance, treatment convergence, and within-stand uniformity. All are important characteristics for a bioenergy feedstock crop species, leading to reliable establishment and efficient biomass production. Poor performance in all traits was found for tuliptree, with a maximum yield of 1.2 Mg ha -1, suggesting this native species is a poor choice for SRWC. We then conclude that careful species selection beyond the conventionally used genera may enhance reliability and decrease negative environmental impacts of the bioenergy biomass production sector.« less

  3. Risk assessment of maize damage by wireworms (Coleoptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides.

    PubMed

    Furlan, L; Contiero, B; Chiarini, F; Colauzzi, M; Sartori, E; Benvegnù, I; Fracasso, F; Giandon, P

    2017-01-01

    A survey of maize fields was conducted in northeast Italy from 1986 to 2014, resulting in a dataset of 1296 records including information on wireworm damage to maize, plant-attacking species, agronomic characteristics, landscape and climate. Three wireworm species, Agriotes brevis Candeze, A. sordidus Illiger and A. ustulatus Schäller, were identified as the dominant pest species in maize fields. Over the 29-year period surveyed, no yield reduction was observed when wireworm plant damage was below 15 % of the stand. A preliminary univariate analysis of risk assessment was applied to identify the main factors influencing the occurrence of damage. A multifactorial model was then applied by using the significant factors identified. This model allowed the research to highlight the strongest factors and to analyse how the main factors together influenced damage risk. The strongest factors were: A. brevis as prevalent damaging species, soil organic matter content >5 %, rotation including meadows and/or double crops, A. sordidus as prevalent damaging species, and surrounding landscape mainly meadows, uncultivated grass and double crops. The multifactorial model also showed how the simultaneous occurrence of two or more of the aforementioned risk factors can conspicuously increase the risk of wireworm damage to maize crops, while the probability of damage to a field with no-risk factors is always low (<1 %). These results make it possible to draw risk maps to identify low-risk and high-risk areas, a first step in implementing bespoke IPM procedures in an attempt to reduce the impact of soil insecticides significantly.

  4. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    PubMed

    Agostini, Francesco; Gregory, Andrew S; Richter, Goetz M

    Soil organic carbon (SOC) changes associated with land conversion to energy crops are central to the debate on bioenergy and their potential carbon neutrality. Here, the experimental evidence on SOC under perennial energy crops (PECs) is synthesised to parameterise a whole systems model and to identify uncertainties and knowledge gaps determining PECs being a sink or source of greenhouse gas (GHG). For Miscanthus and willow ( Salix spp.) and their analogues (switchgrass, poplar), we examine carbon (C) allocation to above- and belowground residue inputs, turnover rates and retention in the soil. A meta-analysis showed that studies on dry matter partitioning and C inputs to soils are plentiful, whilst data on turnover are rare and rely on few isotopic C tracer studies. Comprehensive studies on SOC dynamics and GHG emissions under PECs are limited and subsoil processes and C losses through leaching remain unknown. Data showed dynamic changes of gross C inputs and SOC stocks depending on stand age. C inputs and turnover can now be specifically parameterised in whole PEC system models, whilst dependencies on soil texture, moisture and temperature remain empirical. In conclusion, the annual net SOC storage change exceeds the minimum mitigation requirement (0.25 Mg C ha -1 year -1 ) under herbaceous and woody perennials by far (1.14 to 1.88 and 0.63 to 0.72 Mg C ha -1 year -1 , respectively). However, long-term time series of field data are needed to verify sustainable SOC enrichment, as the physical and chemical stabilities of SOC pools remain uncertain, although they are essential in defining the sustainability of C sequestration (half-life >25 years).

  5. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    PubMed

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Accelerating adoption of genetically modified crops in Africa through a trade liability regime.

    PubMed

    Smyth, Stuart J; Kerr, William A; Phillips, Peter W B

    2013-06-01

    Given the apparently unbridgeable divide that has developed between the 25 odd countries that grow and trade GM crops and the evolving EU regulatory hurdles, it may be time to consider alternative strategies for realizing a global market for agricultural products. Africa is one area of the world where the battle over GM agriculture is being played out, yet it is the continent where GM could have the greatest positive impact. Numerous African nations, given their long-standing trade connections to European nations, fear that allowing the commercialization of GM crops could lead to comingling of GM and conventional products and, hence, the loss of export opportunities to the EU. These are legitimate concerns. One potential solution that warrants serious consideration would be to establish a pool of funds that could be accessed by African agricultural commodity exporters in instances where exports to Europe are rejected. A production levy could be imposed in leading industrial adopting nations (i.e., Australia, Canada and the United States). The revenue raised would provide an endowment fund that could be used to offset the costs arising from import refusals. African-sourced shipments rejected by the EU will most certainly have alternate markets, but could receive a reduced price or incur higher costs associated with serving alternate markets. The intent of the fund would be to compensate for the real difference between the net returns contracted with European importers and the final market price received. This article examines the feasibility of establishing such a fund and discusses the funding options. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Processing Pipeline of Sugarcane Spectral Response to Characterize the Fallen Plants Phenomenon

    NASA Astrophysics Data System (ADS)

    Solano, Agustín; Kemerer, Alejandra; Hadad, Alejandro

    2016-04-01

    Nowadays, in agronomic systems it is possible to make a variable management of inputs to improve the efficiency of agronomic industry and optimize the logistics of the harvesting process. In this way, it was proposed for sugarcane culture the use of remote sensing tools and computational methods to identify useful areas in the cultivated lands. The objective was to use these areas to make variable management of the crop. When at the moment of harvesting the sugarcane there are fallen stalks, together with them some strange material (vegetal or mineral) is collected. This strange material is not millable and when it enters onto the sugar mill it causes important looses of efficiency in the sugar extraction processes and affects its quality. Considering this issue, the spectral response of sugarcane plants in aerial multispectral images was studied. The spectral response was analyzed in different bands of the electromagnetic spectrum. Then, the aerial images were segmented to obtain homogeneous regions useful for producers to make decisions related to the use of inputs and resources according to the variability of the system (existence of fallen cane and standing cane). The obtained segmentation results were satisfactory. It was possible to identify regions with fallen cane and regions with standing cane with high precision rates.

  8. Rain-induced spring wheat harvest losses

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  9. Cuba's 100-year plan for climate change

    NASA Astrophysics Data System (ADS)

    Stone, Richard

    2018-01-01

    On its deadly run through the Caribbean last September, Hurricane Irma lashed northern Cuba, inundating coastal settlements and scouring away vegetation. Irma lent new urgency to a Cuban national plan, called Tarea Vida, or Project Life, that bans construction of new homes in threatened coastal areas, mandates relocating people from communities doomed by rising sea levels, calls for an overhaul of the country's agricultural system to shift crop production away from saltwater-contaminated areas, and spells out the need to shore up coastal defenses, including by restoring degraded habitat. Project Life stands out for taking a long view: It intends to prepare Cuba for climatological impacts over the next century. Much of the initial funding could come from a $100 million proposal that Cuba plans to submit soon to the Global Climate Fund.

  10. Les phénols de la lignine et le 13C, traceurs de l'origine des matières organiques du solLabelling the origin of soil organic matter by lignin phenols and 13C natural abundance

    NASA Astrophysics Data System (ADS)

    Jolivet, Claudy; Guillet, Bernard; Karroum, Michel; Andreux, Francis; Bernoux, Martial; Arrouays, Dominique

    2001-11-01

    In spodosols of Gascony (France), conversion of maritime pine stands into maize cropping leads to an incorporation of maize organic matter, which changed the isotopic ( δ13C) and phenolic signature in A and L horizons of soil. Hydrolysis of phenol lignin in forests and cultivated soils showed the predominance of vanillic units under forest and the early but moderate incorporation of cinnamic acids. Incorporation of syringic units appeared higher, related to a large maize production of stable syringic phenols. Syringic units represented a long-term marker of maize inputs in soils, whereas vanillic units revealed the degradation of forest organic matter.

  11. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Harkisky, M.; Klemas, V.

    1983-01-01

    Monitoring biomass of wetlands ecosystems can provide information on net primary production and on the chemical and physical status of wetland soils relative to anaerobic microbial transformation of key elements. Multispectral remote sensing techniques successfully estimated macrophytic biomass in wetlands systems. Regression models developed from ground spectral data for predicting Spartina alterniflora biomass over an entire growing season include seasonal variations in biomass density and illumination intensity. An independent set of biomass and spectral data were collected and the standing crop biomass and net primary productivity were estimated. The improved spatial, radiometric and spectral resolution of th LANDSAT-4 Thematic Mapper over the LANDSAT MSS can greatly enhance multispectral techniques for estimating wetlands biomass over large areas. These techniques can provide the biomass data necessary for global ecology studies.

  12. Direct in situ measurement of Carbon Allocation to Mycorrhizal Fungi in a California Mixed-Conifer Forest

    NASA Astrophysics Data System (ADS)

    Allen, M.

    2012-04-01

    Mycorrhizal fungi consume fixed C in ecosystems in exchange for soil resources. We used sensor and observation platforms belowground to quantify belowground dynamics in a California mixed-conifer ecosystem. We directly observed growth and mortality of mycorrhizal fungi in situ on a daily basis using an automated minirhizotron. We measured soil CO2, T and soil moisture at 5-min intervals into the soil profile. These data are coupled with sensors measuring eddy flux of water and CO2, sapflow for water fluxes and C fixation activity, and photographs for leaf phenology. We used DayCent modeling for net primary productivity (NPP) and measured NPP of rhizomorphs, and fungal hyphae. In an arbuscular mycorrhizal (AM) meadow, NPP was 141g/m2/y, with a productivity of fine root NPP of 76.5g C/m2/y, an estimated 10 percent of which is AM fungal C (7.7 g/m2/y). Extramatrical AM hyphal peak standing crop was 4.4g/m2, with a lifespan of 46 days, with active hyphae persisting for 240 days per year. The extramatrical AM fungal hyphal C was 22.9g/m2/y, for a total net allocation to AM fungi of 30.5 C/m2/y, or 22 percent of the estimated NPP. In the ectomycorrhizal (EM) forest, root standing crop (200g C/m2/y) and rhizomorph (2mg C/m2/y) was 33 percent of the NPP (600g C/m2/y). EM fungal hyphae standing crop was 18g/m2/y, with a 48day lifespan, persisting throughout the year, or 59 g C/m2/y. EM root tips and rhizomorph life spans were nearly a year. Assuming that EM fungi represent 40 percent of the fine root EM NPP (of 200g C/m2/y) or 80g C/m2/y, most of the rhizomorph (in the mineral soil) mass being EM (or 2mg C), and 57 percent of the soil fungal NPP or 80 g C/m2/y, then the EM NPP is 139 C/m2/y, or 23 percent of the estimated NPP (600g C/m2/y). As an independent check on the allocation of C, we applied the Hobbie and Hobbie isotopic fractionation d15N model to C allocation. Using d15N of Chantarellus sp. (10.6) and Rhizopogon sp. (9.1), with a leaf d15N of -4.9, we estimated that 35 percent of the plant N came from mycorrhizal fungi, with 16 percent of the NPP -C allocated to EM fungi. This may represent an underestimate, as many EM fungi present on site do not show a measurable d15N value from saprotrophic fungi. The next step is to incorporate hyphal dynamic events into the annual dynamics. We observed no correlation with soil temperature or moisture. In these forests, production of new hyphae occurs between T of 5C and 10C. During this T change, moisture ranges between 20 and 25 percent. Peak mortality occurs between T of 8C to 15C, with soil moisture of 15 to 20 percent. These correspond to the drying and wetting periods in these Mediterranean forests. Small shifts in soil T or soil moisture with global change could have major impacts on C allocation to mycorrhizal fungi which could feed back to plant species composition.

  13. Tree and stand transpiration in a Midwestern bur oak savanna after elm encroachment and restoration thinning

    USGS Publications Warehouse

    Asbjornsen, H.; Tomer, M.D.; Gomez-Cardenas, M.; Brudvig, L.A.; Greenan, C.M.; Schilling, K.

    2007-01-01

    Oak savannas, once common in the Midwest, are now isolated remnants within agricultural landscapes. Savanna remnants are frequently encroached by invasive trees to become woodlands. Thinning and prescribed burning can restore savanna structure, but the ecohydrological effects of managing these remnants are poorly understood. In this study, we measured sap flow (Js) to quantify transpiration in an Iowa bur oak (Quercus macrocarpa) savanna woodland encroached by elms (Ulmus americana), and in an adjacent restored savanna after thinning to remove elms, during summer 2004. Savanna oaks had greater mean daily Js (35.9 L dm-2 day-1) than woodland oaks (20.7 L dm-2 day-1) and elms (12.4 L dm-2 day-1). The response of Js to vapor pressure deficit (D) was unexpectedly weak, although oaks in both stands showed negative correlation between daily Js and D for D > 0.4 kPa. An earlier daily peak in Js in the elm trees showed a possible advantage for water uptake. As anticipated, the woodland's stand transpiration was greater (1.23 mm day-1) than the savanna's (0.35 mm day-1), yet the savanna achieved 30% of the woodland's transpiration with only 11% of its sapwood area. The difference in transpiration influenced water table depths, which were 2 m in the savanna and 6.5 m in the woodland. Regionally, row-crop agriculture has increased groundwater recharge and raised water tables, providing surplus water that perhaps facilitated elm encroachment. This has implications for restoration of savanna remnants. If achieving a savanna ecohydrology is an aim of restoration, then restoration strategies may require buffers, or targeting of large or hydrologically isolated remnants. ?? 2007.

  14. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    PubMed

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( < 0.01) and vertical structure ( = 0.01). Using pyrolysis-gas chromatography/mass spectrometry as a molecular technique to analyze detrital chemical composition, including aromatic compounds and polycyclic aromatic hydrocarbons, we found that the chemical composition of forest detritus was nearly uniform for both unburned and burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Detecting management and fertilization effects on the carbon balance of winter oilseed rape with manual closed chamber measurements: Can we outrange gap-filling uncertainty and spatiotemporal variability?

    NASA Astrophysics Data System (ADS)

    Huth, Vytas; Moffat, Antje Maria; Calmet, Anna; Andres, Monique; Laufer, Judit; Pehle, Natalia; Rach, Bernd; Gundlach, Laura; Augustin, Jürgen

    2017-04-01

    Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in North-Eastern Germany. However, studies on the effect of rapeseed cropping on net ecosystem exchange of CO2 (NEE) and the soil carbon (SC) balance are scarce. SC balance estimates are usually derived from long-term soil sampling field trials where rapeseed is part of different crop rotations. The estimated annual differences linked to rapeseed cropping are rather small (varying between losses of 40 g C m-2 and gains of up to 100 g C m-2). Testing management effects on the NEE and SC balance of cropping systems is best done by comparing plots with different treatments at the same site under the same climate. The soil sampling approach is in the need of field trials that run over decades, which has the disadvantage that management strategies of practical farming may have already changed when the results are derived. Continuous eddy covariance measurements of NEE would require large fields in flat terrain for each of the treatments, which is especially complicated in the heterogeneous landscapes of glacigenic origin of North-Eastern Germany. The common approach of using the chamber technique to derive NEE, however, is subject to the local soil and plant stand heterogeneities due to its tiny footprint. This technique might also disturb the ecosystem, the measurements are usually discontinuous requiring elaborate gap-filling techniques, and it has mostly been used on organic soils where large respiratory C losses occur. Therefore, our aim was to answer, if a combined approach of the eddy covariance and the chamber technique can detect the relatively small NEE and SC differences of rapeseed cropping on mineral soils within a shorter period of time than conventional soil sampling field trials can. We tested the new experimental design taking the advantages of both techniques into account: The eddy covariance tower measuring the NEE dynamics during the year; the chamber measurements to detect the flux differences between specific management practices - with additional chamber measurements installed close to the eddy tower as a reference linking the two techniques. In our experiment, we studied the effect of four different treatments of fertilization (mineral versus organic) and tillage (no-till versus mulch-till versus ploughing) on the NEE of rapeseed cropping for the climatic seasons 2013 to 2015. We compared the NEE of the treatments to the "background" NEE measured by the eddy covariance technique in the nearby reference field for the years 2013 and 2014. With this data, we estimated the uncertainty resulting from gap filling discontinuous chamber measurements and relate it to the observed effects of the four different treatments on the NEE. Here, we present first results on the applicability of the manual-chamber technique to derive the relatively small effects of rapeseed cropping on NEE and SC within a short period of three years of study.

  16. Evaluation of a simple method for crop evapotranspiration partitioning and comparison of different water use efficiency approaches

    NASA Astrophysics Data System (ADS)

    Tallec, T.; Rivalland, V.; Jarosz, N.; Boulet, G.; Gentine, P.; Ceschia, E.

    2012-04-01

    In the current context of climate change, intra- and inter-annual variability of precipitation can lead to major modifications of water budgets and water use efficiencies (WUE). Obtaining greater insight into how climatic variability and agricultural practices affect water budgets and their components in croplands is, thus, important for adapting crop management and limiting water losses. The principal aims of this study were 1) to assess the contribution of different components to the agro-ecosystem water budget and 2) to analyze and compare the WUE calculated from ecophysiological (WUEplt), environmental (WUEeco) and agronomical (WUEagro) points of view for various crops during the growing season and for the annual time scale. Eddy covariance (EC) measurements of CO2 and water flux were performed on winter wheat, maize and sunflower crops at two sites in southwest France: Auradé and Lamasquère. To infer WUEplt, an estimation of plant transpiration (TR) is needed. We then tested a new method for partitioning evapotranspiration (ETR), measured by means of the EC method, into soil evaporation (E) and plant transpiration (TR) based on marginal distribution sampling (MDS). We compared these estimations with calibrated simulations of the ICARE-SVAT double source mechanistic model. The two partitioning methods showed good agreement, demonstrating that MDS is a convenient, simple and robust tool for estimating E with reasonable associated uncertainties. During the growing season, the proportion of E in ETR was approximately one-third and varied mainly with crop leaf area. When calculated on an annual time scale, the proportion of E in ETR reached more than 50%, depending on crop leaf area and the duration and distribution of bare soil within the year. WUEplt values ranged between -4.1 and -5.6 g C kg-1 H2O for maize and winter wheat, respectively, and were strongly dependent on meteorological conditions at the half-hourly, daily and seasonal time scales. When normalized by the vapor pressure deficit to reduce the effect of seasonal climatic variability on WUEplt, maize had the highest efficiency. Absolute WUEeco values on the ecosystem level, including water loss through evaporation and carbon release through ecosystem respiration, were consequently lower than on the stand level. This observation was even more pronounced on an annual time scale than on the growing-season time scale because of bare soil periods. Winter wheat showed the highest absolute values of WUEeco, and sunflower showed the lowest. To account for carbon input into WUE through organic fertilization and output through biomass exportation during harvest, net biome production (NBP) was considered in the calculation of an ecosystem-level WUE (WUENBP). Considering WUENBP instead of WUEeco markedly decreased the efficiency of the ecosystem, especially for crops with important carbon exports, as observed for the maize used for silaging and pointed out the profits of organic C input. From an agronomic perspective, maize showed the best WUE, with exported (marketable) carbon per unit of water used exceeding that of other crops. Thus, the environmental and agronomical WUE approaches should be considered together in the context of global climate change and sustainable development.

  17. Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?

    PubMed

    Lang, Marion; Prestele, Julia; Fischer, Christina; Kollmann, Johannes; Albrecht, Harald

    2016-08-01

    During the past decades, agro-biodiversity has markedly declined and some species are close to extinction in large parts of Europe. Reintroduction of rare arable plant species in suitable habitats could counteract this negative trend. The study investigates optimal sowing rates of three endangered species (Legousia speculum-veneris (L.) Chaix, Consolida regalis Gray, and Lithospermum arvense L.), in terms of establishment success, seed production, and crop yield losses.A field experiment with partial additive design was performed in an organically managed winter rye stand with study species added in ten sowing rates of 5-10,000 seeds m(-2). They were sown as a single species or as a three-species mixture (pure vs. mixed sowing) and with vs. without removal of spontaneous weeds. Winter rye was sown at a fixed rate of 350 grains m(-2). Performance of the study species was assessed as plant establishment and seed production. Crop response was determined as grain yield.Plant numbers and seed production were significantly affected by the sowing rate, but not by sowing type (pure vs. mixed sowing of the three study species), and weed removal. All rare arable plant species established and reproduced at sowing rates >25 seeds m(-2), with best performance of L. speculum-veneris. Negative density effects occurred to some extent for plant establishment and more markedly for seed production.The impact of the three study species on crop yield followed sigmoidal functions. Depending on the species, a yield loss of 10% occurred at >100 seeds m(-2). Synthesis and applications: The study shows that reintroduction of rare arable plants by seed transfer is a suitable method to establish them on extensively managed fields, for example, in organic farms with low nutrient level and without mechanical weed control. Sowing rates of 100 seeds m(-2) for C. regalis and L. arvense, and 50 seeds m(-2) for L. speculum-veneris are recommended, to achieve successful establishment with negligible crop yield losses.

  18. Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India

    PubMed Central

    2012-01-01

    Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531

  19. Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India.

    PubMed

    Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree

    2012-10-19

    Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.

  20. A double-observer method for reducing bias in faecal pellet surveys of forest ungulates

    USGS Publications Warehouse

    Jenkins, K.J.; Manly, B.F.J.

    2008-01-01

    1. Faecal surveys are used widely to study variations in abundance and distribution of forest-dwelling mammals when direct enumeration is not feasible. The utility of faecal indices of abundance is limited, however, by observational bias and variation in faecal disappearance rates that obscure their relationship to population size. We developed methods to reduce variability in faecal surveys and improve reliability of faecal indices. 2. We used double-observer transect sampling to estimate observational bias of faecal surveys of Roosevelt elk Cervus elaphus roosevelti and Columbian black-tailed deer Odocoileus hemionus columbianus in Olympic National Park, Washington, USA. We also modelled differences in counts of faecal groups obtained from paired cleared and uncleared transect segments as a means to adjust standing crop faecal counts for a standard accumulation interval and to reduce bias resulting from variable decay rates. 3. Estimated detection probabilities of faecal groups ranged from < 0.2-1.0 depending upon the observer, whether the faecal group was from elk or deer, faecal group size, distance of the faecal group from the sampling transect, ground vegetation cover, and the interaction between faecal group size and distance from the transect. 4. Models of plot-clearing effects indicated that standing crop counts of deer faecal groups required 34% reduction on flat terrain and 53% reduction on sloping terrain to represent faeces accumulated over a standard 100-day interval, whereas counts of elk faecal groups required 0% and 46% reductions on flat and sloping terrain, respectively. 5. Synthesis and applications. Double-observer transect sampling provides a cost-effective means of reducing observational bias and variation in faecal decay rates that obscure the interpretation of faecal indices of large mammal abundance. Given the variation we observed in observational bias of faecal surveys and persistence of faeces, we emphasize the need for future researchers to account for these comparatively manageable sources of bias before comparing faecal indices spatially or temporally. Double-observer sampling methods are readily adaptable to study variations in faecal indices of large mammals at the scale of the large forest reserve, natural area, or other forested regions when direct estimation of populations is problematic. ?? 2008 The Authors.

  1. Dynamics and Sources of Soil Organic C Following Afforestation of Croplands with Poplar in a Semi-Arid Region in Northeast China

    PubMed Central

    Hu, Ya-Lin; Hu, Li-Le; Zeng, De-Hui

    2014-01-01

    Afforestation of former croplands has been proposed as a promising way to mitigate rising atmospheric CO2 concentration in view of the commitment to the Kyoto Protocol. Central to this C sequestration is the dynamics of soil organic C (SOC) storage and stability with the development of afforested plantations. Our previous study showed that SOC storage was not changed after afforestation except for the 0–10 cm layer in a semi-arid region of Keerqin Sandy Lands, northeast China. In this study, soil organic C was further separated into light and heavy fractions using the density fractionation method, and their organic C concentration and 13C signature were analyzed to investigate the turnover of old vs. new SOC in the afforested soils. Surface layer (0–10 cm) soil samples were collected from 14 paired plots of poplar (Populus × xiaozhuanica W. Y. Hsu & Liang) plantations with different stand basal areas (the sum of the cross-sectional area of all live trees in a stand), ranging from 0.2 to 32.6 m2 ha−1, and reference maize (Zea mays L.) croplands at the same sites as our previous study. Soil ΔC stocks (ΔC refers to the difference in SOC content between a poplar plantation and the paired cropland) in bulk soil and light fraction were positively correlated with stand basal area (R 2 = 0.48, p<0.01 and R 2 = 0.40, p = 0.02, respectively), but not for the heavy fraction. SOCcrop (SOC derived from crops) contents in the light and heavy fractions in poplar plantations were significantly lower as compared with SOC contents in croplands, but tree-derived C in bulk soil, light and heavy fraction pools increased gradually with increasing stand basal area after afforestation. Our study indicated that cropland afforestation could sequester new C derived from trees into surface mineral soil, but did not enhance the stability of SOC due to a fast turnover of SOC in this semi-arid region. PMID:24466183

  2. Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Consoli, S.; Russo, A.; Snyder, R.

    2006-08-01

    Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.

  3. Dispersal ecology of lodgepole pine (Pinus contorta Dougl.) in its native environment as related to Swedish forestry

    USGS Publications Warehouse

    Despain, Don G.

    2001-01-01

    Lodgepole pine (Pinus contorta Dougl.) covers extensive areas of the mountains of western North America. It has evolved into four subspecies, each adapted to slightly different environmental conditions. All are adapted to reproduce following fire. Subspecies latifolia is the most extensive and economically important in North America. Serotiny is common in this subspecies, but trees bearing nonserotinous cones can be found in most stands, sometimes constituting more that 70% of the trees. Cone crops are produced yearly and seed loss to seed predators, insects and diseases are minimal. Germination and establishment occurs across a broad range of conditions allowing lodgepole pine to grow on poor sites as well as highly productive sites. These characteristics give lodgepole pine the ability to be highly invasive in new areas of suitable habitat.

  4. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    PubMed

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  5. A Continuation of Base-Line Studies for Environmentally Monitoring Space Transportation System (STS) at John F. Kennedy Space Center. Volume 1; Terrestrial Community Analysis

    NASA Technical Reports Server (NTRS)

    Stout, I. J.

    1979-01-01

    Vegetation and small mammal populations in or around the Merritt Island area were studied. Thirty sites were selected from plant communities which were relatively free of logging, grazing, and clearing operations. The vegetative analysis was designed to yield a quantitative description and ecological explanation of the major types of upland vegetation in order to determine the possible future effects of NASA space activities on them. Changes in the relative abundance of small mammal populations, species diversity, standing crop biomass, reproductive activity, and other demographic features were documented in order to gather sufficient information on these populations so that it would be possible to detect even the smaller nonnatural behavior changes in the mammals which might be attributable to NASA space activities.

  6. Reflections on Plant and Soil Nematode Ecology: Past, Present and Future

    PubMed Central

    Ferris, Howard; Griffiths, Bryan S.; Porazinska, Dorota L.; Powers, Thomas O.; Wang, Koon-Hui; Tenuta, Mario

    2012-01-01

    The purpose of this review is to highlight key developments in nematode ecology from its beginnings to where it stands today as a discipline within nematology. Emerging areas of research appear to be driven by crop production constraints, environmental health concerns, and advances in technology. In contrast to past ecological studies which mainly focused on management of plant-parasitic nematodes, current studies reflect differential sensitivity of nematode faunae. These differences, identified in both aquatic and terrestrial environments include response to stressors, environmental conditions, and management practices. Methodological advances will continue to influence the role nematodes have in addressing the nature of interactions between organisms, and of organisms with their environments. In particular, the C. elegans genetic model, nematode faunal analysis and nematode metagenetic analysis can be used by ecologists generally and not restricted to nematologists. PMID:23482864

  7. The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount

    NASA Technical Reports Server (NTRS)

    Connelly, Xana M.

    1997-01-01

    The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.

  8. Model estimation of land-use effects on water levels of northern Prairie wetlands

    USGS Publications Warehouse

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  9. Burundi: country profile.

    PubMed

    Hilsum, L

    1988-10-01

    One of Africa's most rural and densely populated countries, Burundi is a landlocked nation in Central Africa. The 4.9 million people are 85% Hutus, agricultural people of Bantu origin. However, the Hutus are excluded from power by the minority Tutsis, and the 2 groups have engaged in violent conflict. After a military coup in 1987, a new president, Major Pierre Buyoya, was installed, but restrictions on the Hutus continue. The major difference in Burundi has been a relaxation of restrictions on the Catholic church, which were severe under the former President Bagaza. Most Hutus are Catholic, with a minority of Muslims. For the peasant farmer, faced with diminishing arable land and reliance on 1 export crop (coffee), life is becoming more difficult. An expansion of sugar production was planned to reduce reliance on coffee, although the government has a rather ambivalent approach to development. While promoting private sector development with the help of the World Bank and the U.S. government, the Burundi government maintains a rigid 1-party system with strict control over the lives of the people. Infant mortality stands at 196/1,000 live births and life expectancy is low--43 years for women and 40 years for men. The literacy rate is low (39% for men, 15% for women), and the GNP per capita is low ($230). Most land is used for subsistence crops such as cassava, bananas, sweet potatoes, maize, pulses, and sorghum.

  10. Forests and competing land uses in Kenya

    NASA Astrophysics Data System (ADS)

    Allaway, James; Cox, Pamela M. J.

    1989-03-01

    Indigenous forests in Kenya, as in other developing countries, are under heavy pressure from competing agricultural land uses and from unsustainable cutting. The problem in Kenya is compounded by high population growth rates and an agriculturally based economy, which, even with efforts to control birth rates and industrialize, will persist into the next century. Both ecological and economic consequences of these pressures need to be considered in land-use decision making for land and forest management to be effective. This paper presents one way to combine ecological and economic considerations. The status of principal forest areas in Kenya is summarized and competing land uses compared on the basis of ecological functions and economic analysis. Replacement uses do not match the ecological functions of forest, although established stands of tree crops (forest plantations, fuel wood, tea) can have roughly comparable effects on soil and water resources. Indigenous forests have high, although difficult to estimate, economic benefits from tourism and protection of downstream agricultural productivity. Economic returns from competing land uses range widely, with tea having the highest and fuel wood plantations having returns comparable to some annual crops and dairying. Consideration of ecological and economic factors together suggests some trade-offs for improving land allocation decisions and several management opportunities for increasing benefits or reducing costs from particular land uses. The evaluation also suggests a general strategy for forest land management in Kenya.

  11. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth

    PubMed Central

    Hossain, Akbar; Teixeira da Silva, Jaime A.; Lozovskaya, Marina Viacheslavovna; Zvolinsky, Vacheslav Petrovich

    2012-01-01

    Heat stress, when combined with drought, is one of the major limitations to food production worldwide, especially in areas that use rainfed agriculture. As the world population continues to grow, and water resources for the crop production decline and temperature increases, so the development of heat- and drought-tolerant cultivars is an issue of global concern. In this context, four barley and two wheat genotypes were evaluated in south-eastern Russia to identify heat- and drought-tolerant genotypes for future breeding programmes by identifying suitable sowing times for specific genotypes. High temperature stress, when combined with drought during late sowing, decreased the days to visible awns, days to heading and days to ripe harvest, finally negatively affecting the growth and development of plants and resulting in a lower plant population m−2, tillers plant−1, plant height and dry matter production m−2. On the other hand, low temperature in combination with early sowing increased the number of days to germination, reduced seedling stand establishment and tillering capacity, finally affecting the growth and development of the crops. Compared to overall performance and optimum sowing date, barley genotypes ‘Zernograd.770’ and ‘Nutans’, and wheat genotype ‘Line4’ performed best in both late (high temperature with drought) and early (low temperature) stress conditions. PMID:23961209

  12. Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice.

    PubMed

    Liu, Yongbo; Ge, Feng; Liang, Yuyong; Wu, Gang; Li, Junsheng

    2015-04-26

    Transgene flow through pollen and seeds leads to transgenic volunteers and feral populations in the nature, and consumer choice and economic incentives determine whether transgenic crops will be cultivated in the field. Transgenic and non-transgenic plants are likely to coexist in the field and natural habitats, but their competitive interactions are not well understood. Field experiments were conducted in an agricultural ecosystem with insecticide spraying and a natural ecosystem, using Bt-transgenic rice (Oryza sativa) and its non-transgenic counterpart in pure and mixed stands with a replacement series. Insect damage and competition significantly decreased plant growth and reproduction under the coexistence of transgenic and conventional rice. Insect-resistant transgenic rice was not competitively superior to its counterpart under different densities in both agricultural and natural ecosystems, irrespective of insect infection. Fitness cost due to Bt-transgene expression occurred only in an agroecosystem, where the population yield decreased with increasing percentage of transgenic rice. The population yield fluctuated in a natural ecosystem, with slight differences among pure and mixed stands under plant competition or insect pressure. The presence of Chilo suppressalis infection increased the number of non-target insects. Plant growth and reproduction patterns, relative competition ability and population yield indicate that Bt-transgenic and non-transgenic rice can coexist in agroecosystems, whereas in more natural habitats, transgenic rice is likely to outcompete non-transgenic rice.

  13. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field.

    PubMed

    Farhate, Camila Viana Vieira; Souza, Zigomar Menezes de; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)-the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)-the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower computational cost.

  14. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field

    PubMed Central

    de Souza, Zigomar Menezes; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)–the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)–the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower computational cost. PMID:29513765

  15. Gene flow in genetically modified wheat.

    PubMed

    Rieben, Silvan; Kalinina, Olena; Schmid, Bernhard; Zeller, Simon L

    2011-01-01

    Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses. © 2011 Rieben et al.

  16. Gene Flow in Genetically Modified Wheat

    PubMed Central

    Rieben, Silvan; Kalinina, Olena; Schmid, Bernhard; Zeller, Simon L.

    2011-01-01

    Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting “phytometers” of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5–2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7–0.03% over the test distances of 0.5–2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses. PMID:22216349

  17. Excavation of red squirrel middens by grizzly bears in the whitebark pine zone

    USGS Publications Warehouse

    Mattson, D.J.; Reinhart, Daniel P.

    1997-01-01

    Whitebark pine seeds Pinus albicaulis are an important food of grizzly Ursus arctos horribilis bears wherever whitebark pine is abundant in the contiguous United States of America; availability of seeds affects the distribution of bears, and the level of conflict between bears and humans. Almost all of the seeds consumed by bears are excavated from middens where red squirrels Tamiasciurus hudsonicus have cached whitebark pine cones.Relationships among the occupancy of middens by squirrels, the excavation of middens by bears, and site features were investigated in this study. Data were collected from radio-marked bears and from middens located from line transects on two study sites in the Yellowstone ecosystem.Densities of active middens were positively related to lodgepole pine Pinus contorta basal area and negatively related to steepness of slope.The probability that a midden was occupied by a squirrel (i.e. active) was positively related to lodgepole pine basal area in the surrounding stand, size of the midden and size of the whitebark pine cone crop, and negatively related to elevation and to bear excavation during the previous 2-12 months.The probability that a midden had been excavated by a bear during the previous 12 months was positively related to size of the midden, and to whitebark pine basal area and cone crop, and negatively related to nearness of roads and town sites.The influence of midden size on bear use was attributable to a positive relationship with the number of excavated cones. The positive association between bear excavations and whitebark pine basal area or cone crops was attributable to availability of pine seeds.Grizzly bears would benefit from the minimization of roads and other human facilities in the whitebark pine zone and from increases in the availability of whitebark pine seeds, potentially achieved by increasing the numbers of cone-producing whitebark pine trees, especially in lower elevations of the whitebark pine zone where red squirrels are more abundant.

  18. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  19. Phytoplankton standing crops within an Antarctic ice edge assessed by satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Sullivan, C. W.; Mcclain, C. R.; Comiso, J. C.; Smith, W. O., Jr.

    1988-01-01

    The dynamic interactions between the pack-ice recession and the occurrence of ice blooms of phytoplankton in waters of the marginal ice zone within an Antarctic ice edge were investigated using CZCS and SMMR imageries from the Nimbus 7 satellite (September 16-December 17, 1983), together with in situ measurements of pigments and sea ice concentration carried out from November 7 to December 2. A substantial amount of spatial variability in pigment concentration was observed to occur along the ice edge in the Weddell Sea. The relationships among light, ice distribution, and vertical stability and their effects on observed spatial variations in phytoplankton biomass are discussed. The results of this investigation suggest that the retreat of ice provides an input of significant volumes of meltwater which creates vertical stability for a period necessary to permit growth and accumulation of phytoplankton.

  20. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  1. Age and origin of gneisses south of Ameralik, between Kangimut-Sangmissoq and Qasigianguit

    NASA Technical Reports Server (NTRS)

    Jones, N. W.; Moorbath, S.; Taylor, P. N.

    1986-01-01

    Gneisses which crop out along the southern coast of Ameralik between Kangimut-sangmissoq and Qasigianguit (K-s-Q) are the subject of long-standing controversy concerning their relationship to the early Archean Amitsoq gneisses of the Godthaab district. On the basis of field observations, it was argued that gneisses at Kangimut-sangmissoq and Qasigianguit are correlatives of the early Archean Amitsoq gneisses. The data were reexamined and it is concluded that the K-s-Q gneisses represent an addition of substantially juvenile mantle-derived material to the Archean craton of West Greenland during the late Archean times. Some of the parent magmas have undergone interaction with older crust, as indicated by Pb isotope evidence for contamination with Amitsoq-derived Pb. However, the positive epsilon Nd(I) value for the K-s-Q gneisses firmly rules out any significant material contribution from the Amitsoq gneisses to the K-s-Q gneisses.

  2. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies.

    PubMed

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Fungal contamination and selected mycotoxins in pre- and post-harvest maize in Honduras.

    PubMed

    Julian, A M; Wareing, P W; Phillips, S I; Medlock, V F; MacDonald, M V; del Río, L E

    1995-01-01

    Sixty nine samples of maize were collected from pre-harvest standing crops and on-farm storage facilities from 52 smallholder farms located within 4 regions of Honduras during October 1992 and November 1993. Samples were visually assessed for insect damage and fungal spoilage, and the mycoflora quantified on artificial media. The major components of the ear rot complex were: Fusarium moniliforme, F. moniliforme var. subglutinans, Penicillium species, Stenocarpella maydis, S. macrospora and Acremonium spp. Representative samples were also assayed for mycotoxin content. Fumonisin B1 was detected in all 24 samples tested at levels of between 68-6,555 (micrograms/kg), and aflatoxin was detected in 2 samples heavily contaminated with Aspergillus flavus. Moniliformin and tenuazonic acid were not detected in the samples tested. The implications of these findings for human and livestock health risk are discussed, together with possible strategies for controlling these pathogens.

  4. Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity

    NASA Astrophysics Data System (ADS)

    Burchfield, E. K.; Gilligan, J. M.

    2016-12-01

    Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.

  5. Volatile organic compounds detected in the atmosphere of NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1996-01-01

    Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar.

  6. Prospectus for the utilization of leafy spurge (Euphorbia esula L. ) as a source of liquid fuel and biomass. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiatr, S.M.

    1984-01-01

    This study investigates the biomass potential of leafy spurge (Euphorbia esula). Whole plant biomass yields of 3.6 to 4.9 dry weight tons per acre were obtained from late summer harvests of wild stands in southcentral Montana. Shoot biomass comprised 70% of the harvest with the remainder derived from the basal crowns and first 20 to 30cm of rootstock. Total biomass was comprised of the following components: oils, 3.6%; polyphenols, 6.8%; soluble sugars, 6.1%; starch, 1.1% and protein, 7.1%. Lignin and crude fiber were major biomass components. Shoot biomass contained 44.6% lignin and 40.9% crude fiber while root biomass contained 34.2%more » lignin and 24.6% crude fiber. Seasonal variation in content was evident for all extractives and classes of biomass. Calorimetric determinations were made for whole plant biomass, extractives and residual biomass. The energy content was as follows: shoot, 4343 cal/g; root, 4214 cal/g and standing dry matter, 4293 cal/g. Whole plant oils had a calorific value of 9513 cal/g with 4976 cal/g for polyphenols and 4228 cal/g in the residue remaining after extraction. Total crop energy yields based on biomass yield and calorific values were 35 to 48 x 10/sup 6/ kcal/ha. It is concluded that E. esula does not presently constitute a productive source of whole plant, extractable oils. Alternative uses of E. esula are not dismissed due to the favorable net energy yield calculated for wild stands of this species. Suggested uses include conversion of whole plant biomass to biocrude oil or a multiple use approach to the use of E. esula biomass as a primary source of lignin and crude fiber, and secondary raw materials consisting of extractable oils, polyphenols, protein and fermentable carbohydrates. 57 references, 8 figures, 13 tables.« less

  7. Patterns of Abundance of Seagrasses and Associated Infaunal Communities at Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Paula, J.; Fidalgo Ecosta, P.; Martins, A.; Gove, D.

    2001-09-01

    This study was conducted at Inhaca Island, south Mozambique, and focused on three different seagrass associations, dominated respectively by Thalassodendron ciliatum, Thalassia hemprichii and Zostera capensis. The main objective of this study was to compare the three seagrass associations, in what concerns vegetal and associated infaunal communities biomass. The approach was a nested design, which intended to provide information on seasonal effects and variability at decreasing spatial scales. Nested ANOVA was performed for all biological and porewater parameters and a cluster analysis of different biotic and abiotic parameters was performed. Nutrient concentration was consistently higher during the dry period as well as mean values of organic matter. Consistently lower values of chlorophyll a (chl a) were obtained at T. hemprichii meadow sites and the highest values were found at Z. capensis meadow. Phaeopigments have shown an opposite pattern when compared to chl a, and average values were consistently higher during the dry season. There were no net differences of seagrass standing crop during both sampled seasons, however at meadow level major differences were found, and higher biomass was obtained at T. ciliatum meadow, followed by T. hemprichii. Mean values of epibiota have shown that higher biomass was obtained at T. ciliatum meadow, the remaining meadows presented very low values. Meiofauna biomass showed fluctuations between seagrass meadows, stations and also between seasons. Macrofauna biomass showed clear fluctuations between seasons, being strongly more homogeneous during the dry season and highly variable in the wet season. ANOVA results have shown different significance at the different levels of the analysis, suggesting different spatial and temporal patterns and interactions between parameters. The dendrogram produced two main groups of variables, the first one comprised of OM, phaeopigments, nitrites, nitrates, meiofauna, grain size and chl a. The second group comprises pH, macrofauna, ammonia, both seagrass components and epibiota on above-ground seagrass fraction. These two groups of parameters may correspond to different functional components of the seagrass ecosystem. The sediment biotic structure seems largely dependent on detritus-based chains, and has a high degree of spatial variability. On the other hand, macrofauna seems to be more related to the direct influence of seagrass standing crop, probably caused by the increased habitat complexity provided by higher seagrass biomass.

  8. Volatile organic compounds sources and sinks in a wheat canopy. Analysis based on combined eddy-covariance fluxes, in-canopy profiles and chamber measurements with a PTR-TOF-Qi-MS

    NASA Astrophysics Data System (ADS)

    Loubet, Benjamin; Gonzaga, Lais; Buysse, Pauline; Ciuraru, Raluca; Lafouge, Florence; Decuq, Céline; Zurfluh, Olivier; Fortineau, Alain; Fanucci, Olivier; Sarda-Esteve, Roland; Zannoni, Nora; Truong, Francois; Boissard, Christophe; Gros, Valérie

    2017-04-01

    Volatile organic compounds (VOC) are essential drivers of atmospheric chemistry. Many VOCs are emitted from and deposited to ecosystems. While forests and grasslands have already been substantially studied, exchanges of VOCs with crops are less known, although these ecosystems represent more than 50% of the surface in France. In this study, we analyze sources and sinks of VOCs in a wheat field (at the ICOS FR-GRI site near Paris) at anthesis based on measurements of fluxes, concentration profiles and branch chambers. The VOCs were measured using a PTR-TOF-Qi-MS (where Qi stands for Quad Ion guide). Air was successively sampled through lines located at different heights within and above the canopy, of which one was used for Eddy Covariance and located near a sonic anemometer. Additional measurements included the standard ICOS meteorological data as well as leaf area index profiles and photosynthesis curves at several heights in the canopy. We report fluxes and profiles for more than 500 VOCs. The deposition velocities of depositing compounds are compared to the maximum exchange velocity and the ozone deposition velocity. The sources and sinks location and magnitude are evaluated by inverse Lagrangian modelling assuming no reaction and simple reaction schemes in the canopy. The sources and sinks of VOC in the canopy are interpreted in terms crop phenology and the potential for reaction with ozone and NOx is evaluated. This study takes place in the ADEME CORTEA COV3ER French project (http://www6.inra.fr/cov3er).

  9. Impact of Agricultural Practices on Groundwater Regime in Yawal Taluka of Jalgaon District, Maharashtra State, India

    NASA Astrophysics Data System (ADS)

    Patil, S. N.; Baride, M. V.

    2011-07-01

    This paper describes the impact of agricultural activities based on available groundwater regime in Yawal Taluka with special emphasis on groundwater management. The objective is to apprise the planners and administrators for effective agricultural developments. Analysis of 50 years rainfall data shows difference in the recharge of groundwater. The average depth of well has increased by 2.77mbgl, whereas the water table has declined by 9.28m during 1999-2004. Net annual ground water available in 1945 is 11,244.11Ha.m and in 2002 it stands at 10,892.83Ha.m, whereas existing ground water draft is 9164Ha.m. This reflects the utility of ground water for agriculture and other activities. Impact of agricultural development is reflected on quality and quantity of groundwater resources. The five-year progressive data for banana and sugarcane cultivation in area under study reflect that the farmers are exploiting groundwater and often use excessive fertilizers for higher yield. During 2005, the area under cultivation for banana and sugarcane had reduced because of scarcity of water. This shortage of water has lead financially sound farmers to switch over to drip irrigation. This is not practiced by small farmers due to financial constraints. The cropping and land use pattern suggest that there is an increase in agricultural activities to meet the growing demands and the production of cash crops such as banana and sugarcane has also increased. Therefore, an attempt has been made to study the impact of groundwater and agricultural practices in the area.

  10. Genomic variation associated with local adaptation of weedy rice during de-domestication

    PubMed Central

    Qiu, Jie; Zhou, Yongjun; Mao, Lingfeng; Ye, Chuyu; Wang, Weidi; Zhang, Jianping; Yu, Yongyi; Fu, Fei; Wang, Yunfei; Qian, Feijian; Qi, Ting; Wu, Sanling; Sultana, Most Humaira; Cao, Ya-Nan; Wang, Yu; Timko, Michael P.; Ge, Song; Fan, Longjiang; Lu, Yongliang

    2017-01-01

    De-domestication is a unique evolutionary process by which domesticated crops are converted into ‘wild predecessor like' forms. Weedy rice (Oryza sativa f. spontanea) is an excellent model to dissect the molecular processes underlying de-domestication. Here, we analyse the genomes of 155 weedy and 76 locally cultivated rice accessions from four representative regions in China that were sequenced to an average 18.2 × coverage. Phylogenetic and demographic analyses indicate that Chinese weedy rice was de-domesticated independently from cultivated rice and experienced a strong genetic bottleneck. Although evolving from multiple origins, critical genes underlying convergent evolution of different weedy types can be found. Allele frequency analyses suggest that standing variations and new mutations contribute differently to japonica and indica weedy rice. We identify a Mb-scale genomic region present in weedy rice but not cultivated rice genomes that shows evidence of balancing selection, thereby suggesting that there might be more complexity inherent to the process of de-domestication. PMID:28537247

  11. Statistical process control applied to mechanized peanut sowing as a function of soil texture.

    PubMed

    Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.

  12. Phenodynamics of production and chemical pools in mayapple and flowering dogwood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, F.G. Jr.

    1991-01-01

    The objective of this study is to provide an understanding of the seasonality of biomass production and chemical storage among selected forest species as an aid to the analysis and management of a forest ecosystem model. The specific goals to accomplish the objectives included: (1) the construction of phenological calendars to be superimposed on the civil calendar, such that the seasons of the year are not marked by calendar dates but rather by dated groups of phenological events; (2) to develop a capability to predict onset of the generative phase (flowering) from heat unit summation methods; (3) to illustrate themore » role of phenology to biomass production and chemical storage in two indicator species, mayapple and flowering dogwood; and (4) to develop the capability to predict aboveground and below ground standing crop biomass in dogwood. Observations in this study focused on the generative phases (flowering) of individual plants and colonies of plants as indicators of productivity. 16 figs., 11 tabs.« less

  13. A host plant genome ( Zizania latifolia ) after a century-long endophyte infection

    DOE PAGES

    Guo, Longbiao; Qiu, Jie; Han, Zujing; ...

    2015-06-13

    In spite of the importance of host–microbe interactions in natural ecosystems, agriculture and medicine, the impact of long-term (especially decades or longer) microbial colonization on the dynamics of host genomes is not well understood. Moreover, the vegetable crop ‘Jiaobai’ with enlarged edible stems was domesticated from wild Zizania latifolia (Oryzeae) approximately 2000 years ago as a result of persistent infection by a fungal endophyte, Ustilago esculenta. Asexual propagation via infected rhizomes is the only means of Jiaobai production, and the Z. latifolia–endophyte complex has been maintained continuously for two centuries. Here, genomic analysis revealed that cultivated Z. latifolia has amore » significantly smaller repertoire of immune receptors compared with wild Z. latifolia. There are widespread gene losses/mutations and expression changes in the plant–pathogen interaction pathway in Jiaobai. Finally, these results show that continuous long-standing endophyte association can have a major effect on the evolution of the structural and transcriptomic components of the host genome.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, H P

    The principal hypothesis addressed in this study states that community variability is related to fatty acid structure. As a test of this idea, the zooplankton in three regimes of increasing physical severity (Block Island Sound, Narragansett Bay and Green Hill Pond) are being compared. Measurements were made on the physical environment, on standing crop and on fatty acid composition in both the phytoplankton-microzooplankton and macrozooplankton. Fatty acid variation in these communities displays a unique trajectory in time at each location. Environmental change and biochemical variability are directly related. The resulting biochemical message is complex but apparently highly informative. Patterns ofmore » variation in some fatty acids are affected most strongly by physical environmental parameters whereas the variation of other fatty acids is more responsive to differences in species composition, diversity and food web relationships. Taken together, these two aspects of biochemical pattern appear to characterize complex species assemblages. The result offers a new strategem for convenient assessment of the ever changing state in a natural community.« less

  15. The Secretory System of Arabidopsis

    PubMed Central

    Bassham, Diane C.; Brandizzi, Federica; Otegui, Marisa S.; Sanderfoot, Anton A.

    2008-01-01

    Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role—a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system. PMID:22303241

  16. Particulate organic matter delta C-13 variations across the Drake Passage

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Takahashi, T.; Des Marais, D. J.; Sullivan, C. W.

    1991-01-01

    Particulate organic matter (POM) was sampled during two cruise transects across the Drake Passage during March 1986 to investigate the unusual C-13 depletion in high-latitude Southern Ocean plankton. This POM delta C-13 transition from -23.2 o/oo at 53.3 deg S to values as low as -30.3 o/oo at above 62 deg S does not track previously reported abrupt changes in water chemistry and plankton species composition associated with the Polar Front Zone. The north-south isotopic trend is not accompanied by significant changes in POM carbon or nitrogen concentrations, or in POM C/N. Differences in plankton standing crop or biochemistry (e.g. lipid content) do not appear responsible for the isotopic trends observed. The latitudinal change in POM delta C-13 is highly correlated with water temperature and with the calculated concentration of CO2 (aq) at equilibrium with atmospheric CO2. These observations are consistent with the hypothesis that CO2 (aq) significantly influences POM delta C-13 in ocean surface waters.

  17. Estimation of old field ecosystem biomass using low altitude imagery

    NASA Technical Reports Server (NTRS)

    Nor, S. M.; Safir, G.; Burton, T. M.; Hook, J. E.; Schultink, G.

    1977-01-01

    Color-infrared photography was used to evaluate the biomass of experimental plots in an old-field ecosystem that was treated with different levels of waste water from a sewage treatment facility. Cibachrome prints at a scale of approximately 1:1,600 produced from 35 mm color infrared slides were used to analyze density patterns using prepared tonal density scales and multicell grids registered to ground panels shown on the photograph. Correlations between mean tonal density and harvest biomass data gave consistently high coefficients ranging from 0.530 to 0.896 at the 0.001 significance level. Corresponding multiple regression analysis resulted in higher correlation coefficients. The results indicate that aerial infrared photography can be used to estimate standing crop biomass on waste water irrigated old field ecosystems. Combined with minimal ground truth data, this technique could enable managers of waste water irrigation projects to precisely time harvest of such systems for maximal removal of nutrients in harvested biomass.

  18. Statistical process control applied to mechanized peanut sowing as a function of soil texture

    PubMed Central

    Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095

  19. /sup 7/Be and /sup 210/Pb total deposition fluxes at New Haven, Connecticut and at Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turekian, K.K.; Benninger, L.K.; Dion, E.P.

    1983-06-20

    The total deposition fluxes of /sup 210/Pb and /sup 7/Be were determined at New Haven, Connecticut, and Bermuda over approximately the same annual period in 1977-1978. The /sup 210/Pb flux has remained virtually constant at New Haven from 1973 to 1978, the flux in the 1977--1978 period being 1.2 dpm/cm/sup 2//y. The /sup 210/Pb flux at Bermuda is 0.69 dpm/cm/sup 2//y. This lower flux than expected from model calculations is due to the establishment of a blocking high pressure cell during the summer which deflects continental air. The /sup 7/Be fluxes at New Haven and Bermuda are 22.7 and 17.1more » dpm/cm/sup 2//y, values consistent with western North Atlantic oceanic standing crop measurements, but higher than some other estimates. Where the difference cannot be attributed to differences in sampling it is ascribable to regional differences compatible with the oceanic data.« less

  20. Wetland Biomass Production: emergent aquatic management options and evaluations. A final subcontract report. [Includes a bibliography containing 686 references on Typha from biological abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, D.C.; Dubbe, D.R.; Garver, E.G.

    1984-07-01

    The high yield potential and attractive chemical composition of Typha make it a particularly viable energy crop. The Minnesota research effort has demonstrated that total annual biomass yields equivalent to 30 dry tonnes/ha (13 tons/acre) are possible in planted stands. This compares with yields of total plant material between 9 and 16 dry tonnes/ha (4 to 7 tons/acre) in a typical Minnesota corn field. At least 50% of the Typha plant is comprised of a belowground rhizome system containing 40% starch and sugar. This high level of easily fermentable carbohydrate makes rhizomes an attractive feedstock for alcohol production. The abovegroundmore » portion of the plant is largely cellulose, and although it is not easily fermentable, it can be gasified or burned. This report is organized in a manner that focuses on the evaluation of the management options task. Results from stand management research performed at the University of Minnesota during 1982 and 1983 are integrated with findings from an extensive survey of relevant emergent aquatic plant research and utilization. These results and findings are then arranged in sections dealing with key steps and issues that need to be dealt with in the development of a managed emergent aquatic bio-energy system. A brief section evaluating the current status of rhizome harvesting is also included along with an indexed bibliography of the biology, ecology, and utilization of Typha which was completed with support from this SERI subcontract. 686 references, 11 figures, 17 tables.« less

  1. Land change in eastern Mediterranean wood-pasture landscapes: the case of deciduous oak woodlands in Lesvos (Greece).

    PubMed

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high--especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9%. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  2. Land Change in Eastern Mediterranean Wood-Pasture Landscapes: The Case of Deciduous Oak Woodlands in Lesvos (Greece)

    NASA Astrophysics Data System (ADS)

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high—especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9 %. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  3. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    USGS Publications Warehouse

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant differences were document in sapflow rates between the five study species, suggesting that selection of species is important for enhancing specific riparian buffer functions. However, more information is needed on water use patterns among diverse species growing under different climatic and biophysical conditions to assist policy and management decisions regarding effective buffer design. ?? 2011.

  4. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    NASA Astrophysics Data System (ADS)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten, Austria) and an agricultural maize crop stand (Heidelberg, Germany). This research demonstrates the potential and also limitations of fully automated, near real-time 4D LiDAR monitoring in geosciences.

  5. Vat, an Amazing Gene Conferring Resistance to Aphids and Viruses They Carry: From Molecular Structure to Field Effects

    PubMed Central

    Boissot, Nathalie; Schoeny, Alexandra; Vanlerberghe-Masutti, Flavie

    2016-01-01

    We review half a century of research on Cucumis melo resistance to Aphis gossypii from molecular to field levels. The Vat gene is unique in conferring resistance to both A. gossypii and the viruses it transmits. This double phenotype is aphid clone-dependent and has been observed in 25 melon accessions, mostly from Asia. It is controlled by a cluster of genes including CC-NLR, which has been characterized in detail. Copy-number polymorphisms (for the whole gene and for a domain that stands out in the LLR region) and single-nucleotide polymorphisms have been identified in the Vat cluster. The role of these polymorphisms in plant/aphid interactions remains unclear. The Vat gene structure suggests a functioning with separate recognition and response phases. During the recognition phase, the VAT protein is thought to interact (likely indirectly) with an aphid effector introduced during cell puncture by the aphid. A few hours later, several miRNAs are upregulated in Vat plants. Peroxidase activity increases, and callose and lignin are deposited in the walls of the cells adjacent to the stylet path, disturbing aphid behavior. In aphids feeding on Vat plants, Piwi-interacting RNA-like sequences are abundant and the levels of other miRNAs are modified. At the plant level, resistance to aphids is quantitative (aphids escape the plant and display low rates of reproduction). Resistance to viruses is qualitative and local. Durability of NLR genes is highly variable. A. gossypii clones are adapted to Vat resistance, either by introducing a new effector that interferes with the deployment of plant defenses, or by adapting to the defenses it triggered. Viruses transmitted in a non-persistent manner cannot adapt to Vat resistance. At population level, Vat reduces aphid density and genetic diversity. The durability of Vat resistance to A. gossypii populations depends strongly on the agro-ecosystem, including, in particular, the presence of other cucurbit crops serving as alternative hosts for adapted clones in fall and winter. At the crop level, Vat resistance decreases the intensity of virus epidemics when A. gossypii is the main aphid vector in the crop environment. PMID:27725823

  6. Introduction and domestication of woody plants for sustainable agriculture in desert areas

    NASA Astrophysics Data System (ADS)

    Shelef, Oren; Soloway, Elaine; Rachmilevitch, Shimon

    2014-05-01

    High radiation in hot deserts results in high salinity, especially in irrigated fields. Whenever not treated properly, this salinization may harm crops and eventually bring to soil destruction, field abandonment, or literally desertification. Furthermore, the range of crops that can be grown commercially in hot deserts is limited (Nerd et al. 1990). With the globalization of the last century, Introduction of exotic species for commercial use became more accessible. However, these attempts may involve extreme land changes including establishment of potential invasive species. Therefore domestication of native species should be preferred rather than introduction of exotics. In the last six years we did first steps of domesticating several native species, searching for commercial potential (pharmaceutics, food, biomass for energy and desalination of constructed wetlands). We studied aspects of desert plant physiology in drought and saline conditions. We wish to share the knowledge we gained regarding the physiology and commercial potential of the following desert plant species: 1) Bassia indica is an annual halophyte. We proposed to use it for salt phytoremediation in constructed wetlands for wastewater treatment and as feed for livestock; 2) Commiphora gileadensis is considered as the balm tree of Judea, praised for its use as holy oil and in perfumes but also considered as a cure for many diseases. C. gileadensis today grows naturally in southwest Arabia and Somaliland. We found anti-proliferative and apoptotic effect of C. gileadensis extracts on several human cancer cells. Ben Gurion University of the Negev has patented these findings. 3) Artemisia sieberi and A. judaica are both known for various therapeutic traits. While studying effects of irrigation intensity on these traits, some allopathic characters were discovered. 4) Fichus palmate disappeared from Israel, but remind in neighbouring Jordan and Egypt. This tree may serve as a robust stand for fig plantation in arid conditions. 5) Balanites aegyptiaca is potentially a good biomass crop and good feed for grazers as goats. We illuminated differences related to drought tolerance between two distinct ecotypes. Attempts to develope sustainable agriculture based on local species will save resources (water, fertilizers, insecticides and herbicides), keep endangered plant species and enhance vegetation reestablishment.

  7. Distribution and Biocontrol Potential of phlD(+) Pseudomonads in Corn and Soybean Fields.

    PubMed

    McSpadden Gardener, Brian B; Gutierrez, Laura J; Joshi, Raghavendra; Edema, Richard; Lutton, Elizabeth

    2005-06-01

    ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of these findings to natural and augmentative biocontrol of root pathogens by these bacteria is discussed.

  8. The Crop Risk Zones Monitoring System for resilience to drought in the Sahel

    NASA Astrophysics Data System (ADS)

    Vignaroli, Patrizio; Rocchi, Leandro; De Filippis, Tiziana; Tarchiani, Vieri; Bacci, Maurizio; Toscano, Piero; Pasqui, Massimiliano; Rapisardi, Elena

    2016-04-01

    Food security is still one of the major concerns that Sahelian populations have to face. In the Sahel, agriculture is primarily based on rainfed crops and it is often structurally inadequate to manage the climatic variability. The predominantly rainfed cropping system of Sahel region is dependent on season quality on a year-to-year basis, and susceptible to weather extremes of droughts and extreme temperatures. Low water-storage capacity and high dependence on rainfed agriculture leave the agriculture sector even more vulnerable to climate risks. Crop yields may suffer significantly with either a late onset or early cessation of the rainy season, as well as with a high frequency of damaging dry spells. Early rains at the beginning of the season are frequently followed by dry spells which may last a week or longer. As the amount of water stored in the soil at this time of the year is negligible, early planted crops can suffer water shortage stresses during a prolonged dry spell. Therefore, the choice of the sowing date is of fundamental importance for farmers. The ability to estimate effectively the onset of the season and potentially dangerous dry spells becomes therefore vital for planning rainfed agriculture practices aiming to minimize risks and maximize yields. In this context, advices to farmers are key drivers for prevention allowing a better adaptation of traditional crop calendar to climatic variability. In the Sahel, particularly in CILSS (Permanent Interstates Committee for Drought Control in the Sahel) countries, national Early Warning System (EWS) for food security are underpinned by Multidisciplinary Working Groups (MWGs) lead by National Meteorological Services (NMS). The EWSs are mainly based on tools and models utilizing numeric forecasts and satellite data to outlook and monitor the growing season. This approach is focused on the early identification of risks and on the production of information within the prescribed time period for decision-making. Since the '90s, analysis tools and models based on meteorological satellites data have been developed within different regional and national initiatives to allow near-real-time monitoring of the cropping season. The software was in general stand-alone applications, transferred to MWGs without continuous user support and updates. Currently MWGs in the Sahel do not have any working operational tool for drought risk identification and forecast, because such tools are by now obsolete from the IT perspective. The challenge and the objective of this work is to provide to MWGs and local end-users an open access/source Crop Risk Zones Monitoring System (CRZ-MS) supporting decision making for drought risk reduction and resilience improvement. A first prototype has been developed for Niger and Mali NMSs, based on a coherent Open Source web-based infrastructure to treat all input and output data in a interoperable, platform-independent and uniform way. The System architecture and functions are based on a agro-meteorological model, running in two different modes: 1) diagnostic mode for the drought monitoring during the agro-pastoral campaign allowing MWGs to identify agricultural drought risk areas in order to support decision making at local and national level in agricultural drought management. This early warning information also represents an input for estimating the nutritional food insecurity, for the identification of potentially vulnerable populations and assessing food crises risks by National EWSs put in place by CILSS with EU, FAO and WFP. 2) predictive mode for "advisory-support" activities to the farmers by the Agricultural Extension Services, in order to implement the most appropriate strategies for minimizing drought risk on crops (i.e. identification of the optimal period of sowing, choice of varieties based on the expected length of the growing season, adoption of suitable cultural practices for soil water management) and to build farmers resilience. To increase the accessibility of appropriate and targeted drought risk information, it is essential to move from generic information to specific advises for end-users at different decision-making levels, bridging the gap between available technology and local users' needs. Thus, advices to farmers are a fundamental component of prevention allowing a better country's preparedness to cope with weather variability.

  9. A comparison of airborne evapotranspiration maps and sapflow measurements in oak and beech forest stands

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Mallick, K.; Hassler, S. K.; Blume, T.; Ronellenfitsch, F.; Gerhards, M.; Udelhoven, T.; Weiler, M.

    2017-12-01

    Accurate estimations of spatially explicit daily Evapotranspiration (ET) may help water managers quantifying the water requirements of agricultural crops or trees. Airborne remote sensing may provide suitable ET maps, but uncertainties need to be better understood. In this study we compared high spatial resolution remotely sensed ET maps for 7 July 2016 with sap flow measurements over 32 forest stands located in the Attert catchment, Luxembourg. Forest stands differed in terms of species (Quercus robur, Fagus sylvatica), geology (schist, marl, sandstone), and geomorphology (slope position, plain, valley). Within each plot, at 1-3 trees the sap flow velocity (cm per hour) was measured between 8 am and 8 pm in 10 min intervals and averaged into a single value per plot and converted into values of volume flux (litres per day). Remotely sensed ET maps were derived by integrating airborne thermal infrared (TIR) images with an analytical surface energy balance model, Surface Temperature Initiated Closure (STIC1.2, Mallick et al. 2016). Airborne TIR images were acquired under clear sky conditions at 9:12, 10:08, 13:56, 14:50, 15:54, and 18:41 local time using a hyperspectral-thermal instrument. Images were geometrically corrected, calibrated, mosaicked, and converted to surface radiometric temperature. Surface temperature maps in conjunction with meteorological measurements recorded in the forest plots (air temperature, global radiation, relative humidity) were used as input to STIC1.2, for simultaneously estimating ET, sensible heat flux as well as surface and aerodynamic conductances. Instantaneous maps of ET were converted into daily ET maps and compared with the sap flow measurements. Results reveal a significant correspondence between remote sensing and field measured ET. The differences in the magnitude of predicted versus observed ET was found to be associated the biophysical conductances, radiometric surface temperature, and ecohydrological characteristics of the underlying landscape. Forest plots reveal differences in ET depending on the underlying geology and the slope position. Airborne remote sensing offers new ways of estimating the diurnal course of plant transpiration over entire landscapes and is an important bridging technology before high resolution TIR sensors will come into space.

  10. [Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shauxi].

    PubMed

    Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia

    2011-05-01

    Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.

  11. 78 FR 38483 - Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Area Risk Protection Insurance (ARPI) Basic Provisions, ARPI Barley Crop Insurance Provisions, ARPI Corn Crop Insurance Provisions, ARPI Cotton Crop Insurance Provisions, ARPI Forage Crop Insurance Provisions, ARPI Grain Sorghum Crop Insurance Provisions, ARPI Peanut Crop Insurance Provisions, ARPI Soybean Crop Insurance Provisions, and ARPI Wheat Crop Insurance Provisions to provide area yield protection and area revenue protection. These provisions will replace the Group Risk Plan (GRP) provisions in 7 CFR part 407, which includes the: GRP Basic Provisions, GRP Barley Crop Provisions, GRP Corn Crop Provisions, GRP Cotton Crop Provisions, GRP Forage Crop Provisions, GRP Peanut Crop Provisions, GRP Sorghum Crop Provisions, GRP Soybean Crop Provisions, and GRP Wheat Crop Provisions. The ARPI provisions will also replace the Group Risk Income Protection (GRIP) Basic Provisions, the GRIP Crop Provisions, and the GRIP-Harvest Revenue Option (GRIP-HRO). The GRP and GRIP plans of insurance will no longer be available. The intended effect of this action is to offer producers a choice of Area Revenue Protection, Area Revenue Protection with the Harvest Price Exclusion, or Area Yield Protection, all within one Basic Provision and the applicable Crop Provisions. This will reduce the amount of information producers must read to determine the best risk management tool for their operation and will improve the provisions to better meet the needs of insureds. The changes will apply for the 2014 and succeeding crop years.

  12. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance... cotton and macadamia nuts that published March 30, 2010. DATES: Effective Date: September 27, 2010. FOR... Common Crop Insurance Regulations, Basic Provisions and applicable Crop Provisions, including the Cotton...

  13. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  14. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In particular, canola production resulted in less overall water use but increased farm profits. Most crop substitutions were resource neutral. If future climate is drier, more winter annual crops like canola are likely to be adopted. Crop displacement is also important for determining market-mediated effects of biomass crop production. Correctly estimating crop displacement at the local scale greatly improves upon estimates for indirect land use change derived from the macro-scale PE and CGE models currently used by US EPA and the California Air Resources Board.

  15. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    PubMed

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  16. Processing scale-up of sicklepod (Senna obtusifolia L.) seed.

    PubMed

    Harry-O'Kuru, Rogers E; Mohamed, Abdellatif

    2009-04-08

    Sicklepod (Senna obtusifolia L.) is an invasive weed species especially of soybean and other field crops in the southeastern United States. The seeds contain a small amount (5-7%) of a highly colored fat as well as various phenolics, proteins, and galactomannans. The color of sicklepod seed oil is such that the presence of a small amount of the weed seed in a soybean crush lowers the quality of the soybean oil. Sicklepod is very prolific, and even volunteer stands yield >1000 lb of seed per acre, and prudence calls for tapping the potential of this weed as an alternative economic crop in the affected region. Pursuant to this, we have shown in laboratory-scale work the feasibility of separating the components of sicklepod seed. However, at kilogram and higher processing quantities, difficulties arise leading to modification of the earlier approach in order to efficiently separate components of the defatted seed meal. In a version for cleanly separating the proteins, the defatted meal was extracted with 0.5 M NaCl solution to remove globular proteins. Prolamins were extracted from the pellet left after salt extraction using 80% ethanol, and glutelins were then obtained in 0.1 N alkali from the residual solids left from ethanol treatment. In a pilot-scale version for water-soluble polysaccharides, the defatted meal was stirred with deionized water (DI) and centrifuged. The pooled centrifugates were heated to 92 degrees C (20-25 min), filtered, cooled to room temperature, and passed through a column of Amberlite XAD-4 to separate the polysaccharides from the anthraquinones. Senna obtusifolia L. is a one-stop-shop of a seed (from food components to medicinals).

  17. A Global-Scale Estimate of Ecosystem Services from Urban Agriculture: Understanding Incentives for Natural Capital in Cities

    NASA Astrophysics Data System (ADS)

    Clinton, N.; Stuhlmacher, M.; Miles, A.; Uludere, N.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P.

    2017-12-01

    Despite substantial interest in urban agriculture, little is known about the aggregate benefits conferred by natural capital for growing food in cities. Here we perform a scenario-based analysis to quantify ecosystem services from adoption of urban agriculture at varying intensity. To drive the scenarios, we created global-scale estimates of vacant land, rooftop and building surface area, at one kilometer resolution, from remotely sensed and modeled geospatial data. We used national scale agricultural reports, climate and other geospatial data at global scale to estimate agricultural production and economic returns, storm-water avoidance, energy savings from avoided heating and cooling costs, and ecosystem services provided by nitrogen sequestration, pollination and biocontrol of pests. The results indicate that vacant lands, followed by rooftops, represent the largest opportunities for natural capital put to agricultural use in urban areas. Ecosystem services from putting such spaces to productive use are dominated by agricultural returns, but energy savings conferred by insulative characteristics of growth substrate also provide economic incentives. Storm water avoidance was estimated to be substantial, but no economic value was estimated. Relatively low economic returns were estimated from the other ecosystem services examined. In aggregate, approximately $10-100 billion in economic incentives, before costs, were estimated. The results showed that relatively developed, high-income countries stand the most to gain from urban agricultural adoption due to the unique combination of climate, crop mixture and crop prices. While the results indicate that urban agriculture is not a panacea for urban food security issues, there is potential to simultaneously ameliorate multiple issues around food, energy and water in urbanized areas.

  18. Trace elements in feed, manure, and manured soils.

    PubMed

    Sheppard, S C; Sanipelli, B

    2012-01-01

    Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Support for the 4th Pan-American Congress on Plants and Bioenergy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpita, Nicholas C.

    Intellectual Merit: Following the success of the first three Pan-American Congresses on Plants and BioEnergy held biennially, the 4th congress will be held at the University of Guelph, Canada June 4-7, 2014. We aim to continue a tradition of showcasing major advances in energy crop improvement yet keep in perspective the realities of the economic drivers and pressures that govern the translation of scientific success into a commercial success. The congress is endorsed by the American Society of Plant Biologists and the Canadian Society of Plant Biologists. The program will cover a range of disciplines, including algal and plant systemsmore » for bioenergy, plant genetics and genomics, gene discovery for improvement of bioenergy production and quality, regulatory mechanisms of synthesis and degradation, strategies for 3rd generation biofuel production and the promise of synthetic biology in production of biofuels and bio-based products, cropping systems and productivity for biomass production, and mitigation of environmental impacts of bioenergy production. Broader Impacts: We are requesting support to generate stipends for domestic and permanent-resident students, post-doctorals, and pre-tenured faculty members to attend and benefit from the outstanding program. The stipends will be limited to registration and on-site lodging costs, with partial support for travel in instances of great need. So that as great a number can benefit as possible, airfare costs will be provided for only applicants with great need. ASPB has endorsed this meeting and will assist in advertising and promoting the meeting. ASPB has a long-standing commitment to increase participation and advance the careers in plant biology of women, minorities and underrepresented scientists, and they will assist us in identifying worthy candidates.« less

  20. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Berry, W. L.; Mackowiak, C.; Corey, K. A.; Sager, J. C.; Heeb, M. M.; Knott, W. M.

    1993-01-01

    A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 m2 stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 m2 of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might be required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.

  1. A Data Base of Crop Nutrient Use, Water Use, and Carbon Dioxide Exchange in a 20 Square Meter Growth Chamber. Part 1; Wheat as a Case Study

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Berry, Wade L.; Mackowiak, Cheryl; Corey, Kenneth A.; Sager, John C.; Heeb, Margaret M.; Knott, William M.

    1993-01-01

    A data set is given describing the daily nutrient uptake, gas exchange, environmental conditions, and carbon (C), and nutrient partitioning at harvest for the entire canopy and root system of a wheat crop (Triticum aestivum, cv. Yecora Rojo). The data were obtained from a 20 sq m stand of wheat plants grown from planting to maturity in a closed, controlled environment, and include daily nutrient uptake [macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients, iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mo)], canopy carbon dioxide (CO2) exchange rates, and transpiration. Environmental factors such as relative humidity, air temperature, nutrient solution temperature, pH and electrical conductivity, and photoperiod were controlled in the chamber to specific set points. A detailed description of biomass yield for each of the 64 plant growth trays comprising the 20 sq m of growth area is also provided, and includes dry weights of grain, straw, chaff, and roots, along with the concentration of nutrients in different plant tissues and the percent carbohydrate, fat, and protein. To our knowledge, this information represents one of the most extensive data sets available for a canopy of wheat grown from seed to maturity under controlled environmental and nutritional conditions, and thus may provide useful information for model development and validation. A methods section is included to qualify any assumptions that might he required for the use of the data in plant growth models, along with a daily event calendar indicating when adjustments in set points and occasional equipment or sensor failures occurred.

  2. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    PubMed

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p < 0.01). Therefore, the mixing ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  3. 40 CFR 158.1100 - Spray drift data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the general use patterns of terrestrial food crop and terrestrial nonfood crop. The aquatic use pattern includes products classified under the general use patterns of aquatic food crop and aquatic... Pattern Terrestrial Food Crop Nonfood Crop Aquatic Food Nonfood Greenhouse Food Crop Nonfood Crop Forestry...

  4. 40 CFR 158.1100 - Spray drift data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the general use patterns of terrestrial food crop and terrestrial nonfood crop. The aquatic use pattern includes products classified under the general use patterns of aquatic food crop and aquatic... Pattern Terrestrial Food Crop Nonfood Crop Aquatic Food Nonfood Greenhouse Food Crop Nonfood Crop Forestry...

  5. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance... Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and replace the reference...

  6. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed... Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to make the ELS Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop Insurance Provisions and to allow a late...

  7. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  8. Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.

    PubMed

    Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson

    2007-12-01

    In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.

  9. Distribution and ecology of seagrass communities in the Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Aleem, A. A.

    1. Nine seagrasses were identified and their distributions on coral reef islands and the African coastline studied. 2. Transects were worked to show the vertical zonation of the seagrasses. The more important communities encountered in order from low water spring tide level to the infralittoral were a Halodule uninervis community, a halodule - Thalassi or Thalassia - Cymodocea serrulata community, a Thalassia - Syringodium community, a Thalassia hemprichii community, and finally a Cymodocea ciliata community. 3. Halodule was the main pioneer species. 4. Thalassia and Cymodocea ciliata formed beds which in thelatter seagrass grew at depths of up to 40m. 5. Cymodecea ciliata grew on exposed or semi-exposed shores and formed mats 30-40cm thick. 6. The main environmental factors influencing the zonation of these seagrasses are substrate type, water depth, exposure to waves and current, and tidal range. They grow where water temperatures ranges between 26-30°C, but in littoral pools they may have to withstand temperatures as high as 38°C for short periods. 7. The substrates in which these seagrasses grow range from fine sand and silt to coarse sand mixed with coral debris. Thalassia was the only species which tolerated anoxic sediments and its roots can ramify through black sediments smelling of hydrogen sulphide. Halodule and Syringodium tolerates some lowering of sediment oxygen content. 8. Average standing stock of the main communities expressed as g Fresh Weight per square metre were ss follows: Halodule uninervis, 2430; Halophila ovalis, 465; Thalassia-Halodule, 4250; Thalassia-Cymodecea serrulata, 2907; Thalassia hemprichii, 4125; Cymodocea ciliata, 6050. There was evidence that seagrass biomass increased from LWS down into the infralittoral. The same communities were also analysed for the standing crops of assocated algae and macrofauna.

  10. Direct and indirect impacts of crop-livestock organization on mixed crop-livestock systems sustainability: a model-based study.

    PubMed

    Sneessens, I; Veysset, P; Benoit, M; Lamadon, A; Brunschwig, G

    2016-11-01

    Crop-livestock production is claimed more sustainable than specialized production systems. However, the presence of controversial studies suggests that there must be conditions of mixing crop and livestock productions to allow for higher sustainable performances. Whereas previous studies focused on the impact of crop-livestock interactions on performances, we posit here that crop-livestock organization is a key determinant of farming system sustainability. Crop-livestock organization refers to the percentage of the agricultural area that is dedicated to each production. Our objective is to investigate if crop-livestock organization has both a direct and an indirect impact on mixed crop-livestock (MC-L) sustainability. In that objective, we build a whole-farm model parametrized on representative French sheep and crop farming systems in plain areas (Vienne, France). This model permits simulating contrasted MC-L systems and their subsequent sustainability through the following indicators of performance: farm income, production, N balance, greenhouse gas (GHG) emissions (/kg product) and MJ consumption (/kg product). Two MC-L systems were simulated with contrasted crop-livestock organizations (MC20-L80: 20% of crops; MC80-L20: 80% of crops). A first scenario - constraining no crop-livestock interactions in both MC-L systems - permits highlighting that crop-livestock organization has a significant direct impact on performances that implies trade-offs between objectives of sustainability. Indeed, the MC80-L20 system is showing higher performances for farm income (+44%), livestock production (+18%) and crop GHG emissions (-14%) whereas the MC20-L80 system has a better N balance (-53%) and a lower livestock MJ consumption (-9%). A second scenario - allowing for crop-livestock interactions in both MC20-L80 and MC80-L20 systems - stated that crop-livestock organization has a significant indirect impact on performances. Indeed, even if crop-livestock interactions permit improving performances, crop-livestock organization influences the capacity of MC-L systems to benefit from crop-livestock interactions. As a consequence, we observed a decreasing performance trade-off between MC-L systems for farm income (-4%) and crop GHG emissions (-10%) whereas the gap increases for nitrogen balance (+23%), livestock production (+6%) - MJ consumption (+16%) - GHG emissions (+5%) and crop MJ consumption (+5%). However, the indirect impact of crop-livestock organization doesn't reverse the trend of trade-offs between objectives of sustainability determined by the direct impact of crop-livestock organization. As a conclusion, crop-livestock organization is a key factor that has to be taken into account when studying the sustainability of mixed crop-livestock systems.

  11. 78 FR 70485 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...-0002] RIN 0563-AC41 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY... Cotton Crop Insurance Provisions to make the Extra Long Staple (ELS) Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop Insurance Provisions and to allow a late planting period. The intended...

  12. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  13. From forest to farm: systematic review of cultivar feeding by chimpanzees--management implications for wildlife in anthropogenic landscapes.

    PubMed

    Hockings, Kimberley J; McLennan, Matthew R

    2012-01-01

    Crop-raiding is a major source of conflict between people and wildlife globally, impacting local livelihoods and impeding conservation. Conflict mitigation strategies that target problematic wildlife behaviours such as crop-raiding are notoriously difficult to develop for large-bodied, cognitively complex species. Many crop-raiders are generalist feeders. In more ecologically specialised species crop-type selection is not random and evidence-based management requires a good understanding of species' ecology and crop feeding habits. Comprehensive species-wide studies of crop consumption by endangered wildlife are lacking but are important for managing human-wildlife conflict. We conducted a comprehensive literature search of crop feeding records by wild chimpanzees (Pan troglodytes), a ripe-fruit specialist. We assessed quantitatively patterns of crop selection in relation to species-specific feeding behaviour, agricultural exposure, and crop availability. Crop consumption by chimpanzees is widespread in tropical Africa. Chimpanzees were recorded to eat a considerable range of cultivars (51 plant parts from 36 species). Crop part selection reflected a species-typical preference for fruit. Crops widely distributed in chimpanzee range countries were eaten at more sites than sparsely distributed crops. We identified 'high' and 'low' conflict crops according to their attractiveness to chimpanzees, taking account of their importance as cash crops and/or staple foods to people. Most (86%) high conflict crops were fruits, compared to 13% of low conflict crops. Some widely farmed cash or staple crops were seldom or never eaten by chimpanzees. Information about which crops are most frequently consumed and which are ignored has enormous potential for aiding on-the-ground stakeholders (i.e. farmers, wildlife managers, and conservation and agricultural extension practitioners) develop sustainable wildlife management schemes for ecologically specialised and protected species in anthropogenic habitats. However, the economic and subsistence needs of local people, and the crop-raiding behaviour of sympatric wildlife, must be considered when assessing suitability of particular crops for conflict prevention and mitigation.

  14. Use of Satellite-based Remote Sensing to inform Evapotranspiration parameters in Cropping System Models

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Barber, M. E.

    2016-12-01

    The objectives of this paper are to use an automated satellite-based remote sensing evapotranspiration (ET) model to assist in parameterization of a cropping system model (CropSyst) and to examine the variability of consumptive water use of various crops across the watershed. The remote sensing model is a modified version of the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC™) energy balance model. We present the application of an automated python-based implementation of METRIC to estimate ET as consumptive water use for agricultural areas in three watersheds in Eastern Washington - Walla Walla, Lower Yakima and Okanogan. We used these ET maps with USDA crop data to identify the variability of crop growth and water use for the major crops in these three watersheds. Some crops, such as grapes and alfalfa, showed high variability in water use in the watershed while others, such as corn, had comparatively less variability. The results helped us to estimate the range and variability of various crop parameters that are used in CropSyst. The paper also presents a systematic approach to estimate parameters of CropSyst for a crop in a watershed using METRIC results. Our initial application of this approach was used to estimate irrigation application rate for CropSyst for a selected farm in Walla Walla and was validated by comparing crop growth (as Leaf Area Index - LAI) and consumptive water use (ET) from METRIC and CropSyst. This coupling of METRIC with CropSyst will allow for more robust parameters in CropSyst and will enable accurate predictions of changes in irrigation practices and crop rotation, which are a challenge in many cropping system models.

  15. Mapping croplands, cropping patterns, and crop types using MODIS time-series data

    NASA Astrophysics Data System (ADS)

    Chen, Yaoliang; Lu, Dengsheng; Moran, Emilio; Batistella, Mateus; Dutra, Luciano Vieira; Sanches, Ieda Del'Arco; da Silva, Ramon Felipe Bicudo; Huang, Jingfeng; Luiz, Alfredo José Barreto; de Oliveira, Maria Antonia Falcão

    2018-07-01

    The importance of mapping regional and global cropland distribution in timely ways has been recognized, but separation of crop types and multiple cropping patterns is challenging due to their spectral similarity. This study developed a new approach to identify crop types (including soy, cotton and maize) and cropping patterns (Soy-Maize, Soy-Cotton, Soy-Pasture, Soy-Fallow, Fallow-Cotton and Single crop) in the state of Mato Grosso, Brazil. The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) time series data for 2015 and 2016 and field survey data were used in this research. The major steps of this proposed approach include: (1) reconstructing NDVI time series data by removing the cloud-contaminated pixels using the temporal interpolation algorithm, (2) identifying the best periods and developing temporal indices and phenological parameters to distinguish croplands from other land cover types, and (3) developing crop temporal indices to extract cropping patterns using NDVI time-series data and group cropping patterns into crop types. Decision tree classifier was used to map cropping patterns based on these temporal indices. Croplands from Landsat imagery in 2016, cropping pattern samples from field survey in 2016, and the planted area of crop types in 2015 were used for accuracy assessment. Overall accuracies of approximately 90%, 73% and 86%, respectively were obtained for croplands, cropping patterns, and crop types. The adjusted coefficients of determination of total crop, soy, maize, and cotton areas with corresponding statistical areas were 0.94, 0.94, 0.88 and 0.88, respectively. This research indicates that the proposed approach is promising for mapping large-scale croplands, their cropping patterns and crop types.

  16. 40 CFR 503.11 - Special definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Agricultural land is land on which a food crop, a feed crop, or a fiber crop is grown. This includes range land...) designed: (1) To provide the amount of nitrogen needed by the food crop, feed crop, fiber crop, cover crop... applied to an area of land. (g) Forest is a tract of land thick with trees and underbrush. (h) Land...

  17. 40 CFR 503.11 - Special definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Agricultural land is land on which a food crop, a feed crop, or a fiber crop is grown. This includes range land...) designed: (1) To provide the amount of nitrogen needed by the food crop, feed crop, fiber crop, cover crop... applied to an area of land. (g) Forest is a tract of land thick with trees and underbrush. (h) Land...

  18. 40 CFR 503.11 - Special definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Agricultural land is land on which a food crop, a feed crop, or a fiber crop is grown. This includes range land...) designed: (1) To provide the amount of nitrogen needed by the food crop, feed crop, fiber crop, cover crop... applied to an area of land. (g) Forest is a tract of land thick with trees and underbrush. (h) Land...

  19. Long-term observations of crop water use with eddy covariance stations and coupling with crop simulation models

    USDA-ARS?s Scientific Manuscript database

    Understanding crop water use is critical to being able to determine crop water requirements and when water is limiting crop productivity. There have been many different techniques used to quantify crop water use and the eddy covariance approach is one method that has the capacity to measure crop wat...

  20. Jet fuel from 18 cool-season oilseed feedstocks in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Allen, Brett; Jabro, Jay

    2017-04-01

    Renewable jet fuel feedstocks can potentially offset the demand for petroleum based transportation resources, diversify cropping systems, and provide numerous ecosystem services . However, identifying suitable feedstock supplies remains a primary constraint to adoption. A 4-yr, multi-site experiment initiated in fall 2012 investigated the yield potential of six winter- and twelve spring-types of cool-season oilseed feedstocks. Sidney, MT (250 mm annual growing season precipitation) was one of eight sites in the western USA with others in Colorado, Idaho, Iowa, Minnesota, North Dakota, Oregon, and Texas. Winter types of Camelina sativa (1), Brassica napus (4), and B. rapa (1) were planted in mid-September, while spring types of Camelina sativa (1), B. napus (4), B. rapa (1), B. juncea (2), B. carinata (2), and Sinapis alba (2) were planted in early to late April. Seeding rates varied by entry and were between 4 to 11 kg/ha. All plots were under no-till management. Plots were 3 by 9 m with each treatment (oilseed entry) replicated four times. Camelina 'Joelle' was the only fall-seeded entry that survived winters with little to no snow cover on plots and where minimum air temperature reached -32°C. Stands of 'Joelle' in the spring of all years were excellent. 'Joelle' plots were typically harvested in July, while spring types were harvested 2-6 weeks later. Severe hailstorms during the late growing seasons of 2013 and 2015 resulted in up to 95% seed loss, preventing normal seed yield harvest of spring types. The B. carinata and spring camelina were the least and most susceptible to hail damage during plant maturity, respectively. 'Joelle' winter camelina was harvested before the severe weather in both years, showing the benefit of an early maturing crop in regions prone to late season hail. Overall, camelina was the only winter type that showed potential as an oilseed feedstock due to its superior winter hardiness. For spring types, B. napus, Camelina sativa, and B. carinata showed the greatest potential. Seed yield, excluding the five winter types that succumbed every year to winter kill, ranged from about 200 to 2000 kg/ha, with B. napus hybrids (1900 kg/ha), winter and spring camelina (1700 kg/ha), and B. carinata (1300 kg/ha) showing the greatest feedstock potential. Other measurements taken, but not reported included crop phenology, canopy spectral reflectance, leaf area, leaf area index, canopy temperature, soil water use, crop biomass, yield components, seed oil%, seed fatty acid composition, and drought resistance. Overall, camelina was the only winter type in addition to spring types of B. napus, B. carinata, and camelina that showed good potential for jet fuel feedstocks in the semi-arid northern Great Plains, USA.

  1. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  2. AgMIP: Next Generation Models and Assessments

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.

  3. Developing trap cropping systems for effective organic management of key insect pests of cucurbit crops (IPM)

    USDA-ARS?s Scientific Manuscript database

    Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...

  4. An evaluation of time-series MODIS 250-meter vegetation index data for crop mapping in the United States Central Great Plains

    NASA Astrophysics Data System (ADS)

    Wardlow, Brian Douglas

    The objectives of this research were to: (1) investigate time-series MODIS (Moderate Resolution Imaging Spectroradiometer) 250-meter EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference Vegetation Index) data for regional-scale crop-related land use/land cover characterization in the U.S. Central Great Plains and (2) develop and test a MODIS-based crop mapping protocol. A pixel-level analysis of the time-series MODIS 250-m VIs for 2,000+ field sites across Kansas found that unique spectral-temporal signatures were detected for the region's major crop types, consistent with the crops' phenology. Intra-class variations were detected in VI data associated with different land use practices, climatic conditions, and planting dates for the crops. The VIs depicted similar seasonal variations and were highly correlated. A pilot study in southwest Kansas found that accurate and detailed cropping patterns could be mapped using the MODIS 250-m VI data. Overall and class-specific accuracies were generally greater than 90% for mapping crop/non-crop, general crops (alfalfa, summer crops, winter wheat, and fallow), summer crops (corn, sorghum, and soybeans), and irrigated/non-irrigated crops using either VI dataset. The classified crop areas also had a high level of agreement (<5% difference) with the USDA reported crop areas. Both VIs produced comparable crop maps with only a 1-2% difference between their classification accuracies and a high level of pixel-level agreement (>90%) between their classified crop patterns. This hierarchical crop mapping protocol was tested for Kansas and produced similar classification results over a larger and more diverse area. Overall and class-specific accuracies were typically between 85% and 95% for the crop maps. At the state level, the maps had a high level of areal agreement (<5% difference) with the USDA crop area figures and their classified patterns were consistent with the state's cropping practices. In general, the protocol's performance was relatively consistent across the state's range of environmental conditions, landscape patterns, and cropping practices. The largest areal differences occurred in eastern Kansas due to the omission of many small cropland areas that were not resolvable at MODIS' 250-m resolution. Notable regional deviations in classified areas also occurred for selected classes due to localized precipitation patterns and specific cropping practices.

  5. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  6. A bioenergy feedstock/vegetable double-cropping system

    USDA-ARS?s Scientific Manuscript database

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  7. Panel Discussion: Cover Crops Used at Vallonia Nursery, Indiana Division of Forestry

    Treesearch

    Robert Hawkins

    2005-01-01

    The use of cover crops is one essential step in management of nursery soils. Cover crops serve many different purposes within the soil. First, cover crops help in reducing erosion by stabilizing soil. Second, cover crops can be used as a visual guide to nutrient deficiencies in fields prior to sowing seedling crops. Most important, cover crops build organic matter,...

  8. Temporal Downscaling of Crop Coefficient and Crop Water Requirement from Growing Stage to Substage Scales

    PubMed Central

    Shang, Songhao

    2012-01-01

    Crop water requirement is essential for agricultural water management, which is usually available for crop growing stages. However, crop water requirement values of monthly or weekly scales are more useful for water management. A method was proposed to downscale crop coefficient and water requirement from growing stage to substage scales, which is based on the interpolation of accumulated crop and reference evapotranspiration calculated from their values in growing stages. The proposed method was compared with two straightforward methods, that is, direct interpolation of crop evapotranspiration and crop coefficient by assuming that stage average values occurred in the middle of the stage. These methods were tested with a simulated daily crop evapotranspiration series. Results indicate that the proposed method is more reliable, showing that the downscaled crop evapotranspiration series is very close to the simulated ones. PMID:22619572

  9. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  10. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  11. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  12. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Macadamia nut crop insurance provisions. 457.131... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut crop insurance provisions. The macadamia nut crop insurance provisions for the 2012 and succeeding crop...

  13. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Macadamia nut crop insurance provisions. 457.131... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut crop insurance provisions. The macadamia nut crop insurance provisions for the 2012 and succeeding crop...

  14. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Macadamia nut crop insurance provisions. 457.131... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut crop insurance provisions. The macadamia nut crop insurance provisions for the 2012 and succeeding crop...

  15. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    USDA-ARS?s Scientific Manuscript database

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  16. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Extra long staple cotton crop insurance provisions... long staple cotton crop insurance provisions. The extra long staple cotton crop insurance provisions... Crop Insurance Corporation ELS Cotton Crop Provisions 1. Definitions Cotton. Varieties identified as...

  17. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Extra long staple cotton crop insurance provisions... long staple cotton crop insurance provisions. The extra long staple cotton crop insurance provisions... Crop Insurance Corporation ELS Cotton Crop Provisions 1. Definitions Cotton. Varieties identified as...

  18. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Extra long staple cotton crop insurance provisions... long staple cotton crop insurance provisions. The extra long staple cotton crop insurance provisions... Crop Insurance Corporation ELS Cotton Crop Provisions 1. Definitions Cotton. Varieties identified as...

  19. Using cover crops and cropping systems for nitrogen management

    USDA-ARS?s Scientific Manuscript database

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  20. Predicting lettuce canopy photosynthesis with statistical and neural network models

    NASA Technical Reports Server (NTRS)

    Frick, J.; Precetti, C.; Mitchell, C. A.

    1998-01-01

    An artificial neural network (NN) and a statistical regression model were developed to predict canopy photosynthetic rates (Pn) for 'Waldman's Green' leaf lettuce (Latuca sativa L.). All data used to develop and test the models were collected for crop stands grown hydroponically and under controlled-environment conditions. In the NN and regression models, canopy Pn was predicted as a function of three independent variables: shootzone CO2 concentration (600 to 1500 micromoles mol-1), photosynthetic photon flux (PPF) (600 to 1100 micromoles m-2 s-1), and canopy age (10 to 20 days after planting). The models were used to determine the combinations of CO2 and PPF setpoints required each day to maintain maximum canopy Pn. The statistical model (a third-order polynomial) predicted Pn more accurately than the simple NN (a three-layer, fully connected net). Over an 11-day validation period, average percent difference between predicted and actual Pn was 12.3% and 24.6% for the statistical and NN models, respectively. Both models lost considerable accuracy when used to determine relatively long-range Pn predictions (> or = 6 days into the future).

Top